

1 **Associations between *in vitro*, *in vivo* and *in silico* cell classes in mouse primary visual cortex**

2
3 Yina Wei^{1,2,*}, Anirban Nandi², Xiaoxuan Jia^{2,3}, Joshua H. Siegle², Daniel Denman⁴, Soo Yeun
4 Lee², Anatoly Buchin^{2,5}, Werner Van Geit⁶, Clayton P. Mosher⁷, Shawn Olsen², Costas A.
5 Anastassiou^{7-10, 11,*}

6
7 1. Zhejiang Lab, Hangzhou 311100, China

8 2. Allen Institute for Brain Science, Seattle, WA 98109, USA

9 3. School of Life Sciences, Tsinghua University, Beijing, 100084, China,
10 IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, 100084, China

11 4. University of Denver, Denver, CO 80208, USA

12 5. Cajal Neuroscience Inc, Seattle, WA 98102, USA

13 6. Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Campus Biotech,
14 Geneva 1202, Switzerland

15 7. Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA

16 8. Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA

17 9. Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los
18 Angeles, CA 90048, USA

19 10. Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai
20 Medical Center, Los Angeles, CA 90048, USA

21 11. Lead contact

22
23 * Corresponding author: CAA (costas.anastassiou@cshs.org) and YW

24 (weiyina039@zhejianglab.com)

25 **Abstract**

26
27 The brain consists of many cell classes yet *in vivo* electrophysiology recordings are typically
28 unable to identify and monitor their activity in the behaving animal. Here, we employed a
29 systematic approach to link cellular, multi-modal *in vitro* properties from experiments with *in vivo*
30 recorded units via computational modeling and optotagging experiments. We found two one-
31 channel and six multi-channel clusters in mouse visual cortex with distinct *in vivo* properties in
32 terms of activity, cortical depth, and behavior. We used biophysical models to map the two one-
33 and the six multi-channel clusters to specific *in vitro* classes with unique morphology, excitability
34 and conductance properties that explain their distinct extracellular signatures and functional
35 characteristics. These concepts were tested in ground-truth optotagging experiments with two
36 inhibitory classes unveiling distinct *in vivo* properties. This multi-modal approach presents a
37 powerful way to separate *in vivo* clusters and infer their cellular properties from first principles.

38
39 **Introduction**

40
41 The cellular composition of the brain is diverse with recent studies in rodent neocortex identifying
42 tens of cell types^{1–4}. The expectation is that these types serve distinct roles in behavior. However,
43 disentangling their function is challenging. The difficulty is twofold. First, extensive single-cell
44 characterization of neurons, mainly propelled by advances in sequencing technology, allow
45 sampling from large populations at the cellular level, revealing a multitude of cell types. These
46 types exist within detailed, molecular-based taxonomies of neocortex, hippocampus and other
47 brain circuits^{3,5,6}. *In vitro* cellular electrophysiology and morphology reconstructions, in turn, offer
48 a phenomenology-based approach in defining taxonomies that is easier translated to *in vivo*
49 dynamics, e.g. via spike response properties^{7,8}. Taxonomies accounting for the three main data
50 modalities simultaneously are scarce, with a few noteworthy exceptions^{2,9,10}.

51
52 The second challenge lies in monitoring cell classes identified via their *in vitro* molecular,
53 electrophysiology and morphology properties *in vivo*. *In vivo* imaging of virally or genetically
54 targeted populations offer remarkable insights in how these populations organize during behavior
55 but are unable to resolve single action potentials due to their low sampling rate and the highly
56 nonlinear relationship between spikes and calcium indicator fluorescence^{11–13}. Single-wire or high-
57 density extracellular electrophysiology recordings, on the other hand, offer much improved
58 temporal resolution to monitor spiking and spike-related activity *in vivo* even if their ability to
59 resolve cell types is limited. Typically, a handful of spike features can separate between major
60 classes, e.g., the extracellular action potential (EAP) width separates fast-spiking (FS) from other
61 so-called regular-spiking (RS) units^{14–17}. Early slice experiments indicated that RS and FS cells
62 probably correspond to pyramidal cells and interneurons, respectively¹⁸, while other studies found
63 a more intricate correspondence^{17,19,20}. With recent advancements drastically increasing the
64 electrode density of silicon probes²¹, spatiotemporal information on EAP waveforms increased
65 significantly allowing for more refined clustering of *in vivo* EAPs^{22,23}. Even so, linking cellular
66 taxonomies to *in vivo* signatures, i.e., classification, in a systematic manner for *in vivo* recordings
67 has been difficult.

68
69 Single-cell computational models make it possible to link various types of data by incorporating
70 constraints and generating predictions across data modalities, e.g., predicting a particular ion

71 conductance based on properties of the electrophysiological response such as spike shape or
72 frequency. In a recent study, a large-scale model generation and evaluation effort developed bio-
73 realistic, single-cell models for mouse primary visual cortex (V1) accounting for ion conductances
74 along the entire neural morphology²⁴. Importantly, these models closely capture distinguishing
75 properties of major excitatory and inhibitory classes integrating electrophysiology, morphology
76 and transcriptomics data. A key aspect of conductance-based models is their ability to emulate
77 extracellular electrophysiology signatures such as the EAP-waveform²⁵⁻²⁷. Thus, these models
78 integrate a variety of data modalities they were trained on (electrophysiology and morphology) or
79 validated against (transcriptomics) and predict a fourth data modality, i.e., the EAP waveform and
80 its associated features.

81
82 Here, we show that unsupervised clustering of mouse V1 units recorded via high-density
83 Neuropixels probes²¹ results in two one-channel and six multi-channel clusters with distinct EAP
84 and EAP-propagation profiles, respectively. Importantly, these clusters exhibit functional
85 differences and distinct coupling to endogenous oscillations, i.e. the main criterion for being
86 considered truly distinct populations in the microcircuit. To determine the differences between the
87 individual clusters we use biophysical models that capture single-cell data from cortical transgenic
88 mouse lines to define EAP templates. Using a supervised classifier, we show that morphological
89 spiny vs. aspiny neurons closely map to RS and FS units, respectively, recorded *in vivo*. Next, we
90 map the six multi-channel clusters with their distinct EAP propagation profiles to model
91 populations, compare between model population setups and identify conductances and
92 morphology features that explain the EAP differences between the *in vivo* clusters. Our newfound
93 ability to separate between clusters is exemplified in ground-truth, optotagging experiments where
94 we separate between two major inhibitory classes *in vivo* and show their distinct entrainment
95 profile to ongoing neocortical oscillations.

96
97 **Results**

98
99 **Extracellular action potential recordings from *in vivo* experiments and biophysical models
100 of cell types**

101 Analysis of extracellular action potential (EAP) waveforms of so-called “units” (putative single
102 neurons) typically clusters into two groups, regular-spiking (RS) vs. fast-spiking (FS) (**Fig. 1a**).
103 We sought a more refined classification scheme using data from a recent *in vivo* survey of
104 electrophysiological activity in awake mice²³. We focused on data from units in primary visual
105 cortex (V1) recorded using Neuropixels probes (**Fig. 1b**). These probes offer a dense arrangement
106 of recording sites (**Fig. 1c**), which allows EAP signals from single units to be detected on multiple
107 recording channels (**Fig. 1c**; example unit #1: a FS unit; example unit #2: a RS unit; bold: channels
108 with largest EAP amplitude). We analyzed units from 25 wild-type mice, 8 mice expressed ChR2
109 in parvalbumin-positive cells (Pvalb), and 12 in somatostatin-positive cells (Sst) (**Fig. 1d**). We
110 only analyzed units located in V1 with an average of 48 units per wild-type mouse being well-
111 isolated (unit isolation criteria: see Methods; **Fig. 1d**; total number of units = 1204) during
112 spontaneous activity. The depth of layer 4 was determined from where the visual stimulus (flash)
113 evoked a strong response in the current source density (CSD)^{28,29} (**Fig. S1**). Unit location along
114 the cortical depth was adjusted relative to layer 4 (depth 0 indicates the center of layer 4). The
115 estimated soma location of well-isolated units (based on EAP properties) in our study spanned
116 from layers 2/3 through 6 with the majority located in layers 4 and 5 (**Fig. 1d**).

117

118 To map the recorded EAP waveforms to specific cell classes we used biophysically detailed
119 models of single neurons. These biophysical models are developed in an unsupervised manner
120 using a multi-objective optimization platform that relies on standardized electrophysiology
121 features and the reconstructed cellular morphology to distribute a set of ionic conductances
122 relevant for cortical neurons²⁴. We developed single-cell models that represent a diverse set of
123 transgenic mouse lines to ensure broad coverage across cortical layers and classes¹. For our study
124 we accounted for 15 spiny (SP) and 18 aspiny (AP) single-cell, so-called “all-active”,
125 biophysically realistic models from V1 optimized based on *in vitro* single-cell electrophysiology
126 and morphology (**Fig. S2**). Notably, the SP vs. AP designation in our study is morphology-based
127 and does not reflect any electrophysiology features such as action potential waveform or spike
128 pattern. The experimental data to produce the single-cell models were part of a systematic
129 characterization of mouse visual cortex where a uniform experimental protocol was used to
130 establish a taxonomy based on cellular electrophysiology and morphology^{1,24}.

131

132 Beyond reflecting key properties of various cell types in terms of electrophysiology, morphology
133 and transcriptomics^{24,30}, these biophysical single-cell models reproduce EAP signals in the vicinity
134 of the cellular morphology (**Fig. 1e**, top: spiny cell, cell ID: 395830185; bottom: aspiny cell, cell
135 ID: 469610831). Our computational approach simulated the recording sites of a Neuropixels probe
136 (see Methods;²⁷) resulting in signals emulating *in vivo* unit recordings (**Fig. 1f**). In total, 15 spiny
137 (Cre-reporter lines: 5 Nr5a1, 4 Scnn1a, 6 Rorb) and 18 aspiny (Cre-reporter lines: 9 Pvalb, 9 Sst)
138 single-cell models were developed and included in the study covering a range of major reporter
139 lines and cortical depths (**Fig. 1g**) and especially layers 4 and 5 in accordance with the *in vivo*
140 experiments (**Fig. 1d**).

141

142 The standard waveform features reveal two clusters: RS and FS

143 Spontaneous and visually evoked activity (flashes) is recorded *in vivo* in head-fixed animals
144 implanted with Neuropixels probes in V1 while running freely on a rotating disc (**Fig. 2a**; $N =$
145 1204 units from 25 mice during spontaneous activity). For the EAP analysis, we derived the **one-**
146 **channel EAP** from the channel with the maximum EAP-amplitude (**Fig. 2b**, middle: red bolded
147 trace), while the **multi-channel EAP** includes additional channels above and below the maximum
148 EAP channel (**Fig. 2b**, middle). We define two one-channel EAP features (**Fig. 2b**, left): trough-
149 to-peak width (TPW) and repolarization time (REP). TPW measures the time from the EAP trough
150 until the peak. REP measures the time from EAP peak to the half-peak^{17,27,31}. TPW and REP are
151 usually sufficient to classify units between narrow and wide waveforms^{15,27}, the result of the
152 bimodal distribution of TPW in cortex (**Fig. S3**). We also found two major clusters in our *in vivo*
153 data, i.e. a narrow TPW cluster with reduced REP (**Fig. 2d**, bottom, blue) and a wide TPW cluster
154 of increased REP (**Fig. 2d**, bottom, red), respectively. Both the elbow method and density method
155 of unsupervised K -means clustering²² independently confirmed the optimal number of clusters are
156 two. Specifically, the narrow waveform units exhibit lower TPW (**Fig. S3**) and lower REP (**Fig.**
157 **S3**) than the wide waveform units. Furthermore, narrow waveform units ($n=281$, 23.3%) exhibit
158 elevated spike frequency vs. wide waveform ones ($n=923$, 76.7%): narrow waveform units spike
159 at a median firing rate of 4.85 Hz (interquartile range, IQR: 1.93-10.79 Hz) while wide waveform
160 units fire at median of 2.05 Hz (IQR: 0.84-5.00 Hz). Thus, narrow waveform units spike
161 significantly faster than their wide waveform counterparts (Mann-Whitney U test, $p=3.5*10^{-18}$;
162 **Fig. S3**). We conclude that narrow EAP waveforms approximately map to fast-spiking (FS) units

163 while wide waveforms approximately correspond to regular-spiking (RS) units (Supplementary
164 Data 1).

165

166 **Spatial features reveal six distinct sub-clusters in mouse V1: 3 RS and 3 FS**

167 Multi-channel EAP waveforms introduce an additional dimension, space, into the analysis. We
168 accounted for the EAP amplitude and the EAP propagation with respect to time (**Fig. 2b**, right) as
169 a function of recording distance to the largest EAP location, assumed to be closest to the soma/axon
170 initial segment²⁵. For the multi-channel analysis (**Fig. 2b**, middle), we calculate two additional
171 spatial EAP features (**Fig. 2b**, right): the inverse of the EAP propagation velocity below ($1/V_{below}$)
172 and above ($1/V_{above}$) the soma²². $1/V_{below}$ and $1/V_{above}$ are separately estimated via linear regression
173 (**Fig 2b**, right, red lines). We define a propagation symmetry index, the ratio of $1/V_{below}$ and $1/V_{above}$
174 , with a larger symmetry index indicating a more asymmetric propagation, for example, due to the
175 presence of apical dendrites in excitatory pyramidal neurons³². Looking at the multi-channel EAP
176 features of FS vs. RS, RS generally exhibits a more asymmetric EAP propagation below vs. above
177 the putative soma location than FS, **Fig. 2c-d**; **Fig. S3c-d**, middle). We conclude that one-channel
178 clusters RS and FS do not only separate via TPW but, in fact, are also distinct in how their spikes
179 propagate along the extracellular space.

180

181 We wondered whether multi-channel EAP features can further inform on the composition of FS
182 and RS. To do so, we adopted the one-channel clusters RS and FS and for each of them employed
183 unsupervised clustering using multi-channel features ($1/V_{below}$ and $1/V_{above}$) to further subdivide
184 into multi-channel clusters. Unsupervised clustering (K -means) indicated that the optimal number
185 of multi-channel clusters within FS and RS is three for each (**Fig. 2d**, right top; cluster #
186 independently estimated by the elbow method and density function). The six groups (FS1-3, RS1-
187 3) exhibit distinct multi-channel signatures. For the RS group, RS1 and RS2 show mostly
188 asymmetric propagation with their main difference being the supragranular propagation velocity,
189 i.e. $V_{above}(\text{RS1}) > V_{above}(\text{RS2})$ (**Fig. S4**). RS1-3 exhibit significant differences in terms of their
190 spatial spread (Kruskal-Wallis H-test; p-values corrected using the Holm-Bonferroni method for
191 multiple tests), with the EAP propagation of RS3 being more spatially confined than RS1-2 while
192 also exhibiting a faster infragranular spike propagation velocity V_{below} (**Fig. S4**; Supplementary
193 Data 1). FS1-3 also exhibit distinct propagation signatures: while the propagation profile for FS1
194 is symmetric and fast above and below the spike initiation location, FS2 and FS3 exhibit an
195 asymmetric and slower, direction-dependent profile. Despite their different propagation profiles,
196 FS1-3 exhibit no significant difference in spatial spread (**Fig. S4**). Looking at the distribution of
197 the cortical depth, the six clusters are distributed differently across V1 layers (**Fig. S5**). We
198 conclude that expanding the set from one- to multi-channel EAP features results in further
199 separation within the RS and FS groups into six finer but distinct groupings, three FS (FS1, FS2,
200 FS3) and three RS (RS1, RS2, RS3) clusters, that spread along the V1 depth axis.

