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ABSTRACT 1 
 2 
Comprehensive collections approaching millions of sequenced genomes have become central 3 
information sources in the life sciences. However, the rapid growth of these collections has made it 4 
effectively impossible to search these data using tools such as BLAST and its successors. Here, we 5 
present a technique called phylogenetic compression, which uses evolutionary history to guide 6 
compression and efficiently search large collections of microbial genomes using existing algorithms and 7 
data structures. We show that, when applied to modern diverse collections approaching millions of 8 
genomes, lossless phylogenetic compression improves the compression ratios of assemblies, de Bruijn 9 
graphs, and k-mer indexes by one to two orders of magnitude. Additionally, we develop a pipeline for a 10 
BLAST-like search over these phylogeny-compressed reference data, and demonstrate it can align genes, 11 
plasmids, or entire sequencing experiments against all sequenced bacteria until 2019 on ordinary 12 
desktop computers within a few hours. Phylogenetic compression has broad applications in 13 
computational biology and may provide a fundamental design principle for future genomics 14 
infrastructure.  15 
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INTRODUCTION 16 
 17 
Comprehensive collections of genomes have become an invaluable resource for research across life 18 
sciences. However, their exponential growth, exceeding improvements in computation, makes their 19 
storage, distribution, and analysis increasingly cumbersome 1. As a consequence, traditional search 20 
approaches, such as the Basic Local Alignment Search Tool (BLAST) 2 and its successors, are becoming 21 
less effective with the available reference data, which poses a major challenge for organizations such as 22 
the National Center for Biotechnology Information (NCBI) or European Bioinformatics Institute (EBI) 23 
in maintaining the searchability of their repositories. 24 
 25 
The key to achieving search scalability are compressive approaches that aim to store and analyze 26 
genomes directly in the compressed domain 3,4. Genomic data have low fractal dimension and entropy 5, 27 
offering the possibility of efficient search algorithms 5. However, despite the progress in compression-28 
related areas of computer science 4–15, it remains a practical challenge to compute parsimonious 29 
compressed representations of the exponentially growing public genome collections. 30 
 31 
Microbial collections are particularly difficult to compress due to the huge number of genomes and their 32 
exceptional levels of genetic diversity, which reflect the billions of years of evolution across the domain. 33 
Even though substantial efforts have been made to construct comprehensive collections of all sequenced 34 
microbial genomes, such as the 661k assembly collection 16 (661k pre-2019 bacteria) and the BIGSIdata 35 
de Bruijn graph collection 17 (448k de Bruijn graphs of all pre-2017 bacterial and viral raw sequence), the 36 
resulting data archives and indexes range from hundreds of gigabytes (661k) to tens of terabytes 37 
(BIGSIdata). This scale exceeds the bandwidth, storage, and data processing capacities of most users, 38 
making local computation on these data functionally impossible. 39 
 40 
We reasoned that the redundancies among microbial genomes are efficiently predictable, as they reflect 41 
underlying processes that created the collection: evolution and sampling. While genomes in nature can 42 
accumulate substantial diversity through vertical and horizontal mutational processes, this process is 43 
functionally sparse, and at the same time subjected to selective pressures and drift that limit their overall 44 
entropy. The amount of sequenced diversity is further limited by selective biases due to culture and 45 
research or clinical interests, resulting in sequencing efforts being predominantly focused on narrow 46 
subparts of the tree of life, associated with model organisms and human pathogens 16. Importantly, such 47 
subtrees have been shown to be efficiently compressible when considered in isolation, as low-diversity 48 
groups of oversampled phylogenetically related genomes, such as isolates of the same species under 49 
epidemiological surveillance 18,19. This suggests that the compression of comprehensive collections could 50 
be informed by their evolutionary history, reducing the complex problem of general genome 51 
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compression to the more tractable problem of local compression of phylogenetically grouped and 52 
ordered genomes. 53 
 54 
Phylogenetic relatedness is effective at estimating the similarity and compressibility of microbial 55 
genomes and their data representations. The closer two genomes are phylogenetically, the closer they 56 
are likely to be in terms of mathematical similarity measures, such as the edit distance or k-mer 57 
distances 20, and thus also more compressible. Importantly, this principle holds not only for genomes, 58 
but also for de Bruijn graphs and many k-mer indexes. We reasoned that phylogenetic trees could be 59 
embedded into computational schemes in order to group similar data together, as a preprocessing step 60 
for boosting local compressibility of data. The well-known Burrows-Wheeler Transform 21 has a similar 61 
purpose in a different context and similar ideas have been used for read and alignment compression 22–62 
25. Other related ideas have previously been used for scaling up metagenomic classification using 63 
taxonomic trees 26–29 and search in protein databases 30,31. 64 
 65 
At present, the public version of BLAST is frequently used to identify the species of a given sequence by 66 
comparing it to exemplars, but it is impossible to align against all sequenced bacteria. Despite the 67 
increasing number of bacterial assemblies available in the NCBI repositories, the searchable fraction of 68 
bacteria is exponentially decreasing over time (Fig. 1a). This limits our ability to study bacteria in the 69 
context of their known diversity, as the gene content of different strains can vary substantially, and 70 
important hits can be missed due to the database being unrepresentative. 71 
 72 
Here, we present a solution to the problem of searching vast libraries of microbial genomes: 73 
phylogenetic compression, a technique for an evolutionary-guided compression of arbitrarily sized 74 
genome collections. We show that the underlying evolutionary structure of microbes can be efficiently 75 
approximated and used as a guide for existing compression and indexing tools. Phylogenetic 76 
compression can then be applied to collections of assemblies, de Bruijn graphs, and k-mer indexes, and 77 
run in parallel for efficient processing. The resulting compression yields benefits ranging from a quicker 78 
download (reducing Internet bandwidth and storage costs), to efficient search on personal computers. 79 
We show this by implementing BLAST-like search on all sequenced pre-2019 bacterial isolates, which 80 
allow us to align genes, plasmids, and sequencing reads on an ordinary laptop or desktop computer 81 
within a few hours, a task that was completely infeasible with previous techniques.  82 
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Fig. 1: Overview of phylogenetic compression and its applications to different data types. 84 
a) Exponential decrease of data searchability over the past two decades illustrated by the size of the 85 
BLAST NT database divided by the size of the NCBI Bacterial Assembly database. b) The first three 86 
stages of phylogenetic compression prior to the application of a low-level compressor/indexer. (i) A 87 
given collection is partitioned into size- and diversity-balanced batches of phylogenetically related 88 
genomes (e.g., using metagenomic classification of the original reads). (ii) The input data are reversibly 89 
reordered based on a compressive phylogeny, performed separately for each batch. c) Examples of 90 
specific protocols for phylogenetic compression of individual data types, performed separately for each 91 
batch. (i) Assemblies are sorted left-to-right according to the topology of the phylogeny, and then 92 
compressed using a low-level compressor such as XZ 7,32 or MBGC 18. (ii) For de Bruijn graphs, k-mers 93 
are propagated bottom-up along the phylogeny, and the resulting k-mer sets are compacted into 94 
simplitigs 33, which are then compressed using XZ. (iii) For BIGSI k-mer indexes, Bloom filters (in 95 
columns) are ordered left-to-right according to the phylogeny, and then compressed using XZ. 96 
 97 
 98 
RESULTS 99 
 100 
We developed a technique called phylogenetic compression for evolutionarily informed compression and 101 
search of microbial collections (Fig. 1, https://brinda.eu/mof). Phylogenetic compression combines 102 
four ingredients (Fig. 1b): 1) clustering of samples into phylogenetically related groups, followed by 103 
2) inference of a compressive phylogeny that acts as a template for 3) data reordering, prior to 4) the 104 
application of a calibrated low-level compressor/indexer (Methods). This general scheme can be 105 
instantiated to individual protocols for various data types as we show in Fig. 1c; for instance, a set of 106 
bacterial assemblies can be phylogenetically compressed by XZ (the Lempel-Ziv Markov-Chain 107 
Algorithm 7, implemented in XZ Utils 32) by a left-to-right enumeration of the assemblies, with respect to 108 
the topology of their compressive phylogeny obtained via sketching 34. 109 
 110 
We implemented phylogenetic compression protocols for assemblies, for de Bruijn graphs, and for k-111 
mer indexes in a tool called MiniPhy (Minimization via Phylogenetic compression, 112 
https://github.com/karel-brinda/miniphy). To cluster input genomes, MiniPhy builds upon the 113 
empirical observation that microbial genomes in public repositories tend to form clusters corresponding 114 
to individual species 35, and species for individual genomes can be identified rapidly via metagenomic 115 
classification 36 (Fig. 1b, Methods). As some of the resulting clusters may be too large or too small, and 116 
thus unbalancing downstream parallelization, it further redistributes the clustered genomes into size- 117 
and diversity-balanced batches (Methods, Supplementary Fig. 1). This batching enables compression 118 
and search in a constant time (using one node per batch on a cluster) or linear time (using a single 119 
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machine) (Methods). For every batch, a compressive phylogeny – either provided by the user or 120 
computed automatically using Mashtree 34 / Attotree (https://github.com/karel-brinda/attotree, 121 
Methods) – is then used for data reordering (Methods). Finally, the obtained reordered data are 122 
compressed per batch using XZ with particularly optimized parameters (Methods), and possibly further 123 
re-compressed or indexed using some general or specialized low-level tool, such as MBGC 18 or COBS 37 124 
(Methods). 125 
 126 
We evaluated phylogenetic compression using five microbial collections, selected as representatives of 127 
the compression-related tradeoffs between characteristics including data quality, genetic diversity, 128 
genome size, and collection size (GISP, NCTC3k, SC2, 661k, and BIGSIdata; Methods, Supplementary 129 
Table 1). We quantified the distribution of their underlying phylogenetic signal (Methods, 130 
Supplementary Table 2, Supplementary Fig. 2), used them to calibrate the individual steps of the 131 
phylogenetic compression workflow (Methods, Supplementary Fig. 3–5), and evaluated the resulting 132 
performance, tradeoffs, and extremal characteristics (Methods, Supplementary Table 3, 133 
Supplementary Fig. 6). As one extreme, we found that 591k SARS-CoV-2 genomes can be 134 
phylogenetically compressed using XZ to only 18.1 bytes/genome (Methods, Supplementary Table 3, 135 
Supplementary Fig. 4, 6), resulting in a file size of 10.7 Mb (13.2× more compressed than GZip). A 136 
summary detailing the sensitivity/stability of performance to various factors is provided in 137 
Supplementary Note 1. 138 
 139 
We found that phylogenetic compression improved the compression of genome assembly collections 140 
that comprise hundreds of thousands of isolates of over 1,000 species by more than an order of 141 
magnitude compared to the state-of-the-art (Fig. 2a, Supplementary Table 3). Specialized high-142 
efficiency compressors such as MBGC 18 are not directly applicable to highly diverse collections, 143 
therefore, the compression protocols deployed in practice for extremely large and diverse collections are 144 
still based on the standard GZip, such as the 661k collection, containing all bacteria pre-2019 from 145 
ENA 16 (n=661,405,  805 GB). Here, MiniPhy recompressed the collection to 29.0 GB (27.8× 146 
improvement; 43.8 KB/genome, 0.0898 bits/bp, 5.23 bits/distinct k-mer) using XZ as a low-level tool, 147 
and further to 20.7 GB (38.9× improvement; 31.3 KB/genome, 0.0642 bits/bp, 3.74 bits/distinct k-mer) 148 
when combined with MBGC 18 that also accounts for reverse complements (Fig. 2a, Supplementary 149 
Table 3, Methods). Additionally, we found that the lexicographically ordered ENA datasets, as being 150 
partially phylogenetically ordered, can serve as an approximation of phylogenetic compression, with 151 
compression performance only degraded by a factor of 4.17 compared to full phylogenetic compression 152 
(Supplementary Table 3, Methods). The resulting compressed files are provided for download from 153 
Zenodo (Supplementary Table 4).  154 
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 155 

