

1 **Neurodevelopmental disorders and cancer networks share pathways; but**
2 **differ in mechanisms, signaling strength, and outcome**

3

4 Bengi Ruken Yavuz^{1†}, M Kaan Arici^{1,2†}, Habibe Cansu Demirel^{3†}, Chung-Jung Tsai⁴,
5 Hyunbum Jang⁴, Ruth Nussinov^{4,5*}, Nurcan Tuncbag^{6,7,8*}

6

7 ¹Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey

8 ²Foot and Mouth Diseases Institute, Ministry of Agriculture and Forestry, Ankara, 06044,
9 Turkey

10 ³Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey

11 ⁴Computational Structural Biology Section, Frederick National Laboratory for Cancer
12 Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD
13 21702, U.S.A.

14 ⁵Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine,
15 Tel Aviv University, Tel Aviv 69978, Israel

16 ⁶Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul,
17 Turkey

18 ⁷School of Medicine, Koc University, Istanbul, 34450, Turkey

19 ⁸Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey

20

21 [†] These authors contributed equally to this work.

22 * Co-corresponding authors

23

24 Correspondence should be addressed to:

25 Ruth Nussinov, Frederick National Laboratory for Cancer Research
26 Email: NussinoR@mail.nih.gov

27 Nurcan Tuncbag, Koc University
28 Email: ntuncbag@ku.edu.tr

29

30 **Abstract**

31 Neurodevelopmental disorders (NDDs) and cancer are connected, with immunity as their
32 common factor. Their clinical presentations differ; however, individuals with NDDs are more
33 likely to acquire cancer. Schizophrenia patients have ~50% increased risk; autistic individuals
34 also face an increased cancer likelihood. NDDs are associated with specific brain cell types at
35 specific locations, emerging at certain developmental time windows during brain evolution.
36 Their related mutations are germline; cancer mutations are sporadic, emerging during life. At
37 the same time, NDDs and cancer share proteins, pathways, and mutations. Here we ask exactly
38 which features they share, and how despite their commonality, they differ in outcomes. Our
39 pioneering bioinformatics exploration of the mutations, reconstructed disease-specific
40 networks, pathways, and transcriptome profiles of autism spectrum disorder (ASD) and
41 cancers, points to elevated signal strength in pathways related to proliferation in cancer, and
42 differentiation in ASD. Signaling strength, not the activating mutation, is the key factor in
43 deciding cancer versus NDDs.

44

45 **Keywords:** autism, schizophrenia, intellectual disorder, weak/strong mutations, disease-
46 specific networks, proliferation/differentiation, signaling pathways

47 Introduction

48 NDDs arise from a dysfunctional nervous system during embryonic brain development. The
49 origins of NDDs are still unclear. They may originate from dysregulation of neuron
50 differentiation, during synapse formation and maturation, or other complex processes in the
51 course of brain evolution, such as emergence from progenitor cells, neuron phenotypic
52 specification, migration, and specific synaptic contacts. Flaws can result in faulty wired
53 neuronal circuits (Nussinov et al., 2023, 2022a). Despite differing from processes associated
54 with the emergence of cancer, data indicate that NDDs and cancer are related, with immunity
55 likely the common factor. The immune and nervous systems coevolve as the embryo develops
56 (Nussinov et al., 2022a). The outcomes, cancer or NDDs, reflect the different cell cycle
57 consequences, proliferation in cancer and differentiation in NDDs. Proliferation requires a
58 stronger signal to promote the cell cycle than differentiation does. This further suggests that in
59 addition to nodes in the major signaling pathways, transcription factors (TFs) and chromatin
60 remodelers, which govern chromatin organization, are agents in NDDs. Gene accessibility
61 influences the lineage of specific brain cell types at specific embryonic development stages
62 (Nussinov et al., 2023).

63 Here, we aim to uncover the shared features between neurodevelopmental disorders and
64 cancer. We expect that these will help us understand the challenging question of how
65 expression levels and mutations in the same pathways, and even the same proteins, including
66 TFs and chromatin remodelers, can lead to NDDs versus cancer, with vastly different
67 phenotypic presentations. Especially, we aim to discover what are the determining features
68 deciding whether the major outcome is NDDs or cancer. We address this daunting goal by
69 comprehensively leveraging mutations, transcriptomic data, and protein-protein interaction
70 (PPI) networks. We compare the effects of mutations on the pathogenicity of commonly
71 mutated genes in NDDs and cancer. We observe that mutations in NDDs tend to be weaker

72 than those in cancer. To evaluate the pathway-level properties of NDDs and cancer, we
73 reconstruct the disease-specific networks of autism spectrum disorder (ASD) and breast cancer
74 and identify common TFs. Most of the targets of these common TFs are mutated in both ASD
75 and breast cancer and involved in mitogen-activated protein kinase (MAPK), the cell cycle,
76 and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathways. By using
77 transcriptomic profiles of ASD and breast/brain/kidney cancers, we show that in breast cancer
78 samples, there is an increase in signaling strength in shared pathways involved in proliferation
79 and a decrease in differentiation. This, however, is not the case among ASD samples, where
80 the signaling level is high in shared pathways involved in differentiation and low in
81 proliferation.

82 Recent epidemiological studies on large cohorts of NDD patients demonstrated an
83 increased risk for cancer compared to the general population. In one study, a standardized
84 incidence ratio model was applied to a cohort of 8438 patients with autism retrieved from the
85 Taiwan National Health Insurance database during 1997-2011. It implicated an increase in
86 cancers of the genitourinary system and ovary among children and young adults (Chiang et al.,
87 2015). Increased cancer risk was also observed in a population-based study among 2.3 million
88 individuals with ASD from Nordic countries during 1987-2013 with co-occurring birth defects,
89 including intellectual disability (Liu et al., 2022). A correlation between autism and cancer with
90 shared risk factors was also pointed out (Kao et al., 2010). Another cohort study proposed that
91 patients with bipolar disorder and their unaffected siblings have an especially higher risk of
92 breast cancer compared to normal control groups (Chen et al., 2022). The association between
93 brain, hepatocellular, and lung cancer among people with epilepsy was manifested by animal
94 experiments, genotoxicity studies, and epidemiological observations. Possible underlying
95 mechanisms have also been suggested (Singh et al., 2009, 2005).

96 NDD data has expanded recently, particularly *de novo* mutation data obtained by trio-
97 sequencing and publicly available databases. However, it is still not as prevalent as the whole
98 exome/genome sequencing data for cancer (Bragin et al., 2014; Turner et al., 2017). 32,991 *de*
99 *novo* variants obtained from 23,098 trios are deposited in denovo-db (Turner et al., 2017).
100 According to the database definition, *de novo* mutations are germline *de novo* variants present
101 in children but not in their parents. The Deciphering Developmental Disorders (DDD) Study
102 provides detailed genotype-phenotype information for 14,000 children with developmental
103 disorders, and their parents from the UK and Ireland. Additionally, there are some knowledge
104 databases with curated sets of genes and variants associated with one/multiple
105 neurodevelopmental diseases or cancer (Abrahams et al., 2013; Piñero et al., 2015).

106 Here, we use *de novo* mutations in ~10,000 samples with NDDs from denovo-db and
107 somatic mutations of ~10,000 tumor samples from The Cancer Genome Atlas (TCGA). Our
108 large-scale analysis leads us to conclude that networks of NDDs and cancer can have shared
109 proteins and pathways that differ in mechanisms, signaling strength, and outcomes. This
110 conclusion is in line with our premise that cell-type specific protein expression levels of the
111 mutant protein, and other proteins in the respective pathway and their regulators, the timing of
112 the mutations, embryonic or sporadic during life, and the absolute number of molecules that
113 the mutations activate, can determine the pathological phenotypes, cancer and (or)
114 developmental disorders (Nussinov et al., 2022b). Our thesis is that these define the strengths
115 of productive signaling (Nussinov et al., 2022c). In cancer, the major impact is on cell
116 proliferation, while in NDDs it is on differentiation.

117

118 **Results**

119 **NDL versus cancer mutations and networks data**

120 NDDs and cancer are highly complex diseases caused by impairments in cellular processes
121 such as cell growth, proliferation, and differentiation. This challenging complexity has led to
122 the community's desire to understand how their genetics, cellular environment, and signaling
123 pathways are converging to express their distinct phenotypic outcomes (Jiang et al., 2022;
124 Nussinov et al., 2022d; Parenti et al., 2020; Qi et al., 2016). Cancer results from gene alterations
125 that provide cells with a growth advantage. Whereas numerous studies focused on the
126 connection between the mutations—germline, *de novo*, or somatic—and cancer (Huang et al.,
127 2018; Liu et al., 2020; Qing et al., 2020; Rashed et al., 2022; Stratton, 2008; Xu et al., 2020),
128 the number of studies related to NDDs increased, though still lagging behind, far from reaching
129 the same level. Qi et al. observed that among patients with NDDs, germline damaging *de novo*
130 variants are more enriched in cancer driver genes than non-drivers (Qi et al., 2016).
131 Bioinformatics analyses conducted on 219 cancer-related genes from Online Mendelian
132 Inheritance in Man (OMIM, <https://www.omim.org/about>) and *de novo* mutations from 16,498
133 patients with NDDs, including ASD, congenital heart disease, and intellectual disability, found
134 significantly more *de novo* mutations in cancer-related genes than in the 3391 controls (Li et
135 al., 2020). In another study focusing on ASD, an evolutionary action method identified
136 missense *de novo* variants that are most likely to contribute to the etiology of the disorder
137 (Koire et al., 2021).

138 To identify genetic similarities and differences between NDDs and cancer, firstly we
139 utilized publicly available mutation datasets. Public databases provide somatic mutation
140 profiles of thousands of NDDs and tumor samples, including denovo-db and TCGA,
141 respectively. Denovo-db includes *de novo* mutation profiles for 20 different NDD phenotypes
142 for 9736 samples (Turner et al., 2017); TCGA covers 9703 samples with point mutations across
143 33 tissues (Figure 1A). Not all genes and their protein product variants affect the phenotypic
144 output in the same way. Oncogenes, tumor suppressors, TFs, and chromatin remodelers are

145 well-known examples of specific genes whose defects can cause observable alterations in
146 phenotypic outcomes. We compared mutations and mutated proteins between *de novo*
147 mutations in NDD data deposited in the denovo-db and TCGA, focusing on point mutations
148 that affect only one residue in a protein. We identified 7908 genes in NDDs and 19,439 genes
149 in TCGA with point mutations, among which 7838 genes are common. There are 147
150 oncogenes, 167 tumor suppressor genes, and 712 TFs in the NDD data, while 248 oncogenes,
151 259 tumor suppressor genes, and 1579 TFs are in TCGA. ~40% of the mutated genes in TCGA
152 also have mutations in NDD samples.

153 The network of NDD phenotypes in the denovo-db database covers 20 NDD
154 phenotypes with a varying number of patients, mutated genes, and mutations (Figure 1B). Only
155 two of these phenotypes—autism and developmental disorders—have more than 1000 samples.
156 In autism, there are 3473 patients, 3726 mutated genes, and 4794 mutations; in the 2926
157 samples of developmental disorders, there are 3531 mutated genes with 4797 mutations. In the
158 network, the width of edges between the phenotypes is commensurate with the number of
159 commonly mutated genes; autism and developmental disorders share the most. Congenital
160 heart disease and intellectual disability have less than 1000 samples, 912 and 577, respectively.
161 The remaining 15 phenotypes, including schizophrenia, epilepsy, and cerebral palsy, have less
162 than 500 samples.

163

164 **Conceptualization, construction and comparisons of the networks, expression profiles,**
165 **and mutation frequencies, in NDDs versus cancer**

166 Figure 1C conceptualizes our study as follows: First, we reconstructed PPI networks using
167 mutated genes in breast cancer and ASD as seeds. The networks we obtained include disease-
168 specific regions as well as shared subnetworks for ASD and cancer. Then, we compared the
169 expression scores of the pathways in the shared subnetwork by using gene expression profiles.

170 Our premise is that NDD mutations offer modest but prolonged signaling, whereas
171 cancer mutations are associated with high signaling levels (Nussinov et al., 2022a, 2022b,
172 2022c, 2022d). Driver mutations are frequent, which is why they are often identified as drivers
173 unless there is experimental data for potent rare mutations (Nussinov et al., 2019b; Nussinov
174 and Tsai, 2015). Weaker or moderate mutations occur less frequently; otherwise, they are
175 drivers. Similarly, the difference between passenger and driver mutations is also based on
176 statistics; their counts are low. As one indicator of mutation strength, we compared the
177 frequency of the cancer driver mutations in TCGA and NDD mutations amongst TCGA
178 samples. For cancer driver mutations, we used the Catalog of Validated Oncogenic Mutations
179 from the Cancer Genome Interpreter (CGI) (Muiños et al., 2021). Only missense or nonsense
180 mutations were included in the analyses, which comprised 3688 driver mutations in 237 genes.
181 Among 14,133 unique NDD mutations, 1504 are in TCGA (Figure 2A). On the other hand,
182 TCGA harbors 1060 unique driver mutations. Interestingly, only 23 mutations are shared
183 across known cancer driver mutations and NDDs (see the inset Venn diagram of Figure 2A).
184 This finding suggests that although there are shared mutations between the two pathologies,
185 these mutations tend to be on the weaker side in terms of a driver effect. In addition, compared
186 to driver mutations, the mutations present in both NDDs and TCGA are notably rare in the
187 TCGA cohort, as demonstrated by the difference in the mutation frequency distribution in
188 TCGA with a *t*-test ($p = 0.001$). Therefore, when we limit the mutations to those present in
189 TCGA, only ~1% of NDD mutations are cancer drivers, and they have very low frequencies
190 among TCGA samples. Figure 2B depicts the number of mutated samples in commonly
191 mutated genes among NDDs and cancer. Most commonly mutated genes have more mutation
192 hits at different positions among all cancer samples. Our observations point to only relatively
193 few common NDDs and cancer driver mutations, making it crucial—even if difficult—to
194 understand the mechanisms through which these common mutations impact gene function and

195 disease phenotypes. We used pathogenicity scores from MutPred2 (Pejaver et al., 2020), which
196 probabilistically predict the impact of variants on protein structure and function. We anticipate
197 that variants may have an impact on protein structure, which can either stabilize or destabilize
198 the conformation of the protein depending on protein function and disease phenotypes. The
199 more harmful a mutation is, the closer its pathogenicity score is to one. A comparison of the
200 distribution of the pathogenicity scores of the NDDs and driver mutations calculated using
201 MutPred2 demonstrates that driver mutations have higher pathogenicity than NDD mutations
202 (t -test, $p < 5 \times 10^{-30}$) (Figure 2C). We observe that most driver mutations accumulate in regions
203 where the pathogenicity scores are larger than 0.8 on the y-axis. NDDs harbor mutations in key
204 cancer genes such as *PTEN*, *PIK3CA*, *MTOR*, *KIT*, etc. These mutations have lower
205 frequencies among tumor samples from TCGA, which is an indicator of the lower potency of
206 these mutations. The number of residues hit by mutations among NDD samples is usually
207 lower.

