

1 **Atoh1 is required for the formation of lateral line electroreceptors and**
2 **hair cells, whereas Foxg1 represses an electrosensory fate**

3
4 Martin Minařík¹, Alexander S. Campbell¹, Roman Franěk², Michaela Vazačová², Miloš
5 Havelka², David Gela², Martin Pšenička² and Clare V. H. Baker^{1*}

6
7 ¹Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK

8 ²Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology,
9 University of South Bohemia in České Budějovice, Vodňany, Czech Republic

10
11 *For correspondence: cvhb1@cam.ac.uk

12
13
14
15 **Abstract**

16 In electroreceptive jawed fishes and amphibians, individual lateral line placodes form lines of
17 neuromasts on the head containing mechanosensory hair cells, flanked by fields of ampullary
18 organs containing electroreceptors - modified hair cells that respond to weak electric fields.
19 Extensively shared gene expression between neuromasts and ampullary organs suggests that
20 conserved molecular mechanisms are involved in their development, but a few transcription
21 factor genes are restricted either to the developing electrosensory or mechanosensory lateral
22 line. Here, we used CRISPR/Cas9-mediated mutagenesis in F0-injected sterlet embryos
23 (*Acipenser ruthenus*, a sturgeon) to test the function of three such genes. We found that the
24 'hair cell' transcription factor gene *Atoh1* is required for both hair cell and electroreceptor
25 differentiation in sterlet, and for *Pou4f3* and *Gfi1* expression in both neuromasts and ampullary
26 organs. These data support the conservation of developmental mechanisms between hair
27 cells and electroreceptors. Targeting ampullary organ-restricted *Neurod4* did not yield any
28 phenotype, potentially owing to redundancy with other *Neurod* genes that we found to be
29 expressed in sterlet ampullary organs. After targeting mechanosensory-restricted *Foxg1*,
30 ampullary organs formed within neuromast lines, suggesting that *Foxg1* normally represses
31 their development. We speculate that electrosensory organs may be the 'default' fate of lateral
32 line primordia in electroreceptive vertebrates.

33

34 **Introduction**

35

36 Mechanosensory hair cells in different compartments of the inner ear transduce fluid
37 movements for hearing and balance (Moser et al., 2020; Caprara and Peng, 2022;
38 Mukhopadhyay and Pangrsic, 2022). In fishes and aquatic-stage amphibians, hair cells are
39 also found in lateral line neuromasts in the skin, which are stimulated by local water movement
40 (Mogdans, 2019; Webb, 2021). Supporting cells in neuromasts differentiate into hair cells for
41 homeostasis and repair (Kniss et al., 2016; Lush et al., 2019) and neuromasts are easily
42 accessible in lines over the head and trunk, making the zebrafish lateral line an excellent
43 model for hair cell development and regeneration (Kniss et al., 2016; Nicolson, 2017; Pickett
44 and Raible, 2019).

45 The lateral line system of zebrafish (a cyprinid teleost) is purely mechanosensory, as
46 is the lateral line system of the other main anamniote lab model, the frog *Xenopus*. However,
47 in many other vertebrates, the lateral line system also has an electrosensory division (Bullock
48 et al., 1983; Baker et al., 2013; Crampton, 2019). In electroreceptive non-teleost jawed
49 vertebrates, some or all of the neuromast lines on the head are flanked by fields of ampullary
50 organs containing electroreceptors, which respond to weak cathodal stimuli such as the
51 electric fields surrounding other animals in water (Bodznick and Montgomery, 2005;
52 Crampton, 2019; Leitch and Julius, 2019; Chagnaud et al., 2021). Electroreception is mediated
53 by voltage-gated calcium channels in the apical membrane (Bodznick and Montgomery, 2005;
54 Leitch and Julius, 2019). The voltage sensor was recently identified in cartilaginous fishes as
55 the L-type voltage-gated calcium channel $\text{Ca}_v1.3$ (Bellono et al., 2017; Bellono et al., 2018),
56 whose pore-forming alpha subunit is encoded by *Cacna1d*. $\text{Ca}_v1.3$ is also required for synaptic
57 transmission at hair-cell ribbon synapses (Moser et al., 2020; Mukhopadhyay and Pangrsic,
58 2022).

59 Electroreceptors, like hair cells, have an apical primary cilium and basolateral ribbon
60 synapses with lateral line afferents (Jørgensen, 2005; Baker, 2019). However, in contrast to
61 the highly ordered, stepped array of apical microvilli ('stereocilia') that forms the 'hair bundle'
62 critical for hair-cell mechanotransduction (Caprara and Peng, 2022), electroreceptors in many
63 species (e.g., cartilaginous fishes; ray-finned paddlefishes and sturgeons) lack apical microvilli
64 altogether (Jørgensen, 2005; Baker, 2019). Electroreceptors in other species have a few
65 apical microvilli, while the electroreceptors of the amphibian axolotl have around 200 microvilli
66 surrounding an eccentrically positioned primary cilium (Jørgensen, 2005; Baker, 2019).
67 Indeed, axolotl electroreceptors were described as "remarkably similar to immature hair cells"
68 (Northcutt et al., 1994). Thus, despite their shared function, the apical surface of
69 electroreceptors (where voltage-sensing occurs; Bodznick and Montgomery, 2005; Leitch and
70 Julius, 2019) varies considerably across different vertebrate groups.

71 Fate-mapping experiments have shown that neuromasts, ampullary organs (where
72 present) and their afferent neurons all develop from a series of pre-otic and post-otic lateral
73 line placodes on the embryonic head (Northcutt, 1997; Piotrowski and Baker, 2014; Baker,
74 2019). In electroreceptive jawed vertebrates, lateral line placodes elongate to form sensory
75 ridges that eventually fragment: neuromasts differentiate first, in a line along the centre of each
76 ridge, and ampullary organs (if present) form later, in fields on the flanks of the ridge (Northcutt,
77 1997; Piotrowski and Baker, 2014; Baker, 2019). The lateral line primordia of electroreceptive
78 vertebrates therefore provide a fascinating model for studying the formation of different
79 sensory cell types and organs. What molecular mechanisms control the formation within the
80 same primordium of mechanosensory neuromasts containing hair cells, versus electrosensory
81 ampullary organs containing electroreceptors?

82 To gain molecular insight into electroreceptor development, we originally took a
83 candidate-gene approach, based on genes known to be important for neuromast and/or hair
84 cell development. This enabled us to identify a variety of genes expressed in developing
85 ampullary organs as well as neuromasts, in embryos from the three major jawed-vertebrate
86 groups, i.e., cartilaginous fishes (lesser-spotted catshark, *Scyliorhinus canicula*, and little
87 skate, *Leucoraja erinacea*; O'Neill et al., 2007; Gillis et al., 2012); lobe-finned bony
88 fishes/tetrapods (a urodele amphibian, the axolotl, *Ambystoma mexicanum*; Modrell and
89 Baker, 2012); and ray-finned bony fishes (a chondrostean, the Mississippi paddlefish,
90 *Polyodon spathula*; Modrell et al., 2011a; Modrell et al., 2011b; Modrell et al., 2017b). We also
91 took an unbiased discovery approach using differential bulk RNA-seq in late-larval paddlefish,
92 which yielded a dataset of almost 500 genes that were putatively enriched in lateral line organs
93 (Modrell et al., 2017a). Validation by *in situ* hybridization of a subset of candidates from this
94 dataset suggested that conserved molecular mechanisms were involved in hair cell and
95 electroreceptor development, and that hair cells and electroreceptors were closely related
96 physiologically (Modrell et al., 2017a). For example, developing ampullary organs express the
97 key 'hair cell' transcription factor genes *Atoh1* and *Pou4f3* (see Roccio et al., 2020; Iyer and
98 Groves, 2021), and genes essential for the function of hair cell ribbon synapses, including the
99 voltage-gated calcium channel gene *Cacna1d*, encoding Ca_v1.3 (Modrell et al., 2017a). We
100 also identified a handful of genes expressed in developing ampullary organs but not
101 neuromasts, including two electroreceptor-specific voltage-gated potassium channel subunit
102 genes (*Kcna5* and *Kcnab3*) and a single transcription factor gene, *Neurod4* (Modrell et al.,
103 2017a).

104 Up to that point, we had reported the shared expression of fifteen transcription factor
105 genes in both ampullary organs and neuromasts, but only one transcription factor gene with
106 restricted expression, namely, electrosensory-restricted *Neurod4* (Modrell et al., 2011a;
107 Modrell et al., 2011b; Modrell et al., 2017b). More recently (preprint: Minařík et al., 2023), we

108 used the late-larval paddlefish lateral line organ-enriched dataset (Modrell et al., 2017b), as
109 well as a candidate gene approach, to identify 23 more transcription factor genes expressed
110 within developing lateral line organs in paddlefish and/or in a related, more experimentally
111 tractable chondrostean, the sterlet (*Acipenser ruthenus*, a small sturgeon; e.g., Chen et al.,
112 2018; Baloch et al., 2019; Stundl et al., 2022). Twelve of these transcription factor genes -
113 including *Gfi1* - were expressed in both ampullary organs and neuromasts (preprint: Minařík
114 et al., 2023). Thus, developing ampullary organs, as well as neuromasts, express the three
115 'hair cell' transcription factor genes - *Atoh1*, *Pou4f3* and *Gfi1* - whose co-expression is
116 sufficient to drive postnatal mouse cochlear supporting cells to adopt a 'hair cell-like' fate, albeit
117 not to form fully mature hair cells (Roccio et al., 2020; Iyer and Groves, 2021; Chen et al.,
118 2021; Iyer et al., 2022). We also identified six novel ampullary organ-restricted transcription
119 factor genes and the first-reported mechanosensory-restricted transcription factor genes
120 (preprint: Minařík et al., 2023). One of the five mechanosensory-restricted transcription factor
121 genes was *Foxg1*, which was expressed and maintained in the central region of sensory ridges
122 where lines of neuromasts form, although excluded from hair cells (preprint: Minařík et al.,
123 2023).

124 Here, we used CRISPR/Cas9-mediated mutagenesis in F0-injected sterlet embryos to
125 investigate the function in lateral line organ development of *Atoh1*, electrosensory-restricted
126 *Neurod4* and mechanosensory-restricted *Foxg1* (for reference, Supplementary Figure S1
127 shows the normal expression patterns of these genes). We report that *Atoh1* is required for
128 the formation of electroreceptors, as well as hair cells. We did not see any phenotype after
129 targeting ampullary organ-restricted *Neurod4*, potentially owing to redundancy with other
130 *Neurod* family members that we found to be expressed in sterlet ampullary organs (and
131 neuromasts). Targeting mechanosensory-restricted *Foxg1* resulted in a striking phenotype:
132 the ectopic formation of ampullary organs within neuromast lines, and in some cases the
133 fusion of ampullary organ fields that normally develop either side of a line of neuromasts. This
134 suggests the unexpected but intriguing hypothesis that ampullary organs may be the 'default'
135 fate for lateral line sensory ridges, and that this is repressed by *Foxg1*, allowing neuromasts
136 to form instead.

137

138 **Results**

139

140 **CRISPR/Cas9-mediated mutagenesis in F0-injected sterlet embryos**

141 To test gene function during lateral line organ development, we optimised CRISPR/Cas9-
142 mediated mutagenesis in F0-injected sterlet embryos, building on established protocols for
143 axolotl (*Ambystoma mexicanum*; Flowers et al., 2014; Fei et al., 2018), newt (*Pleurodeles*
144 *waltli*; Elewa et al., 2017), and sea lamprey (*Petromyzon marinus*; Square et al., 2015; York et

145 al., 2019; Square et al., 2020), whose eggs are all large (1-2 mm in diameter) and easy to
146 microinject at the 1-2 cell stage. Ovulated sterlet eggs are very large: roughly 2.5 mm in
147 diameter (Lenhardt et al., 2005). (Since this project started, CRISPR/Cas9-mediated
148 mutagenesis in F0-injected sterlet embryos has been reported, including by two of us, R.F.
149 and M.P.; Chen et al., 2018; Baloch et al., 2019; Stundl et al., 2022.) Analysis of microsatellite
150 data had originally suggested that although a whole-genome duplication had occurred in the
151 sterlet lineage, the sterlet was likely to be a functional diploid (Ludwig et al., 2001). Our
152 sgRNAs were designed before the first chromosome-level sterlet genome was published (Du
153 et al., 2020). Analysis of this genome showed that approximately 70% of ohnologs (i.e., gene
154 paralogs originating from the whole-genome duplication) had in fact been retained, suggesting
155 functional tetraploidy (Du et al., 2020). We comment on this in relation to our experiments at
156 the relevant points below.