 156 

Fig. 2: Results of phylogenetic compression. a) Compression by MiniPhy of the two 157 
comprehensive genome collections: BIGSI (425k de Bruijn graphs; the standard compression is based 158 
on McCortex binary files) and 661k (661k bacterial assemblies; the standard protocol is based on GZip). 159 
For BIGSIdata, MBGC is not included as it does not support simplitigs. b) Comparison of the Phylign vs. 160 
BIGSI methods on search of all plasmids from the EBI database. For Phylign, the two segments 161 
correspond to the times of matching and alignment, respectively. 162 
 163 
 164 
We then studied de Bruijn graphs, a common genome representation directly applicable to raw-read 165 
data 17,38, and found that phylogenetic compression can improve state-of-the-art approaches by one-to-166 
two orders of magnitude (Fig. 2a, Supplementary Table 3, Methods). As standard and colored de 167 
Bruijn graphs lack methods for joint compression at the scale of millions of genomes and thousands of 168 
species, single graphs are often distributed individually 39. For instance, the graphs of the BIGSIdata 169 
collection 17, comprising all viral and bacterial genomes from pre-2017 ENA (n=447,833), are provided 170 
in an online repository in the McCortex binary format 40 and occupy in total >16.7 TB (Methods). Here, 171 
we retrieved n=425,160 graphs from the Internet (94.5% of the original count) (Methods) and losslessly 172 
recompressed them using the MiniPhy methodology, with a bottom-up propagation of the k-mer 173 
content, to 52.3 GB (319× improvement; 123. KB/genome, 0.248 bits/unitig bp, 10.2 bits/distinct k-174 
mer) (Fig. 2a, Supplementary Table 3, Methods). Further, as recent advances in de Bruijn graph 175 
indexing 15 may lead to more efficient storage protocols in the future, we also compared MiniPhy to 176 
MetaGraph 38, an optimized tool for indexing on high-performance servers with a large amount of 177 
memory. Here, we found that MiniPhy still provided an improvement of a factor of 5.78 (Methods). 178 
 179 
Phylogenetic compression can be applied to any genomic data structure based on a genome-similarity-180 
preserving representation (Methods, Supplementary Note 2). We demonstrate this using the 181 
Bitsliced Genomic Signature Index (BIGSI) 17 (Fig. 1c(iii)), a k-mer indexing method using an array of 182 
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Bloom filters, which is widely used for large-scale genotyping and presence/absence queries of genomic 183 
elements 16,17. Using the same data, batches, and orders as inferred previously, we phylogenetically 184 
compressed the BIGSI indexes of the 661k collection, computed using a modified version of COBS 37 185 
(Supplementary Table 5, Methods). Phylogenetic compression provided an 8.51× overall 186 
improvement compared to the original index (from 937 GB to 110 GB), making it finally usable on 187 
ordinary computers. After we further omitted the 3.7% genomes that had not passed quality control in 188 
the original study 16 (the 661k-HQ collection, visualized in Supplementary Fig. 7), the resulting 189 
phylogenetic compression ratio improved to 12.3× (72.8 GB) (Supplementary Table 5).  190 
 191 
To better understand the impact of phylogenetic compression across the tree of life, we analyzed the 192 
661k MiniPhy batches of assemblies and COBS indexes, both before and after compression 193 
(Supplementary Fig. 8). We found that although the top ten species constituted 80% of the genomic 194 
content, they occupied less than half of the database space post-compression for both genome 195 
representations (Supplementary Fig. 8). Conversely, the ‘dustbin’ batches, which include genomes 196 
from sparsely sampled species, expanded to occupy a proportion that was 9.4× larger in the database 197 
post-compression, compared to their precompression proportion, again for both representations 198 
(Supplementary Fig. 8). This consistent effect of compression on both assemblies and COBS indexes 199 
suggests that phylogenetic compressibility adheres to the same principles, irrespective of the specific 200 
genome representation used, with divergent genomes being a major driver of the final size. 201 
 202 
To demonstrate the practical utility of phylogenetic compression, we used it to implement BLAST-like 203 
search across all high-quality pre-2019 bacteria for standard desktop and laptop computers (Phylign, 204 
http://github.com/karel-brinda/phylign, Methods). For a given a set of queries, Phylign first identifies 205 
for each query those genomes that match best globally across the whole 661k-HQ collection, by 206 
proceeding via progressive in-memory decompression and querying of individual phylogenetically 207 
compressed COBS 37 k-mer indexes (described above). Subsequently, Phylign iterates over the 208 
phylogenetically compressed genome assemblies (described above) and computes the corresponding full 209 
alignments using on-the-fly instances of Minimap 2 41 (Methods). The choice of tools was arbitrary, and 210 
other programs or core data structures could readily be used instead. The resulting requirements 211 
amount to only 102 GB disk (for the compressed COBS indexes and assemblies: 195 KB/genome, 0.329 212 
bits/bp, 23.0 bits/distinct k-mer) (Supplementary Table 6) and 12 GB RAM, and Phylign can thus be 213 
deployed on most modern laptop and desktop computers. 214 
 215 
We first evaluated Phylign with 661k-HQ using three different types of queries – resistance genes (the 216 
entire ARG-ANNOT database of resistance genes 42, n=1,856), plasmids (EBI plasmid database, 217 
n=2,826), and a nanopore sequencing experiment (n=158,583 reads), with results available within 3.9, 218 
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11, and 4.3 hours, respectively, on an iMac desktop (Supplementary Table 7). Benchmarking against 219 
other tools was not possible, as we were unable to find any tool capable of aligning queries to 661k-HQ 220 
in a comparable setup. We therefore used the EBI plasmid dataset to compare Phylign to BIGSI with its 221 
original database of 448k genomes (which is essentially a subset of 661k-HQ with 1.43× less genomes) 17. 222 
We found that Phylign was over an order of magnitude faster (Fig. 2b, Supplementary Table 7); the 223 
search required 74.1 CPU hours and improved performance by a factor of 28.6× compared to the same 224 
BIGSI benchmark with its smaller database (Fig. 2b, Supplementary Table 7), while providing the 225 
full alignments rather than presence/absence only (Fig. 2b). To our knowledge, this is the first time 226 
that alignment to a collection of a comparable size and diversity has been locally performed. 227 
 228 
 229 
DISCUSSION 230 
 231 
It is hard to overstate the impact on bioinformatics of BLAST 2, which has allowed biologists across the 232 
world to simply and rapidly compare their sequence of interest with essentially all known genomes – to 233 
the extent that the tool name has become a verb. The web version provided by NCBI/EBI is so standard 234 
that it is easy to overlook how representative or complete its database is. However, twenty-four years on, 235 
sequencing data is far outstripping BLAST's ability to keep up. Much work has gone into approximate 236 
solutions 15, but full alignment to the complete corpus of bacterial genomes has remained impossible. We 237 
have addressed this problem and made significant progress, via phylogenetic compression, a highly 238 
efficient general technique using evolutionary history of microbes to improve existing compressive data 239 
structures and search algorithms by orders of magnitude. More concretely, BLAST-like search of all 240 
microbes is now possible, not just for NCBI/EBI, but for anyone on a personal laptop. This has wide-241 
ranging benefits, from an easy and rapid download of large and diverse genome collections, to 242 
reductions in bandwidth requirements, transmission/storage costs and computational time. 243 
 244 
Elements of our approach and related techniques have been previously used in other contexts. 245 
Reversible reordering to improve compression forms the core of the Burrows-Wheeler Transform 21 and 246 
its associated indexes 43–45, and it has also been used for read compression 22–25. Tree hierarchies have 247 
been applied in metagenomics for both lossy 26,27,46 and lossless 28 reference data compression. Finally, a 248 
divide-and-conquer methodology has been employed to accelerate the inference of species trees 47. 249 
However, this is the first time all these ideas have been combined together to improve the scalability of 250 
search in large genome databases. 251 
 252 
As with all forms of compression, our ability to reduce data is fundamentally limited by the underlying 253 
entropy. For genome collections, this is not introduced solely by the underlying genetic signal, but it is 254 
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also tightly connected with the sequencing process and our capacity to reconstruct genomes from 255 
sequencing reads. The noise in the underlying k-mer histograms (Supplementary Fig. 7) suggests 256 
that any method for compression or search will have to address noise in the forms of contamination, 257 
missing regions, and technological artifacts, with legacy data posing a major challenge for both storage 258 
and analysis. Future methods may choose to incorporate stricter filtering, and as our experiments have 259 
demonstrated, this not only helps in reducing data volume but also in improving the quality of search 260 
outputs. These issues may be alleviated by innovative computational strategies, such as taxonomic filters 261 
48 or sweep deconvolution 49. 262 
 263 
In light of technological development, the benefits of phylogenetic compression will grow over time. 264 
Currently, only a fraction of the world’s microbial diversity has been sequenced. However, as sequencing 265 
becomes more comprehensive, the tree of life will not change, thus enhancing the relative advantage of 266 
phylogenetic compression. We foresee its use ranging from mobile devices to large-scale distributed 267 
cloud environments and anticipate promising applications in global epidemiological surveillance 50 and 268 
rapid diagnostics 51. Overall, the phylogenetic compression of data structures has broad applications 269 
across computational biology and represents a fundamental design principle for future genomics 270 
infrastructure. 271 
 272 
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METHODS 485 
 486 
 487 
Analysis of the decrease in bacteria BLAST searchability 488 
 489 
Estimation of BLAST NT database size. The size of the BLAST NT database for the time period 490 
between 2002-01-01 and 2022-11-01 was estimated using five types of online resources, resulting in 491 
n=27 values. First, file sizes were manually recorded from the official NCBI website 492 
https://ftp.ncbi.nih.gov/blast/db/FASTA/ (n=11, between 2020-04-05 and 2022-11-01). Second, 493 
additional values were obtained from the snapshots of this website and its NCBI mirrors on 494 
http://web.archive.org (n=7, between 2012-10-11 and 2022-06-06). Third, archived versions of the NT 495 
database were found in diverse online repositories (n=3, between 2017-10-26 and 2021-01-15). Fourth, 496 
the NT database size was documented in a software documentation (n=1, 2013-12-03). Finally, the 497 
number of base pairs in the NT database was also documented in literature (n=5, between 2002-01-01 498 
and 2010-01-01) (Supplementary Table 8). Conversion between the sizes of the GZip-compressed NT 499 
database and the corresponding total sequence lengths was performed using the 2.04 GZip bits per bp 500 
constant, estimated using the NT database as of 2022-06-20. 501 
 502 
Estimation of NCBI Assembly database size. The number of bacteria in the NCBI Assembly 503 
database 52 (https://www.ncbi.nlm.nih.gov/assembly/) and their compressed size were estimated from 504 
the GenBank assembly summary file 505 
https://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt (n=1,280,758 records, 506 
downloaded on 2022-11-02). The file was sorted according to the ‘seq_rel_date’ field and then used for 507 

calculating the number of published assemblies till a given date, aggregated per month. The total lengths 508 
of assemblies for the corresponding time points were estimated using the mean length of a bacterial 509 
genome assembly in the 661k collection (3.90 Mbp) and then converted to the estimated GZip size as 510 
previously. Although updates in the assembly_summary.txt file, such as the removal of old 511 