208

209 **Distribution of the locations of NDD and cancer mutations and modes of action**

210 Phosphatase and tensin homolog (PTEN) phosphatase and PI3K α lipid kinase are respectively
211 negative and positive regulators in the PI3K α /AKT/mTOR pathway. PTEN dephosphorylates
212 phosphatidylinositol 3,4,5-trisphosphate (PIP₃) to phosphatidylinositol 4,5-bisphosphate (PIP₂)
213 produced by PI3K. The signaling lipid PIP₃ recruits AKT and PDK1 (phosphoinositide-
214 dependent kinase 1) protein kinases to the plasma membrane, thereby playing a vital role in
215 cell growth, survival, and migration (Jang et al., 2021; Zhang et al., 2019). Loss of function of
216 PTEN by germline or somatic mutations leads to increased PIP₃ concentrations at the
217 membrane and promotes cell proliferation mediated by PI3K α . Since the PI3K α /AKT/mTOR
218 pathway is one of the primary regulators of cell proliferation and differentiation, the
219 mechanistic hallmarks of the mutations are vital to understand. Analysis of mutations in PTEN

220 (Figure 3A) and PI3K α (Figure 3B) sequences reveals that NDD mutations on these proteins
221 usually occur at less frequently mutated sites among tumors (see Materials and Methods).
222 R130* mutation in NDDs on PTEN is an exception, yet it is less frequent compared to the
223 R130Q and R130G mutations at the same position in cancer.

224 While several residues of PTEN were mutated in both NDDs and cancer, some
225 mutations—such as T131I, L140F, and D268E—are NDD-specific (Figure 3A). As to the
226 domain distribution, among the NDD samples, mutated residues D92, I101, R130, T131, L140,
227 Q149, and T167 are on the phosphatase domain, and P204, F241, P246, and D268 are on the
228 C2 domain (Figure 3C). PTEN’s catalytic activity occurs in the phosphatase domain that
229 contains the P loop (residues 123–130) with the catalytic signature motif, $^{123}\text{H}\text{CxxGxxR}_{130}$
230 (where x is any amino acid). PTEN mutations in the P loop, or nearby, such as at the residues
231 R130 and T131, can directly constrain the P loop, leading to silencing PTEN catalytic activity.
232 The mutation at residue D92 in the WPD loop (residues 88–98) can disrupt the closed WPD
233 loop conformation that can bring D92 to the active site. D92 is involved in the catalytic activity
234 during the process of hydrolysis to release the phosphate group from Cys124 after transferring
235 it from PIP₃. Other PTEN mutations, which are distant from the active site, can allosterically
236 bias the P loop dynamics, reducing protein stability and its catalytic activity. A similar pattern
237 is observed in PI3K α ; the rare mutations R108H, V344M, and R770Q are harbored in both
238 NDDs and cancer, while R115Q and A1035T are specific to NDD samples (Figure 3B). V344
239 is on the C2 domain; R770 and A1035 are on the N- and C-lobes of the kinase domain,
240 respectively (Figure 3D). R770 is located near the P loop, and R108 is on the interface of the
241 catalytic subunit p110 α and the regulatory subunit p85 α . The mutations at these positions in
242 PI3K α may promote protein activation and increase protein stability at the membrane, but their
243 mutational effects appear to be weaker than the driver mutations.

244 Several studies investigated germline mutations in PTEN and their association with
245 tumor susceptibility or developmental disorders (Mighell et al., 2018; Portelli et al., 2021;
246 Spinelli et al., 2015; Wong et al., 2018). For example, the rare I101T mutation on PTEN is
247 present in NDDs and cancer samples. This mutation is identified as related to reduced lipid
248 phosphatase activity and protein stability in a study conducted among 13 patients with PTEN
249 hamartoma tumor syndrome (PHTS) who have autistic features, neurodevelopmental delays,
250 and macrocephaly. The I101T mutant retained almost 30% of the lipid phosphatase activity of
251 the wild-type protein; hence, it might be one of the major causes of tissue overgrowth and
252 autistic appearance (Wong et al., 2018). Although available data are limited, PTEN retains its
253 tumor suppressive function in NDDs while becoming fully dysfunctional in cancer samples.

254

255 **ND⁺- and cancer-specific networks regulate common pathways with different signaling
256 outcomes**

257 Although alterations in the same pathways and proteins contribute to the emergence of NDDs
258 and cancer with different weights, the timing of the mutations, the number of activated
259 molecules, the expression level of the mutated protein, and the proteins in the corresponding
260 pathway have a major impact on the phenotypic outcome (Li et al., 2020; Nussinov et al.,
261 2022d). To understand the divergence between these two pathologies, we analyzed NDD- and
262 cancer-specific networks and compared the signaling outcomes of the pathways using gene
263 expression values. We reconstructed ASD- and breast cancer-specific networks based on
264 frequent mutations, comprising 168 driver genes in breast cancer, and 190 mutated genes that
265 are present in at least three ASD patients. We extracted the graphlet motifs, small significant
266 subnetworks, from the reference interactome HIPPIE through mutations with an unsupervised
267 learning approach (Alanis-Lobato et al., 2017; Milenković and Pržulj, 2008). To select the most
268 relevant interactions in a disease from the graphlet motifs with the PageRankFlux algorithm,

269 we constructed the ASD-specific network with 350 proteins and 1291 interactions, and the
270 breast cancer-specific network with 284 proteins and 1878 interactions (Supplementary Data
271 1) (Figure 4A) (Arici and Tuncbag, 2023; Rubel and Ritz, 2020). As can be expected based on
272 our relatively weak mutation outcome premise of NDDs, some critical TFs such as Myc, p53,
273 and Jun with cancer driver mutations are not frequently mutated in ASD. However, mutated
274 genes can indirectly regulate these TFs in the ASD-specific network due to the rewiring of the
275 signaling network. We found 23 common TFs in ASD- and breast cancer-specific networks.
276 TF complexes including Myc/Max or Jun/Fos (AP-1, activator protein 1) regulate the
277 expression of numerous target genes downstream the MAPK phosphorylation cascade in signal
278 transduction (Garces de Los Fayos Alonso et al., 2018; García-Gutiérrez et al., 2019).
279 Complexes composed of common TFs are primarily involved in cell cycle regulation through
280 their targets, such as E2F mediating cyclin-dependent kinases (CDKs) in cell proliferation
281 (DeGregori et al., 1997; Tadesse et al., 2019).

282 All TFs in ASD- and breast cancer-specific networks regulate 752 commonly targeted
283 genes. The disease models in both networks can use different wiring mechanisms to control
284 shared pathways since different TFs control the transcription of the same genes.
285 Overrepresentation analysis of these common targets demonstrated that shared pathways,
286 including p53, FOXO (forkhead box O), PI3K/AKT, MAPK, and JAK/STAT (Janus
287 kinase/signal transducer and activator of transcription) signaling pathways, are regulated by
288 different TFs (Figure 4B).

289

290 **Gene expression and signaling strength point to differentiation in ASD and proliferation**
291 **in cancer**

292 Following the construction of the networks and identification of the TFs and their targets, we
293 focused on the signal levels in the constructed networks through an analysis based on

294 differential gene expressions from healthy and disease samples (see Materials and Methods).
295 We averaged the absolute values of the differential expression of pathway participants and
296 defined them as the expression score of the given pathway to measure the signal change in
297 these pathways. The expression scores of the overrepresented pathways demonstrated that ASD
298 generated significantly lower signal strength than breast, brain, and kidney cancers (Figure 4C),
299 influencing the cell cycle at the G1 phase. The change in stimulus and feedback loops regulate
300 signaling intensity and duration (Mendoza et al., 2011). Overexpression and multiple mutation
301 combinations on these pathways disrupt cellular processes and can govern disease
302 development.

303 The expression profiles of ASD in shared pathways emphasize differentiation.
304 Differentiation reduces the proliferative advantage for the cells and increases their resistance
305 to oncogenic mutations (Demeter et al., 2022). Mutations in ASD are mostly embryonic; they
306 do not accumulate over time as cancer mutations do. The propensity score of pathways, which
307 demonstrates the probabilities of mutations on a gene in a pathway, reveals that mutations in
308 cancer tend to accumulate in these pathways. Shared pathways in ASD do not have high
309 propensity scores. The already existing mutational burden makes ASD patients more
310 susceptible to multifactorial and/or polygenic diseases, like cancer (Nussinov et al., 2022d;
311 Parenti et al., 2020; Rauen, 2013). At the same time, their weak/moderate effect can bring about
312 cell cycle arrest and impact the differentiation capabilities of cells.

313

314 **TFs regulating common pathways underscore the trends of differentiation in NDDs and**
315 **proliferation in cancer**

316 For a more in-depth analysis, we compared 71 TFs regulating common pathways through the
317 expression profiles of ASD and breast cancer patients. We observed that 21 TFs that have
318 distinct expression profiles in ASD and cancer are clustered into three groups. Cluster-1 and

319 Cluster-2 demonstrated a distinct separation, while Cluster-3 includes genes that do not show
320 a clear difference in the heatmap of gene expressions (Figure 5A). The genes in Cluster-1, such
321 as *MCM2*, *STAT1*, *BRCA1*, and *MCM5*, are overexpressed in the cancer samples. These genes
322 mostly play a role in cell proliferation, and their overexpression in cancer promotes cell
323 division and growth (Gong et al., 2019; Shimizu et al., 2012; Wu et al., 2018; Yousef et al.,
324 2017). On the contrary, ASD samples have relatively lower expression levels for TFs that
325 control cell proliferation. *STAT1* has dual roles in both differentiation and proliferation; it also
326 acts as a tumor suppressor and an oncogene in cancer. The genes in Cluster-2, such as *JUN*,
327 *SMAD3*, *SMAD4*, and *KLF2*, play a role in cell differentiation (Hou et al., 2018; Mariani et al.,
328 2007; Yang et al., 2016; Yang and Jiang, 2020). Their moderate expression levels in ASD
329 suggest that they can maintain the cell differentiation state. To reveal the signal flow starting
330 from these TFs, we defined the regulatory interaction in common pathways by identifying
331 target genes of these TFs. Since one TF can also target other TFs in the same pathway, we
332 extended the regulatory interactions with targeted TFs and their targeted genes (Figure 5B).
333 Expression profiles of differentiation and proliferation appear moderate in ASD, which
334 suggests weak signal activation in cell proliferation (Nussinov et al., 2023). However, the
335 suppression of differentiation and the overexpression of proliferation indicate strong activation
336 of the proliferation state in cancer.

337

338 **Discussion**

339 **Moderate and strong escalation in signaling levels reflect the total number of activated
340 molecules in NDDs and cancer, respectively**

341 Here, we comprehensively analyzed mutations, transcriptomic data, and PPI networks of
342 NDDs and cancer patients to comprehend why some mutations can promote cancer while
343 others abet NDDs, and why the same mutations can support both phenotypes. We surmised

344 that cancer mutations are connected to elevated signaling levels, while NDD mutations encode
345 sustained but low levels. We further surmised that signaling levels are largely determined by
346 the total number of molecules that the mutations activate, either alone or in combination, along
347 with the cell type-specific expression levels of the mutant protein and other proteins in the
348 relevant pathways, the timing of the emergence of the mutation (inherited or during embryonic
349 development, or sporadic), as well as additional factors (Nussinov et al., 2022d). Ample data
350 indicate that even high expression levels of an unmutated protein can already provoke cancer.

351 Cancer involves uncontrolled cell proliferation, whereas NDDs are connected to
352 anomalies in the development of the nervous system. Proliferation and differentiation take
353 place in both cancer and NDDs. Since NDDs are mostly related to dysregulated differentiation,
354 mutations in genes regulating chromatin organization rank high. Risk genes for NDDs include
355 more than a third of the cancer driver genes, and NDDs and cancer share hallmarks of cell
356 division and growth (Yaeger and Corcoran, 2019; Zhao and Luo, 2022), thus proliferation and
357 differentiation (Nussinov et al., 2022d; Qi et al., 2016). In brain cells, embryonic mutations in
358 both pathways give rise to NDDs (Borrie et al., 2017). Hundreds of genes are implicated in
359 NDDs; however, they are involved in few conserved pathways regulating transcription,
360 including chromatin accessibility, and synaptic signaling (Nussinov et al., 2022d; Parenti et al.,
361 2020; Sahin and Sur, 2015). PI3K/mTOR and Ras/MAPK are frequently linked with synaptic
362 dysregulation (Longo and Klann, 2021; Nussinov et al., 2022a, 2022d; Sahin and Sur, 2015).
363 Proteins in the Wnt, BMP/TGF- β (bone morphogenetic protein/transforming growth factor- β),
364 SHH (sonic hedgehog), FGF (fibroblast growth factor), and RA (retinoic acid) pathways, are
365 also involved in autistic brain development (Kumar et al., 2019). Gene expression profiles of
366 22 cancer types and frontal cortical tissues from ASD patients identified similarities in genes
367 and pathways (Forés-Martos et al., 2019).