157 We targeted the melanin-producing enzyme *tyrosinase* (*Tyr*) as a positive control,
158 using eight different single-guide (sg) RNAs. Table 1 shows the sgRNA target sequences
159 (including two that were designed and recently published by Stundl et al., 2022) and the
160 various combinations in which they were injected. Supplementary Figure S2A shows the
161 position of each sgRNA relative to the exon structure of the *tyrosinase* gene. Our sgRNAs
162 were designed before chromosome-level sterlet genomes were available (Du et al., 2020 and
163 the 2022 reference genome: https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_902713425.1). Searching the reference
164 genome for *Tyr* showed that both *Tyr* ohnologs have been retained, on chromosomes 8 and
165 9, with 99.11% nucleotide identity in the coding sequence (98.81% amino acid identity). Our
166 sgRNAs target both *Tyr* ohnologs equally.
167

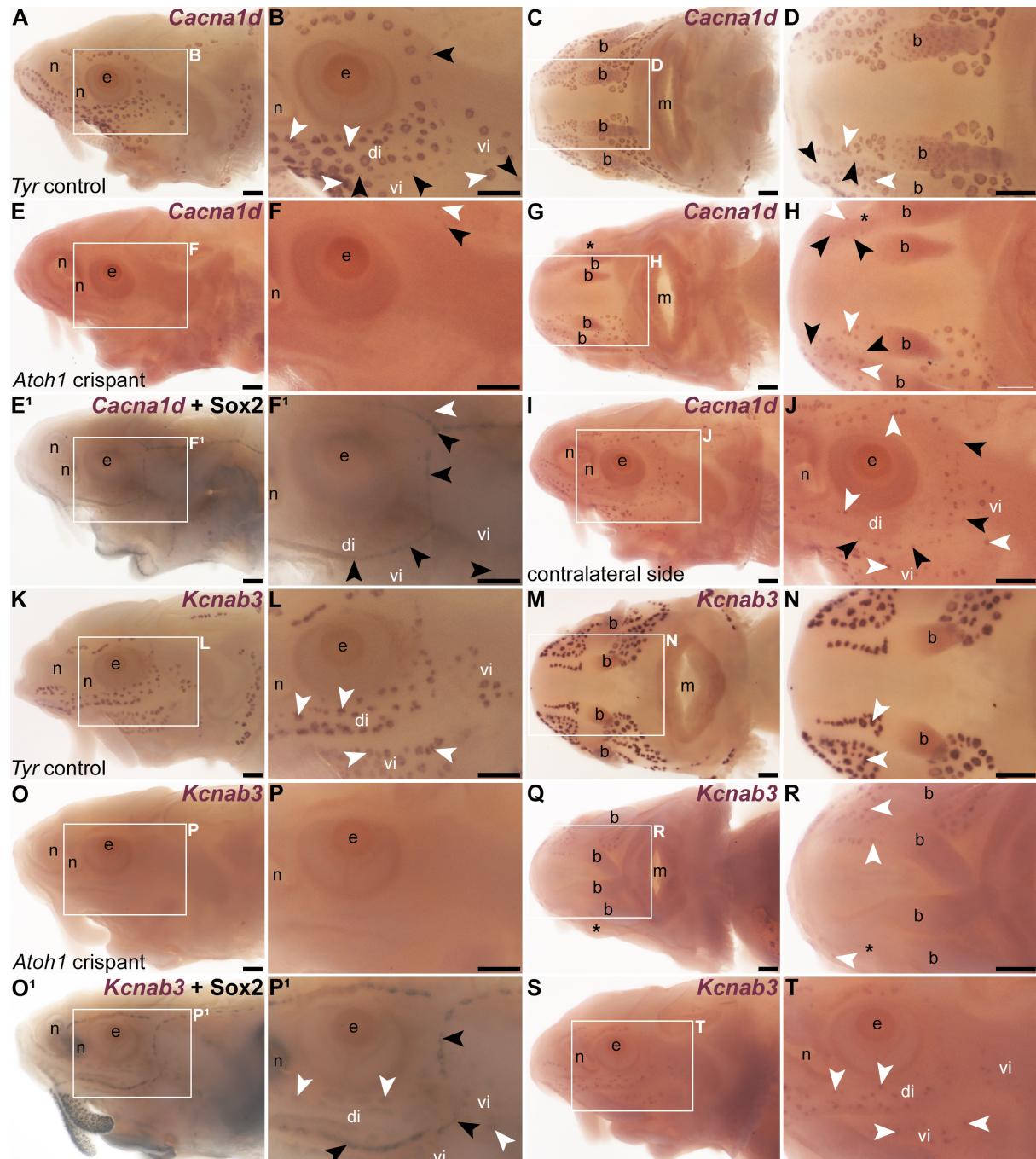
168 Three different combinations of six of the eight *Tyr* sgRNAs, when injected at the 1-2-
169 cell stage (2-4 sgRNAs pre-complexed with Cas9), each generated at least four embryos
170 (hereafter 'crispants') with altered pigmentation phenotypes evaluated at stage 45 (Dettlaff et
171 al., 1993), the onset of the transition to independent feeding. The other two *Tyr* sgRNAs failed
172 to generate any phenotypes (Supplementary Table 1). Excluding the *Tyr* sgRNAs that failed,
173 at least some degree of pigment loss was seen in 63/111 *Tyr* crispants (56.8%) across nine
174 independent batches. Examples of *Tyr* crispants with pigmentation phenotypes, plus a control,
175 are shown in Supplementary Figure S2B-D. The most efficient results were obtained by
176 injecting 1-cell embryos with a preassembled mix of Cas9 protein plus two chemically modified
177 sgRNAs (purchased from Synthego) against the target gene, and subsequently maintaining
178 the embryos at room temperature for around 6 hours. The time from fertilization to completion
179 of the first cleavage is around 2-3 hours at room temperature, giving plenty of time for the
180 Cas9/sgRNA complex to act before returning the embryos to colder temperatures for

181 subsequent development. (Sterlet are cold-water fish and the optimum temperature for
182 maintaining embryos for normal development is 16 °C.)

183 Following embryo injection at the 1-2-cell stage with pre-complexed sgRNAs/Cas9 and
184 fixation at stage 45, genomic DNA was extracted from the trunk/tail prior to analysis of the
185 heads by *in situ* hybridization (ISH). The sgRNA-targeted region from trunk/tail genomic DNA
186 was amplified by PCR for direct Sanger sequencing and *in silico* analysis using Synthego's
187 online 'Inference of CRISPR Edits' (ICE) tool (Conant et al., 2022) (also see e.g., Uribe-
188 Salazar et al., 2022) to analyse the identity and frequency of edits of the target gene. Although
189 our genotyping primers were designed before chromosome-level sterlet genomes were
190 available, comparison with the reference genome showed no mismatches against either of the
191 two ohnologs. Genotyping and ICE analysis (Conant et al., 2022) of tails from individual *Tyr*
192 crisprants showed successful disruption of the *Tyr* gene (Supplementary Figure S2E-I show
193 examples of successful disruption of *Tyr*; the genotyping data were consistent with the primers
194 amplifying both ohnologs).

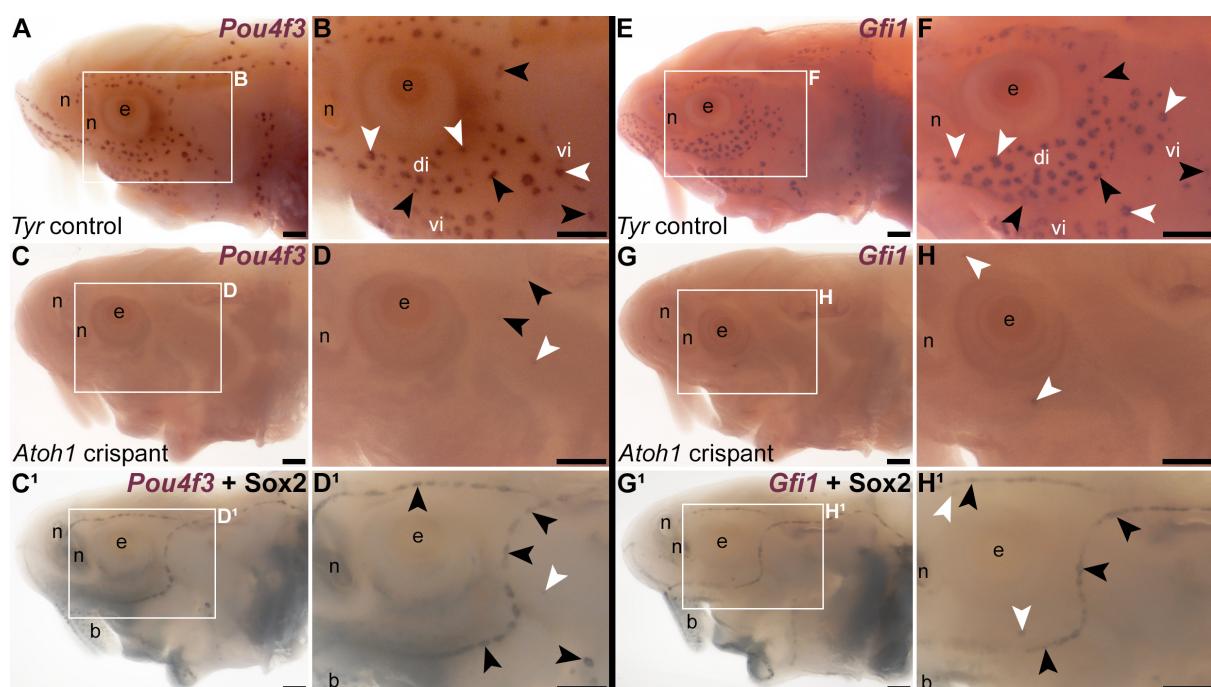
195 We note that our genotyping results have shown that most crisprants analysed, across
196 all genes targeted, have shown some degree of targeted mutagenesis in the trunk/tail, with a
197 range of deletion sizes. Although phenotypes from the initial spawning seasons were almost
198 always highly mosaic, suggesting mutations occurred later in development, following
199 optimization a proportion of embryos showed complete unilateral and occasionally bilateral
200 phenotypes. Such phenotypes suggest that mutation occurred in one cell at the 2-cell stage
201 (unilateral phenotype) or even as early as the 1-cell stage (bilateral phenotype). Some degree
202 of mosaicism can be useful, however, as the unaffected tissue provides an internal control for
203 the normal expression of the gene being examined by ISH.

204


205 **Targeting *Atoh1* resulted in the loss of hair cells and electroreceptors**

206 We targeted *Atoh1* for CRISPR/Cas9-mediated mutagenesis by injecting sterlet embryos at
207 the 1-2 cell stage with Cas9 protein pre-complexed with two sgRNAs targeting *Atoh1* (Table
208 1; Supplementary Figure S2A). Our sgRNAs were designed before chromosome-level sterlet
209 genomes were available (Du et al., 2020 and the 2022 reference genome:
210 https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_902713425.1/). Searching the
211 reference genome for *Atoh1* showed that both *Atoh1* ohnologs have been retained, on
212 chromosomes 1 and 2, with 91.41% nucleotide identity (and 84.02% amino acid identity) in
213 the coding sequence. The copy on chromosome 2 encodes a shorter version of the protein
214 with a four amino acid deletion near the N-terminus (E14_G17del). Our *Atoh1* sgRNA 1 (Table
215 1; Supplementary Figure S3A) has a one-base mismatch to the shorter *Atoh1* gene on
216 chromosome 2, in position 3 of the target sequence (PAM-distal), which is unlikely to prevent
217 successful targeting (Wu et al., 2014). Our *Atoh1* sgRNA 2 (Table 1; Supplementary Figure

218 S3A) has a two-base mismatch to the longer *Atoh1* gene on chromosome 1, in positions 1 and
219 2 of the target sequence (PAM-distal), which is also unlikely to prevent successful targeting.
220 Thus, we expect our sgRNAs to target both *Atoh1* ohnologs.


221 The *Atoh1* crispants were raised to stage 45 (the onset of independent feeding, around
222 14 days post-fertilization), together with *Tyr*-targeted siblings/half-siblings as controls (eggs
223 were fertilized *in vitro* with a mix of sperm from three different males). ISH for the hair cell and
224 electroreceptor marker *Cacna1d* (Modrell et al., 2017a) (also see preprint: Minařík et al.,
225 2023), which was recently shown to be a direct *Atoh1* target gene in mouse cochlear hair cells
226 (Jen et al., 2022), revealed no obvious lateral line organ phenotype in *Tyr* control crispants
227 (Figure 1A-D; n=0/17 across four independent batches; Supplementary Table 1). Even in
228 wildtype larvae, the number of ampullary organs in individual fields varies considerably at
229 stage 45, so ampullary organ number was not in itself scored as a phenotype. However,
230 *Cacna1d* expression was absent mosaically in neuromast lines and ampullary organ fields in
231 *Atoh1* crispants (Figure 1E-J; n=13/22, i.e., 59%, across five independent batches;
232 Supplementary Table 1). This suggested that disruption of the *Atoh1* gene in sterlet resulted
233 in the failure of hair cell differentiation (as expected from zebrafish; Millimaki et al., 2007) and
234 also electroreceptors. Post-ISH immunostaining for the supporting-cell marker *Sox2*
235 (Hernández et al., 2007; Modrell et al., 2017a) (also see preprint: Minařík et al., 2023)
236 confirmed that neuromasts had formed (Figure 1E¹,F¹), so the phenotype was specific to
237 receptor cells. Ampullary organs were not reliably detected because *Sox2* immunostaining
238 labels neuromasts much more strongly than ampullary organs in sterlet (Supplementary
239 Figure S1A,B; also preprint: Minařík et al., 2023), as it does in paddlefish (Modrell et al.,
240 2017a). ISH for electroreceptor-specific *Kcnab3* (Modrell et al., 2017a) (also see preprint:
241 Minařík et al., 2023) similarly showed no effect in *Tyr* control crispants (Figure 1K-N; n=0/27
242 across six independent batches; Supplementary Table 1), but the mosaic absence of *Kcnab3*
243 expression in ampullary organ fields in *Atoh1* crispants (Figure 1O-T; n=8/13, i.e., 62%, across
244 two independent batches; Supplementary Table 1). Post-*Kcnab3* ISH immunostaining for
245 *Sox2* confirmed that ampullary organs were still present, as well as neuromasts (Figure
246 1O¹,P¹).