201

202 **Distinct functional properties of the *in vivo* clusters**

203 To what extent do the *in vivo* clusters separated by their EAP properties also constitute functionally
204 distinct cell populations? We looked into the *in vivo* dynamics during behavior and whether the
205 six clusters show distinct firing properties during a visual stimulation task (drifting gratings). Inter-
206 spike interval (ISI) analysis shows that multi-channel RS clusters exhibit significantly different
207 firing properties: the ISI median of FS is 19.63 ms with 95% confidence interval (CI) at
208 [19.60,19.67] ms, while the ISI median of RS is 53.37 ms with 95% CI at [53.30,53.43] ms (**Fig.**

209 **2e**, Mann-Whitney U test, $p=0.0$). To assess the temporal structure of spiking during the task we
210 also calculated the coefficient of variation (CV) that measures the variance of ISIs and the local
211 variation (LV) measuring variation in adjacent ISIs. We found that the pattern of RS1 spiking is
212 significantly different compared to RS2 and RS3. Specifically, RS1 units exhibit faster, more
213 stereotyped and less variable spiking than RS2-3 units. RS2-3 units, in turn, exhibit relatively
214 slower and more variable spiking dynamics (**Fig. 2e**). Notably, multi-channel RS clusters also
215 exhibit differences in their response to visual presentation. Several measures that assess visual
216 response properties were calculated (see Methods) and we highlight three relevant for drifting
217 gratings: f_1/f_0 , the modulation index, and lifetime sparseness (**Fig. 2e**). Statistically significant
218 differences emerge between RS1 vs. RS2-3 in terms of the response metrics with RS2-3 exhibiting
219 higher response sensitivity and selectivity over RS1, in agreement with the higher CV and LV seen
220 for RS2-3. No significant difference in terms of visual responses was observed between FS1-3. In
221 summary, we found that RS is composed of functionally distinct clusters that beyond their distinct
222 multi-channel properties also exhibit differences in their *in vivo* activity also during visual behavior.
223

224 Another measure to identify functionally distinct populations looks at distinct spike phase-locking
225 to ongoing local field potential (LFP) oscillations^{27,33,34}. We used the Hilbert transform of the
226 bandpass-filtered LFP to assign each spike an instantaneous phase (**Fig. S6a**) in several frequency
227 bands (theta: 3-8Hz, alpha: 8-12.5Hz, beta: 12.5-30Hz, low gamma: 30-50Hz, high gamma: 50-
228 90Hz; Supplementary Data 2). Starting with one-channel clusters, we found that units exhibit a
229 diverse level of entrainment to the LFP bands (per the Rayleigh test for non-uniformity, see
230 Methods, **Fig. S6b**, **Fig. 2f**) with FS containing a significantly higher percentage of phase-locked
231 units than RS across frequency bands (**Fig. 2f, left**). Notably, FS and RS coupling to *in vivo*
232 oscillations is input- and behavior-dependent, with a much lower percentage of phase-locked
233 neurons detected during spontaneous activity (**Fig. S7**) than during drifting gratings (**Fig. 2f, left**)
234 across frequency bands, an observation in line with other studies (e.g.¹³) In general, the percentage
235 of significantly entrained FS units was high and remained broadly unaffected by the specific LFP
236 bands. In contrast, RS couple preferentially to slow LFP oscillations (theta) with the percentage
237 decreasing for higher frequencies (beta, gamma and high gamma). Pairwise comparison revealed
238 that FS have stronger phase-locking across frequency bands and spike earlier in the cycle than RS
239 for beta and low gamma (**Fig. 2f-g**, p-values corrected for multiple tests by Holm-Bonferroni
240 method) in line with neocortical patterns seen in monkey and human³⁵, but in contrast with
241 hippocampal oscillations where putative excitatory neurons typically fire earlier than putative
242 inhibitory ones³⁶. We conclude that one-channel RS and FS show distinct coupling properties to
243 neocortical oscillation with FS coupling being stronger across bands and FS units firing earlier
244 than RS.
245

246 Next, we looked at multi-channel clusters and their dynamics during oscillations. We found
247 significant differences in LFP coupling for RS1-3 in the low and high gamma bands, with RS2
248 exhibiting stronger phase locking to low and high gamma than RS1 (**Fig. 2h**). The preferred phase
249 of RS1-3 remains similar at 180^0 - 200^0 (RS2 just below 180^0 vs. RS1 and RS3 just above 180^0)
250 (**Fig. 2h**). Cluster-specific entrainment to LFP oscillations is also observed in FS clusters (FS1-3).
251 Specifically, FS3 exhibit stronger phase locking to high gamma than FS2, with distinct preferred
252 phases among the three clusters in alpha, beta and low gamma (**Fig. 2i**). We conclude that in
253 addition to their distinct spiking characteristics, multi-channel clusters exhibit distinct coupling
254 properties to LFP oscillations that depend on the behavior.

255

256 We also looked at how spike dynamics and coupling to oscillations changes with cortical depth.
257 Based on distance from pia we defined three regions: supragranular (broadly cortical layers 2-3),
258 granular (cortical layer 4) and infragranular (broadly cortical layers 5-6). Looking at one-channel
259 clusters, FS show consistently stronger phase-coupling than RS across the cortical depth for all
260 LFP bands (**Fig. S6c**). Interestingly, both FS and RS show strong coupling in theta and beta but a
261 strong reduction in coupling in the intermediate alpha band. This pattern is particularly pronounced
262 in the supragranular and granular regions while in the infragranular region there is reduced
263 coupling, especially for FS, compared to the rest of the cortical depth regions (**Fig. S6c**). We also
264 note the strong coupling of FS units to high frequency oscillations (e.g. high gamma) especially in
265 the supragranular and granular region, a characteristic of electrotonically compact neurons able to
266 follow very fast synaptic drive. In terms of spike phase, RS and FS spike broadly around the same
267 phase with the exception of the granular region where significant differences emerged between FS
268 and RS for beta and gamma bands. Looking at the multi-channel clusters across cortical depth, we
269 found the most significant differences in the coupling strength of RS1-3 in supragranular beta and
270 low gamma with kappa almost doubling between supragranular RS3 and RS1 in beta (**Fig. S6d**).
271 Such diversity in coupling strength among clusters is not observed in granular and infragranular
272 regions though we do find differences in the preferred spike phase of RS1-3 in infragranular layers
273 (**Fig. S6d**). It follows that these multi-channel clusters, except for their distinct multi-channel
274 signatures, also have distinct patterns and role in how they support ongoing cortical oscillations.
275 We conclude that, one-channel RS and FS clusters as well as RS1-3 show distinct coupling patterns
276 along the cortical axis, especially supragranular RS1-3 in the beta bands and infragranular RS1-3
277 in the gamma bands.
278

279
280

Multimodal mapping between electrophysiology-, morphology- and Cre-reporter-based classes

281 What is the cellular identity of the clusters exhibiting such distinct EAP-waveform and *in vivo*
282 properties? To bridge between the *in vivo* clusters and *in vitro* cell classes, we use biophysically
283 realistic single-neuron models of 18 morphologically aspiny (AP) and 15 spiny (SP) mouse
284 neurons (**Table S1**) that capture within cell type variability. These models were generated from
285 two data modalities: the reconstructed morphology and the somatic electrophysiology response
286 resulting from *in vitro* whole-cell patch-clamp experiments²⁴. We use these models to simulate the
287 EAP waveform and, in such manner, create EAP-templates linked to ground-truth, specific
288 electrophysiology-, morphology- and Cre-reporter-based cell classes.
289

290
291
292
293
294
295
296
297
298
299
300

We show simulations for two example single-cell models, one SP (**Fig. 3a**) and one AP (**Fig. 3b**).
Somatic action potentials were evoked via simulated convergent, Poisson-style synaptic input
along the dendritic arbor (**Fig. 3a-b**). The simulated EAP from the model exhibits its largest
amplitude in the somatic region and actively propagates into the dendrites. As for extracellular
recordings, one- and multi-channel features of AP and SP were calculated from the simulated EAP
waveforms. We see that the trough-to-peak width (TPW) and repolarization time (REP) of the
simulated cells are very similar to the ones from experimental recordings (**Fig. 3c**). Furthermore,
cell class differences predicted by simulations agree with *in vivo* recorded EAPs, e.g. simulated
AP cells exhibit significantly lower TPW (two-sample t test, $p=0.00025$) and REP (Mann-Whitney
U test, $p=0.00024$) than SP ones (**Fig. 3d**). Furthermore, because the biophysical models agree
with experimental recordings for one-channel features TPW and REP, they can be used to link

301 between *in vitro* properties of cell class and *in vivo* EAPs. We asked whether the experimentally
302 measured intrinsic properties of the actual cells each model represents differentiate between
303 morphology class AP and SP. Comparison between *in vitro* cellular data used to develop each of
304 the AP and SP models (same mouse IDs as **Fig. 3c-d**) show statistically significant differences in
305 intrinsic properties known to differentiate between major excitatory and inhibitory classes (spike
306 width, adaptation, spike rate and f-I slope; **Fig. 3e**). We conclude that, not only the models, but
307 also the underlying *in vitro* experiments mapping on RS and FS clusters, exhibit robust separation
308 in slice electrophysiology properties known to separate excitatory from inhibitory classes.
309

310 To link between labels of *in vivo* units (RS vs. FS) and the morphology classes of simulated
311 neurons (spiny or SP vs. aspiny or AP), we used a two-way classification process²⁷. In one
312 direction, the model-based classifier was trained on one-channel EAP features (TPW, REP) of
313 models to discriminate between SP and AP neurons. This process yielded 82.5% classification
314 accuracy on the validation data set (support vector machine, SVM; training/validation set,
315 75%/25%; **Fig. 3f**). Then, the model-based classifier was applied on the test data set (*in vivo*
316 clustered FS and RS units from V1). Most FS units are labeled as AP neurons while the majority
317 of RS as SP (**Fig. 3f**). We also tested the opposite direction. In the experiment-based classifier, we
318 trained on one-channel EAP features (TPW, REP) of *in vivo* units to discriminate between FS and
319 RS clusters (training/validation set, 75%/25%) and classification accuracy on the validation data
320 set exceeded 99% (SVM; **Fig. 3g**). When applying the classifier on the test datasets, i.e., model-
321 labeled AP and SP neurons, most AP neurons were labeled as FS and most SP neurons as RS units
322 (**Fig. 3g**). We conclude that the majority of *in vivo* RS map to *in vitro* SP cells while the majority
323 of *in vivo* FS map to *in vitro* AP cells based on one-channel features TPW and REP.
324

325 Beyond the intrinsic properties and morphology classes, the simulated neurons also contain Cre-
326 line labels from the Cre-lines used *in vitro* to target the individual cells. In a subsequent analysis,
327 instead of using the morphology labels SP and AP, we used the transgenic line label (excitatory:
328 Scnn1a, Rorb, Nr5a1; inhibitory: Pvalb, Sst)¹ of the models as input to the experiment-based
329 classifier to predict the one-channel *in vivo* clusters (RS vs. FS). The excitatory classes (Scnn1a,
330 Rorb and Nr5a1) are mainly classified as RS whereas inhibitory classes (Pvalb and Sst) are mainly
331 classified as FS (**Fig. 3h**). We conclude that the biophysical models agree with experimental *in*
332 *vivo* EAP recordings in terms of one-channel EAP features and reflect experimental intrinsic and
333 morphology class-dependent differences also observed *in vitro*.
334

335 **Composition and properties of multi-channel RS clusters**

336 We next attempt to deduce single-cell intrinsic electrophysiology and morphology properties of
337 the *in vivo* multi-channel clusters. We first asked whether the single-cell models recapitulate the
338 three multi-channel clusters for each class. Starting with the SP models, we clustered the models
339 based on their simulated multi-channel EAP features (n=15 SP models; *K*-means clustering). Two
340 separate clustering analyses (elbow method and the density function) determined the number of
341 SP clusters in our simulated data to be three, i.e. SP1-3. Notably, the number of SP clusters
342 coincides with the number of RS clusters detected *in vivo* (RS1-3) (**Fig. 4a**). Among three RS
343 clusters, there is no significant difference in the largest amplitude channel (**Fig. 4a, right**),
344 however, the waveform propagation separates them into three clusters (**Fig. 4b**). Looking at the
345 multi-channel features ($1/V_{below}$ and $1/V_{above}$) there is correspondence between SP1 with RS1, SP2
346 with RS2 and SP3 with RS3. This is also reflected in the distinct EAP propagation properties of

347 the three SP clusters, with SP1 showing faster supragranular propagation than SP2 while SP3
348 shows reduced infragranular propagation vs. SP1 (**Fig. 4b**). We conclude that the biophysical
349 models of morphologically spiny neurons SP separate into three distinct clusters (SP1-3) based on
350 the same multi-channel features that also separate *in vivo* multi-channel RS units into clusters RS1-
351 3 with EAP propagation patterns that resemble model and *in vivo* clusters.
352

353 We looked deeper into the correspondence between the model-based SP1-3 and *in vivo* clusters
354 RS1-3 defined via the multi-channel EAP features by using two-way classification: supervised
355 classifiers trained on the simulated EAPs of modeled neurons then applied to *in vivo* units ("model-
356 based classifier"), and supervised classifiers trained on experimental *in vivo* units, then applied to
357 the model classes ("experiment-based classifier"). Specifically, the model-based classifier trained
358 on multi-channel EAP features ($1/V_{below}$ and $1/V_{above}$) to identify SP1-3 showed excellent
359 performance (random forest; classification performance >94%; **Fig. 4c**). In a next step, we applied
360 the model-based classifier on the test experimental data sets (*in vivo* clustered RS1-3) and found
361 that, indeed, RS1 units are mapped to SP1, RS2 to SP2, and RS3 to SP3 with high fidelity
362 (performance: >94%; **Fig. 4c**). We also pursued the opposite direction by building the experiment-
363 based classifier trained on multi-channel *in vivo* EAP features to discriminate among RS1-3 and
364 saw very high classification accuracy (> 99%; **Fig. 4d**). The experiment-based classifier on the
365 test simulation data sets (models clustered SP1-3), once more, cleanly maps SP1 to RS1, SP2 to
366 RS2 and SP3 to RS3, respectively (**Fig. 4d**). Thus, our initial results are validated by the two-way
367 classification that robustly maps model-based SP1-3 classes to *in vivo* RS1-3 clusters via their
368 multi-channel features.
369

370 Since RS1-3 are mapped to SP1-3, respectively, what other properties of the *in vivo* clusters RS1-
371 3 can be deduced from the SP1-3 data and associated models? We address this question for three
372 data modalities: models, morphologies and intrinsic electrophysiology properties. First, we asked
373 whether SP1-3 models can point to key differences between the three clusters in terms of the
374 conductance setup. Pairwise comparison between SP1-3 model conductances indicates that the
375 axonal low-voltage activated Ca-conductance is increased for SP1 and SP3 vs. SP2 (Cohen's d
376 effect size > 0.8; **Fig. 4e**), i.e. a conductance linked to elevated spike rate (bursting) and rapid spike
377 recovery³⁷. In terms of cellular morphology, given SP1-3 have different spike propagation profiles,
378 we used a morphology feature looking at the cable structure attached to the soma, the bifurcation
379 distance. The bifurcation distance is the normalized distance between the soma and the dendritic
380 bifurcation with a large bifurcation distance effectively translating to a longer unobstructed path
381 along the dendrite (see also Methods). Pairwise comparison of the bifurcation distance above soma
382 and below soma among SP1-3 (the reconstructed morphologies were also used to develop the
383 models) reveals differences in one property, the basal dendrite bifurcation distance below the soma
384 (**Fig. 4f-g**; see also Methods). Specifically, SP1 and SP3 have different bifurcation distance
385 especially below the soma (**Fig. 4g**). Notably, the morphology bifurcation distance, exhibits a
386 strong linear relationship with the spike propagation speed across SP1-3 (**Fig. 4g** right, slope =
387 2.7, the correlation coefficient $r = 0.8$, $p = 1.02 \times 10^{-7}$). A larger bifurcation distance, results in a
388 lower spike propagation speed along the basal (negative bifurcation distance) and apical (positive
389 bifurcation distance) arbor. Thus, class-dependent morphology properties that impact spike
390 propagation can also lead the class-dependent propagation speed and symmetry differences
391 observed between SP1-3 (Fig. 5b). Finally, we compared *in vitro* subthreshold (**Fig. 4h**) and
392 spiking (**Fig. 4i**) intrinsic electrophysiology properties among SP1-3 (the slice experiments also

393 used to develop the models) and found differences in the cellular time constant τ and peak spike
394 rate (response to dc current injections, **Fig. 4j**). Specifically, SP1 neurons achieve a higher spike
395 rate especially compared to SP2, which, in turn, agrees with the model-based observation of
396 increased axonal low-voltage activated Ca-conductance of SP1 (**Fig. 4e**). Moreover, SP1 is more
397 electrotonically compact than SP2 (**Fig. 4j**). We conclude that, by virtue of mapping SP1-3 to RS1-
398 3, the multimodal comparison between models (including their associated *in vitro* experiments)
399 and *in vivo* clusters yields several distinct properties: a difference in axonal low-voltage activated
400 Ca-conductance (SP1 and SP3 vs. SP2), a morphology difference in the basal dendrite bifurcation
401 distance below the soma (mainly in SP1 vs. SP3) that, in turn, impacts the spike propagation speed,
402 and, finally, SP1 being more electrotonically compact than SP2.
403

