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Abstract

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically
unable to identify and monitor their activity in the behaving animal. Here, we employed a
systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo
recorded units via computational modeling and optotagging experiments. We found two one-
channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in
terms of activity, cortical depth, and behavior. We used biophysical models to map the two one-
and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability
and conductance properties that explain their distinct extracellular signatures and functional
characteristics. These concepts were tested in ground-truth optotagging experiments with two
inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a
powerful way to separate in vivo clusters and infer their cellular properties from first principles.

Introduction

The cellular composition of the brain is diverse with recent studies in rodent neocortex identifying
tens of cell types!—. The expectation is that these types serve distinct roles in behavior. However,
disentangling their function is challenging. The difficulty is twofold. First, extensive single-cell
characterization of neurons, mainly propelled by advances in sequencing technology, allow
sampling from large populations at the cellular level, revealing a multitude of cell types. These
types exist within detailed, molecular-based taxonomies of neocortex, hippocampus and other
brain circuits®>®. In vitro cellular electrophysiology and morphology reconstructions, in turn, offer
a phenomenology-based approach in defining taxonomies that is easier translated to in vivo
dynamics, e.g. via spike response properties’8. Taxonomies accounting for the three main data
modalities simultaneously are scarce, with a few noteworthy exceptions?%1°,

The second challenge lies in monitoring cell classes identified via their in vitro molecular,
electrophysiology and morphology properties in vivo. In vivo imaging of virally or genetically
targeted populations offer remarkable insights in how these populations organize during behavior
but are unable to resolve single action potentials due to their low sampling rate and the highly
nonlinear relationship between spikes and calcium indicator fluorescence*-13, Single-wire or high-
density extracellular electrophysiology recordings, on the other hand, offer much improved
temporal resolution to monitor spiking and spike-related activity in vivo even if their ability to
resolve cell types is limited. Typically, a handful of spike features can separate between major
classes, e.g., the extracellular action potential (EAP) width separates fast-spiking (FS) from other
so-called regular-spiking (RS) units**’. Early slice experiments indicated that RS and FS cells
probably correspond to pyramidal cells and interneurons, respectively*®, while other studies found
a more intricate correspondence!’*%2°, With recent advancements drastically increasing the
electrode density of silicon probes?!, spatiotemporal information on EAP waveforms increased
significantly allowing for more refined clustering of in vivo EAPs?223, Even so, linking cellular
taxonomies to in vivo signatures, i.e., classification, in a systematic manner for in vivo recordings
has been difficult.

Single-cell computational models make it possible to link various types of data by incorporating
constraints and generating predictions across data modalities, e.g., predicting a particular ion
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71  conductance based on properties of the electrophysiological response such as spike shape or
72 frequency. In a recent study, a large-scale model generation and evaluation effort developed bio-
73 realistic, single-cell models for mouse primary visual cortex (V1) accounting for ion conductances
74 along the entire neural morphology?*. Importantly, these models closely capture distinguishing
75  properties of major excitatory and inhibitory classes integrating electrophysiology, morphology
76  and transcriptomics data. A key aspect of conductance-based models is their ability to emulate
77  extracellular electrophysiology signatures such as the EAP-waveform?>-%7, Thus, these models
78  integrate a variety of data modalities they were trained on (electrophysiology and morphology) or
79  validated against (transcriptomics) and predict a fourth data modality, i.e., the EAP waveform and
80 its associated features.
81
82  Here, we show that unsupervised clustering of mouse V1 units recorded via high-density
83  Neuropixels probes ! results in two one-channel and six multi-channel clusters with distinct EAP
84 and EAP-propagation profiles, respectively. Importantly, these clusters exhibit functional
85  differences and distinct coupling to endogenous oscillations, i.e. the main criterion for being
86  considered truly distinct populations in the microcircuit. To determine the differences between the
87 individual clusters we use biophysical models that capture single-cell data from cortical transgenic
88  mouse lines to define EAP templates. Using a supervised classifier, we show that morphological
89  spiny vs. aspiny neurons closely map to RS and FS units, respectively, recorded in vivo. Next, we
90 map the six multi-channel clusters with their distinct EAP propagation profiles to model
91 populations, compare between model population setups and identify conductances and
92  morphology features that explain the EAP differences between the in vivo clusters. Our newfound
93  ability to separate between clusters is exemplified in ground-truth, optotagging experiments where
94  we separate between two major inhibitory classes in vivo and show their distinct entrainment
95  profile to ongoing neocortical oscillations.
96
97  Results
98
99  Extracellular action potential recordings from in vivo experiments and biophysical models
100  of cell types
101  Analysis of extracellular action potential (EAP) waveforms of so-called “units” (putative single
102  neurons) typically clusters into two groups, regular-spiking (RS) vs. fast-spiking (FS) (Fig. 1a).
103  We sought a more refined classification scheme using data from a recent in vivo survey of
104  electrophysiological activity in awake mice?. We focused on data from units in primary visual
105  cortex (V1) recorded using Neuropixels probes (Fig. 1b). These probes offer a dense arrangement
106  of recording sites (Fig. 1c), which allows EAP signals from single units to be detected on multiple
107  recording channels (Fig. 1c; example unit #1: a FS unit; example unit #2: a RS unit; bold: channels
108  with largest EAP amplitude). We analyzed units from 25 wild-type mice, 8 mice expressed ChR2
109 in parvalbumin-positive cells (Pvalb), and 12 in somatostatin-positive cells (Sst) (Fig. 1d). We
110  only analyzed units located in V1 with an average of 48 units per wild-type mouse being well-
111  isolated (unit isolation criteria: see Methods; Fig. 1d; total number of units = 1204) during
112 spontaneous activity. The depth of layer 4 was determined from where the visual stimulus (flash)
113 evoked a strong response in the current source density (CSD) 282 (Fig. S1). Unit location along
114  the cortical depth was adjusted relative to layer 4 (depth O indicates the center of layer 4). The
115 estimated soma location of well-isolated units (based on EAP properties) in our study spanned
116  from layers 2/3 through 6 with the majority located in layers 4 and 5 (Fig. 1d).
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117

118 To map the recorded EAP waveforms to specific cell classes we used biophysically detailed
119  models of single neurons. These biophysical models are developed in an unsupervised manner
120 using a multi-objective optimization platform that relies on standardized electrophysiology
121  features and the reconstructed cellular morphology to distribute a set of ionic conductances
122 relevant for cortical neurons?*. We developed single-cell models that represent a diverse set of
123 transgenic mouse lines to ensure broad coverage across cortical layers and classes®. For our study
124  we accounted for 15 spiny (SP) and 18 aspiny (AP) single-cell, so-called ‘“all-active”,
125  biophysically realistic models from V1 optimized based on in vitro single-cell electrophysiology
126  and morphology (Fig. S2). Notably, the SP vs. AP designation in our study is morphology-based
127  and does not reflect any electrophysiology features such as action potential waveform or spike
128  pattern. The experimental data to produce the single-cell models were part of a systematic
129  characterization of mouse visual cortex where a uniform experimental protocol was used to
130  establish a taxonomy based on cellular electrophysiology and morphology*-?.

131

132  Beyond reflecting key properties of various cell types in terms of electrophysiology, morphology
133 and transcriptomics®+%, these biophysical single-cell models reproduce EAP signals in the vicinity
134  of the cellular morphology (Fig. 1e, top: spiny cell, cell ID: 395830185; bottom: aspiny cell, cell
135 1D:469610831). Our computational approach simulated the recording sites of a Neuropixels probe
136  (see Methods; 27 ) resulting in signals emulating in vivo unit recordings (Fig. 1f). In total, 15 spiny
137  (Cre-reporter lines: 5 Nr5al, 4 Scnnla, 6 Rorb) and 18 aspiny (Cre-reporter lines: 9 Pvalb, 9 Sst)
138  single-cell models were developed and included in the study covering a range of major reporter
139 lines and cortical depths (Fig. 1g) and especially layers 4 and 5 in accordance with the in vivo
140  experiments (Fig. 1d).

141

142 The standard waveform features reveal two clusters: RS and FS

143  Spontaneous and visually evoked activity (flashes) is recorded in vivo in head-fixed animals
144  implanted with Neuropixels probes in V1 while running freely on a rotating disc (Fig. 2a; N =
145 1204 units from 25 mice during spontaneous activity). For the EAP analysis, we derived the one-
146 channel EAP from the channel with the maximum EAP-amplitude (Fig. 2b, middle: red bolded
147  trace), while the multi-channel EAP includes additional channels above and below the maximum
148  EAP channel (Fig. 2b, middle). We define two one-channel EAP features (Fig. 2b, left): trough-
149  to-peak width (TPW) and repolarization time (REP). TPW measures the time from the EAP trough
150 until the peak. REP measures the time from EAP peak to the half-peak'”?"3%, TPW and REP are
151  usually sufficient to classify units between narrow and wide waveforms'®>?’, the result of the
152  bimodal distribution of TPW in cortex (Fig. S3). We also found two major clusters in our in vivo
153  data, i.e. a narrow TPW cluster with reduced REP (Fig. 2d, bottom, blue) and a wide TPW cluster
154  of increased REP (Fig. 2d, bottom, red), respectively. Both the elbow method and density method
155  of unsupervised K-means clustering?? independently confirmed the optimal number of clusters are
156  two. Specifically, the narrow waveform units exhibit lower TPW (Fig. S3) and lower REP (Fig.
157  S3) than the wide waveform units. Furthermore, narrow waveform units (n=281, 23.3%) exhibit
158 elevated spike frequency vs. wide waveform ones (n=923, 76.7%): narrow waveform units spike
159  ata median firing rate of 4.85 Hz (interquartile range, IQR: 1.93-10.79 Hz) while wide waveform
160 units fire at median of 2.05 Hz (IQR: 0.84-5.00 Hz). Thus, narrow waveform units spike
161  significantly faster than their wide waveform counterparts (Mann-Whitney U test, p=3.5*1018;
162  Fig. S3). We conclude that narrow EAP waveforms approximately map to fast-spiking (FS) units
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163  while wide waveforms approximately correspond to regular-spiking (RS) units (Supplementary
164 Datal).