contaminated records, may influence the resulting statistics, a manual inspection during a several-512 
months-long period showed only a minimal impact of these changes on the old statistics. 513 
 514 
Comparison of BLAST NT and NCBI Assembly database sizes (Fig 1a). To compare the sizes of 515 
two databases at the same time points, their respective functions were first interpolated in the 516 
logarithmic scale using piecewise linear functions from the data extracted above. The resulting 517 
interpolations were then used to calculate the estimated proportion of the sizes of NT and the bacteria in 518 
the NCBI Assembly database at regular intervals (monthly). Although minor inaccuracies might be 519 
present in the calculations (such as variations in the mean bacterial assembly or in the GZip-bits-per-bp 520 
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conversion across different versions of the databases), these differences do not impact the overall 521 
exponential decrease of data searchability. 522 
 523 
 524 
Conceptual overview of phylogenetic compression 525 
 526 
General overview. To organize input genomes into phylogenetic trees and compress/index them in a 527 
scalable manner, phylogenetic compression combines four conceptual steps. 528 
 529 
Step 1: Clustering/batching (Fig. 1b(i)). The goal of this step is to partition genomes into batches 530 
of phylogenetically related genomes, of a limited size and diversity, that can be easily compressed and 531 
searched together using highly reduced computational resources. During downstream compression, 532 
indexing, and analyses, these individual batches are processed separately, and their maximum size and 533 
diversity can establish upper bounds on the maximum time and space necessary for processing a single 534 
batch. For instance, in the realm of k-mer aggregative methods (see an overview in ref 15), this 535 
corresponds to a matrix decomposition of a large k-mer annotation matrix into a series of small matrices 536 
that have both dimensions small, and analogically in the realm of dictionary compression, to reducing 537 
the input strings and dictionary sizes. 538 
 539 
For microbes, clustering can be accomplished rapidly by metagenomic classification 36 applied to the raw 540 
reads or other methods for species identification. Microbial genomes in public repositories form distinct 541 
clusters, usually (but not always) corresponding to individual species 35 , and metagenomic classification 542 
can assign individual genomes to these respective clusters, defined by the underlying reference database 543 
such as NCBI RefSeq 36. This requires only a constant time per dataset and can be fully parallelized, 544 
resulting thus in a constant-time clustering if sufficiently many computational nodes are available. 545 
 546 
The obtained clusters are then reorganized into batches. First, too small clusters are merged, creating a 547 
special pseudo-cluster called dustbin, whose purpose is to collect divergent, weekly compressible 548 
genomes from sparsely sampled regions of the tree of life. Subsequently, the clusters that are too large – 549 
such as those corresponding to oversampled human pathogens (e.g., S. enterica or E. coli) – as well as 550 
the dustbin are then divided into smaller batches, to provide guarantees on the maximum required 551 
downstream computational resources per one batch. An additional discussion of batching is provided in 552 
Supplementary Note 3.  553 
 554 
Step 2: Inference of a compressive phylogeny (Fig. 1b(ii)). In this step, the computed batches 555 
are equipped with a so-called compressive phylogeny, which is a phylogeny approximating the true 556 
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underlying phylogenetic signal with sufficient resolution for compression purposes. If accurate inference 557 
methods such as RAxML 53 or FastTree 2 54 cannot be applied due to the associated bioinformatics 558 
complexity or high resource requirements, phylogenies can be rapidly estimated via lighter approaches 559 
such as the Mashtree algorithm 34  (reimplemented more efficiently in Attotree, 560 
https://github.com/karel-brinda/attotree) instead, with only a negligible impact on the resulting 561 
compression performance (Supplementary Fig. 5, Supplementary Note 1). 562 
 563 
Step 3: Data reduction/reordering (Fig. 1b(ii)). The compressive phylogenies obtained in the 564 
previous step serve as a template for phylogenetic reordering of individual batches. The specific form of 565 
reordering can vary depending on the specific data representations, intended applications, and method 566 
of subsequent compression or indexing. In principle, the reordering can occur in two directions: as a 567 
left-to-right genome reordering based on the topology of the compressive phylogeny, or as a bottom-up 568 
reduction of genomic content along the phylogeny (followed by left-to-right enumeration). Regardless of 569 
the specific form, this transformation is always reversible, thus sharing similarities with methods such as 570 
the Burrows-Wheeler transform 21. 571 
 572 
Step 4: Compression or indexing using a calibrated low-level tool (Fig. 1c). Finally, the 573 
reordered data are compressed or indexed using a low-level tool. At this stage, thanks to both phylogeny-574 
based clustering and phylogeny-based reordering, the data are highly locally compressible, which 575 
enables to use of a wide range of general and specialized genome compressors/indexes. Nevertheless, it 576 
is crucial to ensure that the properties of the underlying algorithms and their parameters are closely 577 
tailored to the specific characteristics of the input data and their intended applications. For instance, to 578 
compress genomes in FASTA format, compressors based on Lempel-Ziv require the window/dictionary 579 
sizes to be large enough to span multiple genomes (Supplementary Fig. 3a), and general compressors 580 
also critically depend on FASTA being in a one-line format (Supplementary Fig. 3b). As a general 581 
rule, general compressors must always be carefully tested and calibrated for specific genomic data types, 582 
potentially requiring format cleaning and parameter calibration, whereas specialized genome 583 
compressors and indexers are usually pre-calibrated in their default setting and provided with well-584 
tested configuration presets. While in many practical scenarios, individual batches are 585 
compressed/indexed separately, some protocols may involve merging reordered batches together to 586 
create a single comprehensive archive/index. 587 
 588 
 589 
The MiniPhy framework for phylogenetic compression  590 
 591 
Here, we describe the specific design choices of our implementation of phylogenetic compression for 592 
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assemblies and de Bruijn graphs. More information and relevant links, including specific tools such as 593 
MiniPhy and Phylign and the resulting databases, can be found on the associated website 594 
(https://brinda.eu/mof). 595 
 596 
Clustering/batching. As genome collections encountered in practice can vary greatly in their 597 
properties as well as the available metadata, clustering is expected to be performed by the user. The 598 
recommended procedure is to identify species clusters using standard metagenomic approaches, such as 599 
those implemented in the Kraken software suite 55 (i.e., Kraken 2 56 and Bracken 57 applied on the 600 
original read sets), as the obtained abundance profiles can also be used for quality control to filter out 601 
those samples that are likely contaminated. The next step is to divide the obtained genome clusters into 602 
smaller batches, analogically to the examples in Supplementary Figure 1 and as discussed in more 603 
details in Supplementary Note 3 (and the corresponding implementation in the MiniPhy package, 604 
see below). The order in which genomes are taken within individual clusters can impact the final 605 
compression performance; based on our experience, lexicographic order with accessions or ordering 606 
according to the number of distinct k-mers per genome provide surprisingly good performance as both 607 
of these approaches tend to group phylogenetically close genomes closer to each other. The protocol can 608 
be customized further to suit the performance characteristics of algorithms downstream, such as by 609 
adjusting the batch size or the parameters controlling the creation of dustbin batches (Supplementary 610 
Note 3). If the total size of a collection is small enough, the clustering/batching step may be skipped 611 
entirely and the entire collection treated as a single batch. 612 
 613 
Inference of a compressive phylogeny. Users have the option to provide a custom tree generated 614 
by an accurate inference method such as RAxML 53. However, in most practical scenarios, such trees are 615 
not available, and MiniPhy then employs Attotree (https://github.com/karel-brinda/attotree), an 616 
efficient reimplementation of the Mashtree algorithm 34 , to generate a compressive phylogeny through 617 
sketching. Both Mashtree and Attotree first use Mash 58 to estimate the evolutionary distances between 618 
all pairs of genomes, which are then used to infer a compressive phylogeny employing the Neighbor-619 
Joining algorithm 59,60 as implemented in QuickTree 61. The distance computation in Mash is based on 620 
estimating the Jaccard indexes of the corresponding k-mer sets and then estimating the likely mutation 621 
rate under a simple evolutionary model 62. Finally, MiniPhy post-processes the obtained tree using 622 
standard tree-transformation procedures implemented in the ETE3 library 63, involving tree 623 
standardization, setting a midpoint outgroup, ladderization, and naming the internal nodes. 624 
 625 
MiniPhy (https://github.com/karel-brinda/miniphy). This is a central package for phylogenetic 626 
compression, including support for batching, and for calculating the associated statistics (see below). 627 
MiniPhy is implemented as a Snakemake 64 pipeline, offering three protocols for phylogenetic 628 
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compression: 629 
1) Compression of assemblies based on left-to-right reordering. 630 
2) Compression of de Bruijn graphs represented by simplitigs 33,65 based on left-to-right reordering. 631 
3) Compression of de Bruijn graphs through bottom-up k-mer propagation using ProPhyle 28,29. 632 
 633 
In the third protocol, k-mer propagation is executed recursively in a bottom-up manner: at each internal 634 
node, the k-mer sets of the child nodes are loaded, their intersection computed, stored at the node, the 635 
intersection subtracted from the child nodes, and all three k-mer sets saved in the form of simplitigs 33,65; 636 
ProphAsm 33 performs all these operations. This process results in a progressive reduction of the k-mer 637 
content within the phylogeny in a lossless manner. Further details on this technique can be found in 638 
ref 66. 639 
 640 
The output of each of the three protocols is a TAR file containing text files in their phylogenetic order, 641 
created from the corresponding list of files using the following command: 642 

tar cvf - -C $(dirname {input.list}) -T {input.list} --dereference 643 
For assemblies, these text files are the original assembly FASTA files, converted by SeqTK 67  to the 644 
single-line format with all nucleotides in uppercase (‘seqtk seq -U {input.fa}’). For simplitigs, the 645 

text files are EOL-delimited lists of simplitigs in the order as computed by ProphAsm, obtained from its 646 
output using the command ‘seqtk seq {input.fa} | grep -v \>’. The resulting TAR file is then 647 

compressed using XZ (‘xz -9 -T1’, see the section about calibration), and the resulting .tar.xz file 648 

distributed to users or further recompressed or indexed by other low-level tools, while preserving the 649 
underlying order. 650 
 651 
MiniPhy statistics. For each of the three implemented protocols, MiniPhy generates a comprehensive 652 
set of statistics to quantify the compressibility of the batch, including: 1) set (the size of the k-mer set 653 
computed from all nodes of the compressive phylogeny), 2) multiset (the size of the k-mer multiset 654 
computed as a union of k-mer sets from individual nodes), 3) sum_ns (the total number of sequences), 655 
4) sum_cl (the total sequence length), 5) recs (the number of records corresponding to individual 656 
nodes), and 6) xz_size (the size of the TAR file after XZ compression). The sizes of k-mer sets and 657 
multisets are determined from k-mer histograms computed by JellyFish 2 68 (v2.2.10) using the 658 
commands: 659 

jellyfish count --threads {threads} --canonical --mer-len 31 --size 20M \ 660 
--output {jf_file} {input} 661 

followed by 662 
jellyfish histo --threads {threads} --high 1000000 {jf_file} 663 
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The computed statistics are used for calculating additional compression-related metrics, such as the 664 
number of bits per distinct k-mer or kilobytes per genome. 665 
 666 
Phylogeny-explained redundancy. By comparing the sizes of k-mer sets and multisets before and 667 
after reduction by k-mer propagation along a compressive phylogeny, it is possible to quantify the 668 
proportion of the k-mer signal that is explained by the phylogeny. This yields the so-called phylogeny-669 
explained k-mer redundancy, quantifying the proportion of redundant occurrences of canonical k-mers 670 
that can be eliminated through k-mer propagation, out of those potentially eliminable if the phylogeny 671 
perfectly explained the distribution of all the k-mers (i.e., every k-mer occurring only once after 672 
propagation and thus being associated with a single entire subtree): 673 

𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 =
|𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡_𝑝𝑟𝑒𝑝𝑟𝑜𝑝| − |𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡_𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑝|

|𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡_𝑝𝑟𝑒𝑝𝑟𝑜𝑝| − |𝑠𝑒𝑡|
 674 

For collections comprising multiple batches, these variables refer to the global statistics, i.e., the sizes of 675 
set and multiset unions across all batches. 676 
 677 
MiniPhy-COBS. MiniPhy-COBS (https://github.com/leoisl/miniphy-cobs) is a Snakemake 64 pipeline 678 
designed to create phylogenetically compressed ClaBS COBS indexes 37 (Classical Bit-sliced index) from 679 
assemblies already phylogenetically compressed by MiniPhy. ClaBS is a variant of COBS analogous to 680 
the original BIGSI data structure 17, using Bloom filters of the same size; this property is important for 681 
ensuring that the order of Bloom filters is preserved and that the neighboring Bloom filters are mutually 682 
compressible (Supplementary Note 2). The workflow for each batch involves three main steps: 683 
 684 
1) Renaming input assemblies to align their lexicographic and phylogenetic orders within each batch, 685 
2) Constructing COBS ClaBS indexes with: 686 

cobs classic-construct -T 8 {batch} {output}.cobs_classic 687 
3) Compressing the obtained indexes using: 688 

xz -9 -T1 -e --lzma2=preset=9,dict=1500MiB,nice=250 689 
 690 

Updated ProPhyle. To simplify the integration with MiniPhy for bottom-up k-mer propagation, a new 691 
version of ProPhyle 28,29 was released (v0.3.3.1, https://github.com/prophyle/prophyle). The main 692 
improvement compared to previous versions includes the possibility to stop after k-mer propagation, 693 
without proceeding to the construction of an FM-index, as such an index is unnecessary for phylogenetic 694 
compression using MiniPhy. The new version of ProPhyle is provided in the form of a Github release 695 
(https://github.com/iqbal-lab-org/cobs/releases) and pre-built packages on Bioconda 69. 696 
 697 
 698 
Overview of the five test microbial collections 699 
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 700 
GISP. The GISP collection comprises 1,102 draft assemblies of N. gonorrhoeae clinical isolates, 701 
collected in the US between 2000 and 2013 by the Centers for Disease Control and Prevention as part of 702 
the Gonococcal Isolate Surveillance Project (GISP) 70. These isolates had been sequenced using Illumina 703 
HiSeq and assembled using Velvet 71. The phylogenetic relationships among the isolates are known and 704 
had been determined using RAxML 53  after a correction for recombination by Gubbins 72. The GISP 705 
collection provides an example of a high-quality collection of draft genomes of a single low-diversity 706 
bacterial species, generated using a standardized sequencing and assembly protocol. 707 
 708 
NCTC3k. The NCTC3k collection comprises 1,065 draft and complete assemblies of isolates of various 709 
bacterial species, derived from strains in the National Collection of Type Cultures (NCTC) collection and 710 
analyzed by Public Health England, the Wellcome Sanger Institute, and Pacific Biosciences as part of the 711 
NCTC 3000 Project 73 (https://www.culturecollections.org.uk/collections/nctc-3000-project.aspx). The 712 
isolates were sequenced using the PacBio Single Molecule, Real-Time (SMRT) DNA Sequencing 713 
technology, and assembled using automated pipelines. The assembled genomes are publicly available 714 
from the https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/ website. The NCTC3k 715 
collection provides an example of a collection of high-quality, nearly complete genomes from diverse 716 
bacterial species. 717 
 718 
SC2. The SC2 collection comprises 590,779 complete assemblies of SARS-CoV-2 isolates obtained from 719 
the GISAID database 74 as of 2021-05-18. These isolates were collected, sequenced, and assembled by 720 
various laboratories worldwide between 2020 and 2021 using various protocols. The phylogeny of the 721 
isolates is known and was computed by the sarscov2phylo software 722 
(https://github.com/roblanf/sarscov2phylo/, ref 75). The SC2 collection provides an example of a large 723 
collection of genomes of varying quality obtained from epidemiological surveillance of a single viral 724 
species at a global scale. 725 
 726 
BIGSIdata. The BIGSIdata collection comprises 425,160 cleaned de Bruijn graphs representing nearly 727 
all bacterial and viral isolates available in the European Nucleotide Archive (ENA) as of December 728 
2016 17. These isolates had originally been collected and sequenced by various laboratories worldwide, 729 
deposited as raw-read data or genome assemblies to repositories synchronized with the ENA (ENA, 730 
NCBI SRA, and DDBJ Sequence Read Archive), and later downloaded and transformed into cleaned de 731 
Bruijn graphs using McCortex 40,76  (k=31) by the European Bioinformatics Institute (EBI). The resulting 732 
graphs were provided on an HTTP/FTP website 733 
(http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018), along with metadata on Figshare 77, 734 
although not all of the original 447,833 graphs could be retrieved in this study (see below). The 735 
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BIGSIdata collection provides an example of a large and diverse collection of bacterial and virus isolates, 736 
collected and sequenced across the globe using various sequencing technologies and all provided in a 737 
unified graph representation. 738 
 739 
661k. The 661k collection comprises 661,405 draft assemblies of all Illumina-sequenced bacterial 740 
isolates present in the ENA as of November 2018 16. These isolates had originally been collected and 741 
sequenced by various laboratories worldwide, and their raw-read data deposited to repositories 742 
synchronized with the ENA (ENA, NCBI SRA, and DDBJ Sequence Read Archive). The assemblies were 743 
generated using a single unified pipeline (https://github.com/iqbal-lab-org/assemble-all-ena) based on 744 
Shovill (https://github.com/tseemann/shovill) by EBI, and provided on an HTTP/FTP website 745 
(https://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/), along with metadata on FigShare 78. 746 
The 661k collection provides an example of a large and diverse collection of assembled bacterial isolates, 747 
collected and sequenced across the globe using a single sequencing technology, i.e., the state-of-the-art 748 
of the short read-assembly era. 749 
 750 
Basic characteristics of the five test collections, including the original file size, number of samples, 751 
species count, and the number of distinct k-mers, are provided in Supplementary Table 1. 752 
 753 
 754 
Acquisition of the test collections 755 
 756 
GISP. The GISP collection was obtained from the https://github.com/c2-d2/rase-db-ngonorrhoeae-757 
gisp repository (version 04a132c) as published in ref 51. The assemblies (n=1,102) were obtained from 758 
the “isolates/contigs” subdirectory of Github repository (containing the original genomes including the 759 
plasmids), and the associated RAxML phylogenetic tree was downloaded from the “tree/” subdirectory 760 
of the same repository. The original data had originally been analyzed in ref 70 and provided for 761 
download on Zenodo 79.  762 
 763 
NCTC3k. The assemblies were obtained in the GFF format from 764 
ftp://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000 by 765 

