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Cytosine DNA methylation is essential in brain development and has been implicated in various
neurological disorders. A comprehensive understanding of DNA methylation diversity across the
entire brain in the context of the brain's 3D spatial organization is essential for building a complete
molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this
end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-
seq') sequencing technologies to generate 301,626 methylomes and 176,003 chromatin
conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse
brain. Using iterative clustering and integrating with companion whole-brain transcriptome and
chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that
contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions
of differentially methylated regions (DMRs) across the genome, representing potential gene
regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes
and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed
error-robust fluorescence in situ hybridization (MERFISH?) data validated the association of this
spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation
and topology information into anatomical structures more precisely than our dissections.
Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes,
highly associated with  DNA methylation and transcription changes. Brain-wide cell type
comparison allowed us to build a regulatory model for each gene, linking transcription factors,
DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally,
intragenic DNA methylation and chromatin conformation patterns predicted alternative gene
isoform expression observed in a companion whole-brain SMART-seq® dataset. Our study
establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas,
providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and
regulatory genome diversity.
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Introduction

The mouse brain is a complex organ composed of
millions of cells forming hundreds of anatomical
structures that exhibit diverse cell types*®. This
cellular and spatial diversity is stringently controlled
by epigenetic mechanisms'®'2. Cytosine DNA
methylation (5mC) is a stable covalent modification
that endures in post-mitotic cells for their entire
lifespan'. This modification is associated with

neuronal function, behavior, and various diseases'.

In mammalian genomes, 5mC  occurs
predominantly at CpG sites (mCG). However, in
neurons, non-CpG cytosine methylation (mCH, H
denotes A, C, or T) is also abundant''®. Both
methylation forms directly influence the DNA-
binding of methyl CpG binding protein 2 (MeCP2)'¢-
%, a critical 5mC reader and the cause of Rett
syndrome®®. Methylation of CpG and CpH
dynamically occurs at regulatory elements and
gene bodies with cellular and spatial diversity,
modulating transcription factor binding affinity and
controlling gene transcription?’. Genome-wide
differential methylation analysis can predict millions
of regulatory elements'®??, vyielding a cellular
taxonomy and a base-resolution genome atlas.
Furthermore, chromatin conformation connects
these regulatory elements to their target genes,
providing a comprehensive view of the gene’s
regulatory  environment?. Intragenic = DNA
methylation displays hundred-kilobase-level
patterns that coincide with genome topological
features, indicating that both epigenetic modalities
collaboratively regulate precise gene expression?*.

This study uses an optimized version of single-
nucleus methylation sequencing (snmC-seq3) to
analyze the DNA methylome at single-cell
resolution?®%%, and single-nucleus methylation and
chromatin  conformation capture sequencing
(snm3C-seq)' to jointly investigate the two
modalities. Alongside the previous study'®, we
collect 301,626 methylomes and 176,003 m3C joint
profiles from the entire mouse brain. This ultra-deep
base-resolution dataset of the mouse regulatory
genome comprises 786 billion final methylation
reads (snmC-seq3 + snm3C-seq) and 33 billion cis-
long-range chromatin contacts (snm3C-seq), with

each sequencing fragment assigned to individual
cells. We define the cell type taxonomy of the whole
mouse brain based on DNA methylome, providing
4,673 cell clusters/spatial groups. Subsequently, we
demonstrate that methylome taxonomy accurately
aligns with other molecular modalities from the
BRAIN Initiative Cell Census Network (BICCN) at
the cluster level”'2. Through integration analysis,
we annotate the methylome clusters using
nomenclature from the transcriptomic studies,
offering a comprehensive multi-omic resource for
the field.

Additionally, we observe the prevalence of spatial
information in the epigenome, which was validated
with a MERFISH dataset generated with spatial
methyl-diverse genes. Integration with spatial
transcriptomics allows us to map the DNA
methylome and chromatin conformation data onto
fine anatomical structures, confirming that the
epigenetic spatial pattern corresponds with
transcription differences in vivo.

We also investigate the regulatory landscapes of
individual genes by comparing thousands of cluster-
aggregated epigenetic profiles. We observe
chromatin compartment diversity across brain cell
types in brain development-related gene bodies,
and the compartment score is negatively correlated
with methylation fraction. Furthermore, in the long
genes with critical neuronal and synaptic functions,
we observe elevated domain boundary formation
that correlates with gene body methylation,
indicating a gene-activity-related chromatin
conformation change potentially cooperating with
DNA methylation and transcription machinery.
Finally, we provide a chromatin conformation
landscape for individual genes through unbiased
variance and correlation analysis of the chromatin
interaction. Intersecting this landscape with
correlation-based analysis, we build gene
regulatory networks linking transcription factors,
DMRs, and target genes. We also identify
numerous validated and novel regulatory
relationships of critical neuronal TFs, including
many immediate early genes (IEGs).

Finally, base-resolution DNA methylation profiles in
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many long genes reveal multiple cell-type-specific
patterns corresponding to the heterogeneity of
alternative gene transcription start sites (TSS) and
exon usage within the same gene. We
systematically investigate this phenomenon by
integrating single nucleus methylation data with a
companion whole-brain full-length single-cell RNA-
seq (SMART-seq v4%) dataset generated by Allen
Institute for Brain Science (AIBS)’. By quantifying
the gene expression at the transcript level?’, we
observe cell-type-specific alternative TSS and exon
usage in many long neuronal and synaptic genes,
whose gene body methylation and chromatin
conformation patterns can predict isoform diversity.

Results

Single-cell DNA methylome and chromatin
conformation atlas of the entire mouse brain

We developed snmC-seq3, an optimized single-
nucleus methylome sequencing method
(Supplementary Information 1), to profile genome-
wide 5mC at base resolution (Fig. 1a) across 117
dissection regions in the whole brain from adult
male C57BL/6 mice (Fig. 1b, Extended Data Fig. 1a,
Supplementary Table 1). Additionally, we employed
snm3C-seq, a multi-omic technology’, to profile the
DNA methylome and chromatin conformation jointly
from 33 dissection regions (Extended Data Fig. 1b),
thus adding the 3D genome context across all brain
cell types (Fig. 1a). Each dissected region is
represented by 2-3 replicates, obtained from
pooling the same region from at least six animals.
Single nuclei were captured through fluorescence-
activated nuclei sorting (FANS), enriching NeuN-
antibody positively labeled neurons (NeuN+
comprised 92% of snmC and 78% of snm3C, with
remaining data being NeuN- or non-neurons,
Methods).  Collectively, including  previous
research'®, we obtained 324,687 (301,626 passed
QC) DNA methylome profiles. On average, the
snmC-seq dataset had 1.44+0.50 million
(meants.d.) final reads, covering 72124 million
(6.5%%2.2%) of cytosine bases in the mouse
genome. We also obtained 196,172 (176,003
passed QC) joint methylome and chromatin
conformation capture (3C) profiles, with each cell

having 1.99+0.57 million final reads, covering
72420 million (6.5%%1.8%) of cytosine bases. The
3C modality of each cell had 188+81 thousand
(18.3%x5.7% of the total fragments) cis-long-range
contacts and 108+41 (10.4%%2.3%) thousand
trans-contacts (Extended Data Fig. 2, Methods,
Supplementary Table 2, 3).

After quality control and preprocessing, we
analyzed the data in cellular and genomic contexts
(Fig. 1c, d). During the cellular analysis, we
conducted iterative clustering of the mCH and mCG
profiles in 100-Kb bins throughout the genome to
establish a methylome-based whole-brain cell type
taxonomy. At the highest level of granularity, we
obtained a total of 4,376 cell clusters-by-spatial
groups (Methods). To validate and annotate the
dataset, we integrated the methylome data with
other brain-wide chromatin accessibility'> and
transcriptome datasets’, resulting in cluster-level
mapping across modalities and annotations of
these clusters into 261 subclass labels shared with
companion transcriptome studies (Supplementary
Table 4 and later sections).

Based on the clustering and integrative annotations,
we produced pseudo-bulk profiles of five modalities
(gene mCH, DMR mCG, chromatin conformation,
accessibility, and gene expression) for each cell
group, providing a cell-type-specific, multi-omic
atlas for the mouse genome (Fig. 1d). With more
details covered in later sections, we use the TLE
family member 4 (Tle4) gene, a marker for the “L6
CT CTX Glut” subclass, as an example to illustrate
the power of this comprehensive dataset. In this
instance, cells with a low mCH fraction in the Tle4
gene body exhibit high RNA expression levels (Fig.
1d, left), achieving a strong negative correlation
across 4,673 cell groups (Pearson correlation
coefficient, PCC. -0.86, p-value < 107'5). Similarly,
the mCG fraction of an example DMR located in the
Tle4-upstream region is also negatively correlated
with chromatin accessibility signals (PCC. -0.73, p-
value < 107'%, Fig. 1d, right). Furthermore, the m3C
dataset provides chromatin contact information,
indicating physical proximity between DMRs and
Tle4 gene in the “L6 CT CTX Glut” compared to the
“Pvalb Gaba” subclass, where Tle4 expression is
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Figure 1 | Single-cell DNA methylome and multi-omic atlas chart the cellular and genomic diversity of
the whole mouse brain. a, The workflow of dissection, nuclei, and library preparation for snrmC-seq3 and
snm3C-seq. b, The 117 dissection regions from eighteen 600-um coronal slices are grouped into ten major
brain regions (see Supplementary Table 9 for abbreviations). Each dissection region is registered to the 3D
common coordinate framework (CCF)*. ¢, The cell atlas: methylome-based iterative clustering on snmC and
snm3C datasets. The left -SNE plot is colored by modality; the middle plot is aggregated into 4,673 cell group
centroids and colored by 261 cell subclasses; The right part demonstrates cross-modality integration of brain-
wide datasets from BICCN, details in Figure 2. d, The genome atlas: the Tle4 gene exemplifies pseudo-bulk
profiles of five modalities across the whole brain, with genome browser view of the “L6 CT CTX Glut” and

“Pvalb Gaba” subclasses in the bottom.

low (Fig. 1d, middle). The base-resolution
methylation profiles further reveal intricate cell-type
specific epigenomic patterns, which offer rich
information about the precise control of gene
expression and transcript isoforms (Fig. 1d, bottom,
and later section).

Overall, our study utilizes brain-wide single-cell mC
and m3C datasets to (1) define cellular taxonomy
based on the DNA methylome; (2) integrate with
other atlas-level datasets from the BICCN, and (3)
generate a multi-omic cell-type-specific genome
atlas for the mouse brain. This unique resource
allowed us to conduct several unprecedented
analyses and make various discoveries, as we will
describe in the upcoming sections.

A methylome-based cell-type taxonomy

Following  stringent
preprocessing steps

quality
(Methods),

control  during
we employed

Liu et al.,

iterative clustering to classify methylome-based cell
populations in the snmC-seq and snm3C-seq
datasets, utilizing mCH and mCG profiles in 100-kb
bins across the genome'®%. In the final iteration, we
identified 2,573 clusters and further separated the
clusters based on brain dissection region into 4,673
cluster-by-spatial groups, which we used as the
finest level of granularity for subsequent analyses
(Fig. 2a, Extended Data Fig. 3). To establish a
hierarchical structure for whole-brain cell types and
support multi-omic data analysis, we iteratively
integrated the methylome datasets with a
companion brain-wide single-cell transcriptome
dataset (see next section). After the integration, we
annotated the mC-based cell groups in agreement
with 261 RNA-based subclasses’ (Supplementary
Table 4). The subsequent analyses rely on both the
cluster-by-spatial group and subclass levels of cell
classifications (Fig. 2a, Extended Data Fig. 3a,d).
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Figure 2 | Consensus cell type taxonomy across molecular modalities. a, Cell-group-centroids t-SNE
color by cell subclass (see Extended Data Fig. 3 for number legends’ abbreviations). b, Cell-level t-SNE color
by 117 dissection regions. ¢, 3D CCF registration and cell t-SNE of each major region. d, Cell subclass (upper
row) and neurotransmitter composition (bottom row) of each brain dissection region (each upper dot), grouped
by major region. e, Integration t-SNE of all neurons from the snmC-seq, snm3C-seq, snATAC-seq, and scRNA-
seq datasets, colored by matched cell subclasses. f, Brain-wide cluster map between the snmC-seq and
scRNA-seq datasets (Supplementary Table 4) based on iterative integration. Each dot, colored by subclasses,
on the diagonal represents a link between the mC clusters (x-axis) and RNA clusters (y-axis). Two examples
in floating panels demonstrate highly granular correspondence of cell clusters in the final integration round:
Box 1 presents the integration t-SNE colored by intra-modality clusters and confusion matrix of overlap score
between "MB-MY Glut-Sero" clusters; Box 2 displays the same information for "L5 ET CTX Glut" clusters. See
Extended Data Fig. 5 for more gene details. g, Dot plots of mCG fraction (left) and chromatin accessibility
(right) of cell-type-specific CG-DMRs (columns) in each cell subclass (row). The size and color of each dot
represent an aggregated epigenetic profile of 1,000 DMRs in a cell subclass; larger dot size and deeper color
indicate these DMRs are more hypo-methylated or accessible in a subclass. See Extended Data Fig. 6 for
more mC-ATAC integration details.