368

369 **NDDs share phenotypic and clinical commonalities**

370 The tumor suppressor phosphatase and tensin homolog (PTEN), which carries germline and *de*
371 *novo* mutations in NDD patients, is related to cancer and several NDDs, collectively named
372 PHTS. The NDDs include phenotypes such as Cowden syndrome (CS), Bannayan-Riley-
373 Ruvalcaba syndrome (BRRS), Proteus syndrome (PS), Proteus-like syndrome (PSL),
374 macrocephaly, and ASD. NDDs often overlap mutation-wise and genome-wise (Frazier et al.,
375 2021; Orrico et al., 2009; Skelton et al., 2020). Among these, deletions, and duplications of the
376 16p11.2 region are common. About 48% of deletion carriers and 63% of duplication carriers
377 have at least one psychiatric diagnosis (Niarchou et al., 2019; Walsh and Bracken, 2011).
378 RASopathies, which include Noonan syndrome (NS), cardiofaciocutaneous (CFC) syndrome,
379 neurofibromatosis type 1 (NF1), and Legius syndrome (LS), are NDDs that result from
380 overactivation of the MAPK pathway due to germline mutations and/or overexpression in
381 embryogenesis (Gross et al., 2020; Hebron et al., 2022; Nussinov et al., 2022d). Their
382 phenotypic overlaps may emerge due to shared proteins/pathways as in the case of *PIK3CA*-
383 related overgrowth spectrum (PROS), PS, and CS which share phenotypic characteristics with
384 RASopathies (Simanshu et al., 2017). The commonality of cancer and RASopathies prompted
385 MEK (MAPK kinase) inhibitors and Ras-targeted therapies for some RASopathies like
386 selumetinib for NF1 patients (Andelfinger et al., 2019; Cox et al., 2015; Dombi et al., 2016;
387 Hebron et al., 2022).

388 Although there is a strong association between PTEN germline mutations and cancer–
389 PHTS—they have also been described in patients with ASDs (Cummings et al., 2022; Nussinov
390 et al., 2022d; Skelton et al., 2020). PTEN mutations linked to ASD can lead to an unstable but
391 still catalytically active gene product (Chang et al., 2008). C124S, G129R, H118P, H123Q,
392 E157G, F241S, D252G, N276S, and D326N are autism-related; A39P, N48K, L108P, L112P,
393 and R130L are PHTS-related mutations (Spinelli et al., 2015). AKT, downstream of PTEN,

394 signaling was suppressed in all seven ASD-related PTEN mutations where PTEN was affected
395 but functional. On the other hand, AKT phosphorylation was promoted by all five PTEN
396 mutations in severe PHTS cases, suggesting that variants with partial loss of PTEN function
397 are predominant in ASD patients (Spinelli et al., 2015). Thus, catalytically inactive PTEN
398 mutant is connected to tumor phenotypes, partially active PTEN to ASD (Papa et al., 2014;
399 Rodríguez-Escudero et al., 2011).

400 Dysregulation of the PI3K/AKT/mTOR pathway is a primary factor in NDDs,
401 including megalencephaly (also known as “large brain”), microcephaly (sometimes known as
402 “small brain”), ASD, intellectual disability, schizophrenia, and epilepsy (Wang et al., 2017).
403 Mosaic gain-of-function mutations in the *PIK3CA* gene lead to PROS, with clinical outcomes
404 such as excessive tissue growth, blood vessel abnormalities, and scoliosis (Crunkhorn, 2018;
405 Venot et al., 2018). Among ~200 individuals with *PIK3CA* mosaic mutations, highly activating
406 hotspot mutations were associated with severe brain and/or body overgrowth, whilst fewer
407 activating mutations were linked to more mild somatic overgrowth and mostly brain
408 overgrowth (Dobyns and Mirzaa, 2019; Mirzaa et al., 2016). R88Q, V344M, and G914R
409 mutations were identified in PI3K α patients with macrocephaly and developmental delay or
410 ASD (Yeung et al., 2017).

411

412 **Distinct rewired interactions in shared ASD and breast cancer pathways**

413 We further pursued the complex relationship between genotype and phenotype by constructing
414 disease-specific networks for ASD and breast cancer. We observed distinct PPIs in shared
415 pathways controlling the cell cycle. These rewired interactions could be a reason why shared
416 pathways have different signal strengths in ASD and cancer. Under physiological conditions,
417 MAPK and PI3K/AKT/mTOR pathways coregulate the cell cycle through feedback loops to
418 control cell functions, including growth and division. In cancers, they are frequently

419 hyperactivated (Ersahin et al., 2015; Thorpe et al., 2014; Vanhaesebroeck et al., 2010). The
420 PI3K/AKT pathway is also critical in early embryonic development and maintenance of stem
421 cell pluripotency through inhibition of the MAPK proliferation pathway (Bi et al., 1999; Hall,
422 2004; Peng et al., 2003; Yu and Cui, 2016). The strength of the signaling perturbations induced
423 by the mutations is manifested in weak/moderate and strong signaling changes, epitomized by
424 ASD and breast cancer, respectively. Strong signals enhance proliferation, and weak/moderate
425 signals may drive cell cycle exit in differentiation (Eastman et al., 2020).

426

427 **Differential interactions of cell cycle CDKs in NDDs and cancer, and late cancer detection
428 outcome for individuals with NDD**

429 TF complexes are primarily involved in cell cycle regulation through their targets, such as E2F
430 mediating CDK that accelerates proliferation (DeGregori et al., 1997; Tadesse et al., 2019). In
431 the breast cancer-specific network, CDK4 interacts with MAPK1, JAK3, and p53, promoting
432 proliferation (Scheiblecker et al., 2020). In the ASD-specific network, TF complexes such as
433 forkhead box protein G1 (FOXG1) and sex determining region Y-box 2 (SOX2), also
434 implicated in microcephaly, play critical roles in lineage determination, neural stem/progenitor
435 cell proliferation, and maintenance of pluripotency (Hou et al., 2020; Li et al., 2013). In NDDs,
436 these TFs can promote premature senescence and dysregulated differentiation via distinct
437 pathways such as Wnt and Hippo (Nussinov et al., 2016). In a study of the English population,
438 half of the decedents with intellectual disabilities and cancer were at stage IV when diagnosed
439 (Heslop et al., 2022), which suggested involvement of the canonical Wnt pathway during brain
440 morphogenesis and non-canonical in cancer cell migration and metastasis (Corda and Sala,
441 2017). Cancer onset in NDDs can be undetected until stage IV since the slow cell division in
442 the NDDs retards mutational accumulation (Heslop et al., 2022). Alternatively, we expect the
443 early mutational burden will render NDD patients more vulnerable to cancer (Nussinov et al.,

444 2022d; Parenti et al., 2020), with faster cancer progression and higher mortality. Where
445 statistics are available, the mortality of cancer patients with intellectual disabilities was
446 reported to be approximately 1.5 times higher than the general population (Cuypers et al.,
447 2022). These results suggest that cancer initiation and progression differ in individuals with
448 NDD than in the broad apparent NDD-free population, with different outcomes via common
449 pathways.

450

451 **TF expression profiles differ in differentiating and proliferating cells**

452 The expression scores of TFs were grouped based on proliferation and differentiation. TFs
453 enhancing proliferation were mainly overexpressed in cancers while relatively low-expressed
454 in ASD. Proliferating cells are more vulnerable to mutations than differentiating ones, both
455 since dividing cells have less time to repair DNA damage than quiescent cells, and with more
456 replication cycles, there is a higher chance for mutations (Bielas and Heddle, 2000; Demeter et
457 al., 2022). As to TFs in the differentiation state, ASD has relatively higher expression profiles,
458 while there are significantly low-expression profiles in cancers. In cancers, high expression
459 couples with the accumulation of mutations, cell growth, and metastasis (Demeter et al., 2022).

460 Finally, immunity could be viewed as a common factor in NDDs and cancer (Nussinov
461 et al., 2022a, 2022d). Multiple pathways related to immunity can be dysregulated in NDDs due
462 to the coevolution of the immune and nervous systems (Nussinov et al., 2022a; Zengeler and
463 Lukens, 2021). Signaling pathways related to immunity, such as Wnt, Notch, JAK/STAT, and
464 Hippo, also play roles in cancer metastasis and drug resistance (Clara et al., 2020; Nussinov et
465 al., 2016; Pisibon et al., 2021).

466

467 **Conclusions: Why then individuals with NDDs have a higher probability of 468 cancer?**

469 Our findings offer a mechanistic interpretation for *PTEN* and *PIK3CA* mutations frequently
470 observed in cancer and NDD samples, which may form the basis for functional and detailed
471 structural analysis, including molecular dynamics simulations (Jang et al., 2023). Comparing
472 expression scores of shared pathways by leveraging the transcriptomic profiles of NDDs and
473 cancer samples revealed that NDD samples have higher expression scores for genes
474 functioning in differentiation than proliferation. These findings provide an essential step
475 toward understanding the etiology of the two different pathologies, NDDs, and cancer. Despite
476 having common signaling pathways, their regulation and differences in signal levels enhance
477 different cell states: proliferation for cancer and differentiation for NDDs.

478 Comparisons of the time windows of NDDs and cancer frequently conclude that while
479 cancer is predominantly caused by somatic mutations and alterations in signaling and
480 transcriptional programs, NDDs are primarily linked to germline mutations that express during
481 embryonic development. A recent study has similarly suggested that mutations in cancer
482 susceptibility genes are not necessarily inherited or somatic; they can also arise throughout
483 embryogenesis as a result of errors occurring during cell division (Pareja et al., 2022). These
484 *mosaic mutations*, occurring in early embryogenesis, were suspected to be associated with
485 some rare cancers. Genetic changes associated with RASopathies are believed to be often
486 sporadic, not inherited. Along these lines, according to the NCI page (“NCI Dictionary of
487 Cancer Terms,” 2011), this means that typically multiple family members do not share the
488 same NDDs.

489 Different from this view, here our thesis is that inherited and *de novo* mutations
490 (missense or truncation) can be major causes of NDDs such as intellectual disability, ASD,
491 epilepsy (Brunet et al., 2021; Chau et al., 2021; Deciphering Developmental Disorders Study,
492 2017; Iossifov et al., 2014), and cancer (Nussinov et al., 2021, 2019a; Nussinov and Tsai,
493 2015). As in cancer (Nussinov et al., 2021), more than one mutation is required for observable

494 symptomatic NDDs. Our premise is that family members can harbor these NDD germline
495 mutations; however, they are not diagnosed as having the disorder. Their offsprings are,
496 however, already susceptible to it. Individuals with NDDs have higher probabilities of
497 eventually coming down with cancer (Liu et al., 2022); (Cuypers et al., 2022; Liu et al., 2022;
498 Nordenstoft et al., 2021), likely due to the preexistence of the mutations in the shared proteins,
499 making them more susceptible. Patients with autism have an increased mutation load in genes
500 that drive cancer (Darbro et al., 2016). We hypothesize that strong driver mutations in cell
501 growth/division pathways are chiefly responsible for uncontrolled cell proliferation in cancer.
502 NDDs' weak/moderate strength mutations may be a reason why inherited NDDs have not been
503 identified in a parent while predisposing an offspring to it. An additional mutation promotes
504 NDD clinical manifestation. It may be inherited from the other parent or emerge during
505 embryogenesis. It may also promote cancer by providing companion mutations.

506 Here, we employed de novo mutations in ~10,000 samples with NDDs from denovo-
507 db and somatic mutations in ~10,000 tumor samples from TCGA. We observed that around
508 40% of the 19,439 mutant genes in TCGA are also altered in NDD samples. 1504 of the 14,133
509 distinct NDD mutations are present in TCGA. On the other hand, TCGA contains 1060 distinct
510 driver mutations, whereas known cancer driver mutations and NDD only share 23 mutations.
511 This result suggests that common mutations across the two pathologies do exist, although they
512 are typically less potent than cancer drivers. Especially, PTEN and PI3K α possess a range of
513 mutations scattered through their protein sequences that are either common or disease specific.
514 This work argues for the examination of such mutations even in undiagnosed family members
515 and follows their combination in the offspring. It further supports the consideration of cancer
516 pharmacology in NDD patients.

517

518 **Materials and methods**

519 **Data collection and processing**

520 NDD mutations were obtained from denovo-db (Turner et al., 2017) which holds a collection
521 of human germlines *de novo* variants of 20 phenotypes including but not limited to ASD, and
522 intellectual disability NDDs. Variants from two ASD studies were collected by targeted
523 sequencing of different patients coming from two different studies, while the remaining
524 datasets come from either whole exome or whole genome studies. The phenotypes, the number
525 of samples, unique mutated genes and unique mutations are given in Figure 1B. We mapped
526 the genomic coordinates to the proteins to obtain the amino acid changes on the protein level
527 using VarMap (Stephenson et al., 2019). We only kept the point mutations that map to the
528 canonical protein sequences. After these filtering steps, we obtained a total of 14,133 unique
529 mutations on 7907 genes from 9737 samples.

530

531 **TCGA**

532 Somatic missense, nonsense and frameshift cancer mutations were downloaded from TCGA.
533 There are 9703 tumor samples from 33 different cancer types in the annotation file where
534 corresponding protein changes are also present. In total, we have 1,626,715 unique mutations
535 on 19,438 genes. 7837 of these genes are also mutated in the NDD dataset. 11,601 of them are
536 only mutated in TCGA, while there are only 70 genes that are mutated solely in NDDs.

537

538 **Cancer drivers**

539 A list of cancer driver mutations was downloaded from the Cancer Genome Interpreter (CGI)
540 (Tamborero et al., 2018), which is available as the Catalog of Validated Oncogenic Mutations
541 on their website. We only used missense or nonsense mutations, resulting in an analysis of
542 3688 driver mutations belonging to 237 genes.