247 In mouse cochlear hair cells, the 'hair cell' transcription factor genes *Pou4f3* and *Gfi1*
248 are direct *Atoh1* targets (Yu et al., 2021; Jen et al., 2022). ISH for *Pou4f3* showed no
249 phenotype in *Tyr* controls (Figure 2A,B; n=0/9 across three batches; Supplementary Table 1)
250 but the mosaic absence of *Pou4f3* in ampullary organ fields and neuromast lines of *Atoh1*
251 crispants (Figure 2C-D¹; n=13/15 embryos, i.e., 87%, across three batches; Supplementary
252 Table 1). Similarly, ISH for *Gfi1* showed no phenotype in *Tyr* controls (Figure 2E,F; n=0/17
253 across five batches; Supplementary Table 1), but mosaic absence of *Gfi1* in ampullary organ
254 fields and neuromast lines of *Atoh1* crispants (Figure 2G-H¹; n=9/14 embryos, i.e., 64%,

255
256 **Figure 1. Atoh1 is required for the differentiation of lateral line hair cells and electroreceptors.**
257 Sterlet crissants at stage 45 after *in situ* hybridization (ISH) for the hair cell and electroreceptor marker
258 *Cacna1d*, or the electroreceptor-specific marker *Kcnab3*. Black arrowheads indicate examples of
259 neuromasts; white arrowheads indicate examples of ampullary organs. (A-D) In a control *Tyr* crissant,
260 *Cacna1d* expression shows the normal distribution of hair cells in lines of neuromasts, and
261 electroreceptors in fields of ampullary organs flanking the neuromast lines (lateral view: A,B; ventral
262 view: C,D). (E-J) In an *Atoh1* crissant (from a different batch to the *Tyr* crissant shown in A-D), *Cacna1d*
263 expression is absent on the left side of the head (E,F), except for a few isolated organs in the otic region
264 and on the operculum. Post-ISH *Sox2* immunostaining (E¹,F¹) shows that neuromast supporting cells
265 are still present. A ventral view (G,H) and a lateral view of the right side of the head (I,J; image flipped
266 horizontally for ease of comparison) reveal a unilateral phenotype, with *Cacna1d*-expressing hair cells
267 and electroreceptors mostly absent from the left side only of the ventral rostrum (asterisk in G,H) and
268 present on the right side of the head (I,J). (K,L) Lateral view of a control *Tyr* crissant after ISH for
269 *Kcnab3*, showing the position of electroreceptors in ampullary organs. (M,N) Ventral view of another
270 *Tyr* crissant showing *Kcnab3* expression in ampullary organs. (O-P¹) Lateral view of an *Atoh1* crissant

271 in which *Kcnab3* expression is absent from ampullary organs. Post-ISH Sox2 immunostaining (O¹,P¹)
272 shows that supporting cells are still present in neuromasts (strong staining) and can also be detected
273 in ampullary organs (much weaker staining). (Q-T) A different *Atoh1* crispant after ISH for *Kcnab3*,
274 shown in ventral view (Q,R: compare with M,N) and lateral view (S,T). *Kcnab3* expression reveals a
275 unilateral phenotype: *Kcnab3*-expressing electroreceptors are mostly absent from the right side
276 (asterisk) but present on the left side. Abbreviations: b, barbel; di, dorsal infraorbital ampullary organ
277 field; e, eye; m, mouth; n, naris; S, stage; vi, ventral infraorbital ampullary organ field. Scale bars: 200
278 μm .
279

280 **Figure 2. *Atoh1* is required for *Pou4f3* and *Gfi1* expression in ampullary organs and neuromasts.**
281 Sterlet crispants at stage 45 after *in situ* hybridization for transcription factor genes expressed by
282 developing hair cells. Black arrowheads indicate examples of neuromasts; white arrowheads indicate
283 examples of ampullary organs. (A,B) In a control *Tyr* crispant, *Pou4f3* expression is detected in both
284 neuromasts and ampullary organs. (C-D¹) In an *Atoh1* crispant, *Pou4f3* expression is absent from both
285 neuromasts and ampullary organs, except for a few isolated organs in the postorbital region. Post-ISH
286 *Sox2* immunostaining (C¹,D¹) shows that neuromast supporting cells are still present. Most ampullary
287 organs are not visible as *Sox2* expression in ampullary organs is significantly weaker than in
288 neuromasts (Supplementary Figure S1A,B) and often not detectable after post-ISH immunostaining.
289 (E,F) In a control *Tyr* crispant, *Gfi1* expression is detected in both neuromasts and ampullary organs.
290 (G-H¹) In an *Atoh1* crispant, *Gfi1* expression is absent from both neuromasts and ampullary organs,
291 except for a few isolated organs in the supra- and infraorbital region. Post-ISH *Sox2* immunostaining
292 (G¹,H¹) shows that neuromast supporting cells are still present. (Most ampullary organs are not visible
293 due to weaker *Sox2* immunostaining.) Abbreviations: b, barbel; di, dorsal infraorbital ampullary organ
294 field; e, eye; n, naris; S, stage; vi, ventral infraorbital ampullary organ field. Scale bars: 200 μm .
295

296 across four batches; Supplementary Table 1). Post-ISH immunostaining for *Sox2* confirmed
297 that neuromasts and ampullary organs were still present in *Atoh1* crispants (Figure
298 2C¹,D¹,G¹,H¹).
299

300 We performed genotyping and ICE analysis (Conant et al., 2022) of tails from individual
301 *Atoh1* crispants targeted with this pair of sgRNAs (Supplementary Figure S3 shows
302 examples). Our genotyping primers were designed before chromosome-level sterlet genomes

303 were available; comparison with the reference genome showed two mismatches in the forward
304 primer against the ohnolog on chromosome 2, and the genotyping data were consistent with
305 the primers amplifying the chromosome 1 ohnolog only. Thus, we could not determine whether
306 the chromosome 2 ohnolog was disrupted. However, the genotyping data showed successful
307 disruption of the *Atoh1* gene on chromosome 1 (Supplementary Figure S3).

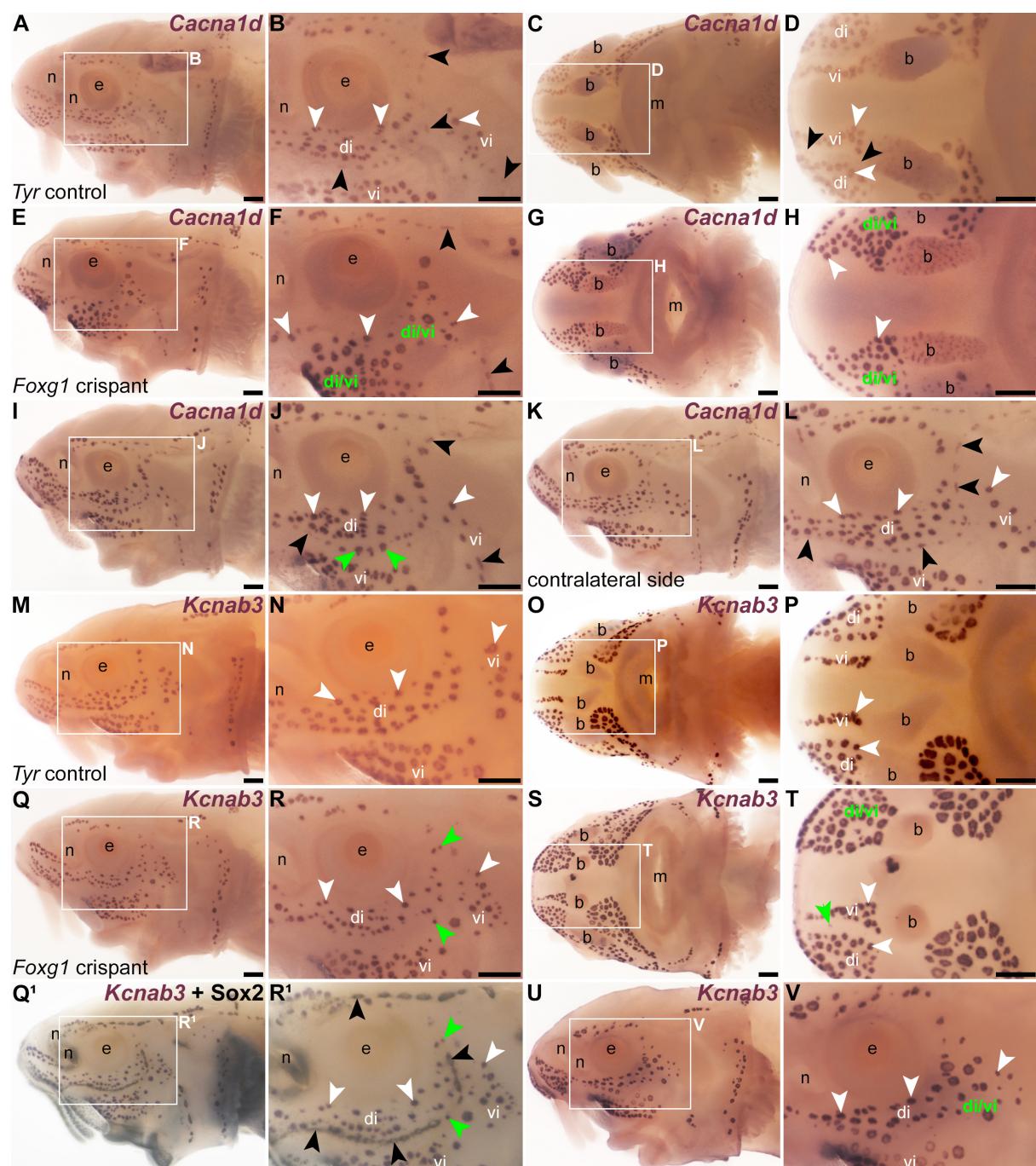
308 Taken together, these data suggest that *Atoh1* lies upstream of *Pou4f3* and *Gfi1* in
309 ampullary organs as well as neuromasts, and is required for the differentiation of
310 electroreceptors as well as hair cells.

311

312 **Targeting electrosensory-restricted *Neurod4* had no obvious effect on lateral line
313 development**

314 We previously identified *Neurod4* in paddlefish as the first-reported ampullary organ-restricted
315 transcription factor in the developing lateral line system (Modrell et al., 2017a). We confirmed
316 that sterlet *Neurod4* is similarly expressed by ampullary organs but not neuromasts
317 (Supplementary Figure S1I,J). We targeted *Neurod4* in sterlet embryos using nine different
318 sgRNAs (Table 1; Supplementary Figure S4A), injected in eight different combinations of 1-4
319 different sgRNAs across 10 independent batches of 1-2 cell-stage embryos (Supplementary
320 Table 1). This had no detectable effect on expression of electroreceptor-specific *Kcnab3*
321 (n=0/44 across nine batches, Supplementary Table 1) or the hair cell/electroreceptor marker
322 *Cacna1d* (n=0/4 across two batches, Supplementary Table 1). Examples of *Neurod4* crisprants
323 after ISH for *Kcnab3*, plus a *Tyr* control crispant for comparison, are shown in Supplementary
324 Figure S4B-D. Our sgRNAs were designed before chromosome-level sterlet genomes were
325 available (Du et al., 2020 and the 2022 reference genome:
326 https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_902713425.1/). Searching the
327 reference genome for *Neurod4* showed that both ohnologs have been retained: one on
328 chromosome 45 and the other annotated on an unplaced genomic scaffold, with 99.45%
329 nucleotide identity (and 99.46% amino acid identity) in the coding sequence. Our sgRNAs
330 target both *Neurod4* ohnologues without mismatches. Our genotyping primers were designed
331 before chromosome-level sterlet genomes were available; comparison with the reference
332 genome showed five mismatches in the forward primer used for genotyping larvae targeted
333 with sgRNAs 1 and 2 against the chromosome 45 ohnolog (Supplementary Table 1). It was
334 not possible to tell from our genotyping data whether the primers amplified both ohnologs or
335 only one, however, as the remaining sequence targeted by the primers is identical between
336 the two ohnologs. Genotyping and ICE analysis (Conant et al., 2022) showed successful
337 disruption of the *Neurod4* gene arising from six different combinations of the sgRNAs
338 (Supplementary Table 1; examples are shown in Supplementary Figure S4E-I). Not all sgRNA
339 combinations were genotyped, but all *Neurod4* crisprants counted (n=44) included at least one

340 sgRNA confirmed to disrupt the *Neurod4* gene via genotyping of other embryos
341 (Supplementary Table 1).