We organized our dissections into ten major brain subplate, CTXsp, and striatum-like amygdalar
regions (Fig. 2b, c, Extended Data Fig. 4) according nuclei, sAMY), cerebral nuclei (CNU, including the
to their unique cell type composition and neuronal striatum and pallidum, but excluding sAMY),
functionality (Fig. 2d): isocortex (CTX), olfactory hippocampal formation (HPF, including the
areas (OLF, including the olfactory bulb and piriform hippocampus and parahippocampal cortex),
cortex), amygdala areas (AMY, including cortical thalamus (TH), hypothalamus (HY), midbrain (MB),
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hindbrain (HB, including pons and medulla), and
cerebellum (CB). Most neuronal subclasses (218)
are each derived from a single major region.
Eighteen neuronal subclasses are situated across
two adjacent regions, which could be due to
imprecise dissections but may also represent
neuronal types shared between neighboring brain
regions (Supplementary Table 5). In addition,
remarkable cellular diversity is observed in non-
telencephalic regions (TH, HY, MB, HB, Fig 2d, e,
Extended Data Fig. 5), a common feature observed
in other single-cell brain atlases that investigate
various molecular modalities” 12,

Notably, the global methylation level changes
dramatically across cells and dissection regions
(Extended Data Fig. 3g-h). The global mCG
fractions for all cell groups span from 66.3%-85.3%
(29.0-37.3 million CpG sites), while mCH fractions
range between 0.6%-5.6% (6.9-59.2 million CpH
sites). Many subcortical neuronal subclasses
exhibit substantially elevated mCH levels compared
to excitatory neurons in cortical regions (Extended
Data Fig. 3i-j). Examples include "AD Serpinb7
Glut" (from TH, mCH level 5.6%), "PG-TRN-LRN
Fat2 Glut" (HB, 5.4%), "CBN Glut" (CB, 5.4%),
"SNr-VTA-PPN Pax5 Npas1 Gaba" (MB, 5.2%),
“‘PM-TM-PVp Tbx3 Hist-Gaba” (HY, 4.5%). Since
CpH sites (1.1x10°) are more abundant than CpG
sites (4.3x107) in the mouse genome, the mCH
sites in these cells surpass the total number of CpG
sites, highlighting the functional significance of this
unique neuronal epigenetic modality 528,

Lastly, our dataset extensively profiles non-
neuronal cells and adult immature neurons (IMN)
throughout the brain (Extended Data Fig. 4,
Supplementary Table 4, 5). Consistent with other
modalities”'?, we detected spatial differences in
astrocyte methylomes, particularly between
telencephalic and non-telencephalic regions. IMNs
clustered with astrocytes in the first round, with later
iteration resolving one population in the dentate
gyrus' subgranular zone and another found in areas

overlapping the rostral migratory stream?.
Furthermore, the  oligodendrocyte lineage
demonstrates  spatial  distinctions  between

telencephalic and non-telencephalic regions at the

cluster level (Extended Data Fig. 4). Our dataset
also encompasses other immune and vascular cell
types, such as microglia, pericytes, endothelial cells,
arachnoid barrier cells, and vascular
leptomeningeal cells.

Consensus cell type taxonomy across modalities

Developing a brain cell type taxonomy requires
integrating various molecular modalities, verifying
cell clusters based on multiple molecular
information, and applying a uniform nomenclature®.
We began this endeavor by performing an
integrative analysis with a brain-wide transcriptome
dataset from the BICCN consortium created by Yao
et al.”. After strict quality control, this single-cell
RNA-seq (scRNA-seq) dataset established a cell
type taxonomy that categorized 4.3 million cells into
5,200 cell clusters, 1,045 supertypes, 306
subclasses, 32 classes, and 7 divisions. Brain-wide
MERFISH datasets’® were utilized to incorporate
various aspects into the cluster annotation,
including spatial distribution, neurotransmitter
identity, marker genes, and existing cell-type
knowledge™°.

We employed an efficient framework (adapted from
the Seurat package®', Methods) for iterative cross-
modality integration to leverage this substantial
effort. The initial integration effectively matched
neuronal spatial distribution and high-level
annotations (Fig. 2e), while subsequent iterations
refined cluster matching within subclasses to
greater detail (Fig. 2f). We utilized integration
overlap scores to map methylome cell groups to
transcriptome clusters and annotate methylome
datasets into subclasses using consistent
nomenclatures (Supplementary Table 4). |In
summary, we matched all methylome cell groups
with 4,669 (90%) transcriptomic clusters,
encompassing 4.19 million (97.4%) cells
corresponding to 261 subclasses (Fig. 2f). The 531
unassigned transcriptomic clusters represent only
2.6% of cells, which are primarily rare populations
(<0.03% of total RNA dataset) that are insufficiently
represented in the methylome dataset. Based on
these integration results, we calculated the
transcriptome profile for each cell group (Methods).
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The final iteration's overlap score within each
subclass reveals a high-granularity correspondence
between methylome and transcriptome clusters (Fig.
2f, boxes). We further examined vital neural
functional genes to demonstrate this accurate
match between mC and RNA. For instance,
neurotransmitter-related genes provide crucial
information about cell type identities and display a
highly similar specificity between gene body mCH
fractions and mRNA expression. Examples include
Slc17a7 and Sic17a6 for glutamatergic, Gad1 for
GABAergic, Slc6a5 for glycinergic, Slc6a2 for
noradrenergic, Th for dopaminergic, Chat for
cholinergic, Slc6a4 for serotonergic, and Hdc for
histaminergic (Extended Data Fig. 5a-b). In addition,
numerous immediate early genes (e.g., Fos, Egr1,
Arc, Bdnf, Nr4a?2) are also expressed in many adult
brain cell types’°. Their expression levels are anti-
correlated with mCH fractions (Extended Data Fig.
5c). Another gene category includes neuropeptides
(e.g., Npy, Vip, Sst, Penk, Pdyn, Grp, Tac2, Cck,
Crh), many of which are canonical cell type markers
with vital signaling functions®2. Their specificity is
detectable in the gene body mCH that aligns with
transcription (Extended Data Fig. 5d). Overall, this
high-resolution cross-modality integration offers
multi-omic evidence for identifying thousands of cell
clusters in the adult mouse brain, laying the
groundwork for subsequent genomic and
epigenomic analyses.

Multi-omic evidence for cell-type-specific cis-
regulatory elements

Having established a consensus cell taxonomy
across the entire mouse brain, we further identified
2.56 million non-overlapping CpG DMRs between
the subclasses of the whole brain or the clusters of
each major brain region (Methods). These DMRs
involve 44% of the total CpG sites in the genome,
with an average length of 189+356 (meants.d.) and
containing 3.9+6.0 CpG pairs (each containing two
bases). The CpG DMRs provide predictions about
cell-type-specific cis-regulatory elements, and
hypo-methylation in the DMR region usually
indicates the active regulatory status in adult brain
tissue'®?? (Fig. 2g). To annotate the accessibility
status of the DMRs systematically, we performed

iterative integration between the methylome and
chromatin accessibility dataset from Zu et al.'?,
using non-overlapping chromosome 5kb bins
(Methods). This dataset, generated by snATAC-seq
without NeuN enrichment by FANS, contains
1,372,646 neurons and 939,760 non-neuronal cells.
As this dataset shares the same dissection samples
with the snmC-seq dataset, we used this ground
truth information to assess the integration alignment
score® between mC and ATAC neurons.
Remarkably, the dissected regions are precisely
aligned (score 0.89+0.11), indicating extensive
concordance in the cellular diversity of both
epigenomic modalities (Extended Data. Fig. 6a, b).
After integration, we also calculated the chromatin
accessibility profile for each cell group using their
matched ATAC clusters. The resulting mCG
fractions and chromatin accessibility levels at DMR
regions show similar cell-type-specificity across
brain cell subclasses, confirming the correct match
of cell-type identities. (Fig. 2g, Extended Data Fig.
6¢c, d). By integrating the methylome and chromatin
accessibility datasets, we achieved remarkable
concordance in cellular diversity across both
epigenomic modalities, further validating the
accuracy of our approach in determining cell-type-
specific regulatory elements and their activities.

Coherent spatial epigenomic and
transcriptomic diversity in the brain

Tens of millions of cells in the mouse brain
accurately form complex anatomical structures
controlled by their diverse gene expression and
epigenetic regulation. Our clustering analysis has
demonstrated cell type composition differences
across brain regions (Fig. 2). To explore the spatial
information further in the DNA methylome, we
performed differentially methylated gene (DMG)
and DMR analyses across anterior-to-posterior,
dorsal-to-ventral, and medial-to-lateral axes in the
brain using representative dissection regions (Fig.
3a-c). In all three axes, we identified hundreds or
thousands of DMGs related to various neuronal
functions and DMRs associated with these genes,
highlighting the remarkable spatial diversity
encoded in the methylome.

Liu et al., Single-cell DNA methylome and 3D Multi-omic Atlas of the Adult Mouse Brain. 7
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To increase spatial resolution and investigate
whether the observed methylation spatial pattern
corresponds to actual transcriptomic diversity, we
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employed the MERFISH technology, which enables
in situ profiling of hundreds of genes' expression in
brain sections?®33. We designed a 500-gene panel
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Figure 3 | Coherent spatial epigenomic and transcriptomic diversity in the brain. a-c, Spatial methylation
patterns of DMGs and DMRs across three brain axes (anterior to posterior (a), dorsal to ventral (b), medial to
lateral (c). d, Workflow of mC-MERFISH integration and spatial embedding of methylome cells. e, Spatially
mapped methylation cell atlas. The first row displays CCF-registered brain dissection regions. The second and
third rows show imputed spatial locations for glutamatergic and other neurons colored by dissection regions.
f, Spatial distribution of cell subclasses for glutamatergic neurons and other neurons on slice 10. g, Spatial
epigenetic pattern of neuronal genes and their associated DMRs. The Elval2 gene represents spatial pattern
among subcortical regions; the left column shows gene body mCH fraction, DMR (chr13:91,164,342-
91,165,792) mCG fraction, and RNA expression. The right column displays the normalized contacts heatmap
between the DMR and gene. h, The Rasgrf2 gene and associated DMR (chr13:92,027,775-92,028,983) exhibit

cortical layer differences in the same layout as (g).

(Supplementary Table 6) selected based on cell
type and spatial diversity in gene body
hypomethylation across the brain (Methods) and
profiled six coronal sections corresponding to our
mC and m3C brain slices (Extended Data Fig. 7a).
After quality control, we obtained 266,903
MERFISH cells and annotated their cell types by
integrating with the scRNA-seq dataset (Extended
Data Fig. 7b-d, Supplementary Table 7)”. We then
performed cross-modality integration between the
neurons in the methylome and MERFISH datasets,
imputing the spatial location of each methylation
nucleus (Fig. 3d, Supplementary Table 8).
Interestingly, the predicted spatial coordinates of
the methylation nuclei closely matched the
dissected regions (Fig. 3e). For example,
glutamatergic cells show arealization among
cortical areas within each slice; dorsal-ventral
separation is observed among medium spiny
neurons dissected from the Caudoputamen (CP)
and Nucleus Accumbens (ACB) regions; many
subcortical dissection borders are faithfully
preserved in the imputed spatial embedding.
Furthermore, the spatial location imputation also
assigned many cell types to fine anatomical
structures, which were considerably smaller than
our dissection regions (Fig. 3f, Extended Data Fig.
8). For instance, laminar layer information was
mapped among cortical excitatory cells. In addition,
many subcortical neurons were allocated to specific
brain nuclei (e.g., “STN-PSTN Pitx2 Glut”, “LGv
Otx2 Gaba”®, “ZI Pax6 Gaba”), highlighting the
correspondence between the cell-type identity and
anatomical structure in the subcortical areas.

The high spatial resolution in the imputation was
attributed to the strong association between cell

location and DNA methylation of critical genes and
regulatory elements. For example, the Elavi2 gene,
an RNA-binding protein involved in post-
transcriptional regulation functions in neurons,
exhibited a dorsal-ventral increased expression
pattern in subcortical neurons in Slice 10, which was
also observed as the decrease of gene body mCH
methylation of Elavi2 and a nearby DMR's mCG
methylation (Fig. 3g). Notably, the chromatin
interactions between the DMR and Elavi2 gene
showed stronger contacts in regions where Elav/2
was highly expressed. Likewise, Rasgrf2, a
guanosine nucleotide exchange factor for Ras
GTPases, displayed differential expression and
methylation across cortical layers. DMRs near
Rasgrf2 were highly correlated, with chromatin
conformation data supporting physical proximity
when both the DMR and Rasgrf2 were active (Fig.
3h). Negr1 also shows similar correspondence
among modalities in cortical dissected regions

(Extended Data Fig. 7e). These findings
demonstrate a clear spatial pattern in DNA
methylation that aligns with the spatial

transcriptome, implying that epigenetic regulation
exerts precise control over the cellular spatial
location across the entire brain.

Chromosomal conformation dynamics across
brain cells

The annotated multi-omic datasets enabled us to
leverage the cell-type diversity across the entire
brain to understand the chromatin conformation
landscape of individual genes at multiple genomic
scales. Here, we systematically evaluated the
variability of different 3D genome features
(chromatin compartment, topologically associated
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domain (TAD), and highly variable interactions)
across cell subclasses and associated them with
gene activity by correlating chromatin contact
strengths with methylation fractions.

We initiated this effort by examining the chromatin
compartment, a genome topology feature bringing
together the genomic regions tens to hundreds of
megabases away*®. The genomes are organized in
two major compartments, A and B, corresponding
to the active and silent chromatin®36, After
calculating the compartment score of cell
subclasses at the 100-Kb resolution, we observed
numerous A/B compartment switches in megabase-
long regions (Fig. 4a). For instance, the
chromosome 2 region spanning 3.5M to 10.6M
exhibited a strong negative compartment score (B
compartment) in mature oligodendrocytes ("Oligo
NN"), but positive scores (A compartment) in
cortical excitatory neurons, such as "L2/3 IT CTX
Glut" (Fig. 4b). Notably, this compartment-switching
region overlaps with the Celf2 gene, a vital RNA-
binding protein that modulates alternative splicing in
neurons®’.

Given these observations, we sought to determine
if compartment switching correlated with DNA
methylation changes within the same regions. Upon
calculating the PCC across cell subclasses, we
found a negative correlation between the
compartment score and mCG or mCH fraction of
100Kb chromatin bins, with mCG exhibiting a
stronger correlation than mCH (Extended Data Fig.
9a). Additionally, we observed that the
compartment score of negatively correlated bins
demonstrated greater variability across cell
subclasses (Fig. 4c, Extended Data Fig. 9b, c),
suggesting that these negatively correlated bins
exhibit dramatic activity change across a wide
range of cell types.

We then discovered that genes overlapping with the
negatively correlated bins were enriched® in
numerous critical neuronal-related functions,
including nervous system development (Fig. 4d). To
explore this further, we examined another mouse
developing brain scRNA-seq atlas®® and found that
the negatively correlated bins overlapped with

genes displaying a dramatic increase in expression
during prenatal brain development. In contrast,
uncorrelated or positively correlated bins
demonstrated no such trend (Extended Data Fig.
9d). These results suggest that dramatic
chromosomal conformation changes might be
established during early development and
subsequently maintain cellular specificity in adult
brain nuclei.

TAD boundaries associated with long gene body
regions

We also investigated the TADs*® and their
boundaries at a 25-Kb resolution (Methods). By first
identifying boundaries in individual cells and
subsequently using the domain boundary
probability at the cell subclass level, we were able
to represent the strength of domain boundaries at
each 25Kb bin (Extended Data Fig. 9e). To evaluate
the variability of boundary probabilities across the
genome, we performed a Chi-square test on each
bin and identified 83,518 bins with significant
variability across subclasses (false discovery rate,
FDR < 1e-3, Methods). For example, we observed
that at the LingoZ2 locus, an “L2/3 IT CTX Glut” hypo-
methylated gene linked to essential tremor and
Parkinson's disease*!, the TAD boundaries align
with the gene's TSS and transcription termination
site (TTS) (Fig. 4e). Across all the neuronal
subclasses, the boundary probability of the 25Kb
bin at the Lingo2 TSS exhibits a negative correlation
with the transcript body mCH fraction (Fig. 4f,
PCC=-0.65, FDR < 0.001, permutation-based test,
Methods).

