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Abstract

Neurodevelopmental disorders (NDDs) and cancer are connected, with immunity as their
common factor. Their clinical presentations differ; however, individuals with NDDs are more
likely to acquire cancer. Schizophrenia patients have ~50% increased risk; autistic individuals
also face an increased cancer likelihood. NDDs are associated with specific brain cell types at
specific locations, emerging at certain developmental time windows during brain evolution.
Their related mutations are germline; cancer mutations are sporadic, emerging during life. At
the same time, NDDs and cancer share proteins, pathways, and mutations. Here we ask exactly
which features they share, and how despite their commonality, they differ in outcomes. Our
pioneering bioinformatics exploration of the mutations, reconstructed disease-specific
networks, pathways, and transcriptome profiles of autism spectrum disorder (ASD) and
cancers, points to elevated signal strength in pathways related to proliferation in cancer, and
differentiation in ASD. Signaling strength, not the activating mutation, is the key factor in

deciding cancer versus NDDs.

Keywords: autism, schizophrenia, intellectual disorder, weak/strong mutations, disease-

specific networks, proliferation/differentiation, signaling pathways
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Introduction

NDDs arise from a dysfunctional nervous system during embryonic brain development. The
origins of NDDs are still unclear. They may originate from dysregulation of neuron
differentiation, during synapse formation and maturation, or other complex processes in the
course of brain evolution, such as emergence from progenitor cells, neuron phenotypic
specification, migration, and specific synaptic contacts. Flaws can result in faulty wired
neuronal circuits (Nussinov et al., 2023, 2022a). Despite differing from processes associated
with the emergence of cancer, data indicate that NDDs and cancer are related, with immunity
likely the common factor. The immune and nervous systems coevolve as the embryo develops
(Nussinov et al., 2022a). The outcomes, cancer or NDDs, reflect the different cell cycle
consequences, proliferation in cancer and differentiation in NDDs. Proliferation requires a
stronger signal to promote the cell cycle than differentiation does. This further suggests that in
addition to nodes in the major signaling pathways, transcription factors (TFs) and chromatin
remodelers, which govern chromatin organization, are agents in NDDs. Gene accessibility
influences the lineage of specific brain cell types at specific embryonic development stages
(Nussinov et al., 2023).

Here, we aim to uncover the shared features between neurodevelopmental disorders and
cancer. We expect that these will help us understand the challenging question of how
expression levels and mutations in the same pathways, and even the same proteins, including
TFs and chromatin remodelers, can lead to NDDs versus cancer, with vastly different
phenotypic presentations. Especially, we aim to discover what are the determining features
deciding whether the major outcome is NDDs or cancer. We address this daunting goal by
comprehensively leveraging mutations, transcriptomic data, and protein-protein interaction
(PPI) networks. We compare the effects of mutations on the pathogenicity of commonly

mutated genes in NDDs and cancer. We observe that mutations in NDDs tend to be weaker
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than those in cancer. To evaluate the pathway-level properties of NDDs and cancer, we
reconstruct the disease-specific networks of autism spectrum disorder (ASD) and breast cancer
and identify common TFs. Most of the targets of these common TFs are mutated in both ASD
and breast cancer and involved in mitogen-activated protein kinase (MAPK), the cell cycle,
and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathways. By using
transcriptomic profiles of ASD and breast/brain/kidney cancers, we show that in breast cancer
samples, there is an increase in signaling strength in shared pathways involved in proliferation
and a decrease in differentiation. This, however, is not the case among ASD samples, where
the signaling level is high in shared pathways involved in differentiation and low in
proliferation.

Recent epidemiological studies on large cohorts of NDD patients demonstrated an
increased risk for cancer compared to the general population. In one study, a standardized
incidence ratio model was applied to a cohort of 8438 patients with autism retrieved from the
Taiwan National Health Insurance database during 1997-2011. It implicated an increase in
cancers of the genitourinary system and ovary among children and young adults (Chiang et al.,
2015). Increased cancer risk was also observed in a population-based study among 2.3 million
individuals with ASD from Nordic countries during 1987-2013 with co-occurring birth defects,
including intellectual disability (Liu et al., 2022). A correlation between autism and cancer with
shared risk factors was also pointed out (Kao et al., 2010). Another cohort study proposed that
patients with bipolar disorder and their unaffected siblings have an especially higher risk of
breast cancer compared to normal control groups (Chen et al., 2022). The association between
brain, hepatocellular, and lung cancer among people with epilepsy was manifested by animal
experiments, genotoxicity studies, and epidemiological observations. Possible underlying

mechanisms have also been suggested (Singh et al., 2009, 2005).
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96 NDD data has expanded recently, particularly de novo mutation data obtained by trio-
97  sequencing and publicly available databases. However, it is still not as prevalent as the whole
98  exome/genome sequencing data for cancer (Bragin et al., 2014; Turner et al., 2017). 32,991 de
99  novo variants obtained from 23,098 trios are deposited in denovo-db (Turner et al., 2017).
100  According to the database definition, de novo mutations are germline de novo variants present
101 in children but not in their parents. The Deciphering Developmental Disorders (DDD) Study
102  provides detailed genotype-phenotype information for 14,000 children with developmental
103  disorders, and their parents from the UK and Ireland. Additionally, there are some knowledge
104  databases with curated sets of genes and variants associated with one/multiple
105 neurodevelopmental diseases or cancer (Abrahams et al., 2013; Pifiero et al., 2015).
106 Here, we use de novo mutations in ~10,000 samples with NDDs from denovo-db and
107  somatic mutations of ~10,000 tumor samples from The Cancer Genome Atlas (TCGA). Our
108 large-scale analysis leads us to conclude that networks of NDDs and cancer can have shared
109 proteins and pathways that differ in mechanisms, signaling strength, and outcomes. This
110  conclusion is in line with our premise that cell-type specific protein expression levels of the
111  mutant protein, and other proteins in the respective pathway and their regulators, the timing of
112  the mutations, embryonic or sporadic during life, and the absolute number of molecules that
113 the mutations activate, can determine the pathological phenotypes, cancer and (or)
114  developmental disorders (Nussinov et al., 2022b). Our thesis is that these define the strengths
115 of productive signaling (Nussinov et al., 2022c). In cancer, the major impact is on cell
116  proliferation, while in NDDs it is on differentiation.

117
118 Results

119 NDD versus cancer mutations and networks data
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120 NDDs and cancer are highly complex diseases caused by impairments in cellular processes
121  such as cell growth, proliferation, and differentiation. This challenging complexity has led to
122  the community's desire to understand how their genetics, cellular environment, and signaling
123  pathways are converging to express their distinct phenotypic outcomes (Jiang et al., 2022;
124  Nussinov etal., 2022d; Parenti et al., 2020; Qi et al., 2016). Cancer results from gene alterations
125 that provide cells with a growth advantage. Whereas numerous studies focused on the
126  connection between the mutations—germline, de novo, or somatic—and cancer (Huang et al.,
127  2018; Liu et al., 2020; Qing et al., 2020; Rashed et al., 2022; Stratton, 2008; Xu et al., 2020),
128  the number of studies related to NDDs increased, though still lagging behind, far from reaching
129  the same level. Qi et al. observed that among patients with NDDs, germline damaging de novo
130 variants are more enriched in cancer driver genes than non-drivers (Qi et al., 2016).
131 Bioinformatics analyses conducted on 219 cancer-related genes from Online Mendelian
132  Inheritance in Man (OMIM, https://www.omim.org/about) and de novo mutations from 16,498
133  patients with NDDs, including ASD, congenital heart disease, and intellectual disability, found
134  significantly more de novo mutations in cancer-related genes than in the 3391 controls (Li et
135 al., 2020). In another study focusing on ASD, an evolutionary action method identified
136  missense de novo variants that are most likely to contribute to the etiology of the disorder
137  (Koire et al., 2021).