404 **Multi-channel features separate inhibitory Pvalb and Sst**

405 FS units are most typically associated with inhibitory cell classes that are inherently heterogeneous.
406 For example, Pvalb includes fast-spiking basket cells as well as Chandelier cells, while Sst
407 includes Martinotti and non-Martinotti cells. We also found that this diversity of interneurons is
408 reflected in FS1-3. While we focused our analysis on the two most populous inhibitory classes,
409 Pvalb and Sst¹, we saw no clear mapping between FS1-3 and Pvalb/Sst. We therefore decided to
410 introduce an additional multi-channel feature, the symmetry index (see Methods), quantifying the
411 spatial characteristics of spike propagation and, in this manner, account for another aspect of
412 morphology and its impact on the spike signature. Using the symmetry index to look at FS1-3 we
413 saw a separation between FS1 (symmetric spike propagation) and FS2/FS3 (asymmetric spike
414 propagation) (**Fig. 5a-b**). Notably, clearer separation between Pvalb and Sst models was achieved
415 based on the symmetry index (**Fig. 5b**, right; n=9 Pvalb models, n=9 Sst models). We conclude
416 that while multi-channel features $1/V_{below}$ and $1/V_{above}$ do not exhibit clear mapping, accounting for
417 an additional multi-channel feature, the symmetry index, separates biophysical models of Pvalb
418 and Sst.
419

420 Which properties can be deduced from the models and associated *in vitro* data? Once more we
421 consider three data modalities: models, morphologies and intrinsic properties from the *in vitro*
422 Pvalb (n = 9) and Sst (n = 9) experiments (**Table S1**). Pairwise comparison between Pvalb and Sst
423 models at the level of ionic conductances reveals statistically significant differences in three
424 conductances with the effect size being largest for Kv3.1 (**Fig. 5c, f**). Elevated Kv3.1 expression
425 is a key differentiator between Pvalb and other inhibitory cell types, i.e. increased Kv3.1 results in
426 a shorter spike width and fast afterhyperpolarization^{24,39-41}. In terms of cellular morphology,
427 pairwise comparison of morphology features (bifurcation distance above and below soma) from
428 the reconstructions in the Pvalb (**Fig. 5d**, left, dark blue) and Sst (**Fig. 5d**, middle, orange) cells
429 show a statistically significant difference in the bifurcation distance between above and below
430 soma in Sst cells. Specifically, while Pvalb morphologies are symmetric (i.e., above vs. below
431 bifurcation distance remains similar), Sst possess a more asymmetric morphology with the
432 bifurcation distance above being longer than below their soma (**Fig. 5d**). To look at how the
433 bifurcation distance affects spike propagation, we plotted the bifurcation distance above (positive
434 values) and below (negative values) against the spike propagation speed V in the model data. We
435 found that the bifurcation distance above and below the soma is robustly related with the inverse
436 of the EAP propagation velocity (**Fig. 5e**, right, slope = 2.67, the correlation coefficient r=0.8, p-
437 value=5.12*10⁻⁹). Once more, a larger bifurcation distance results in a lower spike propagation
438 speed. Thus, the increased bifurcation distance asymmetry leads to more asymmetric spike

439 propagation along Sst morphologies. On the hand, the symmetry of Pvalb morphologies with
440 respect to bifurcation distance leads to more symmetric spike propagation. Pairwise comparison
441 of *in vitro* intrinsic electrophysiology properties between Pvalb and Sst (from the same
442 experiments used to develop the Pvalb and Sst experiments) reveals several differences in peak
443 spike rate, rheobase, resting potential (**Fig. 5g**) among others supporting that Pvalb are more
444 electrotonically compact compared to Sst, which agrees with the observation about differences in
445 Kv3.1 difference (**Fig. 5c, f**). In summary, the comparison between Pvalb and Sst models,
446 morphologies and intrinsic properties points to a difference in Kv3.1, in bifurcation distance and
447 in a several intrinsic properties shown to separate between Pvalb vs. Sst (e.g., peak spike rate) and
448 shape intracellular dynamics as well as the EAP waveform.
449

450 We also examined whether differences in spike propagation symmetry between Pvalb and Sst can
451 be attributed to morphology orientation. While the elongated somadendritic axis of pyramidal
452 neurons can give rise to spike propagation asymmetry⁴², the impact of the angle between an
453 extracellular probe and the cellular morphology of inhibitory cells remains unknown. In a separate
454 series of simulations, we varied the angle between the extracellular probe and morphology across
455 Pvalb and Sst models and found that, indeed, certain EAP multi-channel metrics including the
456 symmetry index are affected by this parameter with certain constellations exacerbating the
457 pairwise difference between Pvalb and Sst (**Fig. S8**). Even so, the robust and highly significant
458 differences in symmetry index found between inhibitory classes can hardly be a mere reflection of
459 rotation effects. While we cannot exclude this parameter contributing to the trends observed, the
460 evidence clearly points to biophysical differences between the clusters rather than aspects of
461 experimental layout. We conclude that Pvalb are distinct from Sst across multiple *in vitro*
462 modalities considered in our work, a fact also reflected in their distinct EAP signatures that allows
463 their *in vivo* identification and separation using multi-channel EAP properties.
464

465 Comparisons with ground-truth channelrhodopsin-tagged Pvalb and Sst units *in vivo*

466 So far, we deduced cellular properties of *in vivo* units by comparing the simulated EAP waveform
467 from models linked to specific *in vitro* experiments of known identity to *in vivo* recorded EAP
468 waveforms, and vice versa. Opto-tagging is a method that can link EAP measurements to specific
469 cell types by directly photo-stimulating cells that express the light-activated channel
470 channelrhodopsin-2 (ChR2) to a restricted neuronal subpopulation under genetic control^{43,44}.
471 Opto-tagging experiments can thus offer ground-truth data with recorded EAPs originating from
472 known populations of neurons. Here, we used a channelrhodopsin reporter line (Ai32) crossed
473 with a driver line in which Cre recombinase expression was driven by Pvalb or Sst promoter (**Fig.**
474 **6a**, dark green region). This process resulted in ChR2-tagged Pvalb and Sst neurons that responded
475 to light stimulation with short latency and reliably (**Fig. 6b**). Extracellular recordings with
476 Neuropixels in these animals detected 25 well-isolated Pvalb units in 8 Pvalb-Cre mice and 18 Sst
477 units in 12 Sst-Cre mice (**Fig. 6c**; see Methods; Supplementary Data 3).
478

479 Using this ground-truth data set for two major inhibitory cell classes we pursued one- and multi-
480 channel EAP analysis. For one-channel EAP features (TPW, REP), the opto-tagged Pvalb units
481 exhibit clear overlap with FS from experiments with wild-type animals. Sst units are much more
482 diffuse spanning across the FS/RS-space (**Fig. 6d**). Direct comparison of one-channel features
483 (TPW, REP) and *in vivo* activity metrics like spike frequency show that Pvalb are well-separated
484 from Sst (**Fig. 6e**, top). Pvalb and Sst also exhibit clear differences in terms of multi-channel EAP

485 propagation, especially when looking at the symmetry index. Specifically, the optotagged
486 recordings reveal that Pvalb exhibit symmetric and fast propagation profile while Sst exhibit less
487 symmetric propagation and increased variability (**Fig. 6e-f**). Pairwise comparison of the symmetry
488 index for the Pvalb and Sst optotagged units confirms that Pvalb show more symmetric EAP
489 propagation compared to Sst (**Fig. 6g**), in agreement with simulations (**Fig. 5b**). We conclude that
490 *in vivo* ground-truth opto-tagging experiments show that Pvalb and Sst are separable in terms of
491 one- and multi-channel properties (symmetry index) in line with findings from the computational
492 models.

493

494 We also looked for functional differences between Pvalb and Sst in the opto-tagged units. First,
495 we found that Pvalb exhibit higher spike time variability than Sst (**Fig. 6h**, left). More interesting
496 differences appear for phase-locking to ongoing LFP oscillations. Specifically, we found that
497 Pvalb exhibits stronger phase-coupling than Sst for slower (theta) oscillations. Furthermore, Pvalb
498 have a significantly different spike phase especially for faster oscillations (beta, low- and high-
499 gamma) than Sst with Sst units spiking in a later phase by about 40-50°. (**Fig. 6h**). We note the
500 similarity of this pattern with the spike phase relationship of wild-type units FS1 and FS2 (**Fig.**
501 **2e**). We conclude that the opto-tagging experiments reveal that, beyond separable in terms of
502 multi-channel features, Pvalb units also have more variable spiking as well as stronger coupling to
503 theta and earlier spiking for faster oscillations compared to Sst.

504

505 Discussion

506

507 Understanding the role and function of cellular taxonomies in behavior is an important challenge
508 in an era where advancements in sequencing technologies continuously refine these taxonomies<sup>1-
509 4,9,10</sup>. Extracellular electrophysiology recordings offer unparalleled ability to monitor cellular
510 activity *in vivo* across spatiotemporal levels yet lack cell type-specificity, with optotagging making
511 it possible to label only one or two distinct cell types per experiment^{21,45,46}. Here we introduce a
512 framework for the identification and characterization of major cortical cell types solely based on
513 their extracellular electrophysiology signatures with multiple data modalities. Our starting point
514 are EAP waveforms recorded from high-density Neuropixels probes in mouse primary visual
515 cortex (V1). Using one-channel EAP features we separated units into two clusters, FS and RS, that
516 exhibit differences both in terms of EAP waveform and functional properties such as LFP
517 entrainment. We separately looked at phase coupling in prominent LFP oscillation bands (theta,
518 alpha, beta, low and high gamma) and found that FS units are consistently more entrained across
519 LFP-bands compared to RS units. In agreement with other studies (e.g. ¹³), FS and RS exhibit
520 significantly higher phase-locking during drifting gratings than during spontaneous activity across
521 LFP-bands. When we looked at the preferred spike phase, we found that FS spiking came earlier
522 in the cycle than RS in beta and low gamma. These observations are in line with the studies of
523 neocortical unit activity in humans and monkeys³⁵. Specifically, FS phase precedence is also in
524 line with³⁵ and opposite to the hippocampal activation pattern observed during high frequency
525 ripples³⁶. When we looked at phase coupling along the cortical depth, we found a diverse
526 landscape. While FS remain consistently more entrained than RS, FS phase precedence over RS
527 is spatially inhomogeneous and particularly pronounced in the granular region (broadly layer 4)
528 for beta, low and high gamma. In contrast, in the supragranular and infragranular regions, FS and
529 RS clusters exhibit less pronounced phase differences across LFP-bands despite significant

530 differences in coupling strength. We conclude that the FS and RS clusters represent larger families
531 of diverse cell classes organized along the cortical network serving different roles *in vivo*.
532

533 Expanding the feature set from one-channel to multi-channel EAP features results in further
534 separation within the RS and FS groups into six finer groupings, three FS (FS1, FS2, FS3) and
535 three RS (RS1, RS2, RS3) clusters. We show that the six clusters exhibit functional differences in
536 their dynamics to visual stimuli (e.g., drifting gratings in head-fixed animals) and differential
537 coupling to ongoing LFP oscillations. Looking at the properties of these finer clusters with cortical
538 depth we found increased diversity in their spike-LFP coupling. RS3, for example, exhibits almost
539 double the coupling strength than RS1 in the supragranular region for beta and low gamma (RS2
540 is an intermediate case). On the other hand, in the infragranular region and for low gamma, RS3
541 and RS1 spike phase is similar while RS2 comes earlier (the same happens for high gamma). The
542 differences in RS1-3 are consistent with classes of neurons that possess different biophysical
543 setups as well as a divergence in connectivity patterns. It is known, for example, that the
544 biophysical properties of excitatory V1 neurons vary and depend on cortical depth which, in turn,
545 is expected to have an impact on their firing properties and burstiness^{34,47-49}. In addition, their
546 intricate connectivity and projections along the anatomical hierarchy can result in a spectrum of
547 functional clusters among excitatory V1 cells that reflect upstream input segregation from earlier
548 brain regions (e.g., various thalamic areas⁵⁰⁻⁵²). The combination of diverging biophysical
549 properties of V1 excitatory cells combined with localized and class-specific connectivity gives rise
550 to functionally distinct and input-specific RS1-3 clusters. Furthermore, behavior and brain state
551 can further modulate the response properties of excitatory clusters along V1⁵⁰. The aforementioned
552 points to a network consisting of clusters of distinct biophysical properties and functional *in vivo*
553 responses that, nevertheless, can be organized and reconfigured in multiple ways, depending on
554 the external input and internal state.
555

556 While excitatory cells exhibit differences in visual responses (though with varying degree of
557 sensitivity and selectivity), inhibitory neurons do not show strong or selective responses
558 confirming observations using the same visual inputs⁵³. Even so, they play a central role in shaping
559 cortical activity in terms of orchestrating and patterning ongoing and/or evoked oscillations^{7,38,54-56}.
560 Indeed, when we looked at the phase-coupling properties of FS1-3 we found differences in the
561 alpha, beta, and gamma bands. Furthermore, in an additional analysis we observed differences
562 between FS1-3 (mainly in the gamma bands) as function of cortical depth. While the diversity of
563 inhibitory coupling to ongoing oscillations remains elusive in V1 (though see^{33,50}). In agreement
564 with other V1 studies^{50,57}, our experiments support the observation that the most prominent LFP
565 pattern in the waking V1 is a theta-band oscillation (hypothesized as an evolutionary precursor of
566 the primate alpha activity in the visual cortex). Yet, we also found that FS1-3 (but also RS1-3 as
567 well as FS-RS) differentiate their coupling in higher LFP-bands, i.e., in alpha, beta and gamma,
568 rather than in the band of their most prominent pattern (theta). Notably, inhibitory parvalbumin-
569 and somatostatin-positive interneurons exhibit large amplitude, rhythmic hyperpolarization at 3-6
570 Hz in V1 during behavior^{50,57}.
571

572 The distinct properties of FS1-3 in EAP waveform and coupling strength/phase to LFP oscillations
573 is reminiscent of the distinct hippocampal inhibitory classes and their coupling to local theta,
574 gamma and sharp wave ripples, e.g.^{36,55,56,58-60}. For example, two putative inhibitory classes
575 located in the pyramidal layer and the alveus/stratum oriens of hippocampal CA1 with distinct

576 EAP waveforms also exhibit differences in discharge probability and theta spike phase with one
577 coming earlier by about 30° and both preceding pyramidal spiking³⁶. The picture is reversed during
578 ripple activity when phase differences between the two inhibitory clusters are minimized and
579 pyramidal spiking precedes both³⁶. *In vivo* recordings combined with tedious morphological
580 characterization unravel distinct coupling features, e.g. between *palvalbumin*-expressing basket
581 cells, bistratified and *cholecystokinin*-expressing interneurons differing their spike phase by 30°-
582 40° during the gamma cycle⁶⁰. The coupling strength as well as the phase differences observed
583 between distinct cell classes during oscillations are in line with what we see for FS1-3. Excitatory
584 pyramidal neurons in hippocampus and neocortex also form distinct morphological, molecular,
585 connectivity and functional populations^{61-64,64-68}. A major organizing principle of excitatory
586 neurons is cortical depth and the presence of functionally distinct sublayers⁶⁹ – in CA1, this
587 organization is also reflected in the cellular and functional properties with deep cells spiking faster,
588 burstier and exhibiting stronger modulation for slow oscillations^{70,71}. Neocortical organization is
589 less understood with respect to its functional modules and their role in oscillations (although see
590 72-76) yet the RS1-3 coupling profile points to the existence of a cellular and functional organization
591 along the depth axis.

592
593 To map between the cellular *in vitro* classes and subclasses and *in vivo*, EAP-based clusters, we
594 develop biophysical models that reflect key properties of *in vitro* cell types and use these models
595 to simulate EAP properties. We use a computational optimization workflow to generate and
596 evaluate biophysically realistic, cell type-specific cellular models with active conductances at
597 scale²⁴. We then use two-way classification to map *in vitro* classes to *in vivo* clusters and vice
598 versa, with models providing the link between the two worlds and the associated class/cluster label.
599 In a stepwise manner, we show that a set of one-channel EAP features (TPW, REP) separates *in*
600 *vivo* EAP clusters in terms of spike rate (FS vs. RS units) and *in vitro* morphology classes (AP vs.
601 SP neurons). The fact that narrow EAP waveform units map to FS and AP while wide units map
602 to RS and SP is in line with previous work^{14-18,27}. A fraction of simulated excitatory neurons also
603 mapped onto FS units that we attribute to some excitatory classes that possess narrow spike width
604 and some model discrepancy that prohibits capturing all EAP features in their full extent. The latter
605 can lead, in a few cases, to mislabeling. Yet, it is the use of these models that also enables linking
606 seemingly disparate data sets in a manner that results in specific and testable hypotheses about the
607 identity and properties of the various clusters (e.g. in terms of the underlying conductance or
608 morphology differences between the *in vivo* clusters).