To generalize this observation, we calculated the
average boundary probability at all gene TSSs and
TTSs in the genome, separating them by transcript
length (< 100Kb as short, > 100Kb as long'"?).
Long genes displayed elevated levels of boundary
probability at the TSSs and TTSs (Fig. 4g9),
suggesting that TADs are more likely to form around
the gene body (i.e., gene body domains). Our
analysis then focused on the relationship between
variable domain boundaries and gene bodies,
particularly long genes (> 100Kb) implicated in
neuronal pathogenicity and potentially regulated by
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mCH and MeCP2'". We next calculated the PCC of
gene transcript body mCH or mCG fractions with the
boundary probabilities of all 25Kb bins within
transcript + 2Mb distances (Extended Data Fig. 9f).
The top negatively correlated boundaries were
predominantly located at the TSSs and TTSs of the
corresponding gene transcripts (Fig. 4h, Extended
Data Fig. 9f, g). Additionally, we observed a few
significantly positively correlated boundaries to the
transcript body mCH or mCG, although they lacked
clear TSS/TTS colocalization (Extended Data Fig.
9f, g). Functional enrichment analysis® revealed
that genes with strongly negatively correlated gene
body domains were significantly enriched for critical
neuronal and synaptic functions. In contrast,
positively correlated TAD boundaries were not
associated with genes enriched for specific
functions (Extended Data Fig. 9h). Together, these
results indicate that TAD boundaries are closely
associated with the transcription start and
termination sites of long genes implicated in
neuronal pathogenicity and critical functions.

Diverse neuronal gene chromatin conformation
landscapes

In order to thoroughly profile the chromatin
conformation diversity at high resolution and link
genes to their potential regulatory elements, we
analyzed chromatin interactions at the 10-Kb
resolution (Extended Data Fig. 10a). We first
performed a one-way analysis of variance (ANOVA)
across cell subclasses and used the F statistics to
summarize the variability of all interactions. Highly
variable interactions correspond to dot or strip-like
patterns around genes (Fig. 4i).

Subsequently, we calculated the PCC between
transcript body mCH fraction and the contact
strength of highly variable interactions within + 5 Mb
of the transcript body (Fig. 4j). Highly variable and
gene-correlated interactions were assigned to a
gene if any anchors of the interaction overlapped
with the gene body. Through this assignment, the
majority (95%) of gene-associated interactions are
located within 1.2 Mb of the gene's TSS (Extended
Data Fig. 10b). Genes with numerous correlated
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Figure 4 | Highly dynamic chromatin conformation features correlate with DNA methylation around
neuronal genes. This figure displays chromatin conformation diversity at three levels: chromatin
compartments (a-d), gene body domains (e-h), and highly variable contacts (i-m). a, Top heatmaps are the
Pearson-correlation matrices of chr2. Middle plots show the compartment score across chr2 (red and blue
indicate A and B compartments, respectively); the bottom row shows the zoom-in view of the Celf2 gene locus.
Three columns from left to right are “L2/3 IT CTX Glut” (C1), “Oligo NN” (C2), and (C1 - C2) delta values. b,
Cell-group-centroids t-SNE colored by compartment score and mCG fraction. ¢, Scatterplot of chrom100k bins,
showing PCC between compartment score and chrom100k mCG fraction (x-axis) and compartment score
standard deviation (STD) across cell subclasses (y-axis). The blue contours indicate the dots’ kernel density.
d, Functional enrichment for genes intersected with negatively correlated chrom100kb bins (boxed in c). e,
Top heatmaps are normalized chromatin contact matrices around the Lingo2 gene from “L2/3 IT CTX Glut’
(C1) and “MSN D2 Gaba” (C3). The bottom genome tracks are the corresponding pseudo-bulk ATAC and
methylome profiles. f, --SNE colored by the Lingo2 TSS boundary probability and Lingo2 mCH fraction. g,
Average boundary probabilities of 25kb bins around long and short genes. h, The scatterplot shows the location
of each long gene transcript’'s most negatively correlated boundary. The y-axis is the PCC between the 25Kb
bin boundary probabilities and transcript body mCH fractions; the x-axis is the relative genome location to the
transcripts. i,j, Heatmap of F statistics from one-way ANOVA analysis measuring the variance of contact
strength across cell subclasses (i) and PCC between the Lingo2 mCH fraction and highly variable interactions’
contact strengths around the Lingo2 gene (j). The white circles are two loop-like highly variable interactions.
Arrows point to strips between interactions and gene bodies. k, t-SNE colored by normalized contact strengths
for interactions 1 and 2 in (j). I, Pileup view of the relative genome location of correlated interactions from all
genes. The colors in the upper triangle are average PCCs. Location categories include intragenic (1), upstream
(U), downstream (D), upstream-intragenic (U-I), downstream-intragenic (D-I), and upstream-downstream (U-
D). m, Heatmap showing chromatin landscape of megabase-long genes, green rectangles indicate the location
of gene body, the lower triangle is F statistics similar to (i), and the upper triangle is PCC values similar to (j).

interactions exhibit crucial neuronal and synaptic
functions, overlapping with those genes that
displayed a negatively correlated gene body
domain boundary in the previous section (Extended
Data Fig. 10c, d). For instance, in the Lingo2 locus,
highly variable interactions were identified within the
gene body, at gene body domain boundaries, or
corresponding to distal loop structures® (Fig. 4j,
circles). The correlation analysis further stratified
interactions positively or negatively correlated with
the gene's methylation change. Notably, the
correlated interaction anchors can be up to 1.6 Mb
downstream (interaction 1) or 3.2 Mb upstream of
the Lingo2 TSS (interaction 2) while associating
with strips along the entire gene body (Fig. 4j, k).

We then summarized the distribution of significantly
correlated interactions surrounding all long genes
by categorizing them into six groups based on their
relative location to the gene: intragenic (1), upstream
(U), downstream (D), upstream-intragenic (U-I),
downstream-intragenic  (D-l1), and upstream-
downstream (U-D) (Fig. 4l). Our results revealed
that the contact strength of intragenic, upstream,

and downstream interactions are mostly negatively
correlated with gene body methylation (% negative
PCC, I: 88%, U: 71%, D: 67%), consistent with the
observation that the gene body domain forms
between the TSS and TTS, insulating the
interactions between |, U, and D while increasing
their interaction within each group. Moreover, the U-
| and D-l interactions are primarily positively
correlated with gene body methylation (% positive
PCC, U-I: 63%, D-I: 77%). However, the negatively
correlated interactions likely remain critical as they
potentially link distal regulatory elements to
intragenic regions (Fig. 4j). U-D interactions exhibit
the least negative correlations (% negative PCC, U-
D: 15%) and do not directly interact with the gene
body, potentially relating to higher-level chromatin
conformation regulation.

Despite these general trends, the specific chromatin
conformation landscapes of individual genes are
remarkably diverse (Fig. 4m). In addition to the
intriguing U-l and D-I interactions observed in the
Lingo2 gene, many megabase-long genes display
complex intragenic subdomain patterns (e.g., Ptprd,
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Nrxn3, Lsamp, Dlg2, Celf2, Sox5 in Fig. 4m and
Extended Data 10e-j). These patterns may
correspond to more subtle gene activity regulation,
including alternative TSS and exon usage, which
will be explored later.

The multi-omic analysis unveils gene regulatory
networks

Numerous critical transcription factors orchestrate
the intricate spatial and cell-type-specific gene
expression patterns within Gene Regulatory
Networks (GRNSs), which can be elucidated using
multi-omic information***4. Here, we present a
framework that connects transcription factors (TFs)
with DMRs and their potential downstream target
genes, leveraging DNA methylome and chromatin
conformation signals to construct GRNs for whole-
brain neurons (Fig. 5a, left part, Methods). Our
approach employs mCH fractions as proxies for

Gene Body

gene status and mCG fractions as indicators of
regulatory element activity. To further support our
findings, we incorporate integrated transcriptome
and accessibility profiles as complementary
evidence due to their strong negative correlation
with  gene mCH and DMR mCG fractions,
respectively (Fig. 5a, right part).

We built connections between (1) DMRs and their
potential target genes (DMR-Target edge); (2) TFs
and their potential target genes (TF-Target edge);
(3) TFs and their potential binding DMRs (TF-DMR
edge). We established DMR-Target edges by
accounting for the correlation of methylation
fractions between the DMR and surrounding genes,
as well as the gene's chromatin conformation
landscape discussed earlier (Fig. 5b, Methods).
This approach intersected the diversity of both
modalities measured in our snm3C-seq assay by
limiting correlation-based edges to genome regions
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Figure 5 | Gene regulatory networks predict binding elements, downstream targets, and cell-type
importance of transcription factors. a, Schematic depicting the three components of the GRN with two
density plots display the PCC between the gene’s mCH fractions and RNA expressions (right top) and the PCC
between DMR'’s mCG fractions and chromatin accessibilities (right bottom). b, the density plot shows the PCC
between each DMR’s mCG fractions and the target gene’s mCH fractions. Gray represents the null distribution;
shallow blue represents all correlations; blue represents correlations between DMRs overlapping with the
target gene’s correlated interaction anchors. ¢, The scatter plot displays the DMR location and PCC between
DMR mCG and gene mCH. Each gray dot represents a DMR-target edge. The blue line represents the moving
quantile of PCC. d, Schematic of the DMR-Target edge for Psd2 (top row) and Celf2 (bottom row). From left
to right, the t-SNE plot is colored by gene mCH fraction, gene-DMR contacts, and DMR mCG fraction. e, the
density plot shows PCC between the mCH fraction of TF and the target gene. f, Top, PCC between Nfia mCH
fraction and DMRs mCG fraction. Bottom, cisTarget® motif enrichment score in 50 DMR groups ordered and
grouped by the Nfia-DMR PCC value above. The example t-SNE plots are colored by the Nfia mCH fraction
and mCG fraction of a positively correlated DMR. g, Schematic shows the TF-DMR-Target triple and the final
score. h, Distribution of all triples’ final scores (from g) in the final network. Histograms show the number of
triples that each TF, gene, and DMR is involved in. i, An example triple of Egr1 (TF), NabZ2 (target), and DMR.
t-SNE plot color by the gene’s mCH fraction or RNA level; DMR’s mCG fraction, chromatin accessibility; and
gene-DMR contact score. j, Left, schematic shows the calculation for PageRange score (methods). Right, dot
plots represent TF's normalized PageRank Score and RNA expression for cell subclasses in the hindbrain
(HB). Red dots are colored and sized by PageRank Score. Purple dots are colored by RNA CPM, sized by the
percentage of cells in that subclass expressing this gene. k, Left, schematic of RFX family sub-networks. Right,
t-SNE plot color by normalized PageRank Score (top) and cell subclasses where normalized PageRank
score > 0.

displaying pronounced chromatin conformation
changes. This step generated 1.2x10° edges
between 5.7x10° DMRs and 2.1x10* genes (Fig.
5¢), with 27% of edges connecting intragenic DMRs
to genes and 73% linking distal DMRs. For instance,
the edges of the Psd2 and Celf2 genes demonstrate
highly concordant cell-type-specificity of DNA
methylation and chromatin interaction between
gene bodies and their associated DMRs (Fig. 5d).
We proceeded to connect TF-Target edges based
on their correlated methylation fractions (Fig. 5e).
We identified a total of 4.6x10° edges between
1,705 TFs and 2.6x10* genes. Since the TF-Target
edge alone is insufficient to discern gene regulation
relationships*#*°, we also quantified the TF-DMR
edges, which indicate potential regulatory elements
that the TF used to control target gene expression.

We established the TF-DMR edge by considering
the correlation of methylation fractions between the
DMR and TF gene body and the enrichment of TF
binding motifs in the correlated DMR sets
(Extended Data 11a, Methods). In the motif
enrichment analysis, we discovered that many TFs
have their motifs solely enriched in the DMRs that
positively correlated with TF gene body methylation,

such as the Nfia, Onecut2, and Rfx1 (Fig. 5f,
Extended Data Fig. 11b). This finding implies that
the binding of these TFs potentially activates the
underlying regulatory elements. Intriguingly, we
also observed some TFs with motifs enriched in
negatively correlated DMRs, such as the Foxp2 and
Foxa1 genes (Extended Data Fig. 11c). Both TF
genes were reported to have transcription
repression functions*®#”, potentially achieved by
repressing active enhancers. We identified 1.2x107
edges between 843 TFs and 4.6x10° DMRs
(Extended Data Fig. 11d).

We combined all three types of edges (DMR-Target,
TF-Target, TF-DMR) to construct the final GRN with
TF-DMR-Target triples. Each triple is assigned a
final score representing the overall correlation of
cell-type specificity between the three components
(Fig. 5g, Methods). The resulting network
comprises 1.04x107 triples, involving 830 TFs,
20,101 genes, and 291,752 non-overlapping DMRs
(Fig. 5h). The different combination of correlations
in a triple provides insights into regulatory
relationships between the TF, DMR, and target
gene (Extended Data Fig. 11e). We summarized
eight possible combinations into four models and
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one unknown category (Extended Data Fig. 11f).
The most frequent model (39.8%) represents all-
positive correlations, indicating that both the TF and
DMR have an active effect on the gene (Model 1).
The second most frequent model (30.5%) is
negative for TF-Target and TF-DMR edges and
positive for DMR-Target edges, suggesting that the
TF plays a repressive role by repressing active
DMRs. These two models account for most (70.3%)
of the edges, indicating that intersected DMRs
predominantly activate target genes. The third
(Model 3, 11.1%) and fourth (Model 4, 11.1%) most
popular models are negative or repressive for DMR-
Target edges, with Model 3 suggesting that active
TFs turn off repressive DMRs to activate genes and
Model 4 indicating that repressive TFs turn on
repressive DMRs to deactivate genes. The
remaining edges are assigned to the "Unknown"
group (Extended Data Fig. 11e), likely intersected
by chance or representing indirect relationships
involving additional regulatory factors. Models 1 to
4 cover 92.5% of the edges, demonstrating a
remarkable correspondence between these three
genomic elements among the brain-wide cell types.

