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Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous
potential for studying cellular decision-making beyond simpler pseudotime-based approaches.
However, it is currently unclear how lineage and gene expression information across
experimental time points can be combined in destructive experiments, which is particularly
challenging for in-vivo systems. Here we present moslin, a Fused Gromov-Wasserstein-based
model to couple matching cellular profiles across time points. In contrast to existing methods,
moslin leverages both intra-individual lineage relations and inter-individual gene expression
similarity. We demonstrate on simulated and real data that moslin outperforms state-of-the-art
approaches that use either one or both data modalities, even when the lineage information is
noisy. On C. elegans embryonic development, we show how moslin, combined with trajectory
inference methods, predicts fate probabilities and putative decision driver genes. Finally, we use
moslin to delineate lineage relationships among transiently activated fibroblast states during
zebrafish heart regeneration. We anticipate moslin to play a crucial role in deciphering complex
state change trajectories from lineage-traced single-cell data.
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Introduction
Important biological processes like development, disease, or regeneration play out as complex
changes on the cellular level. Due to their transforming nature, these changes are best captured
by time-resolved measurements. Single-cell assays, including single-cell RNA-sequencing
(scRNA-seq), probe cellular heterogeneity at unprecedented resolution and scale at different
time points but destroy cells in the process. Thus, previous work introduced computational
approaches that link cells across time based on similar gene expression profiles1–3. While these
approaches successfully uncovered trajectories and fate decisions for in-vitro systems1,4 and
some in-vivo systems5,6, they require dense temporal sampling and remain limited to simpler
processes where expression similarity faithfully represents lineage relationships7.

To improve the accuracy of trajectory inference, scRNA-seq has been combined with heritable
barcodes that link clonally related cells over long time scales in single-cell lineage tracing (scLT)
assays8–13. For in-vitro systems, we can sample from the same cell population several times,
and previous methods used this setting to relate cells across time points clonally14,15. However,
such strategies do not generalize to in-vivo lineage-traced systems, as each time point
corresponds to a different individual, and barcodes are not comparable across individuals. Most
current analysis strategies13,16–20 remain limited to analyzing isolated lineage-traced time points.
Thus, they do not embed lineage relationships in the temporal context of cellular state changes.

While a previous method, LineageOT21, represented an important step towards mapping
lineage-traced cells, it cannot relate lineage information across time points and includes it only
in the later time point. Further, the tool has only been demonstrated on simulated examples or
examples with known ground truth. Thus, the comprehensive integration of lineage and gene
expression information to estimate cellular state-change trajectories remains an open
computational problem.

Here, we present multi-omic single-cell optimal transport for lineage data (moslin), a
computational method to embed in-vivo clonal dynamics in their temporal context. Moslin uses
expression similarity and lineage concordance to reconstruct cellular state-change trajectories
for complex biological processes. To the best of our knowledge, moslin is the first method to use
lineage information at two or more time points and to include the effects of cellular growth and
stochastic cell sampling. Our approach outperforms LineageOT and optimal transport
(OT)-baselines on simulated data where ground truth is available. Further, on Caenorhabditis
(C.) elegans embryogenesis, we combine moslin with CellRank22, a trajectory inference
framework, to uncover differentiation trajectories and putative decision-driver genes. Finally, in
zebrafish heart regeneration, we predict lineage relationships between recently discovered
activated fibroblast states that emerge after injury using moslin. We implemented moslin as a
user-friendly Python package with documentation and tutorials, available at
github.com/theislab/moslin.
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Results

Moslin combines lineage and state information to link cells across time

Moslin is an algorithm to reconstruct molecular trajectories of complex cellular state changes
from time-series single-cell lineage tracing8,23,24 (scLT) studies. Using gene expression and
lineage information, moslin computes probabilistic mappings between cells in early- and late
time points. Moslin distinguishes itself from previous approaches21 by incorporating lineage
information at both time points to guide the inference process. Using the computed mapping, we
infer ancestor and descendant probabilities for rare or transient cell states and interface with
CellRank22 to visualize gene expression trends, uncover activation cascades, and pinpoint
potential regulators of key decision events (Fig. 1a).

