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Abstract  25 

 26 

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically 27 

unable to identify and monitor their activity in the behaving animal. Here, we employed a 28 

systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo 29 

recorded units via computational modeling and optotagging experiments. We found two one-30 

channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in 31 

terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- 32 

and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability 33 

and conductance properties that explain their distinct extracellular signatures and functional 34 

characteristics. These concepts were tested in ground-truth optotagging experiments with two 35 

inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a 36 

powerful way to separate in vivo clusters and infer their cellular properties from first principles. 37 

 38 

Introduction 39 

 40 

The cellular composition of the brain is diverse with recent studies in rodent neocortex identifying 41 

tens of cell types1–4. The expectation is that these types serve distinct roles in behavior. However, 42 

disentangling their function is challenging. The difficulty is twofold. First, extensive single-cell 43 

characterization of neurons, mainly propelled by advances in sequencing technology, allow 44 

sampling from large populations at the cellular level, revealing a multitude of cell types. These 45 

types exist within detailed, molecular-based taxonomies of neocortex, hippocampus and other 46 

brain circuits3,5,6. In vitro cellular electrophysiology and morphology reconstructions, in turn, offer 47 

a phenomenology-based approach in defining taxonomies that is easier translated to in vivo 48 

dynamics, e.g. via spike response properties7,8. Taxonomies accounting for the three main data 49 

modalities simultaneously are scarce, with a few noteworthy exceptions2,9,10.  50 

 51 

The second challenge lies in monitoring cell classes identified via their in vitro molecular, 52 

electrophysiology and morphology properties in vivo. In vivo imaging of virally or genetically 53 

targeted populations offer remarkable insights in how these populations organize during behavior 54 

but are unable to resolve single action potentials due to their low sampling rate and the highly 55 

nonlinear relationship between spikes and calcium indicator fluorescence11–13. Single-wire or high-56 

density extracellular electrophysiology recordings, on the other hand, offer much improved 57 

temporal resolution to monitor spiking and spike-related activity in vivo even if their ability to 58 

resolve cell types is limited. Typically, a handful of spike features can separate between major 59 

classes, e.g., the extracellular action potential (EAP) width separates fast-spiking (FS) from other 60 

so-called regular-spiking (RS) units14–17. Early slice experiments indicated that RS and FS cells 61 

probably correspond to pyramidal cells and interneurons, respectively18, while other studies found 62 

a more intricate correspondence17,19,20. With recent advancements drastically increasing the 63 

electrode density of silicon probes21, spatiotemporal information on EAP waveforms increased 64 

significantly allowing for more refined clustering of in vivo EAPs22,23. Even so, linking cellular 65 

taxonomies to in vivo signatures, i.e., classification, in a systematic manner for in vivo recordings 66 

has been difficult.  67 

 68 

Single-cell computational models make it possible to link various types of data by incorporating 69 

constraints and generating predictions across data modalities, e.g., predicting a particular ion 70 
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conductance based on properties of the electrophysiological response such as spike shape or 71 

frequency. In a recent study, a large-scale model generation and evaluation effort developed bio-72 

realistic, single-cell models for mouse primary visual cortex (V1) accounting for ion conductances 73 

along the entire neural morphology24. Importantly, these models closely capture distinguishing 74 

properties of major excitatory and inhibitory classes integrating electrophysiology, morphology 75 

and transcriptomics data. A key aspect of conductance-based models is their ability to emulate 76 

extracellular electrophysiology signatures such as the EAP-waveform25–27. Thus, these models 77 

integrate a variety of data modalities they were trained on (electrophysiology and morphology) or 78 

validated against (transcriptomics) and predict a fourth data modality, i.e., the EAP waveform and 79 

its associated features. 80 

 81 

Here, we show that unsupervised clustering of mouse V1 units recorded via high-density 82 

Neuropixels probes 21 results in two one-channel and six multi-channel clusters with distinct EAP 83 

and EAP-propagation profiles, respectively. Importantly, these clusters exhibit functional 84 

differences and distinct coupling to endogenous oscillations, i.e. the main criterion for being 85 

considered truly distinct populations in the microcircuit. To determine the differences between the 86 

individual clusters we use biophysical models that capture single-cell data from cortical transgenic 87 

mouse lines to define EAP templates. Using a supervised classifier, we show that morphological 88 

spiny vs. aspiny neurons closely map to RS and FS units, respectively, recorded in vivo. Next, we 89 

map the six multi-channel clusters with their distinct EAP propagation profiles to model 90 

populations, compare between model population setups and identify conductances and 91 

morphology features that explain the EAP differences between the in vivo clusters. Our newfound 92 

ability to separate between clusters is exemplified in ground-truth, optotagging experiments where 93 

we separate between two major inhibitory classes in vivo and show their distinct entrainment 94 

profile to ongoing neocortical oscillations. 95 

 96 

Results 97 

 98 

Extracellular action potential recordings from in vivo experiments and biophysical models 99 

of cell types  100 

Analysis of extracellular action potential (EAP) waveforms of so-called “units” (putative single 101 

neurons) typically clusters into two groups, regular-spiking (RS) vs. fast-spiking (FS) (Fig. 1a). 102 

We sought a more refined classification scheme using data from a recent in vivo survey of 103 

electrophysiological activity in awake mice23. We focused on data from units in primary visual 104 

cortex (V1) recorded using Neuropixels probes (Fig. 1b). These probes offer a dense arrangement 105 

of recording sites (Fig. 1c), which allows EAP signals from single units to be detected on multiple 106 

recording channels (Fig. 1c; example unit #1: a FS unit; example unit #2: a RS unit; bold: channels 107 

with largest EAP amplitude). We analyzed units from 25 wild-type mice, 8 mice expressed ChR2 108 

in parvalbumin-positive cells (Pvalb), and 12 in somatostatin-positive cells (Sst) (Fig. 1d). We 109 

only analyzed units located in V1 with an average of 48 units per wild-type mouse being well-110 

isolated (unit isolation criteria: see Methods; Fig. 1d; total number of units = 1204) during 111 

spontaneous activity. The depth of layer 4 was determined from where the visual stimulus (flash) 112 

evoked a strong response in the current source density (CSD) 28,29 (Fig. S1). Unit location along 113 

the cortical depth was adjusted relative to layer 4 (depth 0 indicates the center of layer 4). The 114 

estimated soma location of well-isolated units (based on EAP properties) in our study spanned 115 

from layers 2/3 through 6 with the majority located in layers 4 and 5 (Fig. 1d). 116 
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 117 

To map the recorded EAP waveforms to specific cell classes we used biophysically detailed 118 

models of single neurons. These biophysical models are developed in an unsupervised manner 119 

using a multi-objective optimization platform that relies on standardized electrophysiology 120 

features and the reconstructed cellular morphology to distribute a set of ionic conductances 121 

relevant for cortical neurons24. We developed single-cell models that represent a diverse set of 122 

transgenic mouse lines to ensure broad coverage across cortical layers and classes1. For our study 123 

we accounted for 15 spiny (SP) and 18 aspiny (AP) single-cell, so-called “all-active”, 124 

biophysically realistic models from V1 optimized based on in vitro single-cell electrophysiology 125 

and morphology (Fig. S2). Notably, the SP vs. AP designation in our study is morphology-based 126 

and does not reflect any electrophysiology features such as action potential waveform or spike 127 

pattern. The experimental data to produce the single-cell models were part of a systematic 128 

characterization of mouse visual cortex where a uniform experimental protocol was used to 129 

establish a taxonomy based on cellular electrophysiology and morphology1,24.  130 

 131 

Beyond reflecting key properties of various cell types in terms of electrophysiology, morphology 132 

and transcriptomics24,30, these biophysical single-cell models reproduce EAP signals in the vicinity 133 

of the cellular morphology (Fig. 1e, top: spiny cell, cell ID: 395830185; bottom: aspiny cell, cell 134 

ID: 469610831). Our computational approach simulated the recording sites of a Neuropixels probe 135 

(see Methods; 27 ) resulting in signals emulating in vivo unit recordings (Fig. 1f). In total, 15 spiny 136 

(Cre-reporter lines: 5 Nr5a1, 4 Scnn1a, 6 Rorb) and 18 aspiny (Cre-reporter lines: 9 Pvalb, 9 Sst) 137 

single-cell models were developed and included in the study covering a range of major reporter 138 

lines and cortical depths (Fig. 1g) and especially layers 4 and 5 in accordance with the in vivo 139 

experiments (Fig. 1d). 140 

 141 

The standard waveform features reveal two clusters: RS and FS 142 

Spontaneous and visually evoked activity (flashes) is recorded in vivo in head-fixed animals 143 

implanted with Neuropixels probes in V1 while running freely on a rotating disc (Fig. 2a; N = 144 

1204 units from 25 mice during spontaneous activity). For the EAP analysis, we derived the one-145 

channel EAP from the channel with the maximum EAP-amplitude (Fig. 2b, middle: red bolded 146 

trace), while the multi-channel EAP includes additional channels above and below the maximum 147 

EAP channel (Fig. 2b, middle). We define two one-channel EAP features (Fig. 2b, left): trough-148 

to-peak width (TPW) and repolarization time (REP). TPW measures the time from the EAP trough 149 

until the peak. REP measures the time from EAP peak to the half-peak17,27,31. TPW and REP are 150 

usually sufficient to classify units between narrow and wide waveforms15,27, the result of the 151 

bimodal distribution of TPW in cortex (Fig. S3). We also found two major clusters in our in vivo 152 

data, i.e. a narrow TPW cluster with reduced REP (Fig. 2d, bottom, blue) and a wide TPW cluster 153 

of increased REP (Fig. 2d, bottom, red), respectively. Both the elbow method and density method 154 

of unsupervised K-means clustering22 independently confirmed the optimal number of clusters are 155 

two. Specifically, the narrow waveform units exhibit lower TPW (Fig. S3) and lower REP (Fig. 156 

S3) than the wide waveform units. Furthermore, narrow waveform units (n=281, 23.3%) exhibit 157 

elevated spike frequency vs. wide waveform ones (n=923, 76.7%): narrow waveform units spike 158 

at a median firing rate of 4.85 Hz (interquartile range, IQR: 1.93-10.79 Hz) while wide waveform 159 

units fire at median of 2.05 Hz (IQR: 0.84-5.00 Hz). Thus, narrow waveform units spike 160 

significantly faster than their wide waveform counterparts (Mann-Whitney U test, p=3.5*10-18; 161 

Fig. S3). We conclude that narrow EAP waveforms approximately map to fast-spiking (FS) units 162 
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while wide waveforms approximately correspond to regular-spiking (RS) units (Supplementary 163 

Data 1). 164 

 165 

Spatial features reveal six distinct sub-clusters in mouse V1: 3 RS and 3 FS 166 

Multi-channel EAP waveforms introduce an additional dimension, space, into the analysis. We 167 

accounted for the EAP amplitude and the EAP propagation with respect to time (Fig.2b, right) as 168 

a function of recording distance to the largest EAP location, assumed to be closest to the soma/axon 169 

initial segment25. For the multi-channel analysis (Fig. 2b, middle), we calculate two additional 170 

spatial EAP features (Fig. 2b, right): the inverse of the EAP propagation velocity below (1/Vbelow) 171 

and above (1/Vabove) the soma22. 1/Vbelow and 1/Vabove are separately estimated via linear regression 172 