609
610 Looking at RS1-3, we found that RS1/SP1 and RS3/SP3 are electrotonically more compact than
611 RS2/SP2 with a possible biophysical mechanism accounting for such differences being the axonal
612 low-voltage activated Ca-conductance. Moreover, we found that basal dendrite differences
613 between RS2/SP2 and RS3/SP3, a feature that could potentially explain the EAP waveform
614 symmetry between RS1-3 clusters. For FS1-3, we found that biophysical models of Pvalb and Sst
615 broadly capture the multi-channel properties of FS1-3 and specifically the distinct symmetry of
616 FS1 vs. FS2-3 spike propagation. Notably, Sst cells are diverse in their morphology, which resulted
617 in a wider range of multi-channel features. Comparing Pvalb and Sst models, morphologies and
618 intrinsic properties we found a difference in Kv3.1, in bifurcation distance and in a several intrinsic
619 properties shown to separate between Pvalb vs. Sst (e.g., peak spike rate) and shape intracellular
620 dynamics as well as the EAP waveform. A set of *in vivo* ground-truth opto-tagging experiments

621 validated that Pvalb and Sst are separable in terms of one- and multi-channel properties further
622 supporting our observations based on computational models.

623
624 Our study shows that multi-channel EAP features can critically contribute to the separation of
625 meaningful *in vivo* clusters. The key data modality reflected in these multi-channel properties is
626 the cellular morphology^{22,25,26}. It follows that for computational models to account for such
627 properties, they need to account either for the fully reconstructed morphology²⁴ or, at the very
628 least, for key aspects of it⁴². Moreover, ionic mechanisms along the dendritic morphology also
629 impact spike propagation intracellularly^{77,78} and extracellularly^{25,26,32} pointing to an interesting
630 possibility: the use of optotagging experiments to measure cell type-specific (e.g. Pvalb and Sst)
631 multi-channel EAP properties *in vivo* and, in a second step, using these properties to constrain
632 model parameters along the dendritic arbor where intracellular data is challenging to collect.

633
634 Notably, while Neuropixels recordings result in large numbers of recorded units, the bottom-up
635 approach (i.e., generating data from transgenic lines *in vitro* by whole-cell patch-clamp and
636 morphology reconstructions of labelled neurons) is a lower-yield and labor-intense process. In
637 addition, the computational framework to turn the *in vitro* data (features of electrophysiology
638 traces in combination with reconstructed morphologies) into biophysically realistic all-active
639 single-cell models involves computationally intensive multi-objective optimization procedures
640 (see Methods). This results in a natural imbalance in our data sets: a large number of isolated *in*
641 *vivo* units compared to a smaller number of *in vitro* recorded and reconstructed neurons and
642 models. Ever-increasing availability of high-quality, annotated cellular electrophysiology,
643 morphology, transcriptomics data – the precondition to generate faithful, cell type-specific
644 computational models at any scale – is underway and is expected to tackle the imbalance between
645 the number of cellular models and *in vivo* recorded units. The larger the number of models and
646 cell classes reflected in them, the better and more refined classifiers can be trained to map *in vitro*
647 types to *in vivo* EAP clusters. With increasing cellular data and single-cell model availability,
648 increasingly finer classification of EAP signatures can be achieved across different brain areas
649 and, even, species that allows deducing cellular and functional differences between cell classes
650 across data modalities.

651 **Methods**

652

653 ***In vivo* Neuropixels recordings**

654 All *in vivo* recordings come from the Allen Brain Observatory Visual Coding Neuropixels dataset²³,
655 accessible via the AllenSDK
656 (https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html) and the DANDI
657 Archive (<https://gui.dandiarchive.org/#/dandiset/000021>). Recordings were performed in awake,
658 head-fixed mice allowed to run freely on a rotating disk. During the recording, mice either
659 passively viewed visual stimuli (flashes) or viewed a mean-luminance gray screen. Data were
660 collected from 25 wild-type C57BJ/6J mice (24 male, 1 female), and 8 Pvalb-IRES-Cre (6 male,
661 2 female) and 12 Sst-IRES-Cre (8 male, 4 female) crossed with an Ai32 channelrhodopsin reporter
662 line⁷⁹. Cre+ cells from Ai32 lines are highly photosensitive, due to the expression of
663 Channelrhodopsin-2⁸⁰. The Neuropixels probe can record from 384 contacts across 3.84 mm of
664 tissue coverage (selectable from 960 available sites on a 10 mm length shank). In this study, we
665 analyzed recordings from the primary visual cortex (V1). All extracellular spike data were
666 acquired with Neuropixels probes²¹, with 30 kHz sampling rate (which achieves 0.033 ms temporal
667 resolution) and a 500 Hz analog high-pass filter. Spike times and waveforms were automatically
668 extracted from the raw data using KiloSort2⁸¹.

669

670 **Biophysical realistic all-active single-cell models**

671 We use the biophysically realistic all-active single-cell model for 18 aspiny (AP) and 15 spiny
672 (SP) mice neurons. The all-active models contain active conductances along the entire neuronal
673 morphology. The dendritic arbors are adopted in the models from the reconstructed morphology.
674 The models were generated with a computational optimization pipeline (**Fig. S2**) aiming for
675 models that reproduce the intrinsic firing patterns and spike properties of individual neurons from
676 two data modalities: the reconstructed morphology and the somatic electrophysiology response
677 from *in vitro* whole-cell patch-clamp experiments. The models were fit with several voltage-gated
678 sodium, potassium, and calcium conductances expressed at the cell soma, axon, and dendrites,
679 using data from individual neurons in the Allen Cell Types Database (<http://celltypes.brain-map.org/data>). The optimization pipeline (multi-objective genetic optimization) was used to
680 optimize the conductance densities by training the models with experimental somatic recordings
681 in response to step currents²⁴. The active conductances and passive properties marked according
682 to their inclusion in each of the morphology sections (apical, basal dendrites, soma and axon) are
683 reported in **Table 1**. We optimized both the spiking properties of the cell model (spiking timing,
684 spike rate, etc.) given a particular morphology and features of the intracellular action potential
685 waveform (spike amplitude, width, etc.) Only the models that passed certain criteria (Tol = 0.5 for
686 both spike amplitude and spike width) were selected, where Tol is the tolerance. Specifically, the
687 spike amplitude of the model should be in the range of [1-Tol, 1+Tol]*A_{exp}, while the spike
688 width of the model should be in the range of [1-Tol, 1+Tol]*W_{exp}, where A_{exp}, W_{exp}
689 represent the spike amplitude and width from experiments.
690

691

692 After a single-cell model is optimized, we simulated the extracellular potential using NEURON
693 7.5 simulator (<https://www.neuron.yale.edu/neuron/>) in combination with the Brain Modeling
694 Toolkit (<https://github.com/AllenInstitute/bmtk>). This toolkit can simulate a variety of
695 intracellular dynamics (e.g., spikes, and membrane voltages), as well as computing additional data

696 modalities such as the extracellular potential. The extracellular potentials were computed using the
697 line-source approximation, which assumes that membrane current is uniformly distributed within
698 individual computational compartments and the medium is homogenous and isotropic⁸². Each
699 model was simulated at a sampling rate at 30 kHz, identical to the acquisition rate of *in vivo*
700 recordings. Each cell model received Poisson-like synaptic input (simulation time: 3s). We
701 recorded the extracellular potential in a Neuropixels-like electrode array, which is a dense grid (5
702 μm spacing) consisting of 16 columns and 240 rows (total 3840 recording channels). To mimic
703 Neuropixels recordings, we averaged extracellular potential within a 10 μm -by-10 μm area for
704 each recording site. The extracellular action potential (EAP) was calculated based on the spike-
705 triggered average of extracellular potentials.

706

707 **Data analysis**

708 *Feature extraction*

709 Postprocessing included passing data through a 300 Hz high pass filter before extracting EAP
710 waveforms. To classify cell types, we first extracted features from the extracellular waveform.
711 With high density electrodes, we can record extracellular waveforms of a single unit from multiple
712 sites. The recording site with largest amplitude (amplitude is the magnitude of the extremum of
713 the waveform; **Fig. 2b, left**) is defined as the site closest to neuron soma, and the extracellular
714 waveform recorded at this site we define as the one-channel waveform. Since the Neuropixels
715 probe has four staggered columns of sites, we selected the two columns on the side of the probe
716 with the largest one-channel amplitude for the one- as well as the multi-channel waveforms. The
717 distance between sites is approximated by their vertical spacing (20 μm). The multi-channel
718 waveform of a single unit includes EAPs from the channel with the largest EAP-amplitude and 10
719 additional channels above and below that location, spanning $\pm 200 \mu\text{m}$. Similarly, in the models,
720 we selected the column of electrodes with the largest amplitude one-channel waveform. As
721 expected, the channel with the largest EAP-amplitude in the models was located close to the soma
722 and AIS location.

723

724 For the one-channel waveform (**Fig. 2b, left**), we calculated two features: TPW (trough-to-peak
725 width) and REP (repolarization time). TPW measures the time that elapses from EAP trough (the
726 global minimum of the curve) to EAP peak (the following local maximum). REP measures the
727 time elapsed from EAP peak to the half of the peak value. These two EAP features capture different
728 aspects of the intracellular potential, the speed of depolarization and of the subsequent after-
729 hyperpolarization^{17,31} and are commonly used to separate between fast-spiking (FS) units and
730 regular-spiking (RS) units.

731

732 For the multi-channel waveform (**Fig. 2b, middle**), we extracted two additional features in the
733 space domain: the inverse of the EAP propagation velocity below ($1/V_{below}$) and above ($1/V_{above}$)
734 soma along the Neuropixels probe. Velocity measures how fast the EAP propagates along the
735 probe with the point of reference being the EAP trough. When the EAP propagates fast, the time

736 difference between two adjacent sites can sometimes be estimated as zero – to avoid infinite
737 numbers, we calculated the inverse of velocity instead of velocity. A low value of inverse of
738 velocity, indicates fast propagation. The inverse of propagation velocity below ($1/V_{below}$) and above
739 ($1/V_{above}$) soma was then estimated by linear regression of the EAP trough at different sites against
740 the distance of the sites relative to soma. We also define the spread of a unit by the range with
741 amplitude above 12% of the maximum amplitude along the probe. Spread measures how far the
742 waveform can propagate along a probe.

743

744 *Symmetry index of EAP propagation*

745 From the multi-channel EAP recordings, we defined a measure looking at the symmetry of spike
746 propagation in the vertical direction above and below the spike initiation zone. Specifically, we
747 defined the symmetry index (SI) as the distance between each point ($1/V_{below}$, $1/V_{above}$) and the
748 diagonal line ($y = -x$). The distance from point ($x0, y0$) to the line $ax + by + c = 0$ can be calculated
749 by the following equations:

750
$$SI = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \quad (1)$$

751 where $(x0, y0) = (1/V_{below}, 1/V_{above})$, and $a = 1, b = 1, c = 0$ for $y = -x$. A smaller value in the
752 symmetry index indicates symmetric EAP propagation, while a larger value in the symmetry index
753 indicates more asymmetric propagation.

754

755 *Morphology bifurcation distance*

756 The bifurcation distance (**w**) for one bifurcation node is defined as the projection of the line (**v**)
757 from soma (S) to the position of the bifurcation node (N) projected to a line (**u**) connecting the
758 soma (S) to a node (L) in y axis (**Fig. 5f**):

759
$$w = \|v\| \cos\theta = \|v\| \frac{u \cdot v}{\|u\| \|v\|} = \frac{u \cdot v}{\|u\|} \quad (2)$$

760 where θ is the angle between **u** and **w**, and $\|u\| = \sqrt{u \cdot u}$ represents the length of the line **u**. The
761 bifurcation distance is then normalized by the maximal absolute bifurcation distance for each
762 neuron. We excluded the absolute bifurcation distance larger than 200 μm in the analysis because
763 the node is too far away from the soma. The bifurcation distances above and below soma were
764 calculated by the summation of the bifurcation distance for all the bifurcation nodes above and
765 below soma, respectively. The sign of the bifurcation distances indicates the location of bifurcation
766 nodes, where the positive sign indicates above soma, and negative sign indicates below soma.
767 While comparing the bifurcation distances below vs. above the soma, we used the absolute value
768 of the bifurcation distances.

769

770 *Identification of EAP waveform clusters using K-means clustering*

771 To identify cell clusters, we applied *K*-means clustering on the EAP features. *K*-means clustering
772 is an unsupervised technique that seeks to find centroids that minimize the average Euclidian
773 distance between points in the same cluster to the centroid. The optimal number of clusters was
774 identified by two methods as in²².

775

776 One method is the standard elbow method that consists of plotting the within cluster sum of squares
777 (WCSS) as a function of the number of clusters and picking the elbow of the curve as the number
778 of optimal clusters. The global impact of all clusters' distortions is given by the quantity:

$$779 \quad S_k = \sum_{j=1}^K I_j \quad (3)$$

$$780 \quad I_j = \sum_{x_i \in C_j} \|x_i - \mu_j\|^2 \quad (4)$$

781 where I_j is the distortion of cluster j that is a measure of the distance between points x_i in cluster
782 C_j and its centroid μ_j . In this paper, we have plotted WCSS curve as S_k normalized by S_1 .

783

784 We also used a second method, the density function $f(K)$, that consists of plotting $f(K)$ as a function
785 of number of clusters and picking the minimal of the curve as the number of optimal clusters. The
786 $f(K)$ is from⁸³:

$$787 \quad f(K) = \begin{cases} \frac{S_K}{\alpha_K S_{K-1}}, & \text{if } S_{K-1} \neq 0, K > 1 \\ 1, & \text{others} \end{cases} \quad (5)$$

$$788 \quad \alpha_K = \begin{cases} 1 - \frac{3}{4N_d}, & \text{if } K = 2 \text{ and } N_d > 1 \\ \alpha_{K-1} + \frac{1-\alpha_{K-1}}{6}, & \text{if } K > 2 \text{ and } N_d > 1 \end{cases} \quad (6)$$

789 The value of $f(K)$ is the ratio of the real distortion to the estimated distortion and is close to 1 when
790 the data distribution is uniform. The smaller $f(K)$, the more concentrated the distribution.

791

792 We selected K based on these two methods and applied K -means to data with appropriate number
793 of K for 1000 times with random initial values.

794

795 For the one-channel clustering, we used the standard one-channel waveform features (TPW and
796 REP). To implement multi-channel clustering, we adopt the two one-channel clusters (RS and FS)
797 and cluster each of them individually using the multi-channel features ($1/V_{below}$ and $1/V_{above}$).

798

799 *Supervised machine learning for classification*

800 The primary motivation for constructing the two-way classifiers was to bi-directional mapping
801 between the experiment-based and model-based results. We built the experiment-based classifiers
802 using on experimental EAP features and labels, then applied it to the model data to identify model
803 neurons in the experimental space. Similarly, we built the model-based classifiers using model
804 EAP features and labels, then applied it to the experimental data to identify experimental units in
805 the model space. To train the classifier for the unbalanced FS and RS, before training, we have
806 upsampled the ratio of FS and RS be 1:1. All classifications were performed with Monte-Carlo
807 cross-validation consisting of a 100 “bootstrap composites” of individual classifiers (the partitions
808 are done independently for each run) where the classifier was trained on a subset of the data (75%)
809 and then the confusion matrix and accuracy were calculated on the left-out data (25%). We
810 assigned the label based on the most frequently predicted label of the composite classifiers. For

811 the classifier, we used a support vector machine (SVM) with a linear kernel (regularization
812 parameter $C=1$) for two classes, or a random forest (gini criterion for splitting the nodes of a
813 decision tree) for more than two classes.

814

815 *Single unit firing properties*

816 For this analysis, we only accounted for units with an EAP amplitude larger than 50 μ V and a
817 minimum of 100 spikes. Firing rate was calculated by N/T during the recording session, where N
818 is the number of spikes and T is the total time in seconds. Coefficient of variation (CV) was
819 calculated as the standard deviation of the interspike interval (ISI) divided by mean of ISI. The
820 local variation (LV) is similar to CV but measures variation in adjacent ISIs and was calculated
821 by⁸⁴:

$$822 \quad CV = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (T_i - \bar{T})^2} / \bar{T} \quad (7)$$

$$823 \quad LV = \frac{1}{n-1} \sum_{i=1}^{n-1} \frac{3(T_i - T_{i+1})^2}{(T_i + T_{i+1})^2} \quad (8)$$

824 where T_i is the duration of the i th ISI, n is the number of ISIs, and $\bar{T} = \frac{1}{n} \sum_{i=1}^n T_i$ is the mean ISI.