We designed moslin for time-series scLT studies (Methods). These record evolving clonal
relationships using a variety of approaches, including Cas9-induced scars10–13,25 and
naturally-occurring mutations26,27. We refer to the entirety of any such genomic lineage
information in a single cell as a “barcode” and stress that moslin is applicable to any kind of
barcode information.

Applying scLT to in-vivo systems usually requires that each time point corresponds to a different
individual. We relate to this experimental design as “independent clonal evolution” (ICE), as
barcode generation proceeds independently in each individual. While barcodes can be directly
compared within one individual to estimate lineage trees10–13,16,18,19, they are incompatible across
different individuals and hence time points. However, gene expression continues to be
comparable across time points, giving rise to a hybrid setting where we may relate lineage or
gene expression within or across time points, respectively (Fig. 1b and Methods).

To link cells from an early (t1) to a late (t2) time point, we make two major assumptions: (i) cells
change their molecular state gradually, and (ii) lineage distances are, on average, conserved
between time points. By lineage distance, we mean the degree to which two cells have diverged
on the lineage tree. We designed moslin using the flexible framework of Optimal Transport28,29

(OT), which allows us to include both assumptions into a single cost function (Fig. 1c, Methods,
and Supplementary Note 1).

The first assumption forms the basis of many successful pseudotime algorithms1,30–34; we
include it in moslin using a Wasserstein (W)-term, which encourages links between cells with
similar gene expression. Briefly, the W-term sums over all combinations of early and late cells,
aiming to find a probabilistic mapping that minimizes the overall cost of transporting cells1

(Methods). The second assumption implies a type of lineage concordance: cell pairs at t1 should
be mapped to cell pairs at t2 with similar relative lineage distances. We include this assumption
in moslin using a Gromov-Wasserstein35 (GW)-term (Methods and Supplementary Note 1).
Briefly, the GW-term sums over all pairwise combinations of early and late cells, aiming to find a
probabilistic mapping that minimizes the discrepancy between pairwise lineage distances
(Methods).
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We balance both terms with an parameter between 0 and 1, corresponding to W and GWα
terms, respectively36. This parameter allows us to tune the weight given to gene expression and
lineage information. Further, we add entropic regularization at weight to our objective functionϵ
to speed up the optimization and to improve the statistical properties of the solution29,37,38. Thus,
moslin solves a Fused Gromov-Wasserstein36 (FGW) problem with hyperparameters andα ϵ
(Fig. 1c, Methods, and Supplementary Note 1).

Inputs to the moslin workflow are gene expression matrices X at t1 and Y at t2, as well as lineage
information (Fig. 1d and Methods). In the first step, we compute cost matrices C and CX, CY,
representing expression and lineage distances, respectively. We quantify expression distance
across time points using squared Euclidean distance in a latent space1, computed using PCA or
scVI39. To quantify lineage distance within each time point, we either work with Hamming
distance among raw barcodes or with the shortest path distance among reconstructed lineage
trees10–13,16,18,19 (Methods). The choice of lineage distance metric depends on the structure of the
lineage information, the expressibility of the barcodes, and the quality of tree reconstruction. In a
second step, moslin solves the FGW problem to find an optimal coupling matrix P, relating cells
at t1 and t2. The coupling simultaneously minimizes expression distances according to C and
maximizes lineage concordance according to CX and CY, using the W and GW terms,
respectively. For each t1 cell i, the vector Pi,: quantifies lineage and state-informed transition
probabilities towards any t2 cell j. Finally, we use the coupling matrix P to compute ancestor and
descendant probabilities1 directly in moslin and pass it to CellRank22 for further analysis.