165

166  Spatial features reveal six distinct sub-clusters in mouse V1: 3 RS and 3 FS

167  Multi-channel EAP waveforms introduce an additional dimension, space, into the analysis. We
168  accounted for the EAP amplitude and the EAP propagation with respect to time (Fig.2b, right) as
169  afunction of recording distance to the largest EAP location, assumed to be closest to the soma/axon
170 initial segment®. For the multi-channel analysis (Fig. 2b, middle), we calculate two additional
171  spatial EAP features (Fig. 2b, right): the inverse of the EAP propagation velocity below (1/Vbeiow)
172 and above (1/Vabove) the soma?2. 1/Vbelow and 1/Vanove are separately estimated via linear regression
173 (Fig 2b, right, red lines). We define a propagation symmetry index, the ratio of 1/Vbeiow and 1/Vabove
174, with a larger symmetry index indicating a more asymmetric propagation, for example, due to the
175  presence of apical dendrites in excitatory pyramidal neurons®? . Looking at the multi-channel EAP
176  features of FS vs. RS, RS generally exhibits a more asymmetric EAP propagation below vs. above
177  the putative soma location than FS, Fig. 2c-d; Fig. S3c-d, middle). We conclude that one-channel
178  clusters RS and FS do not only separate via TPW but, in fact, are also distinct in how their spikes
179  propagate along the extracellular space.

180

181  We wondered whether multi-channel EAP features can further inform on the composition of FS
182 and RS. To do so, we adopted the one-channel clusters RS and FS and for each of them employed
183  unsupervised clustering using multi-channel features (1/Vbelow and 1/Vanove) to further subdivide
184  into multi-channel clusters. Unsupervised clustering (K-means) indicated that the optimal number
185  of multi-channel clusters within FS and RS is three for each (Fig. 2d, right top; cluster #
186  independently estimated by the elbow method and density function). The six groups (FS1-3, RS1-
187  3) exhibit distinct multi-channel signatures. For the RS group, RS1 and RS2 show mostly
188  asymmetric propagation with their main difference being the supragranular propagation velocity,
189  i.e. Vabowe(RS1) > Vabove(RS2) (Fig. S4). RS1-3 exhibit significant differences in terms of their
190  spatial spread (Kruskal-Wallis H-test; p-values corrected using the Holm-Bonferroni method for
191  multiple tests), with the EAP propagation of RS3 being more spatially confined than RS1-2 while
192  also exhibiting a faster infragranular spike propagation velocity Veelow (Fig. S4; Supplementary
193  Data 1). FS1-3 also exhibit distinct propagation signatures: while the propagation profile for FS1
194  is symmetric and fast above and below the spike initiation location, FS2 and FS3 exhibit an
195 asymmetric and slower, direction-dependent profile. Despite their different propagation profiles,
196  FS1-3 exhibit no significant difference in spatial spread (Fig. S4). Looking at the distribution of
197 the cortical depth, the six clusters are distributed differently across V1 layers (Fig. S5). We
198  conclude that expanding the set from one- to multi-channel EAP features results in further
199  separation within the RS and FS groups into six finer but distinct groupings, three FS (FS1, FS2,
200  FS3) and three RS (RS1, RS2, RS3) clusters, that spread along the V1 depth axis.

201

202  Distinct functional properties of the in vivo clusters

203  Towhat extent do the in vivo clusters separated by their EAP properties also constitute functionally
204  distinct cell populations? We looked into the in vivo dynamics during behavior and whether the
205  six clusters show distinct firing properties during a visual stimulation task (drifting gratings). Inter-
206  spike interval (I1SI) analysis shows that multi-channel RS clusters exhibit significantly different
207  firing properties: the ISI median of FS is 19.63 ms with 95% confidence interval (CI) at
208  [19.60,19.67] ms, while the ISI median of RS is 53.37 ms with 95% CI at [53.30,53.43] ms (Fig.
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209  2e, Mann-Whitney U test, p=0.0). To assess the temporal structure of spiking during the task we
210 also calculated the coefficient of variation (CV) that measures the variance of ISIs and the local
211  variation (LV) measuring variation in adjacent ISIs. We found that the pattern of RS1 spiking is
212  significantly different compared to RS2 and RS3. Specifically, RS1 units exhibit faster, more
213  stereotyped and less variable spiking than RS2-3 units. RS2-3 units, in turn, exhibit relatively
214 slower and more variable spiking dynamics (Fig. 2e). Notably, multi-channel RS clusters also
215  exhibit differences in their response to visual presentation. Several measures that assess visual
216  response properties were calculated (see Methods) and we highlight three relevant for drifting
217  gratings: f1/f0, the modulation index, and lifetime sparseness (Fig. 2e). Statistically significant
218  differences emerge between RS1 vs. RS2-3 in terms of the response metrics with RS2-3 exhibiting
219  higher response sensitivity and selectivity over RS1, in agreement with the higher CV and LV seen
220  for RS2-3. No significant difference in terms of visual responses was observed between FS1-3. In
221  summary, we found that RS is composed of functionally distinct clusters that beyond their distinct
222  multi-channel properties also exhibit differences in their in vivo activity also during visual behavior.
223

224 Another measure to identify functionally distinct populations looks at distinct spike phase-locking
225  to ongoing local field potential (LFP) oscillations?”3334, We used the Hilbert transform of the
226  bandpass-filtered LFP to assign each spike an instantaneous phase (Fig. S6a) in several frequency
227  bands (theta: 3-8Hz, alpha: 8-12.5Hz, beta: 12.5-30Hz, low gamma: 30-50Hz, high gamma: 50-
228  90Hz; Supplementary Data 2). Starting with one-channel clusters, we found that units exhibit a
229  diverse level of entrainment to the LFP bands (per the Rayleigh test for non-uniformity, see
230  Methods, Fig. S6b, Fig. 2f) with FS containing a significantly higher percentage of phase-locked
231 units than RS across frequency bands (Fig. 2f, left). Notably, FS and RS coupling to in vivo
232  oscillations is input- and behavior-dependent, with a much lower percentage of phase-locked
233 neurons detected during spontaneous activity (Fig. S7) than during drifting gratings (Fig. 2f, left)
234 across frequency bands, an observation in line with other studies (e.9.*%) In general, the percentage
235  of significantly entrained FS units was high and remained broadly unaffected by the specific LFP
236  bands. In contrast, RS couple preferentially to slow LFP oscillations (theta) with the percentage
237  decreasing for higher frequencies (beta, gamma and high gamma). Pairwise comparison revealed
238 that FS have stronger phase-locking across frequency bands and spike earlier in the cycle than RS
239  for beta and low gamma (Fig.2f-g, p-values corrected for multiple tests by Holm-Bonferroni
240  method) in line with neocortical patterns seen in monkey and human®, but in contrast with
241  hippocampal oscillations where putative excitatory neurons typically fire earlier than putative
242  inhibitory ones®. We conclude that one-channel RS and FS show distinct coupling properties to
243  neocortical oscillation with FS coupling being stronger across bands and FS units firing earlier
244  than RS.

245

246  Next, we looked at multi-channel clusters and their dynamics during oscillations. We found
247  significant differences in LFP coupling for RS1-3 in the low and high gamma bands, with RS2
248  exhibiting stronger phase locking to low and high gamma than RS1 (Fig. 2h). The preferred phase
249  of RS1-3 remains similar at 180°-200° (RS2 just below 180° vs. RS1 and RS3 just above 180°)
250  (Fig. 2h). Cluster-specific entrainment to LFP oscillations is also observed in FS clusters (FS1-3).
251  Specifically, FS3 exhibit stronger phase locking to high gamma than FS2, with distinct preferred
252  phases among the three clusters in alpha, beta and low gamma (Fig. 2i). We conclude that in
253  addition to their distinct spiking characteristics, multi-channel clusters exhibit distinct coupling
254  properties to LFP oscillations that depend on the behavior.
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255

256  We also looked at how spike dynamics and coupling to oscillations changes with cortical depth.
257  Based on distance from pia we defined three regions: supragranular (broadly cortical layers 2-3),
258  granular (cortical layer 4) and infragranular (broadly cortical layers 5-6). Looking at one-channel
259  clusters, FS show consistently stronger phase-coupling than RS across the cortical depth for all
260  LFP bands (Fig. S6c). Interestingly, both FS and RS show strong coupling in theta and beta but a
261  strong reduction in coupling in the intermediate alpha band. This pattern is particularly pronounced
262 in the supragranular and granular regions while in the infragranular region there is reduced
263  coupling, especially for FS, compared to the rest of the cortical depth regions (Fig. S6c). We also
264  note the strong coupling of FS units to high frequency oscillations (e.g. high gamma) especially in
265  the supragranular and granular region, a characteristic of electrotonically compact neurons able to
266  follow very fast synaptic drive. In terms of spike phase, RS and FS spike broadly around the same
267  phase with the exception of the granular region where significant differences emerged between FS
268 and RS for beta and gamma bands. Looking at the multi-channel clusters across cortical depth, we
269  found the most significant differences in the coupling strength of RS1-3 in supragranular beta and
270  low gamma with kappa almost doubling between supragranular RS3 and RS1 in beta (Fig. S6d).
271  Such diversity in coupling strength among clusters is not observed in granular and infragranular
272  regions though we do find differences in the preferred spike phase of RS1-3 in infragranular layers
273  (Fig. S6d). It follows that these multi-channel clusters, except for their distinct multi-channel
274 signatures, also have distinct patterns and role in how they support ongoing cortical oscillations.
275  We conclude that, one-channel RS and FS clusters as well as RS1-3 show distinct coupling patterns
276  along the cortical axis, especially supragranular RS1-3 in the beta bands and infragranular RS1-3
277  in the gamma bands.

278

279  Multimodal mapping between electrophysiology-, morphology- and Cre-reporter-based
280  classes

281  What is the cellular identity of the clusters exhibiting such distinct EAP-waveform and in vivo
282  properties? To bridge between the in vivo clusters and in vitro cell classes, we use biophysically
283  realistic single-neuron models of 18 morphologically aspiny (AP) and 15 spiny (SP) mouse
284  neurons (Table S1) that capture within cell type variability. These models were generated from
285  two data modalities: the reconstructed morphology and the somatic electrophysiology response
286  resulting from in vitro whole-cell patch-clamp experiments?*. We use these models to simulate the
287  EAP waveform and, in such manner, create EAP-templates linked to ground-truth, specific
288 electrophysiology-, morphology- and Cre-reporter-based cell classes.