138 To identify genetic similarities and differences between NDDs and cancer, firstly we
139 utilized publicly available mutation datasets. Public databases provide somatic mutation
140  profiles of thousands of NDDs and tumor samples, including denovo-db and TCGA,
141  respectively. Denovo-db includes de novo mutation profiles for 20 different NDD phenotypes
142  for 9736 samples (Turner etal., 2017); TCGA covers 9703 samples with point mutations across
143 33 tissues (Figure 1A). Not all genes and their protein product variants affect the phenotypic

144  output in the same way. Oncogenes, tumor suppressors, TFs, and chromatin remodelers are
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145  well-known examples of specific genes whose defects can cause observable alterations in
146  phenotypic outcomes. We compared mutations and mutated proteins between de novo
147  mutations in NDD data deposited in the denovo-db and TCGA, focusing on point mutations
148 that affect only one residue in a protein. We identified 7908 genes in NDDs and 19,439 genes
149 in TCGA with point mutations, among which 7838 genes are common. There are 147
150 oncogenes, 167 tumor suppressor genes, and 712 TFs in the NDD data, while 248 oncogenes,
151 259 tumor suppressor genes, and 1579 TFs are in TCGA. ~40% of the mutated genes in TCGA
152  also have mutations in NDD samples.

153 The network of NDD phenotypes in the denovo-db database covers 20 NDD
154  phenotypes with a varying number of patients, mutated genes, and mutations (Figure 1B). Only
155  two of these phenotypes—autism and developmental disorders—have more than 1000 samples.
156  In autism, there are 3473 patients, 3726 mutated genes, and 4794 mutations; in the 2926
157  samples of developmental disorders, there are 3531 mutated genes with 4797 mutations. In the
158  network, the width of edges between the phenotypes is commensurate with the number of
159 commonly mutated genes; autism and developmental disorders share the most. Congenital
160  heart disease and intellectual disability have less than 1000 samples, 912 and 577, respectively.
161  The remaining 15 phenotypes, including schizophrenia, epilepsy, and cerebral palsy, have less
162  than 500 samples.

163

164  Conceptualization, construction and comparisons of the networks, expression profiles,
165 and mutation frequencies, in NDDs versus cancer

166  Figure 1C conceptualizes our study as follows: First, we reconstructed PPl networks using
167  mutated genes in breast cancer and ASD as seeds. The networks we obtained include disease-
168  specific regions as well as shared subnetworks for ASD and cancer. Then, we compared the

169  expression scores of the pathways in the shared subnetwork by using gene expression profiles.
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170 Our premise is that NDD mutations offer modest but prolonged signaling, whereas
171  cancer mutations are associated with high signaling levels (Nussinov et al., 2022a, 2022b,
172 2022c, 2022d). Driver mutations are frequent, which is why they are often identified as drivers
173  unless there is experimental data for potent rare mutations (Nussinov et al., 2019b; Nussinov
174  and Tsai, 2015). Weaker or moderate mutations occur less frequently; otherwise, they are
175  drivers. Similarly, the difference between passenger and driver mutations is also based on
176  statistics; their counts are low. As one indicator of mutation strength, we compared the
177  frequency of the cancer driver mutations in TCGA and NDD mutations amongst TCGA
178  samples. For cancer driver mutations, we used the Catalog of Validated Oncogenic Mutations
179  from the Cancer Genome Interpreter (CGI) (Muifios et al., 2021). Only missense or nonsense
180  mutations were included in the analyses, which comprised 3688 driver mutations in 237 genes.
181  Among 14,133 unique NDD mutations, 1504 are in TCGA (Figure 2A). On the other hand,
182 TCGA harbors 1060 unique driver mutations. Interestingly, only 23 mutations are shared
183  across known cancer driver mutations and NDDs (see the inset Venn diagram of Figure 2A).
184  This finding suggests that although there are shared mutations between the two pathologies,
185  these mutations tend to be on the weaker side in terms of a driver effect. In addition, compared
186  to driver mutations, the mutations present in both NDDs and TCGA are notably rare in the
187 TCGA cohort, as demonstrated by the difference in the mutation frequency distribution in
188 TCGA with a t-test (p = 0.001). Therefore, when we limit the mutations to those present in
189 TCGA, only ~1% of NDD mutations are cancer drivers, and they have very low frequencies
190 among TCGA samples. Figure 2B depicts the number of mutated samples in commonly
191  mutated genes among NDDs and cancer. Most commonly mutated genes have more mutation
192 hits at different positions among all cancer samples. Our observations point to only relatively
193 few common NDDs and cancer driver mutations, making it crucial—even if difficult—to

194  understand the mechanisms through which these common mutations impact gene function and
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195  disease phenotypes. We used pathogenicity scores from MutPred2 (Pejaver et al., 2020), which
196  probabilistically predict the impact of variants on protein structure and function. We anticipate
197 that variants may have an impact on protein structure, which can either stabilize or destabilize
198  the conformation of the protein depending on protein function and disease phenotypes. The
199  more harmful a mutation is, the closer its pathogenicity score is to one. A comparison of the
200  distribution of the pathogenicity scores of the NDDs and driver mutations calculated using
201  MutPred2 demonstrates that driver mutations have higher pathogenicity than NDD mutations
202  (t-test, p<5 x 102 (Figure 2C). We observe that most driver mutations accumulate in regions
203  where the pathogenicity scores are larger than 0.8 on the y-axis. NDDs harbor mutations in key
204  cancer genes such as PTEN, PIK3CA, MTOR, KIT, etc. These mutations have lower
205  frequencies among tumor samples from TCGA, which is an indicator of the lower potency of
206  these mutations. The number of residues hit by mutations among NDD samples is usually
207  lower.

208

209 Distribution of the locations of NDD and cancer mutations and modes of action

210  Phosphatase and tensin homolog (PTEN) phosphatase and PI3Ka lipid kinase are respectively
211  negative and positive regulators in the PI3Ko/AKT/mTOR pathway. PTEN dephosphorylates
212 phosphatidylinositol 3,4,5-trisphosphate (P1P3) to phosphatidylinositol 4,5-bisphosphate (PIP2)
213  produced by PI3K. The signaling lipid PIPs recruits AKT and PDK1 (phosphoinositide-
214  dependent kinase 1) protein kinases to the plasma membrane, thereby playing a vital role in
215  cell growth, survival, and migration (Jang et al., 2021; Zhang et al., 2019). Loss of function of
216 PTEN by germline or somatic mutations leads to increased PIP3 concentrations at the
217  membrane and promotes cell proliferation mediated by PI3Ka. Since the PI3Ko/AKT/mTOR
218 pathway is one of the primary regulators of cell proliferation and differentiation, the

219  mechanistic hallmarks of the mutations are vital to understand. Analysis of mutations in PTEN
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220  (Figure 3A) and PI3Ka (Figure 3B) sequences reveals that NDD mutations on these proteins
221  usually occur at less frequently mutated sites among tumors (see Materials and Methods).
222  R130* mutation in NDDs on PTEN is an exception, yet it is less frequent compared to the
223  R130Q and R130G mutations at the same position in cancer.