In addition, the individual TF-DMR-Gene ftriples
predict numerous TF and gene relationships,
pinpointing their intermediate regulatory elements.
These relationships are supported by the DNA
methylome and chromatin conformation, as well as
the integrated transcriptome and chromatin
accessibility. For example, one high-scoring triple
(0.74) links the critical neuronal TF Egr1 to its
downstream target gene Nab2 through a distal
DMR (chr10:127,578,032-127,578,186, Fig. 5i).
The Nab2 gene expression is known to be induced
by Egr1, and the NAB2 protein then represses Egr1
activation function, forming a negative feedback
loop*. Moreover, the Egr1 cofactor Erf*® is also

connected to Nab2 through another DMR
(Extended Data Fig. 12a, b). In addition to these
known examples, another interesting edge

connects Egr1 with the Synpo gene, which encodes
an actin-associated postsynaptic protein, with a
DMR located in its upstream correlated regions
(Extended Data Fig. 12c, d). A second example is
the link between the subcortical expressing TF
Statbb and the Cacna2d2 gene, which encodes a

calcium voltage-gated channel auxiliary subunit,
connected by an intragenic DMR located in the
highly correlated gene body domain (Extended
Data Fig. 12e, f). These intriguing examples
demonstrate the power of our approach in
identifying novel and biologically relevant gene
regulatory relationships by leveraging multi-omic
data.

Weighted GRNs
factors

identify key transcription

Transcription factors play a crucial role in regulating
cell identity*®. In order to demonstrate the
importance and specificity of transcription factors
within each cell subclass, we utilized the
comprehensive GRN combined with the Taiji
framework®!%2. Using the PageRank algorithm, this
framework identifies key transcription factors by
propagating gene and regulatory element
information on the GRN with node and edge weights
specific to each cell subclass.

Focusing on the hindbrain (Fig. 5j) and midbrain
(Extended Data Fig. 12g) as examples, we
discovered key transcription factors that exhibit
highly specific PageRank scores among cell
subclasses within these complex brain regions. The
combination of transcription factor PageRank
scores uniquely identifies each cell subclass in
these regions, aligning with their respective
transcription specificities. Notably, the PageRank
score can capture the specificity of even extremely
lowly expressed transcription factors (Fig. 5j), likely
due to gene body methylation measurements.
Additionally, we observed numerous transcription
factors within the same family exhibit distinct cell-
type-specificity (Fig. 5k). For example, the Rfx gene
family®® has six members variably expressed in
adult mouse brains. Their connectivity on the GRN
and subclass-specific PageRank scores reveal that
these members could play distinct regulatory roles
that partially overlap. For example, Rfx2 is predicted
to be critical in HY and MB cell types. Rfx3 has high
PageRank scores in cell types overlapping with
Rfx2 in subcortical areas but is also inferred as an
important regulator broadly in cortical excitatory
neurons. Rfx5 is predicted to be important in a wider
range of cell types, including the majority of
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subcortical neurons, cortical inhibitory neurons,
astrocytes, and oligodendrocyte progenitors. The

comprehensive GRN and the PageRank algorithm
effectively identify key transcription factors with high
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Figure 6 | Epigenetic heterogeneity predicts gene isoform diversity. a, Workflow for the integrative
analysis between epigenome and transcriptome datasets. b, Compound heatmaps illustrate the similarity
between the Nrxn3 intragenic methylation heterogeneity and alternative isoform expression patterns. Rows
are neuron cell subclasses. |, mCG fraction of all 6,138 CpG sites of Nrxn3 gene with columns ordered by
original genome coordinates (bottom colors are CpG clusters from heatmap II). Il, mCG fraction of CpG sites
re-ordered by their CpG clusters (bottom colors) based on subclasses methylation pattern. Heatmap Ill and
Heatmap IV show the TPM of 14 highly variable transcripts and PSI of 38 highly variable exons of Nrxn3,
quantified with the SMART-seq dataset. All values are z-score normalized across cell subclasses. The Nrxn3
transcript structures and exon locations are indicated at the bottom plots. Red arrows point to beta-Nrxn3
transcripts and one associated CpG cluster. Heatmap V shows the Nrxn3 gene log(CPM) in scRNA-seq (10X)
data. ¢, Schematic illustrates the process for constructing the prediction model. d, Scatterplot shows the PCC
between predicted TPM and true TPM for each highly-variable transcript (dot), using methylation features (left)
and chromatin contact interactions (right) to predict. e, Scatterplot shows the delta PCC in mC models (x-axis)
and m3C models (y-axis) for highly-variable transcripts (dot). Top transcripts with large delta PCC are listed
by their corresponding gene names. f. Genome browser view of intragenic epigenetic and isoform diversity of
the Nrxn3 gene in five cell subclasses (rows). The middle heatmaps are normalized contact strengths of the
Nrxn3 gene locus, with arrows pointing to strips over the beta-Nrxn3 transcript body. The zoom-in panels show
alpha-Nrxn3's (left) and beta-Nrxn3's (right) TSS region, with mCG fraction (green), mCH fraction (blue), and
SMART RNA (bottom) expression tracks. g, Similar to f, showing the corresponding intragenic epigenetic and

isoform diversity in the Oxr7 gene.

cell-type specificity in diverse brain regions. This
approach generates numerous predictions about
transcription factor functions in determining cell
identity, paving the way for future perturbation
experiments®.

Intragenic epigenetic heterogeneity predicts
isoform diversity

Alternative splicing leads to the production of
different isoforms from the same gene, and its
dysfunction in the brain has been associated with
various neurodevelopmental disorders®. It is
regulated by various RNA-binding proteins and has
recently been associated with DNA methylation®6:57.
The diversity of isoform expression has been
reported in several cortical cell types?”-°8. However,
their diversity in a considerably wider range of cell
types across the whole mouse brain and their
relationship with the epigenome remains to be
elucidated. To investigate these questions, we
integrated the snmC and snm3C-seq datasets with
a companion full-length single-cell RNA-seq
(SMART-seq v4) dataset from AIBS, which contains
195,680 cells covering the entire adult mouse brain’
(Methods). This integration allowed us to explore
the intragenic diversity of DNA modification and
topology in conjunction with RNA transcript/exon

level measurement at cell-group resolution (Fig. 6a,
Methods).

To exemplify this framework, we first examined the
methylation pattern of the neurexin 3 (Nrxn3) gene,
a critical presynaptic gene known to express
thousands of alternative isoforms®. Within the
Nrxn3 gene body, we observed multiple
comethylated CpG clusters grouped by their
methylation patterns across cell subclasses (Fig. 6b,
box |, Il). Note that these CpG clusters are different
from traditionally described CpG islands, by
grouping together the distal CpGs showing similar
methylation specificities across cell types.
Intriguingly, many of these CpG clusters showed
similar cell-subclass-specificity to the alternative
usage of certain Nrxn3 transcripts and exons (Fig.
6b, box llI-V). For instance, the functional isoform of
the truncated beta-neurexin®® was predominantly
active in inhibitory and a few excitatory cell
subclasses, corresponding with a CpG cluster
hypomethylated in the same populations (Fig. 6b,
arrows). Similarly, the neuron-specific antioxidant
gene Oxr1 exhibited intragenic methylation
heterogeneity that matched the diversity of several
transcripts and exons (Extended Data Fig. 13a).

To systematically analyze this phenomenon, we
conducted a machine-learning-based analysis to
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quantify the predictability of alternative splicing
using intragenic DNA methylome or chromatin
conformation features in each cell group (Methods).
Specifically, asking how much improvement we can
obtain by incorporating high-resolution intragenic
features to predict isoform expression levels,
compared to using whole gene body measurements
as a proximate averaged activity of isoforms.

To assess this, we trained two models for each
gene (Fig. 6¢): one with the true intragenic features,
and another using within-sample shuffled features
that disrupted intragenic correspondence but still
preserved the sample-level information for each
gene. We calculated PCC between the predicted
and true values across cell groups for both models.
The delta PCC value between the true and shuffled
models represented the gain in predictability
through adding intragenic features (Fig. 6d,
Extended Data Fig. 13b). Many crucial neuronal
and synaptic genes known for functional alternative
isoform expressions exhibited a large delta PCC in
their highly-variable transcripts and exons (e.g.,
Nrxn1-3%°, Ntrk2%°, Dnm3%, Oxr1%?, Fig. 6e,
Extended Data Fig. 13c). Interestingly, chromatin
conformation features demonstrated better overall
prediction accuracy than DNA methylation in these
alternatively spliced genes (Fig. 6d, Extended Data
Fig. 13b), possibly because these features account
for genome 3D interaction, while methylation
features only consider 1D. This observation aligns
with the understanding that many alternative
splicing events involve nuclear
compartmentalization and long-range genome
interactions®?.

Finally, the prediction models prioritize specific
transcripts and exons whose alternative usage is
more likely under epigenetic regulation. We
evaluated several representative examples in the
genome browser, such as the alpha and beta-Nrxn3
promoters. The canonical alpha promoter has a low
expression in the "TH Prkcd Grin2c Glut" subclass,
evidenced by high mCG and mCH fractions
downstream of the promoter. In contrast, the beta-
promoter shows the highest expression level in the
"TH Prked Grin2c Glut" subclass, with depleted
surrounding methylation. Intriguingly, the transcript

body domain of beta-Nrxn3 exhibits associated
interaction changes among cell types with different
beta-Nrxn3 expression (Fig. 6f). Similarly, the first
exon (ENSMUSEO00000683442) of the longest Oxr1

transcript displays increased usage (Percent
Spliced In, PSI) among representative cell
subclasses, accompanied by corresponding

methylation and chromatin conformation changes in
the surrounding regions (Fig. 6g). Together, these
results highlight the complex interplay between
epigenetic regulation and alternative splicing,
unveiling potential cell-type-specific regulatory
mechanisms contributing to the brain's post-
transcriptional diversity of neuronal and synaptic
genes.

Discussion

This study presents a single-cell DNA methylation
and 3D multi-omic atlas of the entire mouse brain.
By employing methylome-based clustering and
cross-modality integration with additional BICCN
companion datasets”'2, we established a cell type
taxonomy consisting of 4,673 cell groups and 261
subclasses. Our integrative approach combines five
molecular modalities—gene mCH, DMR mCG,
chromatin conformation, accessibility, and gene
expression—to create a multi-omic genome atlas
featuring thousands of cell-type-specific profiles.
Furthermore, we identified 2.6 million DMRs at two
clustering granularities, offering a vast pool of
candidate regulatory elements for various analyses.
Impressively, the intricate cellular diversity within
the mouse brain exhibits extensive concordance
across all molecular modalities, as evidenced by the
aligned cell-type-specific patterns observed in
numerous essential neuronal genes (Extended
Data Fig. 5) and groups of regulatory elements
(Extended Data Fig. 6). These findings underscore
the fundamental interplay between epigenetics and
transcriptomics in shaping the brain's cellular
diversity and serve as a foundation for incorporating
additional complementary molecular modalities
(such as histone modification, 5hmC, translatome,
and proteome) in future efforts to construct a holistic
molecular representation of the brain.

Notably, we also observed extensive spatial
diversity encoded within the DNA methylome
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across the entire mouse brain. This epigenetic
spatial pattern demonstrates a high concordance
with spatial transcriptional diversity, as evidenced
through integration with a MERFISH dataset
generated from spatially diverse methylated genes.
By leveraging these datasets, we achieved a
detailed spatial map of DNA methylation and
chromatin conformation profiles within delicate
brain structures. The results offer a valuable
anatomical context for methylation and 3D multi-
omic cell data and emphasize the considerable
influence of epigenetic regulation on spatial cell
organization within the brain.

Building on the foundation of our high-resolution,
spatially annotated multi-omic brain cell atlas, we
expanded our investigation to the mouse genome to
explore the underlying gene regulatory diversity
across multiple scales. At the whole chromosome
level, the chromatin compartment identity of
megabase-long regions can undergo significant
alterations among different brain cell types. These
changes negatively correlate with DNA methylation,
particularly at mCG sites. Genes within these
regions play critical roles in neuronal functions,
especially in neurodevelopment. Additionally, we
observed that TAD boundaries tend to form around
neuronal long genes, with a negative correlation
identified between boundary probability and the
transcript body mCH fraction. A recent discovery of
a similar gene boundary feature termed the
transcription elongation loop offers a potential
explanation for the higher gene domain boundary
probability observed®*. However, the mechanism by
which the diversity of this feature arises across
various cell types within the brain remains to be
elucidated. Moreover, we conducted an unbiased
investigation of the chromatin conformation context
surrounding individual genes by performing ANOVA
and correlation analyses using whole-brain
populations. This approach yields unprecedented
gene chromatin conformation landscapes that
reveal general rules governing the relationship
between chromatin interaction and gene body
methylation and offer gene-specific predictions on
the importance of individual chromatin interaction
pixels at a 10-kb resolution.

Integrating the extensive gene, DMR, and
chromatin conformation data enables us to
construct a comprehensive GRN for gene
regulation in the mouse brain. This network predicts
regulatory relationships between TFs and their
target genes through the precise DMRs containing
TF binding motifs. Furthermore, numerous TF
motifs are strongly enriched in DMRs where mCG
fractions correlate positively or negatively with the
TF mCH fraction, suggesting dominant activation or
repression roles for the corresponding TFs.
Personalized PageRank analysis of the GRN
identifies the most influential TFs for each cell
subclass in subcortical regions characterized by
vast cellular diversity. The GRN also reveals
diverse cell-type-specific patterns among members
of the same TF family. Finally, the high-resolution
methylome and chromatin conformation data
enable us to examine the relationship between
epigenetic modalities and alternative isoforms. Our
findings suggest that extensive intragenic
epigenetic heterogeneity may contribute to
regulating alternative promoter and exon splicing in
these genes. The predictive model identifies top
candidates for further investigation into their causal
relationships.

In summary, our analysis underscores the potential
of this whole-brain dataset to characterize cellular,
spatial, and epigenomic diversity at unprecedented
resolution. Furthermore, this resource offers
valuable insights into the fundamental gene
regulation principles that shape the remarkable
complexity of the mammalian brain, laying the
groundwork for a deeper understanding of the
molecular underpinnings of the human brain.
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Methods

Mouse brain tissues

All experimental procedures using live animals were
approved by the Salk Institute Animal Care and Use
Committee under protocol number 18-00006. Adult
(P56) C57BL/6J male mice were purchased from
Jackson Laboratories at seven weeks of age and
maintained in the Salk animal barrier facility on 12-
hour dark-light cycles with food ad-libitum for up to
10 days. Brains were extracted (between P56-P63),
sliced, and dissected in an ice-cold dissection buffer
as previously described'®. For snmC-seq3 samples,
brains were sliced coronally at 600 ym intervals
from the frontal pole across the whole brain, yielding
18 slices, and dissected brain regions were
obtained according to the Allen Brain Reference
Atlas Common Coordinate Framework version 356
(CCFv3, Extended Data Fig. 1a) For all the snm3C-
seq samples, brains were sliced coronally at 1,200
pm, resulting in a total of 9 slices, and dissected 2-
6 combined brain regions according to the CCFv3
(Extended Data Fig. 1b). For nuclei isolation, each
dissected region was pooled from 3-30 animals,
and 2-3 biological replicas were processed per
region. Comprehensive brain dissection metadata
can be found in Supplementary Table 1.
Additionally, all dissected regions were digitally
registered into CCFv3 using ITK-SNAP® (v4.0.0) at
a 25 um resolution (Annotated voxel file available in
the “Data Availability” section).