(Fig 2b, right, red lines). We define a propagation symmetry index, the ratio of 1/Vbelow and 1/Vabove 173 

, with a larger symmetry index indicating a more asymmetric propagation, for example, due to the 174 

presence of apical dendrites in excitatory pyramidal neurons32 . Looking at the multi-channel EAP 175 

features of FS vs. RS, RS generally exhibits a more asymmetric EAP propagation below vs. above 176 

the putative soma location than FS, Fig. 2c-d; Fig. S3c-d, middle). We conclude that one-channel 177 

clusters RS and FS do not only separate via TPW but, in fact, are also distinct in how their spikes 178 

propagate along the extracellular space.   179 

 180 

We wondered whether multi-channel EAP features can further inform on the composition of FS 181 

and RS. To do so, we adopted the one-channel clusters RS and FS and for each of them employed 182 

unsupervised clustering using multi-channel features (1/Vbelow and 1/Vabove) to further subdivide 183 

into multi-channel clusters. Unsupervised clustering (K-means) indicated that the optimal number 184 

of multi-channel clusters within FS and RS is three for each (Fig. 2d, right top; cluster # 185 

independently estimated by the elbow method and density function). The six groups (FS1-3, RS1-186 

3) exhibit distinct multi-channel signatures. For the RS group, RS1 and RS2 show mostly 187 

asymmetric propagation with their main difference being the supragranular propagation velocity, 188 

i.e. Vabove(RS1) > Vabove(RS2) (Fig. S4). RS1-3 exhibit significant differences in terms of their 189 

spatial spread (Kruskal-Wallis H-test; p-values corrected using the Holm-Bonferroni method for 190 

multiple tests), with the EAP propagation of RS3 being more spatially confined than RS1-2 while 191 

also exhibiting a faster infragranular spike propagation velocity Vbelow (Fig. S4; Supplementary 192 

Data 1). FS1-3 also exhibit distinct propagation signatures: while the propagation profile for FS1 193 

is symmetric and fast above and below the spike initiation location, FS2 and FS3 exhibit an 194 

asymmetric and slower, direction-dependent profile. Despite their different propagation profiles, 195 

FS1-3 exhibit no significant difference in spatial spread (Fig. S4). Looking at the distribution of 196 

the cortical depth, the six clusters are distributed differently across V1 layers (Fig. S5). We 197 

conclude that expanding the set from one- to multi-channel EAP features results in further 198 

separation within the RS and FS groups into six finer but distinct groupings, three FS (FS1, FS2, 199 

FS3) and three RS (RS1, RS2, RS3) clusters, that spread along the V1 depth axis.  200 

 201 

Distinct functional properties of the in vivo clusters 202 

To what extent do the in vivo clusters separated by their EAP properties also constitute functionally 203 

distinct cell populations? We looked into the in vivo dynamics during behavior and whether the 204 

six clusters show distinct firing properties during a visual stimulation task (drifting gratings). Inter-205 

spike interval (ISI) analysis shows that multi-channel RS clusters exhibit significantly different 206 

firing properties: the ISI median of FS is 19.63 ms with 95% confidence interval (CI) at 207 

[19.60,19.67] ms, while the ISI median of RS is 53.37 ms with 95% CI at [53.30,53.43] ms (Fig. 208 
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2e, Mann-Whitney U test, p=0.0). To assess the temporal structure of spiking during the task we 209 

also calculated the coefficient of variation (CV) that measures the variance of ISIs and the local 210 

variation (LV) measuring variation in adjacent ISIs. We found that the pattern of RS1 spiking is 211 

significantly different compared to RS2 and RS3. Specifically, RS1 units exhibit faster, more 212 

stereotyped and less variable spiking than RS2-3 units. RS2-3 units, in turn, exhibit relatively 213 

slower and more variable spiking dynamics (Fig. 2e). Notably, multi-channel RS clusters also 214 

exhibit differences in their response to visual presentation. Several measures that assess visual 215 

response properties were calculated (see Methods) and we highlight three relevant for drifting 216 

gratings: f1/f0, the modulation index, and lifetime sparseness (Fig. 2e). Statistically significant 217 

differences emerge between RS1 vs. RS2-3 in terms of the response metrics with RS2-3 exhibiting 218 

higher response sensitivity and selectivity over RS1, in agreement with the higher CV and LV seen 219 

for RS2-3. No significant difference in terms of visual responses was observed between FS1-3. In 220 

summary, we found that RS is composed of functionally distinct clusters that beyond their distinct 221 

multi-channel properties also exhibit differences in their in vivo activity also during visual behavior.  222 

 223 

Another measure to identify functionally distinct populations looks at distinct spike phase-locking 224 

to ongoing local field potential (LFP) oscillations27,33,34. We used the Hilbert transform of the 225 

bandpass-filtered LFP to assign each spike an instantaneous phase (Fig. S6a) in several frequency 226 

bands (theta: 3-8Hz, alpha: 8-12.5Hz, beta: 12.5-30Hz, low gamma: 30-50Hz, high gamma: 50-227 

90Hz; Supplementary Data 2). Starting with one-channel clusters, we found that units exhibit a 228 

diverse level of entrainment to the LFP bands (per the Rayleigh test for non-uniformity, see 229 

Methods, Fig. S6b, Fig. 2f) with FS containing a significantly higher percentage of phase-locked 230 

units than RS across frequency bands (Fig. 2f, left). Notably, FS and RS coupling to in vivo 231 

oscillations is input- and behavior-dependent, with a much lower percentage of phase-locked 232 

neurons detected during spontaneous activity (Fig. S7) than during drifting gratings (Fig. 2f, left) 233 

across frequency bands, an observation in line with other studies (e.g.13) In general, the percentage 234 

of significantly entrained FS units was high and remained broadly unaffected by the specific LFP 235 

bands. In contrast, RS couple preferentially to slow LFP oscillations (theta) with the percentage 236 

decreasing for higher frequencies (beta, gamma and high gamma). Pairwise comparison revealed 237 

that FS have stronger phase-locking across frequency bands and spike earlier in the cycle than RS 238 

for beta and low gamma (Fig.2f-g, p-values corrected for multiple tests by Holm-Bonferroni 239 

method) in line with neocortical patterns seen in monkey and human35, but in contrast with 240 

hippocampal oscillations where putative excitatory neurons typically fire earlier than putative 241 

inhibitory ones36. We conclude that one-channel RS and FS show distinct coupling properties to 242 

neocortical oscillation with FS coupling being stronger across bands and FS units firing earlier 243 

than RS. 244 

 245 

Next, we looked at multi-channel clusters and their dynamics during oscillations. We found 246 

significant differences in LFP coupling for RS1-3 in the low and high gamma bands, with RS2 247 

exhibiting stronger phase locking to low and high gamma than RS1 (Fig. 2h). The preferred phase 248 

of RS1-3 remains similar at 1800-2000 (RS2 just below 1800 vs. RS1 and RS3 just above 1800) 249 

(Fig. 2h). Cluster-specific entrainment to LFP oscillations is also observed in FS clusters (FS1-3). 250 

Specifically, FS3 exhibit stronger phase locking to high gamma than FS2, with distinct preferred 251 

phases among the three clusters in alpha, beta and low gamma (Fig. 2i). We conclude that in 252 

addition to their distinct spiking characteristics, multi-channel clusters exhibit distinct coupling 253 

properties to LFP oscillations that depend on the behavior. 254 
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 255 

We also looked at how spike dynamics and coupling to oscillations changes with cortical depth. 256 

Based on distance from pia we defined three regions: supragranular (broadly cortical layers 2-3), 257 

granular (cortical layer 4) and infragranular (broadly cortical layers 5-6). Looking at one-channel 258 

clusters, FS show consistently stronger phase-coupling than RS across the cortical depth for all 259 

LFP bands (Fig. S6c). Interestingly, both FS and RS show strong coupling in theta and beta but a 260 

strong reduction in coupling in the intermediate alpha band. This pattern is particularly pronounced 261 

in the supragranular and granular regions while in the infragranular region there is reduced 262 

coupling, especially for FS, compared to the rest of the cortical depth regions (Fig. S6c). We also 263 

note the strong coupling of FS units to high frequency oscillations (e.g. high gamma) especially in 264 

the supragranular and granular region, a characteristic of electrotonically compact neurons able to 265 

follow very fast synaptic drive. In terms of spike phase, RS and FS spike broadly around the same 266 

phase with the exception of the granular region where significant differences emerged between FS 267 

and RS for beta and gamma bands. Looking at the multi-channel clusters across cortical depth, we 268 

found the most significant differences in the coupling strength of RS1-3 in supragranular beta and 269 

low gamma with kappa almost doubling between supragranular RS3 and RS1 in beta (Fig. S6d). 270 

Such diversity in coupling strength among clusters is not observed in granular and infragranular 271 

regions though we do find differences in the preferred spike phase of RS1-3 in infragranular layers 272 

(Fig. S6d). It follows that these multi-channel clusters, except for their distinct multi-channel 273 

signatures, also have distinct patterns and role in how they support ongoing cortical oscillations. 274 

We conclude that, one-channel RS and FS clusters as well as RS1-3 show distinct coupling patterns 275 

along the cortical axis, especially supragranular RS1-3 in the beta bands and infragranular RS1-3 276 

in the gamma bands. 277 
 278 

Multimodal mapping between electrophysiology-, morphology- and Cre-reporter-based 279 

classes 280 

What is the cellular identity of the clusters exhibiting such distinct EAP-waveform and in vivo 281 

properties? To bridge between the in vivo clusters and in vitro cell classes, we use biophysically 282 

realistic single-neuron models of 18 morphologically aspiny (AP) and 15 spiny (SP) mouse 283 

neurons (Table S1) that capture within cell type variability. These models were generated from 284 

two data modalities: the reconstructed morphology and the somatic electrophysiology response 285 

resulting from in vitro whole-cell patch-clamp experiments24. We use these models to simulate the 286 

EAP waveform and, in such manner, create EAP-templates linked to ground-truth, specific 287 

electrophysiology-, morphology- and Cre-reporter-based cell classes.     288 

 289 

We show simulations for two example single-cell models, one SP (Fig. 3a) and one AP (Fig. 3b). 290 

Somatic action potentials were evoked via simulated convergent, Poisson-style synaptic input 291 

along the dendritic arbor (Fig. 3a-b). The simulated EAP from the model exhibits its largest 292 

amplitude in the somatic region and actively propagates into the dendrites. As for extracellular 293 

recordings, one- and multi-channel features of AP and SP were calculated from the simulated EAP 294 

waveforms. We see that the trough-to-peak width (TPW) and repolarization time (REP) of the 295 

simulated cells are very similar to the ones from experimental recordings (Fig. 3c). Furthermore, 296 

cell class differences predicted by simulations agree with in vivo recorded EAPs, e.g. simulated 297 

AP cells exhibit significantly lower TPW (two-sample t test, p=0.00025) and REP (Mann-Whitney 298 