224 While several residues of PTEN were mutated in both NDDs and cancer, some
225  mutations—such as T131l, L140F, and D268E—are NDD-specific (Figure 3A). As to the
226 domain distribution, among the NDD samples, mutated residues D92, 1101, R130, T131, L140,
227  Q149, and T167 are on the phosphatase domain, and P204, F241, P246, and D268 are on the
228  C2 domain (Figure 3C). PTEN’s catalytic activity occurs in the phosphatase domain that
229  contains the P loop (residues 123-130) with the catalytic signature motif, 123HCXXGxXR130
230  (where x is any amino acid). PTEN mutations in the P loop, or nearby, such as at the residues
231 R130and T131, can directly constrain the P loop, leading to silencing PTEN catalytic activity.
232  The mutation at residue D92 in the WPD loop (residues 88-98) can disrupt the closed WPD
233 loop conformation that can bring D92 to the active site. D92 is involved in the catalytic activity
234  during the process of hydrolysis to release the phosphate group from Cys124 after transferring
235 it from PIPs. Other PTEN mutations, which are distant from the active site, can allosterically
236  bias the P loop dynamics, reducing protein stability and its catalytic activity. A similar pattern
237 s observed in PI3Ka; the rare mutations R108H, V344M, and R770Q are harbored in both
238 NDDs and cancer, while R115Q and A1035T are specific to NDD samples (Figure 3B). V344
239 is on the C2 domain; R770 and A1035 are on the N- and C-lobes of the kinase domain,
240  respectively (Figure 3D). R770 is located near the P loop, and R108 is on the interface of the
241  catalytic subunit p110a and the regulatory subunit p85a. The mutations at these positions in
242  PI3Ka may promote protein activation and increase protein stability at the membrane, but their

243  mutational effects appear to be weaker than the driver mutations.

10
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244 Several studies investigated germline mutations in PTEN and their association with
245  tumor susceptibility or developmental disorders (Mighell et al., 2018; Portelli et al., 2021;
246  Spinelli et al., 2015; Wong et al., 2018). For example, the rare 1101T mutation on PTEN is
247  present in NDDs and cancer samples. This mutation is identified as related to reduced lipid
248  phosphatase activity and protein stability in a study conducted among 13 patients with PTEN
249  hamartoma tumor syndrome (PHTS) who have autistic features, neurodevelopmental delays,
250 and macrocephaly. The 1101T mutant retained almost 30% of the lipid phosphatase activity of
251 the wild-type protein; hence, it might be one of the major causes of tissue overgrowth and
252  autistic appearance (Wong et al., 2018). Although available data are limited, PTEN retains its
253  tumor suppressive function in NDDs while becoming fully dysfunctional in cancer samples.
254

255 NDD- and cancer-specific networks regulate common pathways with different signaling
256  outcomes

257  Although alterations in the same pathways and proteins contribute to the emergence of NDDs
258 and cancer with different weights, the timing of the mutations, the number of activated
259  molecules, the expression level of the mutated protein, and the proteins in the corresponding
260 pathway have a major impact on the phenotypic outcome (Li et al., 2020; Nussinov et al.,
261  2022d). To understand the divergence between these two pathologies, we analyzed NDD- and
262  cancer-specific networks and compared the signaling outcomes of the pathways using gene
263  expression values. We reconstructed ASD- and breast cancer-specific networks based on
264  frequent mutations, comprising 168 driver genes in breast cancer, and 190 mutated genes that
265 are present in at least three ASD patients. We extracted the graphlet motifs, small significant
266  subnetworks, from the reference interactome HIPPIE through mutations with an unsupervised
267  learning approach (Alanis-Lobato et al., 2017; Milenkovi¢ and Przulj, 2008). To select the most

268  relevant interactions in a disease from the graphlet motifs with the PageRankFlux algorithm,

11


https://paperpile.com/c/ScA7Gf/80k9G+mPT7D+Gtarg+0VIeP
https://paperpile.com/c/ScA7Gf/80k9G+mPT7D+Gtarg+0VIeP
https://paperpile.com/c/ScA7Gf/0VIeP
https://paperpile.com/c/ScA7Gf/SNVhf+EThBP
https://paperpile.com/c/ScA7Gf/SNVhf+EThBP
https://paperpile.com/c/ScA7Gf/D0TIv+IVU8V
https://doi.org/10.1101/2023.04.16.536718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.16.536718; this version posted April 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

269  we constructed the ASD-specific network with 350 proteins and 1291 interactions, and the
270  breast cancer-specific network with 284 proteins and 1878 interactions (Supplementary Data
271 1) (Figure 4A) (Arici and Tuncbag, 2023; Rubel and Ritz, 2020). As can be expected based on
272 our relatively weak mutation outcome premise of NDDs, some critical TFs such as Myc, p53,
273 and Jun with cancer driver mutations are not frequently mutated in ASD. However, mutated
274 genes can indirectly regulate these TFs in the ASD-specific network due to the rewiring of the
275  signaling network. We found 23 common TFs in ASD- and breast cancer-specific networks.
276  TF complexes including Myc/Max or Jun/Fos (AP-1, activator protein 1) regulate the
277  expression of numerous target genes downstream the MAPK phosphorylation cascade in signal
278  transduction (Garces de Los Fayos Alonso et al.,, 2018; Garcia-Gutiérrez et al., 2019).
279  Complexes composed of common TFs are primarily involved in cell cycle regulation through
280 their targets, such as E2F mediating cyclin-dependent kinases (CDKs) in cell proliferation
281  (DeGregori et al., 1997; Tadesse et al., 2019).

282 All TFs in ASD- and breast cancer-specific networks regulate 752 commonly targeted
283  genes. The disease models in both networks can use different wiring mechanisms to control
284  shared pathways since different TFs control the transcription of the same genes.
285  Overrepresentation analysis of these common targets demonstrated that shared pathways,
286 including p53, FOXO (forkhead box O), PI3K/AKT, MAPK, and JAK/STAT (Janus
287  kinase/signal transducer and activator of transcription) signaling pathways, are regulated by
288  different TFs (Figure 4B).

289

290  Gene expression and signaling strength point to differentiation in ASD and proliferation
291 incancer

292  Following the construction of the networks and identification of the TFs and their targets, we

293  focused on the signal levels in the constructed networks through an analysis based on
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294  differential gene expressions from healthy and disease samples (see Materials and Methods).
295  We averaged the absolute values of the differential expression of pathway participants and
296  defined them as the expression score of the given pathway to measure the signal change in
297  these pathways. The expression scores of the overrepresented pathways demonstrated that ASD
298  generated significantly lower signal strength than breast, brain, and kidney cancers (Figure 4C),
299 influencing the cell cycle at the G1 phase. The change in stimulus and feedback loops regulate
300 signaling intensity and duration (Mendoza et al., 2011). Overexpression and multiple mutation
301 combinations on these pathways disrupt cellular processes and can govern disease
302  development.