Nuclei isolation and Fluorescence Activated
Nuclei Sorting (FANS)

For snmC-seq3 samples, the nuclei were isolated
and sorted into 384-well plates using previous
methods'™ with modifications described in
Supplementary Information 1 (Section |, IIl). Briefly,
single-nuclei were stained with AlexaFluor488-
conjugated anti-NeuN antibody (MAB377X,
Millipore)  and Hoechst 33342 (62249,
ThermoFisher) followed by FANS using a BD Influx
sorter in single-cell (1 drop single) mode. For each
384-well plate, NeuN+ (488+) nuclei were sorted
into columns 1-22, while NeuN- (488-) nuclei were

sorted into columns 23-24, achieving an 11:1 ratio
of NeuN+ to NeuN- nuclei (Supplementary
Information 2). The snm3C-seq included additional
in-situ  3C treatment steps during the nuclei
preparation, allowing the chromatin conformation
modality to be captured. These steps were
performed using the Arima-3C BETA Kit (Arima
Genomics), with a detailed protocol provided in
Supplementary Information 1 (Section Il).

Library preparation and lllumina sequencing

Both snmC-seq3 and snm3C-seq samples followed
the same library preparation protocol detailed in
Supplementary Information 1. This protocol was
automated using the Beckman Biomek i7
instrument to facilitate large-scale applications. The
snmC-seq3 and snm3C-seq libraries were
sequenced on an lllumina NovaSeq 6000
instrument, using one S4 flow cell per 16 384-well
plates and employing a 150 bp paired-end mode.

Mapping and primary quality control

The snmC-seq3 and snm3C-seq mapping was
conducted using the YAP pipeline (cemba-data
package, v1.6.8), as previously described'™.
Specifically, the main mapping steps included (1)
demultiplexing FASTQ files into single cells
(cutadapt®®, v2.10); (2) read level quality control
(QC); (3) mapping (one-pass mapping for snmC,
two-pass mapping for snm3C) (bismark®®, v0.20,
bowtie2’°, v2.3); (4) BAM file processing and QC
(samtools’!, v1.9, Picard, v3.0.0); and (5)
methylome profile generation (allcools, v1.0.8); (6)
chromatin contact calling (snm3C-seq only).
Snakemake’? pipeline files with detailed mapping
steps are provided in the “Code availability” section.
All reads were mapped to the mouse mm10
genome. The gene/transcript annotation used in
this study was based on a modified version of the
GENCODE vm23 GTF file generated by the BICCN
consortium, in accordance with Yao et al.”

Primary quality control for DNA methylome cells
was (1) overall mCCC level < 0.05; (2) overall mCH
level < 0.2; (3) overall mCG level < 0.5; (4) total final
reads > 500,000 and < 10,000,000; and (5)
Bismarck mapping rate > 0.5. Note that the mCCC
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level estimates the upper bound of the cell-level
bisulfite non-conversion rate. Additionally, we
calculated lambda DNA spike-in methylation levels
to estimate each sample's non-conversion rate. All
samples demonstrated a low non-conversion rate (<
0.01, Extended Data Fig 2i). We chose loose cutoffs
for the primary filtering to prevent potential cell or
cluster loss. The clustering-based quality control
described below accessed potential doublets and
low-quality cells. For the 3C modality in snrm3C-seq
cells, we also required cis-long-range contacts (two
anchors > 2500 bp apart) > 50,000.

Analysis infrastructures

The whole-brain dataset comprised nearly 0.5
million single-cell or 5,000 pseudo-bulk mC profiles
and 0.2 million single-cell or 2,500 pseudo-bulk 3C
profiles. The dataset size was much larger than
previous bulk and single-cell studies on mC or
3C"1°. To enable efficient whole-brain data analysis,
we formatted the entire multidimensional
epigenomic data into three primary tensor datasets
and used them as inputs for analysis at two different
stages.

The first stage was cellular analysis. We employed
a cell-by-feature tensor called "Methylome Cell
DataSet" (MCDS) to carry out methylome-based
clustering and cross-modality integration, as
illustrated in Figures 2-3. Here, we focused on
individual cells with aggregated genomic features,
such as kilobase chromosome bins and gene
bodies. This analysis allowed us to aggregate
single-cell profiles into pseudo-bulk levels by
clustering and annotation. The pseudo-bulk merge
increased genome coverage while eliminating the
need to frequently access hundreds of terabytes of
single-cell files in the subsequent analysis stage.

The second stage was genomic analysis, where we
used a pseudo-bulk-by-base tensor for mC, called
"Base-resolution DataSet" (BaseDS), and a
pseudo-bulk-by-2D-genome tensor for 3C, termed
"Cooler dataset" (CoolDS), to perform methylome
and chromatin conformation analysis at flexible
genomic resolutions, as depicted in Figures 4-6.
These pseudo-bulk tensors were generated at cell-
group (1000s profiles) and subclass (100s profiles)

levels to support multiple cellular granularities
required by different analyses.

The large tensor datasets were stored using the
chunked and compressed Zarr format’s, hosted
within the object storage of the Google Cloud
Platform. Data analysis was conducted using
ALLCools'™, Xarray’, and dask’® packages. To
facilitate large-scale computation, the Snakemake
package’® was employed to construct pipelines,
while the SkyPilot package’ was utilized to set up
cloud environments. Additionally, the ALLCools
package (v1.0.8) was updated to perform
methylation-based cellular and genomic analyses,
and the scHiCluster’”” package (v1.3.2) was
updated for chromatin conformation analyses. In
the data and code availability section, we provided
these tensor storages and reproducibility-related
details (package version, analysis notebook, and
pipeline files). For simplicity, the description below
focused mainly on key analysis steps and
parameters.

Methylome clustering analysis

After mapping, single-cell DNA methylome profiles
of the snmC-seq and snm3C-seq datasets were
stored in the “All Cytosine” (ALLC) format, a tab-
separated table compressed and indexed by
bgzip/tabix’®. The “generate-dataset” command in
the ALLCools package helped generate a
methylome cell-by-feature tensor dataset (MCDS).
We used non-overlapping chromosome 100Kb
(chrom100k) bins of the mm10 genome to perform
clustering analysis; gene body regions 2 kb for
clustering annotation and integration with the
companion transcriptome dataset; non-overlapping
chromosome 5Kb (chrom5k) bins for integration
with the chromatin accessibility dataset. Details
about the integration analysis are described in the
following section.

Pre-clustering. We performed two iterative
clustering analyses for both the snmC and snm3C
datasets. The first was a four-round pre-clustering
for quality control purposes. The pre-clusters
defined in this round contained potential doublets or
low-quality cells (corresponding to debris or debris
clumps in sorting). We started with all cells passing

Liu et al., Single-cell DNA methylome and 3D Multi-omic Atlas of the Adult Mouse Brain. 22


https://doi.org/10.1101/2023.04.16.536509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.16.536509; this version posted April 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the primary quality control filters and used the
“plate-normalized cell coverage” (PNCC) metric to
mark problematic pre-clusters. This metric was
calculated using the final mC reads of each cell
divided by the average final reads of cells from the
same 384-well plate. We reasoned that cells at the
same plate underwent all the library preparation
steps inside the same PCR machine, sharing the
closest batch conditions. We observed some pre-
clusters aggregating cells mostly showing extreme
PNCC value (<0.5 or >2 fold) compared to most
other clusters, which is a hallmark of problematic
cells (Extended Data Fig. 2i). For each pre-cluster,
we performed a permutation-based statistical test to
call this abnormality. First, we randomly sampled
null population cells with the cluster size, stratified
on sample composition 10,000 times. We then
calculated p-values for the observed PNCC mean
(two-tailed test, larger or smaller) and standard
deviation (std, one-tailed test, larger) comparing to
null PNCC mean and std distribution. After
calculating the false-discovery rate by the
Benjamini-Hochberg procedure’ (FDR for short),
we marked pre-clusters as low-quality with (1)
abs(log2(PNCC)) > 0.8 and (2) FDR < 0.01 (for
mean or std). In total, 8,979 (2.77%) snmC and 737
(0.38%) snm3C cells were removed from further
analysis.

Methylome clustering. We then performed
iterative clustering using the DNA methylome to
determine whole-brain cell clusters. For both the
snmC and snm3C datasets, we performed four
rounds of iteration with the mCH and mCG fractions
of chrom100k matrices. The clustering analysis
within each iteration was described in a previous
study'®. We also provided annotated Jupyter
notebooks in the “Code availability section,”
detailing the functions and parameters used in each
step. Most functions were derived from the
allcools'®, scanpy®, and scikit-learn®' packages. In
summary, a single iteration consisted of the
following main steps:

(1) Basic feature filtering based on coverage and
ENCODE blacklist®2.

(2) Highly Variable Feature (HVF) selection.

(3) Generation of posterior chrom100k mCH and
mCG fraction matrices, as used in the previous
study and initially introduced by Smallwood et al.®
(4) Clustering with HVF and calculating Cluster
Enriched Features (CEF) of the HVF clusters. This
framework was adapted from the cytograph23°
package. We first performed clustering based on
variable features and then used these clusters to
select CEFs with stronger marker gene signatures
of potential clusters. The concept of CEF was
introduced by Zeisel et al.®*. The CEF calling and
permutation-based statistical tests were
implemented in
“ALLCools.clustering.cluster_enriched_features”,
where we selected for hypo-methylated genes
(corresponding to highly-expressed genes) in
methylome clustering.

(5) Calculate principal components (PC) in the
selected cell-by-CEF matrices and generate the t-
SNE? and UMAP® embeddings for visualization. t-
SNE was performed using the openTSNE®
package with procedures described in Kobak and
Berens 2019%8.

(6) Consensus clustering. We first performed
Leiden clustering® 200 times, using different
random seeds. We then combined these result
labels to establish preliminary cluster labels,
typically larger than those derived from a single
Leiden clustering due to its inherent randomness®.
Following this, we trained predictive models in the
principal component (PC) space to predict labels
and compute the confusion matrix. Finally, we
merged clusters with high similarity to minimize
confusion. The cluster selection was guided by the
R1 and R2 normalization applied to the confusion
matrix, as outlined in the SCCAF package®.

The iterative process of training and merging
continued until the model's performance on withheld
test data achieved a specified accuracy (0.95 for the
first round, >0.9 for all subsequent rounds). The
Leiden algorithm's resolution parameter
significantly influenced cluster number and
randomness (i.e., variation in cluster membership
as random seeds changed), so we employed
relatively small resolution values during each
clustering stage (0.25 for the first iteration, 0.2-0.5
for the remaining iterations; the Scanpy default is 1).
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This approach substantially reduced randomness
while also underestimating cluster numbers.
However, during the four rounds of iteration, any
under-split clusters were further delineated in
subsequent rounds. This framework was
incorporated in
"ALLCools.clustering.ConsensusClustering".

For each clustering round, we assessed whether a
cluster required additional clustering in the next
iteration based on two criteria: (1) the final
prediction model accuracy exceeded 0.9, and (2)
the cluster size surpassed 20. In total, we executed
four iterative clustering rounds, vyielding the
following cluster numbers: 61 (L1), 411 (L2), 1,346
(L3), and 2,573 (L4). We further separated cells
within L4 clusters in the final round by considering
their brain dissection region metadata. We first
divided all dissection regions with more than 20
cells in an L4 cluster while combining other regions
with fewer than 20 cells with their nearest regions
based on average Euclidean distance in the PC
space of L4 clustering. The final 4,673 cell groups
combined L4 clusters and dissection regions.
Incorporating dissection region data, which offered
insights into a cell's physical location, enhanced the
analysis's flexibility, such as enabling spatial region
comparisons. Furthermore, we acknowledged that
generating pseudo-bulk profiles from cell-level data
demanded substantial computational resources.
Aggregating cells at a higher granularity initially
facilitated more straightforward merging later, such
as combining them at the subclass level during
subsequent analyses.

Cluster-level DNA methylome analysis

After clustering analysis, we merged the single-cell
ALLC files into pseudo-bulk level using the “allcools
merge-allc” command. Next, we used the “allcools
generate-base-ds” to generate the BaseDS from
multiple ALLC files. The BaseDS was a Zarr dataset
storing sample-by-base tensors for the entire
dataset and allowed querying cytosines by genome
position and methylation context (CpG, CpH). Next,

we performed DMR caling as previously
described'0-22:91 using the
“ALLCools.dmr.call_dms_from_base_ds” and

“ALLCools.dmr.DMSAggregate” function that was

reimplemented for BaseDS. In brief, we first
calculated CpG differential methylated sites (DMS)
using a permutation-based root mean square test®'.
The base calls of each pair of CpG sites were
combined before analysis. We then merged the
DMS into DMR if they were (1) within 250 bp and (2)
having PCC > 0.3 across samples. Because the
genome coverage was unbalanced between
samples, we proportionally downsampled the
coverage at each base in each sample to base call
coverage (cov) of 50 and a total cov across samples
of 3,000.

We applied the DMR calling framework across
subclasses of the whole mouse brain and cell
clusters within each major region. The two sources
of DMRs were combined to capture the CpG
fraction diversity in different cell-type granularities.
There were around 10 million unique vyet
overlapping DMRs after the combination. We then
merged the DMRs to get a final non-overlapping
DMR list (“bedtools merge -d 0”), which included
2.56 million DMRs. We reported all the overlapping
DMRs and non-overlapping DMRs in the “Data
Availability” section. In the following analysis, when
DMR was used to calculate correlation or scan motif
occurrence, we started with the 10M overlapping
DMRs. We selected the DMR with the strongest
value (i.e., most significant PCC or highest motif
score) among the overlapping ones. The DMRs in
the final results were nonoverlapping.

Atlas-level data cluster

annotation

integration and

We established a highly efficient framework based
on the Seurat R package®' integration algorithm to
perform atlas-level data integration with millions of
cells. The integration framework consisted of 3
major steps to align two datasets onto the same
space: (1) Using dimension reduction to derive
embedding of the two datasets in the same space;
(2) using canonical correlation analysis (CCA) to
capture the shared variance across cells between
datasets and find anchors as five mutual nearest
neighbors (MNN) between the two datasets; (3)
aligning the low-dimensional representation of the
two datasets together with the anchors. We used
genes to integrate methylome and transcriptome;
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chrom5k bins to integrate methylome and chromatin
accessibility profiles.