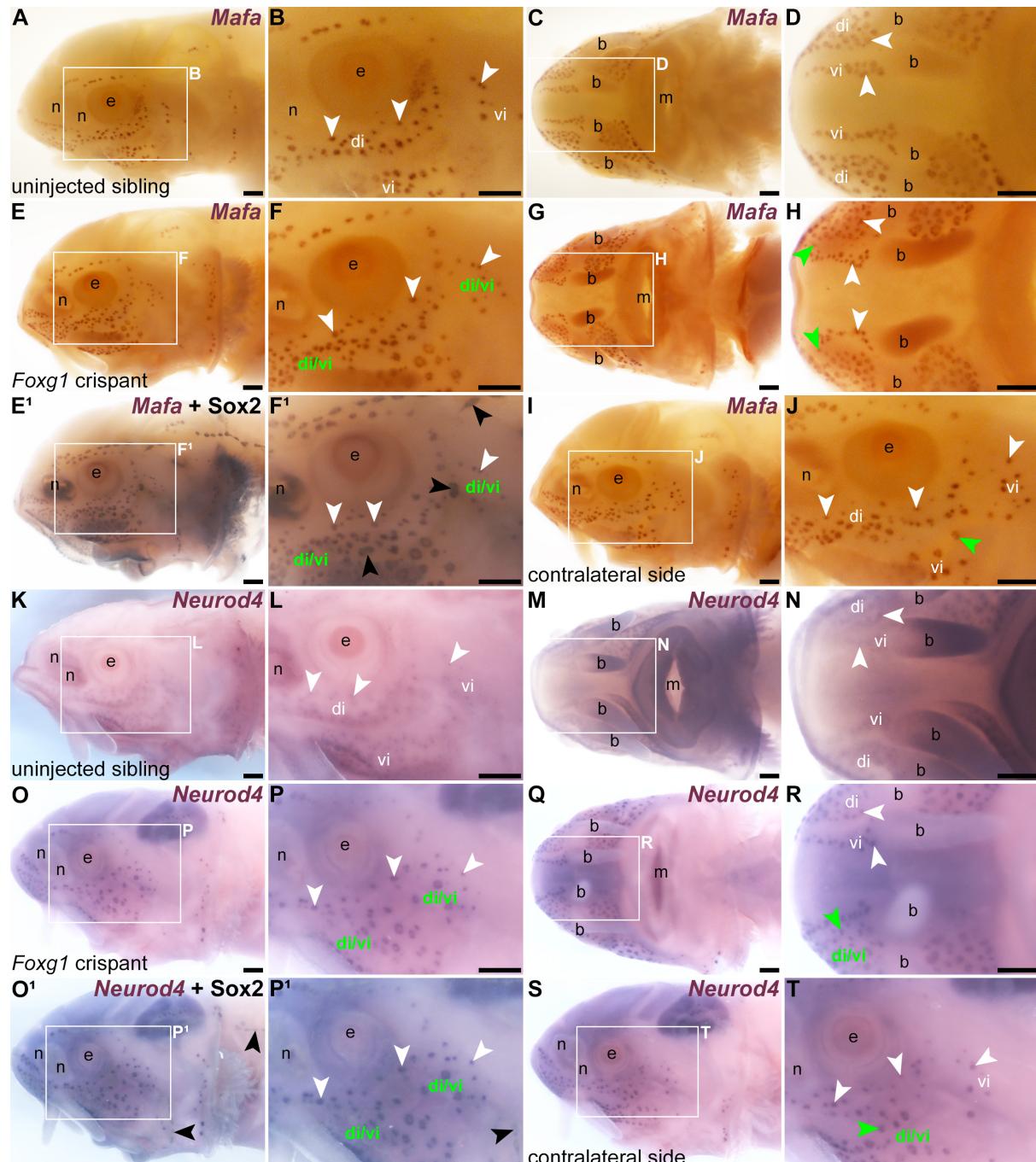

342 The lack of phenotype in *Neurod4* crispants, despite successful disruption of the
343 *Neurod4* gene, suggested either that *Neurod4* is not required for electroreceptor
344 differentiation, despite its restriction to ampullary organs in both paddlefish and sterlet (Modrell
345 et al., 2017a; this paper), or that it acts redundantly with other transcription factors. In
346 paddlefish, *Neurod1* expression was restricted to developing lateral line ganglia (Modrell et
347 al., 2011b). We cloned sterlet *Neurod1*, *Neurod2* and *Neurod6*. (Unlike *Neurod4*, these three
348 *Neurod* family members are all direct *Atoh1* targets in mouse hair cells; Jen et al., 2022.)
349 These three genes all proved to be expressed in sterlet ampullary organs, as well as
350 neuromasts (Supplementary Figure S5). Thus, it seems likely that the lack of effect of
351 CRISPR/Cas9-mediated targeting of sterlet *Neurod4* is due to redundancy with other *Neurod*
352 family transcription factors co-expressed in ampullary organs. (Our results also show there is
353 at least some variation in *Neurod* family gene expression within the developing lateral line
354 systems of paddlefish and sterlet.)

355

356 **Targeting mechanosensory-restricted *Foxg1* led to the formation of ectopic ampullary 357 organs within neuromast lines**

358 We recently identified *Foxg1* as a mechanosensory lateral line-restricted transcription factor
359 gene in paddlefish and sterlet (preprint: Minařík et al., 2023). *Foxg1* is expressed in the central
360 zones of lateral line sensory ridges where neuromasts form, though excluded from hair cells
361 themselves (preprint: Minařík et al., 2023). Our sgRNAs against *Foxg1* (Table 1;
362 Supplementary Figure S6A) were designed before chromosome-level sterlet genomes were
363 available (Du et al., 2020 and the 2022 reference genome
364 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_902713425.1/). Searching the
365 reference genome for *Foxg1* showed that both *Foxg1* ohnologs have been retained, on
366 chromosomes 15 and 18, with 96.43% nucleotide identity in the coding sequence (99.51%
367 amino acid identity). Our sgRNAs target both *Foxg1* ohnologs without mismatches.

368 When compared with *Tyr* control crispants (Figure 3A-D), a striking phenotype was
369 seen mosaically after targeting mechanosensory-restricted *Foxg1* with sgRNAs 1 and 2 (Table
370 1; Supplementary Figure S6A): neuromast lines were often interrupted by ectopic ampullary
371 organs. These were defined as *Cacna1d*-expressing cells present within neuromast lines in
372 larger clusters than expected for neuromasts, resembling ampullary organs (Figure 3E-L;
373 n=9/18, i.e., 50%, across two independent batches; Supplementary Table 1), or by expression
374 of electroreceptor-specific *Kcnab3* within neuromast lines, not seen in *Tyr* control crispants
375 (Figure 3M-V; n=7/24, i.e., 29%, across both batches; Supplementary Table 1). This
376 sometimes led to the apparent fusion of ampullary organ fields across a missing neuromast


377

378 **Figure 3. Foxg1 represses ampullary organ and electroreceptor formation within neuromast**
379 **lines.** Sterlet crispants at stage 45 after *in situ* hybridization (ISH) for the hair cell and electroreceptor
380 marker *Cacna1d*, or the electroreceptor-specific marker *Kcnab3*. Black arrowheads indicate examples
381 of neuromasts; white arrowheads indicate examples of ampullary organs. (A,B) Lateral view of a control
382 *Tyr* crispant. *Cacna1d* expression shows the normal distribution of hair cells and electroreceptors. Note
383 that ampullary organs have significantly more *Cacna1d*-expressing receptor cells than neuromasts.
384 (C,D) Ventral view of a second control *Tyr* crispant. *Cacna1d* expression reveals the infraorbital
385 neuromast line on both sides of the ventral rostrum, flanked by the dorsal infraorbital (di) and ventral
386 infraorbital (vi) ampullary organ fields. (E,F) Lateral view of a *Foxg1* crispant. *Cacna1d* expression
387 reveals that distinct neuromast lines are missing and the corresponding space is filled by putative
388 ectopic ampullary organs, based on the large, ampullary organ-like clusters of *Cacna1d*-expressing
389 cells. The dorsal and ventral infraorbital ampullary organ fields seem to have fused across the missing
390 neuromast line (compare with A,B). (G,H) Ventral view of a second *Foxg1* crispant. *Cacna1d* expression
391 reveals an apparent fusion of the dorsal infraorbital (di) and ventral infraorbital (vi) ampullary organ
392 fields across the missing infraorbital neuromast lines on both sides (compare with C,D). (I-K) In a third

393 *Foxg1* crispant, *Cacna1d* expression on the left side (I,J) shows that distinct supraorbital and infraorbital
394 neuromast lines are still present. However, some organs within the supraorbital line and most organs
395 within the infraorbital line have large clusters of *Cacna1d*-expressing cells, suggesting they are ectopic
396 ampullary organs (green arrowheads in J show examples). On the right side (K,L; image flipped
397 horizontally for ease of comparison), this phenotype is not seen. (M,N) Lateral view of a third control
398 *Tyr* crispant. Electroreceptor-specific *Kcnab3* expression shows the distribution of ampullary organs
399 only. (O,P) Ventral view of a fourth control *Tyr* crispant. *Kcnab3* expression shows the distribution of
400 ampullary organ fields. Note the lack of staining where the infraorbital neuromast lines run on either
401 side of the ventral rostrum, flanked by the dorsal infraorbital (di) and ventral infraorbital (vi) ampullary
402 organ fields (compare with *Cacna1d* expression in C,D). (Q-R¹) Lateral view of a fourth *Foxg1* crispant.
403 *Kcnab3* expression shows two ectopic ampullary organs (green arrowheads) within the infraorbital
404 neuromast line (compare with M,N). Post-ISH Sox2 immunostaining for supporting cells (Q¹,R¹)
405 confirms the position of the neuromast lines. (S,T) Ventral view of a fifth *Foxg1* crispant. On the left
406 side, ectopic *Kcnab3*-expressing electroreceptors fill the space where the left infraorbital neuromast line
407 would normally run, such that the dorsal and ventral infraorbital ampullary organ fields seem to have
408 fused (compare with O,P). On the right side, a single ectopic *Kcnab3*-expressing ampullary organ is
409 visible (green arrowhead) where the right infraorbital neuromast line runs (compare with O,P). (U,V)
410 Lateral view of a sixth *Foxg1* crispant. *Kcnab3* expression shows fusion of the dorsal infraorbital
411 ampullary organ field with the dorsal part of the ventral infraorbital ampullary organ field (compare with
412 M,N). Abbreviations: b, barbel; di, dorsal infraorbital ampullary organ field; di/vi, fused dorsal infraorbital
413 and ventral infraorbital ampullary organ fields; e, eye; m, mouth; n, naris; S, stage; vi, ventral infraorbital
414 ampullary organ field. Scale bars: 200 μ m.
415

416 line (e.g., Figure 3E-H,S-V). Post-*Kcnab3* ISH immunostaining for Sox2, to reveal neuromasts,
417 also confirmed that the ectopic electroreceptors in *Foxg1* crispants were within neuromast
418 lines (Figure 3Q¹,R¹). Targeting *Foxg1* with a different pair of sgRNAs (Table 1;
419 Supplementary Figure S6A) in a different batch of embryos generated similar phenotypes in
420 3/21 embryos (14%) overall (*Cacna1d*: n=1/6, i.e., 17%; *Kcnab3*: n=2/15, i.e., 13%;
421 Supplementary Table 1).