289

290  We show simulations for two example single-cell models, one SP (Fig. 3a) and one AP (Fig. 3b).
291  Somatic action potentials were evoked via simulated convergent, Poisson-style synaptic input
292 along the dendritic arbor (Fig. 3a-b). The simulated EAP from the model exhibits its largest
293 amplitude in the somatic region and actively propagates into the dendrites. As for extracellular
294  recordings, one- and multi-channel features of AP and SP were calculated from the simulated EAP
295  waveforms. We see that the trough-to-peak width (TPW) and repolarization time (REP) of the
296  simulated cells are very similar to the ones from experimental recordings (Fig. 3c). Furthermore,
297  cell class differences predicted by simulations agree with in vivo recorded EAPs, e.g. simulated
298 AP cells exhibit significantly lower TPW (two-sample t test, p=0.00025) and REP (Mann-Whitney
299 U test, p=0.00024) than SP ones (Fig. 3d). Furthermore, because the biophysical models agree
300  with experimental recordings for one-channel features TPW and REP, they can be used to link
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301  between in vitro properties of cell class and in vivo EAPs. We asked whether the experimentally
302  measured intrinsic properties of the actual cells each model represents differentiate between
303  morphology class AP and SP. Comparison between in vitro cellular data used to develop each of
304  the AP and SP models (same mouse IDs as Fig. 3c-d) show statistically significant differences in
305 intrinsic properties known to differentiate between major excitatory and inhibitory classes (spike
306  width, adaptation, spike rate and f-1 slope; Fig. 3e). We conclude that, not only the models, but
307  also the underlying in vitro experiments mapping on RS and FS clusters, exhibit robust separation
308 inslice electrophysiology properties known to separate excitatory from inhibitory classes.

309

310 To link between labels of in vivo units (RS vs. FS) and the morphology classes of simulated
311 neurons (spiny or SP vs. aspiny or AP), we used a two-way classification process?’. In one
312  direction, the model-based classifier was trained on one-channel EAP features (TPW, REP) of
313  models to discriminate between SP and AP neurons. This process yielded 82.5% classification
314  accuracy on the validation data set (support vector machine, SVM; training/validation set,
315  75%/25%; Fig. 3f). Then, the model-based classifier was applied on the test data set (in vivo
316  clustered FS and RS units from V1). Most FS units are labeled as AP neurons while the majority
317 of RS as SP (Fig. 3f). We also tested the opposite direction. In the experiment-based classifier, we
318 trained on one-channel EAP features (TPW, REP) of in vivo units to discriminate between FS and
319 RS clusters (training/validation set, 75%/25%) and classification accuracy on the validation data
320  set exceeded 99% (SVM; Fig. 3g). When applying the classifier on the test datasets, i.e., model-
321  labeled AP and SP neurons, most AP neurons were labeled as FS and most SP neurons as RS units
322  (Fig. 3g). We conclude that the majority of in vivo RS map to in vitro SP cells while the majority
323  ofinvivo FS map to in vitro AP cells based on one-channel features TPW and REP.

324

325  Beyond the intrinsic properties and morphology classes, the simulated neurons also contain Cre-
326  line labels from the Cre-lines used in vitro to target the individual cells. In a subsequent analysis,
327 instead of using the morphology labels SP and AP, we used the transgenic line label (excitatory:
328  Scnnla, Rorb, Nr5al; inhibitory: Pvalb, Sst)! of the models as input to the experiment-based
329  classifier to predict the one-channel in vivo clusters (RS vs. FS). The excitatory classes (Scnnla,
330  Rorband Nr5al) are mainly classified as RS whereas inhibitory classes (Pvalb and Sst) are mainly
331 classified as FS (Fig. 3h). We conclude that the biophysical models agree with experimental in
332 vivo EAP recordings in terms of one-channel EAP features and reflect experimental intrinsic and
333  morphology class-dependent differences also observed in vitro.

334

335 Composition and properties of multi-channel RS clusters

336  We next attempt to deduce single-cell intrinsic electrophysiology and morphology properties of
337  the in vivo multi-channel clusters. We first asked whether the single-cell models recapitulate the
338 three multi-channel clusters for each class. Starting with the SP models, we clustered the models
339  based on their simulated multi-channel EAP features (n=15 SP models; K-means clustering). Two
340  separate clustering analyses (elbow method and the density function) determined the number of
341  SP clusters in our simulated data to be three, i.e. SP1-3. Notably, the number of SP clusters
342  coincides with the number of RS clusters detected in vivo (RS1-3) (Fig. 4a). Among three RS
343  clusters, there is no significant difference in the largest amplitude channel (Fig. 4a, right),
344 however, the waveform propagation separates them into three clusters (Fig. 4b). Looking at the
345  multi-channel features (1/Voelow and 1/Vanove) there is correspondence between SP1 with RS1, SP2
346  with RS2 and SP3 with RS3. This is also reflected in the distinct EAP propagation properties of
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347  the three SP clusters, with SP1 showing faster supragranular propagation than SP2 while SP3
348  shows reduced infragranular propagation vs. SP1 (Fig. 4b). We conclude that the biophysical
349  models of morphologically spiny neurons SP separate into three distinct clusters (SP1-3) based on
350  the same multi-channel features that also separate in vivo multi-channel RS units into clusters RS1-
351 3 with EAP propagation patterns that resemble model and in vivo clusters.

352

353  We looked deeper into the correspondence between the model-based SP1-3 and in vivo clusters
354  RS1-3 defined via the multi-channel EAP features by using two-way classification: supervised
355 classifiers trained on the simulated EAPs of modeled neurons then applied to in vivo units (“model-
356  based classifier”), and supervised classifiers trained on experimental in vivo units, then applied to
357  the model classes (“experiment-based classifier”). Specifically, the model-based classifier trained
358 on multi-channel EAP features (1/Vbelow and 1/Vanove) to identify SP1-3 showed excellent
359  performance (random forest; classification performance >94%; Fig. 4c). In a next step, we applied
360 the model-based classifier on the test experimental data sets (in vivo clustered RS1-3) and found
361 that, indeed, RS1 units are mapped to SP1, RS2 to SP2, and RS3 to SP3 with high fidelity
362  (performance: >94%; Fig. 4c). We also pursued the opposite direction by building the experiment-
363  based classifier trained on multi-channel in vivo EAP features to discriminate among RS1-3 and
364  saw very high classification accuracy (> 99%; Fig. 4d). The experiment-based classifier on the
365  test simulation data sets (models clustered SP1-3), once more, cleanly maps SP1 to RS1, SP2 to
366 RS2 and SP3to RS3, respectively (Fig. 4d). Thus, our initial results are validated by the two-way
367  classification that robustly maps model-based SP1-3 classes to in vivo RS1-3 clusters via their
368  multi-channel features.

369

370  Since RS1-3 are mapped to SP1-3, respectively, what other properties of the in vivo clusters RS1-
371 3 can be deduced from the SP1-3 data and associated models? We address this question for three
372  data modalities: models, morphologies and intrinsic electrophysiology properties. First, we asked
373  whether SP1-3 models can point to key differences between the three clusters in terms of the
374  conductance setup. Pairwise comparison between SP1-3 model conductances indicates that the
375 axonal low-voltage activated Ca-conductance is increased for SP1 and SP3 vs. SP2 (Cohen’s d
376  effectsize > 0.8; Fig. 4e), i.e. aconductance linked to elevated spike rate (bursting) and rapid spike
377  recovery®. In terms of cellular morphology, given SP1-3 have different spike propagation profiles,
378  we used a morphology feature looking at the cable structure attached to the soma, the bifurcation
379  distance. The bifurcation distance is the normalized distance between the soma and the dendritic
380 bifurcation with a large bifurcation distance effectively translating to a longer unobstructed path
381  along the dendrite (see also Methods). Pairwise comparison of the bifurcation distance above soma
382 and below soma among SP1-3 (the reconstructed morphologies were also used to develop the
383  models) reveals differences in one property, the basal dendrite bifurcation distance below the soma
384  (Fig. 4f-g; see also Methods). Specifically, SP1 and SP3 have different bifurcation distance
385  especially below the soma (Fig. 4g). Notably, the morphology bifurcation distance, exhibits a
386  strong linear relationship with the spike propagation speed across SP1-3 (Fig. 4g right, slope =
387 2.7, the correlation coefficient r = 0.8, p = 1.02*10°7). A larger bifurcation distance, results in a
388  lower spike propagation speed along the basal (negative bifurcation distance) and apical (positive
389  bifurcation distance) arbor. Thus, class-dependent morphology properties that impact spike
390 propagation can also lead the class-dependent propagation speed and symmetry differences
391  observed between SP1-3 (Fig. 5b). Finally, we compared in vitro subthreshold (Fig. 4h) and
392  spiking (Fig. 4i) intrinsic electrophysiology properties among SP1-3 (the slice experiments also
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393  used to develop the models) and found differences in the cellular time constant T and peak spike
394  rate (response to dc current injections, Fig. 4j). Specifically, SP1 neurons achieve a higher spike
395 rate especially compared to SP2, which, in turn, agrees with the model-based observation of
396 increased axonal low-voltage activated Ca-conductance of SP1 (Fig. 4e). Moreover, SP1 is more
397 electrotonically compact than SP2 (Fig. 4j). We conclude that, by virtue of mapping SP1-3 to RS1-
398 3, the multimodal comparison between models (including their associated in vitro experiments)
399 and in vivo clusters yields several distinct properties: a difference in axonal low-voltage activated
400 Ca-conductance (SP1 and SP3 vs. SP2), a morphology difference in the basal dendrite bifurcation
401  distance below the soma (mainly in SP1 vs. SP3) that, in turn, impacts the spike propagation speed,
402  and, finally, SP1 being more electrotonically compact than SP2.

403

404  Multi-channel features separate inhibitory Pvalb and Sst

405  FS units are most typically associated with inhibitory cell classes that are inherently heterogeneous.
406  For example, Pvalb includes fast-spiking basket cells as well as Chandelier cells, while Sst
407  includes Martinotti and non-Martinotti cells. We also found that this diversity of interneurons is
408  reflected in FS1-3. While we focused our analysis on the two most populous inhibitory classes,
409  Pvalb and Sst ¢, we saw no clear mapping between FS1-3 and Pvalb/Sst. We therefore decided to
410 introduce an additional multi-channel feature, the symmetry index (see Methods), quantifying the
411  spatial characteristics of spike propagation and, in this manner, account for another aspect of
412  morphology and its impact on the spike signature. Using the symmetry index to look at FS1-3 we
413 saw a separation between FS1 (symmetric spike propagation) and FS2/FS3 (asymmetric spike
414  propagation) (Fig. 5a-b). Notably, clearer separation between Pvalb and Sst models was achieved
415  based on the symmetry index (Fig. 5b, right; n=9 Pvalb models, n=9 Sst models). We conclude
416  that while multi-channel features 1/Vbelow and 1/Vanove do not exhibit clear mapping, accounting for
417  an additional multi-channel feature, the symmetry index, separates biophysical models of Pvalb
418 and Sst.