wget -m -np -nH --cut-dirs 3 –retr-symlinks \ 766 
ftp://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000 . 767 

The obtained files were converted them to the FASTA format by any2fasta 768 
(https://github.com/tseemann/any2fasta, v0.4.2) parallelized by GNU Parallel 80 and uploaded to 769 
Zenodo (ref 81, http://doi.org/10.5281/zenodo.4838517). The number of species in the collection was 770 
determined based on the data provided in the main Sanger/Public Health England assembly table for 771 
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NCTC 3000 (https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/, retrieved on 2022-09-772 
14). The HTML table was manually exported to XLSX and used to construct a translation table from 773 
NCTC accession numbers to corresponding species. The accessions of the assemblies in our collection 774 
were then extracted from file names, translated to species, and the species counted. Overall, this resulted 775 
in n=1,065 assemblies of 259 species. 776 
 777 
SC2. The SARS-Cov-2 data were downloaded from the GISAID website (https://www.gisaid.org/, as of 778 
2021-05-18) in the form of an assembly file (‘sequences_fasta_2021_05_18.tar.xz’, n=1,593,858) 779 

and a Sarscov2phylo phylogeny 82 (‘gisaid-hcov-19-phylogeny-2021-05-11.zip’, n=590,952). After 780 

converting both files to the same set of identifiers and removing isolates with missing data, we obtained 781 
n=590,779 genome assemblies organized in a phylogenetic tree.  782 
 783 
BIGSIdata. The BIGSI collection data 17 were downloaded from the associated FTP 784 
(http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/), including cleaned de Bruijn graphs, 785 
taxonomic information inferred using Kraken 26, and abundance reports computed using Bracken 57. The 786 
download was done using RSync in groups corresponding to individual EBI prefixes (e.g., DRR000) by 787 

rsync -avP --min-size=1 --exclude '*stats*' --exclude '*uncleaned*' \ 788 
--exclude '*bloom*' --exclude '*log*' \ 789 
rsync://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/{prefix} 790 

The prefixes were organized into 15 groups of at most 100 prefixes each, and the groups were processed 791 
individually in succession on a research computing cluster, with a parallelization using Slurm and jobs 792 
deployed using Snakemake 64 (between 2020-08-01 and 2020-09-15). From the downloaded McCortex 793 
files, unitigs were extracted using McCortex: 794 

bzcat -f {input} | mccortex31 unitigs -m 3G – 795 
Only those graphs with an uncorrupted McCortex file, Bracken information available, unitigs of total 796 
length ≥2 kbp with ≤15 M distinct k-mers, and with no file system error encountered were used in the 797 
subsequent processing. This resulted in n=425,161 de Bruijn graphs (out of the original n=463,331 798 
genomes from the FTP or n=447,833 genomes reported in ref 17). 799 
 800 
661k. The 661k collection was downloaded in March 2021 from the official FTP repository specified in 801 
ref 16, using RSync by 802 

rsync -avp rsync://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-803 
661k/Assemblies/{pref} 804 

The command was run for individual prefixes ranging from 000 to 661, which resulted in n=661,405 805 
.fa.gz files. 806 
 807 
 808 
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Calibration and evaluation of phylogenetic compression 809 
 810 
Calibration of XZ as a low-level tool for phylogenetic compression (Supplementary Fig. 811 
3). The compression performance of GZip, BZip2, and XZ was evaluated using the GISP collection, 812 
converted to the single-line FASTA format and with genomes sorted left-to-right according to the 813 
Mashtree phylogeny. For each compressor, the compression was performed with a range of presets and 814 
always with a single thread. To evaluate the compression performance with large resources available, 815 
two additional manually tuned modes with larger dictionaries, denoted by ‘M’ and ‘MM’, were added to 816 
the XZ benchmark, corresponding to the parameters 817 

--lzma2=preset=9,dict=512MiB 818 
and 819 

--lzma2=preset=9,dict=1500MiB,nice=250 820 
respectively. 821 
 822 
To evaluate the impact of different line lengths on the compression, the source FASTA was reformatted 823 
for different lengths using SeqTK 67 and compressed using XZ by 824 

seqtk seq -l {line_length} | xz -9 -T1 825 
 826 
Comparison of scaling modes (Supplementary Fig. 4). The SC2 collection was provided in the 827 
left-to-right order according to Sarscov2phylo phylogeny. The genomes were progressively uniformly 828 
subsampled, stored as EOL-separated lists of sequences (without sequence headers), and then 829 
compressed using individual compressors, namely: 1) XZ: ‘xz -9 -T1’, 2) BZip2: ‘bzip2 --best’, 830 

3) GZip: ‘gzip -9’, and 4) Re-Pair 83,84 (https://github.com/rwanwork/Re-Pair, version as of 2021-10-831 

26): 832 
repair -v -I {inp_seqs}; tar cf {inp_seqs}.tar {inp_seqs}.prel {inp_seqs}.seq 833 

As Re-Pair did not provide sufficient scalability for the entire SC2 data set and the implementation 834 
suffered from various bugs, the Re-Pair sub-experiment was limited only to n≤70k, the integrity of the 835 
output files always verified via their decompression and line counting, and all archives lacking integrity 836 
were discarded from the subsequent analysis. 837 
 838 
The scalability comparisons for the NCTC3k and GISP collections were performed analogically, but 839 
using MiniPhy (commit ‘41976c7’) and with sequence headers preserved. The order of all assemblies 840 

was first randomized by ‘sort -R’ and the individual sub-samplings for compression then generated as 841 

prefixes of this randomized list. The size comparisons were made based on the .tar.xz output file of the 842 
pipeline, as well as additional files obtained via their recompression by GZip and BZip2 with the same 843 
parameters as above. 844 
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 845 
Order comparison (Supplementary Fig. 5). The SC2 collection was put into three different 846 
orderings: the original ordering (corresponding to the lexicographical ordering by sequence names), the 847 
left-to-right ordering of the phylogeny, and a randomized order. In all cases, a custom Python script 848 
using BioPython 85 was used to order the FASTA file and remove sequence names, and its output was 849 
compressed by the XZ compressor using 1 thread and the best preset (‘xz -T1 -9’). The comparisons 850 

for GISP and NCTC3k was performed analogically, but with sequence headers preserved. 851 
 852 
Summary of MiniPhy calibration. XZ with the parameters ‘xz -9 -T1’ was chosen as the default 853 

compression procedure for MiniPhy, and Mashtree 34 as the default method for inferring compressive 854 
phylogenies. These choices were done based on the observations that the most popular method, GZip, 855 
always performed poorly for bacteria, although provided a moderate compression performance for 856 
viruses. On the other hand, XZ achieved steep compression curves for low-diversity collections, with 857 
compression ratio improving by one order per one order increase of the number of genomes, for both 858 
viruses and bacteria. NCTC3k as a high-diversity collection was weakly compressible even with the best 859 
approaches (<1 order of magnitude of compression after a 3 orders-of-magnitude increase of the 860 
number of genomes). One of the best available (but still highly experimental) grammar-based 861 
compressors, Re-Pair 83,84, achieved a similar asymptotic behavior as XZ, indicative of the potential of 862 
grammar compressors for phylogenetic compression to provide random access, but its usability remains 863 
experimental. Phylogenetic reordering boosted compression substantially for both low- and high-864 
diversity collections (reduction in size between 38% and 67% compared to random orders). Finally, 865 
compressive phylogenies computed using Mashtree 34 provided nearly equal compression performance 866 
as an accurate approach using RAxML 53.  867 
 868 
 869 
Phylogenetic compression of the BIGSIdata collection of de Bruijn graphs 870 
 871 
Clustering and batching. For every sample, the output of Kraken 26 and Bracken 57 were extracted 872 
from the downloaded data as provided in the online FTP repository 873 
(http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/) in the Bracken files 874 
(‘{accession}.ctx_braken.report’) as the previously identified most prevalent species 875 

(corresponding to the row with the highest value of the ‘fraction_total_reads’ column). Clustering 876 

and batching then proceeded as depicted in Supplementary Fig. 1 and further commented in 877 
Supplementary Note 3, with genomes being sorted according to the number of k-mers before their 878 
partitioning into batches. Overall, the genomes of the 1,443 identified species (clusters) were partitioned 879 
into 568 regular batches and 6 dustbin batches, resulting in a total of 574 batches. 880 
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 881 
Phylogenetic compression. Phylogenetic compression was performed twice, with slightly different 882 
workflows. 883 
 884 
First, phylogenetic compression proceeded manually, via a workflow whose modified version was later 885 
implemented in MiniPhy. For individual batches, compressive phylogenies were computed using 886 
Mashtree 34 with the default parameters. The resulting trees and McCortex unitig files were then used as 887 
input for ProPhyle (v0.3.3.0) to propagate k-mers along the phylogenies, compute simplitigs 33 , and 888 
merge the output FASTA files into a single one by  889 

prophyle index -k 31 -A -g {dir_genomes} {tree} {batch_name} 890 
The resulting FASTA files produced by ProPhyle (called ‘index.fa’) were converted into the single-line 891 

format using SeqTK 67 and compressed using XZ by 892 
seqtk seq {prophyle_index_fa} | xz -9 -T8 893 

The resulting files occupied 74.4 GB and were deposited on https://doi.org/10.5281/zenodo.4086456 894 
and https://doi.org/10.5281/zenodo.4087330. Support for this version of the data set was incorporated 895 
into De-MiniPhy-BIGSIdata (see below), and the correctness of the end-to-end protocol and of the 896 
resulting files was validated by De-MiniPhy-BIGSIdata and subsequent k-mer counting using kc-c3 897 
(https://github.com/lh3/kmer-cnt, commit ‘e257471’). The obtained k-mer counts were compared to 898 

those obtained from the original McCortex files (from the total length and count of unitigs); all k-mer 899 
counts were equal with the exception of 4 samples with 17–26 more reported k-mers after 900 
decompression. 901 
 902 
Second, an analogical version of the propagated simplitig files, but without sequence headers and with 903 
compression using a single thread only, was later created using the MiniPhy pipeline and resulted in files 904 
occupying in total 52.3 GB that were subsequently deposited on 905 
https://doi.org/10.5281/zenodo.5555253. 906 
 907 
Decompression of BIGSIdata de Bruijn graphs. To decompress de Bruijn graphs from the files 908 
obtained by k-mer propagation, all k-mers along all root-to-leaf paths need to be collected. We 909 
implemented this specifically for BIGSIdata in a Python package called De-MiniPhy-BIGSIdata 910 
(https://github.com/karel-brinda/De-MiniPhy-BIGSIdata). The program downloads individual data 911 
files from Zenodo from the accessions above (the first version of the dataset) and reconstructs the 912 
original k-mer sets using the following procedure. First, it decompresses the XZ file of a given batch, 913 
splits it according to files corresponding to individual nodes of the compressive phylogeny, recompresses 914 
individual nodes using GZip parallelized by GNU Parallel 80, and for all leaves (genomes) it reconstructs 915 
the corresponding k-mer sets by merging all GZip files along the corresponding root-to-leaf paths using 916 
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the Unix cat command. From the obtained output FASTA files, de Bruijn graphs can be easily 917 
reconstructed by standard tools such as BCALM2 86. 918 
 919 
Comparison to the original compression protocol. As the samples in our BIGSIdata collection 920 
do not fully correspond to the data that were used in the original publication of BIGSI 17, we recalculated 921 
the size statistics of the published McCortex files of our graphs based on the FTP list-off files as provided 922 
within individual subdirectories of http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ (as of 923 
2021-08-27). These were downloaded per individual prefix directories recursively using wget by 924 

wget -nv -e robots=off -np -r -A .html \ 925 
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/{prefix}/ 926 