543

544 **Expression datasets**

545 We utilized processed RNA expression data from ASD, breast, kidney, and brain cancer
546 samples (Table 1) (Forés-Martos et al., 2019). The ASD dataset was an integrated dataset from
547 the frontal cortex samples in three studies and covered 34 ASD samples and 130 controls. We
548 employed integrated datasets for breast, kidney, and brain cancers that are composed of 7, 10,
549 and 8 studies, respectively. Differential gene expression meta-analyses scored 3579 genes in
550 ASD and 11629 genes in cancer cohorts with z -scores.

551

552 **Pathway and network analyses**

553 ***Inference of disease-specific networks.*** ASD and breast cancer-specific networks were
554 reconstructed with frequently mutated genes and known PPIs. In cases of observations seen in
555 at least 3 patients, 190 genes were selected as seed nodes in ASD. 168 genes were retrieved
556 from the Cancer Genome Interpreter (CGI) and recruited as the seed nodes of breast cancer
557 (Tamborero et al., 2018). The reference network, HIPPIE v2.3, comprises 19437 proteins and
558 779301 PPIs (Alanis-Lobato et al., 2017). Each interaction in HIPPIE was scored with a
559 confidence score that was computationally optimized and weighted by the amount and quality
560 of the experimental evidence of PPI. The network inference tool, pyPARAGON (PAgeRAnk-
561 flux on Graphlet-guided-network for multi-Omic data integratioN), inferred ASD and breast
562 cancer-specific networks by scoring interactions with PageRank Flux and identifying validated
563 graphlet motifs, the union of which constructs a graphlet-guided network (GGN) (Arici and
564 Tuncbag, 2023). The PageRank algorithm weighted all nodes in a reference network. We then
565 used the flux computation to weight the edges (Rubel and Ritz, 2020). Significant graphlet
566 motifs with seed nodes in the reference established the GGN. Highly scored interactions in
567 GGN were assembled in our disease-specific networks. We used PARAGON with the
568 following parameters: $\alpha = 0.5$, where α is the probability of walking to neighbor nodes, $\tau = 0.8$,

569 where τ is a scaling factor to select a set of top-ranked edges from GGN. This algorithm stops
570 adding edges when the number of interactions reaches 2000.

571 ***Identification of common pathways.*** TFs and their targets, retrieved from TRRUST
572 v2, were parsed in disease-specific networks, and TFs in these networks were called specific
573 transcription factors (STF) (Han et al., 2018). The targets of STF were selected as regulated
574 genes by disease-specific networks. These commonly regulated genes among ASD and breast
575 cancer were utilized for overrepresentation analysis on WebGestalt to uncover the common
576 pathways ($p < 0.05$ and $FDR < 0.05$) using manually curated open-source pathway databases,
577 KEGG and Reactome (Gillespie et al., 2022; Kanehisa et al., 2022; Liao et al., 2019).

578 ***Pathway assessment metrics.*** The signal strength and mutation vulnerability of the
579 pathways were evaluated. The expression level of each gene contributes to the signal deviation
580 in the respective pathway. However, it is challenging to determine how this signal deviation
581 affects the pathway because it contributes to multiple molecular functionalities. To measure
582 the expression score (ES) of a given pathway, we calculated the average absolute signal
583 differences of a pathway (Hwang, 2012; Kim et al., 2008; Levine et al., 2006) by applying the
584 equation,

$$585 \quad ES_P = \frac{\sum_{k=1}^n |e_k|}{n},$$

586 where $P = (G, E, U)$, a pathway composed of genes/proteins ($g_1, g_2, \dots, g_n \in G$), expression of
587 genes ($|e_1|, |e_2|, \dots, |e_n| \in E$), and the number of unique mutations belonging to genes ($u_1, u_2, \dots,$
588 $u_n \in U$). We assessed the mutation vulnerability of a pathway by calculating the propensity
589 score (PS) of a given pathway considering the number of unique mutations by using the
590 equation,

$$591 \quad PS_P = \frac{\sum_{k=1}^n u_k}{n},$$

592 where the total number of individual mutations in the pathway was normalized with the number
593 of gene members in the pathway.

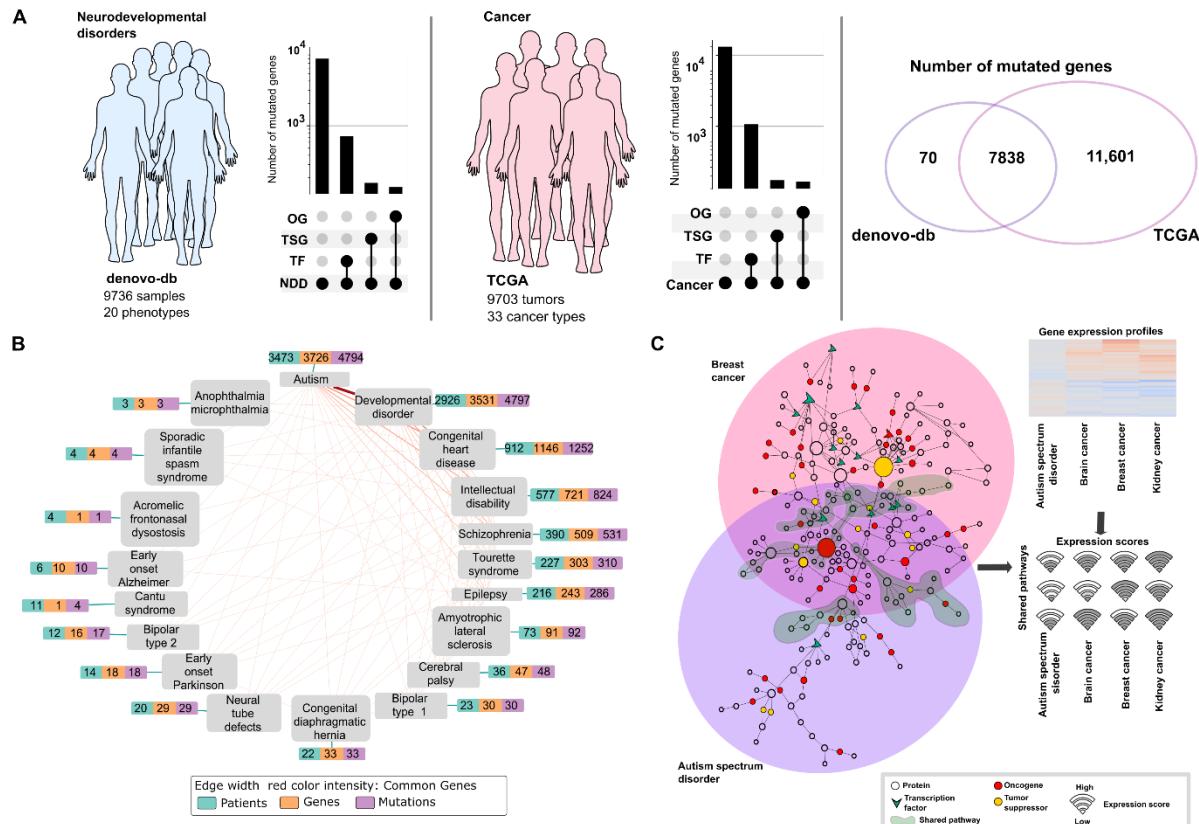
594 **Table 1.** RNA expression datasets.

595

Phenotype	Cases	Control	Datasets
ASD	34	130	GSE28475, GSE28521, and Gupta (Gupta et al., 2014)
Brain cancer	942	104	GSE4290, GSE9385, GSE74195, GSE68848, GSE15824, GSE42656, GSE44971, GSE50161
Breast cancer	1494	249	GSE10810, GSE31448, GSE42568, GSE54002, GSE65216, GSE45827, GSE29431
Kidney cancer	400	266	GSE11151, GSE77199, GSE47032, GSE53757, GSE53000, GSE66272, GSE68417, GSE71963, GSE40435, GSE7635

596

597 **Visualization of mutations in protein sequences and 3D structures**

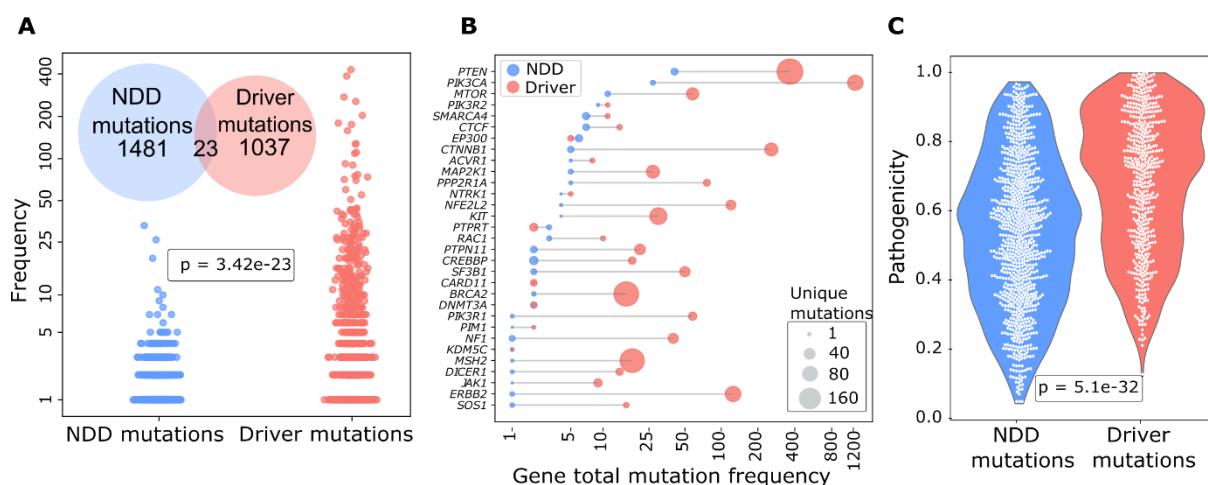

598 We utilized the ProteinPaint tool (Zhou et al., 2016) to show NDD and cancer mutations on

599 PTEN and PI3K α . To map the mutations to the 3D structures of PTEN (PDB: 1D5R (Lee et

600 al., 1999)) and PI3K α (PDB: 4OVV (Miller et al., 2014)) we used PyMol.

