

Type I IFN expression is inhibited during cell division by CDK4/6

Rebecca P. Sumner^{1*}, Ailish Ellis¹, Sian Lant¹, Hannah Ashby¹, Greg J. Towers², Carlos Maluquer de Motes¹

1. Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK.

2. Division of Infection and Immunity, University College London, 90 Gower Street, London WC1E 6BT, UK

Running title: Negative regulation of type I IFN by CDK4/6

* Corresponding author. Correspondence: rebecca.sumner@surrey.ac.uk

Key words: interferon, CDK4/6, DNA sensing, cell division, cGAS

Summary

Cells are equipped to defend themselves from invading pathogens through sensors such as cGAS, which upon binding DNA induces type I interferon (IFN) expression. Whilst IFNs are crucial for limiting viral infection and activating adaptive immunity, uncontrolled production causes excessive inflammation and autoimmunity. cGAS binds DNA of both pathogenic and cellular origin and its activity is therefore tightly regulated. This is particularly apparent during mitosis, where cGAS association with chromatin following nuclear membrane dissolution and phosphorylation by mitotic kinases negatively regulate enzymatic activity. Here we describe a novel mechanism by which DNA sensing and other innate immune pathways are regulated during cell division, dependent on cyclin dependent kinases (CDK) 4 and 6. Inhibition of CDK4/6 using chemical inhibitors, shRNA-mediated depletion, or overexpression of cellular CDK4/6 inhibitor p16INK4a, greatly enhanced DNA- or cGAMP-induced expression of cytokines and IFN-stimulated genes (ISG). Mechanistically, CDK4/6-dependent inhibition mapped downstream of cytoplasmic signalling events including STING and IRF3 phosphorylation, limiting innate immune induction at the level of IFN β mRNA expression. This regulation was universal, occurring in primary and transformed cells of human and murine

32 origin, and broad, as IFN β expression was inhibited in a CDK4/6-dependent manner
33 downstream of multiple pattern recognition receptors. Together these findings demonstrate
34 that host innate responses are limited by multiple mechanisms during cell division, thus
35 defining cellular replication as an innate immune privileged process that may be necessary to
36 avoid aberrant self-recognition and autoimmunity.

37

38 **Introduction**

39 Innate immunity constitutes an important first line of defence against invading pathogens
40 carrying pathogen-associated molecular patterns (PAMPs), as well as against inducers of
41 damage-associated molecular patterns (DAMPs) such as tumorigenesis. Engagement of
42 PAMPs and DAMPs with pattern recognition receptors (PRRs) induces complex signalling
43 cascades, culminating in the activation of transcription factors of the interferon (IFN)
44 regulatory factor (IRF) and nuclear factor kappa B (NF- κ B) families and subsequent
45 expression of IFNs and pro-inflammatory cytokines and chemokines(Li & Wu, 2021). Binding
46 of IFNs to IFN receptors activates signalling cascades dependent on the Janus kinase (JAK)
47 and signal transducer and activator of transcription (STAT) proteins, inducing the expression
48 of hundreds of IFN-stimulated genes (ISGs) (Hu *et al*, 2021). Whilst some of these proteins
49 directly block pathogen replication, or induce apoptosis, the inflammatory milieu is also crucial
50 for attracting antigen presenting cells and activating cells of the adaptive arm of the immune
51 system. PRRs include toll like receptors (TLRs) that sense nucleic acids and microbial
52 membrane components such as lipids and proteins, the RIG-I-like receptors (RLRs) that
53 sense various forms of pathogen RNA, DNA sensors such as the AIM2-like receptors (ALRs)
54 and cGAS, and the NOD-like receptors (NLRs), which sense a variety of PAMPs and DAMPs
55 including nucleic acids, proteins and metabolites and result in inflammasome activation(Li &
56 Wu, 2021; Zahid *et al*, 2020). Uncontrolled or aberrant activation of these receptors leads to
57 excessive IFN and inflammatory cytokine production and underlies many autoimmune
58 conditions(Okude *et al*, 2020).

59

60 The major sensor for pathogenic DNA in the cell is cyclic GMP-AMP synthase (cGAS), an
61 enzyme that catalyses the formation of cyclic dinucleotide 2'3' cyclic GMP-AMP (cGAMP)

62 from ATP and GTP(Ablasser *et al*, 2013; Sun *et al*, 2013). cGAMP binds and activates ER-
63 resident stimulator of IFN genes (STING), which involves its dimerisation, phosphorylation
64 and translocation to the Golgi where it recruits tank-binding kinase 1 (TBK1) and
65 IRF3(Tanaka & Chen, 2012; Wu *et al*, 2013). TBK1 then phosphorylates IRF3, inducing
66 nuclear translocation and the expression of IRF-dependent genes including type I IFN and
67 ISGs. cGAMP binding to STING also induces the activation of NF- κ B, dependent on kinases
68 TAK1 and the IKK complex(Balka *et al*, 2020; Yum *et al*, 2021). The binding of dsDNA to
69 cGAS induces its oligomerisation, a prerequisite for enzymatic activity(Li *et al*, 2013; Zhang *et*
70 *al*, 2014), and therefore cGAS sensing is dependent on DNA length(Luecke *et al*, 2017). DNA
71 binding is however sequence independent, with interactions observed between cGAS and the
72 phosphate-sugar backbone along the minor groove(Civril *et al*, 2013), raising the question of
73 how cGAS distinguishes between self and non-self. Indeed, cGAS is competent to bind DNA
74 of cellular origin, including mitochondrial DNA(Huang *et al*, 2020), micronuclei(Mackenzie *et*
75 *al*, 2017), damaged/leaked nuclear DNA(Zhou *et al*, 2021) and engulfed cellular debris from
76 dying cells(King *et al*, 2017). To avoid aberrant recognition, cGAS activity is subject to
77 complex regulation by phosphorylation, SUMOylation, glutamylation, ubiquitination and
78 protein-protein interactions(Motwani *et al*, 2019).

79

80 Cell division, ending in mitosis, is regulated by a coordinated cascade of cyclin expression
81 that stimulates the activity of the cyclin-dependent kinases (CDKs), which in turn regulate the
82 transition from one cell cycle stage to the next(Malumbres, 2014). How DNA sensing is
83 regulated during this fundamental process, which involves nuclear membrane breakdown,
84 has remained somewhat elusive. Recent publications from the Chen and Shu labs have
85 however now begun to shed some light on this. Firstly, cGAS association with chromatin
86 following nuclear envelope breakdown prevents its oligomerisation and activation(Li *et al*,
87 2021). Secondly, cGAS is inactivated through phosphorylation by mitotic kinases such as
88 Aurora kinase B(Li *et al*, 2021) and CDK1(Zhong *et al*, 2020), both of which block cGAMP
89 production. We hypothesised that multiple mechanisms would likely exist to regulate DNA
90 sensing during cell division, so we blocked cell cycle at various stages using CDK inhibitors
91 and assessed the ability of cells to respond to stimulation. We found that inhibition of CDK4/6

92 activity, either chemically or genetically, led to a significantly enhanced DNA sensing
93 response and ISG expression in primary and transformed cells of both human and murine
94 origin. This regulation mapped downstream of STING and IRF3 activation, at the level of type
95 I IFN expression. Consistent with downstream regulation, CDK4/6 dampened innate
96 activation induced by multiple PRRs, including TLR4 and the RLRs. CDK4/6-mediated
97 regulation of innate immunity was also independent of the previously described inflammatory
98 induction associated with cell cycle arrest, senescence and endogenous retrovirus (ERV)
99 reactivation following long-term CDK4/6 inhibition(Gluck *et al*, 2017; Goel *et al*, 2017).
100 Together this study identifies a novel and direct role for CDK4/6 in negatively regulating type I
101 IFN expression, further defining cell division as an immune privileged process that may be
102 critical to avoid aberrant self-sensing and autoimmune induction.

103

104 **Results**

105 **CDK4/6 inhibitors enhance DNA sensing-dependent ISG induction**

106 Hypothesising that multiple mechanisms would exist to regulate DNA sensing during cell
107 division to prevent recognition of cellular patterns, we inhibited the cell cycle with CDK
108 inhibitors (Fig 1A) and measured subsequent DNA sensing responses. Innate induction was
109 assessed by measuring luciferase activity in the supernatants of monocytic THP-1 cells that
110 had been modified to express Gaussia luciferase under the control of the IFIT-1 (also known
111 as ISG56) promoter, which is both IRF3- and IFN-sensitive(Mankani *et al*, 2014). All three
112 inhibitors arrested cellular replication at the doses tested, as expected (data not shown).
113 Whilst inhibition of CDK1 with RO-3306 or CDK2 with K03861 had minimal effect on IFIT-1
114 reporter activity following stimulation of cells with DNA sensing agonists herring testis DNA
115 (HT-DNA) or cGAMP, inhibition of CDK4/6 with palbociclib greatly enhanced innate activation
116 in response to both agonists (Fig 1B). This finding was confirmed by measuring cGAMP-
117 induced endogenous expression of classical ISGs, such as CXCL-10, IFIT-2 and MxA, by
118 qPCR (Fig 1C) and CXCL-10 protein expression by ELISA (Fig 1D). A similar effect on DNA
119 sensing-induced reporter activity was also observed with another CDK4/6 inhibitor, ribociclib
120 (Fig 1E). As expected, both palbociclib and ribociclib increased the proportion of cells in the

121 G0/G1 phase of the cell cycle, as CDK4/6 activity is required for progression from G1 to S
122 phase (Suppl. Fig 1A).

123

124 **CDK4/6 inhibitor-mediated regulation of DNA sensing is independent of cell cycle
125 arrest and senescence**

126 To determine whether enhanced ISG expression was specific to CDK4/6 inhibition or was a
127 general phenomenon of G1 arrest, we treated cells with other small molecules that had been
128 documented to induce G1 arrest in a CDK4/6-independent manner (Fofaria *et al*, 2014; Rao *et*
129 *al*, 1999). Whilst both piperine (Suppl. Fig 1B) and lovastatin (Suppl. Fig. 1C) increased the
130 proportion of cells in G0/G1, neither enhanced ISG induction in response to DNA sensing
131 agonists (Fig 1F, G) suggesting innate immune regulation was specific to CDK4/6 inhibition.

132 Long-term treatment with CDK4/6 inhibitors induces cell cycle arrest and replication
133 stress (Crozier *et al*, 2022), as well as senescence and inflammatory cytokine
134 expression (Gluck *et al*, 2017; Yoshida *et al*, 2016), however enhanced ISG expression was
135 observed after short palbociclib pre-treatment (7h, Suppl. Fig 1D), when G1 arrest (Suppl. Fig
136 1E), nor markers of senescence such as loss of MCM2 (Harada *et al*, 2008), were observed
137 (Suppl. Fig 1F). As expected, reduced expression of MCM2 was observed following 48 h
138 treatment of THP-1 cells with DNA damage inducer doxorubicin (Suppl. Fig 1F). Together
139 these results indicated that CDK4/6 inhibitor-mediated regulation of DNA sensing responses
140 was independent of cell cycle arrest and senescence.