419

420  Which properties can be deduced from the models and associated in vitro data? Once more we
421  consider three data modalities: models, morphologies and intrinsic properties from the in vitro
422  Pvalb (n=9) and Sst (n = 9) experiments (Table S1). Pairwise comparison between Pvalb and Sst
423 models at the level of ionic conductances reveals statistically significant differences in three
424 conductances with the effect size being largest for Kv3.1 (Fig. 5c¢, f). Elevated Kv3.1 expression
425 is a key differentiator between Pvalb and other inhibitory cell types, i.e. increased Kv3.1 results in
426  a shorter spike width and fast afterhyperpolarization®3%-4, In terms of cellular morphology,
427  pairwise comparison of morphology features (bifurcation distance above and below soma) from
428  the reconstructions in the Pvalb (Fig. 5d, left, dark blue) and Sst (Fig. 5d, middle, orange) cells
429  show a statistically significant difference in the bifurcation distance between above and below
430 soma in Sst cells. Specifically, while Pvalb morphologies are symmetric (i.e., above vs. below
431  bifurcation distance remains similar), Sst possess a more asymmetric morphology with the
432  Dbifurcation distance above being longer than below their soma (Fig. 5d). To look at how the
433  Dbifurcation distance affects spike propagation, we plotted the bifurcation distance above (positive
434  values) and below (negative values) against the spike propagation speed V in the model data. We
435  found that the bifurcation distance above and below the soma is robustly related with the inverse
436  of the EAP propagation velocity (Fig. 5e, right, slope = 2.67, the correlation coefficient r=0.8, p-
437  value=5.12*107°). Once more, a larger bifurcation distance results in a lower spike propagation
438 speed. Thus, the increased bifurcation distance asymmetry leads to more asymmetric spike
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439  propagation along Sst morphologies. On the hand, the symmetry of Pvalb morphologies with
440  respect to bifurcation distance leads to more symmetric spike propagation. Pairwise comparison
441  of in vitro intrinsic electrophysiology properties between Pvalb and Sst (from the same
442  experiments used to develop the Pvalb and Sst experiments) reveals several differences in peak
443  spike rate, rheobase, resting potential (Fig. 5g) among others supporting that Pvalb are more
444 electrotonically compact compared to Sst, which agrees with the observation about differences in
445  Kv3.1 difference (Fig. 5c, f). In summary, the comparison between Pvalb and Sst models,
446  morphologies and intrinsic properties points to a difference in Kv3.1, in bifurcation distance and
447  inaseveral intrinsic properties shown to separate between Pvalb vs. Sst (e.g., peak spike rate) and
448  shape intracellular dynamics as well as the EAP waveform.

449

450  We also examined whether differences in spike propagation symmetry between Pvalb and Sst can
451  be attributed to morphology orientation. While the elongated somadendritic axis of pyramidal
452  neurons can give rise to spike propagation asymmetry*?, the impact of the angle between an
453  extracellular probe and the cellular morphology of inhibitory cells remains unknown. In a separate
454 series of simulations, we varied the angle between the extracellular probe and morphology across
455  Pvalb and Sst models and found that, indeed, certain EAP multi-channel metrics including the
456  symmetry index are affected by this parameter with certain constellations exacerbating the
457  pairwise difference between Pvalb and Sst (Fig. S8). Even so, the robust and highly significant
458  differences in symmetry index found between inhibitory classes can hardly be a mere reflection of
459  rotation effects. While we cannot exclude this parameter contributing to the trends observed, the
460 evidence clearly points to biophysical differences between the clusters rather than aspects of
461  experimental layout. We conclude that Pvalb are distinct from Sst across multiple in vitro
462  modalities considered in our work, a fact also reflected in their distinct EAP signatures that allows
463 their in vivo identification and separation using multi-channel EAP properties.

464

465  Comparisons with ground-truth channelrhodhopsin-tagged Pvalb and Sst units in vivo

466  So far, we deduced cellular properties of in vivo units by comparing the simulated EAP waveform
467  from models linked to specific in vitro experiments of known identity to in vivo recorded EAP
468  waveforms, and vice versa. Opto-tagging is a method that can link EAP measurements to specific
469 cell types by directly photo-stimulating cells that express the light-activated channel
470  channelrhodopsin-2 (ChR2) to a restricted neuronal subpopulation under genetic control*344,
471  Opto-tagging experiments can thus offer ground-truth data with recorded EAPs originating from
472  known populations of neurons. Here, we used a channelrhodopsin reporter line (Ai32) crossed
473  with a driver line in which Cre recombinase expression was driven by Pvalb or Sst promoter (Fig.
474 6a, dark green region). This process resulted in ChR2-tagged Pvalb and Sst neurons that responded
475  to light stimulation with short latency and reliably (Fig. 6b). Extracellular recordings with
476  Neuropixels in these animals detected 25 well-isolated Pvalb units in 8 Pvalb-Cre mice and 18 Sst
477  units in 12 Sst-Cre mice (Fig. 6¢; see Methods; Supplementary Data 3).

478

479  Using this ground-truth data set for two major inhibitory cell classes we pursued one- and multi-
480 channel EAP analysis. For one-channel EAP features (TPW, REP), the opto-tagged Pvalb units
481  exhibit clear overlap with FS from experiments with wild-type animals. Sst units are much more
482  diffuse spanning across the FS/RS-space (Fig. 6d). Direct comparison of one-channel features
483 (TPW, REP) and in vivo activity metrics like spike frequency show that Pvalb are well-separated
484  from Sst (Fig. 6e, top). Pvalb and Sst also exhibit clear differences in terms of multi-channel EAP
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485  propagation, especially when looking at the symmetry index. Specifically, the optotagged
486  recordings reveal that Pvalb exhibit symmetric and fast propagation profile while Sst exhibit less
487  symmetric propagation and increased variability (Fig. 6e-f). Pairwise comparison of the symmetry
488 index for the Pvalb and Sst optotagged units confirms that Pvalb show more symmetric EAP
489  propagation compared to Sst (Fig. 6g), in agreement with simulations (Fig. 5b). We conclude that
490 in vivo ground-truth opto-tagging experiments show that Pvalb and Sst are separable in terms of
491  one- and multi-channel properties (symmetry index) in line with findings from the computational
492  models.

493

494  We also looked for functional differences between Pvalb and Sst in the opto-tagged units. First,
495  we found that Pvalb exhibit higher spike time variability than Sst (Fig. 6h, left). More interesting
496  differences appear for phase-locking to ongoing LFP oscillations. Specifically, we found that
497  Pvalb exhibits stronger phase-coupling than Sst for slower (theta) oscillations. Furthermore, Pvalb
498 have a significantly different spike phase especially for faster oscillations (beta, low- and high-
499  gamma) than Sst with Sst units spiking in a later phase by about 40-50°. (Fig. 6h). We note the
500 similarity of this pattern with the spike phase relationship of wild-type units FS1 and FS2 (Fig.
501 2e). We conclude that the opto-tagging experiments reveal that, beyond separable in terms of
502  multi-channel features, Pvalb units also have more variable spiking as well as stronger coupling to
503 theta and earlier spiking for faster oscillations compared to Sst.

504

505  Discussion

506

507  Understanding the role and function of cellular taxonomies in behavior is an important challenge
508 inan era where advancements in sequencing technologies continuously refine these taxonomies!-
509 4910 Extracellular electrophysiology recordings offer unparalleled ability to monitor cellular
510 activity in vivo across spatiotemporal levels yet lack cell type-specificity, with optotagging making
511 it possible to label only one or two distinct cell types per experiment?4546, Here we introduce a
512  framework for the identification and characterization of major cortical cell types solely based on
513 their extracellular electrophysiology signatures with multiple data modalities. Our starting point
514  are EAP waveforms recorded from high-density Neuropixels probes in mouse primary visual
515  cortex (V1). Using one-channel EAP features we separated units into two clusters, FS and RS, that
516  exhibit differences both in terms of EAP waveform and functional properties such as LFP
517  entrainment. We separately looked at phase coupling in prominent LFP oscillation bands (theta,
518 alpha, beta, low and high gamma) and found that FS units are consistently more entrained across
519  LFP-bands compared to RS units. In agreement with other studies (e.g. *3), FS and RS exhibit
520  significantly higher phase-locking during drifting gratings than during spontaneous activity across
521  LFP-bands. When we looked at the preferred spike phase, we found that FS spiking came earlier
522 in the cycle than RS in beta and low gamma. These observations are in line with the studies of
523  neocortical unit activity in humans and monkeys®®. Specifically, FS phase precedence is also in
524  line with® and opposite to the hippocampal activation pattern observed during high frequency
525  ripples®. When we looked at phase coupling along the cortical depth, we found a diverse
526  landscape. While FS remain consistently more entrained than RS, FS phase precedence over RS
527 s spatially inhomogeneous and particularly pronounced in the granular region (broadly layer 4)
528  for beta, low and high gamma. In contrast, in the supragranular and infragranular regions, FS and
529 RS clusters exhibit less pronounced phase differences across LFP-bands despite significant
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530 differences in coupling strength. We conclude that the FS and RS clusters represent larger families
531  of diverse cell classes organized along the cortical network serving different roles in vivo.

532

533  Expanding the feature set from one-channel to multi-channel EAP features results in further
534  separation within the RS and FS groups into six finer groupings, three FS (FS1, FS2, FS3) and
535 three RS (RS1, RS2, RS3) clusters. We show that the six clusters exhibit functional differences in
536  their dynamics to visual stimuli (e.g., drifting gratings in head-fixed animals) and differential
537  coupling to ongoing LFP oscillations. Looking at the properties of these finer clusters with cortical
538  depth we found increased diversity in their spike-LFP coupling. RS3, for example, exhibits almost
539  double the coupling strength than RS1 in the supragranular region for beta and low gamma (RS2
540 is an intermediate case). On the other hand, in the infragranular region and for low gamma, RS3
541 and RS1 spike phase is similar while RS2 comes earlier (the same happens for high gamma). The
542  differences in RS1-3 are consistent with classes of neurons that possess different biophysical
543  setups as well as a divergence in connectivity patterns. It is known, for example, that the
544  biophysical properties of excitatory V1 neurons vary and depend on cortical depth which, in turn,
545 is expected to have an impact on their firing properties and burstiness 344749, In addition, their
546 intricate connectivity and projections along the anatomical hierarchy can result in a spectrum of
547  functional clusters among excitatory V1 cells that reflect upstream input segregation from earlier
548  brain regions (e.g., various thalamic areas %°-°2). The combination of diverging biophysical
549  properties of V1 excitatory cells combined with localized and class-specific connectivity gives rise
550 to functionally distinct and input-specific RS1-3 clusters. Furthermore, behavior and brain state
551  can further modulate the response properties of excitatory clusters along V1%, The aforementioned
552  points to a network consisting of clusters of distinct biophysical properties and functional in vivo
553  responses that, nevertheless, can be organized and reconfigured in multiple ways, depending on
554  the external input and internal state.