303 The expression profiles of ASD in shared pathways emphasize differentiation.
304  Differentiation reduces the proliferative advantage for the cells and increases their resistance
305 to oncogenic mutations (Demeter et al., 2022). Mutations in ASD are mostly embryonic; they
306 do not accumulate over time as cancer mutations do. The propensity score of pathways, which
307 demonstrates the probabilities of mutations on a gene in a pathway, reveals that mutations in
308 cancer tend to accumulate in these pathways. Shared pathways in ASD do not have high
309 propensity scores. The already existing mutational burden makes ASD patients more
310 susceptible to multifactorial and/or polygenic diseases, like cancer (Nussinov et al., 2022d;
311  Parentietal., 2020; Rauen, 2013). At the same time, their weak/moderate effect can bring about
312  cell cycle arrest and impact the differentiation capabilities of cells.

313

314  TFs regulating common pathways underscore the trends of differentiation in NDDs and
315 proliferation in cancer

316  For a more in-depth analysis, we compared 71 TFs regulating common pathways through the
317  expression profiles of ASD and breast cancer patients. We observed that 21 TFs that have

318  distinct expression profiles in ASD and cancer are clustered into three groups. Cluster-1 and
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319  Cluster-2 demonstrated a distinct separation, while Cluster-3 includes genes that do not show
320 aclear difference in the heatmap of gene expressions (Figure 5A). The genes in Cluster-1, such
321 as MCM2, STAT1, BRCAL, and MCM5, are overexpressed in the cancer samples. These genes
322  mostly play a role in cell proliferation, and their overexpression in cancer promotes cell
323  division and growth (Gong et al., 2019; Shimizu et al., 2012; Wu et al., 2018; Yousef et al.,
324  2017). On the contrary, ASD samples have relatively lower expression levels for TFs that
325  control cell proliferation. STAT1 has dual roles in both differentiation and proliferation; it also
326  acts as a tumor suppressor and an oncogene in cancer. The genes in Cluster-2, such as JUN,
327 SMAD3, SMAD4, and KLF2, play a role in cell differentiation (Hou et al., 2018; Mariani et al.,
328 2007; Yang et al., 2016; Yang and Jiang, 2020). Their moderate expression levels in ASD
329  suggest that they can maintain the cell differentiation state. To reveal the signal flow starting
330 from these TFs, we defined the regulatory interaction in common pathways by identifying
331  target genes of these TFs. Since one TF can also target other TFs in the same pathway, we
332  extended the regulatory interactions with targeted TFs and their targeted genes (Figure 5B).
333  Expression profiles of differentiation and proliferation appear moderate in ASD, which
334  suggests weak signal activation in cell proliferation (Nussinov et al., 2023). However, the
335  suppression of differentiation and the overexpression of proliferation indicate strong activation
336  of the proliferation state in cancer.

337

338  Discussion

339 Moderate and strong escalation in signaling levels reflect the total number of activated
340 molecules in NDDs and cancer, respectively

341  Here, we comprehensively analyzed mutations, transcriptomic data, and PPl networks of
342 NDDs and cancer patients to comprehend why some mutations can promote cancer while

343  others abet NDDs, and why the same mutations can support both phenotypes. We surmised
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344  that cancer mutations are connected to elevated signaling levels, while NDD mutations encode
345  sustained but low levels. We further surmised that signaling levels are largely determined by
346  the total number of molecules that the mutations activate, either alone or in combination, along
347  with the cell type-specific expression levels of the mutant protein and other proteins in the
348 relevant pathways, the timing of the emergence of the mutation (inherited or during embryonic
349  development, or sporadic), as well as additional factors (Nussinov et al., 2022d). Ample data
350 indicate that even high expression levels of an unmutated protein can already provoke cancer.
351 Cancer involves uncontrolled cell proliferation, whereas NDDs are connected to
352 anomalies in the development of the nervous system. Proliferation and differentiation take
353  place in both cancer and NDDs. Since NDDs are mostly related to dysregulated differentiation,
354  mutations in genes regulating chromatin organization rank high. Risk genes for NDDs include
355 more than a third of the cancer driver genes, and NDDs and cancer share hallmarks of cell
356  division and growth (Yaeger and Corcoran, 2019; Zhao and Luo, 2022) , thus proliferation and
357 differentiation (Nussinov et al., 2022d; Qi et al., 2016). In brain cells, embryonic mutations in
358  both pathways give rise to NDDs (Borrie et al., 2017). Hundreds of genes are implicated in
359 NDDs; however, they are involved in few conserved pathways regulating transcription,
360 including chromatin accessibility, and synaptic signaling (Nussinov et al., 2022d; Parenti et al.,
361  2020; Sahin and Sur, 2015). PI3K/mTOR and Ras/MAPK are frequently linked with synaptic
362  dysregulation (Longo and Klann, 2021; Nussinov et al., 2022a, 2022d; Sahin and Sur, 2015).
363  Proteins in the Wnt, BMP/TGF-f (bone morphogenetic protein/transforming growth factor-f),
364  SHH (sonic hedgehog), FGF (fibroblast growth factor), and RA (retinoic acid) pathways, are
365 also involved in autistic brain development (Kumar et al., 2019). Gene expression profiles of
366 22 cancer types and frontal cortical tissues from ASD patients identified similarities in genes
367  and pathways (Forés-Martos et al., 2019).

368
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369 NDDs share phenotypic and clinical commonalities

370  The tumor suppressor phosphatase and tensin homolog (PTEN), which carries germline and de
371 novo mutations in NDD patients, is related to cancer and several NDDs, collectively named
372  PHTS. The NDDs include phenotypes such as Cowden syndrome (CS), Bannayan-Riley-
373 Ruvalcaba syndrome (BRRS), Proteus syndrome (PS), Proteus-like syndrome (PSL),
374  macrocephaly, and ASD. NDDs often overlap mutation-wise and genome-wise (Frazier et al.,
375  2021; Orrico et al., 2009; Skelton et al., 2020). Among these, deletions, and duplications of the
376  16pl11.2 region are common. About 48% of deletion carriers and 63% of duplication carriers
377  have at least one psychiatric diagnosis (Niarchou et al., 2019; Walsh and Bracken, 2011).
378  RASopathies, which include Noonan syndrome (NS), cardiofaciocutaneous (CFC) syndrome,
379  neurofibromatosis type 1 (NF1), and Legius syndrome (LS), are NDDs that result from
380 overactivation of the MAPK pathway due to germline mutations and/or overexpression in
381 embryogenesis (Gross et al., 2020; Hebron et al., 2022; Nussinov et al., 2022d). Their
382  phenotypic overlaps may emerge due to shared proteins/pathways as in the case of PIK3CA-
383 related overgrowth spectrum (PROS), PS, and CS which share phenotypic characteristics with
384  RASopathies (Simanshu et al., 2017). The commonality of cancer and RASopathies prompted
385 MEK (MAPK kinase) inhibitors and Ras-targeted therapies for some RASopathies like
386  selumetinib for NF1 patients (Andelfinger et al., 2019; Cox et al., 2015; Dombi et al., 2016;
387  Hebron et al., 2022).