141

142 **CDK4/6 negatively regulate DNA sensing**

143 To determine a specific role for CDK4/6 in palbociclib/ribociclib-mediated enhancement of
144 DNA sensing responses we undertook a genetic approach to manipulate CDK4/6 activity.
145 Firstly, we generated a lentiviral vector overexpressing a FLAG-tagged version of cellular
146 CDK4/6 inhibitor p16INK4a (McConnell *et al*, 1999), or FLAG-GFP as a negative control. THP-
147 1 cells transduced with these vectors expressed detectable levels of FLAG-tagged GFP and
148 p16INK4a (Fig 2A), and G1 arrest was observed with the p16INK4a-, but not GFP-expressing
149 lentivector, as expected (Suppl. Fig 2). When transduced cells were stimulated by
150 transfection with HT-DNA or cGAMP, IFIT-1 reporter activity was significantly enhanced in the

151 p16INK4a-expressing cells compared to GFP-expressing controls, confirming data obtained
152 with CDK4/6 inhibitors. Furthermore, we delivered lentiviral vectors expressing CDK-specific
153 shRNAs to THP-1 cells and found that depletion of CDK6 also augmented DNA sensing-
154 induced IFIT-1 reporter activity (Fig 2C). Interestingly targeting CDK4 did not boost ISG
155 expression in these experiments, however this may have been due to incomplete depletion of
156 CDK4 expression (Fig 2D) that did not result in an increased proportion of cells in G0/G1, as
157 was observed with CDK6 depletion (Suppl. Fig 2B).

158

159 To investigate whether CDK4/6 regulated DNA sensing in primary cells we treated human
160 foetal foreskin fibroblasts (HFFF) with palbociclib (Suppl. Fig 3A), ribociclib (Suppl. Fig 3B) or
161 transduced them with the p16INK4a-expressing lentivector (Suppl. Fig 3C) and in all cases
162 observed a significant increase in DNA sensing-dependent ISG expression. Enhanced ISG
163 induction was also apparent in A549 (Suppl. Fig 3D), U2OS (Suppl. Fig 3E) and murine
164 fibroblasts (McCoy cells, Suppl. Fig. 3F) treated with palbociclib and stimulated with HT-
165 DNA/cGAMP. Taken together, these data define a universal role for CDK4/6 in negatively
166 regulating DNA sensing-induced ISG expression in both primary and transformed cells of
167 human and murine origin.

168

169 **CDK4/6 negatively regulate IFN β expression**

170 To gain a mechanistic understanding of how CDK4/6 regulate DNA sensing responses we
171 performed pathway mapping experiments, blotting for the phosphorylated form of key innate
172 signalling molecules downstream of cGAS/STING. Whilst treating THP-1 cells with palbociclib
173 enhanced IFIT-1 reporter activity following cGAMP stimulation as expected (Suppl. Fig 4A),
174 this was not accompanied by enhanced phosphorylation of STING (Ser366) or IRF3 (Ser386)
175 (Fig 3A). This indicates that contrary to previous reported mechanisms (Li *et al.*, 2021; Zhong
176 *et al.*, 2020), CDK4/6 do not inactivate cGAS, and instead regulate innate immunity
177 downstream of these hallmark cytoplasmic signalling events. Consistent with downstream
178 regulation, levels of phosphorylated STAT1 (Tyr701) were increased in palbociclib-treated
179 cells, indicative of CDK4/6-mediated regulation of IFN (Fig 3A). Similar results were observed
180 in primary HFFFs (Suppl. Fig 4B). Total protein expression levels for STING, IRF3 and

181 STAT1 were unaltered following CDK4/6 inhibition (Fig 3A, Suppl. Fig 4B), as was *IRF3*
182 mRNA expression (Suppl. Fig 4C). Palbociclib-dependent enhancement of IFIT-1 reporter
183 activity, which is regulated in an IRF3- and IFN-dependent manner (Mankan *et al.*, 2014), was
184 completely dependent on IFN, as this was abolished in cells treated with JAK inhibitor
185 ruxolitinib (Fig 3B). Furthermore IRF-Luc reporter activity was also not enhanced by
186 palbociclib in THP-1 Dual reporter cells lacking the IFN α/β receptor (IFNAR) (Fig 3C).
187 Increased pSTAT1 could result from increased type I IFN production or increased pathway
188 activation downstream of IFN binding the IFNAR. Palbociclib did not increase ISG expression
189 following direct stimulation of THP-1 cells with IFN β (Fig 3B, D), ruling out a role for CDK4/6
190 in regulating the JAK-STAT pathway. Conversely CDK4/6 inhibition did enhance DNA
191 sensing-induced IFN β mRNA expression in both THP-1 cells (Fig 3E) and HFFF (Fig 3F).
192 Together these findings demonstrate a novel role for CDK4/6 in negatively regulating DNA
193 sensing-induced ISG induction and innate immune activation through limiting type I IFN
194 expression.

195

196 **CDK4/6-dependent regulation of DNA sensing is independent of ERVs**

197 Long-term CDK4/6 inhibition in patients and mice was previously reported to correlate with
198 the expression of endogenous retroviral (ERV) elements, consistent with downregulation of
199 the E2F target DNA methyltransferase 1 (DNMT1). ERV upregulation led to an increase in
200 cytoplasmic dsRNA levels, subsequent expression of type III IFN and ISGs, and ultimately
201 enhanced anti-tumour immunity (Goel *et al.*, 2017). CDK4/6-dependent regulation of IFN β
202 expression however was independent of ERVs as, firstly, neither chemical nor genetic
203 CDK4/6 inhibition in our experiments led to IFN β or ISG expression in the absence of
204 exogenous stimulation (Fig 1, 2, 3, Suppl. Fig 3) and secondly palbociclib-dependent
205 enhancement of IFIT-1 expression was observed following HT-DNA and cGAMP stimulation
206 in the absence of MAVS (Suppl. Fig 5A), the major RNA sensing adaptor protein that is
207 important for the detection of ERV RNA (Chiappinelli *et al.*, 2015; Roulois *et al.*, 2015; Tie *et al.*,
208 2018). As a control, MAVS-/- cells did not respond to RNA sensing agonist poly I:C (Suppl.
209 Fig 5A). Furthermore, cGAMP-induced reporter activity was also increased in palbociclib-
210 treated cells lacking cGAS (Suppl. Fig 5A), which has also been implicated in the sensing of

211 ERVs (Lima-Junior *et al*, 2021). As expected, cGAS-/- cells failed to respond to HT-DNA
212 (Suppl. Fig 5A). These data imply a direct role for CDK4/6 in negatively regulating type I IFN
213 expression, independent of E2F/DNMT1-mediated upregulation of ERV elements.

214

215 **CDK4/6 regulate type I IFN downstream of multiple PRRs**

216 Given that CDK4/6 regulation of innate immunity mapped to the level of IFN β expression, we
217 questioned whether pathways other than DNA sensing may be regulated in this manner. To
218 this end we treated THP-1 cells with palbociclib and stimulated them with other agonists of
219 type I IFN expression including RNA sensing agonists transfected poly I:C and Sendai virus
220 or TLR4 agonist lipopolysaccharide (LPS) and found that IFIT-1 reporter activity (Fig 4A),
221 endogenous ISG expression (Fig 4B) and CXCL-10 protein secretion (Fig 4C) were all
222 significantly enhanced by CDK4/6 inhibition. The same was observed in HFFF transfected
223 with poly I:C (Fig 4D) and following p16INK4a overexpression (Fig 4E). Co-treatment with
224 ruxolitinib demonstrated that augmented ISG expression was again entirely dependent on
225 IFN (Suppl. Fig A) and enhanced IFN β transcription was observed in conditions of CDK4/6
226 inhibition (Fig 4F). Increased innate responses following CDK4/6 inhibition was again
227 independent of ERV sensing as this was independent of cGAS (Suppl. Fig 6B) and MAVS
228 (Suppl. Fig. 6C) expression. Taken together these data reveal a broad role for cell cycle
229 regulatory proteins CDK4/6 in negatively regulating type I IFN and subsequent ISG
230 expression downstream of multiple PRRs, including DNA sensing, RNA sensing and TLR
231 pathways.

232

233 **Discussion**

234 Innate immune sensing must be tightly regulated to avoid aberrant recognition of cellular
235 patterns and the induction of autoimmune conditions. Here we present a novel mechanism of
236 such regulation dependent on cell cycle regulatory proteins CDK4/6. Manipulation of CDK4/6
237 by chemical (Fig 1) or genetic inhibition (Fig 2), or by shRNA-mediated depletion (Fig 2)
238 significantly increased DNA sensing responses in both primary and transformed cells of
239 human and murine origin (Suppl. Fig 3). This regulation mapped downstream of IRF3
240 phosphorylation at the level of IFN β expression, resulting in increased STAT1

241 phosphorylation and enhanced IFN-dependent ISG expression (Fig 3). Consistent with these
242 findings, CDK4/6 also negatively regulated innate immune activation downstream of other
243 PRR pathways that induce type I IFN expression, including RNA and TLR sensing (Fig 4).
244 This regulation was independent of cell cycle arrest (Suppl. Fig 1), senescence (Suppl. Fig 1)
245 and ERV upregulation (Suppl. Fig 5), all of which have been observed following long-term
246 CDK4/6 inhibitor treatment and result in inflammatory cytokine expression(Gluck *et al.*, 2017;
247 Goel *et al.*, 2017; Yoshida *et al.*, 2016). Together these data reveal a novel and direct role for
248 CDK4/6 in dampening type I IFN responses.

249
250 In this study we mapped CDK4/6-dependent regulation of ISG expression to the level of IFN β
251 expression. As cytoplasmic signalling events such as phosphorylation of STING, and
252 phosphorylation of IRF3 at residue Ser386, which is necessary for nuclear translocation(Chen
253 *et al*, 2008), were not enhanced following CDK4/6 inhibition, this implies a potential role for
254 these kinases in regulating IFN expression at the promoter level. This could, for example, be
255 mediated by enhanced transcription factor or positive regulator binding, reduced binding of
256 repressors and/or epigenetic changes that result in a shift from a repressive to an active
257 chromatin state. Indeed, methyltransferase DNMT1 is an E2F target gene(Kimura *et al*, 2003)
258 and whether its expression following CDK4/6 inhibition contributes to enhanced IFN
259 expression will be important future work. Also, whether canonical substrate pRb and the
260 downstream E2Fs, which are necessary for CDK4/6-dependent G1 to S phase transition, play
261 a role in innate immune regulation, or whether it involves a non-canonical substrate, of which
262 a number have already been described(Jirawatnotai *et al*, 2014), remains to be determined.
263 CDK4/6 inhibitors target the ATP-binding domains of CDK4 and 6 (Toogood *et al*, 2005),
264 suggesting their kinase activity is likely required for IFN regulation. Interestingly the
265 expression of IRF3 itself can be directly repressed by E2F1(Xu *et al*, 2011), however we did
266 not observe enhanced levels of IRF3 following palbociclib treatment up to 48 h, either at the
267 transcript (Suppl. Fig 4C) or protein level (Fig 3A, Suppl. Fig. 4B). Uncovering the CDK4/6
268 target(s) that is responsible for the described phenotype may reveal novel mechanisms
269 regulating IFN β expression, which could be manipulated for therapeutic benefit.

270

271 Palbociclib and other CDK4/6 inhibitors are approved for the treatment of breast cancer and
272 have been shown in patients to boost tumour immunity(Goel *et al.*, 2017). What is unclear
273 however is whether this increased immunogenicity is a direct consequence of innate immune
274 activation. CDK4/6 inhibition augments innate responses by multiple mechanisms, including
275 increased type III IFN expression through reactivation of ERV elements (Goel *et al.*, 2017),
276 increased type II IFN, partially dependent on STING(Liu *et al*, 2021), induction of senescence
277 and the ensuing senescence-associated secretory phenotype(Gluck *et al.*, 2017; Yoshida *et*
278 *al.*, 2016) and here, enhanced PAMP-induced type I IFN expression. Together these may
279 increase CDK4/6 inhibitor treatment efficacy *in vivo* through increased immune cell
280 recruitment, antigen presentation and adaptive immune responses.