555

556  While excitatory cells exhibit differences in visual responses (though with varying degree of
557  sensitivity and selectivity), inhibitory neurons do not show strong or selective responses
558  confirming observations using the same visual inputs®3. Even so, they play a central role in shaping
559  cortical activity in terms of orchestrating and patterning ongoing and/or evoked oscillations”3854-
560 8. Indeed, when we looked at the phase-coupling properties of FS1-3 we found differences in the
561 alpha, beta, and gamma bands. Furthermore, in an additional analysis we observed differences
562  between FS1-3 (mainly in the gamma bands) as function of cortical depth. While the diversity of
563 inhibitory coupling to ongoing oscillations remains elusive in V1 (though see33%). In agreement
564  with other V1 studies®®’, our experiments support the observation that the most prominent LFP
565  pattern in the waking V1 is a theta-band oscillation (hypothesized as an evolutionary precursor of
566 the primate alpha activity in the visual cortex). Yet, we also found that FS1-3 (but also RS1-3 as
567  well as FS-RS) differentiate their coupling in higher LFP-bands, i.e., in alpha, beta and gamma,
568 rather than in the band of their most prominent pattern (theta). Notably, inhibitory parvalbumin-
569  and somatostatin-positive interneurons exhibit large amplitude, rhythmic hyperpolarization at 3-6
570  Hzin V1 during behavior®®57,

571

572  Thedistinct properties of FS1-3 in EAP waveform and coupling strength/phase to LFP oscillations
573 is reminiscent of the distinct hippocampal inhibitory classes and their coupling to local theta,
574 gamma and sharp wave ripples, e.g.%6:555658-60 For example, two putative inhibitory classes
575 located in the pyramidal layer and the alveus/stratum oriens of hippocampal CA1 with distinct
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576  EAP waveforms also exhibit differences in discharge probability and theta spike phase with one
577  coming earlier by about 30° and both preceding pyramidal spiking®®. The picture is reversed during
578  ripple activity when phase differences between the two inhibitory clusters are minimized and
579  pyramidal spiking precedes both®. In vivo recordings combined with tedious morphological
580 characterization unravel distinct coupling features, e.g. between palvalbumin-expressing basket
581  cells, bistratified and cholecystokinin-expressing interneurons differing their spike phase by 30°-
582  40° during the gamma cycle®®. The coupling strength as well as the phase differences observed
583  between distinct cell classes during oscillations are in line with what we see for FS1-3. Excitatory
584  pyramidal neurons in hippocampus and neocortex also form distinct morphological, molecular,
585  connectivity and functional populations 61646468 A major organizing principle of excitatory
586  neurons is cortical depth and the presence of functionally distinct sublayers % — in CA1, this
587  organization is also reflected in the cellular and functional properties with deep cells spiking faster,
588  burstier and exhibiting stronger modulation for slow oscillations ">"1, Neocortical organization is
589 less understood with respect to its functional modules and their role in oscillations (although see
590 72778) yet the RS1-3 coupling profile points to the existence of a cellular and functional organization
591 along the depth axis.

592

593  To map between the cellular in vitro classes and subclasses and in vivo, EAP-based clusters, we
594  develop biophysical models that reflect key properties of in vitro cell types and use these models
595 to simulate EAP properties. We use a computational optimization workflow to generate and
596 evaluate biophysically realistic, cell type-specific cellular models with active conductances at
597  scale®*. We then use two-way classification to map in vitro classes to in vivo clusters and vice
598  versa, with models providing the link between the two worlds and the associated class/cluster label.
599 In a stepwise manner, we show that a set of one-channel EAP features (TPW, REP) separates in
600 vivo EAP clusters in terms of spike rate (FS vs. RS units) and in vitro morphology classes (AP vs.
601  SP neurons). The fact that narrow EAP waveform units map to FS and AP while wide units map
602 to RSand SP is in line with previous work!41827 A fraction of simulated excitatory neurons also
603  mapped onto FS units that we attribute to some excitatory classes that possess narrow spike width
604  and some model discrepancy that prohibits capturing all EAP features in their full extent. The latter
605 can lead, in a few cases, to mislabeling. Yet, it is the use of these models that also enables linking
606  seemingly disparate data sets in a manner that results in specific and testable hypotheses about the
607 identity and properties of the various clusters (e.g. in terms of the underlying conductance or
608  morphology differences between the in vivo clusters).

609

610 Looking at RS1-3, we found that RS1/SP1 and RS3/SP3 are electrotonically more compact than
611 RS2/SP2 with a possible biophysical mechanism accounting for such differences being the axonal
612 low-voltage activated Ca-conductance. Moreover, we found that basal dendrite differences
613  between RS2/SP2 and RS3/SP3, a feature that could potentially explain the EAP waveform
614  symmetry between RS1-3 clusters. For FS1-3, we found that biophysical models of Pvalb and Sst
615 broadly capture the multi-channel properties of FS1-3 and specifically the distinct symmetry of
616  FS1vs. FS2-3 spike propagation. Notably, Sst cells are diverse in their morphology, which resulted
617 in a wider range of multi-channel features. Comparing Pvalb and Sst models, morphologies and
618 intrinsic properties we found a difference in Kv3.1, in bifurcation distance and in a several intrinsic
619  properties shown to separate between Pvalb vs. Sst (e.g., peak spike rate) and shape intracellular
620  dynamics as well as the EAP waveform. A set of in vivo ground-truth opto-tagging experiments
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621  validated that Pvalb and Sst are separable in terms of one- and multi-channel properties further
622  supporting our observations based on computational models.

623

624  Our study shows that multi-channel EAP features can critically contribute to the separation of
625  meaningful in vivo clusters. The key data modality reflected in these multi-channel properties is
626  the cellular morphology?>%528, It follows that for computational models to account for such
627  properties, they need to account either for the fully reconstructed morphology? or, at the very
628 least, for key aspects of it*2. Moreover, ionic mechanisms along the dendritic morphology also
629 impact spike propagation intracellularly’”"® and extracellularly?>28:32 pointing to an interesting
630  possibility: the use of optotagging experiments to measure cell type-specific (e.g. Pvalb and Sst)
631  multi-channel EAP properties in vivo and, in a second step, using these properties to constrain
632  model parameters along the dendritic arbor where intracellular data is challenging to collect.

633

634  Notably, while Neuropixels recordings result in large numbers of recorded units, the bottom-up
635 approach (i.e., generating data from transgenic lines in vitro by whole-cell patch-clamp and
636  morphology reconstructions of labelled neurons) is a lower-yield and labor-intense process. In
637  addition, the computational framework to turn the in vitro data (features of electrophysiology
638 traces in combination with reconstructed morphologies) into biophysically realistic all-active
639  single-cell models involves computationally intensive multi-objective optimization procedures
640 (see Methods). This results in a natural imbalance in our data sets: a large number of isolated in
641  vivo units compared to a smaller number of in vitro recorded and reconstructed neurons and
642 models. Ever-increasing availability of high-quality, annotated cellular electrophysiology,
643  morphology, transcriptomics data — the precondition to generate faithful, cell type-specific
644  computational models at any scale — is underway and is expected to tackle the imbalance between
645  the number of cellular models and in vivo recorded units. The larger the number of models and
646  cell classes reflected in them, the better and more refined classifiers can be trained to map in vitro
647  types to in vivo EAP clusters. With increasing cellular data and single-cell model availability,
648 increasingly finer classification of EAP signatures can be achieved across different brain areas
649 and, even, species that allows deducing cellular and functional differences between cell classes
650  across data modalities.
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651 Methods
652
653  Invivo Neuropixels recordings

654  Allinvivo recordings come from the Allen Brain Observatory Visual Coding Neuropixels dataset?,
655  accessible via the AllenSDK
656  (https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.ntml) and the DANDI
657  Archive (https://qui.dandiarchive.org/#/dandiset/000021). Recordings were performed in awake,
658  head-fixed mice allowed to run freely on a rotating disk. During the recording, mice either
659  passively viewed visual stimuli (flashes) or viewed a mean-luminance gray screen. Data were
660 collected from 25 wild-type C57BJ/6J mice (24 male, 1 female), and 8 Pvalb-IRES-Cre (6 male,
661 2 female) and 12 Sst-IRES-Cre (8 male, 4 female) crossed with an Ai32 channelrhodopsin reporter
662 line”™. Cre+ cells from Ai32 lines are highly photosensitive, due to the expression of
663  Channelrhodopsin-28°. The Neuropixels probe can record from 384 contacts across 3.84 mm of
664  tissue coverage (selectable from 960 available sites on a 10 mm length shank). In this study, we
665 analyzed recordings from the primary visual cortex (V1). All extracellular spike data were
666  acquired with Neuropixels probes?!, with 30 kHz sampling rate (which achieves 0.033 ms temporal
667  resolution) and a 500 Hz analog high-pass filter. Spike times and waveforms were automatically
668  extracted from the raw data using KiloSort28!,

669

670  Biophysical realistic all-active single-cell models

671  We use the biophysically realistic all-active single-cell model for 18 aspiny (AP) and 15 spiny
672  (SP) mice neurons. The all-active models contain active conductances along the entire neuronal
673  morphology. The dendritic arbors are adopted in the models from the reconstructed morphology.
674  The models were generated with a computational optimization pipeline (Fig. S2) aiming for
675  models that reproduce the intrinsic firing patterns and spike properties of individual neurons from
676  two data modalities: the reconstructed morphology and the somatic electrophysiology response
677  from in vitro whole-cell patch-clamp experiments. The models were fit with several voltage-gated
678  sodium, potassium, and calcium conductances expressed at the cell soma, axon, and dendrites,
679 using data from individual neurons in the Allen Cell Types Database (http://celltypes.brain-
680 map.org/data). The optimization pipeline (multi-objective genetic optimization) was used to
681  optimize the conductance densities by training the models with experimental somatic recordings
682 in response to step currents?*. The active conductances and passive properties marked according
683  to their inclusion in each of the morphology sections (apical, basal dendrites, soma and axon) are
684  reported in Table 1. We optimized both the spiking properties of the cell model (spiking timing,
685  spike rate, etc.) given a particular morphology and features of the intracellular action potential
686  waveform (spike amplitude, width, etc.) Only the models that passed certain criteria (Tol = 0.5 for
687  both spike amplitude and spike width) were selected, where Tol is the tolerance. Specifically, the
688  spike amplitude of the model should be in the range of [1-Tol, 1+Tol]*A_exp, while the spike
689  width of the model should be in the range of [1-Tol, 1+Tol]*W_exp, where A _exp, W_exp
690  represent the spike amplitude and width from experiments.