388 Although there is a strong association between PTEN germline mutations and cancer—
389 PHTS-they have also been described in patients with ASDs (Cummings et al., 2022; Nussinov
390 etal, 2022d; Skelton et al., 2020). PTEN mutations linked to ASD can lead to an unstable but
391  still catalytically active gene product (Chang et al., 2008). C124S, G129R, H118P, H123Q,
392 E157G, F241S, D252G, N276S, and D326N are autism-related; A39P, N48K, L108P, L112P,

393 and R130L are PHTS-related mutations (Spinelli et al., 2015). AKT, downstream of PTEN,
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394  signaling was suppressed in all seven ASD-related PTEN mutations where PTEN was affected
395  Dbut functional. On the other hand, AKT phosphorylation was promoted by all five PTEN
396  mutations in severe PHTS cases, suggesting that variants with partial loss of PTEN function
397 are predominant in ASD patients (Spinelli et al., 2015). Thus, catalytically inactive PTEN
398 mutant is connected to tumor phenotypes, partially active PTEN to ASD (Papa et al., 2014;
399  Rodriguez-Escudero et al., 2011).

400 Dysregulation of the PISBK/AKT/mTOR pathway is a primary factor in NDDs,
401  including megalencephaly (also known as “large brain’), microcephaly (sometimes known as
402  “small brain”), ASD, intellectual disability, schizophrenia, and epilepsy (Wang et al., 2017).
403  Mosaic gain-of-function mutations in the PIK3CA gene lead to PROS, with clinical outcomes
404  such as excessive tissue growth, blood vessel abnormalities, and scoliosis (Crunkhorn, 2018;
405  Venotetal., 2018). Among ~200 individuals with PIK3CA mosaic mutations, highly activating
406  hotspot mutations were associated with severe brain and/or body overgrowth, whilst fewer
407  activating mutations were linked to more mild somatic overgrowth and mostly brain
408 overgrowth (Dobyns and Mirzaa, 2019; Mirzaa et al., 2016). R88Q, V344M, and G914R
409 mutations were identified in PI3Ka patients with macrocephaly and developmental delay or
410 ASD (Yeungetal., 2017).

411

412  Distinct rewired interactions in shared ASD and breast cancer pathways

413  We further pursued the complex relationship between genotype and phenotype by constructing
414  disease-specific networks for ASD and breast cancer. We observed distinct PPIs in shared
415  pathways controlling the cell cycle. These rewired interactions could be a reason why shared
416  pathways have different signal strengths in ASD and cancer. Under physiological conditions,
417 MAPK and PIBK/AKT/mTOR pathways coregulate the cell cycle through feedback loops to

418  control cell functions, including growth and division. In cancers, they are frequently
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419  hyperactivated (Ersahin et al., 2015; Thorpe et al., 2014; Vanhaesebroeck et al., 2010). The
420 PI3K/AKT pathway is also critical in early embryonic development and maintenance of stem
421  cell pluripotency through inhibition of the MAPK proliferation pathway (Bi et al., 1999; Hall,
422  2004; Peng et al., 2003; Yu and Cui, 2016). The strength of the signaling perturbations induced
423 by the mutations is manifested in weak/moderate and strong signaling changes, epitomized by
424  ASD and breast cancer, respectively. Strong signals enhance proliferation, and weak/moderate
425  signals may drive cell cycle exit in differentiation (Eastman et al., 2020).

426

427  Differential interactions of cell cycle CDKs in NDDs and cancer, and late cancer detection
428  outcome for individuals with NDD

429  TF complexes are primarily involved in cell cycle regulation through their targets, such as E2F
430 mediating CDK that accelerates proliferation (DeGregori et al., 1997; Tadesse et al., 2019). In
431  the breast cancer-specific network, CDK4 interacts with MAPK1, JAK3, and p53, promoting
432  proliferation (Scheiblecker et al., 2020). In the ASD-specific network, TF complexes such as
433  forkhead box protein G1 (FOXG1) and sex determining region Y-box 2 (SOX2), also
434  implicated in microcephaly, play critical roles in lineage determination, neural stem/progenitor
435  cell proliferation, and maintenance of pluripotency (Hou etal., 2020; Li et al., 2013). In NDDs,
436  these TFs can promote premature senescence and dysregulated differentiation via distinct
437  pathways such as Wnt and Hippo (Nussinov et al., 2016). In a study of the English population,
438  half of the decedents with intellectual disabilities and cancer were at stage IV when diagnosed
439  (Heslop etal., 2022), which suggested involvement of the canonical Wnt pathway during brain
440  morphogenesis and non-canonical in cancer cell migration and metastasis (Corda and Sala,
441  2017). Cancer onset in NDDs can be undetected until stage IV since the slow cell division in
442  the NDDs retards mutational accumulation (Heslop et al., 2022). Alternatively, we expect the

443  early mutational burden will render NDD patients more vulnerable to cancer (Nussinov et al.,
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444 2022d; Parenti et al., 2020), with faster cancer progression and higher mortality. Where
445  statistics are available, the mortality of cancer patients with intellectual disabilities was
446  reported to be approximately 1.5 times higher than the general population (Cuypers et al.,
447  2022). These results suggest that cancer initiation and progression differ in individuals with
448  NDD than in the broad apparent NDD-free population, with different outcomes via common
449  pathways.

450

451  TF expression profiles differ in differentiating and proliferating cells

452  The expression scores of TFs were grouped based on proliferation and differentiation. TFs
453  enhancing proliferation were mainly overexpressed in cancers while relatively low-expressed
454  in ASD. Proliferating cells are more vulnerable to mutations than differentiating ones, both
455  since dividing cells have less time to repair DNA damage than quiescent cells, and with more
456  replication cycles, there is a higher chance for mutations (Bielas and Heddle, 2000; Demeter et
457  al., 2022). As to TFs in the differentiation state, ASD has relatively higher expression profiles,
458  while there are significantly low-expression profiles in cancers. In cancers, high expression
459  couples with the accumulation of mutations, cell growth, and metastasis (Demeter et al., 2022).
460 Finally, immunity could be viewed as a common factor in NDDs and cancer (Nussinov
461  etal., 2022a, 2022d). Multiple pathways related to immunity can be dysregulated in NDDs due
462  to the coevolution of the immune and nervous systems (Nussinov et al., 2022a; Zengeler and
463  Lukens, 2021). Signaling pathways related to immunity, such as Wnt, Notch, JAK/STAT, and
464  Hippo, also play roles in cancer metastasis and drug resistance (Clara et al., 2020; Nussinov et
465 al., 2016; Pisibon et al., 2021).

466

467  Conclusions: Why then individuals with NDDs have a higher probability of

468 cancer?
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469  Our findings offer a mechanistic interpretation for PTEN and PIK3CA mutations frequently
470  observed in cancer and NDD samples, which may form the basis for functional and detailed
471  structural analysis, including molecular dynamics simulations (Jang et al., 2023). Comparing
472  expression scores of shared pathways by leveraging the transcriptomic profiles of NDDs and
473  cancer samples revealed that NDD samples have higher expression scores for genes
474  functioning in differentiation than proliferation. These findings provide an essential step
475  toward understanding the etiology of the two different pathologies, NDDs, and cancer. Despite
476  having common signaling pathways, their regulation and differences in signal levels enhance
477  different cell states: proliferation for cancer and differentiation for NDDs.