Integrate methylome and transcriptome. To
integrate our snmC-seq dataset with scRNA-seq
data’, the gene expression levels of RNA cells were
normalized by dividing the total UMI count of the cell
and multiplying the average total UMI count of all
cells and then log-transformed. For mC cells, the
posterior gene-body mC level was used. The
cluster-enriched genes (CEGs, similar to CEF
described above) were identified in each cell
subclass and cluster using mC data. We checked
the variance of the mC CEGs among the mC cells
and RNA cells and only used the CEGs with mC
variance > 0.05 and expression variation > 0.005 for
the analyses. We reversed the sign of mC levels
before integration due to the negative correlation
between gene body DNA methylation and gene
expression (Fig. 1d). We fit a PCA model with the
mC cells and transformed the RNA cells with the
model. The PCs were normalized by the singular
value of each dimension to avoid the embedding
being driven by the first few PCs.

To find anchors between mC and RNA cells, we first
Z-score scaled the mC matrix and expression
matrix of CEGs across cells, and the resulting
matrices were represented as X (mC: cell-by-CEG)
and Y (RNA: cell-by-CEG), respectively. CCA was
used to find the shared low dimensional embedding
of the two datasets, solved by singular value
decomposition (SVD) of their dot product USVT =
XYT. U and V were normalized by dividing the L2-
norm of each row, and were used to find five MNNs
as anchors and scored anchors using the same
method as Seurat®’.

The original CCA framework of Seurat (v4) is hard
to scale up to millions of cells due to the memory
bottleneck, where the mC cell-by-RNA matrix was
used as the input to CCA. To handle this limitation,
we randomly selected 100,000 cells from each
dataset (X,.r and Y,.r) as a reference to fit the CCA
and transformed the other cells (X, and Y., ) onto
the same CC space. Specifically, the canonical
correlation vectors (CCV) of X,..r and Y,.., (denoted

as Uy.; and V) were computed by Uy SV, =

XrefYrer . Where Uy iU =1 and Vi Vi =1 .
Then the CCV of X, and Y, (denoted as Uy,

and V) were computed by Ug,y, = Xgry (Yo Vier)/

S and Vgpy = Yory(XferUrer)/S . The embeddings
from the reference and query cells were

concatenated for anchor identification.

The PCs derived from the first step were then
integrated using the same method as Seurat®'
through these anchors. Rather than working on the
raw feature space in Seurat, our integration step
projected the PCs of scRNA-seq (query, denoted as
Ur) to the PCs of the snmC-seq (reference, denoted
as Um) while keeping the PCs of the reference
dataset unchanged. This approximation
considerably reduced the time and memory
consumption for computing the corrected high-
dimensional matrix and redoing the dimension
reduction. For anchor k pairing mC cell km and
RNA cell kr, B, = Umy,, — Urn, was considered
the bias vector between mC and RNA. Then for
each RNA cell as a query, we used its 100 nearest
anchors to compute a weighted average bias vector
representing the distance to move an RNA cell into
the mC space. The distance between the query
RNA cell and an anchor was defined as the
Euclidean distance on the RNA dimension
reduction space between the query RNA cell and
the RNA cell of the anchor. The weights for the
average bias vector depended on the distances
between the query RNA cell and the anchors, where
close anchors received high weights.

Integrate methylome and chromatin
accessibility profiles. PCA on gene body signals
was insufficient to capture the open chromatin
heterogeneity in snATAC-seq data'"3'. Latent
Semantic Indexing (LSI) applied to binarized cell-
by-5kb bin matrices had demonstrated promising
results for snATAC-seq data embedding and
clustering®!. Therefore, to align snATAC-seq data
with snmC-seq data at a high resolution, we
developed an extended framework based on the
previously described approach to utilize binary
sparse cell-by-5kb bin matrices as input.

We first derived a cell-by-5kb bin matrix to represent
the snmC-seq data. In a single cell i, we modeled
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its mCG base call M;; for a 5 kb bin j using a
binomial distribution M;; ~ Bi(cov;;, p;) , where p
represented the global mCG level of the cell. We
then computed P(M;; > mc;j) as the
hypomethylation score of cell i at bin j. The less
likely to observe smaller or equal methylated base
calls, the more hypomethylated the bin was. We
next binarized the hypomethylation score matrix by
setting the values greater than 0.95 as 1, otherwise
0, to generate a sparse binary matrix A. We
selected the columns with more than five non-zero
values, then computed the column sum of the matrix
(colsum; = $F<5"  A;;) and kept only the bins with
Z-scored log,colsum between -2 and 2. The
snATAC-seq data was also represented in a binary
cell-by-5kb bin matrix, where 1 represented at least
one read detected in a 5 kb bin in a cell. The
features were filtered in the same way as the mC
matrix, and the bins remaining in both datasets were
used for further analysis.

LSI with log term frequency was used to compute
the  embedding. Term Frequency-Inverse
Document frequency (TF-IDF) transformation was
applied to convert the filtered matrix B to X .
Specifically, B was normalized by dividing the row
sum of the matrix to generate the term frequency
matrix TF, and further converted to X by multiply the
inverse document frequency vector IDF.
X;j = log(TF;j x 100000 + 1) X IDF;

, where TF;; = B;;/ ¥#”%°  By;, and IDF; =
log(1 + #cell/ Tt By,}). The embedding of
single cells U was then computed by SVD of X,
where X = USVT. We fit the LS| model with mCG
data Bm to derive Um. The intermediate matrices S
and V and vector IDF were used to transform the
ATAC data Ba to Ua, by

Ba;;

?P:TS Bayj,
Xa;j = log(TFa;; X 100000 + 1) X IDF;
Ua = XaV/S

CCA was also performed with the downsampling
framework using 100,000 cells from each dataset
as reference and the others as query, but taking the
TF-IDF transformed matrices as input. The query
cells were projected to the same space using the
IDF and CCV of the reference cells. Specifically,

TFaij =

Bm,., and Ba,., were converted to Xm,., and
Xa.r With TF-IDF, and the CCVs (denoted as U,..¢
and V.., ) were computed by U SV, =
Then Bmg., and Bag, were
converted to Xm,,,, and Xag., with TF-IDF using
the IDF of reference cells, and the CCVs (denoted
as Ugry and V., ) were computed by U, =
qury(Xaz:erref)/S and Vqry = Xaqry(XmZ:erref)/
S. The following steps to find anchors and align Um
and Ua were the same as integrating the mC and
RNA data.

XmyepXalys .

Iterative integration group design. Like clustering
analysis, we integrated two datasets iteratively to
match cell or cell clusters at the highest granularity.
We first separated the pass-QC datasets into
integration groups based on independent cell type
annotation (described above or provided by data
generators) and dissection information. For
instance, non-neuronal cells, IMN, and granule cells
(“DG Glut” and “CB Granule Glut”) were separated
from neurons because they were (1) showing large
global methylation differences from other neurons
and (2) unbalanced in cell numbers across datasets
due to different sampling and sorting strategies.
Within each integration group, we performed the
integration iteratively. We used the co-clustering
from the integrated low-dimensional space to match
cells or clusters between the two datasets (see
below). We then performed the next round of
integration until the matched cells or clusters
fulfilled the stopping criteria. We listed details about
each pair of iterative integration below. The
resulting cluster map between datasets and
mC/m3C cluster annotation was provided in
Supplementary Table 4. A set of Jupyter Notebooks
for a single integration process between each pair
was provided in the “Code Availability” section.

Integration between snmC-seq and scRNA-seq
or SMART-seq dataset. We used the gene body +
2kb as features to integrate mC and RNA datasets’,
mapping the RNA clusters to mC cell groups. We
used the mCG fraction of the gene bodies for non-
neuronal cells, IMN, and granule cells and the mCH
fraction of the gene bodies for other neurons. In
each iteration, we calculated a confusion matrix
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between 4,673 mC cell groups and 5,200 RNA
clusters (provided by data generators) using the
overlap score as previously described'®%2. We then
built a weighted graph using the confusion matrix as
the adjacency matrix and performed a Leiden
clustering (resolution=1) to bicluster mC and RNA
clusters. This step puts similar mC and RNA
clusters into integration groups based on their
overlap score. The RNA and mC clusters in the
same integration group were further integrated to
match at finer granularity in the next iteration unless
any stop criteria were met: (1) there was only one
integration group from this round; (2) there was only
one mC or RNA cluster in the integration group; (3)
the mC cell number < 30; (4) RNA cell number <
100 for the scRNA-seq dataset or < 30 for the
SMART-seq dataset. After integration, we obtained
an mC to RNA cluster map for each mC cell group,
which we used as the reference to annotate cell
subclasses and remaining hierarchies in the
transcriptomic taxonomy. We also evaluated the
spatial location and marker genes
(neurotransmitter-related genes or other markers
provided in the transcriptome annotation). We
resolved conflicts manually when the RNA clusters
corresponded to more than one subclass by
checking the dissection metadata and marker
genes. We combined all RNA cells assigned to each
mC cell group to generate the matched
transcriptome profile.

Integration between snmC-seq and snATAC-seq
dataset. The snmC-seq dataset and snATAC
dataset'? shared the same dissection tissues. We
utilized this experiment design to integrate mC and
ATAC cells within each major region. Besides, the
snmC-seq data was enriched for NeuN+ by FANS,
while the snATAC data unbiasedly profiled all cells.
Therefore, we also separated neurons with non-
neuronal cells and IMN to balance the integration,
especially in the first round. We used the mCG
hypo-methylation score of chromosome non-
overlapping 5kb bins to perform the integration. The
cluster assignment and stop criteria were similar to
the mC-RNA integration. The alignment score
(Extended Data Fig. 6a) is calculated as previously
described®, using K=1% cells of the dissection
region or k=20, whichever is larger. We combined

all ATAC cells assigned to each mC cell group to
generate the matched chromatin accessibility
profile.

Integration between snmC-seq and snm3C-seq
dataset. We used the non-overlapping
chromosome 100kb bin as features to integrate
snmC-seq and snm3C-seq datasets. The cluster
assignment and stop criteria were similar to the mC-
RNA integration. After integration, we also
annotated the snm3C cell groups with the
transcriptomic taxonomy.

MERFISH Experiment

MERFISH gene panel design. The genes in the
GTF file were first filtered based on length > 1kb.
We then selected genes based on the Zhang et al.®
methods but used the snmC-seq dataset and gene
body mCH fraction to perform the calculation. In
brief, there are two approaches to prioritizing genes.
The first approach was to use mutual information
between gene body mCH fraction, and neuron
subclasses labels, which aims to select genes
differentially methylated between groups of cell
subclasses. The second approach was to perform
pairwise differentially methylated gene analysis
(ALLCools.clustering.PairwiseDMG) among
clusters within the same major region and select
genes being identified as DMGs in most cluster
pairs. For the first approach, we selected the top
100 genes. We selected the top 50 genes from each
major region for the second approach. Due to the
overlaps, there were 325 genes after this selection.
In addition to the cell-type markers, we also
selected spatial markers by calculating the mutual
information between the cell's major region label
and mCH fraction across the brain; or between the
dissection region label and mCH fraction within
each major region. We added another 175 non-
overlapping genes to a total of 550 genes. We then
performed the same analysis using the scRNA-seq
dataset from Yao et al.” to get the RNA-based
prioritization lists. We selected 500 final genes as
the gene panel based on rank in the RNA list to
ensure these genes are also expressed and highly
diverse in the transcriptome. Encoding probes for
these genes were designed and synthesized by the
Vizgen company (Supplementary Table 6).
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MERFISH tissue preparation and imaging. Fresh
P56-63 whole mouse brains were sliced coronally
at 1,200 um intervals, and each slice was then
embedded in OCT, rapidly frozen in isopentane/dry
ice, and stored at -80 C until ready for slicing. 12-
pm-thick coronal sections were obtained from each
OCT-blocked tissue using a Leica CM1950 cryostat,
immediately fixed in 4% formalin (warmed to 37 C)
for 30 min, and permeabilized in 70% ethanol
following manufacturer procedures. Sample
preparation, including probe hybridization and gel
embedding, was performed using Vizgen’s sample
preparation kit (Vizgen:10400012) following the
manufacturer’s protocol. Each section was imaged
using MERSCOPE 500 Gene Imaging Kit
(Vizgen:10400006) on a MERSCOPE (Vizgen).

MERFISH data preprocessing and annotation.
MERFISH data analysis, including imaging, spot
detection, cell segmentation, and cell-by-gene
matrix generation, was conducted by the
MERSCOPE Instrument Software. We removed
abnormal cells (artificial segmentation, doublets)
from the cell-by-gene matrix in each experiment: (1)
Cell volume < 30um?® or > 2000um3; (2) total RNA
counts < 10 or > 4000; (3) total RNA counts
normalized by cell volume < 0.05 or > 5; (6) total
gene detected < 3; (5) cells with > 5 blank probes
detected (negative control probe included in the
gene panel). We then integrated the pass-QC
MERFISH cells with the scRNA-seq datasets’ to
annotate the MERFISH cells with transcriptome
nomenclatures using the ALLCools integration
functions described above.

Integration between MERFISH and snmC and
snm3C dataset. We integrated the snmC and
snm3C datasets with the MERFISH dataset to
evaluate whether the spatial pattern observed in the
DNA methylome matched the spatial diversity
observed in the gene expression data. Integration
was similar to the mC-RNA integration described
above. To utilize the dissection region metadata, we
grouped the snmC-seq and snm3C-seq data by the
slice and integrated them with a matched MERFISH
slice. We also separated neurons and other cells,
similar to the mC-RNA integration above. We used

the 500 genes in the MERFISH gene panel to
perform the integration. After integration, we
imputed the spatial location of each methylation
nucleus on the integrated low-dimensional space.
We calculated the ten nearest MERFISH neighbors
for each mC nucleus in each integration group. We
assigned the coordinate of these MERFISH cells'
centroids as the mC nucleus's spatial location.

Cell and cluster-level chromatin conformation
analysis

Generate chromatin contact matrix and
imputation. After snm3C-seq mapping, we used
the cis-long range contacts (contact anchors
distance > 2,500 bp) and trans contacts to generate
single-cell raw chromatin contact matrices at three
genome  resolutions:  chromosome  100-Kb
resolution for the chromatin compartment analysis;
25-Kb bin resolution for the chromatin domain
boundary analysis; 10-Kb resolution for the
chromatin interaction analysis. The raw cell-level
contact matrices were saved in the scool format®.
We then used the scHiCluster package (v1.3.2) to
perform contact matrix imputation as described
previously””. In brief, the scHiCluster imputed the
sparse single-cell matrix by first performing a
Gaussian convolution (pad=1) followed by using a
random work with restart algorithm on the
convoluted matrix. For 100-Kb matrices, the whole
chromosome was imputed; for 25-Kb matrices, we
imputed contacts within 10.05Mb; for 10-Kb
matrices, we imputed contacts with 5.05Mb. The
imputed matrices for each cell were stored in cool
format®. The cell matrices were aggregated into
cell groups or subclass levels identified in the
previous section. These pseudo-bulk matrices were
concatenated into a tensor called CoolDS and
stored in Zarr format for brain-wide analysis.