691

692  After a single-cell model is optimized, we simulated the extracellular potential using NEURON
693 7.5 simulator (https://www.neuron.yale.edu/neuron/) in combination with the Brain Modeling
694  Toolkit (https://github.com/Alleninstitute/bmtk). This toolkit can simulate a variety of
695 intracellular dynamics (e.g., spikes, and membrane voltages), as well as computing additional data
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696  modalities such as the extracellular potential. The extracellular potentials were computed using the
697 line-source approximation, which assumes that membrane current is uniformly distributed within
698 individual computational compartments and the medium is homogenous and isotropic®. Each
699 model was simulated at a sampling rate at 30 kHz, identical to the acquisition rate of in vivo
700 recordings. Each cell model received Poisson-like synaptic input (simulation time: 3s). We
701  recorded the extracellular potential in a Neuropixels-like electrode array, which is a dense grid (5
702  um spacing) consisting of 16 columns and 240 rows (total 3840 recording channels). To mimic
703  Neuropixels recordings, we averaged extracellular potential within a 10 um-by-10 um area for
704  each recording site. The extracellular action potential (EAP) was calculated based on the spike-
705  triggered average of extracellular potentials.

706

707  Data analysis

708  Feature extraction

709  Postprocessing included passing data through a 300 Hz high pass filter before extracting EAP
710  waveforms. To classify cell types, we first extracted features from the extracellular waveform.
711 With high density electrodes, we can record extracellular waveforms of a single unit from multiple
712  sites. The recording site with largest amplitude (amplitude is the magnitude of the extremum of
713 the waveform; Fig. 2b, left) is defined as the site closest to neuron soma, and the extracellular
714 waveform recorded at this site we define as the one-channel waveform. Since the Neuropixels
715  probe has four staggered columns of sites, we selected the two columns on the side of the probe
716  with the largest one-channel amplitude for the one- as well as the multi-channel waveforms. The
717  distance between sites is approximated by their vertical spacing (20 um). The multi-channel
718  waveform of a single unit includes EAPs from the channel with the largest EAP-amplitude and 10
719  additional channels above and below that location, spanning 200 um. Similarly, in the models,
720  we selected the column of electrodes with the largest amplitude one-channel waveform. As
721  expected, the channel with the largest EAP-amplitude in the models was located close to the soma
722 and AIS location.

723

724 For the one-channel waveform (Fig. 2b, left), we calculated two features: TPW (trough-to-peak
725  width) and REP (repolarization time). TPW measures the time that elapses from EAP trough (the
726  global minimum of the curve) to EAP peak (the following local maximum). REP measures the
727  time elapsed from EAP peak to the half of the peak value. These two EAP features capture different
728 aspects of the intracellular potential, the speed of depolarization and of the subsequent after-
729  hyperpolarizationt’*! and are commonly used to separate between fast-spiking (FS) units and
730  regular-spiking (RS) units.

731

732 For the multi-channel waveform (Fig. 2b, middle), we extracted two additional features in the
733 space domain: the inverse of the EAP propagation velocity below (1/Vbelow) and above (1/Vabove)
734 soma along the Neuropixels probe. Velocity measures how fast the EAP propagates along the
735  probe with the point of reference being the EAP trough. When the EAP propagates fast, the time
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736  difference between two adjacent sites can sometimes be estimated as zero — to avoid infinite
737  numbers, we calculated the inverse of velocity instead of velocity. A low value of inverse of
738  velocity, indicates fast propagation. The inverse of propagation velocity below (1/Veelow) and above
739  (1/Vabove) SOma was then estimated by linear regression of the EAP trough at different sites against
740  the distance of the sites relative to soma. We also define the spread of a unit by the range with
741  amplitude above 12% of the maximum amplitude along the probe. Spread measures how far the
742  waveform can propagate along a probe.
743
744 Symmetry index of EAP propagation
745  From the multi-channel EAP recordings, we defined a measure looking at the symmetry of spike
746  propagation in the vertical direction above and below the spike initiation zone. Specifically, we
747  defined the symmetry index (SI) as the distance between each point (1/Vbelow, 1/Vabove) and the
748  diagonal line (y = -x). The distance from point (x0, y0) to the line ax + by + ¢ = 0 can be calculated
749 by the following equations:

__ |ax0+by0+c|

750 SI = N 1)
751  where (x0, y0) = (1/Vbelow, 1/Vabove), and a = 1, b = 1, ¢ = 0 for y = -x. A smaller value in the
752  symmetry index indicates symmetric EAP propagation, while a larger value in the symmetry index
753  indicates more asymmetric propagation.

754

755  Morphology bifurcation distance

756  The bifurcation distance (w) for one bifurcation node is defined as the projection of the line (v)
757  from soma (S) to the position of the bifurcation node (N) projected to a line (u) connecting the
758 soma (S) to anode (L) iny axis (Fig. 5f):

759 w = V[ cosd = ||V|| ——— = T )

[l V]| [[ul]
760  where 8 is the angle between u and w, and ||u|| = +u.u represents the length of the line u. The
761  bifurcation distance is then normalized by the maximal absolute bifurcation distance for each
762  neuron. We excluded the absolute bifurcation distance larger than 200 um in the analysis because
763  the node is too far away from the soma. The bifurcation distances above and below soma were
764  calculated by the summation of the bifurcation distance for all the bifurcation nodes above and
765  below soma, respectively. The sign of the bifurcation distances indicates the location of bifurcation
766  nodes, where the positive sign indicates above soma, and negative sign indicates below soma.
767  While comparing the bifurcation distances below vs. above the soma, we used the absolute value
768  of the bifurcation distances.
769
770  ldentification of EAP waveform clusters using K-means clustering
771  To identify cell clusters, we applied K-means clustering on the EAP features. K-means clustering
772 is an unsupervised technique that seeks to find centroids that minimize the average Euclidian
773  distance between points in the same cluster to the centroid. The optimal number of clusters was
774  identified by two methods as in??.
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775

776  One method is the standard elbow method that consists of plotting the within cluster sum of squares
777  (WCSS) as a function of the number of clusters and picking the elbow of the curve as the number
778  of optimal clusters. The global impact of all clusters’ distortions is given by the quantity:

779 S =251 (3)

2
780 i = Bec, |I%i = | )
781 where [; is the distortion of cluster j that is a measure of the distance between points x; in cluster
782 C;and its centroid ;. In this paper, we have plotted WCSS curve as Sk normalized by Si.

783

784  We also used a second method, the density function f(K), that consists of plotting f(K) as a function
785  of number of clusters and picking the minimal of the curve as the number of optimal clusters. The
786  f(K) is from®;

Sk .
Sk K>1
787 FK) = {aKsK_l’ Y Sk-1# 0K > 5)
1, others
1——, if K=2and Ny >1
788 ay = d (6)

(g1 +—22, if K> 2and Ny > 1

789  The value of f(K) is the ratio of the real distortion to the estimated distortion and is close to 1 when
790  the data distribution is uniform. The smaller f(K), the more concentrated the distribution.

791

792  We selected K based on these two methods and applied K-means to data with appropriate number
793  of K for 1000 times with random initial values.

794

795  For the one-channel clustering, we used the standard one-channel waveform features (TPW and
796  REP). To implement multi-channel clustering, we adopt the two one-channel clusters (RS and FS)
797  and cluster each of them individually using the multi-channel features (1/Voelow and 1/Vabove).

798

799  Supervised machine learning for classification

800 The primary motivation for constructing the two-way classifiers was to bi-directional mapping
801  between the experiment-based and model-based results. We built the experiment-based classifiers
802  using on experimental EAP features and labels, then applied it to the model data to identify model
803  neurons in the experimental space. Similarly, we built the model-based classifiers using model
804  EAP features and labels, then applied it to the experimental data to identify experimental units in
805 the model space. To train the classifier for the unbalanced FS and RS, before training, we have
806  upsampled the ratio of FS and RS be 1:1. All classifications were performed with Monte-Carlo
807  cross-validation consisting of a 100 “bootstrap composites” of individual classifiers (the partitions
808 are done independently for each run) where the classifier was trained on a subset of the data (75%)
809 and then the confusion matrix and accuracy were calculated on the left-out data (25%). We
810  assigned the label based on the most frequently predicted label of the composite classifiers. For
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811 the classifier, we used a support vector machine (SVM) with a linear kernel (regularization
812 parameter C=1) for two classes, or a random forest (gini criterion for splitting the nodes of a
813  decision tree) for more than two classes.

814

815  Single unit firing properties

816  For this analysis, we only accounted for units with an EAP amplitude larger than 50 pV and a
817  minimum of 100 spikes. Firing rate was calculated by N/T during the recording session, where N
818 is the number of spikes and T is the total time in seconds. Coefficient of variation (CV) was
819 calculated as the standard deviation of the interspike interval (I1SI) divided by mean of ISI. The
820 local variation (LV) is similar to CV but measures variation in adjacent I1SIs and was calculated
821  bhy®%

822 CV = \/ﬁ n (T, —T)?/T ©)
_ 1 yn-13TiTisn)?
823 LV = = N (8)

824  where T; is the duration of the ith ISI, n is the number of I1SIs, and T = % ™, T; is the mean ISI.

825

826  Visual stimulus metrics

827  The three relevant visual stimulus metrics for drifting gratings used in the paper are f1/f0, the
828  modulation index, and lifetime sparseness (Table S2).

829  f1/f0: the ratio of the 1st harmonic (response at the drifting frequency) to the 0" harmonic (mean
830 response). A high f1/f0 ratio indicates that the firing of the unit is modulated at the temporal
831  frequency of the grating, while a low f1/f0 indicates that the unit fires relatively constantly during
832  the presentation of the grating.

833  Modulation _index (MI): quantifies the phase-dependent responses to drifting gratings. Ml
834  measures the difference in power of the visually evoked response at a unit’s preferred stimulus
835 frequency versus the average power spectrum®. MI > 3 corresponds to strong modulation of
836  spiking at the stimulus frequency (indicative of simple-cell-like responses).

837  Lifetime sparseness: the selectivity of individual neurons to drifting gratings at different
838  orientations and temporary frequencies was measured using lifetime sparseness, which captures
839  the sharpness of a neuron’s mean response across different stimulus conditions®. A neuron that
840  responds strongly to only a few conditions will have a lifetime sparseness close to 1 whereas a
841  neuron that responds broadly to many conditions will have a lower lifetime sparseness.