422 We also investigated this phenotype by performing ISH for two ampullary organ-
423 restricted transcription factor genes, *Mafa* (preprint: Minařík et al., 2023) and *Neurod4* (Modrell
424 et al., 2017a; this study), followed by Sox2 immunostaining in some embryos to reveal the
425 location of neuromasts. Relative to the normal ampullary organ expression of *Mafa* in
426 uninjected siblings/half-siblings (sufficient *Tyr* control crispants were not available to test;
427 Figure 4A-D; n=0/6 within one batch), ISH for *Mafa* showed the mosaic presence of ampullary
428 organs in neuromast lines and/or merging of ampullary organ fields in *Foxg1* crispants (Figure
429 4E-J; n=3/17 embryos i.e., 18%, across two independent batches; Supplementary Table 1).
430 Similarly, relative to the usual ampullary organ expression of *Neurod4* in uninjected
431 siblings/half-siblings (sufficient *Tyr* control crispants were not available to test; Figure 4K-N;
432 n=0/2 embryos within one batch; Supplementary Table 1), ISH for *Neurod4* (more weakly
433 expressed than *Mafa*) revealed the same ectopic ampullary organ phenotype in *Foxg1*
434 crispants as seen for *Cacna1d*, *Kcnab3* and *Mafa* (Figure 4O-T; n=3/6 embryos, i.e., 50%,
435 within one batch; Supplementary Table 1). Although our genotyping primers were designed
436 before chromosome-level sterlet genomes were available, comparison with the reference

437
438 **Figure 4. Ectopic ampullary organs in Foxg1 crispants express ampullary organ-specific**
439 **transcription factor genes *Mafa* and *Neurod4*.** Sterlet crispants at stage 45 after *in situ* hybridization
440 (ISH) for ampullary organ-restricted transcription factor genes. Black arrowheads indicate examples of
441 neuromasts; white arrowheads indicate examples of ampullary organs. (A-D) In an uninjected
442 sibling/half-sibling (eggs were fertilized *in vitro* with a mix of sperm from three different males), *Mafa*
443 expression is restricted to ampullary organs (lateral view: A,B; ventral view: C,D). (E-J) A *Foxg1*
444 crispant. On the left side of the head (E,F), several *Mafa*-expressing ectopic ampullary organs are
445 present in the space where the infraorbital neuromast line would normally run, such that the dorsal and
446 ventral infraorbital ampullary organ fields seem to have fused (compare with A,B). Post-ISH *Sox2*
447 immunostaining (E¹,F¹) shows that neuromasts are still present both proximally and distally to the sites
448 of ampullary organ field fusion. In ventral view (G,H), ectopic ampullary organs (green arrowheads)
449 are seen bilaterally, within the spaces where the infraorbital neuromast lines run on either side of the ventral
450 rostrum (compare with C,D). On the right side in lateral view (I,J; image flipped horizontally for ease of
451 comparison), a single *Mafa*-expressing ectopic ampullary organ (green arrowhead) is also present in
452 the space where the infraorbital neuromast line runs (compare with A,B). (K-N) In an uninjected

453 sibling/half-sibling, *Neurod4* expression is restricted to ampullary organs (lateral view: K,L; ventral view:
454 M,N). (O-T) A *Foxg1* crispant. On the left side of the head (O,P), *Neurod4*-expressing ectopic ampullary
455 organs are present in the space where the infraorbital neuromast line would normally run, such that the
456 dorsal and ventral infraorbital ampullary organ fields seem to have fused (compare with K,L). Post-ISH
457 Sox2 immunostaining (O¹,P¹) suggests that neuromasts are absent from the site of infraorbital
458 ampullary organ field fusion, although neuromasts can be seen in the preopercular and trunk lines
459 (black arrowheads, compare with O,P). In ventral view (Q,R), ectopic *Neurod4*-expressing ampullary
460 organs are seen where the right infraorbital neuromast line would normally run on the ventral rostrum
461 (green arrowhead indicates an example), resulting in partial fusion of the dorsal and ventral infraorbital
462 fields on this side (the left side is unaffected). On the right side in lateral view (S,T; image flipped
463 horizontally for ease of comparison), ectopic ampullary organs are also present in the space where the
464 infraorbital neuromast line runs (green arrowhead in T indicates an example), resulting in the apparent
465 partial fusion of the dorsal and ventral infraorbital ampullary organ fields (compare with K,L).
466 Abbreviations: b, barbel; di, dorsal infraorbital ampullary organ field; di/vi, fused dorsal infraorbital and
467 ventral infraorbital ampullary organ fields; e, eye; m, mouth; n, naris; S, stage; vi, ventral infraorbital
468 ampullary organ field. Scale bars: 200 μ m.
469

470 genome showed no mismatches against either of the two ohnologs. Genotyping and ICE
471 analysis (Conant et al., 2022) of tails from individual *Foxg1* crispants showed successful
472 disruption of the *Foxg1* gene (Supplementary Figure S6 shows examples; the genotyping data
473 were consistent with the primers amplifying both ohnologs). Overall, these data suggest that
474 mechanosensory-restricted *Foxg1* acts to repress the formation of ampullary organs and
475 electroreceptors within neuromast lines.
476

477 **Discussion**

478

479 **Conserved molecular mechanisms underlie lateral line electroreceptor and hair cell 480 formation**

481 Here, we aimed to test the function in lateral line electroreceptor and/or hair cell formation of
482 three transcription factor genes that we had previously identified as expressed in developing
483 electrosensory ampullary organ and/or mechanosensory lateral line organs in ray-finned
484 chondrostean fishes - paddlefish and sterlet (Butts et al., 2014; Modrell et al., 2017a; preprint:
485 Minařík et al., 2023). The first gene we investigated was *Atoh1*, which is required for the
486 formation of lateral line hair cells in zebrafish (Millimaki et al., 2007), as well as hair cells in
487 the inner ear (Bermingham et al., 1999; Millimaki et al., 2007). In paddlefish (Butts et al., 2014;
488 Modrell et al., 2017a) and sterlet (preprint: Minařík et al., 2023), *Atoh1* is expressed in
489 ampullary organs as well as neuromasts. Targeting *Atoh1* for CRISPR/Cas9-mediated
490 mutagenesis in F0 sterlet embryos showed that *Atoh1* is required for the formation not only of
491 *Cacna1d*-expressing neuromast hair cells, as expected from zebrafish (Millimaki et al., 2007),
492 but also of *Cacna1d*-expressing, *Kcnab3*-expressing electroreceptors. These experiments
493 also showed that *Atoh1* is required for the expression of the 'hair cell' transcription factor genes
494 *Gfi1* and *Pou4f3* in developing ampullary organs, as well as neuromasts. This is consistent

495 with both of these genes being direct Atoh1 targets in mouse cochlear hair cells (Yu et al.,
496 2021; Jen et al., 2022).

497 In both inner-ear hair cells and Merkel cells (epidermal mechanoreceptors found in all
498 vertebrates; see e.g., Whitear, 1989; Brown et al., 2023), Atoh1 acts with Pou4f3 in a
499 conserved 'feed-forward circuit', with Atoh1 directly activating *Pou4f3* expression, and Pou4f3
500 then acting as a pioneer factor to open a significant subset of Atoh1 target enhancers (some
501 shared and some divergent between hair cells and Merkel cells), enabling mechanosensory
502 differentiation (Yu et al., 2021). In hair cells, *Gfi1* is one of the Pou4f3-dependent Atoh1 targets
503 (Yu et al., 2021). Together with the striking conservation of transcription factor gene
504 expression between developing ampullary organs and neuromasts (Modrell et al., 2011b;
505 Modrell et al., 2011a; Modrell et al., 2017b; Modrell et al., 2017a) (also preprint: Minařík et al.,
506 2023), the phenotypes seen in *Atoh1*-targeted F0 sterlet crispant embryos suggest that the
507 molecular mechanisms underlying electroreceptor formation are highly conserved with those
508 underlying hair cell formation. Indeed, the requirement of Atoh1 for *Pou4f3* and *Gfi1*
509 expression in ampullary organs, as well as neuromasts, suggests that the Atoh1-Pou4f3
510 'feedforward circuit' in mechanosensory cells - i.e., hair cells and epidermal Merkel cells (Yu
511 et al., 2021) - may also be conserved, at least partly, in developing electroreceptors. Taken
512 together, these data support the hypothesis that electroreceptors evolved as a transcriptionally
513 related "sister cell type" to lateral line hair cells (Arendt et al., 2016; Baker and Modrell, 2018;
514 Baker, 2019).

515

516 **Electrosensory-restricted *Neurod4* is likely redundant with other *Neurod* family 517 members in sterlet**

518 Paddlefish *Neurod4* was the first-reported ampullary organ-restricted transcription factor gene
519 (Modrell et al., 2017a), with conserved expression in sterlet (this study). We were unable to
520 detect a lateral line organ phenotype in *Neurod4*-targeted sterlet crispants. However, we found
521 that *Neurod1*, *Neurod2* and *Neurod6* are all expressed in sterlet ampullary organs (as well as
522 neuromasts), suggesting that *Neurod4* may act redundantly with one or more of these factors
523 in developing ampullary organs. (In paddlefish, however, *Neurod1* expression is restricted to
524 developing lateral line ganglia; Modrell et al., 2011b.) Targeting multiple *Neurod* genes for
525 CRISPR/Cas9-mediated mutagenesis in the future may shed light on the role played by this
526 transcription factor family in ampullary organ development.

527

528 **Foxg1 represses electroreceptor formation in the neuromast-forming central zone of 529 lateral line sensory ridges**

530 We also targeted *Foxg1*, a mechanosensory-restricted transcription factor gene that we
531 recently identified in the developing lateral line system of paddlefish and sterlet (preprint:

532 Minařík et al., 2023). *Foxg1* is expressed in the central zones of lateral line sensory ridges
533 where neuromasts form, though excluded from the central domains of neuromasts where hair
534 cells differentiate (preprint: Minařík et al., 2023). Targeting *Foxg1* for CRISPR/Cas9-mediated
535 mutagenesis in F0 sterlet embryos led to a striking phenotype: the formation within neuromast
536 lines of ectopic electroreceptors, often in the large clusters normally seen in ampullary organs.
537 In some cases, ampullary organ fields, which normally flank neuromast lines, effectively
538 'merged' across missing neuromast lines. This phenotype was revealed by examining
539 expression of the electroreceptor-specific marker *Kcnab3*, and two ampullary organ-restricted
540 transcription factor genes: *Mafa* (preprint: Minařík et al., 2023) and *Neurod4* (Modrell et al.,
541 2017a). Thus, *Foxg1* seems to repress an ampullary organ fate within the central domain of
542 lateral line sensory ridges where neuromasts form.

543 In the mouse inner ear, *Foxg1* is expressed in the prospective cochlea and all sensory
544 patches, in hair cell progenitors and supporting cells (Pauley et al., 2006; Tasdemir-Yilmaz et
545 al., 2021), plus a subset of hair cells (Pauley et al., 2006). Knockout leads to a shorter cochlea
546 with extra rows of hair cells, and to loss or reduction of vestibular end organs (Pauley et al.,
547 2006; Hwang et al., 2009). More hair cells and fewer supporting cells were seen after
548 conditional knockdown of *Foxg1* in neonatal cochlear supporting cells, possibly via the
549 transdifferentiation of supporting cells (Zhang et al., 2019; Zhang et al., 2020). This suggests
550 the possibility that *Foxg1* may act in the central zone of lateral line sensory ridges to maintain
551 a proliferative progenitor state, as it does in the mouse olfactory epithelium (Kawauchi et al.,
552 2009).

553 Furthermore, Fox family members can act as pioneer factors as well as transcription
554 factors (Golson and Kaestner, 2016; Lukoseviciute et al., 2018). A pioneer factor role has
555 been proposed for *Foxi3* in otic placode development (see Singh and Groves, 2016). In the
556 developing neural crest, *Foxd3* acts early as a pioneer factor, opening enhancers and
557 repositioning nucleosomes to prime genes controlling neural crest specification and migration
558 and, concurrently, to repress the premature differentiation of, e.g., melanocytes (Lukoseviciute
559 et al., 2018). Later in neural crest development, *Foxd3* represses enhancers associated with
560 mesenchymal, neuronal and melanocyte lineages (Lukoseviciute et al., 2018). In cortical
561 progenitors, *Foxg1* suppresses the adoption at later stages of an early-born cell fate, namely,
562 Cajal-Retzius cells (Hanashima et al., 2004). In the developing chicken otic placode, *Foxg1*
563 represses markers of other lineages, such as the olfactory and lens placodes, and epidermis
564 (Anwar et al., 2017). Hence, it is possible that *Foxg1* acts in the central zone of lateral line
565 sensory ridges in electroreceptive fishes as a pioneer factor for neuromast/hair cell formation,
566 and/or that it represses ampullary organ/electroreceptor formation. Such a role would be
567 consistent with lateral line expression of *Foxg1* only in electroreceptive fishes: *Foxg1* is not
568 expressed in the developing lateral line of zebrafish or *Xenopus* (e.g., Dirksen and Jamrich,

569 1995; Papalopulu and Kintner, 1996; Toresson et al., 1998; Eagleson and Dempewolf, 2002;
570 Duggan et al., 2008; Zhao et al., 2009).

571 Overall, these data lead us to propose the speculative hypothesis that electrosensory
572 organs may be the 'default' fate within lateral line sensory ridges in electroreceptive
573 vertebrates, and that Foxg1 represses this fate to enable mechanosensory neuromasts and
574 hair cells to form. To test these hypotheses directly, it will be important in the future to identify
575 global changes in gene expression and chromatin accessibility in the absence of Foxg1.

576

577 **Summary and Perspective**

578 Overall, we have found that the 'hair cell' transcription factor Atoh1 is required for the formation
579 of lateral line electroreceptors as well as hair cells, consistent with a close developmental
580 relationship between these putative 'sister cell' types. Electrosensory-restricted Neurod4 may
581 act redundantly with other Neurod family members expressed in developing ampullary organs.
582 Mechanosensory-restricted Foxg1 represses the formation of electroreceptors within
583 neuromast lines, suggesting the surprising possibility that electroreceptors are the 'default'
584 fate within lateral line sensory ridges and raising interesting developmental and evolutionary
585 questions for future investigation.

586

587 **Materials and Methods**

588

589 **Animals**

590 Fertilized sterlet (*Acipenser ruthenus*) eggs were obtained from the breeding facility at the
591 Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of
592 Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic, and
593 staged according to Dettlaff et al. (1993). For detailed information about sterlet husbandry, *in*
594 *vitro* fertilization and the rearing of embryos and yolk-sac larvae, see Stundl et al. (2022). Each
595 fertilization used a mix of sperm from three different males, so each batch was a mix of siblings
596 and half-siblings. Upon reaching the desired developmental stages, embryos and yolk-sac
597 larvae were euthanized by overdose of MS-222 (Sigma-Aldrich) and fixed in modified Carnoy's
598 fixative (6 volumes 100% ethanol: 3 volumes 37% formaldehyde: 1 volume glacial acetic acid)
599 for 3 hours at room temperature, dehydrated stepwise into 100% ethanol and stored at -20
600 °C.