Following previous successful approaches that link cells across time points using OT1,21 or
related approaches2, we optionally include prior information about cellular growth and death into
our objective function. We accomplish this by adjusting the marginal distributions passed to
moslin, such that cells likely to proliferate or die can distribute more or less probability mass,
respectively (Fig. 1d). We calculate growth and death rates based on prior knowledge or curated
marker gene sets1. Our implementation additionally includes an unbalanced formulation29,40,41,
which accounts for uncertain growth and death rates, as well as for stochastic cell sampling
(Methods).

Moslin accurately reconstructs simulated trajectories

We assess moslin’s performance on two simulated datasets. As an initial verification, we
consider simulated single-cell transcriptome trajectories using a setting suggested by Forrow et
al.21. In this simplified setting, all meaningful dynamics occur in two dimensions, representing
two genes. A biologically plausible trajectory structure is prescribed via a vector field that cells
follow through diffusion and occasional cell division. A lineage barcode, including random
mutations, is assigned to each cell and inherited by its descendants.

We consider four different trajectories of increasing complexity: (i) bifurcation (B), where a single
progenitor cell type splits into two descendant cell types, (ii) partial convergent (PC), where two
initial clusters split independently, and following the split, two of the resulting four clusters merge
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for a total of three clusters, (iii) convergent (C), where two initial clusters converge to a single
final cell type, and (iv) mismatched clusters (MC), where two initial clusters each split into two
late-time clusters and cells from two of the resulting late-time clusters are transcriptomically
closer to early cells that are not their ancestors (Fig. 2a, see ref.21).

We benchmark the performance of moslin against the only competing method, LineageOT21,
which uses lineage information only at the later time point. We also test two extreme cases of
our moslin approach: (i) using only gene expression information in a W-term ( ), and (ii)α = 0
using only lineage information in a GW-term ( ) (Methods, for moslin we perform a gridα = 1
search to set the interpolation parameter ). We test all methods with two types ofα
lineage-distance computation: (i) using the ground truth tree and (ii) using a fitted tree based on
the simulated barcodes (Supplementary Fig. 1a,b). We perform a grid search for each case to
find the optimal hyperparameters (Methods and Supplementary Fig. 1c,d). To quantify method
accuracy, we compare gene expression of predicted and ground-truth ancestors and
descendants in terms of Wasserstein distance21 (Methods). We normalize this value by the
Wasserstein distance we obtain from an uninformative coupling, given by the marginal-outer
product, to obtain ancestor and descendant errors. Each value lies between 0 (ground truth)
and 1 (uninformative). Finally, to obtain a single number quantifying method accuracy, we
average over ancestor and descendant errors to obtain the “mean error”.

In agreement with the original publication21, we find that LineageOT improves over the baseline
OT setting in seven of eight cases (Fig. 2b). Moslin further improves on LineageOT, with an
average improvement of 10% and 12% in the mean error across all trajectories using true and
fitted trees, respectively. Across all tested methods, moslin achieves the lowest mean error
across all trajectory structures and distance variants. Of note, GW performs well using
ground-truth tree distances, outperforming OT in three of four cases and demonstrating the
value of ground-truth lineage information. However, as expected, pure GW is heavily affected by
noise in tree distances and shows the largest mean error across all trajectories on more
realistic, fitted tree distances.

These results demonstrate the power of the moslin approach: while pure GW is heavily affected
by noisy lineage information, moslin compensates for this noise using gene expression
information. Importantly, the authors of LineageOT21 reported that their tree reconstruction was
only moderately accurate, implying that moslin outperforms the baseline OT approach in a
setting reminiscent of real scLT data. Thus, the interpolation between gene expression and
lineage information allows our approach to achieve excellent performance on realistically fitted
tree distances (Fig. 2b).