The corresponding parallelized Snakemake pipeline was run on a desktop computer. This resulted in a 927 
table containing 484,463 files, out of which 162,645 were BZip2-compressed. The individual file records 928 
were compared with the list of accessions of files that were previously retrieved and sorted in our 929 
BIGSIdata collection, and the volume of the source graphs on FTP calculated to be 16.7 TB. 930 
 931 
Comparison to Metagraph 38. The size of the phylogenetically compressed BIGSIdata collection was 932 
compared to the size of an analogous Metagraph index from the original paper 38, based on the statistics 933 
in Table 1 and Supplementary Table 1 therein (the SRA-Microbe collection): n=446,506 indexed 934 
datasets, 39.5 G canonical k-mers (with the same k-mer size k=31), and the size of the annotated de 935 
Bruijn graph being 291 GB  (graph 30 GB + annotations 261 GB). This index was constructed from the 936 
same datasets as in the original BIGSI paper 17 but using a slightly different computational methodology. 937 
Consequently, the index of Metagraph contained approximately 4% fewer distinct canonical k-mers 938 
(k=31) compared to BIGSIdata as used in this paper. To compare the two compression approaches 939 
(MiniPhy with bottom-up k-mer propagation and XZ as a low-level tool vs. Metagraph), both applied to 940 
the similar but different input data, we used the number of bits per distinct k-mer as the statistic for 941 
comparison, which was found to be 10.2 and 58.9, respectively. Therefore, the MiniPhy compression was 942 
more efficient by an estimated factor of 5.78. We note that phylogenetic compression could be directly 943 
embedded into Metagraph (by imposing the phylogenetic order of columns during index construction), 944 
which may help to further reduce its index size. 945 
 946 
 947 
Phylogenetic compression of the 661k assembly collection 948 
 949 
Clustering and batching. Species clusters were identified based on the most prevalent species in the 950 
sample as identified using Kraken 2 56 and Bracken 57 from the original raw-read data; i.e., based on the 951 
‘V2’ column in the ‘File1_full_krakenbracken.txt’ file of the supplementary materials of ref 16. The 952 
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creation of the dustbin pseudo-cluster and formation of individual batches proceeded by the steps 953 
documented in Supplementary Fig. 1 and as later implemented directly within MiniPhy, with 954 
genomes pre-sorted lexicographically according to ENA accessions. 955 
 956 
Phylogenetic compression using MiniPhy. The obtained batches were compressed using the 957 
MiniPhy pipeline as described above; i.e., compressive phylogenies were computed using Mashtree 34 958 
and used for 1) left-to-right reordering of the assemblies, 2) left-to-right reordering of simplitigs of the 959 
corresponding de Bruijn graphs, and 3) bottom-up k-mer propagation and simplitig computation by 960 
ProPhyle; while in all cases storing the simplitigs and assemblies as text and FASTA file, respectively, 961 
followed by a compression by ‘xz -9 -T1’. The compressed assemblies were deposited on 962 

https://doi.org/10.5281/zenodo.4602622. 963 
 964 
Calculations of the statistics. All the statistics used in the plots and tables were calculated based on 965 
the numbers obtained from MiniPhy. Additionally, the total number of k-mers was calculated using 966 
JellyFish 68 (v2.2.10) by 967 

jellyfish count --mer-len 31 --size 200G --threads 32 \ 968 
--output kmer_counting.jf --out-counter-len=1 --canonical 969 

which resulted in 44,349,827,744 distinct k-mers (28,706,296,898 unique k-mers) for the 661k 970 
collection and in 35,524,194,027 distinct k-mers (22,904,412,202 unique k-mers) for the 661k-HQ 971 
collection (as described below). The files uploaded to https://doi.org/10.5281/zenodo.4602622 are 972 
higher by approximately 0.2 GB (approx. 0.7% of the total size) compared to the value Supplementary 973 
Table 3 as the Zenodo submission was done with an older version of compressive phylogenies without 974 
their post-processing. 975 
 976 
Recompression using MBGC. Individual phylogenetically compressed batches from the previous 977 
step were converted to single FASTA files by ‘tar -xOvf {input.xz}’ and then compressed using 978 

MBGC 18 (v1.2.1) with 8 threads and the maximum compression level by 979 
mbgc -i {input.fa} -c 3 -t 8 {output.mbgc} 980 

 981 
Compression in the lexicographic order. Data in ENA and other similar repositories have 982 
identifiers assigned in the order in which they are uploaded, individual uploads typically proceed by 983 
uploading entire projects, and these typically involve phylogenetically very close genomes. For instance, 984 
genomes from a study investigating a hospital outbreak often occupy a range of accessions. Therefore, 985 
lexicographically sorted genomes from ENA may be used as an approximation of phylogenetic 986 
compression. To compare the compressibility of the 661k collection in the ENA accession lexicographic 987 
order to the full phylogenetic compression, we streamed the genomes from the main collection file 988 
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provided on http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661_assemblies.tar, 989 
decompressed them on-the-fly, converted them to the one-line FASTA format using SeqTK 67, and 990 
compressed them using XZ with 32 threads by 991 

pv 661_assemblies.tar | tar -xOf - | gunzip -c | seqtk seq | xz -9 -T32 992 
 993 
 994 
Phylogenetic compression of the 661k/661k-HQ k-mer indexes 995 
 996 
The 661k-HQ collection. To reduce biases in k-mer matching, a high-quality variant of the 661k 997 
collection, called 661k-HQ, was constructed from the 661k collection by excluding genomes that had not 998 
passed quality control in the original study 16 (3.7% of the genomes). For simplicity, the batches and 999 
genome orders in 661k-HQ were kept the same as in 661k. 1000 
 1001 
Phylogenetic compression of the 661k/661k-HQ COBS indexes. COBS indexes for the 661k and 1002 
661k-HQ collection were constructed per batch using the MiniPhy-COBS pipeline (see the MiniPhy-1003 
COBS section), which produces the ClaBS variant of the index with all Bloom filters of the same size 1004 
sorted left-to-right according to the phylogeny, and compresses them using XZ.  1005 
 1006 
Comparisons to the compact COBS indexes. The compact variant of the COBS index (default in 1007 
COBS), based on adaptive adjustments of Bloom filter sizes through subindexes of different heights, was 1008 
used as a baseline in our comparisons. For the 661k collection, we used the original index as provided 1009 
(http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661k.cobs_compact, retrieved on 2022-1010 
09-08, 937 GB). For building a COBS index for 661k-HQ, we used the same construction protocol as in 1011 
ref 16. Both indexes were then compressed on a highly performant server by XZ using 32 cores (‘xz -9 -1012 

T32’). 1013 

 1014 
All of the obtained data points are provided in Supplementary Table 5. 1015 
 1016 
 1017 
Phylign pipeline for alignment against all pre-2019 bacteria from ENA 1018 
 1019 
Overview. The Phylign pipeline (https://github.com/karel-brinda/phylign) uses phylogenetically 1020 
compressed assemblies (661k) and COBS indexes (661k-HQ) as described above to align queries against 1021 
the entire 661k-HQ collection in a fashion similar to BLAST (Supplementary Note 4). The search 1022 
procedure consists of two phases: matching the queries against the k-mer indexes using COBS 37 to 1023 
identify the database’s most similar genomes for each query, followed by an alignment of the queries to 1024 
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their best-matching genomes using Minimap 2 41. Phylign is developed as a Snakemake 64 pipeline, using 1025 
Bioconda 69 for an automatic software management and the standard Snakemake resource 1026 
management 64 to control the CPU cores assignments and limit RAM usage according to user-specified 1027 
parameters. Upon its first execution, Phylign downloads its phylogenetically compressed reference 1028 
database from the Internet (102 GB), consisting of 29.2 GB of assemblies and 72.8 GB of COBS indexes. 1029 
 1030 
Matching. The matching step involves k-mer matching of all user queries against the entire 661k-HQ 1031 
database using a modified version of COBS (v0.3, see below), based on the principle that the number of 1032 
k-mer matches between a genome and a query correlates with the alignment score 87. Each 1033 
phylogenetically compressed COBS index is decompressed in memory and queried for the input user 1034 
sequences, reporting all matches between the queries and genomes in the current batch with a sufficient 1035 
(user-specified) proportion of matching k-mers. The computed matches are then aggregated across all 1036 
batches, and for each query, only a (user-specified) number of best matches, plus ties, are retained and 1037 
passed to the subsequent alignment step. Matching is parallelized by Snakemake, with the number of 1038 
threads for each COBS instance adjusted based on batch size.  1039 
 1040 
Alignment. For each batch independently and fully in parallel, Phylign then iterates over the 1041 
phylogenetically compressed genome assemblies, and if a given genome has at least one match passed 1042 
from the matching phase, it builds on-the-fly, in memory, a new Minimap 2 41 (v2.24) instance for this 1043 
genome and aligns all relevant queries to this genome, while saving Minimap 2 outputs in a batch-1044 
specific output file. Once all batches are processed, the resulting alignments are aggregated and provided 1045 
to the user in a modified SAM format 88. 1046 
 1047 
Performance characteristics. The total matching time is primarily driven by the time complexity of 1048 
COBS, with decompression accounting for less than 2 CPU hours (Supplementary Fig. 9). In the 1049 
alignment step, decompression requires less than 1.5 CPU hours (Supplementary Fig. 9), and the 1050 
remainder of the time is primarily driven by the time to create a new Minimap2 instance (estimated 0.3 1051 
CPU seconds per instance in the current implementation). If the queries are long and Minimap 2 is used 1052 
with a sensitive preset, the actual Minimap 2 alignment time becomes the main time component (e.g., in 1053 
the plasmid experiment in Supplementary Tab. 6). 1054 
 1055 
Updated COBS. To integrate COBS into Phylign, new versions of COBS 37 were created (v0.2, v0.3, 1056 
https://github.com/iqbal-lab-org/cobs). The updates include support for macOS, streaming of indexes 1057 
into memory, and multiple bug fixes. The new versions of COBS are provided in the form of Github 1058 
releases (https://github.com/iqbal-lab-org/cobs/releases) and pre-built packages on Bioconda 69. 1059 
 1060 
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Benchmarking of the decompression time. Decompression times were evaluated on the same 1061 
desktop computer as the alignment experiments, separately for the phylogenetically compressed 1062 
assemblies vs. COBS indexes and for in-memory decompression (‘xzcat {file} > /dev/null’) vs. on-1063 

disk decompression (‘xzcat {file} > {tmpfile}’), resulting in four experiments. Within each 1064 

experiment, decompression was parallelized using GNU Parallel (‘parallel -L1 -v –progress’), with 1065 

time measured using GNU time both for the whole experiment and for each batch in a given compressed 1066 
representation. 1067 
 1068 
 1069 
Evaluating Phylign 1070 
 1071 
Overview of the benchmarking procedure. The search using Phylign was evaluated on three 1072 
datasets, representative of different query scenarios: a database of antibiotic resistance genes, a database 1073 
of plasmids, and an Oxford nanopore sequencing experiment. In all cases, the search parameters – 1074 
including the number of hits of interest, the COBS k-mer threshold, and the Minimap preset – were 1075 
tailored to each specific query type. The experiments were conducted on an iMac with a Quad-Core Intel 1076 
CPU i7, 4.2 GHz with 4 physical (8 logical) cores and 42.9 GB (40 GiB) RAM. 1077 
 1078 
Time measurements. The wall clock and CPU time were measured using GNU time and calculated as 1079 
real and usr+sys, respectively. The measurements were done for the matching and alignment steps 1080 
separately. 1081 
 1082 
Memory measurements. We have not found any reliable way of measuring peak memory 1083 
consumption on macOS: both GNU time and the psutil Python library were significantly 1084 
underestimating the memory footprint of our Snakemake pipeline. Therefore, we performed additional 1085 
measurements on a Linux cluster using the SLURM job manager, using jobs allocated with a 1086 
configuration similar to the parameters of our iMac computer. For ‘max_ram_gb’ set to 30 GB, we 1087 

observed a peak memory consumption of 26.2 GB, thus by 12.7% lower compared to the specified 1088 
maximum. Such a discrepancy is expected because the ‘max_ram_gb’ parameter defines an upper bound 1089 

for the Snakemake resource management 64, representing the worst-case scenario for parallel job 1090 
combinations. 1091 
 1092 
Resistance genes – ARGannot. The resistance genes search was performed using the ARG-ANNOT 1093 
database 42 comprising 1,856 genes/alleles, as distributed within the SRST2 software toolkit 89 1094 
(https://github.com/katholt/srst2/blob/master/data/ARGannot_r3.fasta, retrieved on 2022-07-24). 1095 
The search parameters were set to require a minimum of 50% matching k-mers, with 1,000 best hits 1096 
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plus ties taken for every gene/allele query. Alignment was performed with the Minimap preset for short 1097 
reads (‘sr’). 1098 