U test, p=0.00024) than SP ones (Fig. 3d). Furthermore, because the biophysical models agree 299 

with experimental recordings for one-channel features TPW and REP, they can be used to link 300 
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between in vitro properties of cell class and in vivo EAPs. We asked whether the experimentally 301 

measured intrinsic properties of the actual cells each model represents differentiate between 302 

morphology class AP and SP. Comparison between in vitro cellular data used to develop each of 303 

the AP and SP models (same mouse IDs as Fig. 3c-d) show statistically significant differences in 304 

intrinsic properties known to differentiate between major excitatory and inhibitory classes (spike 305 

width, adaptation, spike rate and f-I slope; Fig. 3e). We conclude that, not only the models, but 306 

also the underlying in vitro experiments mapping on RS and FS clusters, exhibit robust separation 307 

in slice electrophysiology properties known to separate excitatory from inhibitory classes. 308 

 309 

To link between labels of in vivo units (RS vs. FS) and the morphology classes of simulated 310 

neurons (spiny or SP vs. aspiny or AP), we used a two-way classification process27. In one 311 

direction, the model-based classifier was trained on one-channel EAP features (TPW, REP) of 312 

models to discriminate between SP and AP neurons. This process yielded 82.5% classification 313 

accuracy on the validation data set (support vector machine, SVM; training/validation set, 314 

75%/25%; Fig. 3f). Then, the model-based classifier was applied on the test data set (in vivo 315 

clustered FS and RS units from V1). Most FS units are labeled as AP neurons while the majority 316 

of RS as SP (Fig. 3f). We also tested the opposite direction. In the experiment-based classifier, we 317 

trained on one-channel EAP features (TPW, REP) of in vivo units to discriminate between FS and 318 

RS clusters (training/validation set, 75%/25%) and classification accuracy on the validation data 319 

set exceeded 99% (SVM; Fig. 3g). When applying the classifier on the test datasets, i.e., model-320 

labeled AP and SP neurons, most AP neurons were labeled as FS and most SP neurons as RS units 321 

(Fig. 3g). We conclude that the majority of in vivo RS map to in vitro SP cells while the majority 322 

of in vivo FS map to in vitro AP cells based on one-channel features TPW and REP. 323 

 324 

Beyond the intrinsic properties and morphology classes, the simulated neurons also contain Cre-325 

line labels from the Cre-lines used in vitro to target the individual cells. In a subsequent analysis, 326 

instead of using the morphology labels SP and AP, we used the transgenic line label (excitatory: 327 

Scnn1a, Rorb, Nr5a1; inhibitory: Pvalb, Sst)1 of the models as input to the experiment-based 328 

classifier to predict the one-channel in vivo clusters (RS vs. FS). The excitatory classes (Scnn1a, 329 

Rorb and Nr5a1) are mainly classified as RS whereas inhibitory classes (Pvalb and Sst) are mainly 330 

classified as FS (Fig. 3h). We conclude that the biophysical models agree with experimental in 331 

vivo EAP recordings in terms of one-channel EAP features and reflect experimental intrinsic and 332 

morphology class-dependent differences also observed in vitro.  333 

 334 

Composition and properties of multi-channel RS clusters 335 

We next attempt to deduce single-cell intrinsic electrophysiology and morphology properties of 336 

the in vivo multi-channel clusters. We first asked whether the single-cell models recapitulate the 337 

three multi-channel clusters for each class. Starting with the SP models, we clustered the models 338 

based on their simulated multi-channel EAP features (n=15 SP models; K-means clustering). Two 339 

separate clustering analyses (elbow method and the density function) determined the number of 340 

SP clusters in our simulated data to be three, i.e. SP1-3. Notably, the number of SP clusters 341 

coincides with the number of RS clusters detected in vivo (RS1-3) (Fig. 4a). Among three RS 342 

clusters, there is no significant difference in the largest amplitude channel (Fig. 4a, right), 343 

however, the waveform propagation separates them into three clusters (Fig. 4b). Looking at the 344 

multi-channel features (1/Vbelow and 1/Vabove) there is correspondence between SP1 with RS1, SP2 345 

with RS2 and SP3 with RS3. This is also reflected in the distinct EAP propagation properties of 346 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.532851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.532851
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

the three SP clusters, with SP1 showing faster supragranular propagation than SP2 while SP3 347 

shows reduced infragranular propagation vs. SP1 (Fig. 4b). We conclude that the biophysical 348 

models of morphologically spiny neurons SP separate into three distinct clusters (SP1-3) based on 349 

the same multi-channel features that also separate in vivo multi-channel RS units into clusters RS1-350 

3 with EAP propagation patterns that resemble model and in vivo clusters. 351 

 352 

We looked deeper into the correspondence between the model-based SP1-3 and in vivo clusters 353 

RS1-3 defined via the multi-channel EAP features by using two-way classification: supervised 354 

classifiers trained on the simulated EAPs of modeled neurons then applied to in vivo units (“model-355 

based classifier”), and supervised classifiers trained on experimental in vivo units, then applied to 356 

the model classes ("experiment-based classifier”). Specifically, the model-based classifier trained 357 

on multi-channel EAP features (1/Vbelow and 1/Vabove) to identify SP1-3 showed excellent 358 

performance (random forest; classification performance >94%; Fig. 4c). In a next step, we applied 359 

the model-based classifier on the test experimental data sets (in vivo clustered RS1-3) and found 360 

that, indeed, RS1 units are mapped to SP1, RS2 to SP2, and RS3 to SP3 with high fidelity 361 

(performance: >94%; Fig. 4c). We also pursued the opposite direction by building the experiment-362 

based classifier trained on multi-channel in vivo EAP features to discriminate among RS1-3 and 363 

saw very high classification accuracy (> 99%; Fig. 4d). The experiment-based classifier on the 364 

test simulation data sets (models clustered SP1-3), once more, cleanly maps SP1 to RS1, SP2 to 365 

RS2 and SP3 to RS3, respectively (Fig. 4d). Thus, our initial results are validated by the two-way 366 

classification that robustly maps model-based SP1-3 classes to in vivo RS1-3 clusters via their 367 

multi-channel features.  368 

 369 

Since RS1-3 are mapped to SP1-3, respectively, what other properties of the in vivo clusters RS1-370 

3 can be deduced from the SP1-3 data and associated models? We address this question for three 371 

data modalities: models, morphologies and intrinsic electrophysiology properties. First, we asked 372 

whether SP1-3 models can point to key differences between the three clusters in terms of the 373 

conductance setup. Pairwise comparison between SP1-3 model conductances indicates that the 374 

axonal low-voltage activated Ca-conductance is increased for SP1 and SP3 vs. SP2 (Cohen’s d 375 

effect size > 0.8; Fig. 4e), i.e. a conductance linked to elevated spike rate (bursting) and rapid spike 376 

recovery37. In terms of cellular morphology, given SP1-3 have different spike propagation profiles, 377 

we used a morphology feature looking at the cable structure attached to the soma, the bifurcation 378 

distance. The bifurcation distance is the normalized distance between the soma and the dendritic 379 

bifurcation with a large bifurcation distance effectively translating to a longer unobstructed path 380 

along the dendrite (see also Methods). Pairwise comparison of the bifurcation distance above soma 381 

and below soma among SP1-3 (the reconstructed morphologies were also used to develop the 382 

models) reveals differences in one property, the basal dendrite bifurcation distance below the soma 383 

(Fig. 4f-g; see also Methods). Specifically, SP1 and SP3 have different bifurcation distance 384 

especially below the soma (Fig. 4g). Notably, the morphology bifurcation distance, exhibits a 385 

strong linear relationship with the spike propagation speed across SP1-3 (Fig. 4g right, slope = 386 

2.7, the correlation coefficient r = 0.8, p = 1.02*10-7). A larger bifurcation distance, results in a 387 

lower spike propagation speed along the basal (negative bifurcation distance) and apical (positive 388 

bifurcation distance) arbor. Thus, class-dependent morphology properties that impact spike 389 

propagation can also lead the class-dependent propagation speed and symmetry differences 390 

observed between SP1-3 (Fig. 5b). Finally, we compared in vitro subthreshold (Fig. 4h) and 391 

spiking (Fig. 4i) intrinsic electrophysiology properties among SP1-3 (the slice experiments also 392 
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used to develop the models) and found differences in the cellular time constant 𝜏 and peak spike 393 

rate (response to dc current injections, Fig. 4j). Specifically, SP1 neurons achieve a higher spike 394 

rate especially compared to SP2, which, in turn, agrees with the model-based observation of 395 

increased axonal low-voltage activated Ca-conductance of SP1 (Fig. 4e). Moreover, SP1 is more 396 

electrotonically compact than SP2 (Fig. 4j). We conclude that, by virtue of mapping SP1-3 to RS1-397 

3, the multimodal comparison between models (including their associated in vitro experiments) 398 

and in vivo clusters yields several distinct properties: a difference in axonal low-voltage activated 399 

Ca-conductance (SP1 and SP3 vs. SP2), a morphology difference in the basal dendrite bifurcation 400 

distance below the soma (mainly in SP1 vs. SP3) that, in turn, impacts the spike propagation speed, 401 

and, finally, SP1 being more electrotonically compact than SP2. 402 

 403 

Multi-channel features separate inhibitory Pvalb and Sst 404 

FS units are most typically associated with inhibitory cell classes that are inherently heterogeneous. 405 

For example, Pvalb includes fast-spiking basket cells as well as Chandelier cells, while Sst 406 

includes Martinotti and non-Martinotti cells. We also found that this diversity of interneurons is 407 

reflected in FS1-3. While we focused our analysis on the two most populous inhibitory classes, 408 

Pvalb and Sst 1, we saw no clear mapping between FS1-3 and Pvalb/Sst. We therefore decided to 409 

introduce an additional multi-channel feature, the symmetry index (see Methods), quantifying the 410 

spatial characteristics of spike propagation and, in this manner, account for another aspect of 411 

morphology and its impact on the spike signature. Using the symmetry index to look at FS1-3 we 412 

saw a separation between FS1 (symmetric spike propagation) and FS2/FS3 (asymmetric spike 413 

propagation) (Fig. 5a-b). Notably, clearer separation between Pvalb and Sst models was achieved 414 

based on the symmetry index (Fig. 5b, right; n=9 Pvalb models, n=9 Sst models). We conclude 415 

that while multi-channel features 1/Vbelow and 1/Vabove do not exhibit clear mapping, accounting for 416 

an additional multi-channel feature, the symmetry index, separates biophysical models of Pvalb 417 

and Sst. 418 

 419 

Which properties can be deduced from the models and associated in vitro data? Once more we 420 

consider three data modalities: models, morphologies and intrinsic properties from the in vitro 421 