825

826 *Visual stimulus metrics*

827 The three relevant visual stimulus metrics for drifting gratings used in the paper are f1/f0, the
828 modulation index, and lifetime sparseness (**Table S2**).

829 **f1/f0**: the ratio of the 1st harmonic (response at the drifting frequency) to the 0th harmonic (mean
830 response). A high f1/f0 ratio indicates that the firing of the unit is modulated at the temporal
831 frequency of the grating, while a low f1/f0 indicates that the unit fires relatively constantly during
832 the presentation of the grating.

833 **Modulation index (MI)**: quantifies the phase-dependent responses to drifting gratings. MI
834 measures the difference in power of the visually evoked response at a unit's preferred stimulus
835 frequency versus the average power spectrum⁸⁵. MI > 3 corresponds to strong modulation of
836 spiking at the stimulus frequency (indicative of simple-cell-like responses).

837 **Lifetime sparseness**: the selectivity of individual neurons to drifting gratings at different
838 orientations and temporary frequencies was measured using lifetime sparseness, which captures
839 the sharpness of a neuron's mean response across different stimulus conditions⁸⁶. A neuron that
840 responds strongly to only a few conditions will have a lifetime sparseness close to 1 whereas a
841 neuron that responds broadly to many conditions will have a lower lifetime sparseness.

842 Detailed information about each metric is available at:

843 https://allenSDK.readthedocs.io/en/latest/visual_coding_neuropixels.html

844

845 *Phase-locking Analysis*

846 For the phase-locking analysis, we only include units with an EAP amplitude larger than 50 μ V
847 and a minimum of 100 spikes. For each unit, the maximal number of spikes considered in the
848 analysis is limited to 10000. The percentage of phase-locked units was calculated by the number

849 of units that fires at a preferred direction (assessed by the Rayleigh test) divided by the total number
850 of units. To test whether spikes preferred certain phases of the LFP, the instantaneous phase of the
851 LFP at several frequency bands (theta = 3-8 Hz, alpha = 8-12 Hz, beta = 12-30 Hz, low gamma =
852 30-50 Hz, high gamma = 50-90 Hz) was first calculated, using the Hilbert transform on each
853 filtered LFP. 180^0 is marked as the trough of the cycle. We chose pairs of units and LFPs recorded
854 on different neighboring electrodes. Each spike was assigned with an instantaneous phase for each
855 frequency band. A strongly phase-locked unit has a preferred direction in the phase histogram,
856 while a weak phase-locked unit has no preferred direction in the phase histogram (**Fig. S6b**). To
857 determine if a neuron exhibited a significant phase preference, we applied the Rayleigh test for
858 non-uniformity. With the Rayleigh test, the null hypothesis is uniformity (e.g., no preferred
859 direction), whereas the alternative is unimodality (e.g., a single preferred direction). A cell was
860 considered phase-locked at a specific frequency range if the null hypothesis of uniformity of the
861 phase distribution could be rejected at a p-value < 0.001 using a Rayleigh test^{87,88}. When the test
862 indicated non-uniformity, the phase distribution was fitted to a circular normal distribution (von
863 Mises distribution), with the concentration parameter (*kappa*) indicating the depth of the phase-
864 locking in the direction of the mean phase. The inverse of *kappa* is analogous to variance of the
865 normal distribution. For large *kappa*, the distribution becomes very concentrated around the mean
866 phase, indicating a high phase-locking. *Kappa* values range from 0 to 1. *Kappa*, and preferred
867 phase were calculated by a circular statistics toolbox pycircstat
868 (<https://github.com/circstat/pycircstat>).
869

870 *Detection of opto-tagged neurons*

871 The peri-stimulus time histogram (PSTH) of spikes was used to present the light evoked neuronal
872 responses. Time bins of 1 ms of PSTHs were used to measure the response to the light stimulation
873 (square-wave pluses lasting 10ms). To prevent contamination by light artifacts, we only counted
874 spikes in the window from 2 to 8 ms of the 10 ms light stimulation. The opto-tagged neuron was
875 detected when the average firing rate across trials in the response window was higher than 25 Hz,
876 and 2.5 times greater than its firing rate in a corresponding time window immediately preceding
877 stimulus onset.
878

879 *Statistical analysis*

880 The Shapiro-Wilk test was used to determine whether the sample data have come from a normal
881 distribution. The two-sample *t*-test (for normal distribution) or the nonparametric Mann-Whitney
882 U test (for non-normal distribution) was used for statistical analysis of differences between means
883 from two samples when appropriate. One-way ANOVA (for normal distribution) or the
884 nonparametric Kruskal-Wallis H-test (for non-normal distribution) was used for comparisons
885 across the multiple groups, with p-values corrected using the Holm-Bonferroni method (a step-
886 down method using Bonferroni adjustments) for multiple tests. We used two sample z test for
887 proportions to compare the percentages of phase locked cells between FS and RS and corrected
888 the p-values via the Holm-Bonferroni method for multiple tests.

889

890 **Data Availability**

891 The *in vivo* Neuropixels dataset is available for download in Neurodata Without Borders (NWB)
892 format via the AllenSDK²³:

893 https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html

894

895 The Neurodata Without Borders files are also available on the DANDI Archive²³:

896 <https://gui.dandiarchive.org/#/dandiset/000021>

897

898 The *in vitro* electrophysiology data and the reconstructed morphology used to generate single-cell
899 models are available in:

900 <https://celltypes.brain-map.org>

901 The cell ID used in the paper was listed in the **Table S1**.

902

903 The optotagging experimental data set with Pvalb and Sst neurons is available through:

904 https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_optotagging.html

905

906 Source data are provided with this paper.

907

908 **Code Availability**

909 The codes for calculating EAP features and clustering cell classes were custom written in Python
910 and are made available on GitHub (https://github.com/yinawei/Mouse_V1_EAP_Analysis) with
911 DOI (10.5281/zenodo.7679748).

912

913 The all-active mouse single-neuron models were generated using a Python pipeline and are also
914 available on GitHub (<https://github.com/yinawei/Mouse-all-active-models-EAP>) with DOI
915 (10.5281/zenodo.7679762).

916

917 **References**

- 918 1. Gouwens, N. W. *et al.* Classification of electrophysiological and morphological neuron types
919 in the mouse visual cortex. *Nat. Neurosci.* **22**, 1182–1195 (2019).
- 920 2. Gouwens, N. W. *et al.* Integrated Morphoelectric and Transcriptomic Classification of
921 Cortical GABAergic Cells. *Cell* **183**, 935-953.e19 (2020).
- 922 3. Tasic, B. *et al.* Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.
923 *Nat Neurosci* vol. 19 335–46 (2016).
- 924 4. Tasic, B. *et al.* Shared and distinct transcriptomic cell types across neocortical areas. *Nature*
925 **563**, 72–78 (2018).
- 926 5. Harris, K. D. *et al.* Classes and continua of hippocampal CA1 inhibitory neurons revealed by
927 single-cell transcriptomics. *PLoS Biol* **16**, e2006387 (2018).
- 928 6. Tang, F. *et al.* mRNA-Seq whole-transcriptome analysis of a single cell. *Nat Methods* vol. 6
929 377–82 (2009).
- 930 7. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic
931 interneurons and synapses in the neocortex. *Science* **287**, 273–8 (2000).
- 932 8. Markram, H. *et al.* Interneurons of the neocortical inhibitory system. *Nat Rev Neurosci* **5**,
933 793–807 (2004).
- 934 9. Cadwell, C. R. *et al.* Multimodal profiling of single-cell morphology, electrophysiology, and
935 gene expression using Patch-seq. *Nat Protoc* **12**, 2531–2553 (2017).
- 936 10. Jiang, X. *et al.* Principles of connectivity among morphologically defined cell types in adult
937 neocortex. *Science* **350**, aac9462 (2015).
- 938 11. Berens, P. *et al.* Community-based benchmarking improves spike rate inference from two-
939 photon calcium imaging data. *PLoS Comput Biol* **14**, e1006157 (2018).

940 12. Huang, L. *et al.* Relationship between simultaneously recorded spiking activity and
941 fluorescence signal in GCaMP6 transgenic mice. *Elife* vol. 10 (2021).

942 13. de Vries, S. E. J. *et al.* A large-scale standardized physiological survey reveals functional
943 organization of the mouse visual cortex. *Nat Neurosci* **23**, 138–151 (2020).

944 14. Bartho, P. *et al.* Characterization of neocortical principal cells and interneurons by network
945 interactions and extracellular features. *J Neurophysiol* **92**, 600–8 (2004).

946 15. Peyrache, A. & Destexhe, A. Electrophysiological monitoring of inhibition in mammalian
947 species, from rodents to humans. *Neurobiol Dis* vol. 130 104500 (2019).

948 16. Peyrache, A. *et al.* Spatiotemporal dynamics of neocortical excitation and inhibition during
949 human sleep. *Proc Natl Acad Sci U S A* vol. 109 1731–6 (2012).

950 17. Trainito, C., von Nicolai, C., Miller, E. K. & Siegel, M. Extracellular Spike Waveform
951 Dissociates Four Functionally Distinct Cell Classes in Primate Cortex. *Curr Biol* vol. 29 2973–
952 2982.e5 (2019).

953 18. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. Comparative
954 electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. *J
955 Neurophysiol* **54**, 782–806 (1985).

956 19. Ardid, S. *et al.* Mapping of functionally characterized cell classes onto canonical circuit
957 operations in primate prefrontal cortex. *J Neurosci* vol. 35 2975–91 (2015).

958 20. Katai, S. *et al.* Classification of extracellularly recorded neurons by their discharge patterns
959 and their correlates with intracellularly identified neuronal types in the frontal cortex of
960 behaving monkeys. *Eur J Neurosci* vol. 31 1322–38 (2010).

961 21. Jun, J. J. *et al.* Fully integrated silicon probes for high-density recording of neural activity.

962 *Nature* vol. 551 232–236 (2017).

963 22. Jia, X. *et al.* High-density extracellular probes reveal dendritic backpropagation and facilitate

964 neuron classification. *J Neurophysiol* vol. 121 1831–1847 (2019).

965 23. Siegle, J. H. *et al.* Survey of spiking in the mouse visual system reveals functional hierarchy.

966 *Nature* (2021).

967 24. Nandi, A. *et al.* Single-neuron models linking electrophysiology, morphology and

968 transcriptomics across cortical cell types. *bioRxiv* 2020.04.09.030239 (2020).

969 25. Anastassiou, C. A., Perin, R., Buzsáki, G., Markram, H. & Koch, C. Cell type- and activity-

970 dependent extracellular correlates of intracellular spiking. *J Neurophysiol* vol. 114 608–23

971 (2015).

972 26. Gold, C., Henze, D. A., Koch, C. & Buzsáki, G. On the origin of the extracellular action

973 potential waveform: A modeling study. *J Neurophysiol* **95**, 3113–28 (2006).

974 27. Mosher, C. P. *et al.* Cellular Classes in the Human Brain Revealed In Vivo by Heartbeat-

975 Related Modulation of the Extracellular Action Potential Waveform. *Cell Rep.* **30**, 3536–

976 3551.e6 (2020).

977 28. Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents--EEG,

978 ECoG, LFP and spikes. *Nat. Rev. Neurosci.* **13**, 407–420 (2012).

979 29. Nicholson, C. & Freeman, J. A. Theory of current source-density analysis and determination

980 of conductivity tensor for anuran cerebellum. *J. Neurophysiol.* **38**, 356–368 (1975).

981 30. Buchin, A. *et al.* Multi-modal characterization and simulation of human epileptic circuitry.

982 *bioRxiv* 2020.04.24.060178 (2020).

983 31. Henze, D. A. *et al.* Intracellular features predicted by extracellular recordings in the
984 hippocampus in vivo. *J Neurophysiol* **84**, 390–400 (2000).

985 32. Buzsáki, G. & Kandel, A. Somadendritic backpropagation of action potentials in cortical
986 pyramidal cells of the awake rat. *J. Neurophysiol.* **79**, 1587–1591 (1998).

987 33. Chen, G. *et al.* Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band
988 Oscillations. *Neuron* **96**, 1403-1418.e6 (2017).

989 34. Senzai, Y., Fernandez-Ruiz, A. & Buzsáki, G. Layer-Specific Physiological Features and
990 Interlaminar Interactions in the Primary Visual Cortex of the Mouse. *Neuron* **101**, 500–
991 513.e5 (2019).

992 35. Quyen, M. L. V. *et al.* High-frequency oscillations in human and monkey neocortex during
993 the wake–sleep cycle. *Proc. Natl. Acad. Sci.* **113**, 9363–9368 (2016).

994 36. Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A. & Buzsáki, G. Oscillatory coupling of
995 hippocampal pyramidal cells and interneurons in the behaving rat. *J. Neurosci.* **19**, 274–287
996 (1999).

997 37. Perez-Reyes, E. Molecular Physiology of Low-Voltage-Activated T-type Calcium Channels.
998 *Physiol. Rev.* **83**, 117–161 (2003).

999 38. Tremblay, R., Lee, S. & Rudy, B. GABAergic Interneurons in the Neocortex: From Cellular
1000 Properties to Circuits. *Neuron* **91**, 260–292 (2016).

1001 39. Erisir, A., Lau, D., Rudy, B. & Leonard, C. S. Function of Specific K⁺ Channels in Sustained
1002 High-Frequency Firing of Fast-Spiking Neocortical Interneurons. *J. Neurophysiol.* **82**, 2476–
1003 2489 (1999).

1004 40. Lien, C.-C. & Jonas, P. Kv3 Potassium Conductance is Necessary and Kinetically Optimized
1005 for High-Frequency Action Potential Generation in Hippocampal Interneurons. *J. Neurosci.*
1006 **23**, 2058–2068 (2003).

1007 41. McMahon, A. *et al.* Allele-dependent changes of olivocerebellar circuit properties in the
1008 absence of the voltage-gated potassium channels Kv3.1 and Kv3.3: Olivocerebellar system
1009 properties in the absence of Kv3 channels. *Eur. J. Neurosci.* **19**, 3317–3327 (2004).

1010 42. Pettersen, K. H. & Einevoll, G. T. Amplitude variability and extracellular low-pass filtering of
1011 neuronal spikes. *Biophys. J.* **94**, 784–802 (2008).

1012 43. Kvitsiani, D. *et al.* Distinct behavioural and network correlates of two interneuron types in
1013 prefrontal cortex. *Nature* vol. 498 363–6 (2013).

1014 44. Lima, S. Q., Hromadka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging
1015 neuronal populations for identification during in vivo electrophysiological recording. *PLoS
1016 One* vol. 4 e6099 (2009).

1017 45. Jia, X. *et al.* Multi-area functional modules mediate feedforward and recurrent processing in
1018 visual cortical hierarchy. *bioRxiv* 2020.08.30.272948 (2020).

1019 46. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice,
1020 action and engagement across the mouse brain. *Nature* **576**, 266–273 (2019).

1021 47. Gouwens, N. W. *et al.* Classification of electrophysiological and morphological neuron types
1022 in the mouse visual cortex. *Nat. Neurosci.* **22**, 1182–1195 (2019).

1023 48. Sakata, S. & Harris, K. Laminar-dependent effects of cortical state on auditory cortical
1024 spontaneous activity. *Front. Neural Circuits* **6**, (2012).

1025 49. Petersen, C. C. H. & Crochet, S. Synaptic Computation and Sensory Processing in Neocortical
1026 Layer 2/3. *Neuron* **78**, 28–48 (2013).

1027 50. Senzai, Y., Fernandez-Ruiz, A. & Buzsáki, G. Layer-Specific Physiological Features and
1028 Interlaminar Interactions in the Primary Visual Cortex of the Mouse. *Neuron* **101**, 500–
1029 513.e5 (2019).

1030 51. Jia, X. *et al.* Multi-regional module-based signal transmission in mouse visual cortex. *Neuron*
1031 **110**, 1585–1598.e9 (2022).

1032 52. Siegle, J. H. *et al.* Survey of spiking in the mouse visual system reveals functional hierarchy.
1033 *Nature* 1–7 (2021) doi:10.1038/s41586-020-03171-x.

1034 53. de Vries, S. E. J. *et al.* A large-scale standardized physiological survey reveals functional
1035 organization of the mouse visual cortex. *Nat. Neurosci.* **23**, 138–151 (2020).

1036 54. Freund, T. f. & Buzsáki, G. Interneurons of the hippocampus. *Hippocampus* **6**, 347–470
1037 (1996).

1038 55. Klausberger, T. *et al.* Brain-state-and cell-type-specific firing of hippocampal interneurons in
1039 vivo. *Nature* **421**, 844–848 (2003).