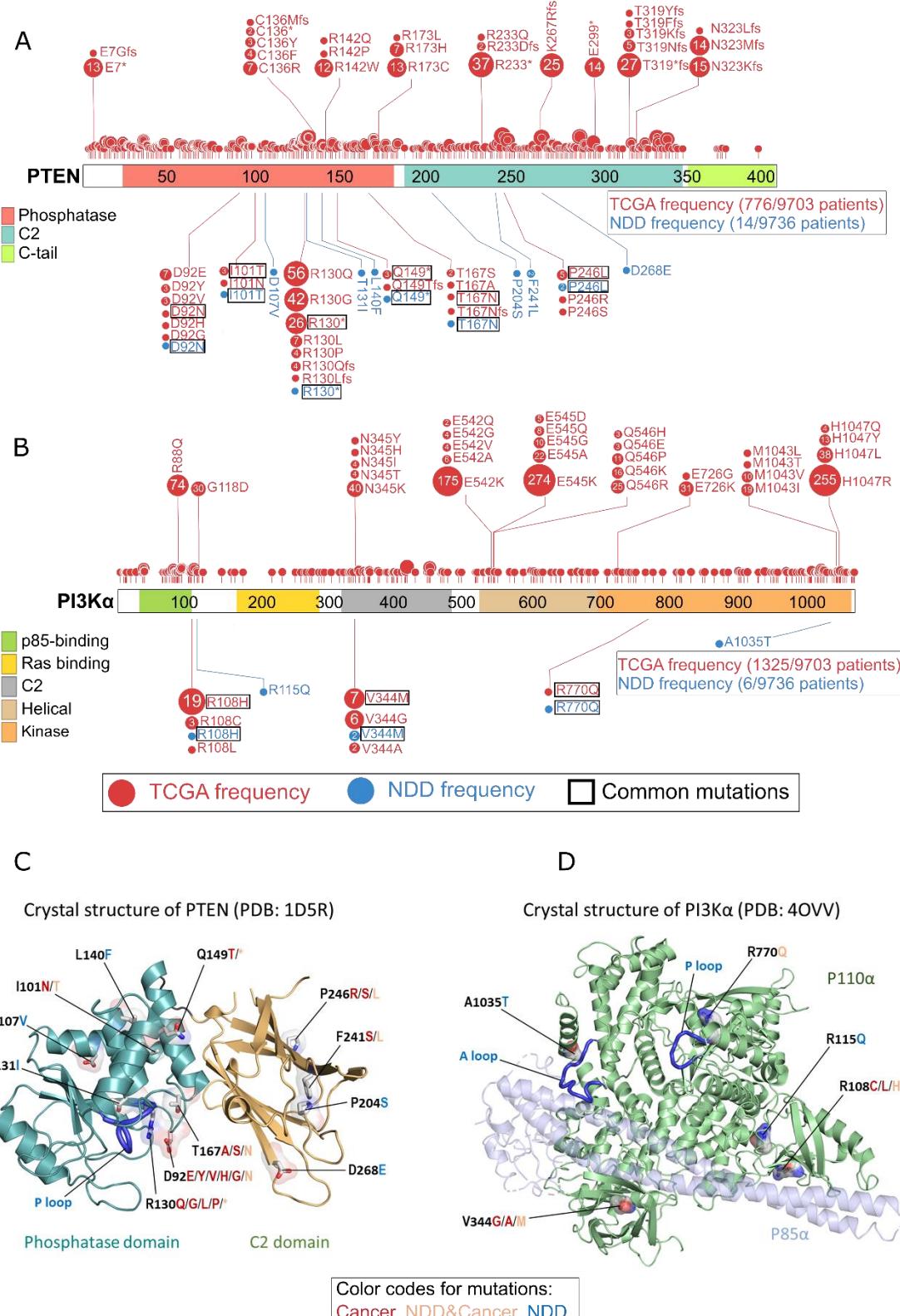
601

602 **Figure Legends**



603

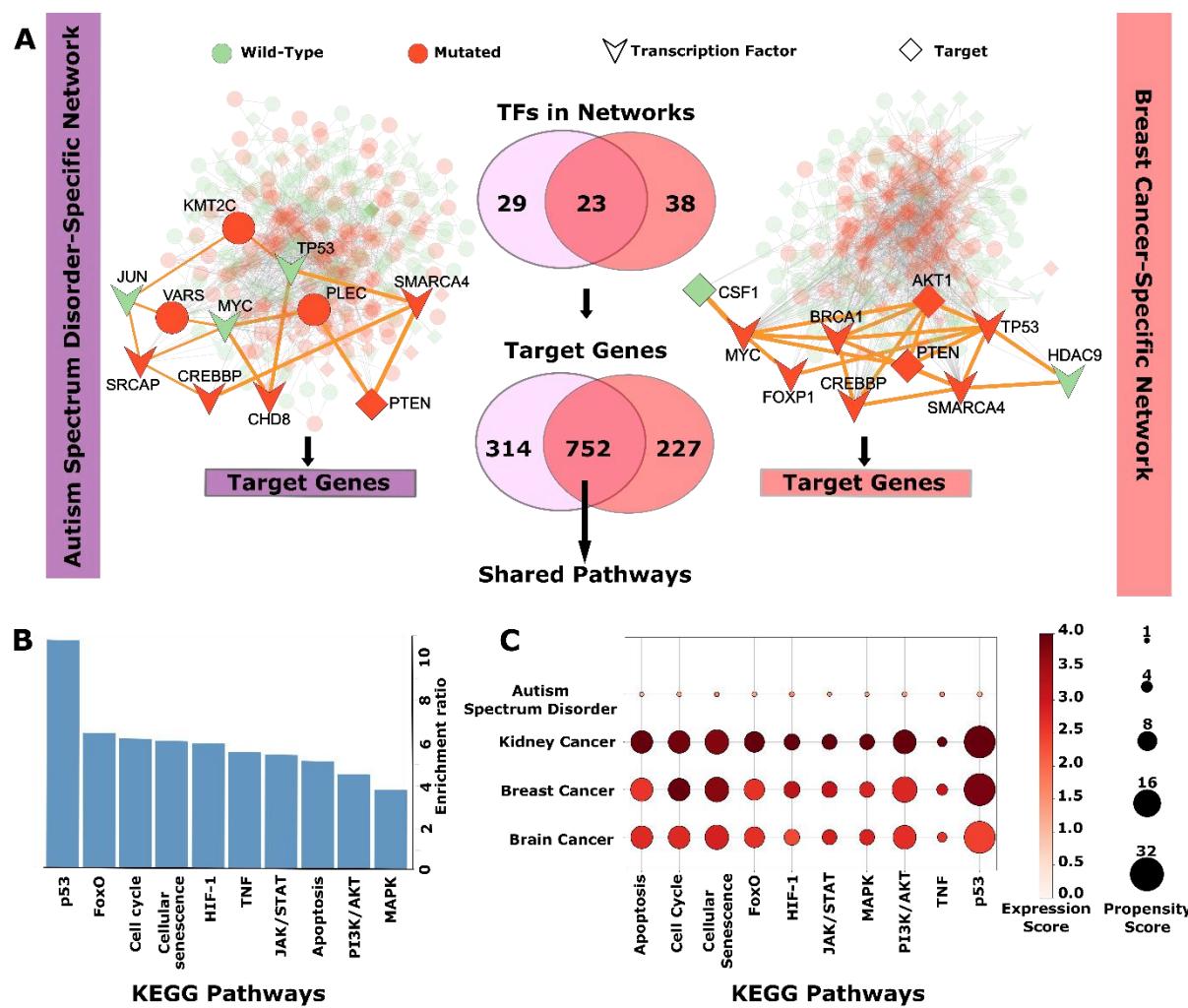
604 **Figure 1. Overview of the data and workflow**


605 (A) Statistics from NDDs and cancer datasets. Denovo-db deposits mutation profiles of 9736
 606 samples with NDDs across 20 phenotypes (*left panel*). TCGA provides mutation profiles of
 607 9703 tumors across 33 cancer types (*middle panel*). The length of each bar (y-axis in a
 608 logarithmic scale) in the upset plots shows the number of all mutated genes and the number of
 609 TFs, TSGs, OGs among the mutated genes for NDDs (*left panel*) and cancer samples (*middle*
 610 *panel*). There are 712 TFs, 162 TSGs, and 147 OGs out of 7907 mutated genes among NDD
 611 samples. Similarly, there are 1579 TFs, 259 TSGs, and 249 OGs out of 19,438 mutated genes
 612 among the cancer samples. The Venn diagram (*right panel*) shows that there are 7837 common
 613 mutated genes between NDDs and cancer; the number of NDD- and cancer-specific mutated
 614 genes are 70 and 11,601, respectively. Abbreviations: TSG, tumor suppressor gene; OG,
 615 oncogene. (B) Network of NDD phenotypes. Each node represents one phenotype in the

616 network, and each edge represents the connection between two phenotypes if they share at least
617 one commonly mutated gene. Each phenotype is represented with a vector of three numbers;
618 the total number of patients having the phenotype (cyan), total number of genes carrying at
619 least one mutation (orange), and total number of mutations associated with the phenotype
620 (purple). The thicker edges represent the more commonly mutated genes. The most tightly
621 connected pair among the phenotype pairs is autism and developmental disorder. (C) A
622 conceptual representation of network comparison analysis between NDDs and cancer. Two
623 distinct networks (*left panel*) reconstructed for breast cancer (large pink circle) and ASD (large
624 purple circle). These two networks have both shared (shaded green) and separated regions.
625 These networks contain oncogenes (red circle), tumor suppressors (yellow circle), and TFs
626 (green chevron). The transcriptome analysis (*upper-right panel*) associates the expression
627 levels of the nodes with the pathway activity. Each enriched pathway in the network can be
628 quantified with the average expression level of its nodes, which is called "pathway scoring."
629 The score of each shared pathway (1, 2, .., n) for each disease (ASD, purple; cancer, red) is
630 calculated (shown as a wifi icon where the higher score is the stronger signal).

631
632 **Figure 2.** Comparison of mutations between NDDs and cancer.
633 (A) Frequency-based analysis of mutations for NDDs and cancer. The cancer driver mutations
634 in TCGA in comparison to the frequency of NDD mutations. The cancer driver mutations were

635 selected amongst tumor samples only. Among the cancer mutations in TCGA, 23 mutations
636 are shared between NDD and known cancer driver mutations, while 1481 are NDD-specific
637 and 1037 are cancer-specific mutations (inset Venn diagram). Comparison of the frequency of
638 these mutations in the TCGA cohort (y-axis in a logarithmic scale, where *frequency* =
639 $\log_{10}(N+1)$ and N is the number of patients). The difference between mutation frequency
640 distribution in TCGA with *t*-test shows that the mutations present in both NDDs and TCGA
641 are significantly rare in the TCGA cohort when compared to driver mutations ($p < 0.001$). **(B)**
642 Frequency of mutations on common genes in NDDs and known cancer drivers datasets. The
643 dumbbell plot shows the mutation frequencies of common genes—the genes harboring at least
644 one point mutation among NDDs and cancer samples—in cancer (TCGA) and NDDs (denovo-
645 db) simultaneously. Cancer driver mutations (red) are more frequent than or equal to NDD
646 mutations (blue) except *EP300* and *PTPRT*. The size of the circles represents the number of
647 unique mutations each gene carries. The *x*-axis in a logarithmic scale represents the number of
648 patients having at least one mutation in the corresponding gene in TCGA or NDD sets. **(C)**
649 MutPred2 pathogenicity scores of NDDs and cancer driver mutations. Violin plots show the
650 distribution of NDD and driver mutation pathogenicity scores. A comparison of the
651 pathogenicity scores using a *t*-test shows that the pathogenicity of driver mutations is
652 significantly higher ($p < 0.001$). Pathogenicity scores are between 0 and 1, where 1 is the most
653 pathogenic.

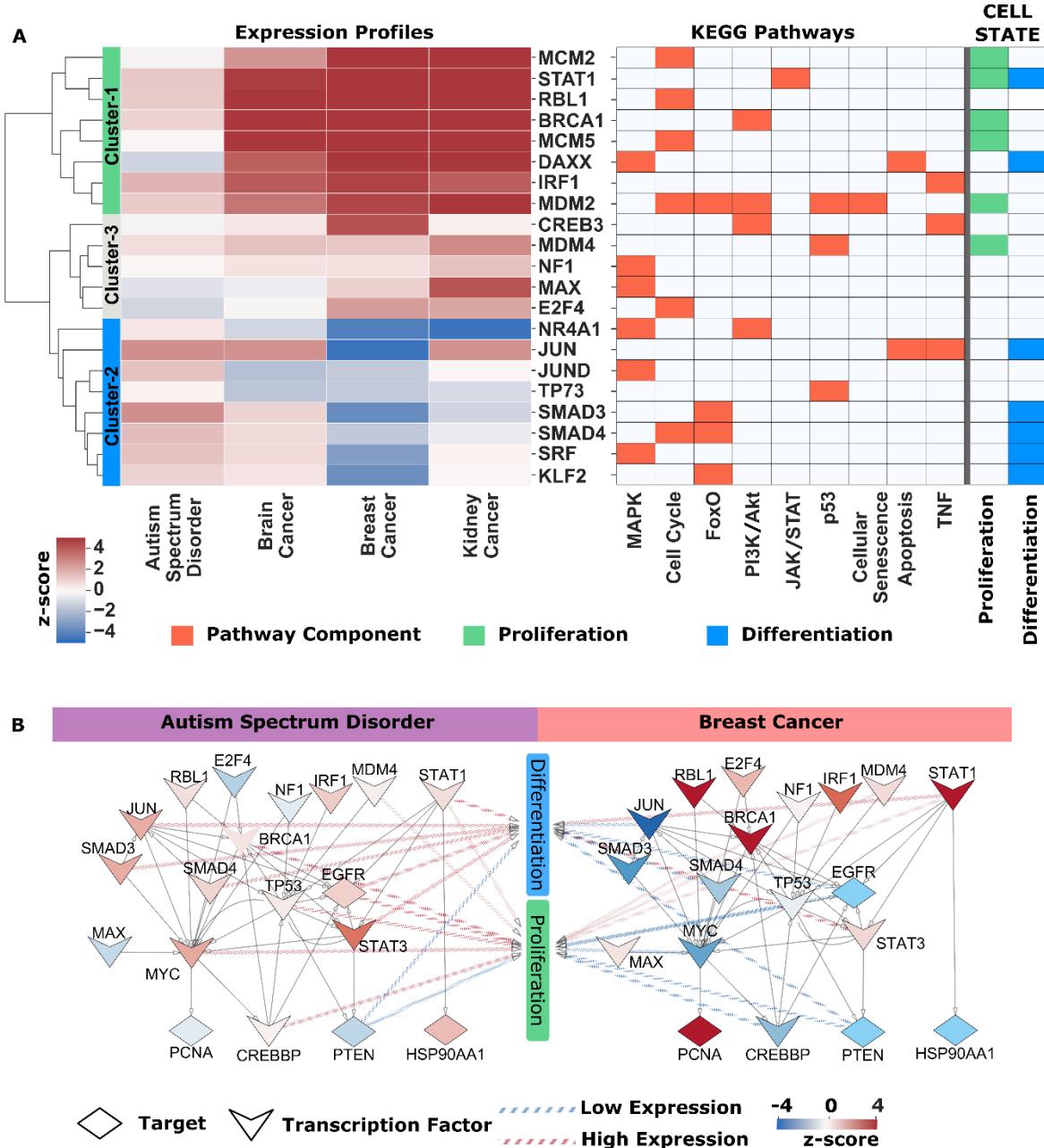


654

655 **Figure 3.** Profiles of TCGA and NDD mutations for PTEN and PI3K α at the residue level on
656 the sequence and structure.

657 (A) Mutations of PTEN are shown as circles, where the phosphatase domain (red), C2 domain
658 (dark green), and C-tail (light green) are represented as colored boxes along the sequence. The
659 number and size of the circle represent the frequency of each mutation in the NDD (blue) or
660 TCGA (red) datasets. Mutations shared by both datasets are highlighted with rectangular
661 borders for emphasis. Total mutation frequencies and the total number of patients in each
662 dataset are shown in the bottom right box. Nonsense mutations are abbreviated with star (*)
663 sign. 6 of 12 PTEN mutations in the NDD set are present in TCGA. Only R130* has a high
664 frequency relative to other shared mutations, yet it is much less frequent when compared to
665 two other TCGA mutations on the same position, R130Q and R130G. (B) Mutations of PI3K α
666 (*PIK3CA*) are shown as circles where ABD (green), RBD (yellow), C2 domain (gray), helical
667 domain (light orange), and kinase domain (orange) are represented as colored boxes along the
668 sequence. The number and size of the circle represent the frequency of each mutation in the
669 NDD (blue) or TCGA (red) datasets. Mutations shared by both datasets are highlighted with
670 rectangular borders for emphasis. Total mutation frequencies and the total number of patients
671 in each dataset are shown in the bottom right box. 3 of 5 PI3K α mutations in the NDD set are
672 present in TCGA. None of these TCGA mutations are on the most frequently mutated residues
673 or among the most frequent mutations. Abbreviations: ABD, adaptor-binding domain; RBD,
674 Ras-binding domain. The 3D structures of (C) PTEN (PDB: 1D5R) and (D) PI3K α (PDB:
675 4OVV) with selected NDD and TCGA mutations. For each residue, mutated amino acids are
676 colored in red, blue, or orange if they are present only among cancer, NDDs or both phenotypes,
677 respectively. In PTEN, these mutations are known to affect the functions of protein including
678 loss of phosphatase activity, reduced protein stability at the membrane, and failing to suppress
679 AKT phosphorylation. In PI3K α , these mutations may interrupt protein activation and reduce
680 protein stability at the membrane.

681


682

683 **Figure 4.** ASD- and breast cancer-specific networks regulating common pathways.