Compartment analysis. We used the imputed
subclass-level contact matrices at the 100-Kb
resolution to analyze the compartment. We first
filtered out the 100kb bins that overlapped with
ENCODE blacklist v2% or showed abnormal
coverage. Specifically, the coverage of bin i on
chromosome c (denoted as Rc,i) was defined as the
sum of the i-th row of the contact matrix of
chromosome c. We only kept the bins with coverage
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between the 99th percentile of Rc and twice the
median of Rc. minus the 99th percentile of Re.
Contact matrices were normalized by distance, and
the PCC of the normalized matrices was used to
perform the Principal Component Analysis (PCA)
(Aiden 2009 Science). The IncrementalPCA class
from the sklearn package®!, which allows fitting the
model incrementally, was used to fit a single PCA
model incrementally for each chromosome using all
the cell subclass matrices. We then transformed all
the cell subclasses with the fitted model, so the PCs
for each subclass were transformed from the same
loading and eased the cross-sample correlation
analysis. We also calculated the correlation
between PC1 or PC2 and 100-Kb bin CpG or gene
density. We use the component with higher
absolute correlation as the compartment score and
assign the compartment with higher CpG density
with positive scores (A compartment).

Compartment score and mC fraction correlation.

We first performed quantile normalization along
subclasses using the Python package gnorm
(v0.8.0)*® to normalize the mC fractions and
compartment scores. We then calculated the PCC
between the compartment scores of non-
overlapping chromosome 100Kb bins with the
corresponding bin’s mCH or mCG fractions across
cell subclasses. Because the negatively correlated
bins’ compartment score had a much higher
standard deviation among cell types (Fig. 4c), we
selected the 300 most negatively correlated
chrom100k bins and used their overlapped genes to
perform gene ontology (GO) enrichment analysis
(Fig. 4d) using Enrichr*®. We randomly selected
gene-length matched background genes to adjust
the long-gene bias in all the GO enrichment
analyses®. To investigate the developmental
relevance indicated by the GO enrichment result,
we used the developmental mouse brain scRNA-
seq atlas®® at the subtype level (approximate
granularity of subclass in this study). Genes
overlapping 300 most negatively correlated bins,
300 mostly positively correlated bins, and 300 low
correlation bins were used to plot Extended Data
Fig. 9d.

Domain boundary analysis. We used the imputed
cell-level contact matrices at the 25-Kb resolution to
identify the domain boundaries within each cell
using the TopDom algorithm®. We first filtered out
the boundaries that overlap with ENCODE blacklist
v282, The boundary probability of a bin was defined
as the proportion of cells having the bin called a
domain boundary among the total number of cells
from the group/subclass. To identify differential
domain boundaries between “n” cell subclasses, we
derived an nx2 contingency table for each 25kb bin.
The values in each row represent the number of
cells from the group that has the bin called a
boundary or not as a boundary. We computed each
bin's Chi-square statistic and p-value and used FDR
<1e-3 as the cutoff for calling 25kb bins with
differential boundary probability.

Domain boundary probability and transcript
body mC fraction correlation. We first performed
quantile normalization along subclasses using the
Python package gnorm (v0.8.0)*® to normalize the
transcript body mC fractions and chromosome
25Kb bin boundary probabilites. We then
calculated the PCC between the differential
boundary probabilities of 25Kb bins with the
transcript body mCH and mCG fractions. We
grouped transcripts with >90% overlap within a
gene and used their longest range. We calculated
the transcript-body mCH and mCG fraction at the
subclass level for each transcript. We then
calculated the PCC between the mC fractions and
boundary probabilities of bins overlapping the
transcript body + 2 Mb. We used a permutation-
based test to estimate the statistical significance of
the correlation®”. Specifically, we shuffled the
boundary probability and mC fraction values within
each sample (subclass), disrupting the genome
relationship between the bins while preserving the
sample-level global difference. We calculated the
PCC using the shuffled matrices 100,000 times and
used a normal distribution to approximate the null
distribution for more precise p-value estimation in
FDR correction. We then used FDR < 1e-3 as the
significance cutoff for each PCC between a
transcript and a 25Kb bin. In Fig. 2g, we used
deeptools® (v3.5.1) to profile the boundary
probability at transcript + 2 Mb 25Kb bins. In Fig. 2h
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and Extended Data Fig. 2f-h, we selected the top
positively correlated bin and top negatively
correlated bin for each long gene (transcript body
length > 100Kb) and performed the GO analysis
using length-matched background genes, as
described above (Extended Data Fig. 2h).

Highly variable interaction analysis. We used the
imputed cell-level contact at the 10-Kb resolution to
perform the highly variable interaction analysis,
where the interaction represented one 10Kb-by-
10Kb pixel in the conformation matrix. We filtered
out any interactions that had one of the anchors
overlapping with ENCODE blacklist v2%2. We then
performed a one-way analysis of variance (ANOVA)
for each interaction to test whether the single-cell
contact strength of that interaction displayed
significant variance across subclasses. The F
statistics of ANOVA represented an overall
variability of the interaction across the brain. To
select highly variable contacts, we used F > 3 as the
cutoff, which was decided by visually inspecting the
contact maps as well as fulfilling the FDR < 0.001
criteria. The ANOVA analysis was only performed
on interactions whose anchor distance was
between 50 Kb and 5 Mb, given that increasing the
distance only led to a limited increase in the number
of significantly variable and gene-correlated
interactions (Extended Data Fig. 10b).

Interaction strength and mC fraction correlation.

To investigate the relationship between gene status
and the surrounding chromatin conformation
diversity, we first performed quantile normalization
along subclasses using the Python package gnorm
(v0.8.0)*® to normalize the transcript body mCH
fractions and contact strengths of highly variable
interactions. We then calculated PCC between the
transcript body mCH fraction and the highly variable
interactions if any anchor of the interactions had
overlapped with the gene body. Similar to the
domain boundary correlation analysis, we shuffled
the contact strengths and mCH fractions within
each sample and used the shuffled matrix to
calculate null distribution and estimate FDR. We
select FDR < 0.001 as a significant correlation.

Gene Regulatory Network (GRN) analysis

We presented a framework for building GRN based
on the DNA methylome and chromatin conformation
profiles at the cell subclass level. We used 212
neuronal cell subclasses requiring them to have>
100 cells in both snmC and snm3C datasets.
Notably, the same framework can be applied to
other brain cell types or a subset of cells (such as
certain brain regions or cell classes based on
specific questions). The GRN was composed of
relationships between TFs, their potential binding
elements (represented by DMRs), and downstream
target genes. Pairwise edges were constructed
between DMRs and target genes (DMR-Target),
TFs and target genes (TF-Target), and TFs and
DMRs (TF-DMR). The basis of each pairwise edge
was the correlation between the methylation
fractions of the two genome elements across cell
subclasses. We performed quantile normalization
along subclasses using the Python package gnorm
(v0.8.0)% to normalize the two matrices involved in
calculating the correlation. Gene body mCH fraction
was used as a proxy for TF and target gene activity,
and mCG fractions were used to represent DMR
status. Variable genes and TFs were selected if
they were identified as CEFs (described in the
clustering steps) in any subclass.

For the DMR-Target edges, we selected the highly
variable and positively correlated chromatin contact
interactions of the gene based on the results in the
previous section and included DMRs situated in any
anchor regions of the interactions. We then
calculated the PCC between DMR mCG and gene
mCH fraction. For a group of overlapping DMRs, we
selected the one with the highest absolute PCC
value to represent that group, making the edges’
DMRs non-overlap. Similar to the domain boundary
and interaction correlation analysis, we shuffled the
DMRs and genes within each sample to calculate
null PCC and estimate FDR. We filtered DMR-
Target edges with FDR < 0.001. For the TF-Target
and TF-DMR edges, we calculated the PCC
between TF and all CEF genes or between TF and
all DMRs, respectively, and applied the same FDR
< 0.001 cutoff to filter edges. For the TF-DMR edge,
we further performed motif enrichment analysis on
the significantly correlated DMRs (explained in the
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next section). We only keep TF-DMR edges when
the TF has any motif significantly enriched in the
correlated DMR set, and the particular DMR has
that motif occurrence.

After getting the three pairwise edges, we
intersected the edges together into triples based on
shared genes (including TFs and targets) and DMR
ids. We calculated a final edge score S,; =

V15.5,5.S,| for each triple by taking the geometric
mean of the absolute values of four correlations,
where S, was the correlation of DMR-Target edge,
S, was the correlation of TF-DMR edge, S, was the
TF-Target edge, and S; was the correlation
between target gene mCH fraction and gene-DMR
contact strength. If multiple gene-correlated
interactions have anchors overlapping with DMR
and gene body, we select the one with the lowest
negative correlation.

DMR motif scan and TF motif enrichment
analysis. We used an ensemble motif database
from SCENIC+*, which contained 49,504 motif
position weight matrices (PWM) collected from 29
sources. Redundant motifs (highly similar PWMs)
were combined into 8,045 motif clusters through
clustering based on PWM distances calculated by
TOMTOM®® by the SCENIC+ authors**. Each motif
cluster was annotated with one or more mouse TF
genes. To calculate motif occurrence on DMR
regions, we used the Cluster-Buster'®
implementation in SCENIC+, which scanned motifs
in the same cluster together with Hidden Markov
Models.

To perform motif enrichment analysis in the “TF-
DMR edge” analysis, we used the recovery-curve-
based cisTarget algorithm*8% In brief, the
cisTarget algorithm performed motif enrichment on
a set of DMRs by calculating a Normalized
Enrichment Score (NES) for each motif based on all
other motifs in the collection. For each TF gene, we
applied the cisTarget algorithm to positively
correlated or negatively correlated DMRs
separately. We used the package default cutoff
(NES > 3) to select enriched motifs for a DMR set.
A leading-edge analysis was performed by
cisTarget to assign motif occurrence in DMRs with

Cluster-Buster scores passing a cutoff in enriched
cases™.

PageRank analysis on weighted networks. We
adopted the Taiji framework®' to perform TF
analysis on weighted GRN for each cell subclass.
This framework employed the personalized
PageRank algorithm'®! to propagate node and edge
weight information across the network, calculating
the importance of each TF. To add subclass
information as network weights, we simplified the
network by only including TF and target gene nodes,
and weighing the gene node by inverted gene body
mCH value in the subclass. Specifically, we first
performed quantile normalization across all
subclasses. We then performed a robust scale of
the matrix using
“sklearn.preprocessing.RobustScaler” with
quantile_range=(0.1, 0.9). We then inverted the
scaled mCH fraction by

W; = (max(CH;) — CH;) / (max(CH;) —
min(CH;)),

where CH; and W; denoted the scaled gene mCH
fractions and inverted values for subclass i,
respectively.

We also added DMR mCG fraction into the edge
weights. Specifically, we performed the same
quantile normalization and robust scale on all the
DMRs’ mCG fractions involved in the network and
calculated the inverted DMR mCG value by

V; = (max(CG;) — CG;) / (max(CG;) — min(CG;)),
where CG; and V; denoted the scaled DMR mCG
fractions and inverted values for subclass i,
respectively. The edge weight between a TF and a

target gene in subclass i was calculated as e =

1 n
 &it=0

DMRs that connecting the TF to target gene, S;,
was the final score of one TF-DMR-Target triple, V;
was the inverted DMR mCG value.

Si¢ X Vi, where n denoted the number of

Intragenic epigenetic and
Isoform Analysis

transcriptomic

Integration and isoform quantification of the
SMART-seq dataset. Preprocessing and gene
level quantification via STAR'? (v2.7.10) was
performed by AIBS data generators as previously
described®. We used gene-level counts to perform

Liu et al., Single-cell DNA methylome and 3D Multi-omic Atlas of the Adult Mouse Brain. 31


https://doi.org/10.1101/2023.04.16.536509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.16.536509; this version posted April 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

cross-modality integration iteratively as described in
previous sections. We used kallisto'®® with steps
described in a previous study?’ to quantify the
SMART-seq at the isoform level with the same GTF
file used in transcriptome and methylome analysis
above. We calculated cell-group-level transcript per
million (TPM) based on the integration result. We
also calculated the exon Percent Spliced In (PSI)
from the transcript counts in each gene. The
SMART-seq browser tracks (Fig. 6f, g) were
constructed from STAR-aligned BAM files.

Prediction model training. First, we quantified mC
and m3C intragenic features for predicting the
alternative isoform and exon usage. We used the
exon, exon-flanking region, and intragenic DMRs as
the mC features of each gene. The exon flanking
region was defined as upstream or downstream 300
bp of each exon. We removed features with
variance < 0.01, and combined features with > 90%
overlap in their genome coordinates. For 3C
features, we used all the intragenic highly variable
interactions (f statistics > 3) from the above section
as features.

After collecting all the features, we selected genes
with highly variable transcripts and exons among
cell groups for model training. Highly variable
transcripts were selected based on: (1) mean TPM
across cell groups > 0.2; (2) TPM standard
deviation > 0.3; (3) transcript body (TSS to TTS)
length > 30Kb. Highly variable exons were selected
based on: (1) PSI standard deviation > 0.02; (2) PSI
90% quantile and 10% quantile difference > 0.05.
We trained four models for each gene including
predicting transcripts TPMs using mC or 3C
features and predicting exon PSls using mC or 3C
features. The training contains two steps: first, we
used “sklearn.feature_selection.SelectKBest” with
the score function “f_regression” to select the top
100 features for each transcript or exon. We then

used all features that had been selected at least
once. We performed five-fold cross-validation to
train random forest models using selected features
and “sklearn.ensemble.RandomForestRegressor”.
In each cross-validation run, we calculated the PCC
between predicted values and true values as the
model performance. We also shuffled the selected
features within each sample (Fig. 6¢) to train the
model and calculate PCC again as the shuffled
model performance.

Data Availability

The snmC-seq2/3 single-cell sequencing data are
accessible through Neuroscience Multi-omic Data
(NeMO) Archive https://tinyurl.com/cembanemo.
The snm3C-seq single-cell sequencing data will be
accessible through NeMO and GEO. The MERFISH
dataset will be accessible through GEO. The whole-
brain snATAC-seq dataset is shared by Zu et al'?.
The whole-brain scRNA-seq and SMART-seq
dataset is shared by Yao et al’. All the processed
data related to results and method sections are
shared in this GitHub repository:
https://github.com/lhging/wmb2023.