478 Comparisons of the time windows of NDDs and cancer frequently conclude that while
479  cancer is predominantly caused by somatic mutations and alterations in signaling and
480 transcriptional programs, NDDs are primarily linked to germline mutations that express during
481  embryonic development. A recent study has similarly suggested that mutations in cancer
482  susceptibility genes are not necessarily inherited or somatic; they can also arise throughout
483  embryogenesis as a result of errors occurring during cell division (Pareja et al., 2022). These
484  mosaic mutations, occurring in early embryogenesis, were suspected to be associated with
485  some rare cancers. Genetic changes associated with RASopathies are believed to be often
486  sporadic, not inherited. Along these lines, according to the NCI page (“NCI Dictionary of
487  Cancer Terms,” 2011), this means that typically multiple family members do not share the
488  same NDDs.

489 Different from this view, here our thesis is that inherited and de novo mutations
490 (missense or truncation) can be major causes of NDDs such as intellectual disability, ASD,
491  epilepsy (Brunet et al., 2021; Chau et al., 2021; Deciphering Developmental Disorders Study,
492  2017; lossifov et al., 2014), and cancer (Nussinov et al., 2021, 2019a; Nussinov and Tsai,

493  2015). As in cancer (Nussinov et al., 2021), more than one mutation is required for observable
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494  symptomatic NDDs. Our premise is that family members can harbor these NDD germline
495  mutations; however, they are not diagnosed as having the disorder. Their offsprings are,
496  however, already susceptible to it. Individuals with NDDs have higher probabilities of
497  eventually coming down with cancer (Liu et al., 2022); (Cuypers et al., 2022; Liu et al., 2022;
498  Nordentoft et al., 2021), likely due to the preexistence of the mutations in the shared proteins,
499  making them more susceptible. Patients with autism have an increased mutation load in genes
500 that drive cancer (Darbro et al., 2016). We hypothesize that strong driver mutations in cell
501  growth/division pathways are chiefly responsible for uncontrolled cell proliferation in cancer.
502 NDDs’ weak/moderate strength mutations may be a reason why inherited NDDs have not been
503 identified in a parent while predisposing an offspring to it. An additional mutation promotes
504 NDD clinical manifestation. It may be inherited from the other parent or emerge during
505 embryogenesis. It may also promote cancer by providing companion mutations.

506 Here, we employed de novo mutations in ~10,000 samples with NDDs from denovo-
507 db and somatic mutations in ~10,000 tumor samples from TCGA. We observed that around
508  40% of the 19,439 mutant genes in TCGA are also altered in NDD samples. 1504 of the 14,133
509 distinct NDD mutations are present in TCGA. On the other hand, TCGA contains 1060 distinct
510  driver mutations, whereas known cancer driver mutations and NDD only share 23 mutations.
511  This result suggests that common mutations across the two pathologies do exist, although they
512  are typically less potent than cancer drivers. Especially, PTEN and PI3Ka possess a range of
513  mutations scattered through their protein sequences that are either common or disease specific.
514  This work argues for the examination of such mutations even in undiagnosed family members
515 and follows their combination in the offspring. It further supports the consideration of cancer

516  pharmacology in NDD patients.

517

518 Materials and methods
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519 Data collection and processing

520 NDD mutations were obtained from denovo-db (Turner et al., 2017) which holds a collection
521  of human germlines de novo variants of 20 phenotypes including but not limited to ASD, and
522 intellectual disability NDDs. Variants from two ASD studies were collected by targeted
523  sequencing of different patients coming from two different studies, while the remaining
524  datasets come from either whole exome or whole genome studies. The phenotypes, the number
525  of samples, unique mutated genes and unique mutations are given in Figure 1B. We mapped
526  the genomic coordinates to the proteins to obtain the amino acid changes on the protein level
527  using VarMap (Stephenson et al., 2019). We only kept the point mutations that map to the
528 canonical protein sequences. After these filtering steps, we obtained a total of 14,133 unique
529  mutations on 7907 genes from 9737 samples.

530

531 TCGA

532  Somatic missense, nonsense and frameshift cancer mutations were downloaded from TCGA.
533  There are 9703 tumor samples from 33 different cancer types in the annotation file where
534  corresponding protein changes are also present. In total, we have 1,626,715 unique mutations
535 on 19,438 genes. 7837 of these genes are also mutated in the NDD dataset. 11,601 of them are
536  only mutated in TCGA, while there are only 70 genes that are mutated solely in NDDs.

537

538  Cancer drivers

539 A list of cancer driver mutations was downloaded from the Cancer Genome Interpreter (CGI)
540 (Tamborero et al., 2018), which is available as the Catalog of Validated Oncogenic Mutations
541  on their website. We only used missense or nonsense mutations, resulting in an analysis of
542 3688 driver mutations belonging to 237 genes.

543
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544  Expression datasets

545  We utilized processed RNA expression data from ASD, breast, kidney, and brain cancer
546  samples (Table 1) (Forés-Martos et al., 2019). The ASD dataset was an integrated dataset from
547  the frontal cortex samples in three studies and covered 34 ASD samples and 130 controls. We
548 employed integrated datasets for breast, kidney, and brain cancers that are composed of 7, 10,
549 and 8 studies, respectively. Differential gene expression meta-analyses scored 3579 genes in
550 ASD and 11629 genes in cancer cohorts with z-scores.

551

552  Pathway and network analyses

553 Inference of disease-specific networks. ASD and breast cancer-specific networks were
554  reconstructed with frequently mutated genes and known PPIs. In cases of observations seen in
555 at least 3 patients, 190 genes were selected as seed nodes in ASD. 168 genes were retrieved
556  from the Cancer Genome Interpreter (CGI) and recruited as the seed nodes of breast cancer
557  (Tamborero et al., 2018). The reference network, HIPPIE v2.3, comprises 19437 proteins and
558 779301 PPIs (Alanis-Lobato et al., 2017). Each interaction in HIPPIE was scored with a
559  confidence score that was computationally optimized and weighted by the amount and quality
560 of the experimental evidence of PPI. The network inference tool, pyPARAGON (PAgeRANk-
561  flux on Graphlet-guided-network for multi-Omic data integratioN), inferred ASD and breast
562  cancer-specific networks by scoring interactions with PageRank Flux and identifying validated
563  graphlet motifs, the union of which constructs a graphlet-guided network (GGN) (Arici and
564  Tuncbag, 2023). The PageRank algorithm weighted all nodes in a reference network. We then
565  used the flux computation to weight the edges (Rubel and Ritz, 2020). Significant graphlet
566  motifs with seed nodes in the reference established the GGN. Highly scored interactions in
567 GGN were assembled in our disease-specific networks. We used PARAGON with the

568  following parameters: a = 0.5, where a is the probability of walking to neighbor nodes, 1= 0.8,
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569  where 1 is a scaling factor to select a set of top-ranked edges from GGN. This algorithm stops
570 adding edges when the number of interactions reaches 2000.

571 Identification of common pathways. TFs and their targets, retrieved from TRRUST
572  v2, were parsed in disease-specific networks, and TFs in these networks were called specific
573  transcription factors (STF) (Han et al., 2018). The targets of STF were selected as regulated
574  genes by disease-specific networks. These commonly regulated genes among ASD and breast
575  cancer were utilized for overrepresentation analysis on WebGestalt to uncover the common
576  pathways (p < 0.05 and FDR < 0.05) using manually curated open-source pathway databases,
577 KEGG and Reactome (Gillespie et al., 2022; Kanehisa et al., 2022; Liao et al., 2019).