281
282 Interestingly, roles for other CDKs in regulating innate immunity have previously been
283 described. Cingoz *et al* observed that some CDKs were necessary for type I IFN induction,
284 although this was not true for CDK4/6 (Cingoz & Goff, 2018). Furthermore there have been
285 reports of a pan-CDK inhibitor suppressing TLR signalling (Zoubir *et al*, 2011) and inhibition
286 of CDK2 activity resulting in enhanced NF- κ B-dependent gene expression (Perkins *et al*,
287 1997). These findings reveal a complex interplay between cell division and the host innate
288 immune response.

289
290 Aberrant cGAS/STING activation has been linked to multiple autoimmune disorders including
291 Aicardi-Goutieres syndrome(Gray *et al*, 2015), systemic lupus erythematosus(Kato *et al*,
292 2018) and rheumatoid arthritis(Wang *et al*, 2019), therefore tight regulation of this pathway
293 during homeostasis is critical to avoid disease. How cells tolerate nuclear membrane
294 dissolution during mitosis, for example, without activating a detrimental IFN response remains
295 an important question. Recent studies have demonstrated that cGAS itself is regulated in
296 multiple ways during cellular replication. For example, cGAS associates with chromatin
297 following nuclear envelope breakdown, preventing its oligomerisation and subsequent
298 activation(Li *et al.*, 2021). Furthermore cGAS is inactivated through phosphorylation by mitotic
299 kinases such as Aurora kinase B(Li *et al.*, 2021) and CDK1(Zhong *et al.*, 2020), both of which
300 block cGAMP production. Barrier-to-autointegration factor 1, which binds chromatin and is

301 essential for nuclear membrane reformation, has also been shown to compete with cGAS for
302 DNA binding following nuclear envelope dissolution, again restricting cGAS activity during
303 mitosis(Guey *et al*, 2020). Here we have discovered a broader mechanism dampening innate
304 activation during cell division dependent on CDK4/6 restriction of IFN β expression, occurring
305 downstream of cGAS/STING and other PRRs. Our findings reveal innate immune regulation
306 during earlier stages of cell division than have previously been reported, which may be
307 important for establishing an immune suppressed state in preparation for DNA replication
308 during S phase. How long CDK4/6-induced suppression of type I IFN continues when these
309 kinases are no longer active remains to be tested, but it is conceivable that any changes
310 CDK4/6 induce at the IFN β promoter may continue to dampen expression through
311 subsequent cell cycle stages. Together, these findings define cell division as an innate
312 immune privileged process, expanding our understanding of how cells regulate IFN
313 production during homeostasis and avoid autoimmune reaction.

314

315 **Acknowledgments**

316 We thank Veit Hornung for kindly providing THP-1-IFIT-1 cells. RPS and CM were funded by a
317 collaborative MRC award (MRC_PC_19052) and the University of Surrey Faculty Research
318 Support Funds. CM was also funded by the BBSRC (BB/T006501/1, BB/V015265/1). GJT was
319 funded through a Wellcome Trust Senior Biomedical Research Fellowship (108183) followed
320 by a Wellcome Investigator Award (220863), the European Research Council under the
321 European Union's Seventh Framework Programme (FP7/2007-2013)/ERC (grant HIVInnate
322 339223) a Wellcome Trust Collaborative award (214344) and the National Institute for Health
323 Research University College London Hospitals Biomedical Research Centre.

324

325 **Author Contributions**

326 RPS conceived the study. RPS, AE, SL and HA performed the experiments and analysed the
327 data. RPS, GJT and CM wrote the manuscript and obtained funding.

328

329 **Conflict of Interest**

330 The authors declare no competing interests.

331

332 **Methods**

333 **Cells and reagents**

334 HEK293T, human foetal foreskin fibroblasts (HFFF), A549 and U2OS cells were maintained
335 in DMEM (Gibco) supplemented with 10 % foetal bovine serum (FBS, Labtech) and 100 U/ml
336 penicillin plus 100 µg/ml streptomycin (Pen/Strep; Gibco). Murine McCoy cells were
337 maintained in MEM (Gibco) supplemented with 10 % FBS and Pen/Strep. THP-1 cells were
338 maintained in RPMI (Gibco) supplemented with 10 % FBS and Pen/Strep. THP-1-IFIT-1 cells
339 that had been modified to express Gaussia luciferase under the control of the *IFIT-1* promoter
340 were described previously (Mankan *et al.*, 2014). THP-1-IFIT-1 MAVS-/ cells were also
341 previously described (Sumner *et al.*, 2020; Tie *et al.*, 2018). THP-1 Dual Control, IFNAR-/ and
342 cGAS-/ cells were obtained from Invivogen. Inhibitors against CDK1 (RO-3306), CDK2
343 (K03861) and CDK4/6 (palbociclib) and piperine were all from Sigma. CDK4/6 inhibitor
344 ribociclib was obtained from Cambridge Biosciences. Lovastatin was from Abcam. JAK
345 inhibitor ruxolitinib was from CELL guidance systems. Lipopolysaccharide and IFN β were
346 obtained from Peprotech. Sendai virus was from Charles River Laboratories. Herring-testis
347 DNA was obtained from Sigma. cGAMP and poly I:C were from Invivogen. For stimulation of
348 cells by transfection, transfection mixes were prepared using lipofectamine 2000 according to
349 the manufacturer's instructions (Invitrogen).

350

351 **Plasmids**

352 The p16INK4a sequence was amplified from THP-1 cDNA using forward (5'-
353 GAATGCGGCCGCGGAGCCGGCGGCGGGAGC-3') and reverse (5'-
354 GCCTCTAGACTCGAGTCAATCGGGATGTCTGAG-3') primers and cloned into a
355 pcDNA4/TO FLAG (N-terminal tag) vector using NotI and XbaI. FLAG-tagged p16INK4a was
356 then excised from this vector with BamHI and XbaI and cloned into lentiviral genome plasmid
357 SFXUP (expressing p16INK4a under the control of the spleen focus-forming virus (SFFV)
358 promoter and puromycin under the control of the ubiquitin promoter). SFXUP expressing
359 FLAG-GFP served as a control and was used previously (Georgana & Maluquer de Motes,
360 2019).

361 For transient depletion of CDKs by shRNA, annealed oligos were cloned with BamHI and
362 EcoRI into HIV-1-based shRNA expression vector HIVSiren (Schaller *et al*, 2011). The shCtrl
363 sequence has been previously described(Fletcher *et al*, 2015).

364 CDK1 shRNA top: 5'-GATCCGGGATTCCAGGTTATATCTCTCAAGAGAGAGATAAACCT
365 GGAATCCTTTTG-3'

366 CDK1 shRNA bottom: 5'-AATTCAAAAAAGGATTCCAGGTTATCTCTCTTGAAGAGAT
367 ATAACCTGGAATCCCG-3'

368 CDK2 shRNA top: 5'-GATCCGAGGTTATATCCAATAGTAGTTCAAGAGACTACTATTGGAT
369 ATAACCTTTTTG-3'

370 CDK2 shRNA bottom: 5'-AATTCAAAAAAGGTTATATCCAATAGTAGTCTCTTGAACTACT
371 ATTGGATATAACCTCG-3'

372 CDK4 shRNA top: 5'-GATCCGAGGCCTAGATTCCTTCATTCAAGAGAATGAAGGAAATC
373 TAGGCCTTTTTG-3'

374 CDK4 shRNA bottom: 5'-AATTCAAAAAAGGCCTAGATTCCTTCATTCTCTTGAATGAA
375 GGAAATCTAGGCCTCG-3'

376 CDK6 shRNA top: 5'-GATCCGGTTCAGATGTTGATCAACTTCAAGAGAAGTTGATCAACA
377 TCTGAACCTTTTG-3'

378 CDK6 shRNA bottom: 5'-AATTCAAAAAAGTTCAGATGTTGATCAACTTCTCTTGAAGTTG
379 ATCAACATCTGAACCG-3'

380

381 **PI staining**

382 One million cells were pelleted and washed once with PBS. Cells were fixed in cold 70 %
383 ethanol and stored at 4 °C until staining. To stain for DNA content, cells were washed twice in
384 PBS and the pellet then treated with RNase A diluted in PBS (100 µg/ml, Sigma) before
385 incubation with propidium iodide (50 µg/ml, diluted in PBS, Sigma). Cells were analysed by
386 flow cytometry using the FACS Calibur (BD) and data analysis was performed using FlowJo
387 software.

388

389 **Production of lentiviral particles in 293T cells**

390 Lentiviral particles were produced by transfecting 10 cm dishes of HEK293T cells with 1.5 µg
391 of genome plasmid (HIVSiren for shRNA, or SFXUP for GFP- or p16INK4a-expressing
392 vectors), 1 µg of p8.91 packaging plasmid (Zufferey *et al*, 1997), and 1 µg of vesicular
393 stomatitis virus-G glycoprotein expressing plasmid pMDG (Genscript) using Fugene 6
394 transfection reagent (Promega) according to the manufacturer's instructions. Virus
395 supernatants were harvested at 48 and 72 h post-transfection, pooled and stored at -80 °C.
396 THP-1 cells were transduced by spinoculation (1000 xg, 1 h, room temperature) and adherent
397 HFFFs were transduced by incubation with lentivector-containing medium. Cells were
398 incubated for 48 h without drug selection to allow depletion or overexpression of target genes
399 before being used for experiments.

400

401 **Luciferase reporter assays**

402 Following pre-treatment of cells with inhibitors, or lentiviral transduction for
403 depletion/overexpression, THP-1 cells were counted, plated in 96 well plates and stimulated
404 with the indicated agonists at 2x10⁵ cells/ml. Gaussia/Lucia luciferase activity was measured
405 16-24 h later by transferring 10 µl supernatant to a white 96 well assay plate, injecting 50 µl
406 per well of coelenterazine substrate (Nanolight Technologies, 2 µg/ml) and analysing
407 luminescence on a CLARIOstar luminometer (BMG). Data were normalised to a mock, non-
408 drug-treated control to generate a fold induction.