Pvalb (n = 9) and Sst (n = 9) experiments (Table S1). Pairwise comparison between Pvalb and Sst 422 

models at the level of ionic conductances reveals statistically significant differences in three 423 

conductances with the effect size being largest for Kv3.1 (Fig. 5c, f). Elevated Kv3.1 expression 424 

is a key differentiator between Pvalb and other inhibitory cell types, i.e. increased Kv3.1 results in 425 

a shorter spike width and fast afterhyperpolarization24,39–41. In terms of cellular morphology, 426 

pairwise comparison of morphology features (bifurcation distance above and below soma) from 427 

the reconstructions in the Pvalb (Fig. 5d, left, dark blue) and Sst (Fig. 5d, middle, orange) cells 428 

show a statistically significant difference in the bifurcation distance between above and below 429 

soma in Sst cells. Specifically, while Pvalb morphologies are symmetric (i.e., above vs. below 430 

bifurcation distance remains similar), Sst possess a more asymmetric morphology with the 431 

bifurcation distance above being longer than below their soma (Fig. 5d). To look at how the 432 

bifurcation distance affects spike propagation, we plotted the bifurcation distance above (positive 433 

values) and below (negative values) against the spike propagation speed V in the model data. We 434 

found that the bifurcation distance above and below the soma is robustly related with the inverse 435 

of the EAP propagation velocity (Fig. 5e, right, slope = 2.67, the correlation coefficient r=0.8, p-436 

value=5.12*10-9).  Once more, a larger bifurcation distance results in a lower spike propagation 437 

speed. Thus, the increased bifurcation distance asymmetry leads to more asymmetric spike 438 
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propagation along Sst morphologies. On the hand, the symmetry of Pvalb morphologies with 439 

respect to bifurcation distance leads to more symmetric spike propagation. Pairwise comparison 440 

of in vitro intrinsic electrophysiology properties between Pvalb and Sst (from the same 441 

experiments used to develop the Pvalb and Sst experiments) reveals several differences in peak 442 

spike rate, rheobase, resting potential (Fig. 5g) among others supporting that Pvalb are more 443 

electrotonically compact compared to Sst, which agrees with the observation about differences in 444 

Kv3.1 difference (Fig. 5c, f). In summary, the comparison between Pvalb and Sst models, 445 

morphologies and intrinsic properties points to a difference in Kv3.1, in bifurcation distance and 446 

in a several intrinsic properties shown to separate between Pvalb vs. Sst (e.g., peak spike rate) and 447 

shape intracellular dynamics as well as the EAP waveform. 448 

 449 

We also examined whether differences in spike propagation symmetry between Pvalb and Sst can 450 

be attributed to morphology orientation. While the elongated somadendritic axis of pyramidal 451 

neurons can give rise to spike propagation asymmetry42, the impact of the angle between an 452 

extracellular probe and the cellular morphology of inhibitory cells remains unknown. In a separate 453 

series of simulations, we varied the angle between the extracellular probe and morphology across 454 

Pvalb and Sst models and found that, indeed, certain EAP multi-channel metrics including the 455 

symmetry index are affected by this parameter with certain constellations exacerbating the 456 

pairwise difference between Pvalb and Sst (Fig. S8). Even so, the robust and highly significant 457 

differences in symmetry index found between inhibitory classes can hardly be a mere reflection of 458 

rotation effects. While we cannot exclude this parameter contributing to the trends observed, the 459 

evidence clearly points to biophysical differences between the clusters rather than aspects of 460 

experimental layout. We conclude that Pvalb are distinct from Sst across multiple in vitro 461 

modalities considered in our work, a fact also reflected in their distinct EAP signatures that allows 462 

their in vivo identification and separation using multi-channel EAP properties.  463 

 464 

Comparisons with ground-truth channelrhodhopsin-tagged Pvalb and Sst units in vivo  465 

So far, we deduced cellular properties of in vivo units by comparing the simulated EAP waveform 466 

from models linked to specific in vitro experiments of known identity to in vivo recorded EAP 467 

waveforms, and vice versa. Opto-tagging is a method that can link EAP measurements to specific 468 

cell types by directly photo-stimulating cells that express the light-activated channel 469 

channelrhodopsin-2 (ChR2) to a restricted neuronal subpopulation under genetic control43,44. 470 

Opto-tagging experiments can thus offer ground-truth data with recorded EAPs originating from 471 

known populations of neurons. Here, we used a channelrhodopsin reporter line (Ai32) crossed 472 

with a driver line in which Cre recombinase expression was driven by Pvalb or Sst promoter (Fig. 473 

6a, dark green region). This process resulted in ChR2-tagged Pvalb and Sst neurons that responded 474 

to light stimulation with short latency and reliably (Fig. 6b). Extracellular recordings with 475 

Neuropixels in these animals detected 25 well-isolated Pvalb units in 8 Pvalb-Cre mice and 18 Sst 476 

units in 12 Sst-Cre mice (Fig. 6c; see Methods; Supplementary Data 3).   477 

 478 

Using this ground-truth data set for two major inhibitory cell classes we pursued one- and multi-479 

channel EAP analysis. For one-channel EAP features (TPW, REP), the opto-tagged Pvalb units 480 

exhibit clear overlap with FS from experiments with wild-type animals. Sst units are much more 481 

diffuse spanning across the FS/RS-space (Fig. 6d). Direct comparison of one-channel features 482 

(TPW, REP) and in vivo activity metrics like spike frequency show that Pvalb are well-separated 483 

from Sst (Fig. 6e, top). Pvalb and Sst also exhibit clear differences in terms of multi-channel EAP 484 
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propagation, especially when looking at the symmetry index. Specifically, the optotagged 485 

recordings reveal that Pvalb exhibit symmetric and fast propagation profile while Sst exhibit less 486 

symmetric propagation and increased variability (Fig. 6e-f). Pairwise comparison of the symmetry 487 

index for the Pvalb and Sst optotagged units confirms that Pvalb show more symmetric EAP 488 

propagation compared to Sst (Fig. 6g), in agreement with simulations (Fig. 5b). We conclude that 489 

in vivo ground-truth opto-tagging experiments show that Pvalb and Sst are separable in terms of 490 

one- and multi-channel properties (symmetry index) in line with findings from the computational 491 

models.  492 

 493 

We also looked for functional differences between Pvalb and Sst in the opto-tagged units. First, 494 

we found that Pvalb exhibit higher spike time variability than Sst (Fig. 6h, left). More interesting 495 

differences appear for phase-locking to ongoing LFP oscillations. Specifically, we found that 496 

Pvalb exhibits stronger phase-coupling than Sst for slower (theta) oscillations. Furthermore, Pvalb 497 

have a significantly different spike phase especially for faster oscillations (beta, low- and high-498 

gamma) than Sst with Sst units spiking in a later phase by about 40-50o. (Fig. 6h). We note the 499 

similarity of this pattern with the spike phase relationship of wild-type units FS1 and FS2 (Fig. 500 

2e). We conclude that the opto-tagging experiments reveal that, beyond separable in terms of 501 

multi-channel features, Pvalb units also have more variable spiking as well as stronger coupling to 502 

theta and earlier spiking for faster oscillations compared to Sst. 503 

 504 

Discussion 505 

 506 

Understanding the role and function of cellular taxonomies in behavior is an important challenge 507 

in an era where advancements in sequencing technologies continuously refine these taxonomies1–508 
4,9,10. Extracellular electrophysiology recordings offer unparalleled ability to monitor cellular 509 

activity in vivo across spatiotemporal levels yet lack cell type-specificity, with optotagging making 510 

it possible to label only one or two distinct cell types per experiment21,45,46. Here we introduce a 511 

framework for the identification and characterization of major cortical cell types solely based on 512 

their extracellular electrophysiology signatures with multiple data modalities. Our starting point 513 

are EAP waveforms recorded from high-density Neuropixels probes in mouse primary visual 514 

cortex (V1). Using one-channel EAP features we separated units into two clusters, FS and RS, that 515 

exhibit differences both in terms of EAP waveform and functional properties such as LFP 516 

entrainment. We separately looked at phase coupling in prominent LFP oscillation bands (theta, 517 

alpha, beta, low and high gamma) and found that FS units are consistently more entrained across 518 

LFP-bands compared to RS units. In agreement with other studies (e.g. 13),  FS and RS exhibit 519 

significantly higher phase-locking during drifting gratings than during spontaneous activity across 520 

LFP-bands. When we looked at the preferred spike phase, we found that FS spiking came earlier 521 

in the cycle than RS in beta and low gamma. These observations are in line with the studies of 522 

neocortical unit activity in humans and monkeys35. Specifically, FS phase precedence is also in 523 

line with35 and opposite to the hippocampal activation pattern observed during high frequency 524 

ripples36. When we looked at phase coupling along the cortical depth, we found a diverse 525 

landscape. While FS remain consistently more entrained than RS, FS phase precedence over RS 526 

is spatially inhomogeneous and particularly pronounced in the granular region (broadly layer 4) 527 

for beta, low and high gamma. In contrast, in the supragranular and infragranular regions, FS and 528 

RS clusters exhibit less pronounced phase differences across LFP-bands despite significant 529 
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differences in coupling strength. We conclude that the FS and RS clusters represent larger families 530 

of diverse cell classes organized along the cortical network serving different roles in vivo. 531 

 532 

Expanding the feature set from one-channel to multi-channel EAP features results in further 533 

separation within the RS and FS groups into six finer groupings, three FS (FS1, FS2, FS3) and 534 

three RS (RS1, RS2, RS3) clusters. We show that the six clusters exhibit functional differences in 535 

their dynamics to visual stimuli (e.g., drifting gratings in head-fixed animals) and differential 536 

coupling to ongoing LFP oscillations. Looking at the properties of these finer clusters with cortical 537 

depth we found increased diversity in their spike-LFP coupling. RS3, for example, exhibits almost 538 

double the coupling strength than RS1 in the supragranular region for beta and low gamma (RS2 539 

is an intermediate case). On the other hand, in the infragranular region and for low gamma, RS3 540 

and RS1 spike phase is similar while RS2 comes earlier (the same happens for high gamma). The 541 

differences in RS1-3 are consistent with classes of neurons that possess different biophysical 542 

setups as well as a divergence in connectivity patterns. It is known, for example, that the 543 

biophysical properties of excitatory V1 neurons vary and depend on cortical depth which, in turn, 544 

is expected to have an impact on their firing properties and burstiness 34,47–49. In addition, their 545 

intricate connectivity and projections along the anatomical hierarchy can result in a spectrum of 546 

functional clusters among excitatory V1 cells that reflect upstream input segregation from earlier 547 

brain regions (e.g., various thalamic areas 50–52). The combination of diverging biophysical 548 

properties of V1 excitatory cells combined with localized and class-specific connectivity gives rise 549 

to functionally distinct and input-specific RS1-3 clusters. Furthermore, behavior and brain state 550 

can further modulate the response properties of excitatory clusters along V150. The aforementioned 551 

points to a network consisting of clusters of distinct biophysical properties and functional in vivo 552 

responses that, nevertheless, can be organized and reconfigured in multiple ways, depending on 553 

the external input and internal state. 554 

 555 

While excitatory cells exhibit differences in visual responses (though with varying degree of 556 

sensitivity and selectivity), inhibitory neurons do not show strong or selective responses 557 

confirming observations using the same visual inputs53. Even so, they play a central role in shaping 558 

cortical activity in terms of orchestrating and patterning ongoing and/or evoked oscillations7,38,54–559 
56. Indeed, when we looked at the phase-coupling properties of FS1-3 we found differences in the 560 

alpha, beta, and gamma bands. Furthermore, in an additional analysis we observed differences 561 

between FS1-3 (mainly in the gamma bands) as function of cortical depth. While the diversity of 562 

inhibitory coupling to ongoing oscillations remains elusive in V1 (though see33,50). In agreement 563 

with other V1 studies50,57, our experiments support the observation that the most prominent LFP 564 

pattern in the waking V1 is a theta-band oscillation (hypothesized as an evolutionary precursor of 565 

the primate alpha activity in the visual cortex). Yet, we also found that FS1-3 (but also RS1-3 as 566 

well as FS-RS) differentiate their coupling in higher LFP-bands, i.e., in alpha, beta and gamma, 567 

rather than in the band of their most prominent pattern (theta). Notably, inhibitory parvalbumin- 568 

and somatostatin-positive interneurons exhibit large amplitude, rhythmic hyperpolarization at 3–6 569 