Next, we consider a more complex simulation using TedSim42, which simulates cell division
events from root to present-day cells. It generates two data modalities for each cell, gene
expression and a lineage barcode, defining a much more complex setting than the
two-dimensional regime considered above. The cell lineage tree is simulated as a binary tree
that encodes cell division events, where a predefined cell state tree dictates the allowed
transitions toward terminal cell states. We cut the lineage tree at an intermediate depth to
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simulate an early time point and use leaf nodes for the late time point (Fig. 2c-e and Methods).
We map cells from the early to the late time point, providing only lineage relationships within
time points to moslin and using the lineage relationships across time points to score the quality
of our reconstructed mapping.

scLT datasets often suffer from barcode detection issues, and it is, therefore, crucial to assess
the performance of computational pipelines on partially-detected barcodes. In our simulations,
we introduce a stochastic silencing rate (ssr), the rate at which individual elements of the
barcode remain undetected. In this example, we test an alternative to lineage tree
reconstruction and directly use the scaled Hamming distance between barcodes to measure
lineage distances in moslin (Methods).

We find that moslin outperforms LineageOT across our range of ssr values. In particular, moslin
with maximal ssr achieves lower mean error than LineageOT on noise-free barcodes (Fig. 2f).
Critically, moslin can be used robustly even for relatively high ssr, while LineageOT fails and
does not provide any mapping beyond a certain threshold (ssr > 0.2).

Mapping gene expression across C. elegans embryonic development

To showcase moslin’s performance in a realistic setting where ground truth is still available, we
consider C. elegans embryonic development. The adult animal consists of only 959 somatic
cells43,44, generated following a sequence of deterministic lineage decisions. This species'
ground truth lineage tree is known44 and available to assess moslin’s reconstruction
performance. Further, this well-studied system is a good test case to validate biological insights
gained by combining moslin with CellRank for fate mapping, gene dynamics, and driver gene
prediction.

Previous work mapped time-series gene expression profiles of approx. 86k single cells to
individual tree-nodes7, providing a setting where joint lineage, state and time information is
available. Not all cells in this study could be mapped unambiguously. Thus, we focus on the
well-annotated ABpxp lineage, which produces mostly ciliated and non-ciliated neurons, glia
and excretory cells45. AB is one of the founding lineages of C. elegans; “p” (“a”) indicates the
posterior (anterior) ancestor, and “x” replaces “l” (left) or “r” (right), indicating a left/right
symmetry7,45 (Supplementary Fig. 2a). The dataset consists of 6,476 ABpxp cells across 7 time
points from 170-510 min past fertilization (Fig. 3a, Supplementary Fig. 2b-d and Methods).

We benchmark the performance of moslin and LineageOT across time points on the ABpxp
lineage using a similar set-up as for the TedSim42 data, and as suggested in ref.21 (Fig. 2c-f).
Specifically, we only provide lineage distances within time points to both methods. We compare
predictions with ground-truth lineage relations across time points by calculating the mean
prediction error over ancestor and descendant states (Methods). For all time point pairs, moslin
outperforms LineageOT and achieves a lower mean error (Fig. 3b). These results generalize to
another, distinct subset of C. elegans cells with precise lineage information (Supplementary Fig.
3).
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The mean error difference between moslin and LineageOT is largest on the 330/390 min pair of
time points. To illustrate this point, we zoom in on the difference between moslin and LineageOT
per 330 min-cell (Fig. 3c and Supplementary Fig. 4). As an example, we pick a pre-terminal
population of RIM (non-ciliated) neurons for which moslin’s descendant error is much smaller
compared to LineageOT’s. We find that moslin correctly links these cells to RIM neurons, while
LineageOT predicts many erroneous connections with ASH (ciliated) neurons (Fig. 3c and
Methods).