601 All experimental procedures were approved by the Animal Research Committee of the
602 Faculty of Fisheries and Protection of Waters in Vodňany, University of South Bohemia in
603 České Budějovice, Czech Republic, and by the Ministry of Agriculture of the Czech Republic
604 (reference number: MSMT-12550/2016-3). Experimental fish were maintained according to
605 the principles of the European Union (EU) Harmonized Animal Welfare Act of the Czech

606 Republic, and Principles of Laboratory Animal Care and National Laws 246/1992 "Animal
607 Welfare" on the protection of animals.

608

609 **CRISPR guide RNA design and synthesis**

610 Target gene sequences were identified using the National Center for Biotechnology
611 Information (NCBI) Basic Local Alignment Search Tool BLAST
612 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>; McGinnis and Madden, 2004) to search sterlet
613 transcriptomic data (available at DDBJ/EMBL/GenBank under the accessions
614 GKLU00000000 and GKEF01000000; see preprint: Minařík et al., 2023) or draft genomic
615 sequence data (M.H., unpublished) with the relevant paddlefish sequence (Modrell et al.,
616 2017a). Transcriptomic sequence data were searched for *Tyr*, *Atoh1* and *Neurod4*; genomic
617 sequence data were searched for *Foxg1*. Chromosome-level sterlet genomes became
618 available only after the project started: Du et al. (2020) and the 2022 reference genome
619 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_902713425.1/). Open reading frames
620 were identified using the NCBI ORF Finder tool (<https://www.ncbi.nlm.nih.gov/orffinder/>) and
621 exons annotated by comparison with reference anamniote species (*Lepisosteus oculatus*,
622 *Danio rerio*, *Xenopus tropicalis*) available via Ensembl (<https://www.ensembl.org>;
623 Cunningham et al., 2022). Conserved domains were identified using NCBI BLASTX
624 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>; McGinnis and Madden, 2004). gRNAs were
625 preferentially designed to target 5' exons, ideally upstream of or within regions encoding
626 known functional domains, to increase the probability of disrupting gene function. gRNAs were
627 designed using the CRISPR Guide RNA Design Tool from Benchling (<https://benchling.com>)
628 and selected for synthesis based on the following criteria: (1) a high on-target score, ideally
629 no less than 0.5; (2) no off-target matches identified within coding sequences in transcriptome
630 and genome data, unless there were at least two mismatches in the 3' seed sequence (8-10
631 bp upstream of the protospacer adjacent motif [PAM], or in the PAM itself); (3) if multiplexing,
632 the gRNA pair were ideally within 50-150 bases of each other to increase the probability of
633 fragment deletion.

634 DNA templates for CRISPR gRNAs were synthesized using plasmid pX335-U6-
635 Chimeric_BB-CBh-hSpCas9n(D10A) (Addgene, plasmid #42335; Cong et al., 2013)
636 containing the gRNA scaffold. The gRNA scaffold was amplified using a specific forward
637 primer for each gRNA, with an overhang containing the gRNA target sequence and T7
638 promoter, and a reverse primer that was identical for all reactions. For gRNAs that did not start
639 with G, an additional G was added at the start to ensure efficient transcription. The DNA
640 template was amplified using Q5 polymerase (New England Biolabs, NEB) and purified using
641 the Monarch PCR & DNA Cleanup Kit (NEB). The gRNAs were synthesized using the HiScribe
642 T7 High Yield RNA Synthesis Kit (NEB) and purified using the Monarch RNA Cleanup Kit

643 (NEB) and stored at -80 °C before use. Alternatively, chemically modified synthetic gRNAs
644 were ordered directly from Synthego (CRISPRRevolution sgRNA EZ Kit).

645

646 **Embryo injection**

647 On the day of injection, 1200 ng gRNA were mixed with 2400 ng Cas9 protein with NLS (PNA
648 Bio) in 5 µl nuclease-free water and incubated for 10 minutes at room temperature to form
649 ribonucleoprotein (RNP) complexes. For gRNA multiplexing, two RNP mixes were combined
650 1:1 to a final volume of 5 µl, and 0.5 µl of 10% 10,000 MW rhodamine dextran (Invitrogen)
651 added to better visualize the injection mixture and allow selection of properly injected embryos
652 using rhodamine fluorescence. Injection mixtures were kept on ice throughout the injection
653 session. 10 µl glass microcapillaries (Drummond Microcaps) were pulled in a capillary needle
654 puller (PC-10, Narishige) set to 58 °C with two light and one heavy weights, in single-stage
655 pulling mode. Fertilized sterlet eggs were manually dechorionated using Dumont #5 forceps.
656 A 1000 µl pipette tip cut to the same diameter as a dechorionated sterlet egg was used to
657 prepare a series of wells in an agar plate to allow ideal egg positioning during injection using
658 an automatic microinjector (FemtoJet 4x, Eppendorf), set to 100 hPa. Approximately 20 nl of
659 the injection mixture (corresponding to approximately 4.8 ng gRNAs and 9.6 ng Cas9) were
660 injected into fertilized eggs or two-cell stage embryos, targeting the animal pole at a 45° angle.
661 Injected embryos were moved to a clean Petri dish and, for optimum Cas9 efficiency, kept at
662 room temperature until the end of the injecting session or until at least the 32-cell stage, then
663 moved to a 16°C incubator. No more than 30 eggs were kept per 90 mm Petri dish. Unfertilized
664 eggs and dead embryos were removed at the end of the injection day. Petri dishes were
665 checked regularly for dead embryos and the water was changed at least twice a day before
666 gastrulation was completed, and once daily post-gastrulation. Hatched larvae were kept for
667 approximately 16 days post fertilisation until stage 45, then euthanized by MS-222 overdose
668 and fixed with modified Carnoy's fixative (see above). Fixed larvae were then dehydrated
669 stepwise into 100% ethanol and stored at -20°C.

670

671 **Gene cloning, *in situ* hybridization and immunohistochemistry**

672 Total RNA was isolated from sterlet embryos using Trizol (Invitrogen, Thermo Fisher
673 Scientific), following the manufacturer's protocol, and cDNA synthesized using the Superscript
674 III First Strand Synthesis kit (Invitrogen, Thermo Fisher Scientific). We used our sterlet
675 transcriptome assemblies (from pooled yolk-sac larvae at stages 40-45; preprint: Minařík et
676 al., 2023), which are available at DDBJ/EMBL/GenBank under the accessions
677 GKLU00000000 and GKEF01000000, to design primers for *Neurod4* (forward:
678 GAGAGAGCCCCAAAGAGACGAG; reverse: CTGCTTGAGCGAGAAGTTGACG). cDNA
679 fragments amplified under standard PCR conditions were cloned into the pDrive cloning vector

680 (Qiagen). Individual clones were verified by sequencing (Department of Biochemistry
681 Sequencing Facility, University of Cambridge, UK) and sequence identity verified using NCBI
682 BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>; McGinnis and Madden, 2004). For *Neurod1*,
683 *Neurod2*, *Neurod4* and *Neurod6*, synthetic gene fragments based on sterlet transcriptome
684 data, with added M13 forward and reverse primer adaptors, were ordered from Twist
685 Bioscience. GenBank accession numbers are as follows: *Neurod1* OQ808944,
686 *Neurod2* OQ808945, *Neurod4* OQ808946, *Neurod6* OQ808947. The other genes used in this
687 study have been published (preprint: Minařík et al., 2023).

688 The sterlet riboprobe template sequences were designed before chromosome-level
689 genome assemblies for sterlet were available (Du et al., 2020 and the 2022 reference genome:
690 https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_902713425.1/). Genome analysis
691 showed that an independent whole-genome duplication occurred in the sterlet lineage, from
692 which approximately 70% of ohnologs (i.e., gene paralogs arising from the whole-genome
693 duplication) have been retained (Du et al., 2020). Supplementary File 1 shows the percentage
694 match for each *Neurod* family riboprobe with the two ohnologs, obtained by performing a
695 nucleotide BLAST search against the reference genome
696 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_902713425.1/). Equivalent data for the
697 other riboprobes used in this study are available in the preprint Minařík et al. (2023). The
698 percentage match with the 'targeted' *Neurod* family ohnolog ranged from 98.9-100%; the
699 percentage match with the second ohnolog was also high, ranging from 96.2-100%
700 (Supplementary File 1), suggesting that transcripts from the second ohnolog are likely to be
701 targeted by each of these riboprobes.

702 Digoxigenin-labelled riboprobes were synthesized as previously described (preprint:
703 Minařík et al., 2023). Whole-mount *in situ* hybridization (ISH) was performed as previously
704 described (Modrell et al., 2011a). Whole-mount immunostaining post-ISH for Sox2 (rabbit
705 monoclonal, 1:200; ab92494, Abcam) was performed as previously described (Metscher and
706 Müller, 2011), using a horseradish peroxidase-conjugated goat anti-rabbit antibody (1:300,
707 Jackson ImmunoResearch) and the metallographic peroxidase substrate EnzMet kit
708 (Nanoprobes) as per the manufacturer's instructions.

709

710 **Genotyping**

711 To confirm successful mutation in targeted regions, genotyping was performed on trunk and
712 tail tissue that had been removed before ISH and stored in 100% ethanol at -20°C. The tissue
713 was digested using Rapid Extract Lysis Kit (PCR Biosystems) and the target region amplified
714 using HS Taq Mix Red (PCR Biosystems) according to the manufacturer's instructions.
715 Primers used for genotyping are listed in Supplementary Table 1. After agarose gel
716 electrophoresis, PCR products were extracted using MinElute Gel Extraction Kit (Qiagen) and

717 submitted for sequencing (Genewiz by Azenta Life Sciences). To analyze CRISPR editing
718 efficiency, Sanger trace files were uploaded to the Synthego Inference of CRISPR Edits (ICE)
719 tool (<https://ice.synthego.com>; Conant et al., 2022).

720

721 **Imaging and image processing**

722 Larvae were placed in a slit in an agar-coated Petri dish with PBS and imaged using a Leica
723 MZFLIII dissecting microscope equipped with either a MicroPublisher 5.0 RTV camera
724 (QImaging) controlled by QCapture Pro 6.0 or 7.0 software (QImaging), or a MicroPublisher 6
725 color CCD camera (Teledyne Photometrics) controlled by Ocular software (Teledyne
726 Photometrics). For most larvae, a stack of images was acquired by manually focusing through
727 the sample, then Helicon Focus software (Helicon Soft Limited) was used for focus stacking.
728 Adobe Photoshop (Adobe Systems Inc.) was used to process images.

729

730 **Data availability statement**

731 The publication and associated supplementary figures include representative example images
732 of embryos from each experiment. Additional raw data underlying this publication consist of
733 further images of these and other embryos from each experiment. Public sharing of these
734 images is not cost-efficient but they are available from the corresponding author upon
735 reasonable request.

736

737 **Ethics statement**

738 Sterlet animal work was reviewed and approved by The Animal Research Committee of
739 Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of
740 Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic and
741 Ministry of Agriculture of the Czech Republic (MSMT-12550/2016-3).

742

743 **Author contributions**

744 CB conceived and designed the project and wrote the manuscript together with MM. MM
745 performed most of the experiments, prepared all the manuscript figures and made a significant
746 contribution to the writing of the manuscript. AC and RF performed some experiments. MH
747 provided draft genome sequence data. MP and DG were instrumental in enabling all work with
748 sterlet embryos. All authors read and commented on the manuscript.

749

750 **Funding**

751 This work was supported by the Biotechnology and Biological Sciences Research Council
752 (BBSRC: grant BB/P001947/1 to CB). Additional support for MM was provided by the
753 Cambridge Isaac Newton Trust (grant 20.07[c] to CB) and by the School of the Biological

754 Sciences, University of Cambridge. AC was supported by a PhD research studentship from
755 the Anatomical Society. The work of RF and MP was supported by the Ministry of Education,
756 Youth and Sports of the Czech Republic, projects CENAKVA (LM2018099), Biodiversity
757 (CZ.02.1.01/0.0/0.0/16_025/0007370) and Czech Science Foundation (20-23836S).

758

759 **Rights Retention Statement**

760 This work was funded by a grant from the Biotechnology and Biological Sciences Research
761 Council (BBSRC: BB/P001947/1). For the purpose of open access, the author has applied a
762 Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version
763 arising.

764

765 **Acknowledgements**

766 Thanks to Melinda Modrell for pilot work on CRISPR/Cas9 in paddlefish and for her advice
767 and helpful discussions in planning the project. Thanks to Marek Rodina and Martin Kahaneč
768 for their help with sterlet spawns. Thanks to David Jandzik, András Simon, Alberto Joven
769 Araus, Ahmed Elewa, and Mustafa Khokha for invaluable advice on CRISPR/Cas9
770 approaches and genotyping. Thanks to Jan Stundl and David Jandzik for sharing their sterlet
771 *Tyr* gRNA sequences prior to publication. Thanks to Christine Hirschberger and Rolf Ericsson
772 for their help with some of the *in situ* hybridization rounds.