Hz in V1 during behavior50,57.  570 

 571 

The distinct properties of FS1-3 in EAP waveform and coupling strength/phase to LFP oscillations 572 

is reminiscent of the distinct hippocampal inhibitory classes and their coupling to local theta, 573 

gamma and sharp wave ripples, e.g.36,55,56,58–60. For example, two putative inhibitory classes 574 

located in the pyramidal layer and the alveus/stratum oriens of hippocampal CA1 with distinct 575 
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EAP waveforms also exhibit differences in discharge probability and theta spike phase with one 576 

coming earlier by about 300 and both preceding pyramidal spiking36. The picture is reversed during 577 

ripple activity when phase differences between the two inhibitory clusters are minimized and 578 

pyramidal spiking precedes both36. In vivo recordings combined with tedious morphological 579 

characterization unravel distinct coupling features, e.g. between palvalbumin-expressing basket 580 

cells, bistratified and cholecystokinin-expressing interneurons differing their spike phase by 300-581 

400 during the gamma cycle60. The coupling strength as well as the phase differences observed 582 

between distinct cell classes during oscillations are in line with what we see for FS1-3. Excitatory 583 

pyramidal neurons in hippocampus and neocortex also form distinct morphological, molecular, 584 

connectivity and functional populations 61–64,64–68. A major organizing principle of excitatory 585 

neurons is cortical depth and the presence of functionally distinct sublayers 69 – in CA1, this 586 

organization is also reflected in the cellular and functional properties with deep cells spiking faster, 587 

burstier and exhibiting stronger modulation for slow oscillations 70,71. Neocortical organization is 588 

less understood with respect to its functional modules and their role in oscillations (although see 589 
72–76) yet the RS1-3 coupling profile points to the existence of a cellular and functional organization 590 

along the depth axis. 591 

 592 

To map between the cellular in vitro classes and subclasses and in vivo, EAP-based clusters, we 593 

develop biophysical models that reflect key properties of in vitro cell types and use these models 594 

to simulate EAP properties. We use a computational optimization workflow to generate and 595 

evaluate biophysically realistic, cell type-specific cellular models with active conductances at 596 

scale24. We then use two-way classification to map in vitro classes to in vivo clusters and vice 597 

versa, with models providing the link between the two worlds and the associated class/cluster label. 598 

In a stepwise manner, we show that a set of one-channel EAP features (TPW, REP) separates in 599 

vivo EAP clusters in terms of spike rate (FS vs. RS units) and in vitro morphology classes (AP vs. 600 

SP neurons). The fact that narrow EAP waveform units map to FS and AP while wide units map 601 

to RS and SP is in line with previous work14–18,27. A fraction of simulated excitatory neurons also 602 

mapped onto FS units that we attribute to some excitatory classes that possess narrow spike width 603 

and some model discrepancy that prohibits capturing all EAP features in their full extent. The latter 604 

can lead, in a few cases, to mislabeling. Yet, it is the use of these models that also enables linking 605 

seemingly disparate data sets in a manner that results in specific and testable hypotheses about the 606 

identity and properties of the various clusters (e.g. in terms of the underlying conductance or 607 

morphology differences between the in vivo clusters).  608 

 609 

Looking at RS1-3, we found that RS1/SP1 and RS3/SP3 are electrotonically more compact than 610 

RS2/SP2 with a possible biophysical mechanism accounting for such differences being the axonal 611 

low-voltage activated Ca-conductance. Moreover, we found that basal dendrite differences 612 

between RS2/SP2 and RS3/SP3, a feature that could potentially explain the EAP waveform 613 

symmetry between RS1-3 clusters. For FS1-3, we found that biophysical models of Pvalb and Sst 614 

broadly capture the multi-channel properties of FS1-3 and specifically the distinct symmetry of 615 

FS1 vs. FS2-3 spike propagation. Notably, Sst cells are diverse in their morphology, which resulted 616 

in a wider range of multi-channel features. Comparing Pvalb and Sst models, morphologies and 617 

intrinsic properties we found a difference in Kv3.1, in bifurcation distance and in a several intrinsic 618 

properties shown to separate between Pvalb vs. Sst (e.g., peak spike rate) and shape intracellular 619 

dynamics as well as the EAP waveform. A set of in vivo ground-truth opto-tagging experiments 620 
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validated that Pvalb and Sst are separable in terms of one- and multi-channel properties further 621 

supporting our observations based on computational models.  622 

 623 

Our study shows that multi-channel EAP features can critically contribute to the separation of 624 

meaningful in vivo clusters. The key data modality reflected in these multi-channel properties is 625 

the cellular morphology22,25,26. It follows that for computational models to account for such 626 

properties, they need to account either for the fully reconstructed morphology24 or, at the very 627 

least, for key aspects of it42. Moreover, ionic mechanisms along the dendritic morphology also 628 

impact spike propagation intracellularly77,78  and extracellularly25,26,32 pointing to an interesting 629 

possibility: the use of optotagging experiments to measure cell type-specific (e.g. Pvalb and Sst) 630 

multi-channel EAP properties in vivo and, in a second step, using these properties to constrain 631 

model parameters along the dendritic arbor where intracellular data is challenging to collect.  632 

 633 

Notably, while Neuropixels recordings result in large numbers of recorded units, the bottom-up 634 

approach (i.e., generating data from transgenic lines in vitro by whole-cell patch-clamp and 635 

morphology reconstructions of labelled neurons) is a lower-yield and labor-intense process. In 636 

addition, the computational framework to turn the in vitro data (features of electrophysiology 637 

traces in combination with reconstructed morphologies) into biophysically realistic all-active 638 

single-cell models involves computationally intensive multi-objective optimization procedures 639 

(see Methods). This results in a natural imbalance in our data sets: a large number of isolated in 640 

vivo units compared to a smaller number of in vitro recorded and reconstructed neurons and 641 

models. Ever-increasing availability of high-quality, annotated cellular electrophysiology, 642 

morphology, transcriptomics data – the precondition to generate faithful, cell type-specific 643 

computational models at any scale – is underway and is expected to tackle the imbalance between 644 

the number of cellular models and in vivo recorded units. The larger the number of models and 645 

cell classes reflected in them, the better and more refined classifiers can be trained to map in vitro 646 

types to in vivo EAP clusters. With increasing cellular data and single-cell model availability, 647 

increasingly finer classification of EAP signatures can be achieved across different brain areas 648 

and, even, species that allows deducing cellular and functional differences between cell classes 649 

across data modalities.  650 
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Methods 651 

 652 

In vivo Neuropixels recordings  653 

All in vivo recordings come from the Allen Brain Observatory Visual Coding Neuropixels dataset23, 654 

accessible via the AllenSDK 655 

(https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html) and the DANDI 656 

Archive (https://gui.dandiarchive.org/#/dandiset/000021). Recordings were performed in awake, 657 

head-fixed mice allowed to run freely on a rotating disk. During the recording, mice either 658 

passively viewed visual stimuli (flashes) or viewed a mean-luminance gray screen. Data were 659 

collected from 25 wild-type C57BJ/6J mice (24 male, 1 female), and 8 Pvalb-IRES-Cre (6 male, 660 

2 female) and 12 Sst-IRES-Cre (8 male, 4 female) crossed with an Ai32 channelrhodopsin reporter 661 

line79. Cre+ cells from Ai32 lines are highly photosensitive, due to the expression of 662 

Channelrhodopsin-280. The Neuropixels probe can record from 384 contacts across 3.84 mm of 663 

tissue coverage (selectable from 960 available sites on a 10 mm length shank). In this study, we 664 

analyzed recordings from the primary visual cortex (V1). All extracellular spike data were 665 

acquired with Neuropixels probes21, with 30 kHz sampling rate (which achieves 0.033 ms temporal 666 

resolution) and a 500 Hz analog high-pass filter. Spike times and waveforms were automatically 667 

extracted from the raw data using KiloSort281.  668 

 669 

Biophysical realistic all-active single-cell models 670 

We use the biophysically realistic all-active single-cell model for 18 aspiny (AP) and 15 spiny 671 

(SP) mice neurons. The all-active models contain active conductances along the entire neuronal 672 

morphology. The dendritic arbors are adopted in the models from the reconstructed morphology. 673 

The models were generated with a computational optimization pipeline (Fig. S2) aiming for 674 

models that reproduce the intrinsic firing patterns and spike properties of individual neurons from 675 

two data modalities: the reconstructed morphology and the somatic electrophysiology response 676 

from in vitro whole-cell patch-clamp experiments. The models were fit with several voltage-gated 677 

sodium, potassium, and calcium conductances expressed at the cell soma, axon, and dendrites, 678 

using data from individual neurons in the Allen Cell Types Database (http://celltypes.brain-679 

map.org/data). The optimization pipeline (multi-objective genetic optimization) was used to 680 

optimize the conductance densities by training the models with experimental somatic recordings 681 

in response to step currents24. The active conductances and passive properties marked according 682 

to their inclusion in each of the morphology sections (apical, basal dendrites, soma and axon) are 683 

reported in Table 1. We optimized both the spiking properties of the cell model (spiking timing, 684 

spike rate, etc.) given a particular morphology and features of the intracellular action potential 685 

waveform (spike amplitude, width, etc.) Only the models that passed certain criteria (Tol = 0.5 for 686 

both spike amplitude and spike width) were selected, where Tol is the tolerance. Specifically, the 687 

spike amplitude of the model should be in the range of [1-Tol, 1+Tol]*A_exp, while the spike 688 

width of the model should be in the range of  [1-Tol, 1+Tol]*W_exp, where A_exp, W_exp 689 

represent the spike amplitude and width from experiments.  690 

 691 

After a single-cell model is optimized, we simulated the extracellular potential using NEURON 692 

7.5 simulator (https://www.neuron.yale.edu/neuron/) in combination with the Brain Modeling 693 

Toolkit (https://github.com/AllenInstitute/bmtk). This toolkit can simulate a variety of 694 

intracellular dynamics (e.g., spikes, and membrane voltages), as well as computing additional data 695 
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modalities such as the extracellular potential. The extracellular potentials were computed using the 696 

line-source  approximation, which assumes that membrane current is uniformly distributed within 697 

individual computational compartments and the medium is homogenous and isotropic82. Each 698 

model was simulated at a sampling rate at 30 kHz, identical to the acquisition rate of in vivo 699 

recordings. Each cell model received Poisson-like synaptic input (simulation time: 3s). We 700 

recorded the extracellular potential in a Neuropixels-like electrode array, which is a dense grid (5 701 