1040 56. Lapray, D. *et al.* Behavior-dependent specialization of identified hippocampal interneurons.
1041 *Nat. Neurosci.* **15**, 1265–1271 (2012).

1042 57. Einstein, M. C., Polack, P.-O., Tran, D. T. & Golshani, P. Visually Evoked 3–5 Hz Membrane
1043 Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake
1044 Behaving Mice. *J. Neurosci.* **37**, 5084–5098 (2017).

1045 58. Lasztóczki, B. & Klausberger, T. Layer-Specific GABAergic Control of Distinct Gamma
1046 Oscillations in the CA1 Hippocampus. *Neuron* **81**, 1126–1139 (2014).

1047 59. Schomburg, E. W. Biophysical and network mechanisms of high frequency extracellular
1048 potentials in the rat hippocampus. (California Institute of Technology, 2014).

1049 60. Tukker, J. J., Fuentealba, P., Hartwich, K., Somogyi, P. & Klausberger, T. Cell Type-Specific
1050 Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo. *J. Neurosci.*
1051 **27**, 8184–8189 (2007).

1052 61. Bannister, N. J. & Larkman, A. U. Dendritic morphology of CA1 pyramidal neurones from the
1053 rat hippocampus: I. Branching patterns. *J. Comp. Neurol.* **360**, 150–160 (1995).

1054 62. Bannister, N. J. & Larkman, A. U. Dendritic morphology of CA1 pyramidal neurones from the
1055 rat hippocampus: II. Spine distributions. *J. Comp. Neurol.* **360**, 161–171 (1995).

1056 63. Cembrowski, M. S. *et al.* Spatial Gene-Expression Gradients Underlie Prominent
1057 Heterogeneity of CA1 Pyramidal Neurons. *Neuron* **89**, 351–368 (2016).

1058 64. Deguchi, Y., Donato, F., Galimberti, I., Cabuy, E. & Caroni, P. Temporally matched
1059 subpopulations of selectively interconnected principal neurons in the hippocampus. *Nat.*
1060 *Neurosci.* **14**, 495–504 (2011).

1061 65. Hodge, R. D. *et al.* Conserved cell types with divergent features in human versus mouse
1062 cortex. *Nature* 1–8 (2019) doi:10.1038/s41586-019-1506-7.

1063 66. Lee, S.-H. *et al.* Parvalbumin-Positive Basket Cells Differentiate among Hippocampal
1064 Pyramidal Cells. *Neuron* **82**, 1129–1144 (2014).

1065 67. Soltesz, I. & Losonczy, A. CA1 pyramidal cell diversity enabling parallel information
1066 processing in the hippocampus. *Nat. Neurosci.* **21**, 484–493 (2018).

1067 68. Yao, Z. *et al.* A taxonomy of transcriptomic cell types across the isocortex and hippocampal
1068 formation. *Cell* **184**, 3222–3241.e26 (2021).

1069 69. Berg, J. *et al.* Human neocortical expansion involves glutamatergic neuron diversification.

1070 *Nature* **598**, 151–158 (2021).

1071 70. Graves, A. R. *et al.* Hippocampal Pyramidal Neurons Comprise Two Distinct Cell Types that

1072 Are Countermodulated by Metabotropic Receptors. *Neuron* **76**, 776–789 (2012).

1073 71. Mizuseki, K., Diba, K., Pastalkova, E. & Buzsáki, G. Hippocampal CA1 pyramidal cells form

1074 functionally distinct sublayers. *Nat. Neurosci.* **14**, 1174–1181 (2011).

1075 72. Destexhe, A., Rudolph, M. & Paré, D. The high-conductance state of neocortical neurons in

1076 vivo. *Nat. Rev. Neurosci.* **4**, 739–751 (2003).

1077 73. Steriade, M., Timofeev, I. & Grenier, F. Natural Waking and Sleep States: A View From Inside

1078 Neocortical Neurons. *J. Neurophysiol.* **85**, 1969–1985 (2001).

1079 74. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J. & Steriade, M. Origin of Slow Cortical

1080 Oscillations in Deafferented Cortical Slabs. *Cereb. Cortex* **10**, 1185–1199 (2000).

1081 75. Timofeev, I., Grenier, F. & Steriade, M. Disfacilitation and active inhibition in the neocortex

1082 during the natural sleep-wake cycle: An intracellular study. *Proc. Natl. Acad. Sci.* **98**, 1924–

1083 1929 (2001).

1084 76. Kalmbach, B. E. *et al.* h-Channels Contribute to Divergent Intrinsic Membrane Properties of

1085 Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex. *Neuron* **100**,

1086 1194-1208.e5 (2018).

1087 77. Hu, H., Martina, M. & Jonas, P. Dendritic Mechanisms Underlying Rapid Synaptic Activation

1088 of Fast-Spiking Hippocampal Interneurons. *Science* **327**, 52–58 (2010).

1089 78. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and

1090 backpropagation in neurons of the mammalian CNS. *Trends Neurosci.* **20**, 125–31 (1997).

1091 79. Madisen, L. *et al.* A toolbox of Cre-dependent optogenetic transgenic mice for light-induced
1092 activation and silencing. *Nat. Neurosci.* **15**, 793–802 (2012).

1093 80. Zhang, F., Wang, L. P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical
1094 control of excitable cells. *Nat Methods* **3**, 785–92 (2006).

1095 81. Stringer, C. *et al.* Spontaneous behaviors drive multidimensional, brainwide activity. *Science*
1096 **364**, 255 (2019).

1097 82. Gratiy, S. L. *et al.* BioNet: A Python interface to NEURON for modeling large-scale networks.
1098 *PLoS One* vol. 13 e0201630 (2018).

1099 83. Pham, D. T., Dimov, S. S. & Nguyen, C. D. Selection of K in K-means clustering. *Proceedings*
1100 *of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering*
1101 *Science* vol. 219 103–119 (2005).

1102 84. Shinomoto, S., Shima, K. & Tanji, J. Differences in spiking patterns among cortical neurons.
1103 *Neural Comput* **15**, 2823–42 (2003).

1104 85. Matteucci, G., Bellacosa Marotti, R., Riggi, M., Rosselli, F. B. & Zoccolan, D. Nonlinear
1105 Processing of Shape Information in Rat Lateral Extrastriate Cortex. *J Neurosci* **39**, 1649–1670
1106 (2019).

1107 86. Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during
1108 natural vision. *Science* **287**, 1273–6 (2000).

1109 87. Fisher, N. I. *Statistical analysis of circular data*. (Cambridge University Press, 1993).

1110 88. Jacobs, J., Kahana, M. J., Ekstrom, A. D. & Fried, I. Brain oscillations control timing of single-
1111 neuron activity in humans. *J Neurosci* **27**, 3839–44 (2007).

1112

1113 **Acknowledgements**

1114 CAA thanks the Board of Governors of Cedars-Sinai Medical Center. CAA and SYL acknowledge
1115 the NIH grant RO1 NS120300-01. YW acknowledges the grants from National Natural Science
1116 Foundation of China (12101570) and the Scientific Project of Zhejiang Lab (2021KE0PI03,
1117 2022KI0AC01, 2022KI0AC02). We thank the Allen Institute founder, Paul G. Allen.

1118

1119 **Author Contributions Statement**

1120 C.A.A. conceptualized this work. Y.W. and C.A.A. performed the research. A.N., W.V.G., and
1121 C.A.A. wrote the software to develop the all-active models. Y.W. wrote the analysis codes. X.J.,
1122 J.H.S., D.D. and S.O. contributed the Neuropixels data. Y.W., A.N., and C.A.A. wrote the
1123 manuscript with input from all of the other authors (A.B., C.P.M., S.Y.L., X.J., J.H.S.).

1124

1125 **Competing interests Statement**

1126 The authors declare no competing interests.

1127

1128 **Tables**

1129 **Table 1.** Inclusion of each parameter in the morphology sections

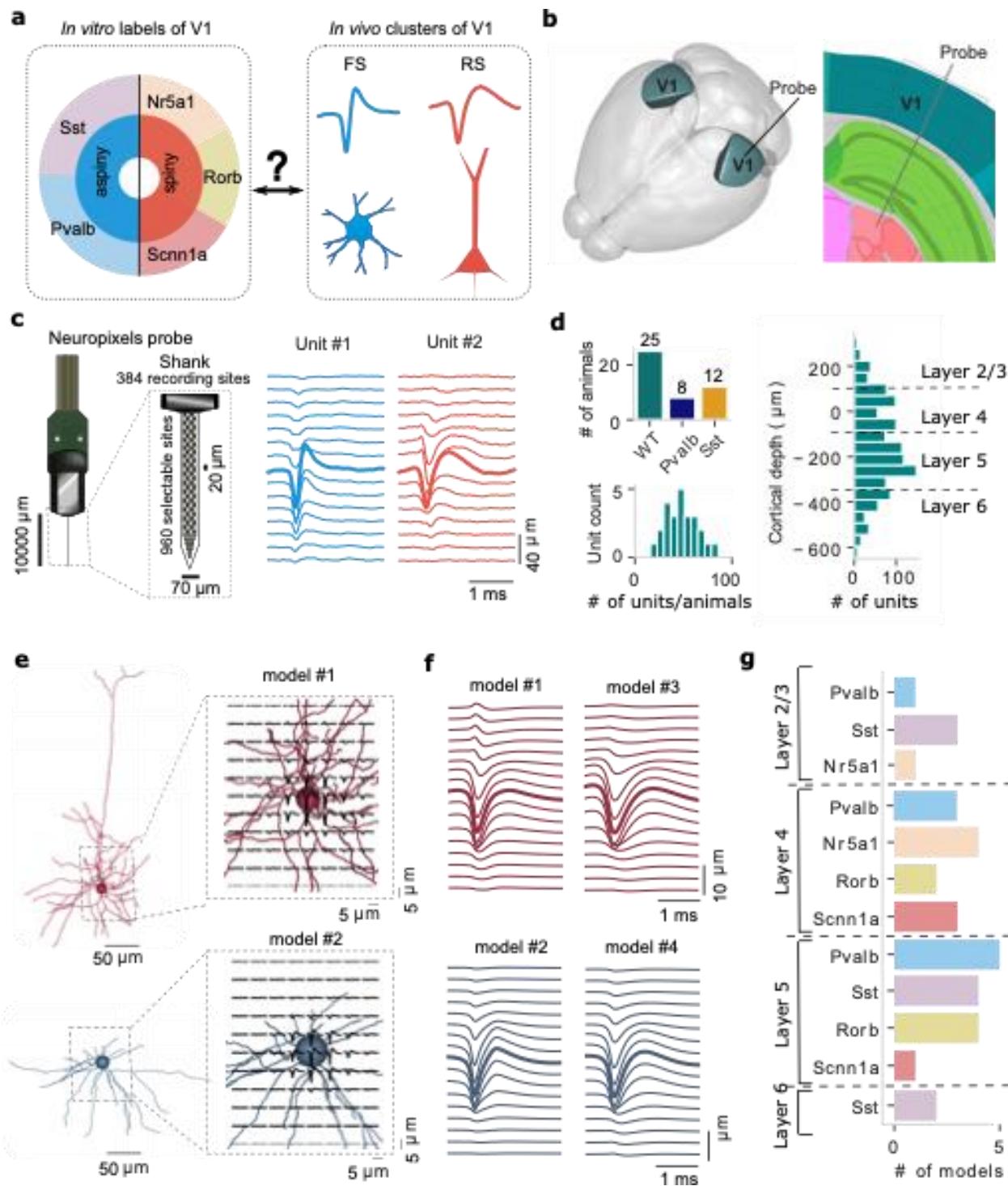
Parameters	Ra	gpas	epas	Cm	Ih	Nav	K _T	Kd	K _V 3.1	K _V 2	I _m	SK	Ca HVA	Ca LVA
Apical	✓	✓	✓	✓	✓	✓	✗	✗	✓	✗	✓	✗	✗	✗
Basal	✓	✓	✓	✓	✓	✓	✗	✗	✓	✗	✓	✗	✗	✗
Soma	✓	✓	✓	✓	✓	✓	✗	✗	✓	✗	✗	✗	✓	✓
Axon	✓	✓	✓	✓	✗	✓	✓	✓	✓	✓	✗	✓	✓	✓

1130

1131 **Table 2.** Stimulus metrics

Stimulus	Metric	Description
drifting gratings	modulation index	The phase-dependent responses to drifting gratings
	f1/f0	The ratio of the 1st harmonic to the 0 th harmonic
	lifetime sparseness	The sparseness of individual neurons

1132



1133
1134

1135 **Figure 1. Extracellular action potential (EAP) recordings from *in vivo* experiments (a-d) and**

1136 **single-cell modeling (e-g).** **a**) Left, labels for Cre-line and morphology (spiny vs. aspiny) groups

1137 of single neurons used in this study characterized *in vitro* via intracellular electrophysiology and

1138 morphology reconstructions. Right, *in vivo* EAP waveform analysis typically results in two

1139 clusters, fast-spiking (FS) vs. regular-spiking (RS) units. **b**) Primary visual cortex (V1) in the

1140 mouse brain (left) and typical cortical depth placement of a Neuropixels probe along V1. **c**) The

1141 384 electrode sites of the Neuropixels probe are densely arranged along the linear shank probe

1142 (left; 20 μ m vertical spacing, 2 sites per row; black squares: location of recording sites). EAP

1143 waveforms from two example units (unit #1: FS; unit #2: RS) including the channel with the largest

1144 amplitude (closest to the soma, bolded lines) and channels above and below the soma. **d**) Top: the

1145 number of Neuropixels-implanted mice for wild-type (n=24), parvalbumin-expressing (Pvalb,

1146 n=8) and somatostatin-expressing (Sst, n=12); bottom: the distribution of units per wild-type

1147 mouse recorded in V1 during drifting gratings (total number of units = 1204). Distribution of units

1148 along the V1 depth axis with 0 indicating the center of layer 4. **e**) Bio-realistic, single-cell models

1149 of V1 (“all-active”) are generated from *in vitro* experiments and activated via synaptic background

1150 to elicit intracellular activity and associated EAP signals in the vicinity of the cellular morphology.

1151 The cellular morphology is represented with a spherical soma and full dendritic reconstruction

1152 (axon not shown). Example simulations of EAP signals are shown for a spiny (top: red, cell ID:

1153 395830185) and an aspiny (bottom: blue, cell ID: 469610831) single-cell model. **f**) Four examples

1154 of the multi-channel EAP including the channel with the largest amplitude (bolded lines, closest

1155 to the soma) and channels above and below the soma (top: 2 spiny models; bottom: 2 aspiny

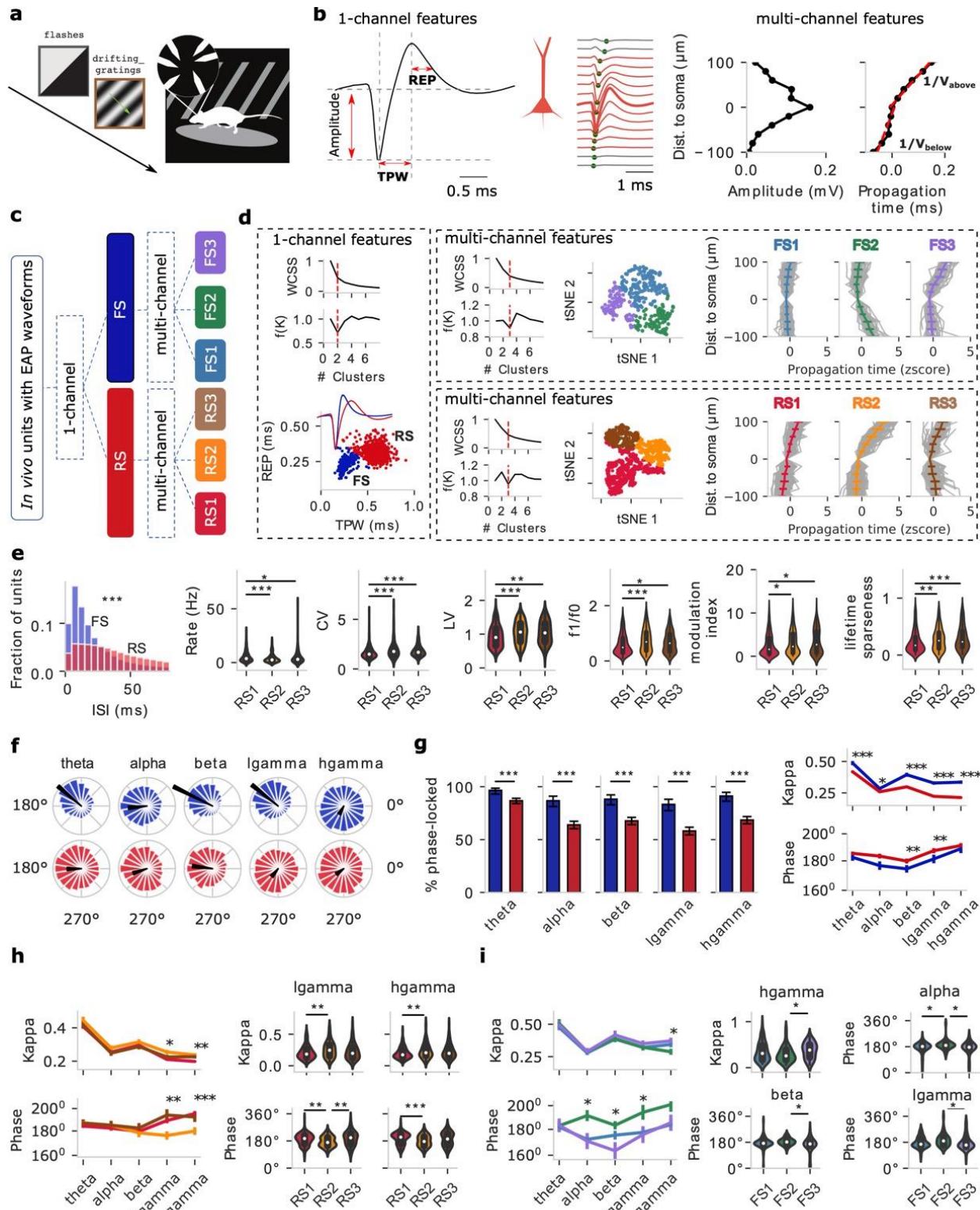
1156 models). **g**) In total, 33 single-cell models (15 spiny and 18 aspiny) were generated using a

1157 computational optimization framework and included in the study covering a range of major

1158 reporter lines and cortical depths. Source data are provided as a Source Data file.