 1099 
Plasmids – the EBI plasmid database. The list of EBI plasmid was downloaded from the associated 1100 
EBI website (https://www.ebi.ac.uk/genomes/plasmid.details.txt, retrieved on 2022-04-03), and 1101 
individual plasmids were subsequently downloaded from the ENA using curl and GNU parallel 80. The 1102 
search parameters were set to require at least 40% matching k-mers (the threshold previously used in 1103 
ref 17), with 1,000 best hits plus ties taken for every plasmid. Alignment was performed with the 1104 
Minimap preset for long, highly divergent sequences (‘asm20’). 1105 

 1106 
Oxford Nanopore reads. The ERR9030361 experiment, comprising 159k nanopore reads from an 1107 
isolate of M. tuberculosis, was downloaded from SRA NCBI. The search parameters were set to require 1108 
at least 40% matching k-mers, with 10 best hits plus ties taken for every read. Alignment was performed 1109 
with the Minimap preset for nanopore reads (‘map-ont’). 1110 

 1111 
Comparison to BIGSI. As we were unable to reproduce the original plasmid search experiment 17 with 1112 
BIGSI on our iMac computer (due to the required database transfer of 1.43 TB over an unstable FTP 1113 
connection), we used the values provided in the original publication 17. To ensure a fair comparison, we 1114 
focused on evaluating the total CPU time (sys+usr) and verified that our parallelization efficiency was 1115 
close to the maximal one (680% out of 800% possible achieved, based on the values in Supplementary 1116 
Table 7). 1117 
 1118 
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Supplementary notes 1133 

 1134 

Supplementary Note 1. Stability of phylogenetic compression 1135 

 1136 
The overall performance of phylogenetic compression stems from a combination of trade-offs between 1137 
the individual layers of a given phylogenetic compression protocol (such as for assemblies, de Bruijn 1138 
graphs, or k-mer indexes). These layers include the specific clustering and batching strategy, 1139 
compressive phylogeny inference, and the low-level compression/indexing technique. 1140 
 1141 
Clustering. Clustering can be performed using various direct or indirect methods. All these methods 1142 
expected to identify similar clusters thanks to the pronounced species structure across public microbial 1143 
isolate dataset 35. However, both classes of approaches have specific caveats that may downgrade the 1144 
resulting compression performance. 1145 
 1146 
Caveats of indirect approaches: When clustering is based on species identification by Kraken or other 1147 
LCA-based classifiers, clustering might be impacted by the loss of resolution due to reference database 1148 
growth 90. While this is unlikely to significantly affect phylogenetic compression performance with 1149 
collections akin to 661k (where phylogenetically related genomes would still be clustered together, 1150 
although under biological incorrect species names); a carefully analysis of the data structure will be 1151 
necessary for atypical collections, such as those comprised of metagenome-assembled genomes. 1152 
 1153 
Caveats of direct approaches: Direct clustering methods, now feasible at the scale of millions 1154 
genomes 91, are contamination-oblivious and may thus be sensitive to various contamination patters 1155 
(see, e.g.,, the discussion of C. difficile in ref 91). Contamination is very common in public genomic 1156 
datasets, and if not properly controlled by metagenomic profiling or other quality control techniques, it 1157 
can impede both downstream compression and search. 1158 
 1159 
Batching. For 661k and BIGSI data, batching has been implemented heuristically, with lexicographic 1160 
preordering based on accessions, to ensure that genomes sequenced around the same time would, within 1161 
the same species cluster, be batches together. An alternative pre-sorting strategy, based on the number 1162 
of k-mers in a given dataset, was tested for BIGSIdata (data not shown), and led to mostly comparable 1163 
results. 1164 
 1165 
Compressive phylogeny. In most scenarios, compressive phylogeny is used for within-batch 1166 
reordering of either assemblies directly or of columns corresponding to individual genomes in case of k-1167 
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mer indexes. When clustering and batching are done correctly and a robust low-level compressor used 1168 
(e.g., XZ), such reordering by itself provides a moderate improvement (30–55% reduction, see 1169 
Supplementary Fig. 5). Nevertheless, the impact is much stronger with less advanced compression 1170 
techniques; for instance, run-length encoding (RLE) applied to k-mer matrices improves by up to an 1171 
order of magnitude when the columns are reordered according to phylogenies (data not shown). When 1172 
considering different approaches to compute phylogenies, even sketching combined with neighbor 1173 
joining provides a sufficient resolution; Mashtree yields nearly as good compression results as full-scale 1174 
methods for phylogenetic inference, such as RAxML 53. Differences in the resulting compression ratios 1175 
are relatively minor, with RAxML phylogenies showing a slight advantage in Lempel-Ziv-based 1176 
compression on assemblies over Mash trees (Supplementary Table 3), and conversely, Mash trees 1177 
exhibit slightly better performance in compressing de Bruijn graphs or k-mer sets (Supplementary 1178 
Table 2, 3). 1179 
 1180 
Low-level compressor or indexer. The final performance of phylogenetic compression is 1181 
significantly influenced by the capabilities of the used low-level compressor or indexer. For dictionary 1182 
compressors, an essential parameter is the dictionary size or the window size (Supplementary 1183 
Fig. 3a, Supplementary Fig. 4), which disqualifies many popular compressors, including gzip and 1184 
bzip2. For general compressors applied to assemblies, a crucial factor is converting FASTA to the one-1185 
line format (Supplementary Fig. 3b). There are also notable differences in compression speed: 1186 
compressing a single batch of assemblies using XZ might require up to several hours (albeit with rapid 1187 
decompression), while MBGC (v2.0) requires approximately ten minutes per batch. 1188 
 1189 

Supplementary Note 2. Genome-similarity-preserving representations in phylogenetic 1190 
compression 1191 

 1192 
As a prerequisite for phylogenetic compression, it is fundamental to assume that the core genome 1193 
representations preserve similarity. Informally, this means that little changes in the input genome lead 1194 
to only little changes in its representation, ensuring that closely phylogenetically related genomes have 1195 
highly mutually compressible representations. Although the similarity-preserving property can be 1196 
rigorously defined in specific cases using mathematical formalism including specific input and output 1197 
distances and embeddings, we adopt a more conceptual perspective to maintain a broader view. 1198 
 1199 
Examples of genome-similarity-preserving representations: 1200 
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• Complete genomes assemblies. Complete genome assemblies precisely reflect the sequence 1201 
of nucleotides in DNA molecules, with single mutation events resulting in single changes in the 1202 
assembly. 1203 

• Draft genome assemblies. Similar to complete assemblies, but may not fully resolve 1204 
repetitive regions, leading to a fragmented assembly. In contrast to complete assemblies, a single 1205 
evolutionary event might induce a more substantial change in the representation. For example, a 1206 
mutation in a previously non-resolvable repetitive region could make it resolvable by turning an 1207 
exact repeat into an inexact one. Nevertheless, such events are rather infrequent, and for many 1208 
compression techniques (e.g., those based on Lempel-Ziv), the distance between the two 1209 
representations remains minimal. 1210 

• Burrows-Wheeler Transform of assemblies. The Burrows-Wheeler transform 21 is 1211 
characterized by its locality, in the sense that a localized change in the input induces only a 1212 
localized change in the BWT-transformed string 92. 1213 

• k-mer spectrum. Changing, deleting, or inserting one nucleotide in the genome alters the k-1214 
mer spectrum by the removal and addition of up to 2k+2 k-mers. 1215 

• MinHash sketches. The addition or removal of a k-mer to or from a spectrum may lead to the 1216 
replacement of one hash value by a smaller or larger one, respectively, and such a replacement 1217 
happens only with a very low probability. Therefore, sketches of similar genomes are either 1218 
identical or very similar. 1219 

• Minimizer de Bruijn graphs. These combine properties of de Bruijn graphs and minimizers, 1220 
with the genome-similarity-preserving property following naturally from this combination. 1221 

• Bloom filters of fixed size. The addition or removal of element to or from a set always alters 1222 
the Bloom filter by a maximum of m bits, where m is the number of hash functions; therefore, a 1223 
small change in the genome results only in a small change in the corresponding fixed-size Bloom 1224 
filter. 1225 
 1226 

Examples of representations that are not similarity-preserving: 1227 

• Bloom filters with adaptive sizes. Adaptive size adjustment (such as implemented in 1228 
COBS’s default strategy 37, which uses smaller Bloom filters for smaller genomes), disrupts 1229 
similarity preservation. For instance, an event such as an acquisition of a plasmid by an E. coli 1230 
strain may cause the Bloom filter to expand, reflecting an increase in genome and k-mer set size, 1231 
altering also the underlying hash functions (or the associated modulo function). In consequence, 1232 
adaptive-size Bloom filters of even closely related genomes can be very dissimilar. As a result, we 1233 
did not use the COBS default strategy, but forced it to use the same size of Bloom filters for all 1234 
genomes in a given batch. 1235 

 1236 
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Supplementary Note 4. Core principles of the MiniPhy batching approach 1237 

 1238 
The batching approach used in this paper, as summarized for the 661k and BIGSIdata collections in 1239 
Supplementary Fig. 1, is based on the following principles. At its core, phylogenetic compression 1240 
involves the phylogenetic reordering of input data. For large collections, this process entails partitioning 1241 
genomes into batches that adhere to specific constrains on certain characteristics, and then reordering 1242 
them phylogenetically based on compressive phylogenies. 1243 
 1244 
To ensure the essential guarantees from the paper, and to maximize the batches’ usability across 1245 
combinations of tools and in diverse application use cases, the batches are required to have following 1246 
properties: 1247 

1) An upper-bounded compressed size – to guarantee easy internet transmission, even over 1248 
unreliable networks. 1249 

2) A lower-bounded compressed size – to limit the negative effects of excessively unbalanced 1250 
batches in workflow managers such as Snakemake and Nextflow and in resource allocation 1251 
systems such as Slurm. 1252 

3) An upper-bounded decompressed size – to minimize the maximum memory required per 1253 
batch in downstream data analysis and to facilitate the parallel processing of multiple batches in 1254 
memory-constraint environments. 1255 

4) An upper-bounded number of genomes per batch – to establish a limit on the time 1256 
required per batch for phylogenetic inference and for downstream data analyses. 1257 

5) Optimization for maximal compression ratio within these constraints – to minimize 1258 
the overall necessary data transmission over the Internet and within a computer (e.g., from disk 1259 
to RAM). 1260 
 1261 

On a mathematical level, these constrains lead to interesting optimization problems that may be 1262 
formalized and solved by techniques such as integer linear programming or answer set programming, in 1263 
combinations with techniques for estimating data compressibility via measures such as the size of 1264 
minimal string attractors 93, factor complexity 94, or the δ measure 95. 1265 
 1266 
However, for simplicity, our approach used in MiniPhy is empirical, informed by the following 1267 
observations about bacterial genomes and the structure of ENA: 1268 

1) Constrained genome size range. For bacteria, their genome size can be assumed to fit within 1269 
a range of one order of magnitude, typically 1 Mbp to 10 Mbp (see the principles behind 1270 
BIGSI 17). 1271 
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2) Relatedness within bioprojects. In public repositories such as ENA, sequencing data are 1272 
usually uploaded per individual projects, and ENA accession ranges often contain highly 1273 
phylogenetically related genomes. 1274 

3) Species clusters. Individual microbial species form clusters in public repositories such as 1275 
ENA 35. 1276 

4) Sampling biases. Public repositories exhibit prevalent sampling biases, enabling a rough 1277 
classification of bacterial species into two categories: highly sampled and sparsely sampled (see, 1278 
e.g., Fig. 1 in ref 16). 1279 

 1280 
Altogether, this understanding led to the following general heuristic for batching genomes in 1281 
comprehensive genome corpuses: 1282 

1) Cluster genomes based on their species. Specifically, identify the species of each genome, and 1283 
then treat all genomes belonging to the same species as individual clusters. 1284 

2) Within each cluster, arrange genomes in the lexicographic order of their accessions, to maximize 1285 
the chance that highly related genomes, sequenced at the same time, stay in the same batch in 1286 
the subsequent steps, 1287 

3) Iterate over individual species clusters and compare their size with a predefined threshold 1288 
(‘batch-min-size’ in MiniPhy): 1289 

a. size≥threshold: Classify the species as highly sampled and proceed according to Step 5. 1290 
b. <threshold: Classify the species as sparsely sampled and proceed according to Step 4 1291 

4) Merge all sparsely sampled species clusters into a single pseudo-cluster called a dustbin, 1292 
proceeding in the order of lexicographically sorted species names (while preserving the order of 1293 
genomes within each cluster). 1294 

5) Split the dustbin pseudo-cluster into batches of a predefined size (‘dustbin-batch-max-size’ 1295 

in MiniPhy). 1296 
6) Split each highly sampled species cluster into batches of a predefined size (‘batch-max-size’ in 1297 