684 (A) Disease-specific network reconstruction for ASD and breast cancer is performed by using
 685 pyPARAGON tool, where the frequently mutated genes are used as seeds. The nodes in
 686 reconstructed networks involve wild type (green circle), mutated genes (red circle), TFs
 687 (chevron), and TF-targets (diamond). The complete ASD-specific network (left side) features
 688 the mutated proteins (SRCAP, BRG1, PTEN, etc.) in ASD cases and reveals disease-associated
 689 proteins (Jun, p53, and Myc). The breast cancer-specific network (right side) illustrates driver
 690 genes, although some driver genes, such as *TP53* and *MYC*, are not frequently mutated in ASD.
 691 Both ASD- and breast cancer-specific networks involve 23 common TFs targeting 752
 692 common genes. These common targets are employed to identify shared pathways.
 693 Abbreviations: BRG1, brahma-related gene 1, a.k.a. SMARCA4; SRCAP, SNF2-related

694 CREBBP activator protein; CREBBP, cAMP response element binding protein; CHD8,
695 chromodomain helicase DNA-binding protein 8; CSF1, macrophage colony-stimulating factor
696 1; HD9, histone deacetylase 9; FOXP1, forkhead box protein P1. **(B)** Overrepresentation
697 analysis determines significant shared pathways ($FDR \leq 0.05$) related to cell differentiation
698 and proliferation among KEGG pathways. The pathways include MAPK, PI3K/AKT, and
699 JAK/STAT. These shared TF-target genes play a significant role in cell fate by altering the
700 signal strength and flow, as well as cell cycle and cellular senescence. Abbreviations: HIF-1,
701 hypoxia-inducible factor 1; TNF, tumor necrosis factor. **(C)** Signal changes in shared pathways
702 are illustrated with the expression scores of pathways, the mean of the absolute z -scores of
703 proteins in a given pathway. We define expression scores as the mean of the absolute z -scores
704 of proteins in a given pathway to indicate the magnitude of the deviation from the average
705 expression values of the normal samples, regardless of the direction of the change. The
706 vulnerability of common pathways to mutation is measured with a propensity score, the
707 average unique mutation in the pathway. The darker red represents a higher change in
708 expression scores of genes in the pathway, and the larger circle shows a higher mutation
709 propensity for the corresponding pathway. ASD has the most minor signal differences and
710 mutation propensities compared to all cancer types in shared pathways, where kidney cancer
711 has the highest signal difference. However, there is an insignificant difference in mutation
712 propensities amongst cancer types. The higher expression scores in cancer types point to
713 stronger signal changes in pathways critical for cell fate, such as proliferation and
714 differentiation. The higher propensity scores in cancer reveal that cancer mutations tend to
715 group in shared pathways. Thus, shared pathways are more vulnerable to cancer than ones in
716 ASD. However, mutation loads and signal deviations on the shared pathways might make ASD
717 patients more fragile to cancer onset.

718

719

720 **Figure 5.** Differential expression profiles in shared pathways.

721 (A) Differentiated expression profiles of TFs in shared pathways. There were 71 TFs in shared
 722 pathways that determine cell fate via changes in signal levels. However, 21 TFs were identified
 723 to be at least one time differentially expressed more (less) in ASD than in other cancer types.
 724 On the left hand, the heatmap of these differentially expressed genes (high in red, low in blue)
 725 clustered expression *z*-scores into three groups. On the right hand, the pathways TFs belong to,

726 and related cell states (proliferation, green; differentiation, blue) are demonstrated. *MCM2*,
727 *STAT1*, *BRCA1*, *MCM5*, *DAXX*, *IRF1*, and *MDM2* in cluster-1 are highly expressed in cancers,
728 while *NR4A1*, *JUN*, *JUND*, *TP73*, *SMAD3*, *SMAD4*, *SRF*, and *KLF2* in cluster-2 are highly
729 expressed in Autism. Genes more expressed in cancer types than in ASD mainly belong to the
730 proliferation state, while genes related to differentiation are predominantly more expressed in
731 ASD than in cancer types. **(B)** Differences between proliferation and differentiation on shared
732 pathways. The signal flows from TFs (chevron) to targets (diamond) in common parts of ASD-
733 and breast cancer-specific networks and in shared pathways were demonstrated with z-scores.
734 The low and high expression levels were illustrated with blue to red, respectively. The
735 relationship between cell state and proteins is represented with arrows whose color also
736 demonstrates the level of expressions, low or high. Differentiation-related proteins, such as
737 Jun, SMAD3, and SMAD4, mainly have low expression profiles in breast cancer, while most
738 are highly expressed in ASD. PTEN, EGFR, and STAT1, related to proliferation and
739 differentiation, have similar expression profiles. Abbreviations: E2F4, E2F transcription factor
740 4; RBL1, retinoblastoma-like protein 1; NF1, neurofibromin; IRF1, interferon regulatory factor
741 1; BRCA1, breast cancer type 1 susceptibility protein; SMAD, mothers against
742 decapentaplegic; EGFR, epidermal growth factor receptor; PCNA, proliferating cell nuclear
743 antigen; CREBBP, cAMP response element binding protein; Hsp90 α , heat shock protein 90 α .
744

745 **Acknowledgements**

746 This project has been funded in whole or in part with federal funds from the National Cancer
747 Institute, National Institutes of Health, under contract HHSN261201500003I. The content of
748 this publication does not necessarily reflect the views or policies of the Department of Health
749 and Human Services, nor does mention of trade names, commercial products, or organizations
750 imply endorsement by the U.S. Government. This research was supported [in part] by the
751 Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer
752 Research. NT has received support from the 2247-A National Outstanding Researchers
753 Program of TUBITAK under the project number 121C292.

754 The results shown here are in part based upon data generated by the TCGA Research Network:
755 <https://www.cancer.gov/tcga>. The results shown on NDD mutations are based on denovo-db,
756 Seattle, WA (URL: denovo-db.gs.washington.edu).

757

758 **Competing Interests**

759 The authors declare no competing interests.

760

761 **Authors' contributions**

762 Conceptualization: RN, NT, CJT

763 Data curation: BRY, MKA, HCD

764 Formal analysis: BRY, MKA, HCD

765 Methodology: BRY, MKA, HCD, CJT, HJ, RN, NT

766 Project administration: NT

767 Supervision: NT

768 Visualization: BRY, MKA, HCD, HJ

769 Writing – original draft: BRY, MKA, HCD, CJT, HJ, RN, NT

770 References

771 Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, Menashe I,
772 Wadkins T, Banerjee-Basu S, Packer A. 2013. SFARI Gene 2.0: a community-driven
773 knowledgebase for the autism spectrum disorders (ASDs). *Mol Autism* **4**:1–3.

774 Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. 2017. HIPPIE v2.0: enhancing
775 meaningfulness and reliability of protein–protein interaction networks. *Nucleic Acids
776 Research*. doi:10.1093/nar/gkw985

777 Andelfinger G, Marquis C, Raboisson M-J, Théoret Y, Waldmüller S, Wiegand G, Gelb BD,
778 Zenker M, Delrue M-A, Hofbeck M. 2019. Hypertrophic Cardiomyopathy in Noonan
779 Syndrome Treated by MEK-Inhibition. *J Am Coll Cardiol* **73**:2237–2239.

780 Arici MK, Tuncbag N. 2023. pyPARAGON: PAgeRAnk-flux on Graphlet-guided-network
781 for multi-Omic data integratioN. Zenodo. doi:10.5281/ZENODO.7736975

782 Bielas JH, Heddle JA. 2000. Proliferation is necessary for both repair and mutation in
783 transgenic mouse cells. *Proc Natl Acad Sci U S A* **97**:11391–11396.

784 Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL. 1999. Proliferative Defect and
785 Embryonic Lethality in Mice Homozygous for a Deletion in the p110 α Subunit of
786 Phosphoinositide 3-Kinase *. *J Biol Chem* **274**:10963–10968.

787 Borrie SC, Brems H, Legius E, Bagni C. 2017. Cognitive Dysfunctions in Intellectual
788 Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways.
789 *Annu Rev Genomics Hum Genet* **18**:115–142.

790 Bragin E, Chatzimichali EA, Wright CF, Hurles ME, Firth HV, Bevan AP, Swaminathan GJ.
791 2014. DECIPHER: database for the interpretation of phenotype-linked plausibly
792 pathogenic sequence and copy-number variation. *Nucleic Acids Res* **42**:D993–D1000.

793 Brunet T, Jech R, Brugger M, Kovacs R, Alhaddad B, Leszinski G, Riedhammer KM,
794 Westphal DS, Mahle I, Mayerhanser K, Skorvanek M, Weber S, Graf E, Berutti R,
795 Necpál J, Havránková P, Pavlekova P, Hempel M, Kotzaeridou U, Hoffmann GF, Leiz
796 S, Makowski C, Roser T, Schroeder SA, Steinfeld R, Strobl-Wildemann G, Hoefele J,
797 Borggraefe I, Distelmaier F, Strom TM, Winkelmann J, Meitinger T, Zech M, Wagner
798 M. 2021. De novo variants in neurodevelopmental disorders-experiences from a tertiary
799 care center. *Clin Genet* **100**:14–28.

800 Chang C-J, Mulholland DJ, Valamehr B, Moseessian S, Sellers WR, Wu H. 2008. PTEN
801 nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor
802 suppression. *Mol Cell Biol* **28**:3281–3289.

803 Chau KK, Zhang P, Urresti J, Amar M, Pramod AB, Chen J, Thomas A, Corominas R, Lin
804 GN, Iakoucheva LM. 2021. Full-length isoform transcriptome of the developing human
805 brain provides further insights into autism. *Cell Rep* **36**:109631.

806 Chen M-H, Tsai S-J, Su T-P, Li C-T, Lin W-C, Cheng C-M, Chen T-J, Bai Y-M. 2022.
807 Cancer risk in patients with bipolar disorder and unaffected siblings of such patients: A
808 nationwide population-based study. *Int J Cancer* **150**:1579–1586.

809 Chiang H-L, Liu C-J, Hu Y-W, Chen S-C, Hu L-Y, Shen C-C, Yeh C-M, Chen T-J, Gau SS-
810 F. 2015. Risk of cancer in children, adolescents, and young adults with autistic disorder.
811 *J Pediatr* **166**:418–23.e1.

812 Clara JA, Monge C, Yang Y, Takebe N. 2020. Targeting signalling pathways and the
813 immune microenvironment of cancer stem cells - a clinical update. *Nat Rev Clin Oncol*
814 **17**:204–232.

815 Corda G, Sala A. 2017. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre
816 stage. *Oncogenesis* **6**:e364.

817 Cox AD, Der CJ, Philips MR. 2015. Targeting RAS Membrane Association: Back to the

818 Future for Anti-RAS Drug Discovery? *Clinical Cancer Research*. doi:10.1158/1078-
819 0432.ccr-14-3214

820 Crunkhorn S. 2018. Genetic disorders: PI3K inhibitor reverses overgrowth syndrome. *Nat*
821 *Rev Drug Discov* **17**:545.

822 Cummings K, Watkins A, Jones C, Dias R, Welham A. 2022. Behavioural and psychological
823 features of PTEN mutations: a systematic review of the literature and meta-analysis of
824 the prevalence of autism spectrum disorder characteristics. *J Neurodev Disord* **14**:1.

825 Cuypers M, Schalk BWM, Boonman AJN, Naaldenberg J, Leusink GL. 2022. Cancer-related
826 mortality among people with intellectual disabilities: A nationwide population-based
827 cohort study. *Cancer* **128**:1267–1274.

828 Darbro BW, Singh R, Zimmerman MB, Mahajan VB, Bassuk AG. 2016. Autism Linked to
829 Increased Oncogene Mutations but Decreased Cancer Rate. *PLoS One* **11**:e0149041.

830 Deciphering Developmental Disorders Study. 2017. Prevalence and architecture of de novo
831 mutations in developmental disorders. *Nature* **542**:433–438.

832 DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR. 1997. Distinct roles for E2F proteins in
833 cell growth control and apoptosis. *Proc Natl Acad Sci U S A* **94**:7245–7250.

834 Demeter M, Derényi I, Szöllösi GJ. 2022. Trade-off between reducing mutational
835 accumulation and increasing commitment to differentiation determines tissue
836 organization. *Nat Commun* **13**:1–10.

837 Dobyns WB, Mirzaa GM. 2019. Megalencephaly syndromes associated with mutations of
838 core components of the PI3K-AKT-MTOR pathway: PIK3CA, PIK3R2, AKT3, and
839 MTOR. *Am J Med Genet C Semin Med Genet* **181**:582–590.

840 Dombi E, Baldwin A, Marcus LJ, Fisher MJ, Weiss B, Kim A, Whitcomb P, Martin S,
841 Aschbacher-Smith LE, Rizvi TA, Wu J, Ershler R, Wolters P, Therrien J, Glod J,
842 Belasco JB, Schorry E, Brofferio A, Starosta AJ, Gillespie A, Doyle AL, Ratner N,
843 Widemann BC. 2016. Activity of Selumetinib in Neurofibromatosis Type 1-Related
844 Plexiform Neurofibromas. *N Engl J Med* **375**:2550–2560.

845 Eastman AE, Chen X, Hu X, Hartman AA, Pearlman Morales AM, Yang C, Lu J, Kueh HY,
846 Guo S. 2020. Resolving Cell Cycle Speed in One Snapshot with a Live-Cell Fluorescent
847 Reporter. *Cell Rep* **31**:107804.

848 Ersahin T, Tuncbag N, Cetin-Atalay R. 2015. The PI3K/AKT/mTOR interactive pathway.
849 *Mol Biosyst* **11**:1946–1954.

850 Forés-Martos J, Catalá-López F, Sánchez-Valle J, Ibáñez K, Tejero H, Palma-Gudiel H,
851 Climent J, Pancaldi V, Fañanás L, Arango C, Parellada M, Baudot A, Vogt D,
852 Rubenstein JL, Valencia A, Tabarés-Seisdedos R. 2019. Transcriptomic metaanalyses of
853 autistic brains reveals shared gene expression and biological pathway abnormalities with
854 cancer. *Mol Autism* **10**:17.