1159

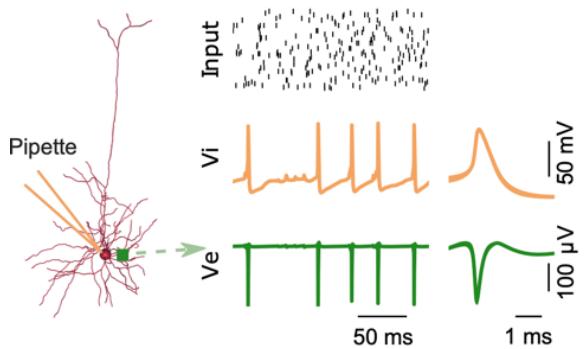
1160



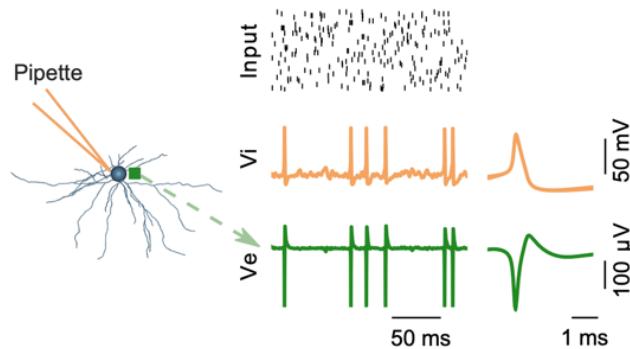
1163 **Figure 2. Clustering of *in vivo* V1 units from wild-type mice based on extracellular action**
1164 **potential (EAP) features during drifting gratings results in two one-channel and six multi-**
1165 **channel clusters with distinct EAP properties. a)** Animals are exposed to visual stimuli (e.g.,
1166 flashes, drifting gratings) while running on a wheel with Neuropixels probes recording
1167 extracellular V1 activity. **b)** One-channel EAP waveform features (left) from the location of the
1168 largest EAP amplitude: trough-peak width (TPW), and repolarization time (REP). Multi-channel
1169 EAP waveform features: the inverse of propagation velocity below ($1/V_{below}$) and above ($1/V_{above}$)
1170 soma are separately estimated by linear regression (right, red lines). **c)** Unsupervised clustering
1171 on one-channel EAP features (TPW and REP) results in two major populations, fast-spiking (FS)
1172 and regular-spiking (RS) units. Subsequently, unsupervised clustering of each population using
1173 multi-channel EAP features ($1/V_{below}$ and $1/V_{above}$) results in three clusters, respectively. **c)** One-
1174 vs. multi-channel clusters. **d)** The one-channel clusters (923 RS and 281 FS from 25 wild-type
1175 mice, left), multi-channel clusters FS1-3 (right top) and multi-channel clusters RS1-3 (right
1176 bottom) are shown including two clustering metrics: within cluster sum of squares (WCSS) and
1177 density function. The red dotted line indicates the number of optimal clusters. t-distributed
1178 stochastic neighbor embedding (t-SNE) for FS1-3 (right top, n=130 FS1, n=82 FS2, n=69 FS3)
1179 and RS1-3 (right bottom, n=479 RS1, n=235 RS2, n=209 RS3) units based on features extracted
1180 from multi-channel waveforms. The spatial propagation of EAPs is distinct for the clusters (gray:
1181 individual units). Data are presented as mean \pm SD (standard deviation). **e)** One-channel FS and
1182 RS clusters show distinct interspike interval (ISI) distributions (Mann-Whitney U test, two-sided,
1183 p=0.0, total 2900284 spikes of FS, 4586637 spikes of RS). Response properties of the multi-
1184 channel clusters to drifting gratings shows that RS1-3 exhibit distinct properties in the overall
1185 excitability (spike rate, coefficient of variation: CV, local variation: LV, n=419 RS1, n=173 RS2,
1186 n=153 RS3) and stimulus-dependent response characteristics (f1/f0, modulation index, lifetime
1187 sparseness, n=430 RS1, n=182 RS2, n=156 RS3). Kruskal-Wallis H-test; p-values corrected using
1188 the Holm-Bonferroni method for multiple tests. *p<0.05, **p<0.01, ***p<0.001. **f)** Phase
1189 distribution of examples of a FS (blue) and RS (red) unit at theta, alpha, beta, low gamma
1190 (lgamma), high gamma (hgamma) frequency band (black arrow: preferred phase and kappa). **g)**
1191 Left: The percentage of phase-locked units of one-channel FS (n=203) and RS (n=745) clusters at
1192 different LFP frequency bands: theta, alpha, beta, low gamma, high gamma. Two sample z test for
1193 proportions with p values corrected by the Holm-Bonferroni method for multiple tests. Right:
1194 kappa and preferred phase. Data are presented as mean \pm SEM (standard error of mean). Mann-
1195 Whitney U test, two-sided, *p<0.05, **p<0.01, ***p<0.001. **h-i)** Phase-locking analysis of multi-
1196 channel RS (**d**, n=419 RS1, n=173 RS2, n=153 RS3) and FS (**e**, n=100 FS1, n=54 FS2, n=49 FS3)
1197 clusters to ongoing oscillations in different LFP bands. Kruskal-Wallis H-test; p-values corrected
1198 using the Holm-Bonferroni method for multiple tests. *p<0.05, **p<0.01, ***p<0.001. Source
1199 data are provided as a Source Data file.

1200
1201

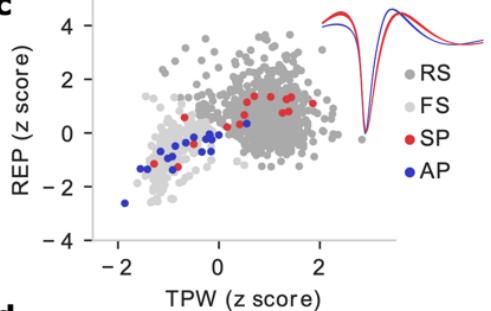
a Spiny(SP)



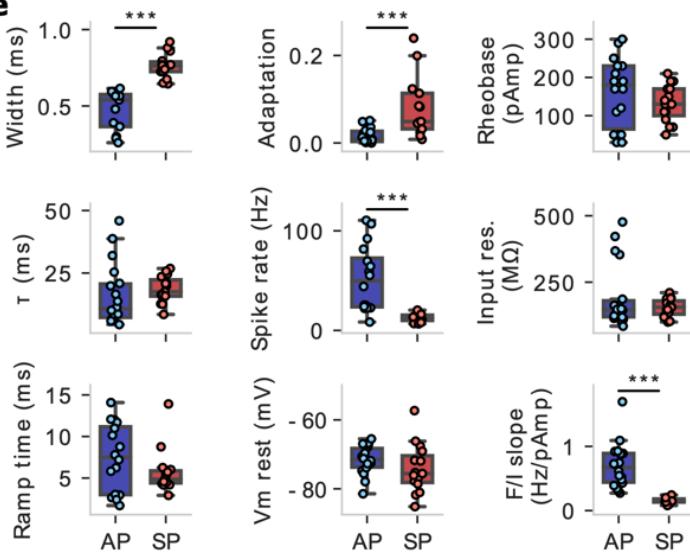
b Aspiny(AP)