Code Availability

Mapping pipeline for snmC-seq3 and snm3C-seq is
available at https://hg-1.gitbook.io/mc/. Single-cell
DNA methylome data analysis tools are available at
ALLCools (v1.0.8) python package,
https://Ihging.github.io/ALLCools/intro.html; Single-
cell chromatin conformation data analysis tools are

available at the scHiCluster (v1.3.2) python
package,
https://github.com/zhoujt1994/scHiCluster. = Other

codes and Jupyter Notebooks related to results and
method sections are shared in this GitHub
repository: https://github.com/lhging/wmb2023.

Liu et al., Single-cell DNA methylome and 3D Multi-omic Atlas of the Adult Mouse Brain. 32


https://doi.org/10.1101/2023.04.16.536509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.16.536509; this version posted April 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a snmC-seq2 & 3 Dissection Regions (18 slices, 117 dissection regions)
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Extended Data Figure 1 | Brain dissection regions. Schematic of brain dissection steps. Each male C57BL/6 mouse

brain (age P56) was dissected into 600-um slices for snrmC-seq3 (a) and 1,200-um slices for snm3C-seq3 (b). We then
dissected brain regions from both hemispheres within a specific slice.
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Extended Data Figure 2 | Quality Control for snrmC and snm3C dataset. a-b, The number of input reads and final
pass QC reads in snmC-seq3 and snm3C-seq shown by t-SNE (a) and violin plot (b) ¢, The percentage of chrom100k
bins or genes detected per cell in snrmC-seq3 and snm3C-seq. Gray lines from top to bottom indicate the 75%, 50%,
and 25% quantiles. d-e, The number and ratio of cis-long and trans contacts in snm3C-seq, depicted by t-SNE (d) and
violin plot (e). f, Heatmap of PCC between the average methylome profiles (mean mCH and mCG fraction of all
chromosome 100-kb bins across all cells belonging to a replicate sample). The violin plot below summarizes the values
between replicates within the same brain region or between different brain regions. g-h, Pairwise overlap score
(measuring co-clustering of two replicates) of neuronal subtypes and (g) non-neuronal subtypes (h). The violin plots
summarize the subtype overlap score between replicates within the same brain region or between different brain
regions. i, Distribution of the mCG, mCH, mCCC, and Lambda DNA fraction (non-conversion rate) at sample level in
snmC-seq3 and snm3C-seq. j, Pre-clustering t-SNE of snmC and snm3C dataset colored by final mC reads and plate-
normalized cell coverage. Arrows indicate typical low-quality clusters filtered out from the further analysis.
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Extended Data Figure 3 | Metadata of snmC-seq and snm3C-seq dataset. a-c, t-SNE of snmC-seq color by cell
subclass (a), major regions (b), and dissection regions (c). d-f, t-SNE of snrm3C-seq color by cell subclass (d), major
regions (e), and dissection regions (f). g,h, Cell-level t-SNE of snrmC-seq and snm3C-seq color by global mCG (g) and
global mCH (h) fraction. i, The average global mMCG and mCH fractions for neurons in different dissection regions.
Regions are ordered by the global mCH fractions, and only the top and bottom 20 regions are shown. j, The average
global mCG and mCH fractions for all cell subclasses. Subclasses are ordered by the global mCH level, and only the
top and bottom 20 subclasses are shown.
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Extended Data Figure 4 | t-SNE embedding by major regions. This figure groups cells by major regions (first five
rows), including isocortex (CTX), olfactory bulb (OLF), amygdala (AMY), cerebral nuclei (CNU), hippocampus (HPF),
thalamus (TH), hypothalamus (HY), midbrain (MB), hindbrain (HB), and cerebellum (CB). Each section comprises three
columns. The left column displays the CCF-registered 3D brain dissection regions and the corresponding cell on the
whole brain t-SNE. The middle and right columns show the t-SNE embedded by cells from this major region, colored
by cell subclasses and dissection regions, respectively. The numbers on the t-SNE plot indicate the cell subclass ID,
which refers to in Supplementary Table 4. The final row groups non-neuron cells into two sections based on
telencephalon and non-telencephalon dissection regions.
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Extended Data Figure 5 | Example genes illustrating high-granularity correspondence between methylome and
transcriptome. a, Schematic representation of the normalized gene body mCH fraction (left panel) and RNA CPM
value (right panel) at the cell-group-centroids t-SNE plot for each gene. b-d, Example gene groups: neurotransmitter-
related genes (b), immediate early genes (c), and neuropeptide genes (d).
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Extended Data Figure 6 | Integration of snATAC-seq and snmC-seq3 data. a, Barplot displays the alignment scores
of each dissection region calculated the low dimensional space of snATAC-seq and snmC-seq integration. b, t-SNE
shows the co-embedding of snmC-seq and snATAC-seq data, grouped by major regions and colored by dissection
regions. c-d, Heatmap visualization of 15 x 15 small heatmaps. Each small heatmap represents the mCG fractions
(green) and the corresponding accessibility level of 1,000 cell-type-specific CG-DMRs. Cell subclasses from isocortex
(c) and midbrain (d) are shown as examples.

Liu et al., Single-cell DNA methylome and 3D Multi-omic Atlas of the Adult Mouse Brain. 42


https://doi.org/10.1101/2023.04.16.536509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.16.536509; this version posted April 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a
Coronal section location Imaging of 500-gene panel Decoding and cell segmentation Integration and annotation
Sagittal View by MERSCOPE
N YIE ) T
Slice 2 45 81012 @
b Quality metrics for MERFISH samples [+ Merfish and 10X RNA Integration
D A Neuron Non Neuron
5
ézooo ®-
z O_L_L__L_L_L_J_. ” 3 \% N
i S T TR . L
£ ' ' ‘ ‘ ‘ ‘ & R SR T ™ ¢
. " - ¥

E oL - - . é k Lo / R
= el .1 ) | | | \ i 5 7’
2 4*7%———»———»———»———F———v—— S !
8 ' ' i ' ' i ‘J 326,320 286,776
£ 2 + + + +
-] * * * *
@ ] $ < — - -

20004 — === —— .
£ 1000 g Al
S v - >

oll—il—l—l 2 x ' ‘&
3 ‘ ' = '
x| [ T 1 g | X ) 1 )
§ - T [’ N
83 y
=2 OV_#_‘_AJ‘.ﬁLﬁLV - );
= Slice2  Slice4 Slice5 ~Slice8 Slice10 Slice12 = q 2,954,809 1,110,475
__ 157.63(Mb)

MERFISH Samples

Negf1 Gene Body

[}

(Siice 5) (Siice 12)

Glutamatergic
Other Neurons Neurons

Non Neurons
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MERFISH sample, where the red lines represent the filtering cutoff for various quality metrics, including RNA total
counts, RNA feature counts, blank gene number, cell volume (um?), and RNA counts per volume. ¢, Integration t-SNE
plot of MERFISH and scRNA dataset” color by cell subclasses. d, MERFISH cells colored by cell subclasses, with
labels obtained from the integration with the RNA dataset. From top to bottom, the cells are displayed by glutamatergic
neurons, other neurons, and non-neurons. e, Spatial epigenetic patterns of Negr1 and its associated DMRs. Brain
slices in the left column are color-coded by normalized gene body mCH fraction, mCG fraction of the DMR
(chr3:154,927,600-154,929,099), and RNA expression. The right column displays the normalized contacts heatmap
between the DMR and gene.
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Extended Data Figure 8 | Distribution of snmC-seq cells subclasses on MERFISH slices. MERFISH plot depicting
the spatial distribution of snrmC-seq cells colored by cell subclass on imputed MERFISH locations (Methods). Each row
represents a different MERFISH slice. The left column shows glutamatergic neurons and the right column shows other
neurons. Centroids of each cell subclass are indicated by arrows, with the numbers indicating their cell proportion on
that slice.
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Extended Data Figure 9 | Chromatin conformation analysis at compartment and domain level. a, PCC between
compartment score and mCG (orange)/mCH (blue) fractions of all 100kb bins on each chromosome (left panel) or
whole genome (right panel). The dot lines inside each violin plot are 75%, 50%, and 25% quantiles from top to bottom.
b-c, chromosome 1-D heatmaps show PCC between compartment score and mCG fraction (b) and the compartment
score STD across cell subclasses (c) for each chromosome at a 100-Kb resolution. Arrows indicate the location of the
Celf2 gene used as an example in Fig. 4a, b. d, The line plot (meanzts.d.) shows the developmental gene expression
level among subtypes defined in La Manno et al.®® across embryonic days. The genes in each subpanel are selected
by overlapping with top negatively correlated (left), positively correlated (right), or uncorrelated (middle) chrom100k
bins in (a). e, Workflow for gene body domain boundary analysis. f, The scatter plots of the most negatively (top) or
positively (bottom) correlated boundary to each long gene transcript. Both the x and y axis is the PCC between 25Kb
bin boundary probability and transcript body mCH (x-axis) or mCG (y-axis) fractions. g, The scatterplot shows the
location of each long gene transcript’'s most negatively (top) or positively (bottom) correlated boundary. The y-axis is
the PCC between the 25Kb bin boundary probabilities and transcript body mCH fractions; the x-axis is the relative
genome location to the transcripts. h, Functional enrichment for genes associated with negatively correlated domain
boundaries (upper) or positively correlated boundaries (lower).
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Extended Data Figure 10 | Correlation between gene expression and chromatin contacts. a, Workflow for highly
variable and gene correlated interaction analysis. b, The distribution of the distance between the furthest correlated
interaction and gene TSS. Q95 and Q99 stand for the quantile of all interactions ordered by the distance to TSS.c,
Distribution of the number of highly variable and correlated interactions per gene; top 30 gene names are listed. d,
Scatterplot shows each gene’s number of correlated interactions (y-axis) and TSS boundary probability correlation (x-
axis, PCC between mCH and TSS boundary probability, from Extended Data Fig. 9e). e-j, Compound heatmaps display
the chromatin conformation landscape of megabase-long genes, including Ptprd (e), Nrxn3 (f), Lsamp (g), Dig2 (h),
Celf2 (i), and Sox5 (j). For each panel, green rectangles indicate the location of the gene body, the lower triangle shows
the F statistics from ANOVA analysis analyzing the variance of contact strength across all cell subclasses (similar to
Fig. 4i), and the upper triangle shows the PCC between contact strength and mCH fraction (similar to Fig. 4j).
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Extended Data Figure 11 | Construction of TF-DMRs-Target regulatory networks. a, Scatterplot shows the motif
enrichment scores in negatively correlated DMRs (x-axis) and positively correlated DMRs (y-axis) for each TF. The top
TFs with the highest motif enrichment scores are listed. Blue contours are the kernel density of the dots. b-c, Example
TFs with motifs enriched in positively correlated DMRs or negatively correlated DMRs are shown in more detail (similar
to Fig. 5f). The Onecut2 and Rfx1 gene (b) are examples of having motifs enriched in positively correlated DMRs, the
Foxp2 and Foxa1 gene (c) are examples of having motif enriched in negatively correlated DMRs. d, The top histogram
shows the distribution of the number of DMRs each motif is enriched in. The bottom histogram shows the distribution
of the number of motif occurrences each DMR has. e, The TF-DMR-Target triples are separated into eight categories
(columns) based on their PCC sign between Gene-DMR, TF-DMR, and TF-Gene. The top barplot is the triple
distribution in each category. The middle violin plot is the triple final score distribution within each category. Lines inside

Liu et al., Single-cell DNA methylome and 3D Multi-omic Atlas of the Adult Mouse Brain. 50


https://doi.org/10.1101/2023.04.16.536509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.16.536509; this version posted April 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the violin plot are 25%, 50%, and 75% quantiles, respectively. The bottom dots show the correlation sign combination
of each category. Column colors match the schematic in (f). f, The schematic displays the potential regulatory model
for the four most common (based on e) TF-DMR-Target triple categories.
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Extended Data Figure 12 | TF-DMR-Gene ftriple predict TF and gene relationships. a-f, Example TF-DMR-Target
triple, including 1: Erf (TF), Nab2 (target) and DMR (Chr10:127,595,357-127,595,787) (a-b); 2: Egr1 (TF), Synpo (target)
and DMR (Chr18:60,762,310-60,763,534) (c-d); 3: Cacna2d2 (TF), Stat5b (target) and DMR (Chr9:107,462,798-
107,463,968) (e-f); For each example, left are t-SNE plot colored by the mCH fraction (blue) or RNA level (purple) for
target and TF; mCG fraction (green) and chromatin accessibility (orange) for DMR; and gene-DMR contact score (red)
(a,c,e). The compound heatmaps on the right show the chromatin landscape of target genes, including Nab2 (b), Synpo
(d), and Cacna2d2 (f); the layout is similar to Exnteded Data Fig. 10e-j. g, The dot plots represent TF's normalized
PageRank Score and RNA expression for cell subclasses in the hindbrain (MB). Red dots are colored and sized by
PageRank Score. Purple dots are colored by RNA CPM, sized by the percentage of cells in that subclass expressing
this gene. Right, the t-SNE plot of snmC-seq cells from MB colored by dissection region and the CCF-registered 3D
brain dissection regions.
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Extended Data Figure 13 | Epigenetic heterogeneity and gene exon usage. a, Compound heatmaps illustrate the
similarity between the Oxr1 intragenic methylation heterogeneity and alternative isoform expression patterns. Rows are
neuron cell subclasses. |, mCG fraction of all 1,797 CpG sites of Oxr7 gene with columns ordered by original genome
coordinates (bottom colors are CpG clusters from heatmap ). Il, mCG fraction of CpG sites re-ordered by their CpG
clusters (bottom colors) based on subclasses methylation pattern. Heatmap Il and Heatmap IV show the TPM of 11
highly variable transcripts and PSI of 24 highly variable exons of Oxr1, quantified with the SMART-seq dataset. All
values are z-score normalized across cell subclasses. The Oxr1 transcript structures and exon locations are indicated
at the bottom plots. Heatmap V shows the Oxr1 gene log(CPM) in scRNA-seq (10X) data. b, Scatterplot shows the
PCC between predicted PSI and true PSI for each highly-variable exon (dot), using methylation features (left) and
chromatin contact interactions (right) to predict. ¢, Scatterplot shows the delta PCC in mC models (x-axis) and m3C
models (y-axis) for highly-variable exons (dot). Top exons with large delta PCC are listed by their corresponding gene
names.
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