773

774 **References**

775 Anwar, M., Tambalo, M., Ranganathan, R., Grocott, T., Streit, A., 2017. A gene network
776 regulated by FGF signalling during ear development. *Sci. Rep.* 7, 6162.

777 Arendt, D., Musser, J.M., Baker, C.V.H., Bergman, A., Cepko, C., Erwin, D.H., Pavlicev, M.,
778 Schlosser, G., Widder, S., Laubichler, M.D., Wagner, G.P., 2016. The origin and
779 evolution of cell types. *Nat. Rev. Genet.* 17, 744-757.

780 Baker, C.V.H., 2019. The development and evolution of lateral line electroreceptors: insights
781 from comparative molecular approaches., in: B.A. Carlson, J.A. Sisneros, A.N. Popper,
782 R.R. Fay (Eds.), *Electroreception: Fundamental Insights from Comparative*
783 *Approaches*. Springer, Cham, pp. 25-62.

784 Baker, C.V.H., Modrell, M.S., 2018. Insights into electroreceptor development and evolution
785 from molecular comparisons with hair cells. *Integr. Comp. Biol.* 58, 329-340.

786 Baker, C.V.H., Modrell, M.S., Gillis, J.A., 2013. The evolution and development of vertebrate
787 lateral line electroreceptors. *J. Exp. Biol.* 216, 2515-2522.

788 Baloch, A.R., Franěk, R., Tichopád, T., Fučíková, M., Rodina, M., Pšenička, M., 2019. *Dnd1*
789 knockout in sturgeons by CRISPR/Cas9 generates germ cell free host for surrogate
790 production. *Animals (Basel)* 9, 174.

791 Bellono, N.W., Leitch, D.B., Julius, D., 2017. Molecular basis of ancestral vertebrate
792 electroreception. *Nature* 543, 391-396.

793 Bellono, N.W., Leitch, D.B., Julius, D., 2018. Molecular tuning of electroreception in sharks
794 and skates. *Nature* 558, 122-126.

795 Bermingham, N.A., Hassan, B.A., Price, S.D., Vollrath, M.A., Ben-Arie, N., Eatock, R.A.,
796 Bellen, H.J., Lysakowski, A., Zoghbi, H.Y., 1999. *Math1*: an essential gene for the
797 generation of inner ear hair cells. *Science* 284, 1837-1841.

798 Bodznick, D., Montgomery, J.C., 2005. The physiology of low-frequency electrosensory
799 systems, in: T.H. Bullock, C.D. Hopkins, A.N. Popper, R.R. Fay (Eds.),
800 *Electroreception*. Springer, New York, pp. 132-153.

801 Brown, T.L., Horton, E.C., Craig, E.W., Goo, C.E.A., Black, E.C., Hewitt, M.N., Yee, N.G.,
802 Fan, E.T., Raible, D.W., Rasmussen, J.P., 2023. Dermal appendage-dependent
803 patterning of zebrafish *atoh1a*+ Merkel cells. *eLife* 12, e85800.

804 Bullock, T.H., Bodznick, D.A., Northcutt, R.G., 1983. The phylogenetic distribution of
805 electroreception: evidence for convergent evolution of a primitive vertebrate sense
806 modality. *Brain Res. Rev.* 287, 25-46.

807 Butts, T., Modrell, M.S., Baker, C.V.H., Wingate, R.J.T., 2014. The evolution of the
808 vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost
809 ray-finned fish. *Evol. Dev.* 16, 92-100.

810 Caprara, G.A., Peng, A.W., 2022. Mechanotransduction in mammalian sensory hair cells.
811 *Mol. Cell. Neurosci.* 120, 103706.

812 Chagnaud, B.P., Wilkens, L.A., Hofmann, M., 2021. The ampullary electrosensory system –a
813 paddlefish case study, in: B. Fritzsch (Ed.), *The Senses: A Comprehensive Reference*.
814 Elsevier, pp. 215-227.

815 Chen, J., Wang, W., Tian, Z., Dong, Y., Dong, T., Zhu, H., Zhu, Z., Hu, H., Hu, W., 2018.
816 Efficient gene transfer and gene editing in sterlet. *Front. Genet.* 9, 117.

817 Chen, Y., Gu, Y., Li, Y., Li, G.L., Chai, R., Li, W., Li, H., 2021. Generation of mature and
818 functional hair cells by co-expression of *Gfi1*, *Pou4f3*, and *Atoh1* in the postnatal
819 mouse cochlea. *Cell Rep.* 35, 109016.

820 Conant, D., Hsiau, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R.,
821 Holden, K., Enzmann, B.L., Stoner, R., 2022. Inference of CRISPR edits from Sanger
822 trace data. *CRISPR J.* 5, 123-130.

823 Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W.,
824 Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas
825 systems. *Science* 339, 819-823.

826 Crampton, W.G.R., 2019. Electroreception, electrogenesis and electric signal evolution. *J.*
827 *Fish Biol.* 95, 92-134.

828 Cunningham, F., Allen, J.E., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, I.M.,
829 Austine-Orimoloye, O., Azov, A.G., Barnes, I., Bennett, R., Berry, A., Bhai, J., Bignell,
830 A., Billis, K., Boddu, S., Brooks, L., Charkhchi, M., Cummins, C., Da Rin Fioretto, L.,
831 Davidson, C., Dodiya, K., Donaldson, S., El Houdaigui, B., El Naboulsi, T., Fatima, R.,
832 Giron, C.G., Genez, T., Martinez, J.G., Guijarro-Clarke, C., Gymer, A., Hardy, M.,
833 Hollis, Z., Hourlier, T., Hunt, T., Juettemann, T., Kaikala, V., Kay, M., Lavidas, I., Le, T.,
834 Lemos, D., Marugán, J.C., Mohanan, S., Mushtaq, A., Naven, M., Ogeh, D.N., Parker,
835 A., Parton, A., Perry, M., Piližota, I., Prosovetskaia, I., Sakthivel, M.P., Salam, A.I.A.,
836 Schmitt, B.M., Schuilenburg, H., Sheppard, D., Pérez-Silva, J.G., Stark, W., Steed, E.,
837 Sutinen, K., Sukumaran, R., Sumathipala, D., Suner, M.M., Szpak, M., Thormann, A.,
838 Tricomi, F.F., Urbina-Gómez, D., Veidenberg, A., Walsh, T.A., Walts, B., Willhoft, N.,
839 Winterbottom, A., Wass, E., Chakiachvili, M., Flint, B., Frankish, A., Giorgetti, S.,
840 Haggerty, L., Hunt, S.E., Ilsley, G.R., Loveland, J.E., Martin, F.J., Moore, B., Mudge,
841 J.M., Muffato, M., Perry, E., Ruffier, M., Tate, J., Thybert, D., Trevanion, S.J., Dyer, S.,
842 Harrison, P.W., Howe, K.L., Yates, A.D., Zerbino, D.R., Flicek, P., 2022. Ensembl
843 2022. Nucleic Acids Res. 50, D988-D995.

844 Dettlaff, T.A., Ginsburg, A.S., Schmalhausen, O.I., 1993. Sturgeon Fishes: Developmental
845 Biology and Aquaculture. Springer-Verlag, Berlin.

846 Dirksen, M.-L., Jamrich, M., 1995. Differential expression of *fork head* genes during early
847 *Xenopus* and zebrafish development. Dev. Genet. 17, 107-116.

848 Du, K., Stöck, M., Kneitz, S., Klopp, C., Woltering, J.M., Adolfi, M.C., Feron, R., Prokopov,
849 D., Makunin, A., Kichigin, I., Schmidt, C., Fischer, P., Kuhl, H., Wuertz, S., Gessner, J.,
850 Kloas, W., Cabau, C., Iampietro, C., Parrinello, H., Tomlinson, C., Journot, L.,
851 Postlethwait, J.H., Braasch, I., Trifonov, V., Warren, W.C., Meyer, A., Guiguen, Y.,
852 Schartl, M., 2020. The sterlet sturgeon genome sequence and the mechanisms of
853 segmental rediploidization. Nat. Ecol. Evol. 4, 841-852.

854 Duggan, C.D., Demaria, S., Baudhuin, A., Stafford, D., Ngai, J., 2008. Foxg1 is required for
855 development of the vertebrate olfactory system. J. Neurosci. 28, 5229-5239.

856 Eagleson, G.W., Dempewolf, R.D., 2002. The role of the anterior neural ridge and *Fgf-8* in
857 early forebrain patterning and regionalization in *Xenopus laevis*. Comp. Biochem.
858 Physiol. B Biochem. Mol. Biol. 132, 179-189.

859 Elewa, A., Wang, H., Talavera-López, C., Joven, A., Brito, G., Kumar, A., Hameed, L.S.,
860 Penrad-Mobayed, M., Yao, Z., Zamani, N., Abbas, Y., Abdullayev, I., Sandberg, R.,
861 Grabherr, M., Andersson, B., Simon, A., 2017. Reading and editing the *Pleurodeles*
862 *waltl* genome reveals novel features of tetrapod regeneration. Nat. Commun. 8, 2286.

863 Fei, J.-F., Lou, W.P.-K., Knapp, D., Murawala, P., Gerber, T., Taniguchi, Y., Nowoshilow, S.,
864 Khattak, S., Tanaka, E.M., 2018. Application and optimization of CRISPR-Cas9-

865 mediated genome engineering in axolotl (*Ambystoma mexicanum*). *Nat. Protoc.* 13,
866 2908-2943.

867 Flowers, G.P., Timberlake, A.T., McLean, K.C., Monaghan, J.R., Crews, C.M., 2014. Highly
868 efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease.
869 *Development* 141, 2165-2171.

870 Gillis, J.A., Modrell, M.S., Northcutt, R.G., Catania, K.C., Luer, C.A., Baker, C.V.H., 2012.
871 Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous
872 fishes. *Development* 139, 3142-3146.

873 Golson, M.L., Kaestner, K.H., 2016. Fox transcription factors: from development to disease.
874 *Development* 143, 4558-4570.

875 Hanashima, C., Li, S.C., Shen, L., Lai, E., Fishell, G., 2004. *Foxg1* suppresses early cortical
876 cell fate. *Science* 303, 56-59.

877 Hernández, P.P., Olivari, F.A., Sarrazin, A.F., Sandoval, P.C., Allende, M.L., 2007.
878 Regeneration in zebrafish lateral line neuromasts: expression of the neural progenitor
879 cell marker *sox2* and proliferation-dependent and-independent mechanisms of hair cell
880 renewal. *Dev. Neurobiol.* 67, 637-654.

881 Hwang, C.H., Simeone, A., Lai, E., Wu, D.K., 2009. *Foxg1* is required for proper separation
882 and formation of sensory cristae during inner ear development. *Dev. Dyn.* 238, 2725-
883 2734.

884 Iyer, A.A., Groves, A.K., 2021. Transcription factor reprogramming in the inner ear: turning
885 on cell fate switches to regenerate sensory hair cells. *Front. Cell. Neurosci.* 15,
886 660748.

887 Iyer, A.A., Hosamani, I., Nguyen, J.D., Cai, T., Singh, S., McGovern, M.M., Beyer, L., Zhang,
888 H., Jen, H.I., Yousaf, R., Birol, O., Sun, J.J., Ray, R.S., Raphael, Y., Segil, N., Groves,
889 A.K., 2022. Cellular reprogramming with ATOH1, GFI1, and POU4F3 implicate
890 epigenetic changes and cell-cell signaling as obstacles to hair cell regeneration in
891 mature mammals. *eLife* 11, e79712.

892 Jen, H.-I., Singh, S., Tao, L., Maunsell, H.R., Segil, N., Groves, A.K., 2022. GFI1 regulates
893 hair cell differentiation by acting as an off-DNA transcriptional co-activator of ATOH1,
894 and a DNA-binding repressor. *Sci. Rep.* 12, 7793.

895 Jørgensen, J.M., 2005. Morphology of electroreceptive sensory organs, in: T.H. Bullock,
896 C.D. Hopkins, A.N. Popper, R.R. Fay (Eds.), *Electroreception*. Springer, New York, pp.
897 47-67.

898 Kawauchi, S., Santos, R., Kim, J., Hollenbeck, P.L.W., Murray, R.C., Calof, A.L., 2009. The
899 role of *Foxg1* in the development of neural stem cells of the olfactory epithelium. *Ann.*
900 *N. Y. Acad. Sci.* 1170, 21-27.

901 Kniss, J.S., Jiang, L., Piotrowski, T., 2016. Insights into sensory hair cell regeneration from
902 the zebrafish lateral line. *Curr. Opin. Genet. Dev.* 40, 32-40.

903 Leitch, D.B., Julius, D., 2019. Electrosensory transduction: comparisons across structure,
904 afferent response properties, and cellular physiology., in: B.A. Carlson, J.A. Sisneros,
905 A.N. Popper, R.R. Fay (Eds.), *Electroreception: Fundamental Insights from*
906 *Comparative Approaches*. Springer, Cham, pp. 63-90.

907 Lenhardt, M., Finn, R.N., Cakic, P., Kolarevic, J., Krpocetkovic, J., Radovic, I., Fyhn, H.J.,
908 2005. Analysis of the post-vitellogenic oocytes of three species of Danubian
909 Acipenseridae. *Belg. J. Zool.* 135, 205.