MiniPhy). 1298 
 1299 
The calibration of this heuristic was performed empirically, in the environment of the Harvard O2 1300 
cluster, with the paratemers adjusted based on observed performance. In particular, if the 1301 
Mashtree/Attotree inference 34 or XZ compression of any batch exceeded a predefined time limit, the 1302 
batch-max-size or dustbin-batch-max-size parameters were modified accordingly. 1303 

 1304 
The resulting heuristic, including the default parameters, is provided in the MiniPhy repository in the 1305 
‘create_batches.py’ script. The heuristic is also summarized, including the specific parameters used 1306 

for 611k and the BIGSIdata, in Supplementary Fig. 1. 1307 
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 1308 

Supplementary Note 4. Comparison of the Phylign and BLAST approaches 1309 

 1310 
As tools for alignment against very large genome databases, Phylign and BLAST share many similarities, 1311 
but at the same time, they differ in several key aspects. First, while Phylign is tailored specifically for 1312 
bacterial genomes, BLAST is typically used with databases that encompass more types of sequences, 1313 
including genes, transcripts, and genomes of non-bacterial organisms. Second, both tools produce 1314 
alignments and compute alignment scores; however, while BLAST, computing local alignments, 1315 
complements the score with an E-value to quantify the expected number of alignments of similar quality 1316 
occurring by chance, Phylign targets longer alignments (primarily semiglobal, but can be adjusted by 1317 
modifying Minimap parameters) and does not include E-values. Third, while both tools compute 1318 
alignments using heuristic approaches, BLAST uses a seed-and-extend procedure, applied at the level of 1319 
the entire database, whereas Phylign initially pre-filters target genomes using k-mer-based methods and 1320 
then applies Minimap’s seed-chain-align procedure 41 at the level of individual reference genomes. In 1321 
summary, Phylign and BLAST are designed for partially overlapping use cases, but they use different 1322 
computational strategies. 1323 
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 1324 

Supplementary Tables 1325 

Supplementary Table 1: Five test collections used for the calibration and evaluation of phylogenetic compression. 1326 

Characteristics of the genome collection used for calibrating and evaluating phylogenetic compression throughout the paper. Within-genome 1327 
k-mer duplicates refer to the proportion of k-mer occurrences (k=31, canonical k-mers) that disappear when transforming genome assemblies 1328 
to their corresponding de Bruijn graphs; the fact that this proportion is always low for microbial genomes, even for complete assemblies, 1329 
suggests that de Bruijn graphs are a faithful representation of microbial genomes and the k-mer content can be used for quantifying data 1330 
redundancy. 1331 

Collection  

Description Size Diversity Characteristics 

Original 
samples 

Genome 
representat

ion 
Data source Nb. of 

genomes 

Total 
sequence 

length 

Nb. of 
species 

Nb. of 
distinct 
k-mers 

Within-genome 
k-mer 

duplicates 

Unified 
construction 

pipeline 

Data 
quality 

Data 
volume 

Repetitive
ness 

GISP 
N. gonor
rhoeae 
isolates 

Draft 
assemblies 

70,79 
.tar.gz file (726 MB) 

https://doi.org/10.5281/zenodo.2618836 1,102 2.36 Gbp 1 4.18 M 2.02% Yes Very 
high Low Very high 

NCTC3k Bacterial 
isolates 

Complete 
and draft 

assemblies 
96 

.gff  files (6.48 GB) 
ftp://ftp.sanger.ac.uk/pub/project/patho

gens/NCTC3000 
 

Converted to FASTA and uploaded to:  
https://doi.org/10.5281/zenodo.4838517 

.fa.gz files  (1.25 GB) 

1,065 4.35 Gbp 259 992 M 2.80% Partially High Low Medium 

SC2 
SARS-
CoV-2 

isolates 

Complete 
assemblies 

74 
.xz file (201 MB) 
http://gisaid.org 590,779 17.6 Gbp 1 1.85 M 0.000700% No Low High Very high 

661k Bacterial 
isolates 

Draft 
assemblies 

97 

.fa.gz files (805 GB) 
http://ftp.ebi.ac.uk/pub/databases/ENA2

018-bacteria-661k 
661,405 2.58 Tbp 

2,336 
(est., 
ref 97) 

44.3 G 0.846% Yes Medium Very 
high High 

BIGSIdata 
Bacterial 
and viral 
isolates 

de Bruijn 
graphs 17 

McCortex files (16.7 TB) 
http://ftp.ebi.ac.uk/pub/software/bigsi/n

at_biotech_2018/ctx 
425,160 1.68 Tbp a 

1,443 
(est., 
ref 17) 

41.1 G -                     Yes Low Very 
high High 

Footnotes: 1332 
a Computed as the total length of unitigs of the individual de Bruijn graphs.  1333 
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Supplementary Table 2: Proportion of redundancy explained by compressive phylogenies in the five test collections. 1334 

The amount of reduction of genomic k-mer content (k=31, canonical k-mers) via k-mer propagation along compressive phylogenies. k-mer 1335 
multisets correspond to the unions of k-mer sets before and after k-mer propagation, reduction factor is the ratio of their sizes, and removed 1336 
redundancy quantifies the proportion of removed k-mers among the removable ones (100% if each k-mers was entirely associated with a 1337 
single subtree). In the case of BIGSIdata and 661k, a phylogeny was built for each batch independently. 1338 
 1339 

Collection Compressive 
phylogeny 

k-mer multiset size Reduction statistics 
Before reduction After reduction Reduction factor Removed redundancy 

GISP 
Mashtree 2.31 G 63.3 M 36.5 97.4% 
RAxML 2.31 G 72.6 M 31.8 97.0% 

NCTC3k Mashtree 4.23 G 1.79 G 2.36 75.3% 
SC2 a GISAID Sarscov2phylo 1.49 G 32.8 M 45.3 97.8% 

BIGSIdata 
Mashtree 

(1 tree/batch, 
574 batches) 

1.39 T 212. G 6.58 87.4% 

661k 
Mashtree 

(1 tree/batch, 
305 batches) 

2.55 T 233. G 11.0 92.5% 

Footnotes: 1340 
a In order to use ProPhyle with SC2, the collection was subsampled to 50k genomes, which corresponds to 8.47% of the original genome count. The original k-mer multiset 1341 
size was 17.5 G.    1342 
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Supplementary Table 3: Results of phylogenetic compression. 1343 

Size of the resulting files, mean space per single genome, bits per single base pair in the data, bits per distinct canonical k-mer (k=31),  1344 
The three baselines include a FASTA-like baseline computed as 8 bits per single character (i.e., FASTA without sequence headers and EOLs), a 1345 
GZip-like baseline (2 bits per bp), and the file size with original compression protocol. 1346 
 1347 

Collection 

Phylogenetic compression protocol Compression statistics Improvement over baselines 

Reordering scheme Compressive 
phylogeny 

Low-level 
compressor 

Compressed 
size 

Kilobytes 
per genome Bits per bp 

Bits per 
distinct 
k-mer 

FASTA-like 
baseline 

(8 bits per bp) 

GZip-like 
baseline 

(2 bits per bp) 

Original 
compression 

protocol 

GISP 
Left-to-right Mashtree XZ 5.67 MB 5.15 0.0192 10.9 416.× 104.× - 
Left-to-right RAxML XZ 5.44 MB 4.94 0.0184 10.4 434.× 109.× - 

NCTC3k Left-to-right Mashtree XZ 257 MB 242 0.473 2.07 16.9× 4.23× - 
SC2 Left-to-right Sarscov2phylo XZ 10.7 MB 0.0181 0.00486 46.2 1,647× 412× a - 

BIGSIdata Batches & 
k-mer propagation 

Mashtree 
(1 tree/batch, 
574 batches) 

XZ 52.3 GB 123. 0.248 10.2 32.2× 8.06× 319× 

661k 

Batches & left-to-
right 

Mashtree 
(1 tree/batch, 
305 batches) 

XZ 29.0 GB 43.8 0.0898 5.23 89.1× 22.3× 27.8× 

MBGC 20.7 GB 31.3 0.0642 3.74 125× 31.2× 38.9× 

Lexicographically by 
ENA accessions b - 

XZ 121 GB 182. 0.374 21.8 21.4× 5.35× 6.67× 

MBGC c - - - - - - - 

Footnotes: 1348 
a Due to viral genomes being short, GZip can outperform the 2-bits-per-bp entropy bound that was previously determined from bacteria, and the real improvement of XZ over 1349 
GZip for phylogenetic compression is 13.2× in this case (see also Supplementary Fig. 4). The table displays the “GZip-like” value for consistency with the rest of the table. 1350 
b Dataset accessions in ENA are partially phylogenetically ordered since sequencing studies often involve phylogenetically related genomes that are uploaded in succession. 1351 
c Computation was systematically failing due to Out-of-Memory events, even for jobs with 200 GB RAM of allocated memory.  1352 
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Supplementary Table 4: Software and data provided for download. 1353 

The table lists the developed software for phylogenetic compression and provides links to all phylogenetically compressed versions of the test 1354 
collections (with the exceptions of SC2 that could not be published due to the licensing restrictions of GISAID). 1355 
 1356 

Type Name Description URL 

Software 

Phylign Snakemake pipeline https://github.com/karel-brinda/phylign 

MiniPhy Snakemake pipeline https://github.com/karel-brinda/miniphy 
MiniPhy-COBS Snakemake pipeline https://github.com/leoisl/miniphy-cobs 

De-MiniPhy-BIGSIdata 
Client program to download and 
decompress de Bruijn graphs from the 
BIGSIdata collection 

https://github.com/karel-brinda/de-miniphy-
bigsidata 

ProPhyle (modified, v0.3.3)  ProPhyle metagenomic classifier https://github.com/prophyle/prophyle 
COBS (modified, v0.3) COBS k-mer indexer https://github.com/iqbal-lab-org/cobs 

Attotree A fast reimplementation of Mashtree 
functionality https://github.com/karel-brinda/attotree 

 
Phylogenetically 
compressed 
genome 
collections 

NCTC3k Assemblies (XZ) https://doi.org/10.5281/zenodo.5533354 

BIGSIdata De Bruijn graphs (simplitigs after k-
mer propagation; XZ) https://doi.org/10.5281/zenodo.5555253 

 
661k 

Assemblies (XZ) https://doi.org/10.5281/zenodo.4602622 

Assemblies (MBGC) https://doi.org/10.5281/zenodo.6347064 

k-mer index (COBS; XZ) 
https://doi.org/10.5281/zenodo.7313926 
https://doi.org/10.5281/zenodo.7313942 
https://doi.org/10.5281/zenodo.7315499 

661k-HQ k-mer index (COBS; XZ) https://doi.org/10.5281/zenodo.6849657 
https://doi.org/10.5281/zenodo.6845083 

1357 
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Supplementary Table 5: Compressibility of different variants of BIGSI indexes for the 661k/661k-HQ collections. 1358 

 1359 

Collection 

Protocol Compression statistics 

Index variant Mode of 
construction 

Low-level 
compression Comment Size 

Total 
improvement 
over baseline  

Improvement 
over 

uncompressed 

661k 

COBS-compact a Per entire 
collection 

None b Baseline (with adaptive 
Bloom filters) 937. GB 1.00× 1.00× 

XZ c Direct compression  243. GB 3.86× 3.86× 

COBS-classic d 
Per MiniPhy batch; 

columns sorted 
left-to-right 

None  Reordered data, Bloom 
filter size fixed per batch 2.46 TB 0.380× 1.00× 

XZ Phylogenetic compression 110. GB 8.51× 22.5× 

 
661k-HQ 

COBS-compact a Per entire 
collection 

None Baseline (with adaptive 
Bloom filters) 893. GB 1.00× 1.00× 

XZ c Direct compression 205. GB 4.35× 4.35× 

COBS-classic d 
Per MiniPhy batch; 

columns sorted 
left-to-right 

None Reordered data, Bloom 
filter size fixed per batch 1.06 TB 0.842× 1.00× 

XZ Phylogenetic compression 72.8 GB 12.3× 14.5× 

Footnotes: 1360 
a As the COBS-compact classifies datasets to be indexed into bins based on the number of k-mers, it is at the same time also grouping phylogenetically related genomes across 1361 
the whole database into the same bins. The resulting file is thus moderately compressible using XZ, even though the resulting archive is not suitable for downstream 1362 
applications because of its size and the associated overheads. 1363 
b Provided for download on http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/. 1364 
c Streamed compression of COBS subindexes that are internally created by COBS based on the number of k-mers in individual datasets. 1365 
d Besides better compressibility by general compressors, COBS-classic brings an additional benefit of decreasing the associated false positive error rate for a majority of the 1366 
datasets under indexing. 1367 
  1368 
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Supplementary Table 6: Disk space requirements of Phylign with the 661k-HQ collection. 1369 

The requirements correspond to the version of the database as used by Phylign in Supplementary Table 6. 1370 
 1371 

Component Size requirements 
[GB] 