409

410 **ISG qPCR**

411 RNA was extracted from cells using a total RNA purification kit (QIAGEN) according to the
412 manufacturer's protocol. Five hundred ng RNA was used to synthesise cDNA using
413 Superscript III reverse transcriptase (Invitrogen), also according to the manufacturer's
414 protocol. For IFNβ qPCR, RNA was treated with DNase prior to cDNA synthesis (Invitrogen).
415 cDNA was diluted 1:5 in water and 2 µl used as a template for real-time PCR using SYBR®
416 Green PCR master mix (Applied Biosystems) and a Quant Studio 5 (Applied Biosystems) or
417 LightCycler 96 (Roche) real-time PCR machine. Expression of each gene was normalised to
418 an internal control (*GAPDH* or *HPRT*) and these values were then normalised to mock, non-
419 drug treated control cells to yield a fold induction. The following primers were used:

420 Human:
421 *GAPDH* Fwd 5'-GGGAAACTGTGGCGTGAT-3'
422 *GAPDH* Rev 5'-GGAGGAGTGGGTGTCGCTGTT-3'
423 *CXCL-10* Fwd 5'-TGGCATTCAAGGAGTACCTC-3',
424 *CXCL-10* Rev 5'-TTGTAGCAATGATCTAACACG-3'
425 *IFIT-1* Fwd 5'-CCTCCTGGGTCGTCTACA-3'
426 *IFIT-1* Rev 5'-GGCTGATATCTGGGTGCCTA-3'
427 *IFIT-2* Fwd 5'-CAGCTGAGAATTGCACTGCAA-3'
428 *IFIT-2* Rev 5'-CGTAGGCTGCTCTCCAAGGA-3'
429 *MxA* Fwd 5'-ATCCTGGGATTTGGGCTT-3'
430 *MxA* Rev 5'-CCGCTTGTGCGCTGGTGTG-3'
431 2'5'OAS Fwd 5'-TGTGTGTGTCCAAGGTGGA-3'
432 2'5'OAS Rev 5'-TGATCCTGAAAAGTGGTGAGAG-3'
433 *IFNβ* Fwd 5'-ACATCCCTGAGGAGATTAAGCA-3'
434 *IFNβ* Rev 5'-GCCAGGAGGTTCTAACAAATAG-3'
435 Mouse:
436 *HPRT* Fwd 5'-GGTTAACGAGTACAGCCCCAA-3'
437 *HPRT* Rev 5'-ATAGGCACATAGTCAAATCA-3'
438 *CXCL-10* Fwd 5'-ACTGCATCCATATCGATGAC-3'
439 *CXCL-10* Rev 5'-TTCATCGTGGCAATGATCTC-3'
440 *IFIT-1* Fwd 5'-ACCATGGAGAGAATGCTGAT-3'
441 *IFIT-1* Rev 5'-GCCAGGAGGTTGTGC-3'
442 2'5'OAS Fwd 5'-TGAGCGCCCCCATCT-3'
443 2'5'OAS Rev 5'-CATGACCCAGGACATCAAAGG-3'
444
445 **ELISA**
446 Cell supernatants were harvested for ELISA at 24 h post-infection/stimulation and stored at -
447 80 °C. CXCL-10 protein was measured using DuoSet ELISA reagents (R&D Biosystems)
448 according to the manufacturer's instructions.
449

450 **Immunoblotting**

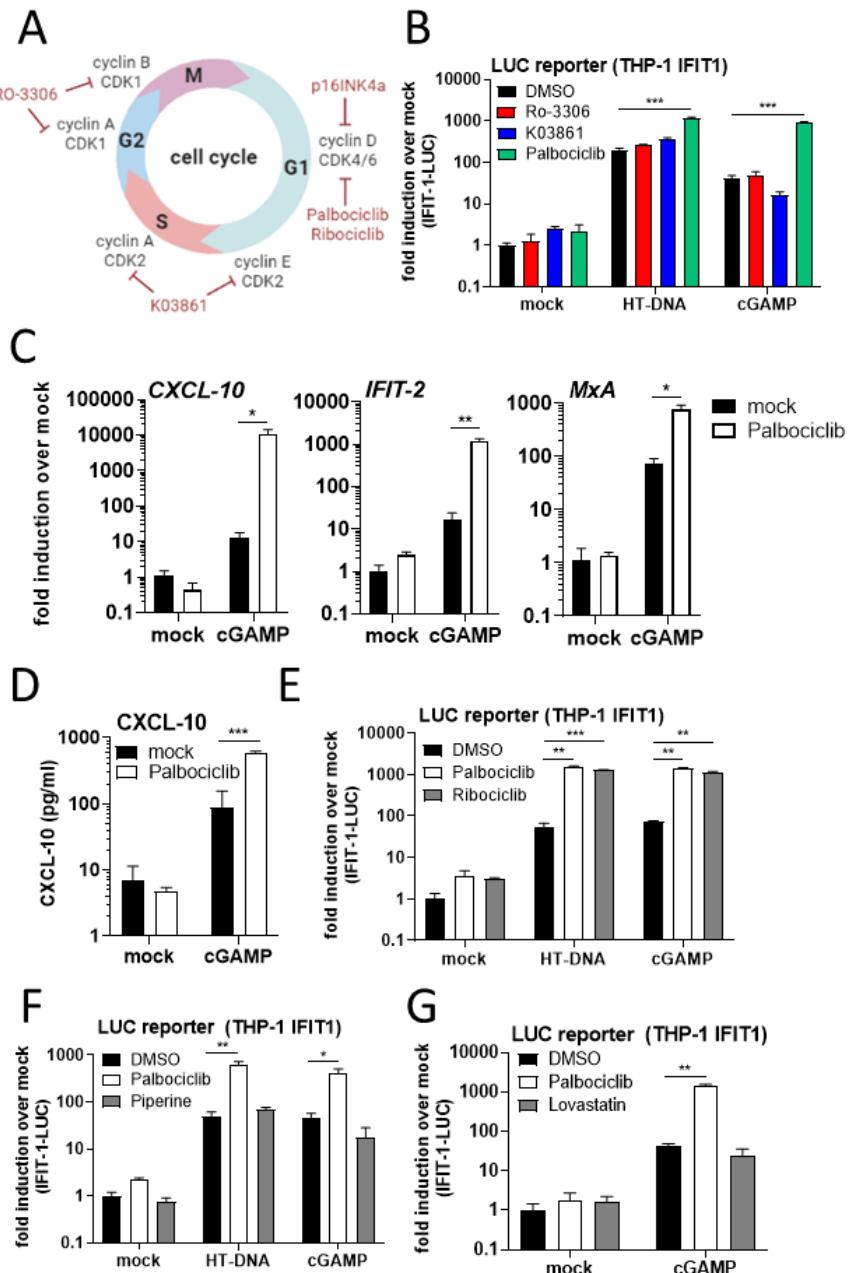
451 For immunoblot analysis, THP-1 (3×10^6 cells) or HFFF (in 12 well plates) cells were lysed in a
452 cell lysis buffer containing 50 mM Tris pH 8, 150 mM NaCl, 0.1 % (w/v) sodium dodecyl
453 sulfate (SDS), 0.5 % (w/v) sodium deoxycholate, 1 % (v/v) NP-40 supplemented with
454 protease inhibitors (Roche), clarified by centrifugation at 14,000 x g for 10 min and boiled in
455 6X Laemmli buffer for 5 min. For phosphoblotting experiments phosphatase inhibitors
456 (Roche) were included in the lysis buffer and samples were analysed immediately. Proteins
457 were separated by SDS-PAGE on 12 % polyacrylamide gels. After PAGE, proteins were
458 transferred to a Hybond ECL membrane (Amersham biosciences) using a semi-dry transfer
459 system (Biorad). Primary antibodies were from the following sources: mouse anti- β -actin
460 (Abcam), mouse-anti-MCM2 (BD), mouse-anti-FLAG (Sigma), mouse-anti-tubulin (EMD
461 Millipore), rabbit-anti-CDK1 (Cell Signaling), rabbit-anti-CDK2 (Cell Signaling), rabbit-anti-
462 CDK4 (Cell Signaling), mouse-anti-CDK6 (Cell Signaling), rabbit-anti-STING (Cell Signaling),
463 rabbit-anti-pSTING (Ser 366, Cell Signaling), rabbit-anti-IRF3 (Abcam), rabbit-anti-pIRF3 (Ser
464 386, Abcam), rabbit-anti-STAT1 (Cell Signaling), rabbit-anti-pSTAT1 (Tyr 701, Cell Signaling).
465 Primary antibodies were detected with goat-anti-mouse/rabbit IRdye 680/800 infrared dye
466 secondary antibodies and membranes imaged using an Odyssey Infrared Imager (LI-COR
467 Biosciences).

468

469 **Statistical analyses**

470 Statistical analyses were performed using an unpaired Student's t-test (with Welch's
471 correction where variances were unequal). * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.