µm spacing) consisting of 16 columns and 240 rows (total 3840 recording channels). To mimic 702 

Neuropixels recordings, we averaged extracellular potential within a 10 µm-by-10 µm area for 703 

each recording site. The extracellular action potential (EAP) was calculated based on the spike-704 

triggered average of extracellular potentials.   705 

 706 

Data analysis 707 

Feature extraction 708 

Postprocessing included passing data through a 300 Hz high pass filter before extracting EAP 709 

waveforms. To classify cell types, we first extracted features from the extracellular waveform. 710 

With high density electrodes, we can record extracellular waveforms of a single unit from multiple 711 

sites. The recording site with largest amplitude (amplitude is the magnitude of the extremum of 712 

the waveform; Fig. 2b, left) is defined as the site closest to neuron soma, and the extracellular 713 

waveform recorded at this site we define as the one-channel waveform. Since the Neuropixels 714 

probe has four staggered columns of sites, we selected the two columns on the side of the probe 715 

with the largest one-channel amplitude for the one- as well as the multi-channel waveforms. The 716 

distance between sites is approximated by their vertical spacing (20 µm). The multi-channel 717 

waveform of a single unit includes EAPs from the channel with the largest EAP-amplitude and 10 718 

additional channels above and below that location, spanning ±200 μm. Similarly, in the models, 719 

we selected the column of electrodes with the largest amplitude one-channel waveform. As 720 

expected, the channel with the largest EAP-amplitude in the models was located close to the soma 721 

and AIS location. 722 

 723 

For the one-channel waveform (Fig. 2b, left), we calculated two features: TPW (trough-to-peak 724 

width) and REP (repolarization time). TPW measures the time that elapses from EAP trough (the 725 

global minimum of the curve) to EAP peak (the following local maximum). REP measures the 726 

time elapsed from EAP peak to the half of the peak value. These two EAP features capture different 727 

aspects of the intracellular potential, the speed of depolarization and of the subsequent after-728 

hyperpolarization17,31 and are commonly used to separate between fast-spiking (FS) units and 729 

regular-spiking (RS) units.  730 

 731 

For the multi-channel waveform (Fig. 2b, middle), we extracted two additional features in the 732 

space domain: the inverse of the EAP propagation velocity below (1/Vbelow) and above (1/Vabove) 733 

soma along the Neuropixels probe. Velocity measures how fast the EAP propagates along the 734 

probe with the point of reference being the EAP trough. When the EAP propagates fast, the time 735 
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difference between two adjacent sites can sometimes be estimated as zero – to avoid infinite 736 

numbers, we calculated the inverse of velocity instead of velocity. A low value of inverse of 737 

velocity, indicates fast propagation. The inverse of propagation velocity below (1/Vbelow) and above 738 

(1/Vabove) soma was then estimated by linear regression of the EAP trough at different sites against 739 

the distance of the sites relative to soma. We also define the spread of a unit by the range with 740 

amplitude above 12% of the maximum amplitude along the probe. Spread measures how far the 741 

waveform can propagate along a probe. 742 

 743 

Symmetry index of EAP propagation 744 

From the multi-channel EAP recordings, we defined a measure looking at the symmetry of spike 745 

propagation in the vertical direction above and below the spike initiation zone. Specifically, we 746 

defined the symmetry index (SI) as the distance between each point (1/Vbelow, 1/Vabove) and the 747 

diagonal line (y = -x). The distance from point (x0, y0) to the line ax + by + c = 0 can be calculated 748 

by the following equations: 749 

     𝑆𝐼 =
|𝑎𝑥0+𝑏𝑦0+𝑐|

√𝑎2+𝑏2
                                                               (1) 750 

where (x0, y0) = (1/Vbelow, 1/Vabove), and a = 1, b = 1, c = 0 for y = -x. A smaller value in the 751 

symmetry index indicates symmetric EAP propagation, while a larger value in the symmetry index 752 

indicates more asymmetric propagation.   753 

 754 

Morphology bifurcation distance 755 

The bifurcation distance (w) for one bifurcation node is defined as the projection of the line (v) 756 

from soma (S) to the position of the bifurcation node (N) projected to a line (u) connecting the 757 

soma (S) to a node (L) in y axis (Fig. 5f): 758 

    w = ||v|| cos𝜃 = ||𝐯||
𝐮 .  𝐯

||𝐮|| ||𝐯||
 =  

𝐮 .  𝐯

||𝐮||
                                            (2) 759 

where 𝜃 is the angle between u and w, and ||𝐮||  =  √𝐮. 𝐮  represents the length of the line u. The 760 

bifurcation distance is then normalized by the maximal absolute bifurcation distance for each 761 

neuron. We excluded the absolute bifurcation distance larger than 200 µm in the analysis because 762 

the node is too far away from the soma. The bifurcation distances above and below soma were 763 

calculated by the summation of the bifurcation distance for all the bifurcation nodes above and 764 

below soma, respectively. The sign of the bifurcation distances indicates the location of bifurcation 765 

nodes, where the positive sign indicates above soma, and negative sign indicates below soma. 766 

While comparing the bifurcation distances below vs. above the soma, we used the absolute value 767 

of the bifurcation distances. 768 

 769 

Identification of EAP waveform clusters using K-means clustering 770 

To identify cell clusters, we applied K-means clustering on the EAP features. K-means clustering 771 

is an unsupervised technique that seeks to find centroids that minimize the average Euclidian 772 

distance between points in the same cluster to the centroid. The optimal number of clusters was 773 

identified by two methods as in22.  774 
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 775 

One method is the standard elbow method that consists of plotting the within cluster sum of squares 776 

(WCSS) as a function of the number of clusters and picking the elbow of the curve as the number 777 

of optimal clusters. The global impact of all clusters’ distortions is given by the quantity: 778 

𝑆𝑘 = ∑ 𝐼𝑗
𝐾
𝑗=1                                                            (3) 779 

𝐼𝑗 = ∑ ||𝑥𝑖 − 𝜇𝑗||
2

𝑥𝑖∈𝐶𝑗
                                                            (4) 780 

where 𝐼𝑗   is the distortion of cluster j that is a measure of the distance between points 𝑥𝑖 in cluster 781 

𝐶𝑗 and its centroid 𝜇𝑗. In this paper, we have plotted WCSS curve as Sk normalized by S1.  782 

 783 

We also used a second method, the density function f(K), that consists of plotting f(K) as a function 784 

of number of clusters and picking the minimal of the curve as the number of optimal clusters. The 785 

f(K) is from83: 786 

𝑓(𝐾) = {
𝑆𝐾

𝛼𝐾𝑆𝐾−1
, 𝑖𝑓 𝑆𝐾−1 ≠ 0, 𝐾 > 1

1, 𝑜𝑡ℎ𝑒𝑟𝑠
                                                 (5) 787 

𝛼𝐾 = {
1 −

3

4𝑁𝑑
, 𝑖𝑓 𝐾 = 2 𝑎𝑛𝑑 𝑁𝑑 > 1  

𝛼𝐾−1 +
1−𝛼𝐾−1

6
, 𝑖𝑓 𝐾 > 2 𝑎𝑛𝑑 𝑁𝑑 > 1

                              (6) 788 

The value of f(K) is the ratio of the real distortion to the estimated distortion and is close to 1 when 789 

the data distribution is uniform. The smaller f(K), the more concentrated the distribution.  790 

 791 

We selected K based on these two methods and applied K-means to data with appropriate number 792 

of K for 1000 times with random initial values.  793 

 794 

For the one-channel clustering, we used the standard one-channel waveform features (TPW and 795 

REP). To implement multi-channel clustering, we adopt the two one-channel clusters (RS and FS) 796 

and cluster each of them individually using the multi-channel features (1/Vbelow and 1/Vabove).   797 

 798 

Supervised machine learning for classification 799 

The primary motivation for constructing the two-way classifiers was to bi-directional mapping 800 

between the experiment-based and model-based results. We built the experiment-based classifiers 801 

using on experimental EAP features and labels, then applied it to the model data to identify model 802 

neurons in the experimental space. Similarly, we built the model-based classifiers using model 803 

EAP features and labels, then applied it to the experimental data to identify experimental units in 804 

the model space. To train the classifier for the unbalanced FS and RS, before training, we have 805 

upsampled the ratio of FS and RS be 1:1. All classifications were performed with Monte-Carlo 806 

cross-validation consisting of a 100 “bootstrap composites” of individual classifiers (the partitions 807 

are done independently for each run) where the classifier was trained on a subset of the data (75%) 808 

and then the confusion matrix and accuracy were calculated on the left-out data (25%). We 809 

assigned the label based on the most frequently predicted label of the composite classifiers. For 810 
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the classifier, we used a support vector machine (SVM) with a linear kernel (regularization 811 

parameter C=1) for two classes, or a random forest (gini criterion for splitting the nodes of a 812 

decision tree) for more than two classes. 813 

 814 

Single unit firing properties  815 

For this analysis, we only accounted for units with an EAP amplitude larger than 50 µV and a 816 

minimum of 100 spikes. Firing rate was calculated by N/T during the recording session, where N 817 

is the number of spikes and T is the total time in seconds. Coefficient of variation (CV) was 818 

calculated as the standard deviation of the interspike interval (ISI) divided by mean of ISI. The 819 

local variation (LV) is similar to CV but measures variation in adjacent ISIs and was calculated 820 

by84: 821 

𝐶𝑉 = √
1

𝑛−1
∑ (𝑇𝑖 − 𝑇̅)2𝑛

𝑖=1 𝑇̅⁄                                                       (7) 822 

𝐿𝑉 =
1

𝑛−1
∑

3(𝑇𝑖−𝑇𝑖+1)2

(𝑇𝑖+𝑇𝑖+1)2
𝑛−1
𝑖=1                                                             (8) 823 

where 𝑇𝑖 is the duration of the ith ISI, n is the number of ISIs, and 𝑇̅ =
1

𝑛
∑ 𝑇𝑖

𝑛
𝑖=1  is the mean ISI.  824 

 825 

Visual stimulus metrics 826 

The three relevant visual stimulus metrics for drifting gratings used in the paper are f1/f0, the 827 

modulation index, and lifetime sparseness (Table S2). 828 

f1/f0: the ratio of the 1st harmonic (response at the drifting frequency) to the 0th harmonic (mean 829 

response). A high f1/f0 ratio indicates that the firing of the unit is modulated at the temporal 830 

frequency of the grating, while a low f1/f0 indicates that the unit fires relatively constantly during 831 

the presentation of the grating.  832 

Modulation index (MI): quantifies the phase-dependent responses to drifting gratings. MI 833 

measures the difference in power of the visually evoked response at a unit’s preferred stimulus 834 

frequency versus the average power spectrum85. MI > 3 corresponds to strong modulation of 835 

spiking at the stimulus frequency (indicative of simple-cell-like responses).  836 