578 Pathway assessment metrics. The signal strength and mutation vulnerability of the
579  pathways were evaluated. The expression level of each gene contributes to the signal deviation
580 in the respective pathway. However, it is challenging to determine how this signal deviation
581 affects the pathway because it contributes to multiple molecular functionalities. To measure
582 the expression score (ES) of a given pathway, we calculated the average absolute signal
583 differences of a pathway (Hwang, 2012; Kim et al., 2008; Levine et al., 2006) by applying the

584  equation,

585 ESp = Zetled

586 where P = (G, E, U), a pathway composed of genes/proteins (gz, 92, ..., On, 2 G), expression of
587  genes (el |e2], ..., |en] 3 E), and the number of unique mutations belonging to genes (uz, uz, ...,
588 un 3 U). We assessed the mutation vulnerability of a pathway by calculating the propensity

589 score (PS) of a given pathway considering the number of unique mutations by using the

590 equation,
591 PSp = =1t

592  where the total number of individual mutations in the pathway was normalized with the number

593  of gene members in the pathway.

24


https://paperpile.com/c/ScA7Gf/AbXqv
https://paperpile.com/c/ScA7Gf/Fisjb+ZeFKG+jXSwa
https://paperpile.com/c/ScA7Gf/h7V3Y+dFiKA+hbmTg
https://doi.org/10.1101/2023.04.16.536718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.16.536718; this version posted April 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

594  Table 1. RNA expression datasets.

595
Phenotype Cases Control Datasets
GSE28475, GSE28521, and Gupta (Gupta et al.,
ASD 34 130
2014)
Brain cancer 942 104 GSE4290, GSE9385, GSE74195, GSE68848,
GSE15824, GSE42656, GSE44971, GSE50161
Breast cancer 1494 248 GSE10810, GSE31448, GSE42568, GSE54002,
GSE65216, GSE45827, GSE29431
GSE11151, GSE77199, GSE47032, GSE53757,
Kidney cancer 400 266 GSE53000, GSE66272, GSE68417, GSE71963,
GSE40435, GSE7635
596

597  Visualization of mutations in protein sequences and 3D structures

598  We utilized the ProteinPaint tool (Zhou et al., 2016) to show NDD and cancer mutations on
599  PTEN and PI3Koa. To map the mutations to the 3D structures of PTEN (PDB: 1D5R (Lee et

600 al., 1999)) and PI3Ka (PDB: 40VV (Miller et al., 2014)) we used PyMol.

601
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603

604  Figure 1. Overview of the data and workflow

605 (A) Statistics from NDDs and cancer datasets. Denovo-db deposits mutation profiles of 9736
606  samples with NDDs across 20 phenotypes (left panel). TCGA provides mutation profiles of
607 9703 tumors across 33 cancer types (middle panel). The length of each bar (y-axis in a
608 logarithmic scale) in the upset plots shows the number of all mutated genes and the number of
609 TFs, TSGs, OGs among the mutated genes for NDDs (left panel) and cancer samples (middle
610 panel). There are 712 TFs, 162 TSGs, and 147 OGs out of 7907 mutated genes among NDD
611  samples. Similarly, there are 1579 TFs, 259 TSGs, and 249 OGs out of 19,438 mutated genes
612 among the cancer samples. The Venn diagram (right panel) shows that there are 7837 common
613  mutated genes between NDDs and cancer; the number of NDD- and cancer-specific mutated
614 genes are 70 and 11,601, respectively. Abbreviations: TSG, tumor suppressor gene; OG,

615 oncogene. (B) Network of NDD phenotypes. Each node represents one phenotype in the
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616  network, and each edge represents the connection between two phenotypes if they share at least
617 one commonly mutated gene. Each phenotype is represented with a vector of three numbers;
618  the total number of patients having the phenotype (cyan), total number of genes carrying at
619 least one mutation (orange), and total number of mutations associated with the phenotype
620  (purple). The ticker edges represent the more commonly mutated genes. The most tightly
621  connected pair among the phenotype pairs is autism and developmental disorder. (C) A
622  conceptual representation of network comparison analysis between NDDs and cancer. Two
623  distinct networks (left panel) reconstructed for breast cancer (large pink circle) and ASD (large
624  purple circle). These two networks have both shared (shaded green) and separated regions.
625 These networks contain oncogenes (red circle), tumor suppressors (yellow circle), and TFs
626  (green chevron). The transcriptome analysis (upper-right panel) associates the expression
627 levels of the nodes with the pathway activity. Each enriched pathway in the network can be
628 quantified with the average expression level of its nodes, which is called “pathway scoring."
629  The score of each shared pathway (1, 2, .., n) for each disease (ASD, purple; cancer, red) is

630 calculated (shown as a wifi icon where the higher score is the stronger signal).

A B C
8 PTEN NDD 1.0}
Al : PiKCA Driver
3 NDD Driver s
4 . n MARCA4
N mutations mutations ek
38 1481 23 1037 CTWNB1 o 0.8
=1 ACVR! P
MAP2K1 b—
PPPZR1A 2
(=2 NTRK1 c
a A NFE%} O 0.6
c PTPRT =)
[TR-E RACI ]
3 PTPN11 J.CJ
IS3 p = 3.42e-23 CREABE o
L o CARD11 . o 0.4
= S BRCA Unique
DNMT3A N
PIK3R mutations
0 PIMI 1
NF1
0.2}
o .
i o0
] 5051 160 0.0
NDD mutations Driver mutations B bW S W o Qo 9 9 oo NDD Driver
— N I O © ©O 9o i -
LN Y e mutations mutations
631 Gene total mutation frequency

632  Figure 2. Comparison of mutations between NDDs and cancer.
633  (A) Frequency-based analysis of mutations for NDDs and cancer. The cancer driver mutations

634 in TCGA in comparison to the frequency of NDD mutations. The cancer driver mutations were

27


https://doi.org/10.1101/2023.04.16.536718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.16.536718; this version posted April 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

635  selected amongst tumor samples only. Among the cancer mutations in TCGA, 23 mutations
636  are shared between NDD and known cancer driver mutations, while 1481 are NDD-specific
637 and 1037 are cancer-specific mutations (inset Venn diagram). Comparison of the frequency of
638 these mutations in the TCGA cohort (y-axis in a logarithmic scale, where frequency =
639 loglO(N+1) and N is the number of patients). The difference between mutation frequency
640  distribution in TCGA with t-test shows that the mutations present in both NDDs and TCGA
641 are significantly rare in the TCGA cohort when compared to driver mutations (p < 0.001). (B)
642  Frequency of mutations on common genes in NDDs and known cancer drivers datasets. The
643  dumbbell plot shows the mutation frequencies of common genes—the genes harboring at least
644  one point mutation among NDDs and cancer samples—in cancer (TCGA) and NDDs (denovo-
645 db) simultaneously. Cancer driver mutations (red) are more frequent than or equal to NDD
646  mutations (blue) except EP300 and PTPRT. The size of the circles represents the number of
647  unique mutations each gene carries. The x-axis in a logarithmic scale represents the number of
648  patients having at least one mutation in the corresponding gene in TCGA or NDD sets. (C)
649  MutPred2 pathogenicity scores of NDDs and cancer driver mutations. Violin plots show the
650 distribution of NDD and driver mutation pathogenicity scores. A comparison of the
651  pathogenicity scores using a t-test shows that the pathogenicity of driver mutations is
652  significantly higher (p < 0.001). Pathogenicity scores are between 0 and 1, where 1 is the most