472

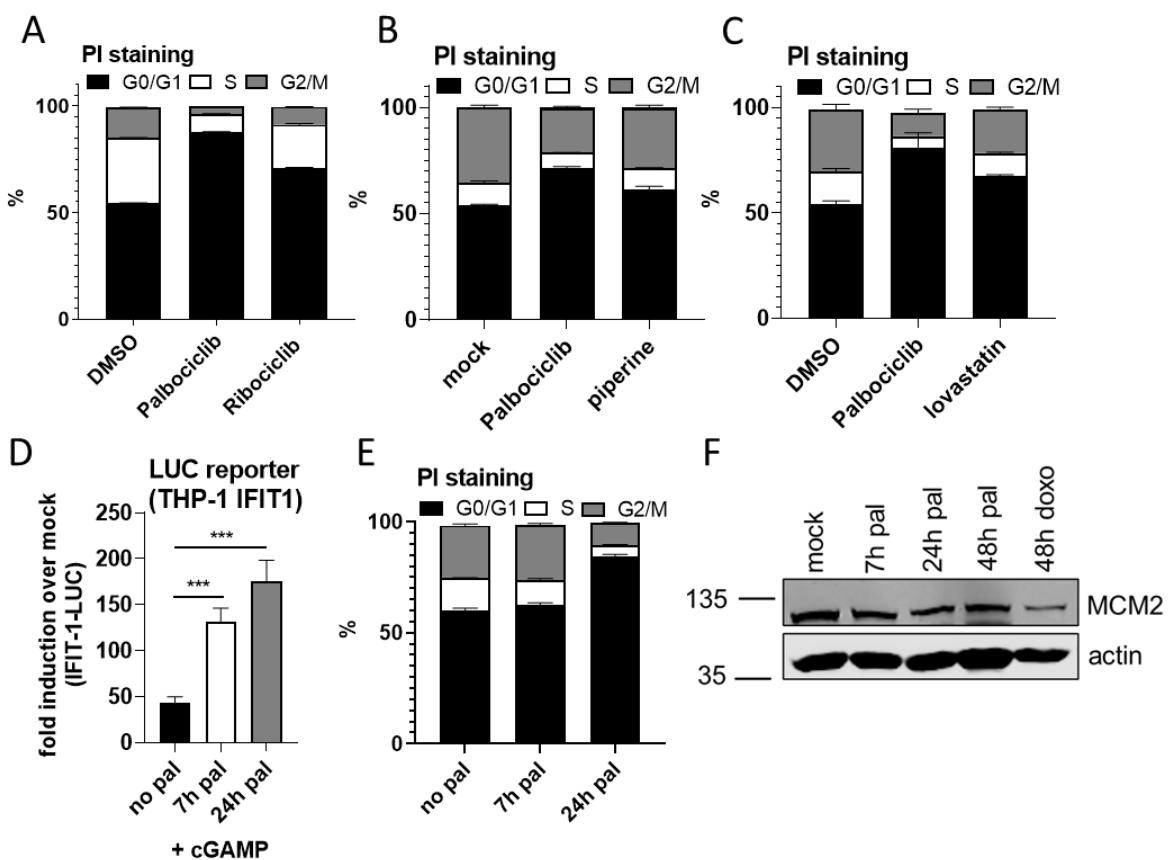

473

474

475

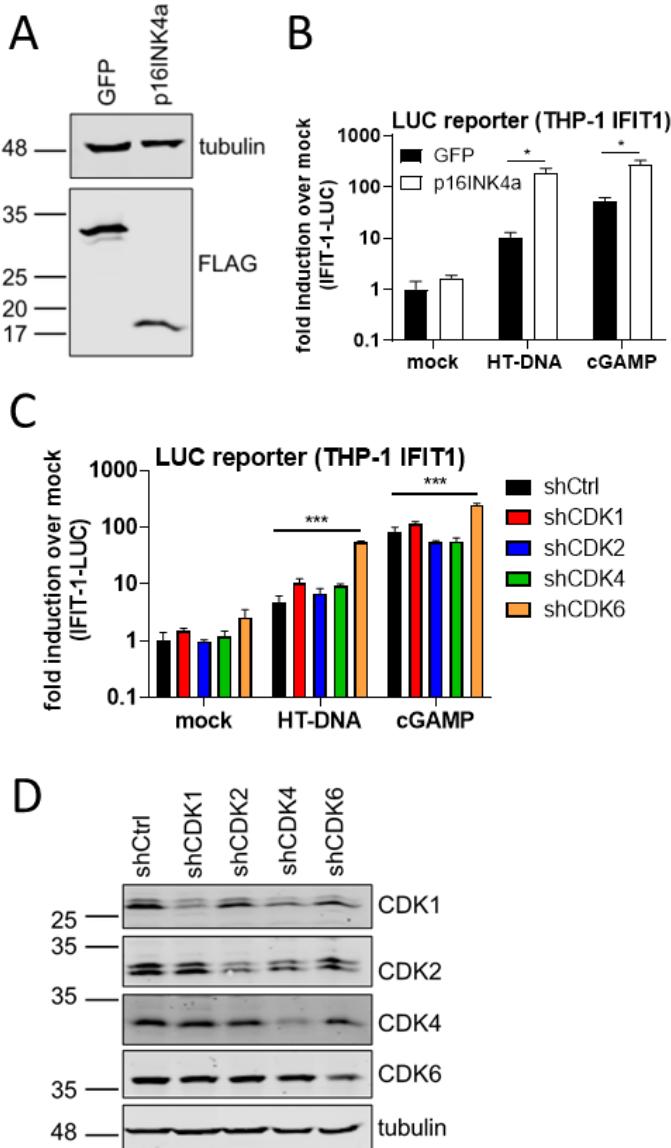
476

477 **Figures**

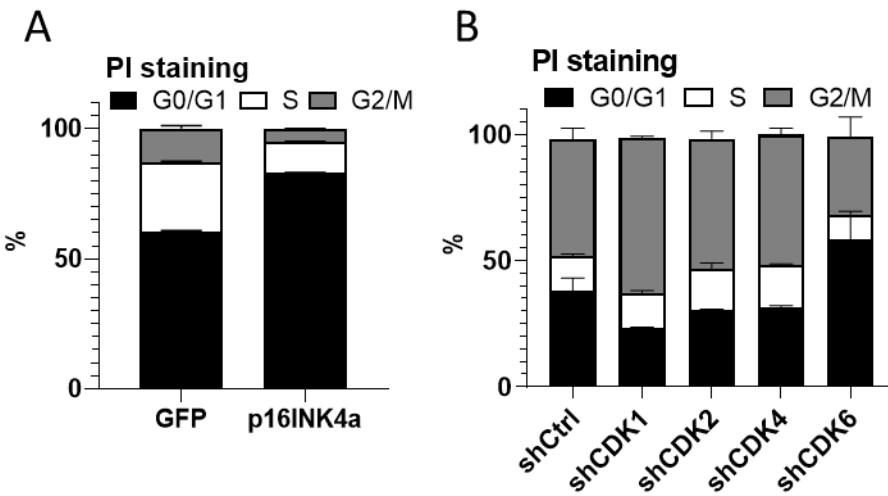


478

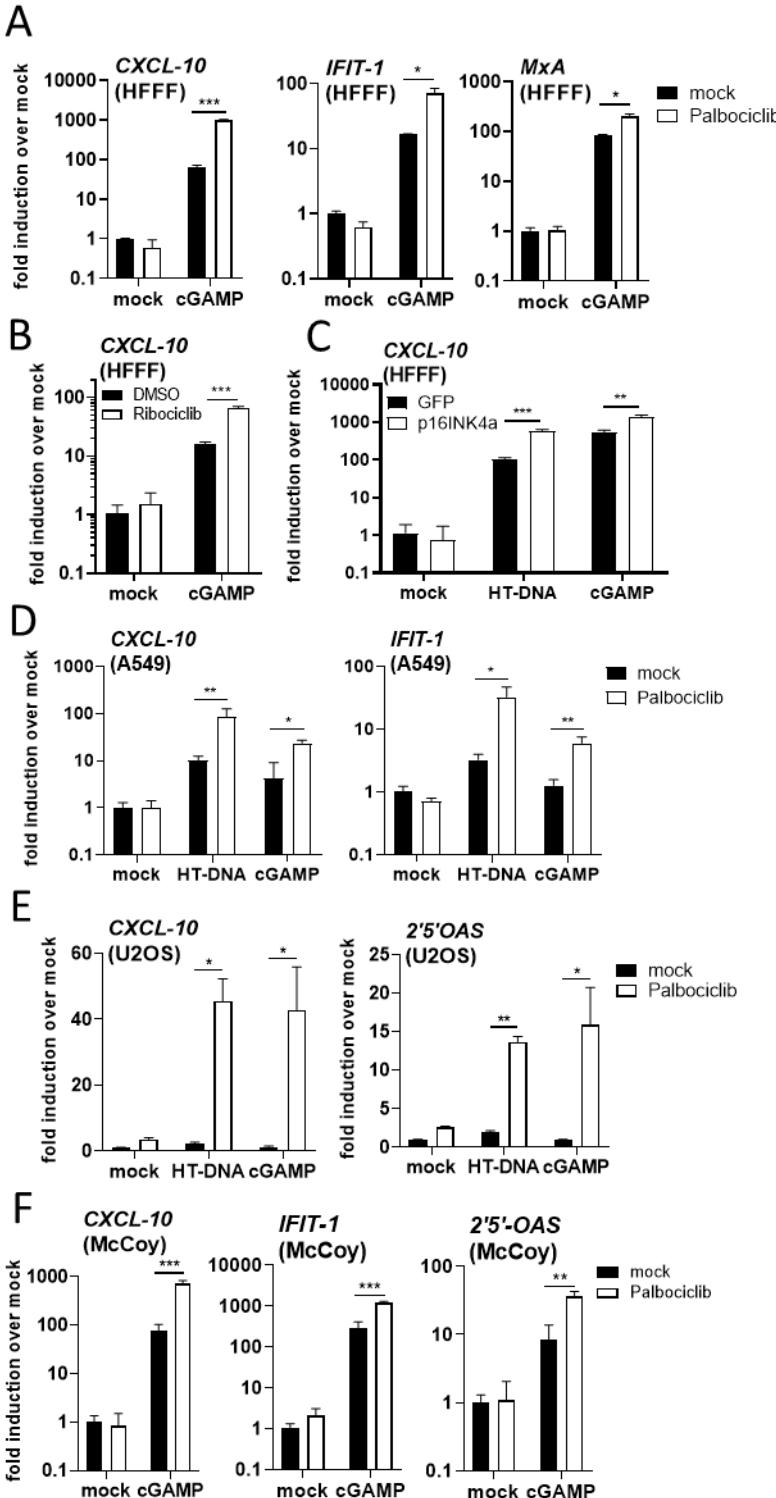
479 **Fig 1: CDK4/6 inhibition enhances DNA sensing-dependent ISG induction**


480 (A) Cell cycle graphic. Created with BioRender.com. (B) Luciferase activity from THP-1 IFIT-1
 481 cells arrested for 48 h with inhibitors of CDK1 (RO-3306, 1 μ M), CDK2 (K03861, 0.5 μ M),
 482 CDK4/6 (palbociclib, 2 μ M) or DMSO control and stimulated for 16 h by transfection with HT-
 483 DNA (50 ng/ml) or cGAMP (500 ng/ml), or mock treated. (C) ISG qRT-PCR from THP-1 IFIT-1
 484 cells mock-treated or treated for 48 h with 2 μ M palbociclib and stimulated overnight by

485 transfection with cGAMP (500 ng/ml). (D) CXCL-10 in the supernatants from (C), measured by
486 ELISA. (E-G) Luciferase activity from THP-1 IFIT-1 cells arrested for 48 h with palbociclib (2
487 μ M, E-G), ribociclib (2 μ M, E), piperine (25 μ M, F), lovastatin (10 μ M, G) or DMSO control and
488 stimulated overnight by transfection with HT-DNA (50 ng/ml) or cGAMP (500 ng/ml), or a mock-
489 treated control. Data are mean \pm SD, n = 3, representative of at least 3 repeats. Fold inductions
490 were calculated by normalising each condition with the non-drug treated, non-stimulated (mock)
491 control. Statistical analyses were performed using Student's t-test, with Welch's correction
492 where appropriate. *P < 0.05, **P < 0.01, ***P < 0.001.


493
494 **Suppl Fig 1:** CDK4/6 inhibitor-mediated regulation of DNA sensing is independent of cell
495 cycle arrest and senescence
496 (A) PI staining from Fig 1E. (B) PI staining from Fig 1F. (C) PI staining from Fig 1G. (D)
497 Luciferase activity from THP-1 IFIT-1 cells mock-treated, or pre-treated with palbociclib (2 μ M)
498 for 7 or 24 h and then stimulated overnight by transfection with cGAMP (500 ng/ml). (E) PI
499 staining from (D). (F) Immunoblot of THP-1 IFIT-1 cells treated for the indicated times with
500 palbociclib (2 μ M) or doxorubicin (1 μ M) and probed for MCM2 and β -actin. Data are mean \pm

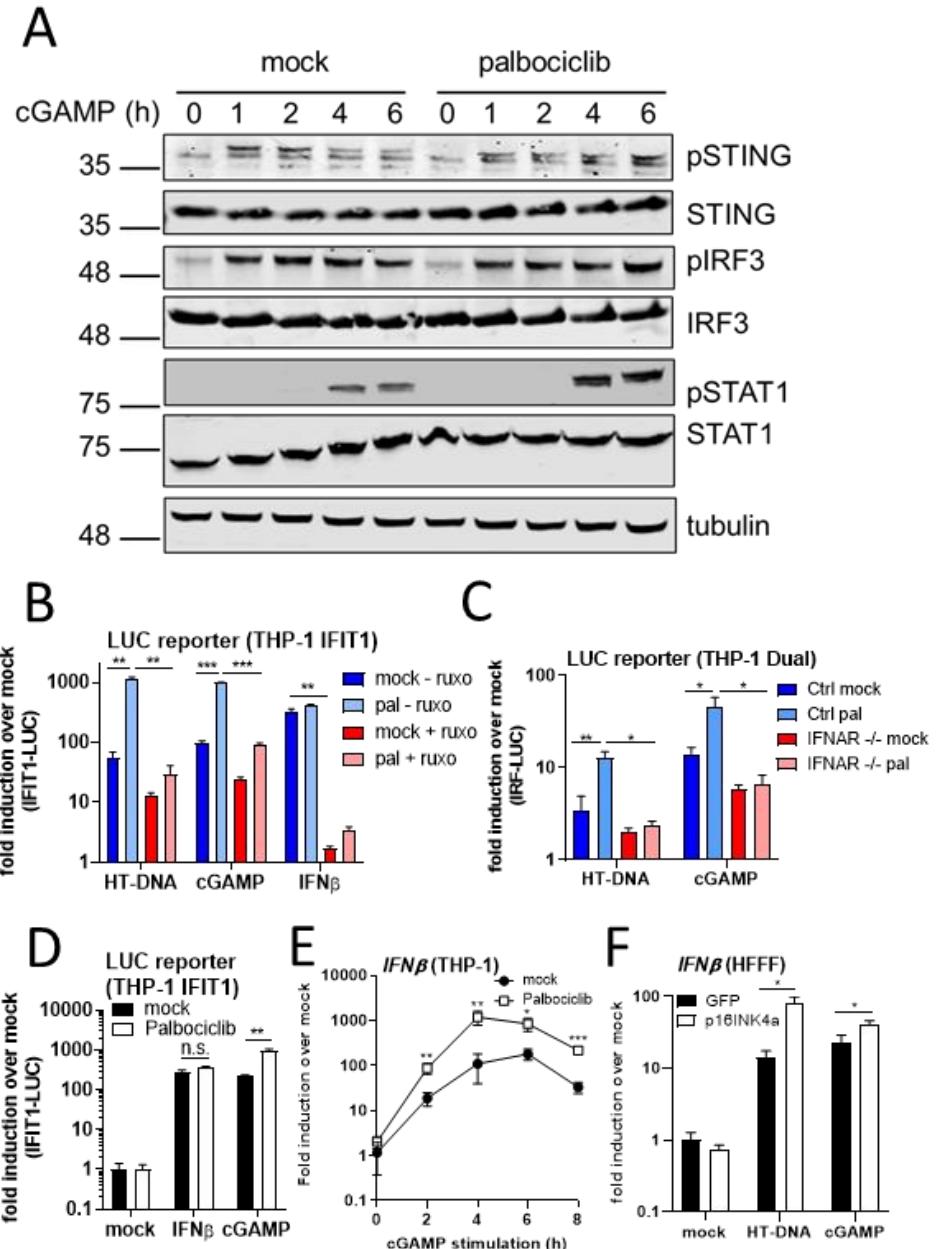
501 SD, n = 3, representative of at least 3 repeats. Fold inductions were calculated by normalising
502 each condition with the non-drug treated, non-stimulated (mock) control. Statistical analyses
503 were performed using Student's t-test, with Welch's correction where appropriate. ***P < 0.001.