Lifetime sparseness: the selectivity of individual neurons to drifting gratings at different 837 

orientations and temporary frequencies was measured using lifetime sparseness, which captures 838 

the sharpness of a neuron’s mean response across different stimulus conditions86. A neuron that 839 

responds strongly to only a few conditions will have a lifetime sparseness close to 1 whereas a 840 

neuron that responds broadly to many conditions will have a lower lifetime sparseness.  841 

Detailed information about each metric is available at: 842 

https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html 843 

 844 

Phase-locking Analysis 845 

For the phase-locking analysis, we only include units with an EAP amplitude larger than 50 µV 846 

and a minimum of 100 spikes. For each unit, the maximal number of spikes considered in the 847 

analysis is limited to 10000. The percentage of phase-locked units was calculated by the number 848 
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of units that fires at a preferred direction (assessed by the Rayleigh test) divided by the total number 849 

of units. To test whether spikes preferred certain phases of the LFP, the instantaneous phase of the 850 

LFP at several frequency bands (theta = 3-8 Hz, alpha = 8-12 Hz, beta = 12-30 Hz, low gamma = 851 

30-50 Hz, high gamma = 50-90 Hz) was first calculated, using the Hilbert transform on each 852 

filtered LFP. 1800 is marked as the trough of the cycle. We chose pairs of units and LFPs recorded 853 

on different neighboring electrodes. Each spike was assigned with an instantaneous phase for each 854 

frequency band. A strongly phase-locked unit has a preferred direction in the phase histogram, 855 

while a weak phase-locked unit has no preferred direction in the phase histogram (Fig. S6b). To 856 

determine if a neuron exhibited a significant phase preference, we applied the Rayleigh test for 857 

non-uniformity. With the Rayleigh test, the null hypothesis is uniformity (e.g., no preferred 858 

direction), whereas the alternative is unimodality (e.g., a single preferred direction). A cell was 859 

considered phase-locked at a specific frequency range if the null hypothesis of uniformity of the 860 

phase distribution could be rejected at a p-value < 0.001 using a Rayleigh test87,88. When the test 861 

indicated non-uniformity, the phase distribution was fitted to a circular normal distribution (von 862 

Mises distribution), with the concentration parameter (kappa) indicating the depth of the phase-863 

locking in the direction of the mean phase. The inverse of kappa is analogous to variance of the 864 

normal distribution. For large kappa, the distribution becomes very concentrated around the mean 865 

phase, indicating a high phase-locking. Kappa values range from 0 to 1. Kappa, and preferred 866 

phase were calculated by a circular statistics toolbox pycircstat 867 

(https://github.com/circstat/pycircstat).  868 

 869 

Detection of opto-tagged neurons 870 

The peri-stimulus time histogram (PSTH) of spikes was used to present the light evoked neuronal 871 

responses. Time bins of 1 ms of PSTHs were used to measure the response to the light stimulation 872 

(square-wave pluses lasting 10ms). To prevent contamination by light artifacts, we only counted 873 

spikes in the window from 2 to 8 ms of the 10 ms light stimulation.  The opto-tagged neuron was 874 

detected when the average firing rate across trials in the response window was higher than 25 Hz, 875 

and 2.5 times greater than its firing rate in a corresponding time window immediately preceding 876 

stimulus onset. 877 

 878 

Statistical analysis  879 

The Shapiro-Wilk test was used to determine whether the sample data have come from a normal 880 

distribution. The two-sample t-test (for normal distribution) or the nonparametric Mann–Whitney 881 

U test (for non-normal distribution) was used for statistical analysis of differences between means 882 

from two samples when appropriate. One-way ANOVA (for normal distribution) or the 883 

nonparametric Kruskal-Wallis H-test (for non-normal distribution) was used for comparisons 884 

across the multiple groups, with p-values corrected using the Holm-Bonferroni method (a step-885 

down method using Bonferroni adjustments) for multiple tests. We used two sample z test for 886 

proportions to compare the percentages of phase locked cells between FS and RS and corrected 887 

the p-values via the Holm-Bonferroni method for multiple tests.  888 
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 889 

Data Availability 890 

The in vivo Neuropixels dataset is available for download in Neurodata Without Borders (NWB) 891 

format via the AllenSDK23: 892 

https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html 893 

 894 

The Neurodata Without Borders files are also available on the DANDI Archive23: 895 

https://gui.dandiarchive.org/#/dandiset/000021 896 

 897 

The in vitro electrophysiology data and the reconstructed morphology used to generate single-cell 898 

models are available in: 899 

https://celltypes.brain-map.org 900 

The cell ID used in the paper was listed in the Table S1. 901 

 902 

The optotagging experimental data set with Pvalb and Sst neurons is available through: 903 

https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_optotagging.html 904 

 905 

Source data are provided with this paper. 906 

 907 

Code Availability 908 

The codes for calculating EAP features and clustering cell classes were custom written in Python 909 

and are made available on GitHub (https://github.com/yinawei/Mouse_V1_EAP_Analysis) with 910 

DOI (10.5281/zenodo.7679748). 911 

 912 

The all-active mouse single-neuron models were generated using a Python pipeline and are also 913 

available on GitHub (https://github.com/yinawei/Mouse-all-active-models-EAP) with DOI 914 

(10.5281/zenodo.7679762). 915 

 916 
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Tables 1128 

Table 1. Inclusion of each parameter in the morphology sections 1129 

Parameters Ra gpas epas cm Ih NaV KT Kd Kv

3.1 

Kv

2 

Im SK Ca 

HVA 

Ca 

LVA 

Apical               

Basal               

Soma               

Axon               

 1130 

Table 2. Stimulus metrics 1131 

Stimulus Metric Description 

drifting 

gratings 

modulation index The phase-dependent responses to drifting gratings 

f1/f0 The ratio of the 1st harmonic to the 0th harmonic  

lifetime sparseness  The sparseness of individual neurons 
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Figure 1. Extracellular action potential (EAP) recordings from in vivo experiments (a-d) and 1135 

single-cell modeling (e-g).  a) Left, labels for Cre-line and morphology (spiny vs. aspiny) groups 1136 

of single neurons used in this study characterized in vitro via intracellular electrophysiology and 1137 

morphology reconstructions. Right, in vivo EAP waveform analysis typically results in two 1138 

clusters, fast-spiking (FS) vs. regular-spiking (RS) units. b) Primary visual cortex (V1) in the 1139 

mouse brain (left) and typical cortical depth placement of a Neuropixels probe along V1. c) The 1140 

384 electrode sites of the Neuropixels probe are densely arranged along the linear shank probe 1141 

(left; 20 μm vertical spacing, 2 sites per row; black squares: location of recording sites). EAP 1142 

waveforms from two example units (unit #1: FS; unit #2: RS) including the channel with the largest 1143 

amplitude (closest to the soma, bolded lines) and channels above and below the soma. d) Top: the 1144 

number of Neuropixels-implanted mice for wild-type (n=24), parvalbumin-expressing (Pvalb, 1145 

n=8) and somatostatin-expressing (Sst, n=12); bottom: the distribution of units per wild-type 1146 

mouse recorded in V1 during drifting gratings ( total number of units = 1204). Distribution of units 1147 

along the V1 depth axis with 0 indicating the center of layer 4. e) Bio-realistic, single-cell models 1148 

of V1 (“all-active”) are generated from in vitro experiments and activated via synaptic background 1149 

to elicit intracellular activity and associated EAP signals in the vicinity of the cellular morphology. 1150 

The cellular morphology is represented with a spherical soma and full dendritic reconstruction 1151 

(axon not shown). Example simulations of EAP signals are shown for a spiny (top: red, cell ID: 1152 

395830185) and an aspiny (bottom: blue, cell ID: 469610831) single-cell model. f) Four examples 1153 

of the multi-channel EAP including the channel with the largest amplitude (bolded lines, closest 1154 

to the soma) and channels above and below the soma (top: 2 spiny models; bottom: 2 aspiny 1155 

models). g) In total, 33 single-cell models (15 spiny and 18 aspiny) were generated using a 1156 

computational optimization framework and included in the study covering a range of major 1157 

reporter lines and cortical depths. Source data are provided as a Source Data file.  1158 
 1159 
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Figure 2. Clustering of in vivo V1 units from wild-type mice based on extracellular action 1163 

potential (EAP) features during drifting gratings results in two one-channel and six multi-1164 

channel clusters with distinct EAP properties.  a) Animals are exposed to visual stimuli (e.g., 1165 

flashes, drifting gratings) while running on a wheel with Neuropixels probes recording 1166 

extracellular V1 activity. b) One-channel EAP waveform features (left) from the location of the 1167 

largest EAP amplitude: trough-peak width (TPW), and repolarization time (REP). Multi-channel 1168 

EAP waveform features: the inverse of propagation velocity below (1/Vbelow) and above (1/Vabove) 1169 

soma are separately estimated by linear regression (right, red lines).  c) Unsupervised clustering 1170 

on one-channel EAP features (TPW and REP) results in two major populations, fast-spiking (FS) 1171 

and regular-spiking (RS) units. Subsequently, unsupervised clustering of each population using 1172 

multi-channel EAP features (1/Vbelow and 1/Vabove) results in three clusters, respectively. c) One- 1173 

vs. multi-channel clusters. d) The one-channel clusters (923 RS and 281 FS from 25 wild-type 1174 

mice, left), multi-channel clusters FS1-3 (right top) and multi-channel clusters RS1-3 (right 1175 

bottom) are shown including two clustering metrics: within cluster sum of squares (WCSS) and 1176 

density function. The red dotted line indicates the number of optimal clusters. t-distributed 1177 

stochastic neighbor embedding (t-SNE) for FS1-3 (right top, n=130 FS1, n=82 FS2, n=69 FS3) 1178 

and RS1-3 (right bottom, n=479 RS1, n=235 RS2, n=209 RS3) units based on features extracted 1179 

from multi-channel waveforms. The spatial propagation of EAPs is distinct for the clusters (gray: 1180 

individual units). Data are presented as mean ± SD (standard deviation). e) One-channel FS and 1181 

RS clusters show distinct interspike interval (ISI) distributions (Mann-Whitney U test, two-sided, 1182 

p=0.0, total 2900284 spikes of FS, 4586637 spikes of RS). Response properties of the multi-1183 

channel clusters to drifting gratings shows that RS1-3 exhibit distinct properties in the overall 1184 

excitability (spike rate, coefficient of variation: CV, local variation: LV, n=419 RS1, n=173 RS2, 1185 

n=153 RS3) and stimulus-dependent response characteristics (f1/f0, modulation index, lifetime 1186 

sparseness, n=430 RS1, n=182 RS2, n=156 RS3). Kruskal-Wallis H-test; p-values corrected using 1187 

the Holm-Bonferroni method for multiple tests. *p<0.05, **p<0.01, ***p<0.001. f) Phase 1188 

distribution of examples of a FS (blue) and RS (red) unit at theta, alpha, beta, low gamma 1189 

(lgamma), high gamma (hgamma) frequency band (black arrow: preferred phase and kappa).  g) 1190 