855 Frazier TW, Jaini R, Busch RM, Wolf M, Sadler T, Klaas P, Hardan AY, Martinez-Agosto
856 JA, Sahin M, Eng C, Warfield SK, Scherrer B, Dies K, Filip-Dhima R, Gulsrud A,
857 Hanson E, Phillips JM, the Developmental Synaptopathies Consortium. 2021. Cross-
858 level analysis of molecular and neurobehavioral function in a prospective series of
859 patients with germline heterozygous PTEN mutations with and without autism.
860 *Molecular Autism*. doi:10.1186/s13229-020-00406-6

861 Garces de Los Fayos Alonso I, Liang H-C, Turner SD, Lagger S, Merkel O, Kenner L. 2018.
862 The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive
863 Lymphomas. *Cancers* **10**. doi:10.3390/cancers10040093

864 García-Gutiérrez L, Bretones G, Molina E, Arechaga I, Symonds C, Acosta JC, Blanco R,
865 Fernández A, Alonso L, Sicinski P, Barbacid M, Santamaría D, León J. 2019. Myc
866 stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of
867 p27. *Sci Rep* **9**:18693.

868 Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, Griss J, Sevilla C,
869 Matthews L, Gong C, Deng C, Varusai T, Ragueneau E, Haider Y, May B, Shamovsky
870 V, Weiser J, Brunson T, Sanati N, Beckman L, Shao X, Fabregat A, Sidiropoulos K,
871 Murillo J, Viteri G, Cook J, Shorser S, Bader G, Demir E, Sander C, Haw R, Wu G,
872 Stein L, Hermjakob H, D'Eustachio P. 2022. The reactome pathway knowledgebase
873 2022. *Nucleic Acids Res* **50**:D687–D692.

874 Gong B, Ma M, Yang X, Xie W, Luo Y, Sun T. 2019. MCM5 promotes tumour proliferation
875 and correlates with the progression and prognosis of renal cell carcinoma. *Int Urol
876 Nephrol* **51**:1517–1526.

877 Gross AM, Frone M, Gripp KW, Gelb BD, Schoyer L, Schill L, Stronach B, Biesecker LG,
878 Esposito D, Hernandez ER, Legius E, Loh ML, Martin S, Morrison DK, Rauen KA,
879 Wolters PL, Zand D, McCormick F, Savage SA, Stewart DR, Widemann BC, Yohe ME.
880 2020. Advancing RAS/RASopathies therapies: An NCI-sponsored intramural and
881 extramural collaboration for the study of RASopathies. *American Journal of Medical
882 Genetics Part A*. doi:10.1002/ajmg.a.61485

883 Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, West AB, Arking DE. 2014.
884 Transcriptome analysis reveals dysregulation of innate immune response genes and
885 neuronal activity-dependent genes in autism. *Nat Commun* **5**:5748.

886 Hall M. 2004. Faculty Opinions recommendation of mTOR is essential for growth and
887 proliferation in early mouse embryos and embryonic stem cells. *Faculty Opinions –
888 Post-Publication Peer Review of the Biomedical Literature*.
889 doi:10.3410/f.1020418.232572

890 Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, Lee S,
891 Kang B, Jeong D, Kim Y, Jeon H-N, Jung H, Nam S, Chung M, Kim J-H, Lee I. 2018.
892 TRRUST v2: an expanded reference database of human and mouse transcriptional
893 regulatory interactions. *Nucleic Acids Res* **46**:D380–D386.

894 Hebron KE, Hernandez ER, Yohe ME. 2022. The RASopathies: from pathogenetics to
895 therapeutics. *Dis Model Mech* **15**. doi:10.1242/dmm.049107

896 Heslop P, Cook A, Sullivan B, Calkin R, Pollard J, Byrne V. 2022. Cancer in deceased adults
897 with intellectual disabilities: English population-based study using linked data from
898 three sources. *BMJ Open* **12**:e056974.

899 Hou P-S, hAilín DÓ, Vogel T, Hanashima C. 2020. Transcription and Beyond: Delineating
900 FOXG1 Function in Cortical Development and Disorders. *Front Cell Neurosci* **14**:35.

901 Hou Z, Wang Z, Tao Y, Bai J, Yu B, Shen J, Sun H, Xiao L, Xu Y, Zhou J, Wang Z, Geng D.
902 2018. KLF2 regulates osteoblast differentiation by targeting of Runx2. *Lab Invest*
903 **99**:271–280.

904 Huang K-L, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, Paczkowska M, Reynolds S,
905 Wyczalkowski MA, Oak N, Scott AD, Krassowski M, Cherniack AD, Houlahan KE,
906 Jayasinghe R, Wang L-B, Zhou DC, Liu D, Cao S, Kim YW, Koire A, McMichael JF,
907 Huchtagowder V, Kim T-B, Hahn A, Wang C, McLellan MD, Al-Mulla F, Johnson KJ,
908 Cancer Genome Atlas Research Network, Lichtarge O, Boutros PC, Raphael B, Lazar
909 AJ, Zhang W, Wendl MC, Govindan R, Jain S, Wheeler D, Kulkarni S, Dipersio JF,
910 Reimand J, Meric-Bernstam F, Chen K, Shmulevich I, Plon SE, Chen F, Ding L. 2018.
911 Pathogenic Germline Variants in 10,389 Adult Cancers. *Cell* **173**:355–370.e14.

912 Hwang S. 2012. Comparison and evaluation of pathway-level aggregation methods of gene
913 expression data. *BMC Genomics* **13 Suppl 7**:S26.

914 Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA,
915 Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J,
916 Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF,
917 Waqar Z, Wei L, Willsey AJ, Yamrom B, Lee Y-H, Grabowska E, Dalkic E, Wang Z,

918 Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L,
919 Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE,
920 State MW, Wigler M. 2014. The contribution of de novo coding mutations to autism
921 spectrum disorder. *Nature* **515**:216–221.

922 Jang H, Chen J, Iakoucheva LM, Nussinov R. 2023. How PTEN mutations degrade function
923 at the membrane and life expectancy of carriers of mutations in the human brain.
924 *bioRxiv*. doi:10.1101/2023.01.26.525746

925 Jang H, Smith IN, Eng C, Nussinov R. 2021. The mechanism of full activation of tumor
926 suppressor PTEN at the phosphoinositide-enriched membrane. *iScience* **24**:102438.

927 Jiang C-C, Lin L-S, Long S, Ke X-Y, Fukunaga K, Lu Y-M, Han F. 2022. Signalling
928 pathways in autism spectrum disorder: mechanisms and therapeutic implications. *Signal
929 Transduct Target Ther* **7**:229.

930 Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 2022. KEGG for
931 taxonomy-based analysis of pathways and genomes. *Nucleic Acids Res.*
932 doi:10.1093/nar/gkac963

933 Kao H-T, Buka SL, Kelsey KT, Gruber DF, Porton B. 2010. The correlation between rates of
934 cancer and autism: an exploratory ecological investigation. *PLoS One* **5**:e9372.

935 Kim T-M, Yim S-H, Jeong Y-B, Jung Y-C, Chung Y-J. 2008. PathCluster: a framework for
936 gene set-based hierarchical clustering. *Bioinformatics* **24**:1957–1958.

937 Koire A, Katsonis P, Kim YW, Buchovecky C, Wilson SJ, Lichtarge O. 2021. A method to
938 delineate de novo missense variants across pathways prioritizes genes linked to autism.
939 *Sci Transl Med* **13**. doi:10.1126/scitranslmed.abc1739

940 Kumar S, Reynolds K, Ji Y, Gu R, Rai S, Zhou CJ. 2019. Impaired neurodevelopmental
941 pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk.
942 *J Neurodev Disord* **11**:10.

943 Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P,
944 Pavletich NP. 1999. Crystal structure of the PTEN tumor suppressor: implications for its
945 phosphoinositide phosphatase activity and membrane association. *Cell* **99**:323–334.

946 Levine DM, Haynor DR, Castle JC, Stepaniants SB, Pellegrini M, Mao M, Johnson JM.
947 2006. Pathway and gene-set activation measurement from mRNA expression data: the
948 tissue distribution of human pathways. *Genome Biol* **7**:R93.

949 Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. 2019. WebGestalt 2019: gene set analysis
950 toolkit with revamped UIs and APIs. *Nucleic Acids Res* **47**:W199–W205.

951 Li B, Li K, Tian D, Zhou Q, Xie Y, Fang Z, Wang X, Luo T, Wang Z, Zhang Y, Wang Y,
952 Chen Q, Meng Q, Zhao G, Li J. 2020. De novo mutation of cancer-related genes
953 associates with particular neurodevelopmental disorders. *J Mol Med* **98**:1701–1712.

954 Li C, Ito H, Fujita K, Shiwaku H, Qi Y, Tagawa K, Tamura T, Okazawa H. 2013. Sox2
955 transcriptionally regulates PQBP1, an intellectual disability-microcephaly causative
956 gene, in neural stem progenitor cells. *PLoS One* **8**:e68627.

957 Liu M, Liu X, Suo P, Gong Y, Qu B, Peng X, Xiao W, Li Y, Chen Y, Zeng Z, Lu Y, Huang
958 T, Zhao Y, Liu M, Li L, Chen Y, Zhou Y, Liu G, Yao J, Chen S, Song L. 2020. The
959 contribution of hereditary cancer-related germline mutations to lung cancer
960 susceptibility. *Transl Lung Cancer Res* **9**:646–658.

961 Liu Q, Yin W, Meijse JJ, Reichenberg A, Gådin JR, Schork AJ, Adami H-O, Kolevzon A,
962 Sandin S, Fang F. 2022. Cancer risk in individuals with autism spectrum disorder. *Ann
963 Oncol* **33**:713–719.

964 Longo F, Klann E. 2021. Reciprocal control of translation and transcription in autism
965 spectrum disorder. *EMBO Rep* **22**:e52110.

966 Mariani O, Bennetot C, Coindre J-M, Gruel N, Ganem C, Delattre O, Stern M-H, Aurias A.
967 2007. JUN oncogene amplification and overexpression block adipocytic differentiation

968 in highly aggressive sarcomas. *Cancer Cell* **11**:361–374.

969 Mendoza MC, Er EE, Blenis J. 2011. The Ras-ERK and PI3K-mTOR pathways: cross-talk
970 and compensation. *Trends Biochem Sci* **36**:320–328.

971 Mighell TL, Evans-Dutson S, O’Roak BJ. 2018. A Saturation Mutagenesis Approach to
972 Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype
973 Relationships. *Am J Hum Genet* **102**:943–955.

974 Milenković T, Pržulj N. 2008. Uncovering Biological Network Function via Graphlet Degree
975 Signatures. *Cancer Informatics*. doi:10.4137/cin.s680

976 Miller MS, Schmidt-Kittler O, Bolduc DM, Brower ET, Chaves-Moreira D, Allaire M,
977 Kinzler KW, Jennings IG, Thompson PE, Cole PA, Mario Amzel L, Vogelstein B,
978 Gabelli SB. 2014. Structural basis of nSH2 regulation and lipid binding in PI3K α .
979 *Oncotarget*. doi:10.18632/oncotarget.2263

980 Mirzaa G, Timms AE, Conti V, Boyle EA, Girisha KM, Martin B, Kircher M, Olds C,
981 Juusola J, Collins S, Park K, Carter M, Glass I, Krägeloh-Mann I, Chitayat D, Parikh
982 AS, Bradshaw R, Torti E, Braddock S, Burke L, Ghedia S, Stephan M, Stewart F,
983 Prasad C, Napier M, Saitta S, Straussberg R, Gabbett M, O’Connor BC, Keegan CE,
984 Yin LJ, Lai AHM, Martin N, McKinnon M, Addor M-C, Boccuto L, Schwartz CE,
985 Lanoel A, Conway RL, Devriendt K, Tatton-Brown K, Pierpont ME, Painter M, Worgan
986 L, Reggin J, Hennekam R, Tsuchiya K, Pritchard CC, Aracena M, Gripp KW, Cordisco
987 M, Van Esch H, Garavelli L, Curry C, Goriely A, Kayserili H, Shendure J, Graham J,
988 Guerrini R, Dobyns WB. 2016. PIK3CA-associated developmental disorders exhibit
989 distinct classes of mutations with variable expression and tissue distribution. *JCI Insight*.
990 doi:10.1172/jci.insight.87623

991 Muiños F, Martínez-Jiménez F, Pich O, Gonzalez-Perez A, Lopez-Bigas N. 2021. In silico
992 saturation mutagenesis of cancer genes. *Nature* **596**:428–432.

993 NCI Dictionary of Cancer Terms. 2011. . *National Cancer Institute*.
994 <https://www.cancer.gov/publications/dictionaries/cancer-terms>

995 Niarchou M, Chawner SJRA, Doherty JL, Maillard AM, Jacquemont S, Chung WK, Green-
996 Snyder L, Bernier RA, Goin-Kochel RP, Hanson E, Linden DEJ, Linden SC, Raymond
997 FL, Skuse D, Hall J, Owen MJ, van den Bree MBM. 2019. Psychiatric disorders in
998 children with 16p11.2 deletion and duplication. *Transl Psychiatry* **9**:8.

999 Nordentoft M, Plana-Ripoll O, Laursen TM. 2021. Cancer and schizophrenia. *Curr Opin
1000 Psychiatry* **34**:260–265.

1001 Nussinov R, Jang H, Tsai C-J, Cheng F. 2019a. Precision medicine review: rare driver
1002 mutations and their biophysical classification. *Biophys Rev* **11**:5–19.

1003 Nussinov R, Tsai C-J. 2015. “Latent drivers” expand the cancer mutational landscape. *Curr
1004 Opin Struct Biol* **32**:25–32.

1005 Nussinov R, Tsai C-J, Jang H. 2022a. Neurodevelopmental disorders, immunity, and cancer
1006 are connected. *iScience* **25**. doi:10.1016/j.isci.2022.104492

1007 Nussinov R, Tsai C-J, Jang H. 2022b. Allostery, and how to define and measure signal
1008 transduction. *Biophys Chem* **283**:106766.