504
505 **Fig 2: CDK4/6 negatively regulate DNA sensing**
506 (A) Immunoblot of THP-1 IFIT-1 cells transduced for 48 h with FLAG-GFP- or FLAG-p16INK4a-
507 expressing lentiviruses probed for FLAG and tubulin. (B) Luciferase activity from cells from (A),
508 stimulated overnight by HT-DNA (50 ng/ml) or cGAMP (500 ng/ml) transfection. (C) Luciferase
509 activity from THP-1 IFIT-1 cells transduced for 48 h with lentiviruses expressing shRNA against
510 CDKs or an shCtrl and stimulated overnight by transfection with HT-DNA (50 ng/ml) or cGAMP
511 (500 ng/ml). (D) Immunoblot from (C), probed for CDK1, CDK2, CDK4, CDK6 and tubulin. Data

512 are mean \pm SD, n = 3, representative of at least 3 repeats. Fold inductions were calculated by
513 normalising each condition with the FLAG-GFP transduced, non-stimulated (mock) control (B)
514 or shCtrl transduced, non-stimulated (mock) control (D). Statistical analyses were performed
515 using Student's t-test, with Welch's correction where appropriate. *P < 0.05, ***P < 0.001.

516
517 **Suppl. Fig 2:** CDK4/6 negatively regulate DNA sensing
518 (A) PI staining from Fig 2A, B. (B) PI staining from Fig 2C, D. Data are mean \pm SD, n = 3,
519 representative of at least 3 repeats.

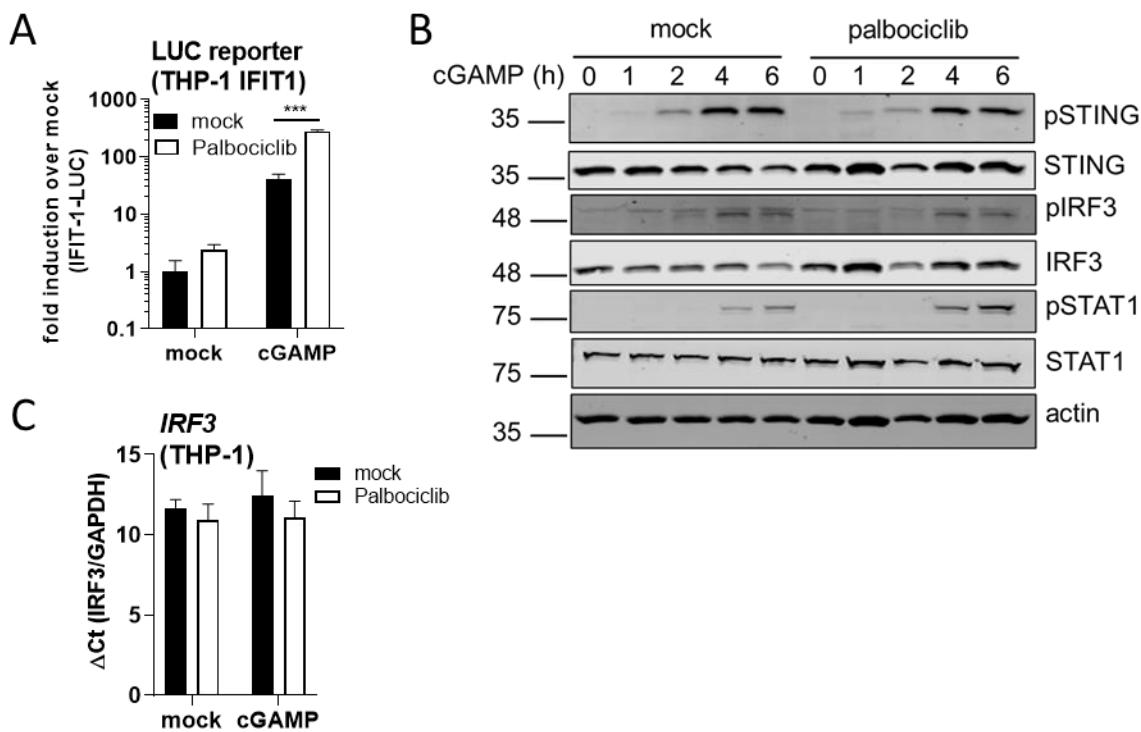


520

521 **Suppl. Fig 3: CDK4/6 negatively regulate DNA sensing**

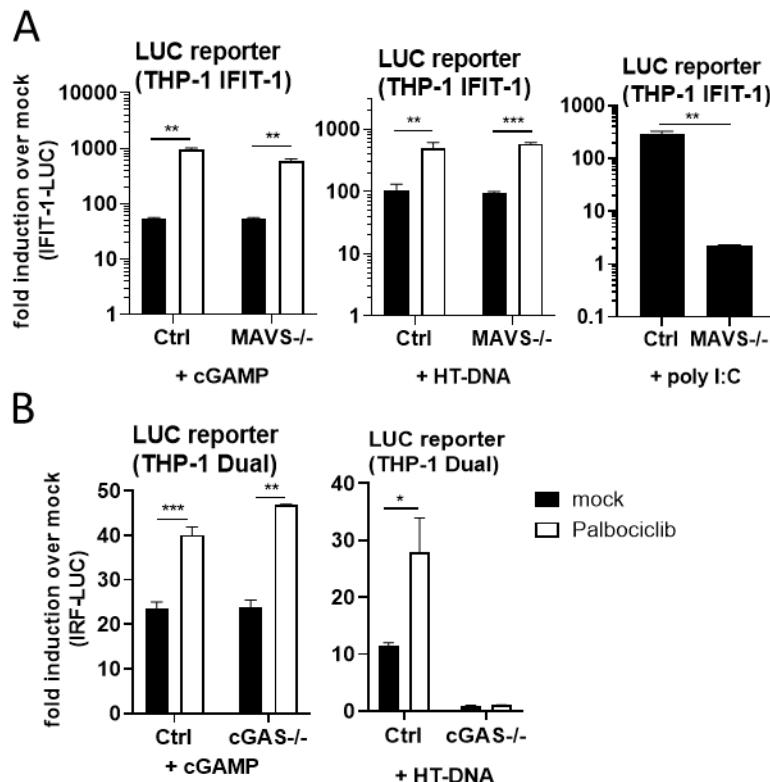
522 (A, B) ISG qRT-PCR from HFFFs cells pre-treated for 48 h with palbociclib (2 μ M, A) or ribociclib
 523 (2 μ M, B) and stimulated overnight by transfection with cGAMP (1000 ng/ml). (C) ISG qRT-
 524 PCR from HFFFs transduced with FLAG-GFP/INK4a-expressing lentivirus for 48 h and then

525 stimulated overnight by transfection with HT-DNA (50 ng/ml) or cGAMP (1000 ng/ml). (D, E)
526 ISG qRT-PCR from A549 (D) or U2OS (E) cells pre-treated for 48 h with palbociclib (2 μ M) and
527 stimulated by overnight transfection with HT-DNA (100 ng/ml) or cGAMP (1000 ng/ml). (F) ISG
528 qRT-PCR from murine McCoy fibroblasts pre-treated for 48 h with palbociclib (2 μ M) and
529 stimulated by overnight transfection with cGAMP (2000 ng/ml). Data are mean \pm SD, n = 3,
530 representative of at least 3 repeats. Fold inductions were calculated by normalising each
531 condition with the non-drug treated, non-stimulated (mock) control (A, B, D-F) or the FLAG-
532 GFP transduced, non-stimulated (mock) control (C). Statistical analyses were performed using
533 Student's t-test, with Welch's correction where appropriate. *P < 0.05, **P < 0.01, ***P < 0.001.