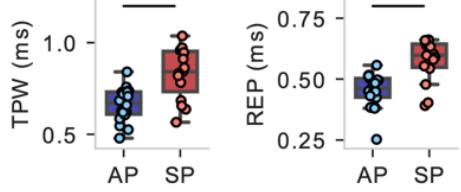
c



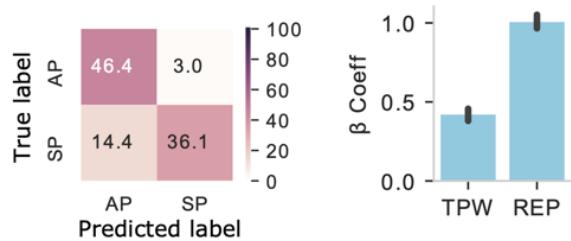
e



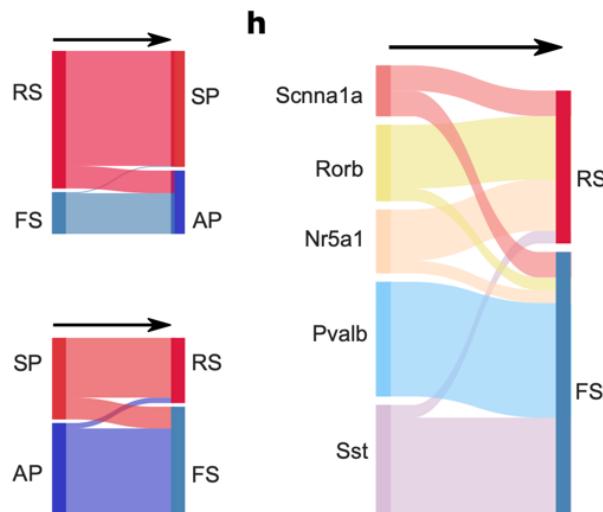
d



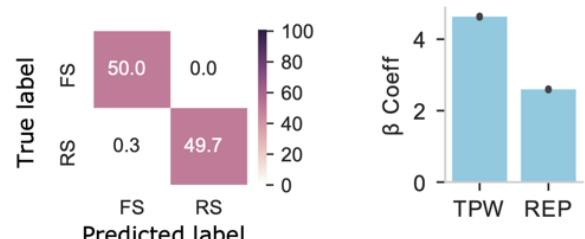
f Model-based classifier



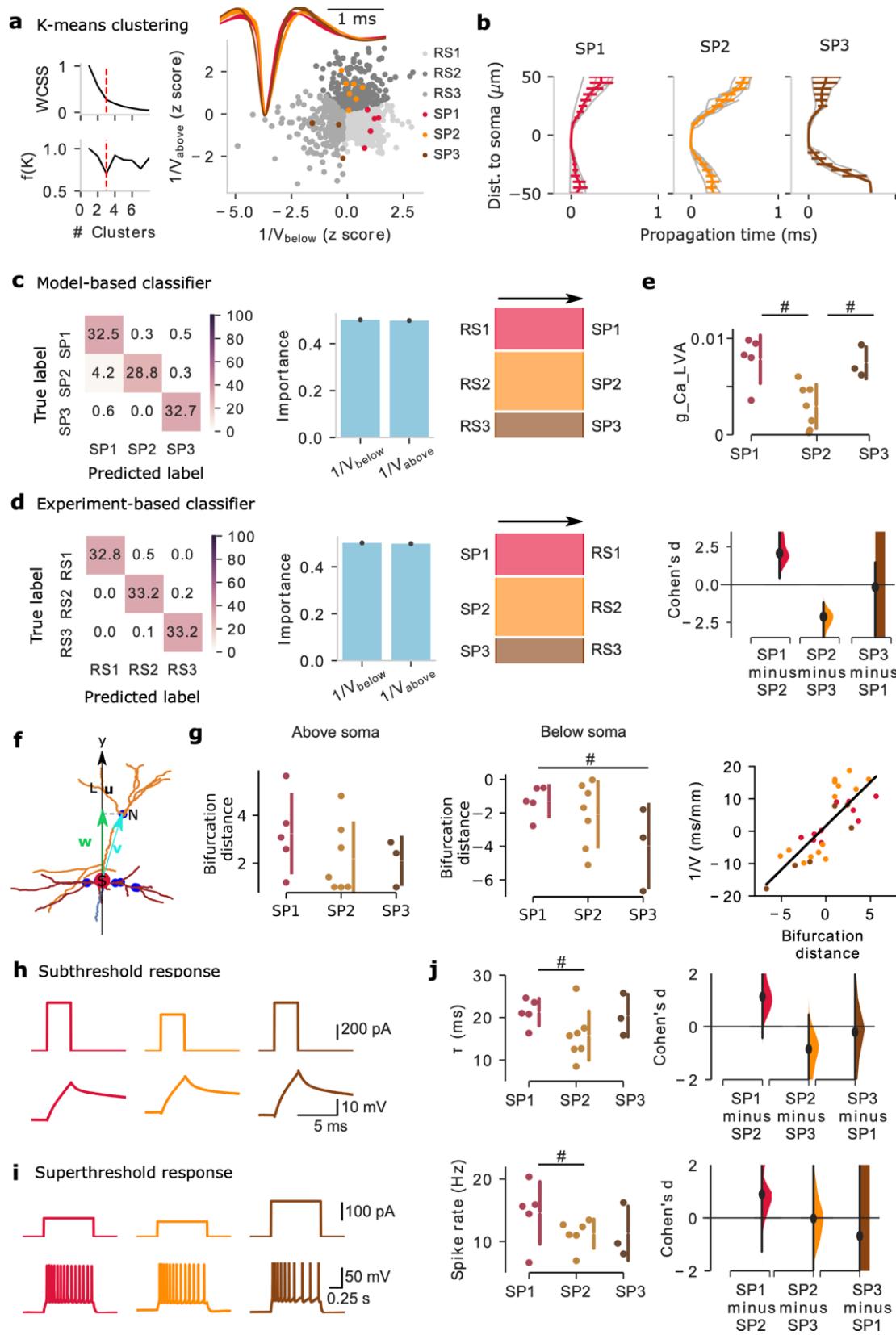
h



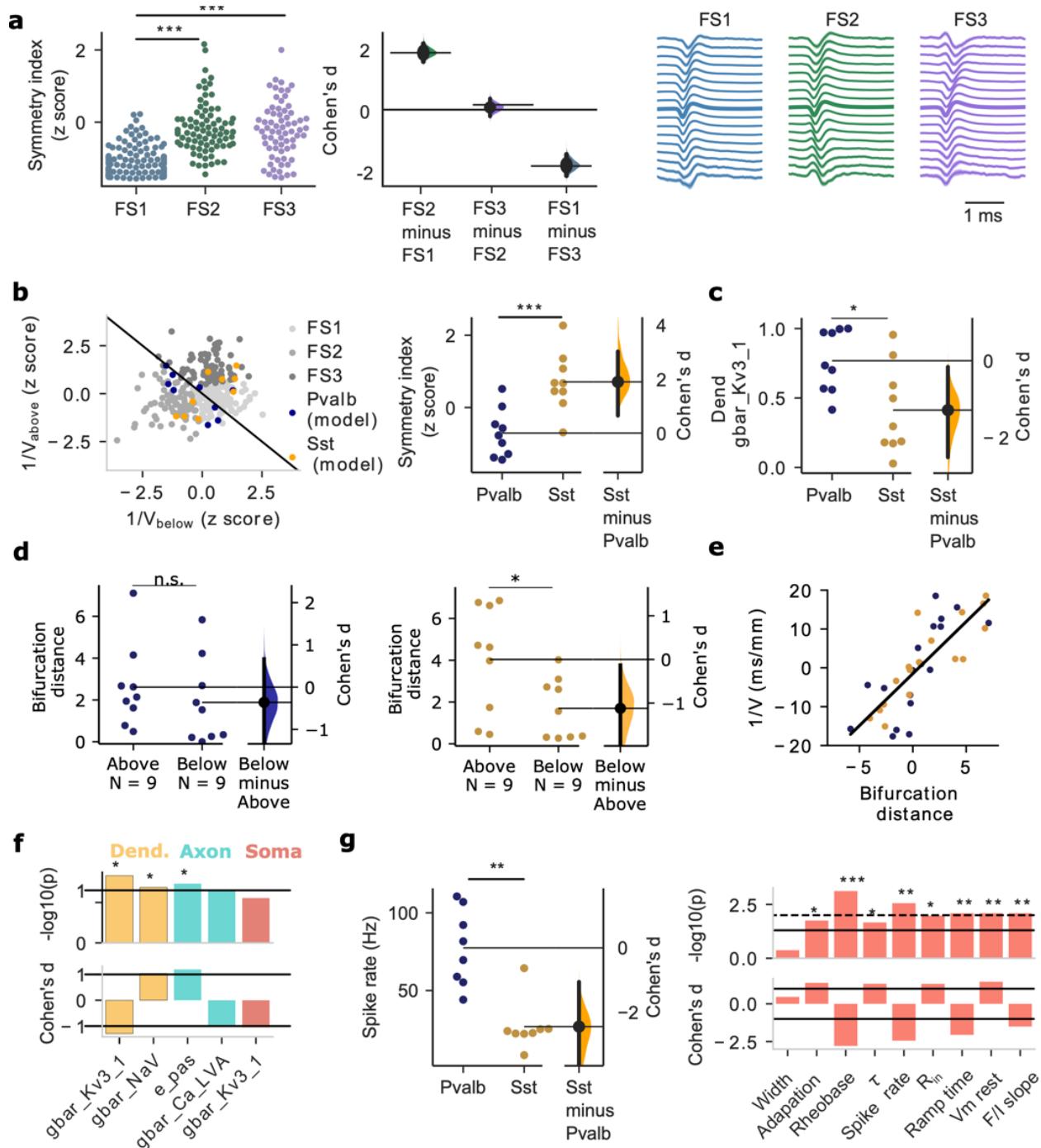
g Experiment-based classifier



1204 **Figure 3. Classification of one-channel EAP (extracellular action potential) features of single-**
1205 **cell models and correspondence to *in vitro* data modalities. a-b)** Bio-realistic single-cell
1206 models (one aspiny, AP, panel **a**; one aspiny, SP, panel **b**) activated via synaptic activity along
1207 their reconstructed dendrites result in spiking. Top: synaptic input (black bars: spike raster plot);
1208 Middle: intracellular voltage V_i trace (orange); Bottom: extracellular voltage V_e (green) close to
1209 the soma (location designated by the green square). Time traces (left) and mean V_i and EAP
1210 waveforms (right). **c)** One-channel EAP analysis from single-cell models ($n=33$, blue: AP; red:
1211 SP) and *in vivo* units (light grey: fast-spiking (FS) units; dark grey: regular-spiking (RS) units). **d)**
1212 Comparison of TPW (trough-peak width, two-sample t-test, two-sided, $p=0.00025$) and REP
1213 (repolarization time, Mann-Whitney U test, two-sided, $p=0.00024$) from simulated EAP
1214 waveforms between AP ($n=18$) and SP ($n=15$) models. Box plots show center line as median, box
1215 limits as upper (75%) and lower (25%) quartiles. The whiskers extend from the box limits by 1x
1216 the interquartile range. *** $p<0.001$. **e)** Comparison of intrinsic properties extracted from *in vitro*
1217 V_i dynamics between the AP ($n=18$) and SP ($n=15$) neurons (also used to generate the single-cell
1218 models). Mann-Whitney U test (two-sided) was used for width, adaptation, τ , input res.
1219 (resistance), ramp time, and F/I slope; two-sample t-test (two-sided) used for rheobase, spike rate,
1220 and V_m rest (resting potential). *** $p<0.001$. **f)** Model-based classifier: classifier trained on one-
1221 channel EAP features (TPW, REP) of single-cell models to discriminate between AP ($n=18$) and
1222 SP ($n=15$) neurons (left: confusion matrix; middle: beta coefficients of the linear SVM classifier,
1223 bootstrap sampling 100 times; right: Sankey diagram showing the prediction on the test dataset).
1224 **g)** Same layout as in **f**, experiment-based classifier: classifier trained on one-channel EAP features
1225 (TPW, REP) of *in vivo* units to discriminate between FS ($n=281$) and RS ($n=923$) populations
1226 labeled via K-means clustering. **h)** One-channel EAP features of single-cell models (model labels:
1227 Cre-reporter lines, 4 Scnn1a, 6 Rorb, 5 Nr5a1, 9 Pvalb and 9 Sst) classified as FS or RS by using
1228 the experiment-based classifier. Source data are provided as a Source Data file.

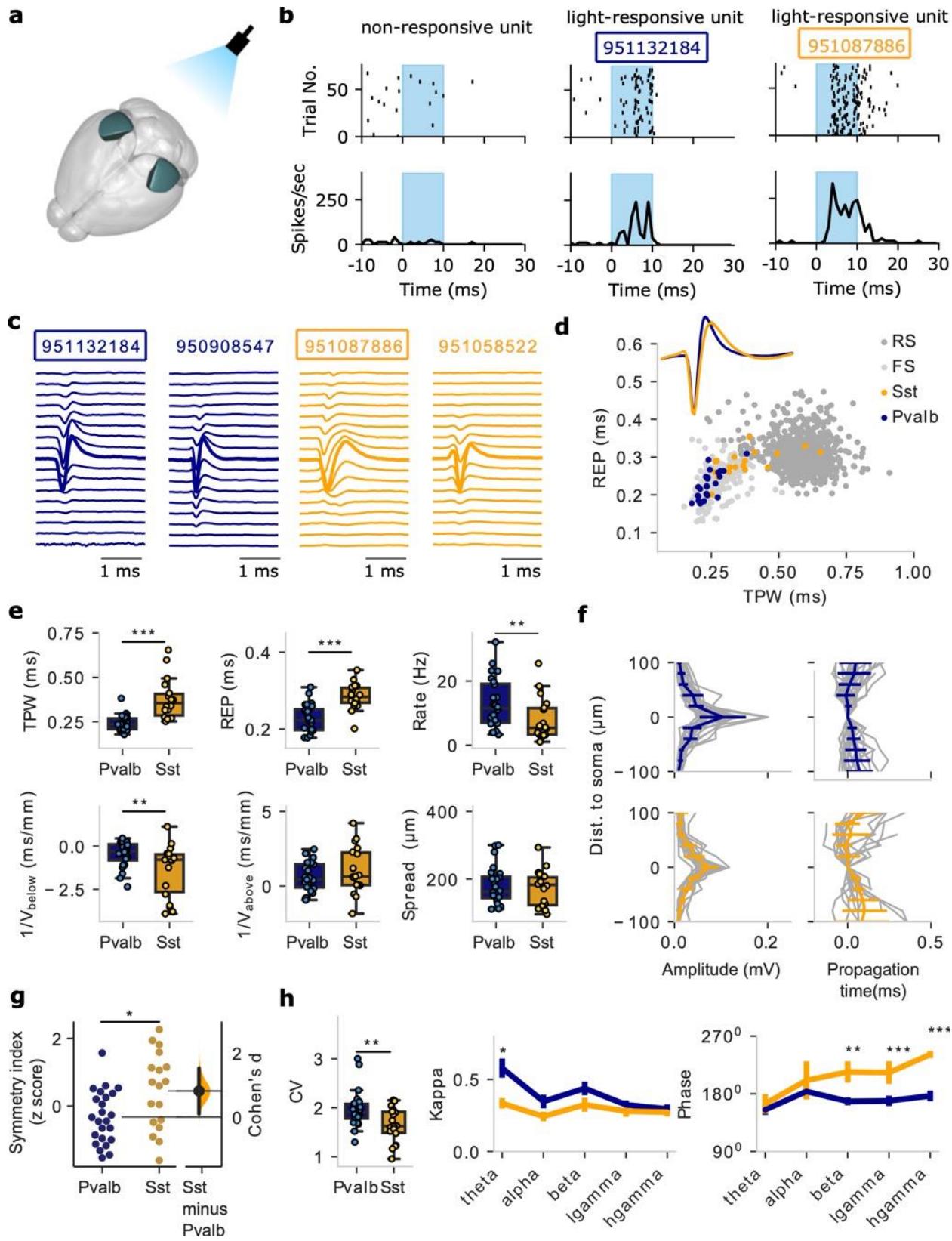


1231 **Figure 4. Distinct cellular properties of multi-channel regular-spiking (RS1-3) clusters. a)**
1232 Clustering of spiny (SP) models using K -means clustering based on multi-channel extracellular
1233 action potential (EAP) features. Both the elbow method and density function analysis
1234 independently identify three multi-channel SP clusters (left: within cluster sum of squares (WCSS)
1235 and density function, broken red line: optimal number of clusters; right: model-based SP clusters;
1236 inset: mean EAP-waveform of each RS-population). SP1-3 and RS1-3 are shown using the multi-
1237 channel features $1/V_{\text{below}}$ and $1/V_{\text{above}}$ (the inverse of spike propagation velocity below/above soma
1238 location). **b)** Spike propagation along the simulated probe as function of distance from the soma
1239 (channel with largest EAP amplitude) for the three SP classes, SP1-3 (grey lines: propagation of
1240 individual models; $n=5$ SP1, $n=7$ SP2, $n=3$ SP3; colored lines: mean \pm SD (standard deviation)).
1241 **c)** The model-based classifier (random forest) trained on the multi-channel features ($1/V_{\text{below}}$ and
1242 $1/V_{\text{above}}$) identifies SP1-3 (left: confusion matrix; middle: feature importance based on classifier;
1243 right: sankey diagrams show the prediction on the test dataset). **d)** Same layout as in **c**, the
1244 experiment-based classifier was trained on multi-channel *in vivo* EAP features to discriminate
1245 between RS1-3. **e)** Comparison between model conductances ascribed to SP1-3. The largest effect
1246 size across the conductances is found for axonal Ca_LVA. # indicates Cohen's d effect size >0.8 .
1247 **f)** Bifurcation distance (w) of one bifurcation node in the reconstructed morphology of a neuron is
1248 defined as the projection of the vector (v) from soma (S, red dot) to the position of the bifurcation
1249 node (N, blue dot) projected to a line (u) connecting the soma (S) to a node (L) in y axis. **g)**
1250 Morphology bifurcation distance above soma (left) and below soma (middle). Right: inverse of
1251 wave propagation velocity vs. the bifurcation distance (line: linear fit). **h-i)** Intrinsic properties
1252 from *in vitro* experiments based on SP1-3 (subthreshold and spiking responses). **j)** Comparison of
1253 cellular time constant (τ) and max spike rate (response to dc current injections) among *in vitro*
1254 experiments based on SP1-3. # indicates Cohen's d effect size >0.8 . Source data are provided as a
1255 Source Data file.



1256
1257

1258 **Figure 5. Distinct cellular properties of multi-channel FS clusters. a)** The spike propagation
1259 symmetry index separates FS1 from FS2-3 (left, circles: experimental measurements; middle:
1260 effect size measured by Cohen's d; right: mean spatiotemporal spike propagation of multi-channel
1261 clusters FS1-3; $n= 130$ FS1, $n=82$ FS2, $n=69$ FS3). Kruskal-Wallis H-test, $F=111.41$, p-values
1262 corrected using the Holm-Bonferroni method for multiple tests, *** $p<0.001$. Error bars represents
1263 a bootstrap 95% confidence interval. **b)** Left: the multi-channel features (V_{below} , V_{above}) clustering
1264 FS units (grey) and superposed multi-channel EAP features of models of Pvalb (blue, $n=9$) and Sst
1265 (yellow, $n=9$) neurons. Right: spike propagation symmetry index for Pvalb and Sst single-cell
1266 models. two-sample t-test, two-sided, $p=0.000998$. **c)** Pairwise comparison of model conductances
1267 between Pvalb and Sst models. The strongest and most statistically significant difference is shown
1268 in the dendritic $Kv3.1$ conductance. Mann-Whitney U test, two-sided, * $p<0.05$. **d)** Morphology
1269 bifurcation distance above (two-sample t-test, two-sided, $p=0.45$) and below (two-sample t-test,
1270 two-sides, $p=0.03$) soma between Pvalb (left, dark blue) and Sst (right, orange) models. * $p<0.05$.
1271 **e)** The inverse of spike propagation velocity vs. the bifurcation distance (line: linear fit; + indicates
1272 above soma, - indicates below soma). **f)** Pairwise comparison of Pvalb vs. Sst model conductances
1273 (top panel, $-\log_{10}(p\text{-value})$, black line: $p=0.05$; bottom panel, Cohen's d effect size, black lines:
1274 $|d|=0.8$). The comparison of dendritic $Kv3.1$ conductance as shown in **c**. Mann-Whitney U test,
1275 two-sided, * $p<0.05$. **g)** Left: pairwise comparison between intrinsic properties of Pvalb and Sst
1276 neurons measured *in vitro* (same experiments as the ones used to develop to single-cell models).
1277 Maximum spike rate to dc current injections separates between Pvalb and Sst neurons. Mann-
1278 Whitney U test, two-sided, $p=0.0067$; Right: pairwise comparison between nine intrinsic
1279 properties of Pvalb vs. Sst neurons (top: statistical significance expressed in terms of $-\log_{10}(p\text{-value})$;
1280 solid line: $p\text{-value}=0.05$, broken line: $p\text{-value}=0.01$; bottom: Cohen's d effect size, solid
1281 black line: $|d|=0.8$) also used to generate the computational models. Mann-Whitney U test, two-
1282 sided, * $p<0.05$, ** $p<0.01$, *** $p<0.001$. Source data are provided as a Source Data file.
1283
1284



1287 **Figure 6. *In vivo* extracellular action potential (EAP) and functional properties of opto-
1288 tagged Pvalb and Sst neurons.** **a)** Light sensitive channelrhodopsin-2 (ChR2) channels were
1289 virally expressed in two inhibitory cell populations, Pvalb and Sst, in mouse V1 (dark green areas).
1290 The animals were then implanted with Neuropixels probes. **b)** Example units responding to light
1291 activation (light blue regions) in V1. Top: spike rasters; Bottom: spike frequency. Left: a non-
1292 responsive unit; Middle: a light-responsive Pvalb unit; Right: a light-responsive Sst unit. **c)**
1293 Examples of multi-channel EAPs of Pvalb units (dark blue) and Sst units (orange). Two of the
1294 units are the same ones as in panel **b** (boxes). **d)** One-channel EAP features (trough-peak width:
1295 TPW; repolarization time: REP) for the Pvalb (dark blue, n=24) and Sst units (orange, n=18) from
1296 the optotagging experiments (inset: mean EAP waveforms; light gray: FS units, dark gray: RS
1297 units, from wild-type animals as in **Fig. 2d**). **e)** Comparison of EAP properties between optotagged
1298 Pvalb (n=24) and Sst (n=18) units (top: one-channel properties; bottom: multi-channel properties).
1299 Box plots show center line as median, box limits as upper (75%) and lower (25%) quartiles. The
1300 whiskers extend from the box limits by 1x the interquartile range. Mann-Whitney U test, two-
1301 sided, **p<0.01, ***p<0.001. **f)** EAP amplitude (left) and propagation (right) along the
1302 extracellular channels as function of distance from the soma (taken as the channel with the largest
1303 EAP amplitude) for the optotagged Pvalb (n=24) and Sst (n=18) units (gray lines: individual units;
1304 colored lines: mean \pm SD (standard deviation)). **g)** Comparison of the symmetry index for Pvalb
1305 (n=24) vs. Sst (n=18) units (two-sample t-test, two-sided, p=0.012). **h)** Left: Comparison of
1306 response pattern during drifting gratings in the opto-tagging experiments (CV: coefficient of
1307 variation). Box plot representation is similar as in panel (e). Mann-Whitney U test, two-sided,
1308 p=0.0076, n=24 Pvalb, n=18 Sst; Right: spike-field coherency metric kappa and preferred spike
1309 phase of optotagged Pvalb and Sst for various LFP frequency bands. Data are presented as mean
1310 \pm SEM (standard error of mean). Mann-Whitney U test, two-sided, *p<0.05, **p<0.01,
1311 ***p<0.001. Source data are provided as a Source Data file.