Left: The percentage of phase-locked units of one-channel FS (n=203) and RS (n=745) clusters at 1191 

different LFP frequency bands: theta, alpha, beta, low gamma, high gamma. Two sample z test for 1192 

proportions with p values corrected by the Holm-Bonferroni method for multiple tests. Right: 1193 

kappa and preferred phase. Data are presented as mean ± SEM (standard error of mean). Mann-1194 

Whitney U test, two-sided, *p<0.05, **p<0.01, ***p<0.001. h-i) Phase-locking analysis of multi-1195 

channel RS (d, n=419 RS1, n=173 RS2, n=153 RS3) and FS (e, n=100 FS1, n=54 FS2, n=49 FS3) 1196 

clusters to ongoing oscillations in different LFP bands. Kruskal-Wallis H-test; p-values corrected 1197 

using the Holm-Bonferroni method for multiple tests. *p<0.05, **p<0.01, ***p<0.001. Source 1198 

data are provided as a Source Data file.  1199 
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Figure 3. Classification of one-channel EAP (extracellular action potential) features of single-1204 

cell models and correspondence to in vitro data modalities.  a-b) Bio-realistic single-cell 1205 

models (one aspiny, AP, panel a; one aspiny, SP, panel b) activated via synaptic activity along 1206 

their reconstructed dendrites result in spiking. Top: synaptic input (black bars: spike raster plot); 1207 

Middle: intracellular voltage Vi trace (orange); Bottom: extracellular voltage Ve (green) close to 1208 

the soma (location designated by the green square). Time traces (left) and mean Vi and EAP 1209 

waveforms (right). c) One-channel EAP analysis from single-cell models (n=33, blue: AP; red: 1210 

SP) and in vivo units (light grey: fast-spiking (FS) units; dark grey: regular-spiking (RS) units). d) 1211 

Comparison of TPW (trough-peak width, two-sample t-test, two-sided, p=0.00025) and REP 1212 

(repolarization time, Mann-Whitney U test, two-sided, p=0.00024) from simulated EAP 1213 

waveforms between AP (n=18) and SP (n=15) models. Box plots show center line as median, box 1214 

limits as upper (75%) and lower (25%) quartiles. The whiskers extend from the box limits by 1x 1215 

the interquartile range. ***p<0.001.   e) Comparison of intrinsic properties extracted from in vitro 1216 

Vi dynamics between the AP (n=18) and SP (n=15) neurons (also used to generate the single-cell 1217 

models). Mann-Whitney U test (two-sided) was used for width, adaptation, 𝜏 , input res. 1218 

(resistance), ramp time, and F/I slope; two-sample t-test (two-sided) used for rheobase, spike rate, 1219 

and Vm rest (resting potential). ***p<0.001.  f) Model-based classifier: classifier trained on one-1220 

channel EAP features (TPW, REP) of single-cell models to discriminate between AP (n=18) and 1221 

SP (n=15) neurons (left: confusion matrix; middle: beta coefficients of the linear SVM classifier, 1222 

bootstrap sampling 100 times; right: Sankey diagram showing the prediction on the test dataset). 1223 

g) Same layout as in f,  experiment-based classifier: classifier trained on one-channel EAP features 1224 

(TPW, REP) of in vivo units to discriminate between FS (n=281) and RS (n=923) populations 1225 

labeled via K-means clustering. h) One-channel EAP features of single-cell models (model labels: 1226 

Cre-reporter lines, 4 Scnn1a, 6 Rorb, 5 Nr5a1, 9 Pvalb and 9 Sst) classified as FS or RS by using 1227 

the experiment-based classifier. Source data are provided as a Source Data file.   1228 
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Figure 4. Distinct cellular properties of multi-channel regular-spiking (RS1-3) clusters.  a) 1231 

Clustering of spiny (SP) models using K-means clustering based on multi-channel extracellular 1232 

action potential (EAP) features. Both the elbow method and density function analysis 1233 

independently identify three multi-channel SP clusters (left: within cluster sum of squares (WCSS) 1234 

and density function, broken red line: optimal number of clusters; right: model-based SP clusters; 1235 

inset: mean EAP-waveform of each RS-population). SP1-3 and RS1-3 are shown using the multi-1236 

channel features 1/Vbelow and 1/Vabove (the inverse of spike propagation velocity below/above soma 1237 

location).  b) Spike propagation along the simulated probe as function of distance from the soma 1238 

(channel with largest EAP amplitude) for the three SP classes, SP1-3 (grey lines: propagation of 1239 

individual models; n=5 SP1, n=7 SP2, n=3 SP3; colored lines: mean ± SD (standard deviation)).  1240 

c) The model-based classifier (random forest) trained on the multi-channel features (1/Vbelow and 1241 

1/Vabove) identifies SP1-3 (left: confusion matrix; middle: feature importance based on classifier; 1242 

right: sankey diagrams show the prediction on the test dataset).  d) Same layout as in c, the 1243 

experiment-based classifier was trained on multi-channel in vivo EAP features to discriminate 1244 

between RS1-3. e) Comparison between model conductances ascribed to SP1-3. The largest effect 1245 

size across the conductances is found for axonal Ca_LVA. # indicates Cohen’s d effect size >0.8. 1246 

f) Bifurcation distance (w) of one bifurcation node in the reconstructed morphology of a neuron is 1247 

defined as the projection of the vector (v) from soma (S, red dot) to the position of the bifurcation 1248 

node (N, blue dot) projected to a line (u) connecting the soma (S) to a node (L) in y axis. g) 1249 

Morphology bifurcation distance above soma (left) and below soma (middle).  Right: inverse of 1250 

wave propagation velocity vs. the bifurcation distance (line: linear fit).  h-i) Intrinsic properties 1251 

from in vitro experiments based on SP1-3 (subthreshold and spiking responses). j) Comparison of 1252 

cellular time constant (𝜏) and max spike rate (response to dc current injections) among in vitro 1253 

experiments based on SP1-3. # indicates Cohen’s d effect size >0.8. Source data are provided as a 1254 

Source Data file.   1255 
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Figure 5. Distinct cellular properties of multi-channel FS clusters. a) The spike propagation 1258 

symmetry index separates FS1 from FS2-3 (left, circles: experimental measurements; middle: 1259 

effect size measured by Cohen’s d; right: mean spatiotemporal spike propagation of multi-channel 1260 

clusters FS1-3; n= 130 FS1, n=82 FS2, n=69 FS3). Kruskal-Wallis H-test, F=111.41, p-values 1261 

corrected using the Holm-Bonferroni method for multiple tests, ***p<0.001. Error bars represents 1262 

a bootstrap 95% confidence interval.  b) Left: the multi-channel features (Vbelow, Vabove) clustering 1263 

FS units (grey) and superposed multi-channel EAP features of models of Pvalb (blue, n=9) and Sst 1264 

(yellow, n=9) neurons. Right: spike propagation symmetry index for Pvalb and Sst single-cell 1265 

models. two-sample t-test, two-sided, p=0.000998.  c) Pairwise comparison of model conductances 1266 

between Pvalb and Sst models. The strongest and most statistically significant difference is shown 1267 

in the dendritic Kv3.1 conductance. Mann-Whitney U test, two-sided, *p<0.05. d) Morphology 1268 

bifurcation distance above (two-sample t-test, two-sided, p=0.45) and below (two-sample t-test, 1269 

two-sides, p=0.03) soma between Pvalb (left, dark blue) and Sst (right, orange) models. *p<0.05.  1270 

e) The inverse of spike propagation velocity vs. the bifurcation distance (line: linear fit; + indicates 1271 

above soma, - indicates below soma). f) Pairwise comparison of Pvalb vs. Sst model conductances 1272 

(top panel, -log10(p-value), black line: p=0.05; bottom panel, Cohen’s d effect size, black lines: 1273 

|d|=0.8). The comparison of dendritic Kv3.1 conductance as shown in c. Mann-Whitney U test, 1274 

two-sided, *p<0.05. g) Left: pairwise comparison between intrinsic properties of Pvalb and Sst 1275 

neurons measured in vitro (same experiments as the ones used to develop to single-cell models). 1276 

Maximum spike rate to dc current injections separates between Pvalb and Sst neurons. Mann-1277 

Whitney U test, two-sided, p=0.0067; Right: pairwise comparison between nine intrinsic 1278 

properties of Pvalb vs. Sst neurons (top: statistical significance expressed in terms of -log10(p-1279 

value); solid line: p-value=0.05, broken line: p-value=0.01; bottom: Cohen’s d effect size, solid 1280 

black line: |d|=0.8) also used to generate the computational models. Mann-Whitney U test, two-1281 

sided, *p<0.05, **p<0.01, ***p<0.001. Source data are provided as a Source Data file.  1282 
 1283 
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Figure 6. In vivo extracellular action potential (EAP) and functional properties of opto-1287 

tagged Pvalb and Sst neurons.  a) Light sensitive channelrhodopsin-2 (ChR2) channels were 1288 

virally expressed in two inhibitory cell populations, Pvalb and Sst, in mouse V1 (dark green areas). 1289 

The animals were then implanted with Neuropixels probes.  b) Example units responding to light 1290 

activation (light blue regions) in V1. Top: spike rasters; Bottom: spike frequency. Left: a non-1291 

responsive unit; Middle: a light-responsive Pvalb unit; Right: a light-responsive Sst unit.  c) 1292 

Examples of multi-channel EAPs of Pvalb units (dark blue) and Sst units (orange). Two of the 1293 

units are the same ones as in panel b (boxes).  d) One-channel EAP features (trough-peak width: 1294 

TPW; repolarization time: REP) for the Pvalb (dark blue, n=24) and Sst units (orange, n=18) from 1295 

the optotagging experiments (inset: mean EAP waveforms; light gray: FS units, dark gray: RS 1296 

units, from wild-type animals as in Fig. 2d).  e) Comparison of EAP properties between optotagged 1297 

Pvalb (n=24) and Sst (n=18) units (top: one-channel properties; bottom: multi-channel properties). 1298 

Box plots show center line as median, box limits as upper (75%) and lower (25%) quartiles. The 1299 

whiskers extend from the box limits by 1x the interquartile range. Mann-Whitney U test, two-1300 

sided, **p<0.01, ***p<0.001. f) EAP amplitude (left) and propagation (right) along the 1301 

extracellular channels as function of distance from the soma (taken as the channel with the largest 1302 

EAP amplitude) for the optotagged Pvalb (n=24) and Sst (n=18) units (gray lines: individual units; 1303 

colored lines: mean ±SD (standard deviation)). g) Comparison of the symmetry index for Pvalb 1304 

(n=24) vs. Sst (n=18) units (two-sample t-test, two-sided, p=0.012). h) Left: Comparison of 1305 

response pattern during drifting gratings in the opto-tagging experiments (CV: coefficient of 1306 

variation). Box plot representation is similar as in panel (e). Mann-Whitney U test, two-sided, 1307 

p=0.0076, n=24 Pvalb, n=18 Sst; Right: spike-field coherency metric kappa and preferred spike 1308 

phase of optotagged Pvalb and Sst for various LFP frequency bands. Data are presented as mean 1309 

± SEM (standard error of mean). Mann-Whitney U test, two-sided, *p<0.05, **p<0.01, 1310 

***p<0.001. Source data are provided as a Source Data file. 1311 
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