Kilobytes per 
genome a Bits per bp a 

Assemblies b 29.2 45.6 0.0942 
COBS 72.8 114. 0.235 
Total 102. 159. 0.329 

Footnotes: 1372 
a The statistics are computed with respect to the characteristics of the 661-HQ collection. 1373 
b An older version of compressed assemblies is used in Phylign for consistency across experiments. This part of the index is, however, further compressible: first, the files were 1374 
generated by an older version of MiniPhy, without tree rebalancing, therefore its size is higher compared to the latest version in Supplementary Table 3; second, the 1375 
archives contain even low-quality genomes, which could be omitted here.  1376 
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Supplementary Table 7: Results of BLAST-like search across the 661k-HQ collection on a desktop computer using Phylign. 1377 

Timing and alignment results for resistance genes, EBI plasmids, and a nanopore sequencing experiment using Phylign, performed on an iMac 1378 
with eight 4.2 GHz cores and 42.9 GB RAM (Methods). Search parameters were adjusted for the corresponding type of search based on the 1379 
typical values in literature (Methods). All measurements were done with in-memory decompression (‘index_load_mode’ set to ‘mem-stream’) 1380 
and maximal memory consumption set to 30 GB (the ‘max_ram_gb’ parameter). The resulting peak memory consumption was estimated to 1381 
be 26.2 GB (Methods). 1382 

Experiment Computational time (real | cpu time) Alignment statistics 

Query dataset Search parameters No. of 
queries 

Cumul. 
length Matching Alignment Total 

No. of 
aligned 
queries  

No. of 
aligned 

segments 

No. of distinct 
(genome, 

query) pairs 

No. of 
target 

genomes 

Nb. of 
target 

batches 

ARGannot 
resistance 
genes 

cobs_kmer_thres: 0.5 
nb_best_hits: 1000 

minimap_preset: sr 
1,856 1.65 Mbp 0.417h | 2.01h 3.45h | 24.9h 3.87h | 26.9h 1,713 1,801,997 1,734,405 272,198 286 

EBI plasmid 
database 

cobs_kmer_thres: 0.4 

nb_best_hits: 1000 

minimap_preset: asm20 

2,826 224 Mbp 6.61h | 43.6h 4.26h | 30.5h 10.9h | 74.1h 1,871 8,980,429 838,830 205,231 296 

Nanopore 
sequencing 
experiment 
(ERR9030361) 

cobs_kmer_thres: 0.4 
nb_best_hits: 10 

minimap_preset: map-ont 
158,583 191 Mbp 3.07h | 18.1h 1.22h | 7.97h 4.29h | 26.1h 146,691 4,548,919 3,841,621 47,162 85 

  1383 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2024. ; https://doi.org/10.1101/2023.04.15.536996doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.15.536996
http://creativecommons.org/licenses/by-nc/4.0/


 

 50 

Supplementary Table 8: Reconstructed history of the BLAST NT database. 1384 

The information about size of the BLAST nucleotide database (nt.gz) was retrieved from literature, its associated webpages, and other public 1385 
repositories. 1386 

Date GZip size 
[GiB] 

Length 
[Gbp] Source a 

2002-01-01 - 7.372 https://doi.org/10.1093/bioinformatics/btg250 (ref 98) 
2003-02-01 - 8.33 https://doi.org/10.1093/nar/gkh435 (ref 99) 
2004-02-01 - 10 https://doi.org/10.1093/nar/gkh435 (ref 99) 
2007-07-01 - 21 https://doi.org/10.1186/1471-2164-9-496 (ref 100) 
2010-01-01 - 30 https://doi.org/10.1186/1471-2105-11-340 (ref 101) 
2012-10-11 10.7 - https://web.archive.org/web/20121011234515/http://ftp.ncbi.nih.gov/blast/db/FASTA 

2013-12-03 13.8 - https://web.archive.org/web/20201005113118/https://github.com/PathoScope/PathoScope/wiki/Building-Library 
2017-10-26 39.4 - https://doi.org/10.5281/zenodo.4382154 (ref 102) 
2019-01-03 47 - https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/ncbi_blast/nt.gz (a part of ref 103) 
2020-04-05 67 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2020-07-05 72 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2020-08-04 77 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2020-10-11 81 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2021-01-15 90 - https://doi.org/10.17044/scilifelab.21070063.v1 (ref 104) 
2021-03-21 103 - https://web.archive.org/web/20210322230129/https://ftp-trace.ncbi.nih.gov/blast/db/FASTA/ 
2021-03-28 104 - https://web.archive.org/web/20210402195739/https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2021-10-18 138 - https://web.archive.org/web/20211020093701/ftp://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2021-11-01 139 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2021-12-13 146 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2022-01-18 152 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2022-02-28 161 - https://web.archive.org/web/20220307133636/https://ftp-trace.ncbi.nih.gov/blast/db/FASTA/ 
2022-03-21 166 - https://web.archive.org/web/20220326071216/https://ftp-trace.ncbi.nih.gov/blast/db/FASTA/ 
2022-06-06 180 - https://web.archive.org/web/20220609211512/https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2022-06-20 187 783.58 https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2022-08-06 205 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2022-10-17 214 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 
2022-11-01 216 - https://ftp.ncbi.nih.gov/blast/db/FASTA/ 

Footnotes: 1387 
a All webpages except https://ftp.ncbi.nih.gov/blast/db/FASTA/ were retrieved on 2022-11-02. 1388 
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 1389 

Supplementary Figures 1390 

 1391 

 1392 

Supplementary Fig. 1: Batching strategies for the BIGSIdata and 661k collections. 1393 

As a clustering strategy, genomes are grouped by individual species, and clusters that are too small are 1394 
placed into a common pseudo-cluster called a dustbin. The obtained clusters and the dustbin are then 1395 
divided into size- and diversity-balanced batches. The plot depicts the batching strategies used for the 1396 
(a) 661k and (b) BIGSIdata collections. For further discussion of the batching, see Supplementary 1397 
Note 3. 1398 
 1399 
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Supplementary Fig. 2: Quantification of phylogeny-explained data redundancy in the five 1402 
test collections. 1403 

The plot depicts the percentage of data redundancy that can be explained by the compressive 1404 
phylogenies in each of the five test collections. The explained redundancy is measured by bottom-up k-1405 
mer propagation along the phylogenies performed by ProPhyle 28,29 and calculated as the proportion of 1406 
k-mer duplicities removed by the propagation (see Methods for the formula). A k-mer distribution that 1407 
is perfectly explained by the associated compressive phylogeny (i.e., all k-mers associated with complete 1408 
subtrees) would result in 100% phylogeny-explained redundancy. The plot shows that for single-species 1409 
batches (modeled by the GISP and SC2 collections), the majority of the signal can be explained by their 1410 
compressive phylogenies, indicative of their extremely high phylogenetic compressibility. In contrast, 1411 
high-diversity batches (modeled by the NCTC3k collection) have more irregularly distributed k-mer 1412 
content due to horizontal gene transfer combined with sparse sampling, indicative of their lower 1413 
compressibility (see Supplementary Fig. 4). Large and diverse collections, such as 661k and 1414 
BIGSIdata, exhibit thus a medium level of phylogenetically explained redundancies, with the level 1415 
depending on the amount of noise (higher for BIGSIdata and lower for 661k, as also visible in 1416 
Supplementary Fig. 7). 1417 
 1418 
 1419 
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Supplementary Fig. 3: Calibration of XZ as a low-level tool for phylogenetic compression. 1421 

The comparison was performed using the assemblies from the GISP collection, with genomes sorted left-1422 
to-right according to the Mashtree phylogeny. In both subplots, asterisk denotes the mode selected for 1423 
phylogenetic compression in MiniPhy. a) The plot shows the compression performance XZ, GZip, and 1424 
BZip2 in bits per base pair as a function compression presets (-1, -2, etc.) with single-line FASTA. Given 1425 
the specific sizes of dictionaries and windows used in the individual algorithms and their individual 1426 
presets, only XZ with a level ≥4 was capable of compressing bacterial genomes beyond the statistical 1427 
entropy baseline (i.e., approximately 2 bits per bp). M and MM denote additional, manually tuned 1428 
compression modes of XZ with an increased dictionary size (Methods), which slightly improved 1429 
compression performance but at the same time substantially increased memory and CPU time and were 1430 
thus not used in MiniPhy. b) The plot shows the impact of the FASTA line length on compression 1431 
performance. With single-line FASTA (denoted by Inf), compression is improved to 12% of the 40 bps 1432 
per line version. The plot highlights the importance of pre-formatting FASTA data before using general 1433 
compressors such as XZ. 1434 
 1435 

 1436 
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Supplementary Fig. 4: Comparison of three contrasting compression scaling modes of 1438 
microbial collections. 1439 

The plots compare on the scaling behavior of the XZ, GZip, BZip2, and RePair compressors on the SC2 1440 
(a), GISP (b), and NCTC3k (c) collections, depicting the space per single genome as a function of the 1441 
number of jointly compressed genomes progressively increased on logarithmic scales. The results 1442 
highlight several key findings. First, XZ consistently outperforms the other compressors. Second, for 1443 
viral genomes all compressors are able to overcome the 2-bits-per-bp baseline thanks to their short 1444 
genome length, but only XZ is able to compress beyond this limit for bacterial genomes (consistent with 1445 
Supplementary Fig. 3a). Third, RePair compression can be nearly as effective as XZ for viruses, but 1446 
its non-scalability limits its applicability to large datasets. Fourth, the compressibility of divergent 1447 
bacteria is substantially limited even with the best compressors, with only a 4× improvement in per-1448 
genome compression for NCTC3k (while the highly compressible SC2 and GISP collections show 171× 1449 
and 105× improvement for the same number of genomes). 1450 
 1451 
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Supplementary Fig. 5: Impact of within-batch genome order on the compressibility of 1453 
microbial collections 1454 

While a substantial part of the benefits of phylogenetic compression comes from the organization of 1455 
genomes into batches of phylogenetically related genomes, proper genome reordering within individual 1456 
batches is also crucial for maximizing data compressibility. The plots demonstrate that the impact of 1457 
within-batch reordering grows with the amount of diversity included (GISP vs. NCTC3k) and with the 1458 
number of genomes (GISP vs. SC 2). Accurate phylogenies inferred using RAxML provided only little 1459 
benefits over trees computed using Mashtree (GISP). 1460 
  1461 
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Supplementary Fig. 6: Compression tradeoffs for the five test collections and for 1462 
individual batches of the 661k collection. 1463 

The plot illustrates the tradeoff between the per-genome size after compression and the number of bits 1464 
per distinct k-mer. The larger points represent individual genome collections and correspond to values 1465 
from Supplementary Table 3. The smaller points represent individual batches of the 661k collection, 1466 
with color indicating the number of genomes in each batch. Overall, the plot reveals the influence of 1467 
genomic diversity on the resulting compression characteristics. The tradeoff follows an L-shaped 1468 
pattern, where compression of genome groups with a high diversity leads to smaller space per k-mer but 1469 
larger space per genome, and conversely for genome groups with a low diversity.  1470 
 1471 
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Supplementary Fig. 7: Distribution of the number of distinct k-mers in the top 20 species 1474 
in (a) the 661k and (b) BIGSIdata collections. 1475 

For the 661k collection, colors represent the quality of the assemblies (LQ: low-quality, HQ: high-1476 
quality), as determined as part of the quality control in ref 97. For BIGSIdata, no quality control 1477 
information is available. The numbers below the species name indicate the number of samples within 1478 
each category. 1479 
 1480 
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Supplementary Fig. 8: Proportions of top 10 species in the 661k collection before and 1482 
after compression. 1483 

The proportions of individual species (their corresponding batches) of the phylogenetically compressed 1484 
661k collection. The plot depicts the proportions of the top 10 species, the dustbin pseudo-cluster 1485 
comprising divergent genomes, and the remaining species grouped in Others, while comparing the 1486 
following four quantitative characteristics: the number of genomes, their cumulative length, the size of 1487 
the phylogenetically compressed assemblies, and the size of the phylogenetically compressed COBS 1488 
indexes. While transitioning from the number of genomes to their cumulative length has only a little 1489 
impact on the proportions (only corresponding to different mean genome lengths of individual species), 1490 
the divergent genomes occupy a substantially higher proportion of the collection after compression. 1491 
Moreover, despite genome assemblies and k-mer COBS indexes are fundamentally different genome 1492 
representations (horizontal vs. vertical, respectively), the observed post-compression proportions in 1493 
them were nearly identical, indicative of that their compression is governed by the same rules. 1494 
 1495 
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Supplementary Fig. 9: Time required for decompressing the Phylign database. 1497 

The wall clock and total CPU time required to decompress the Phylign 661k-HQ database, both on a disk 1498 
and in memory, measured on an iMac desktop computer with 4 physical (8 logical) cores. The 1499 
decompression process in memory, which reflects the type of decompression used by Phylign, was 1500 
completed under 30 mins, which is only a fraction of the typical duration of search experiments (see 1501 
Supplementary Tab. 6). 1502 
 1503 
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SUPPLEMENTARY FILES 1505 

 1506 
Additional supplementary files are provided in a dedicated online repository on 1507 
http://github.com/karel-brinda/phylogenetic-compression-supplement. 1508 
 1509 
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