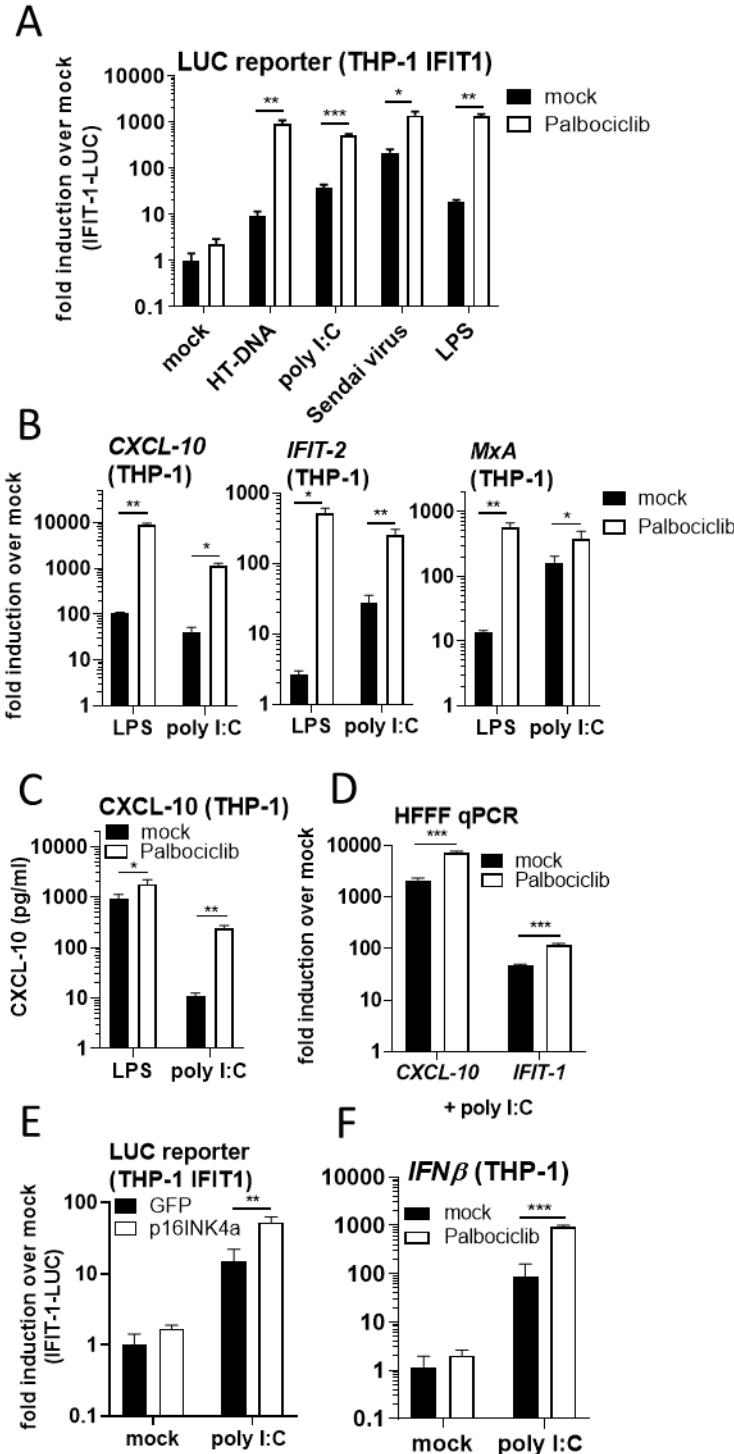


534

535 **Fig 3: CDK4/6 negatively regulate IFN β expression**


536 (A) Immunoblot analysis from THP-1 IFIT-1 cells pre-treated for 16 h with palbociclib and
 537 stimulated for the indicated time by cGAMP transfection (500 ng/ml), probed for total and
 538 phospho (Ser366) STING, total and phospho (Ser386) IRF3, total and phospho (Tyr701)
 539 STAT1 and tubulin. (B) Luciferase activity from THP-1 IFIT-1 cells mock- or pre-treated for 48
 540 h with palbociclib (2 μ M) +/- ruxolitinib (2 μ M) and stimulated overnight with IFN β (1 ng/ml) or
 541 by transfection with HT-DNA (50 ng/ml) or cGAMP (500 ng/ml). (C) Luciferase activity from
 542 THP-1 Dual Ctrl or IFNAR-/- cells mock- or pre-treated for 48 h with palbociclib (2 μ M) and

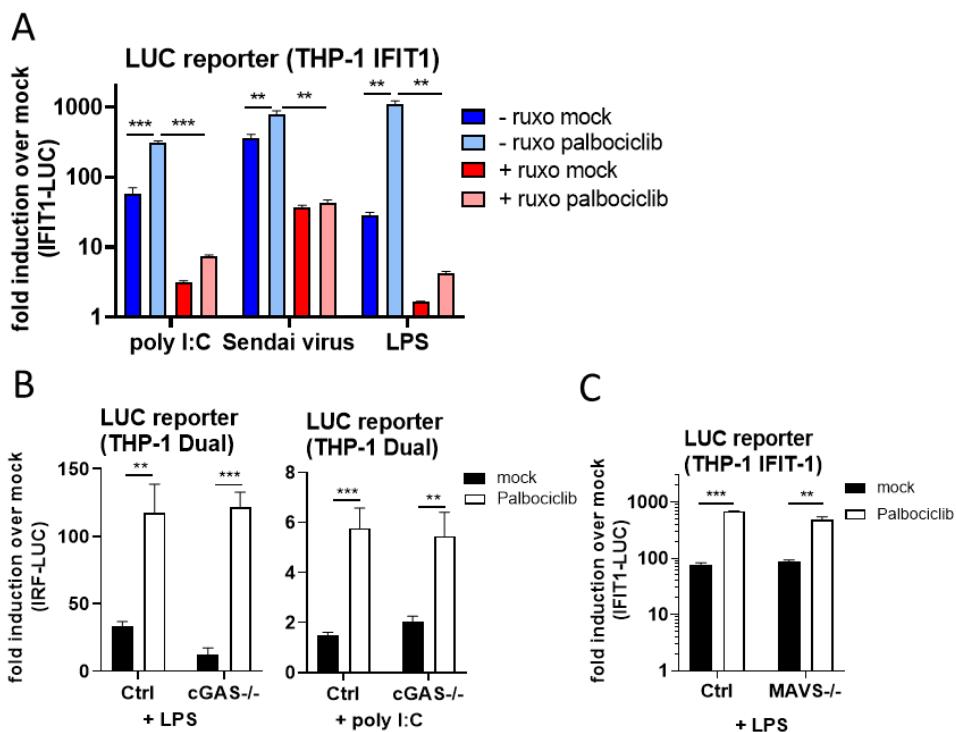
543 stimulated overnight by transfection with HT-DNA (50 ng/ml) or cGAMP (500 ng/ml). (D)
544 Luciferase activity from THP-1 IFIT-1 cells mock- or pre-treated for 48 h with palbociclib (2 μ M)
545 and stimulated overnight with IFN β (1 ng/ml) or by transfection with cGAMP (500 ng/ml). (E)
546 *IFN β* expression from THP-1 IFIT-1 cells mock- or pre-treated for 48 h with palbociclib (2 μ M)
547 and stimulated for the indicated times by cGAMP transfection (500 ng/ml). (F) *IFN β* expression
548 from HFFF transduced for 48 h with GFP- or p16INK4a-expressing lentiviruses and stimulated
549 overnight by cGAMP (1000 ng/ml) or HT-DNA (50 ng/ml) transfection. Data are mean \pm SD, n
550 = 3, representative of at least 3 repeats. Fold inductions were calculated by normalising each
551 condition with the non-drug treated, non-stimulated (mock) control (B-E) or the FLAG-GFP
552 transduced, non-stimulated (mock) control (F). Statistical analyses were performed using
553 Student's t-test, with Welch's correction where appropriate. *P < 0.05, **P < 0.01, ***P < 0.001.



554
555 **Suppl. Fig 4:** CDK4/6 negatively regulate IFN β expression
556 (A) Luciferase activity from Fig 3A. (B) Immunoblot analysis from HFFF cells pre-treated for 16
557 h with palbociclib and stimulated for the indicated time by cGAMP transfection (1000 ng/ml),
558 probed for total and phospho (Ser366) STING, total and phospho (Ser386) IRF3, total and
559 phospho (Tyr701) STAT1 and tubulin. (C) *IRF3* expression from THP-1 IFIT-1 cells mock- or

560 pre-treated for 48 h with palbociclib (2 μ M) and stimulated overnight by cGAMP transfection
561 (500 ng/ml). Data are mean \pm SD, n = 3, representative of at least 3 repeats. Fold inductions
562 were calculated by normalising each condition with the non-drug treated, non-stimulated (mock)
563 control (B). Δ Ct calculated by normalising to GAPDH expression (C). Statistical analyses were
564 performed using Student's t-test, with Welch's correction where appropriate. ***P < 0.001.

565
566 **Suppl Fig 5:** CDK4/6-dependent regulation of ISGs is independent of ERV sensing
567 (A) Luciferase activity from THP-1 IFIT-1 Ctrl or MAVS-/- cells mock- or pre-treated for 48 h
568 with palbociclib (2 μ M) and stimulated overnight by HT-DNA (50 ng/ml), cGAMP (500 ng/ml) or
569 poly I:C (125 ng/ml) transfection. (B) Luciferase activity from THP-1 Dual Ctrl or cGAS-/- cells
570 mock- or pre-treated for 48 h with palbociclib (2 μ M) and stimulated overnight by HT-DNA (50
571 ng/ml) or cGAMP (500 ng/ml) transfection. Data are mean \pm SD, n = 3, representative of at
572 least 3 repeats. Fold inductions were calculated by normalising each condition with the non-
573 drug treated, non-stimulated (mock) control. Statistical analyses were performed using
574 Student's t-test, with Welch's correction where appropriate. **P < 0.01, ***P < 0.001.



575

576 **Fig 4:** CDK4/6 regulate type I IFN downstream of multiple PRRs

577 Luciferase activity from THP-1 IFIT-1 cells mock- or pre-treated for 48 h with palbociclib (2 μ M)
 578 and stimulated overnight with LPS (100 ng/ml), Sendai virus infection (0.2 HA U/ml) or by HT-
 579 DNA (20 ng/ml), cGAMP (500 ng/ml) or poly I:C (500 ng/ml) transfection. (B) ISG qRT-PCR

580 from THP-1 IFIT-1 cells mock- or pre-treated for 48 h with palbociclib (2 μ M) and stimulated
581 overnight with LPS (100 ng/ml) or by poly I:C (500 ng/ml) transfection. (C) ELISA from (B). (D)
582 ISG qRT-PCR from HFFF mock- or pre-treated for 48 h with palbociclib (2 μ M) and stimulated
583 overnight by poly I:C (200 ng/ml) transfection. (E) Luciferase activity of THP-1 IFIT-1 cells
584 transduced for 48 h with FLAG-GFP- or FLAG-p16INK4a- expressing lentiviruses and
585 stimulated overnight by poly I:C (500 ng/ml) transfection. (F) *IFN β* expression from THP-1 IFIT-
586 1 cells mock- or pre-treated for 48 h with palbociclib (2 μ M) and stimulated for 4 h by poly I:C
587 transfection (500 ng/ml). Data are mean \pm SD, n = 3, representative of at least 3 repeats. Fold
588 inductions were calculated by normalising each condition with the non-drug treated, non-
589 stimulated (mock) control (A-D, F), or with FLAG-GFP lentivirus transduced, non-stimulated
590 (mock) control (E). Statistical analyses were performed using Student's t-test, with Welch's
591 correction where appropriate. *P < 0.05, **P < 0.01, ***P < 0.001.

592

593 **Suppl Fig 6: CDK4/6 regulate type I IFN downstream of multiple PRRs**

594 (A) Luciferase activity from THP-1 IFIT-1 cells mock- or pre-treated for 48 h with palbociclib (2
595 μ M) -/+ ruxolitinib (2 μ M) and stimulated overnight with LPS (100 ng/ml), infection with Sendai
596 virus (0.2 HA U/ml) or by transfection with poly I:C (500 ng/ml). (B) Luciferase activity from
597 THP-1 Dual Ctrl or cGAS-/- cells mock- or pre-treated for 48 h with palbociclib (2 μ M) and

598 stimulated overnight with LPS (100 ng/ml) or by poly I:C (1000 ng/ml) transfection. (C)
599 Luciferase activity from THP-1 IFIT-1 Ctrl or MAVS-/ cells mock- or pre-treated for 48 h with
600 palbociclib (2 μ M) and stimulated overnight with LPS (100 ng/ml). Data are mean \pm SD, n = 3,
601 representative of at least 3 repeats. Fold inductions were calculated by normalising each
602 condition with the non-drug treated, non-stimulated (mock) control. Statistical analyses were
603 performed using Student's t-test, with Welch's correction where appropriate. **P < 0.01, ***P <
604 0.001.