842  Detailed information about each metric is available at:

843  https://allensdk.readthedocs.io/en/latest/visual _coding_neuropixels.html

844

845  Phase-locking Analysis

846  For the phase-locking analysis, we only include units with an EAP amplitude larger than 50 uV
847  and a minimum of 100 spikes. For each unit, the maximal number of spikes considered in the
848 analysis is limited to 10000. The percentage of phase-locked units was calculated by the number
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849  of units that fires at a preferred direction (assessed by the Rayleigh test) divided by the total number
850  of units. To test whether spikes preferred certain phases of the LFP, the instantaneous phase of the
851  LFP at several frequency bands (theta = 3-8 Hz, alpha = 8-12 Hz, beta = 12-30 Hz, low gamma =
852  30-50 Hz, high gamma = 50-90 Hz) was first calculated, using the Hilbert transform on each
853 filtered LFP. 180° is marked as the trough of the cycle. We chose pairs of units and LFPs recorded
854  on different neighboring electrodes. Each spike was assigned with an instantaneous phase for each
855  frequency band. A strongly phase-locked unit has a preferred direction in the phase histogram,
856  while a weak phase-locked unit has no preferred direction in the phase histogram (Fig. S6b). To
857  determine if a neuron exhibited a significant phase preference, we applied the Rayleigh test for
858  non-uniformity. With the Rayleigh test, the null hypothesis is uniformity (e.g., no preferred
859  direction), whereas the alternative is unimodality (e.g., a single preferred direction). A cell was
860  considered phase-locked at a specific frequency range if the null hypothesis of uniformity of the
861 phase distribution could be rejected at a p-value < 0.001 using a Rayleigh test®"28, When the test
862 indicated non-uniformity, the phase distribution was fitted to a circular normal distribution (von
863  Mises distribution), with the concentration parameter (kappa) indicating the depth of the phase-
864  locking in the direction of the mean phase. The inverse of kappa is analogous to variance of the
865  normal distribution. For large kappa, the distribution becomes very concentrated around the mean
866  phase, indicating a high phase-locking. Kappa values range from 0 to 1. Kappa, and preferred
867  phase were calculated by a circular statistics toolbox pycircstat
868  (https://github.com/circstat/pycircstat).

869

870  Detection of opto-tagged neurons

871  The peri-stimulus time histogram (PSTH) of spikes was used to present the light evoked neuronal
872  responses. Time bins of 1 ms of PSTHs were used to measure the response to the light stimulation
873  (square-wave pluses lasting 10ms). To prevent contamination by light artifacts, we only counted
874  spikes in the window from 2 to 8 ms of the 10 ms light stimulation. The opto-tagged neuron was
875  detected when the average firing rate across trials in the response window was higher than 25 Hz,
876  and 2.5 times greater than its firing rate in a corresponding time window immediately preceding
877  stimulus onset.

878

879  Statistical analysis

880  The Shapiro-Wilk test was used to determine whether the sample data have come from a normal
881  distribution. The two-sample t-test (for normal distribution) or the nonparametric Mann—-Whitney
882 U test (for non-normal distribution) was used for statistical analysis of differences between means
883 from two samples when appropriate. One-way ANOVA (for normal distribution) or the
884  nonparametric Kruskal-Wallis H-test (for non-normal distribution) was used for comparisons
885  across the multiple groups, with p-values corrected using the Holm-Bonferroni method (a step-
886  down method using Bonferroni adjustments) for multiple tests. We used two sample z test for
887  proportions to compare the percentages of phase locked cells between FS and RS and corrected
888  the p-values via the Holm-Bonferroni method for multiple tests.
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Data Availability

The in vivo Neuropixels dataset is available for download in Neurodata Without Borders (NWB)
format via the AllenSDK?3:

https://allensdk.readthedocs.io/en/latest/visual _coding_neuropixels.html

The Neurodata Without Borders files are also available on the DANDI Archive?3:
https://gui.dandiarchive.org/#/dandiset/000021

The in vitro electrophysiology data and the reconstructed morphology used to generate single-cell
models are available in:

https://celltypes.brain-map.org

The cell ID used in the paper was listed in the Table S1.

The optotagging experimental data set with Pvalb and Sst neurons is available through:
https://allensdk.readthedocs.io/en/latest/ static/examples/nb/ecephys optotagging.html

Source data are provided with this paper.

Code Availability

The codes for calculating EAP features and clustering cell classes were custom written in Python
and are made available on GitHub (https://github.com/yinawei/Mouse V1 EAP_Analysis) with
DOI (10.5281/zenodo.7679748).

The all-active mouse single-neuron models were generated using a Python pipeline and are also
available on GitHub (https://github.com/yinawei/Mouse-all-active-models-EAP) with DOI
(10.5281/zenodo.7679762).
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1129  Table 1. Inclusion of each parameter in the morphology sections