653  pathogenic.
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655  Figure 3. Profiles of TCGA and NDD mutations for PTEN and PI3Ka at the residue level on
656  the sequence and structure.
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657  (A) Mutations of PTEN are shown as circles, where the phosphatase domain (red), C2 domain
658  (dark green), and C-tail (light green) are represented as colored boxes along the sequence. The
659 number and size of the circle represent the frequency of each mutation in the NDD (blue) or
660 TCGA (red) datasets. Mutations shared by both datasets are highlighted with rectangular
661  borders for emphasis. Total mutation frequencies and the total number of patients in each
662  dataset are shown in the bottom right box. Nonsense mutations are abbreviated with star (*)
663  sign. 6 of 12 PTEN mutations in the NDD set are present in TCGA. Only R130* has a high
664  frequency relative to other shared mutations, yet it is much less frequent when compared to
665  two other TCGA mutations on the same position, R130Q and R130G. (B) Mutations of PI3Ka
666 (PIK3CA) are shown as circles where ABD (green), RBD (yellow), C2 domain (gray), helical
667  domain (light orange), and kinase domain (orange) are represented as colored boxes along the
668  sequence. The number and size of the circle represent the frequency of each mutation in the
669 NDD (blue) or TCGA (red) datasets. Mutations shared by both datasets are highlighted with
670  rectangular borders for emphasis. Total mutation frequencies and the total number of patients
671 in each dataset are shown in the bottom right box. 3 of 5 PI3Ka mutations in the NDD set are
672  presentin TCGA. None of these TCGA mutations are on the most frequently mutated residues
673  or among the most frequent mutations. Abbreviations: ABD, adaptor-binding domain; RBD,
674  Ras-binding domain. The 3D structures of (C) PTEN (PDB: 1D5R) and (D) PI3Ka (PDB:
675 40VV) with selected NDD and TCGA mutations. For each residue, mutated amino acids are
676  colored inred, blue, or orange if they are present only among cancer, NDDs or both phenotypes,
677  respectively. In PTEN, these mutations are known to affect the functions of protein including
678 loss of phosphatase activity, reduced protein stability at the membrane, and failing to suppress
679  AKT phosphorylation. In PI3Ka, these mutations may interrupt protein activation and reduce
680  protein stability at the membrane.

681
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683  Figure 4. ASD- and breast cancer-specific networks regulating common pathways.

684  (A) Disease-specific network reconstruction for ASD and breast cancer is performed by using
685 pyPARAGON tool, where the frequently mutated genes are used as seeds. The nodes in
686  reconstructed networks involve wild type (green circle), mutated genes (red circle), TFs
687  (chevron), and TF-targets (diamond). The complete ASD-specific network (left side) features
688  the mutated proteins (SRCAP, BRG1, PTEN, etc.) in ASD cases and reveals disease-associated
689  proteins (Jun, p53, and Myc). The breast cancer-specific network (right side) illustrates driver
690  genes, although some driver genes, such as TP53 and MYC, are not frequently mutated in ASD.
691 Both ASD- and breast cancer-specific networks involve 23 common TFs targeting 752
692 common genes. These common targets are employed to identify shared pathways.

693  Abbreviations: BRG1, brahma-related gene 1, a.k.a. SMARCA4; SRCAP, SNF2-related
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694 CREBBP activator protein; CREBBP, cAMP response element binding protein; CHDS,
695 chromodomain helicase DNA-binding protein 8; CSF1, macrophage colony-stimulating factor
696 1; HD9, histone deacetylase 9; FOXP1, forkhead box protein P1. (B) Overrepresentation
697  analysis determines significant shared pathways (FDR < 0.05) related to cell differentiation
698 and proliferation among KEGG pathways. The pathways include MAPK, PI3K/AKT, and
699 JAK/STAT. These shared TF-target genes play a significant role in cell fate by altering the
700 signal strength and flow, as well as cell cycle and cellular senescence. Abbreviations: HIF-1,
701  hypoxia-inducible factor 1; TNF, tumor necrosis factor. (C) Signal changes in shared pathways
702  are illustrated with the expression scores of pathways, the mean of the absolute z-scores of
703  proteins in a given pathway. We define expression scores as the mean of the absolute z-scores
704  of proteins in a given pathway to indicate the magnitude of the deviation from the average
705  expression values of the normal samples, regardless of the direction of the change. The
706  vulnerability of common pathways to mutation is measured with a propensity score, the
707  average unique mutation in the pathway. The darker red represents a higher change in
708  expression scores of genes in the pathway, and the larger circle shows a higher mutation
709  propensity for the corresponding pathway. ASD has the most minor signal differences and
710  mutation propensities compared to all cancer types in shared pathways, where kidney cancer
711  has the highest signal difference. However, there is an insignificant difference in mutation
712  propensities amongst cancer types. The higher expression scores in cancer types point to
713  stronger signal changes in pathways critical for cell fate, such as proliferation and
714  differentiation. The higher propensity scores in cancer reveal that cancer mutations tend to
715  group in shared pathways. Thus, shared pathways are more vulnerable to cancer than ones in
716  ASD. However, mutation loads and signal deviations on the shared pathways might make ASD
717  patients more fragile to cancer onset.
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719

720  Figure 5. Differential expression profiles in shared pathways.

721  (A) Differentiated expression profiles of TFs in shared pathways. There were 71 TFs in shared
722  pathways that determine cell fate via changes in signal levels. However, 21 TFs were identified
723  to be at least one time differentially expressed more (less) in ASD than in other cancer types.
724  On the left hand, the heatmap of these differentially expressed genes (high in red, low in blue)

725  clustered expression z-scores into three groups. On the right hand, the pathways TFs belong to,
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726  and related cell states (proliferation, green; differentiation, blue) are demonstrated. MCM2,
727  STAT1, BRCAL, MCM5, DAXX, IRF1, and MDM2 in cluster-1 are highly expressed in cancers,
728  while NR4AL, JUN, JUND, TP73, SMAD3, SMAD4, SRF, and KLF2 in cluster-2 are highly
729  expressed in Autism. Genes more expressed in cancer types than in ASD mainly belong to the
730  proliferation state, while genes related to differentiation are predominantly more expressed in
731  ASD than in cancer types. (B) Differences between proliferation and differentiation on shared
732  pathways. The signal flows from TFs (chevron) to targets (diamond) in common parts of ASD-
733 and breast cancer-specific networks and in shared pathways were demonstrated with z-scores.
734  The low and high expression levels were illustrated with blue to red, respectively. The
735  relationship between cell state and proteins is represented with arrows whose color also
736  demonstrates the level of expressions, low or high. Differentiation-related proteins, such as
737  Jun, SMAD3, and SMAD4, mainly have low expression profiles in breast cancer, while most
738 are highly expressed in ASD. PTEN, EGFR, and STAT1, related to proliferation and
739  differentiation, have similar expression profiles. Abbreviations: E2F4, E2F transcription factor
740  4;RBL1, retinoblastoma-like protein 1; NF1, neurofibromin; IRF1, interferon regulatory factor
741 1; BRCAL, breast cancer type 1 susceptibility protein, SMAD, mothers against
742  decapentaplegic; EGFR, epidermal growth factor receptor; PCNA, proliferating cell nuclear
743  antigen; CREBBP, cAMP response element binding protein; Hsp90a, heat shock protein 90a.
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