605

606 References

607 Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J,
608 Hornung V (2013) cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that
609 activates STING. *Nature* 498: 380-384
610 Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, D'Silva DB, Moghaddas F, Tailler M,
611 Lawlor KE, Zhan Y *et al* (2020) TBK1 and IKKepsilon Act Redundantly to Mediate STING-
612 Induced NF-kappaB Responses in Myeloid Cells. *Cell Rep* 31: 107492
613 Chen W, Srinath H, Lam SS, Schiffer CA, Royer WE, Jr., Lin K (2008) Contribution of Ser386
614 and Ser396 to activation of interferon regulatory factor 3. *J Mol Biol* 379: 251-260
615 Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope
616 LM, Snyder A *et al* (2015) Inhibiting DNA Methylation Causes an Interferon Response in
617 Cancer via dsRNA Including Endogenous Retroviruses. *Cell* 162: 974-986
618 Cingoz O, Goff SP (2018) Cyclin-dependent kinase activity is required for type I interferon
619 production. *Proc Natl Acad Sci U S A* 115: E2950-E2959
620 Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner
621 KP (2013) Structural mechanism of cytosolic DNA sensing by cGAS. *Nature* 498: 332-337
622 Crozier L, Foy R, Mouery BL, Whitaker RH, Corno A, Spanos C, Ly T, Gowen Cook J, Saurin
623 AT (2022) CDK4/6 inhibitors induce replication stress to cause long-term cell cycle
624 withdrawal. *EMBO J* 41: e108599
625 Fletcher AJ, Christensen DE, Nelson C, Tan CP, Schaller T, Lehner PJ, Sundquist WI,
626 Towers GJ (2015) TRIM5alpha requires Ube2W to anchor Lys63-linked ubiquitin chains and
627 restrict reverse transcription. *EMBO J* 34: 2078-2095
628 Fofaria NM, Kim SH, Srivastava SK (2014) Piperine causes G1 phase cell cycle arrest and
629 apoptosis in melanoma cells through checkpoint kinase-1 activation. *PLoS One* 9: e94298
630 Georgana I, Maluquer de Motes C (2019) Cullin-5 Adaptor SPSB1 Controls NF-kappaB
631 Activation Downstream of Multiple Signaling Pathways. *Front Immunol* 10: 3121
632 Gluck S, Guey B, Gulen MF, Wolter K, Kang TW, Schmacke NA, Bridgeman A, Rehwinkel J,
633 Zender L, Ablasser A (2017) Innate immune sensing of cytosolic chromatin fragments through
634 cGAS promotes senescence. *Nat Cell Biol* 19: 1061-1070
635 Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, Khan N, Ubellacker JM, Xie
636 S, Metzger-Filho O *et al* (2017) CDK4/6 inhibition triggers anti-tumour immunity. *Nature* 548:
637 471-475
638 Gray EE, Treuting PM, Woodward JJ, Stetson DB (2015) Cutting Edge: cGAS Is Required for
639 Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi-Goutieres
640 Syndrome. *J Immunol* 195: 1939-1943
641 Guey B, Wischnewski M, Decout A, Makasheva K, Kaynak M, Sakar MS, Fierz B, Ablasser A
642 (2020) BAF restricts cGAS on nuclear DNA to prevent innate immune activation. *Science*
643 369: 823-828
644 Harada H, Nakagawa H, Takaoka M, Lee J, Herlyn M, Diehl JA, Rustgi AK (2008) Cleavage
645 of MCM2 licensing protein fosters senescence in human keratinocytes. *Cell Cycle* 7: 3534-
646 3538
647 Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to
648 clinic. *Signal Transduct Target Ther* 6: 402

649 Huang LS, Hong Z, Wu W, Xiong S, Zhong M, Gao X, Rehman J, Malik AB (2020) mtDNA
650 Activates cGAS Signaling and Suppresses the YAP-Mediated Endothelial Cell Proliferation
651 Program to Promote Inflammatory Injury. *Immunity* 52: 475-486 e475
652 Jirawatnotai S, Sharma S, Michowski W, Suktitipat B, Geng Y, Quackenbush J, Elias JE,
653 Gygi SP, Wang YE, Sicinski P (2014) The cyclin D1-CDK4 oncogenic interactome enables
654 identification of potential novel oncogenes and clinical prognosis. *Cell Cycle* 13: 2889-2900
655 Kato Y, Park J, Takamatsu H, Konaka H, Aoki W, Aburaya S, Ueda M, Nishide M, Koyama S,
656 Hayama Y *et al* (2018) Apoptosis-derived membrane vesicles drive the cGAS-STING
657 pathway and enhance type I IFN production in systemic lupus erythematosus. *Ann Rheum
658 Dis* 77: 1507-1515
659 Kimura H, Nakamura T, Ogawa T, Tanaka S, Shiota K (2003) Transcription of mouse DNA
660 methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -
661 independent pathways. *Nucleic Acids Res* 31: 3101-3113
662 King KR, Aguirre AD, Ye YX, Sun Y, Roh JD, Ng RP, Jr., Kohler RH, Arlauckas SP, Iwamoto
663 Y, Savol A *et al* (2017) IRF3 and type I interferons fuel a fatal response to myocardial
664 infarction. *Nat Med* 23: 1481-1487
665 Li D, Wu M (2021) Pattern recognition receptors in health and diseases. *Signal Transduct
666 Target Ther* 6: 291
667 Li T, Huang T, Du M, Chen X, Du F, Ren J, Chen ZJ (2021) Phosphorylation and chromatin
668 tethering prevent cGAS activation during mitosis. *Science* 371
669 Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P (2013)
670 Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization.
671 *Immunity* 39: 1019-1031
672 Lima-Junior DS, Krishnamurthy SR, Bouladoux N, Collins N, Han SJ, Chen EY,
673 Constantinides MG, Link VM, Lim AI, Enamorado M *et al* (2021) Endogenous retroviruses
674 promote homeostatic and inflammatory responses to the microbiota. *Cell* 184: 3794-3811
675 e3719
676 Liu C, Huang Y, Cui Y, Zhou J, Qin X, Zhang L, Li X, Li Y, Guo E, Yang B *et al* (2021) The
677 Immunological Role of CDK4/6 and Potential Mechanism Exploration in Ovarian Cancer.
678 *Front Immunol* 12: 799171
679 Luecke S, Holleufner A, Christensen MH, Jonsson KL, Boni GA, Sorensen LK, Johannsen M,
680 Jakobsen MR, Hartmann R, Paludan SR (2017) cGAS is activated by DNA in a length-
681 dependent manner. *EMBO Rep* 18: 1707-1715
682 Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H,
683 Rainger JK, Leitch A *et al* (2017) cGAS surveillance of micronuclei links genome instability to
684 innate immunity. *Nature* 548: 461-465
685 Malumbres M (2014) Cyclin-dependent kinases. *Genome Biol* 15: 122
686 Mankan AK, Schmidt T, Chauhan D, Goldeck M, Honing K, Gaidt M, Kubarenko AV,
687 Andreeva L, Hopfner KP, Hornung V (2014) Cytosolic RNA:DNA hybrids activate the cGAS-
688 STING axis. *EMBO J* 33: 2937-2946
689 McConnell BB, Gregory FJ, Stott FJ, Hara E, Peters G (1999) Induced expression of
690 p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of
691 cyclin-CDK-inhibitor complexes. *Mol Cell Biol* 19: 1981-1989
692 Motwani M, Pesiridis S, Fitzgerald KA (2019) DNA sensing by the cGAS-STING pathway in
693 health and disease. *Nat Rev Genet* 20: 657-674
694 Okude H, Ori D, Kawai T (2020) Signaling Through Nucleic Acid Sensors and Their Roles in
695 Inflammatory Diseases. *Front Immunol* 11: 625833
696 Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ (1997) Regulation of NF-
697 kappaB by cyclin-dependent kinases associated with the p300 coactivator. *Science* 275: 523-
698 527
699 Rao S, Porter DC, Chen X, Herliczek T, Lowe M, Keyomarsi K (1999) Lovastatin-mediated
700 G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA
701 reductase. *Proc Natl Acad Sci U S A* 96: 7797-7802
702 Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones
703 PA, Pugh TJ *et al* (2015) DNA-Demethylating Agents Target Colorectal Cancer Cells by
704 Inducing Viral Mimicry by Endogenous Transcripts. *Cell* 162: 961-973
705 Schaller T, Ocwieja KE, Rasaiyah J, Price AJ, Brady TL, Roth SL, Hue S, Fletcher AJ, Lee
706 K, KewalRamani VN *et al* (2011) HIV-1 capsid-cyclophilin interactions determine nuclear
707 import pathway, integration targeting and replication efficiency. *PLoS Pathog* 7: e1002439

708 Sumner RP, Harrison L, Touizer E, Peacock TP, Spencer M, Zuliani-Alvarez L, Towers GJ
709 (2020) Disrupting HIV-1 capsid formation causes cGAS sensing of viral DNA. *EMBO J* 39:
710 e103958

711 Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA
712 sensor that activates the type I interferon pathway. *Science* 339: 786-791

713 Tanaka Y, Chen ZJ (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic
714 DNA signaling pathway. *Sci Signal* 5: ra20

715 Tie CH, Fernandes L, Conde L, Robbez-Masson L, Sumner RP, Peacock T, Rodriguez-Plata
716 MT, Mickute G, Gifford R, Towers GJ *et al* (2018) KAP1 regulates endogenous retroviruses in
717 adult human cells and contributes to innate immune control. *EMBO Rep* 19

718 Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H, Keller PR,
719 McNamara DJ, Sherry D, Zhu T *et al* (2005) Discovery of a potent and selective inhibitor of
720 cyclin-dependent kinase 4/6. *J Med Chem* 48: 2388-2406

721 Wang J, Li R, Lin H, Qiu Q, Lao M, Zeng S, Wang C, Xu S, Zou Y, Shi M *et al* (2019)
722 Accumulation of cytosolic dsDNA contributes to fibroblast-like synoviocytes-mediated
723 rheumatoid arthritis synovial inflammation. *Int Immunopharmacol* 76: 105791

724 Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an
725 endogenous second messenger in innate immune signaling by cytosolic DNA. *Science* 339:
726 826-830

727 Xu HG, Ren W, Zou L, Wang Y, Jin R, Zhou GP (2011) Direct repression of the human IRF-3
728 promoter by E2F1. *Immunogenetics* 63: 189-196

729 Yoshida A, Lee EK, Diehl JA (2016) Induction of Therapeutic Senescence in Vemurafenib-
730 Resistant Melanoma by Extended Inhibition of CDK4/6. *Cancer Res* 76: 2990-3002

731 Yum S, Li M, Fang Y, Chen ZJ (2021) TBK1 recruitment to STING activates both IRF3 and
732 NF-kappaB that mediate immune defense against tumors and viral infections. *Proc Natl Acad
733 Sci U S A* 118

734 Zahid A, Ismail H, Li B, Jin T (2020) Molecular and Structural Basis of DNA Sensors in
735 Antiviral Innate Immunity. *Front Immunol* 11: 613039

736 Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z, Brautigam CA, Zhang X, Chen ZJ (2014) The
737 cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-
738 like conformational changes in the activation loop. *Cell Rep* 6: 421-430

739 Zhong L, Hu MM, Bian LJ, Liu Y, Chen Q, Shu HB (2020) Phosphorylation of cGAS by CDK1
740 impairs self-DNA sensing in mitosis. *Cell Discov* 6: 26

741 Zhou Z, Zhang X, Lei X, Xiao X, Jiao T, Ma R, Dong X, Jiang Q, Wang W, Shi Y *et al* (2021)
742 Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-
743 2 infection. *Signal Transduct Target Ther* 6: 382

744 Zoubir M, Flament C, Gdoura A, Bahleda R, Litvinova E, Soumelis V, Conforti R, Viaud S,
745 Soria JC, Kroemer G *et al* (2011) An inhibitor of cyclin-dependent kinases suppresses TLR
746 signaling and increases the susceptibility of cancer patients to herpesviridae. *Cell Cycle* 10:
747 118-126

748 Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector
749 achieves efficient gene delivery in vivo. *Nat Biotechnol* 15: 871-875

750