Parameters | Ra | Qpas |€pas | Cm | Inh | Nav | Kt | Kd |Kv |Kv |Im | SK | Ca Ca
31 |2 HVA | LVA
Apical v oW N R R R X | x \ X v o x | x X
Basal N v v AN X X \ X v | x X X
Soma v \ v [N X X \ X x | x \ \
Axon N W Vo[V x NN N N x N \
1130
1131  Table 2. Stimulus metrics
Stimulus | Metric Description
drifting | modulation index | The phase-dependent responses to drifting gratings
gratings | f1/f0 The ratio of the 1st harmonic to the 0™ harmonic
lifetime sparseness | The sparseness of individual neurons
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1135  Figure 1. Extracellular action potential (EAP) recordings from in vivo experiments (a-d) and
1136  single-cell modeling (e-g). a) Left, labels for Cre-line and morphology (spiny vs. aspiny) groups
1137  of single neurons used in this study characterized in vitro via intracellular electrophysiology and
1138  morphology reconstructions: Right, in vivo EAP waveform analysis typically results in two
1139  clusters, fast-spiking (FS) vs. regular-spiking (RS) units. b) Primary visual cortex (V1) in the
1140  mouse brain (left) and typical cortical depth placement of a Neuropixels probe along V1. ¢) The
1141 384 electrode sites of the Neuropixels probe are densely arranged along the linear shank probe
1142 (left; 20 um vertical spacing, 2 sites per row; black squares: location of recording sites). EAP
1143  waveforms from two example units (unit #1: FS; unit #2: RS) including the channel with the largest
1144  amplitude (closest to the soma, bolded lines) and channels above and below the soma. d) Top: the
1145  number of Neuropixels-implanted mice for wild-type (n=24), parvalbumin-expressing (Pvalb,
1146  n=8) and somatostatin-expressing (Sst, n=12); bottom: the distribution of units per wild-type
1147  mouse recorded in V1 during drifting gratings ( total number of units = 1204). Distribution of units
1148  along the V1 depth axis with O indicating the center of layer 4. e) Bio-realistic, single-cell models
1149  of V1 (“all-active”) are generated from in vitro experiments and activated via synaptic background
1150 toelicit intracellular activity and associated EAP signals in the vicinity of the cellular morphology.
1151  The cellular morphology is represented with a spherical soma and full dendritic reconstruction
1152  (axon not shown). Example simulations of EAP signals are shown for a spiny (top: red, cell I1D:
1153  395830185) and an aspiny (bottom: blue, cell ID: 469610831) single-cell model. f) Four examples
1154  of the multi-channel EAP including the channel with the largest amplitude (bolded lines, closest
1155 to the soma) and channels above and below the soma (top: 2 spiny models; bottom: 2 aspiny
1156  models). g) In total, 33 single-cell models (15 spiny and 18 aspiny) were generated using a
1157  computational optimization framework and included in the study covering a range of major
1158  reporter lines and cortical depths. Source data are provided as a Source Data file.
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1163  Figure 2. Clustering of in vivo V1 units from wild-type mice based on extracellular action
1164  potential (EAP) features during drifting gratings results in two one-channel and six multi-
1165 channel clusters with distinct EAP properties. a) Animals are exposed to visual stimuli (e.g.,
1166  flashes, drifting gratings) while running on a wheel with Neuropixels probes recording
1167  extracellular V1 activity. b) One-channel EAP waveform features (left) from the location of the
1168  largest EAP amplitude: trough-peak width (TPW), and repolarization time (REP). Multi-channel
1169 EAP waveform features: the inverse of propagation velocity below (1/Vbelow) and above (1/Vabove)
1170  soma are separately estimated by linear regression (right, red lines). c¢) Unsupervised clustering
1171  on one-channel EAP features (TPW and REP) results in two major populations, fast-spiking (FS)
1172 and regular-spiking (RS) units. Subsequently, unsupervised clustering of each population using
1173  multi-channel EAP features (1/Vbelow and 1/Vabove) results in three clusters, respectively. c) One-
1174  vs. multi-channel clusters. d) The one-channel clusters (923 RS and 281 FS from 25 wild-type
1175  mice, left), multi-channel clusters FS1-3 (right top) and multi-channel clusters RS1-3 (right
1176  bottom) are shown including two clustering metrics: within cluster sum of squares (WCSS) and
1177  density function. The red dotted line indicates the number of optimal clusters. t-distributed
1178  stochastic neighbor embedding (t-SNE) for FS1-3 (right top, n=130 FS1, n=82 FS2, n=69 FS3)
1179  and RS1-3 (right bottom, n=479 RS1, n=235 RS2, n=209 RS3) units based on features extracted
1180  from multi-channel waveforms. The spatial propagation of EAPs is distinct for the clusters (gray:
1181  individual units). Data are presented as mean + SD (standard deviation). €) One-channel FS and
1182 RS clusters show distinct interspike interval (ISI) distributions (Mann-Whitney U test, two-sided,
1183  p=0.0, total 2900284 spikes of FS, 4586637 spikes of RS). Response properties of the multi-
1184  channel clusters to drifting gratings shows that RS1-3 exhibit distinct properties in the overall
1185  excitability (spike rate, coefficient of variation: CV, local variation: LV, n=419 RS1, n=173 RS2,
1186 n=153 RS3) and stimulus-dependent response characteristics (f1/f0, modulation index, lifetime
1187  sparseness, n=430 RS1, n=182 RS2, n=156 RS3). Kruskal-Wallis H-test; p-values corrected using
1188 the Holm-Bonferroni method for multiple tests. *p<0.05, **p<0.01, ***p<0.001. f) Phase
1189  distribution of examples of a FS (blue) and RS (red) unit at theta, alpha, beta, low gamma
1190 (lgamma), high gamma (hgamma) frequency band (black arrow: preferred phase and kappa). Q)
1191  Left: The percentage of phase-locked units of one-channel FS (n=203) and RS (n=745) clusters at
1192  different LFP frequency bands: theta, alpha, beta, low gamma, high gamma. Two sample z test for
1193  proportions with p values corrected by the Holm-Bonferroni method for multiple tests. Right:
1194  kappa and preferred phase. Data are presented as mean + SEM (standard error of mean). Mann-
1195  Whitney U test, two-sided, *p<0.05, **p<0.01, ***p<0.001. h-i) Phase-locking analysis of multi-
1196  channel RS (d, n=419 RS1, n=173 RS2, n=153 RS3) and FS (e, n=100 FS1, n=54 FS2, n=49 FS3)
1197  clusters to ongoing oscillations in different LFP bands. Kruskal-Wallis H-test; p-values corrected
1198  using the Holm-Bonferroni method for multiple tests. *p<0.05, **p<0.01, ***p<0.001. Source
1199 data are provided as a Source Data file.
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1204  Figure 3. Classification of one-channel EAP (extracellular action potential) features of single-
1205 cell models and correspondence to in vitro data modalities. a-b) Bio-realistic single-cell
1206  models (one aspiny, AP, panel a; one aspiny, SP, panel b) activated via synaptic activity along
1207  their reconstructed dendrites result in spiking. Top: synaptic input (black bars: spike raster plot);
1208  Middle: intracellular voltage Vi trace (orange); Bottom: extracellular voltage Ve (green) close to
1209 the soma (location designated by the green square). Time traces (left) and mean Vi and EAP
1210  waveforms (right). ¢) One-channel EAP analysis from single-cell models (n=33, blue: AP; red:
1211  SP) and in vivo units (light grey: fast-spiking (FS) units; dark grey: regular-spiking (RS) units). d)
1212  Comparison of TPW (trough-peak width, two-sample t-test, two-sided, p=0.00025) and REP
1213  (repolarization time, Mann-Whitney U test, two-sided, p=0.00024) from simulated EAP
1214  waveforms between AP (n=18) and SP (n=15) models. Box plots show center line as median, box
1215  limits as upper (75%) and lower (25%) quartiles. The whiskers extend from the box limits by 1x
1216  the interquartile range. ***p<0.001. e) Comparison of intrinsic properties extracted from in vitro
1217  Vidynamics between the AP (n=18) and SP (n=15) neurons (also used to generate the single-cell
1218 models). Mann-Whitney U test (two-sided) was used for width, adaptation, 7, input res.
1219  (resistance), ramp time, and F/I slope; two-sample t-test (two-sided) used for rheobase, spike rate,
1220  and Vm rest (resting potential). ***p<0.001. f) Model-based classifier: classifier trained on one-
1221  channel EAP features (TPW, REP) of single-cell models to discriminate between AP (n=18) and
1222  SP (n=15) neurons (left: confusion matrix; middle: beta coefficients of the linear SVM classifier,
1223  bootstrap sampling 100 times; right: Sankey diagram showing the prediction on the test dataset).
1224  g) Same layout as in f, experiment-based classifier: classifier trained on one-channel EAP features
1225 (TPW, REP) of in vivo units to discriminate between FS (n=281) and RS (n=923) populations
1226  labeled via K-means clustering. h) One-channel EAP features of single-cell models (model labels:
1227  Cre-reporter lines, 4 Scnnla, 6 Rorb, 5 Nr5al, 9 Pvalb and 9 Sst) classified as FS or RS by using
1228  the experiment-based classifier. Source data are provided as a Source Data file.
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1231  Figure 4. Distinct cellular properties of multi-channel regular-spiking (RS1-3) clusters. a)
1232 Clustering of spiny (SP) models using K-means clustering based on multi-channel extracellular
1233 action potential (EAP) features. Both the elbow method and density function analysis
1234  independently identify three multi-channel SP clusters (left: within cluster sum of squares (WCSS)
1235 and density function, broken red line: optimal number of clusters; right: model-based SP clusters;
1236  inset: mean EAP-waveform of each RS-population). SP1-3 and RS1-3 are shown using the multi-
1237  channel features 1/Velow and 1/Vanove (the inverse of spike propagation velocity below/above soma
1238 location). b) Spike propagation along the simulated probe as function of distance from the soma
1239  (channel with largest EAP amplitude) for the three SP classes, SP1-3 (grey lines: propagation of
1240  individual models; n=5 SP1, n=7 SP2, n=3 SP3; colored lines: mean + SD (standard deviation)).
1241  c) The model-based classifier (random forest) trained on the multi-channel features (1/Voelow and
1242  1/Vabove) identifies SP1-3 (left: confusion matrix; middle: feature importance based on classifier;
1243  right: sankey diagrams show the prediction on the test dataset). d) Same layout as in c, the
1244  experiment-based classifier was trained on multi-channel in vivo EAP features to discriminate
1245  between RS1-3. ) Comparison between model conductances ascribed to SP1-3. The largest effect
1246  size across the conductances is found for axonal Ca_LVA. # indicates Cohen’s d effect size >0.8.
1247  f) Bifurcation distance (w) of one bifurcation node in the reconstructed morphology of a neuron is
1248  defined as the projection of the vector (v) from soma (S, red dot) to the position of the bifurcation
1249  node (N, blue dot) projected to a line (u) connecting the soma (S) to a node (L) in y axis. g)
1250  Morphology bifurcation distance above soma (left) and below soma (middle). Right: inverse of
1251  wave propagation velocity vs. the bifurcation distance (line: linear fit). h-i) Intrinsic properties
1252  from in vitro experiments based on SP1-3 (subthreshold and spiking responses). j) Comparison of
1253  cellular time constant (7) and max spike rate (response to dc current injections) among in vitro
1254  experiments based on SP1-3. # indicates Cohen’s d effect size >0.8. Source data are provided as a
1255  Source Data file.
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1258  Figure 5. Distinct cellular properties of multi-channel FS clusters. a) The spike propagation
1259  symmetry index separates FS1 from FS2-3 (left, circles: experimental measurements; middle:
1260 effect size measured by Cohen’s d; right: mean spatiotemporal spike propagation of multi-channel
1261  clusters FS1-3; n= 130 FS1, n=82 FS2, n=69 FS3). Kruskal-Wallis H-test, F=111.41, p-values
1262  corrected using the Holm-Bonferroni method for multiple tests, ***p<0.001. Error bars represents
1263  abootstrap 95% confidence interval. b) Left: the multi-channel features (Vbelow, Vanove) clustering
1264  FS units (grey) and superposed multi-channel EAP features of models of Pvalb (blue, n=9) and Sst
1265  (yellow, n=9) neurons. Right: spike propagation symmetry index for Pvalb and Sst single-cell
1266  models. two-sample t-test, two-sided, p=0.000998. c) Pairwise comparison of model conductances
1267  between Pvalb and Sst models. The strongest and most statistically significant difference is shown
1268 in the dendritic Kv3.1 conductance. Mann-Whitney U test, two-sided, *p<0.05. d) Morphology
1269  bifurcation distance above (two-sample t-test, two-sided, p=0.45) and below (two-sample t-test,
1270  two-sides, p=0.03) soma between Pvalb (left, dark blue) and Sst (right, orange) models. *p<0.05.
1271  e) Theinverse of spike propagation velocity vs. the bifurcation distance (line: linear fit; + indicates
1272  above soma, - indicates below soma). f) Pairwise comparison of Pvalb vs. Sst model conductances
1273  (top panel, -log10(p-value), black line: p=0.05; bottom panel, Cohen’s d effect size, black lines:
1274  |d|=0.8). The comparison of dendritic Kv3.1 conductance as shown in c. Mann-Whitney U test,
1275  two-sided, *p<0.05. g) Left: pairwise comparison between intrinsic properties of Pvalb and Sst
1276  neurons measured in vitro (same experiments as the ones used to develop to single-cell models).
1277  Maximum spike rate to dc current injections separates between Pvalb and Sst neurons. Mann-
1278  Whitney U test, two-sided, p=0.0067; Right: pairwise comparison between nine intrinsic
1279  properties of Pvalb vs. Sst neurons (top: statistical significance expressed in terms of -log10(p-
1280 value); solid line: p-value=0.05, broken line: p-value=0.01; bottom: Cohen’s d effect size, solid
1281  black line: |d|=0.8) also used to generate the computational models. Mann-Whitney U test, two-
1282  sided, *p<0.05, **p<0.01, ***p<0.001. Source data are provided as a Source Data file.
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1287  Figure 6. In vivo extracellular action potential (EAP) and functional properties of opto-
1288 tagged Pvalb and Sst neurons. a) Light sensitive channelrhodopsin-2 (ChR2) channels were
1289  virally expressed in two inhibitory cell populations, Pvalb and Sst, in mouse V1 (dark green areas).
1290  The animals were then implanted with Neuropixels probes. b) Example units responding to light
1291  activation (light blue regions) in V1. Top: spike rasters; Bottom: spike frequency. Left: a non-
1292  responsive unit; Middle: a light-responsive Pvalb unit; Right: a light-responsive Sst unit. c)
1293  Examples of multi-channel EAPs of Pvalb units (dark blue) and Sst units (orange). Two of the
1294 units are the same ones as in panel b (boxes). d) One-channel EAP features (trough-peak width:
1295  TPW, repolarization time: REP) for the Pvalb (dark blue, n=24) and Sst units (orange, n=18) from
1296 the optotagging experiments (inset: mean EAP waveforms; light gray: FS units, dark gray: RS
1297  units, from wild-type animals as in Fig. 2d). e) Comparison of EAP properties between optotagged
1298  Pvalb (n=24) and Sst (n=18) units (top: one-channel properties; bottom: multi-channel properties).
1299  Box plots show center line as median, box limits as upper (75%) and lower (25%) quartiles. The
1300  whiskers extend from the box limits by 1x the interquartile range. Mann-Whitney U test, two-
1301  sided, **p<0.01, ***p<0.001. f) EAP amplitude (left) and propagation (right) along the
1302  extracellular channels as function of distance from the soma (taken as the channel with the largest
1303  EAP amplitude) for the optotagged Pvalb (n=24) and Sst (n=18) units (gray lines: individual units;
1304  colored lines: mean £SD (standard deviation)). g) Comparison of the symmetry index for Pvalb
1305 (n=24) vs. Sst (n=18) units (two-sample t-test, two-sided, p=0.012). h) Left: Comparison of
1306  response pattern during drifting gratings in the opto-tagging experiments (CV: coefficient of
1307  variation). Box plot representation is similar as in panel (e). Mann-Whitney U test, two-sided,
1308 p=0.0076, n=24 Pvalb, n=18 Sst; Right: spike-field coherency metric kappa and preferred spike
1309 phase of optotagged Pvalb and Sst for various LFP frequency bands. Data are presented as mean
1310 + SEM (standard error of mean). Mann-Whitney U test, two-sided, *p<0.05, **p<0.01,
1311  ***p<0.001. Source data are provided as a Source Data file.
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