910 Ludwig, A., Belfiore, N.M., Pitra, C., Svirsky, V., Jenneckens, I., 2001. Genome duplication
911 events and functional reduction of ploidy levels in sturgeon (*Acipenser*, *Huso* and
912 *Scaphirhynchus*). *Genetics* 158, 1203-1215.

913 Lukoseviciute, M., Gavriouchkina, D., Williams, R.M., Hochgreb-Hagele, T., Senanayake, U.,
914 Chong-Morrison, V., Thongjuea, S., Repapi, E., Mead, A., Sauka-Spengler, T., 2018.
915 From pioneer to repressor: bimodal *foxd3* activity dynamically remodels neural crest
916 regulatory landscape *in vivo*. *Dev. Cell* 47, 608-628.

917 Lush, M.E., Diaz, D.C., Koencke, N., Baek, S., Boldt, H., St Peter, M.K., Gaitan-Escudero,
918 T., Romero-Carvajal, A., Busch-Nentwich, E.M., Perera, A.G., Hall, K.E., Peak, A.,
919 Haug, J.S., Piotrowski, T., 2019. scRNA-Seq reveals distinct stem cell populations that
920 drive hair cell regeneration after loss of Fgf and Notch signaling. *eLife* 8, e44431.

921 McGinnis, S., Madden, T.L., 2004. BLAST: at the core of a powerful and diverse set of
922 sequence analysis tools. *Nucleic Acids Res.* 32, W20-5.

923 Metscher, B.D., Müller, G.B., 2011. MicroCT for molecular imaging: quantitative visualization
924 of complete three-dimensional distributions of gene products in embryonic limbs. *Dev.*
925 *Dyn.* 240, 2301-2308.

926 Millimaki, B.B., Sweet, E.M., Dhason, M.S., Riley, B.B., 2007. Zebrafish *atoh1* genes: classic
927 proneural activity in the inner ear and regulation by Fgf and Notch. *Development* 134,
928 295-305.

929 Minařík, M., Modrell, M.S., Gillis, J.A., Campbell, A.S., Fuller, I., Lyne, R., Micklem, G., Gela,
930 D., Pšenička, M., Baker, C.V.H., 2023. Identification of multiple transcription factor
931 genes potentially involved in the development of electrosensory versus
932 mechanosensory lateral line organs. *bioRxiv* doi:
933 <https://doi.org/10.1101/2023.04.14.536701>.

934 Modrell, M.S., Baker, C.V.H., 2012. Evolution of electrosensory ampullary organs:
935 conservation of *Eya4* expression during lateral line development in jawed vertebrates.
936 *Evol. Dev.* 14, 277-285.

937 Modrell, M.S., Bemis, W.E., Northcutt, R.G., Davis, M.C., Baker, C.V.H., 2011a.
938 Electrosensory ampullary organs are derived from lateral line placodes in bony fishes.
939 Nat. Commun. 2, 496.
940 Modrell, M.S., Buckley, D., Baker, C.V.H., 2011b. Molecular analysis of neurogenic placode
941 development in a basal ray-finned fish. genesis 49, 278-294.
942 Modrell, M.S., Lyne, M., Carr, A.R., Zakon, H.H., Buckley, D., Campbell, A.S., Davis, M.C.,
943 Micklem, G., Baker, C.V.H., 2017a. Insights into electrosensory organ development,
944 physiology and evolution from a lateral line-enriched transcriptome. eLife 6, e24197.
945 Modrell, M.S., Tidswell, O.R.A., Baker, C.V.H., 2017b. Notch and Fgf signaling during
946 electrosensory versus mechanosensory lateral line organ development in a non-teleost
947 ray-finned fish. Dev. Biol. 431, 48-58.
948 Mogdans, J., 2019. Sensory ecology of the fish lateral-line system: Morphological and
949 physiological adaptations for the perception of hydrodynamic stimuli. J. Fish Biol. 95,
950 53-72.
951 Moser, T., Grabner, C.P., Schmitz, F., 2020. Sensory processing at ribbon synapses in the
952 retina and the cochlea. Physiol. Rev. 100, 103-144.
953 Mukhopadhyay, M., Pangrsic, T., 2022. Synaptic transmission at the vestibular hair cells of
954 amniotes. Mol. Cell. Neurosci. 121, 103749.
955 Nicolson, T., 2017. The genetics of hair-cell function in zebrafish. J. Neurogenet. 31, 102-
956 112.
957 Northcutt, R.G., 1997. Evolution of gnathostome lateral line ontogenies. Brain Behav. Evol.
958 50, 25-37.
959 Northcutt, R.G., Catania, K.C., Criley, B.B., 1994. Development of lateral line organs in the
960 axolotl. J. Comp. Neurol. 340, 480-514.
961 O'Neill, P., McCole, R.B., Baker, C.V.H., 2007. A molecular analysis of neurogenic placode
962 and cranial sensory ganglion development in the shark, *Scyliorhinus canicula*. Dev.
963 Biol. 304, 156-181.
964 Papalopulu, N., Kintner, C., 1996. A posteriorising factor, retinoic acid, reveals that
965 anteroposterior patterning controls the timing of neuronal differentiation in *Xenopus*
966 neuroectoderm. Development 122, 3409-3418.
967 Pauley, S., Lai, E., Fritzsch, B., 2006. *Foxg1* is required for morphogenesis and histogenesis
968 of the mammalian inner ear. Dev. Dyn. 235, 2470-2482.
969 Pickett, S.B., Raible, D.W., 2019. Water waves to sound waves: using zebrafish to explore
970 hair cell biology. J. Assoc. Res. Otolaryngol. 20, 1-19.
971 Piotrowski, T., Baker, C.V.H., 2014. The development of lateral line placodes: Taking a
972 broader view. Dev. Biol. 389, 68-81.

973 Roccio, M., Senn, P., Heller, S., 2020. Novel insights into inner ear development and
974 regeneration for targeted hearing loss therapies. *Hear. Res.* 397, 107859.

975 Singh, S., Groves, A.K., 2016. The molecular basis of craniofacial placode development.
976 *WIREs Dev. Biol.* 5, 363-376.

977 Square, T., Romášek, M., Jandzik, D., Cattell, M.V., Klymkowsky, M., Medeiros, D.M., 2015.
978 CRISPR/Cas9-mediated mutagenesis in the sea lamprey *Petromyzon marinus*: a
979 powerful tool for understanding ancestral gene functions in vertebrates. *Development*
980 142, 4180-4187.

981 Square, T.A., Jandzik, D., Massey, J.L., Romášek, M., Stein, H.P., Hansen, A.W.,
982 Purkayastha, A., Cattell, M.V., Medeiros, D.M., 2020. Evolution of the endothelin
983 pathway drove neural crest cell diversification. *Nature* 585, 563-568.

984 Stundl, J., Soukup, V., Franěk, R., Pospisilova, A., Psutkova, V., Pšenička, M., Černy, R.,
985 Bronner, M.E., Medeiros, D.M., Jandzik, D., 2022. Efficient CRISPR mutagenesis in
986 sturgeon demonstrates its utility in large, slow-maturing vertebrates. *Front. Cell Dev.*
987 *Biol.* 10, 750833.

988 Tasdemir-Yilmaz, O.E., Druckenbrod, N.R., Olukoya, O.O., Dong, W., Yung, A.R., Bastille,
989 I., Pazyra-Murphy, M.F., Sitko, A.A., Hale, E.B., Vigneau, S., Gimelbrant, A.A.,
990 Kharchenko, P.V., Goodrich, L.V., Segal, R.A., 2021. Diversity of developing peripheral
991 glia revealed by single-cell RNA sequencing. *Dev. Cell* 56, 2516-2535.

992 Toresson, H., Martinez-Barbera, J.P., Bardsley, A., Caubit, X., Krauss, S., 1998.
993 Conservation of *BF-1* expression in amphioxus and zebrafish suggests evolutionary
994 ancestry of anterior cell types that contribute to the vertebrate telencephalon. *Dev.*
995 *Genes Evol.* 208, 431-439.

996 Uribe-Salazar, J.M., Kaya, G., Sekar, A., Weyenberg, K., Ingamells, C., Dennis, M.Y., 2022.
997 Evaluation of CRISPR gene-editing tools in zebrafish. *BMC Genomics* 23, 12.

998 Webb, J.F., 2021. Morphology of the mechanosensory lateral line system of fishes, in: B.
999 Fritzsch (Ed.), *The Senses: A Comprehensive Reference*. Elsevier, pp. 29-46.

1000 Whitear, M., 1989. Merkel cells in lower vertebrates. *Arch. Histol. Cytol.* 52 Suppl., 415-422.

1001 Wu, X., Kriz, A.J., Sharp, P.A., 2014. Target specificity of the CRISPR-Cas9 system. *Quant.*
1002 *Biol.* 2, 59-70.

1003 York, J.R., Zehnder, K., Yuan, T., Lakiza, O., McCauley, D.W., 2019. Evolution of Snail-
1004 mediated regulation of neural crest and placodes from an ancient role in bilaterian
1005 neurogenesis. *Dev. Biol.* 453, 180-190.

1006 Yu, H.V., Tao, L., Llamas, J., Wang, X., Nguyen, J.D., Trecek, T., Segil, N., 2021. POU4F3
1007 pioneer activity enables ATOH1 to drive diverse mechanoreceptor differentiation
1008 through a feed-forward epigenetic mechanism. *Proc. Natl. Acad. Sci. U.S.A.* 118,
1009 e2105137118.

1010 Zhang, S., Zhang, Y., Dong, Y., Guo, L., Zhang, Z., Shao, B., Qi, J., Zhou, H., Zhu, W., Yan,
1011 X., Hong, G., Zhang, L., Zhang, X., Tang, M., Zhao, C., Gao, X., Chai, R., 2019.
1012 Knockdown of *Foxg1* in supporting cells increases the trans-differentiation of
1013 supporting cells into hair cells in the neonatal mouse cochlea. *Cell. Mol. Life Sci.* 77,
1014 1401-1419.

1015 Zhang, Y., Zhang, S., Zhang, Z., Dong, Y., Ma, X., Qiang, R., Chen, Y., Gao, X., Zhao, C.,
1016 Chen, F., He, S., Chai, R., 2020. Knockdown of *Foxg1* in Sox9+ supporting cells
1017 increases the trans-differentiation of supporting cells into hair cells in the neonatal
1018 mouse utricle. *Aging (Albany NY)* 12, 19834-19851.

1019 Zhao, X.-F., Suh, C.S., Prat, C.R., Ellingsen, S., Fjose, A., 2009. Distinct expression of two
1020 *foxg1* paralogues in zebrafish. *Gene Expr. Patterns* 9, 266-272.

1021

1022

Target gene	sgRNA	Target sequence	PAM	Combinations used
<i>Tyr</i>	1	GGTGCCAAGGCAAAACGCT	GGG	1+2, 1+2+3+4
	2	GATATCCCTCCATACATTAT	TGG	1+2, 1+2+3+4
	3	GATGTTCTAACACATTGGGG	TGG	1+2+3+4
	4	GCTATGAATTATTTTTTTC	AGG	1+2+3+4
	5	GCAAGGTATACGAAAGTTGA	CGG	5+6
	6	GATTGCAAGTTCGGCTTCTT	TGG	5+6
	7*	GGTAGAGACTTATGTAAC	GGG	7+8
	8*	GGCTCCATGTCTCAAGTCCA	AGG	7+8
<i>Atoh1</i>	1	GACCTTGTAAGATCGGAA	AGG	1+2
	2	GCTTGTCAATTGTCAAATGAC	GGG	1+2
<i>Neurod4</i>	1	GGAGCGTTCAAGGCCAGGC	GGG	1, 1+2+3+4, 1+6
	2	GTGAGCGTTCTCGCATGCAC	GGG	2, 1+2+3+4
	3	GCCTGGCCCACAACATACATC	TGG	1+2+3+4, 3+4+5+6
	4	GAGGGGCCCGAGAAGCTGC	AGG	1+2+3+4, 3+4+5+6
	5	GTCTCCCCAGCCCTCCCTAC	GGG	5, 3+4+5+6
	6	GACAACCCTCCCCGGATTG	CGG	1+6, 3+4+5+6
	7	GACCCTGCGCAGGCTCTCCA	GGG	7+9, 7+8+9
	8	GCAGCTGGTCCCCTGCTGA	CGG	7+8+9
	9	GGGGCCGTGTGCTCAGGGAT	GGG	7+9, 7+8+9
<i>Foxg1</i>	1	GAAACATTTGCCAACCC	CGG	1+2
	2	TCTTCCGAGCAAGGTAACTC	GGG	1+2
	3	TGATGCTGAAGGACGACTTG	GGG	3+4
	4	CTGGCTCGTCCTCGGGCCGG	TGG	3+4

1023

1024 **Table 1. sgRNAs used in this study.** List of the genes targeted for CRISPR/Cas9-mediated
1025 mutagenesis, together with the target sequences and combinations of sgRNAs reported in this
1026 study. Note: *Tyr* sgRNAs 7 and 8 (marked with an asterisk) were designed and recently
1027 published by Stundl et al. (2022) as their *tyr* sgRNA 3 and *tyr* sgRNA 4, respectively.