1009 Nussinov R, Tsai C-J, Jang H. 2022c. A New View of Activating Mutations in Cancer.
1010 *Cancer Res* **82**:4114–4123.

1011 Nussinov R, Tsai C-J, Jang H. 2022d. How can same-gene mutations promote both cancer
1012 and developmental disorders? *Sci Adv* **8**:eabm2059.

1013 Nussinov R, Tsai C-J, Jang H. 2021. Anticancer drug resistance: An update and perspective.
1014 *Drug Resist Updat* **59**:100796.

1015 Nussinov R, Tsai C-J, Jang H. 2019b. Why Are Some Driver Mutations Rare? *Trends
1016 Pharmacol Sci* **40**:919–929.

1017 Nussinov R, Tsai C-J, Jang H, Korcsmáros T, Csermely P. 2016. Oncogenic KRAS signaling

1018 and YAP1/β-catenin: Similar cell cycle control in tumor initiation. *Semin Cell Dev Biol*
1019 **58**:79–85.

1020 Nussinov R, Yavuz BR, Arici MK, Demirel HC, Zhang M, Liu Y, Tsai C-J, Jang H, Tuncbag
1021 N. 2023. Neurodevelopmental disorders, like cancer, are connected to impaired
1022 chromatin remodelers, PI3K/mTOR and PAK1-regulated MAPK. *Biophys Rev*. doi:DOI
1023 : 10.1007/s12551-023-01054-9

1024 Orrico A, Galli L, Buoni S, Orsi A, Vonella G, Sorrentino V. 2009. Novel PTEN mutations
1025 in neurodevelopmental disorders and macrocephaly. *Clin Genet* **75**:195–198.

1026 Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM, Lunardi A, Webster K, Ng C,
1027 Newton RH, Knoblauch N, Guarnerio J, Ito K, Turka LA, Beck AH, Pinton P, Bronson
1028 RT, Wei W, Pandolfi PP. 2014. Cancer-Associated PTEN Mutants Act in a Dominant-
1029 Negative Manner to Suppress PTEN Protein Function. *Cell*.
1030 doi:10.1016/j.cell.2014.03.027

1031 Pareja F, Ptashkin RN, Brown DN, Derakhshan F, Selenica P, da Silva EM, Gazzo AM, Da
1032 Cruz Paula A, Breen K, Shen R, Marra A, Zehir A, Benayed R, Berger MF, Ceyhan-
1033 Birsoy O, Jairam S, Sheehan M, Patel U, Kemel Y, Casanova-Murphy J, Schwartz CJ,
1034 Vahdatinia M, Comen E, Borsu L, Pei X, Riaz N, Abramson DH, Weigelt B, Walsh MF,
1035 Hadjantonakis A-K, Ladanyi M, Offit K, Stadler ZK, Robson ME, Reis-Filho JS,
1036 Mandelker D. 2022. Cancer-Causative Mutations Occurring in Early Embryogenesis.
1037 *Cancer Discov* **12**:949–957.

1038 Parenti I, Rabaneda LG, Schoen H, Novarino G. 2020. Neurodevelopmental Disorders: From
1039 Genetics to Functional Pathways. *Trends in Neurosciences*.
1040 doi:10.1016/j.tins.2020.05.004

1041 Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam H-J, Mort M, Cooper DN,
1042 Sebat J, Iakoucheva LM, Mooney SD, Radivojac P. 2020. Inferring the molecular and
1043 phenotypic impact of amino acid variants with MutPred2. *Nat Commun* **11**:5918.

1044 Peng X-D, Xu P-Z, Chen M-L, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D,
1045 Chen WS, Crawford SE, Coleman KG, Hay N. 2003. Dwarfism, impaired skin
1046 development, skeletal muscle atrophy, delayed bone development, and impeded
1047 adipogenesis in mice lacking Akt1 and Akt2. *Genes Dev* **17**:1352–1365.

1048 Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F,
1049 Furlong LI. 2015. DisGeNET: a discovery platform for the dynamical exploration of
1050 human diseases and their genes. *Database* **2015**:bav028.

1051 Pisibon C, Ouertani A, Bertolotto C, Ballotti R, Cheli Y. 2021. Immune Checkpoints in
1052 Cancers: From Signaling to the Clinic. *Cancers* **13**:4573.

1053 Portelli S, Barr L, de Sá AGC, Pires DEV, Ascher DB. 2021. Distinguishing between PTEN
1054 clinical phenotypes through mutation analysis. *Comput Struct Biotechnol J* **19**:3097–
1055 3109.

1056 Qi H, Dong C, Chung WK, Wang K, Shen Y. 2016. Deep Genetic Connection Between
1057 Cancer and Developmental Disorders. *Hum Mutat* **37**:1042–1050.

1058 Qing T, Mohsen H, Marczyk M, Ye Y, O'Meara T, Zhao H, Townsend JP, Gerstein M,
1059 Hatzis C, Kluger Y, Pusztai L. 2020. Germline variant burden in cancer genes correlates
1060 with age at diagnosis and somatic mutation burden. *Nat Commun* **11**:2438.

1061 Rashed WM, Marcotte EL, Spector LG. 2022. Germline Mutations as a Cause of Childhood
1062 Cancer. *JCO Precis Oncol* **6**:e2100505.

1063 Rauen KA. 2013. The RASopathies. *Annu Rev Genomics Hum Genet* **14**:355–369.

1064 Rodríguez-Escudero I, Oliver MD, Andrés-Pons A, Molina M, Cid VJ, Pulido R. 2011. A
1065 comprehensive functional analysis of PTEN mutations: implications in tumor- and
1066 autism-related syndromes. *Hum Mol Genet* **20**:4132–4142.

1067 Rubel T, Ritz A. 2020. Augmenting signaling pathway reconstructions. *bioRxiv*.

1068 doi:10.1101/2020.06.16.155853
1069 Sahin M, Sur M. 2015. Genes, circuits, and precision therapies for autism and related
1070 neurodevelopmental disorders. *Science* **350**. doi:10.1126/science.aab3897
1071 Scheiblecker L, Kollmann K, Sexl V. 2020. CDK4/6 and MAPK-Crosstalk as Opportunity
1072 for Cancer Treatment. *Pharmaceuticals* **13**. doi:10.3390/ph13120418
1073 Shimizu Y, Luk H, Horio D, Miron P, Griswold M, Iglehart D, Hernandez B, Killeen J,
1074 ElShamy WM. 2012. BRCA1-IRIS Overexpression Promotes Formation of Aggressive
1075 Breast Cancers. *PLoS One* **7**:e34102.
1076 Simanshu DK, Nissley DV, McCormick F. 2017. RAS Proteins and Their Regulators in
1077 Human Disease. *Cell*. doi:10.1016/j.cell.2017.06.009
1078 Singh G, Driever PH, Sander JW. 2005. Cancer risk in people with epilepsy: the role of
1079 antiepileptic drugs. *Brain* **128**:7–17.
1080 Singh G, Fletcher O, Bell GS, McLean AE, Sander JW. 2009. Cancer mortality amongst
1081 people with epilepsy: a study of two cohorts with severe and presumed milder epilepsy.
1082 *Epilepsy Res* **83**:190–197.
1083 Skelton PD, Stan RV, Luikart BW. 2020. The Role of PTEN in Neurodevelopment. *Mol
1084 Neuropsychiatry* **5**:60–71.
1085 Spinelli L, Black FM, Berg JN, Eickholt BJ, Leslie NR. 2015. Functionally distinct groups of
1086 inherited PTEN mutations in autism and tumour syndromes. *J Med Genet* **52**:128–134.
1087 Stephenson JD, Laskowski RA, Nightingale A, Hurles ME, Thornton JM. 2019. VarMap: a
1088 web tool for mapping genomic coordinates to protein sequence and structure and
1089 retrieving protein structural annotations. *Bioinformatics* **35**:4854–4856.
1090 Stratton M. 2008. Patterns of somatic mutation in human cancer genomes. *European Journal
1091 of Cancer Supplements*. doi:10.1016/s1359-6349(08)71197-2
1092 Tadesse S, Caldon EC, Tilley W, Wang S. 2019. Cyclin-Dependent Kinase 2 Inhibitors in
1093 Cancer Therapy: An Update. *J Med Chem* **62**:4233–4251.
1094 Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder MP, Vivancos A, Rovira A, Tusquets I,
1095 Albanell J, Rodon J, Tabernero J, de Torres C, Dienstmann R, Gonzalez-Perez A,
1096 Lopez-Bigas N. 2018. Cancer Genome Interpreter annotates the biological and clinical
1097 relevance of tumor alterations. *Genome Med* **10**:25.
1098 Thorpe LM, Yuzugullu H, Zhao JJ. 2014. PI3K in cancer: divergent roles of isoforms, modes
1099 of activation and therapeutic targeting. *Nat Rev Cancer* **15**:7–24.
1100 Turner TN, Yi Q, Krumm N, Huddlestone J, Hoekzema K, F Stessman HA, Doebley A-L,
1101 Bernier RA, Nickerson DA, Eichler EE. 2017. denovo-db: a compendium of human de
1102 novo variants. *Nucleic Acids Res* **45**:D804–D811.
1103 Vanhaesebroeck B, Guillermot-Guibert J, Graupera M, Bilanges B. 2010. The emerging
1104 mechanisms of isoform-specific PI3K signalling. *Nat Rev Mol Cell Biol* **11**:329–341.
1105 Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong J-P, Blanc E, Johnson SC,
1106 Hoguin C, Boccara O, Sarnacki S, Boddaert N, Pannier S, Martinez F, Magassa S,
1107 Yamaguchi J, Knebelmann B, Merville P, Grenier N, Joly D, Cormier-Daire V, Michot
1108 C, Bole-Feysot C, Picard A, Soupre V, Lyonnet S, Sadoine J, Slimani L, Chaussain C,
1109 Laroche-Raynaud C, Guibaud L, Broissand C, Amiel J, Legendre C, Terzi F, Canaud G.
1110 2018. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. *Nature*
1111 **558**:540–546.
1112 Walsh KM, Bracken MB. 2011. Copy number variation in the dosage-sensitive 16p11.2
1113 interval accounts for only a small proportion of autism incidence: a systematic review
1114 and meta-analysis. *Genet Med* **13**:377–384.
1115 Wang L, Zhou K, Fu Z, Yu D, Huang H, Zang X, Mo X. 2017. Brain Development and Akt
1116 Signaling: the Crossroads of Signaling Pathway and Neurodevelopmental Diseases. *J
1117 Mol Neurosci* **61**:379–384.

1118 Wong CW, Or PMY, Wang Y, Li L, Li J, Yan M, Cao Y, Luk HM, Tong TMF, Leslie NR,
1119 Lo IF-M, Choy KW, Chan AML. 2018. Identification of a PTEN mutation with reduced
1120 protein stability, phosphatase activity, and nuclear localization in Hong Kong patients
1121 with autistic features, neurodevelopmental delays, and macrocephaly. *Autism Research*.
1122 doi:10.1002/aur.1950

1123 Wu W, Wang X, Shan C, Li Y, Li F. 2018. Minichromosome maintenance protein 2
1124 correlates with the malignant status and regulates proliferation and cell cycle in lung
1125 squamous cell carcinoma. *OTT* **11**:5025–5034.

1126 Xu X, Zhou Y, Feng X, Li X, Asad M, Li D, Liao B, Li J, Cui Q, Wang E. 2020. Germline
1127 genomic patterns are associated with cancer risk, oncogenic pathways, and clinical
1128 outcomes. *Sci Adv* **6**. doi:10.1126/sciadv.aba4905

1129 Yaeger R, Corcoran RB. 2019. Targeting Alterations in the RAF-MEK Pathway. *Cancer*
1130 *Discov* **9**:329–341.

1131 Yang J, Jiang W. 2020. The Role of SMAD2/3 in Human Embryonic Stem Cells. *Front Cell*
1132 *Dev Biol* **0**. doi:10.3389/fcell.2020.00653

1133 Yang J, Wang J, Zeng Z, Qiao L, Zhuang L, Jiang L, Wei J, Ma Q, Wu M, Ye S, Gao Q, Ma
1134 D, Huang X. 2016. Smad4 is required for the development of cardiac and skeletal
1135 muscle in zebrafish. *Differentiation* **92**:161–168.

1136 Yeung KS, Tso WWY, Ip JJK, Mak CCY, Leung GKC, Tsang MHY, Ying D, Pei SLC, Lee
1137 SL, Yang W, Chung BH-Y. 2017. Identification of mutations in the PI3K-AKT-mTOR
1138 signalling pathway in patients with macrocephaly and developmental delay and/or
1139 autism. *Mol Autism* **8**:1–11.

1140 Yousef EM, Furrer D, Laperriere DL, Tahir MR, Mader S, Diorio C, Gaboury LA. 2017.
1141 MCM2: An alternative to Ki-67 for measuring breast cancer cell proliferation. *Mod*
1142 *Pathol* **30**:682–697.

1143 Yu JSL, Cui W. 2016. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR
1144 signalling in pluripotency and cell fate determination. *Development* **143**:3050–3060.

1145 Zengeler KE, Lukens JR. 2021. Innate immunity at the crossroads of healthy brain maturation
1146 and neurodevelopmental disorders. *Nat Rev Immunol* **21**:454–468.

1147 Zhang M, Jang H, Nussinov R. 2019. The mechanism of PI3K α activation at the atomic level.
1148 *Chem Sci* **10**:3671–3680.

1149 Zhao J, Luo Z. 2022. Discovery of Raf Family Is a Milestone in Deciphering the Ras-
1150 Mediated Intracellular Signaling Pathway. *Int J Mol Sci* **23**. doi:10.3390/ijms23095158

1151 Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, Li Y, Zhang Z, Rusch MC,
1152 Parker M, Becksfort J, Downing JR, Zhang J. 2016. Exploring genomic alteration in
1153 pediatric cancer using ProteinPaint. *Nat Genet* **48**:4–6.

1154