Going beyond a single pair of time points, we combine moslin’s couplings across all time points
to study C. elegans embryogenesis using CellRank22, a computational fate mapping tool.
Embryogenesis, especially at later stages, is a loosely synchronized process where embryos of
similar ages can represent slightly different developmental stages. This holds in particular for
our C. elegans example, where developmental time per cell was estimated by comparing to bulk
expression data7. Thus, we expect to find cells of slightly different maturity stages within each
assigned time point. To account for developmental asynchrony, CellRank computes, for each
time point, a transition matrix reflecting undirected gene expression similarity. These within-time
point transition matrices are combined with moslin’s across time-point coupling matrices to yield
the final transition matrix, reflecting cellular dynamics within and across time points (Methods).
When we use the final transition matrix to simulate 500-step random walks from the 170 min
time point, we find that these terminate in the known terminal cell types, recapitulating the
established developmental hierarchy (Supplementary Fig. 5a,b).

Using this transition matrix, we set out to study gene dynamics and fate choice among ABpxp
cells. As a first step, we use moslin/CellRank to compute seven terminal states and recover
known Ciliated-neuronal, Non-ciliated-neuronal, Glia and excretory subtypes7 (Fig. 3d). The
terminal states we identify are among the best-resolved cell types for Ciliated-neuronal,
Non-ciliated-neuronal, Glia and excretory groups in terms of cell number (Supplementary Fig.
2d). Thus, we successfully capture representative candidates of each group. As expected,
predicted terminal states mostly consist of late-stage cells, and each only contains cells from a
single cell type (Supplementary Fig. 5c,d).

We aggregate the seven terminal states into three groups: Ciliated neurons, Non-ciliated
neurons, and Glia and excretory cells. Next, we use CellRank to compute fate probabilities
towards these groups (Fig. 3e and Supplementary Fig. 6). In agreement with known biology,
moslin/CellRank predicts most progenitors in the ABpxp lineage to transition towards
Non-ciliated neurons7 (Supplementary Fig. 7a,b). For each of the three terminal cell groups,
predicted fate probabilities are significantly higher among cells from the corresponding known
pre-terminal populations (Supplementary Fig. 7c and Methods). We correlate fate probabilities
with gene expression to identify putative driver genes for each of the three trajectories. Focusing
our attention on C. elegans transcription factors46 (TFs), we automatically recover known drivers
for each trajectory, including sptf-1 for Ciliated neurons47, cnd-1 for Non-ciliated neurons48,49, and
pros-1 for Glia and excretory cells50–52 (Fig. 3f, Supplementary Fig. 8, Supplementary Table 1
and Methods).
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Finally, to study the temporal dynamics of fate decisions during C. elegans embryogenesis, we
compute a pseudotime using Palantir53, starting in a 170 min-cell (Supplementary Fig. 9a). As
expected, pseudotime values increase across time points (Supplementary Fig. 9b). Focusing on
the Non-ciliated neuron trajectory, we compute the 50 top-correlated genes with Non-ciliated
fate probabilities. For each of these genes, we combine the Palantir pseudotime with
moslin/CellRank fate probabilities to compute smooth expression trends (Methods and
Supplementary Table 1). Sorting expression trends by their pseudotime-peak and plotting them
in a heatmap reveals a sequential activation pattern (Fig. 3g and Supplementary Fig. 10). Our
results show that some TFs with known function in Non-ciliated neuron generation, including
cnd-148,49 or unc-354,55, are activated before others, including fax-156 and zag-157–59

(Supplementary Table 1). In particular, our activation pattern predicts that fax-1 is activated
before flp-1, a known regulatory interaction in (non-ciliated) AVK cells56.

While many moslin/CellRank predicted driver genes had known functions in Non-ciliated neuron
generation, we also identify candidate driver genes that are novel, to the best of our knowledge.
In particular, our results predict ceh-27, hlh-13 and hlh-15 as putative drivers (Fig. 3g). ceh-27 is
a homeobox TF, a class of TFs known to be crucial for C. elegans neurogenesis60,61. While
previous work60 reported ceh-27 expression in Non-ciliated neurons, the TF has no known
function in fate specification towards these neurons. hlh-13 and hlh-15 are basic helix-loop-helix
TFs; hlh-15 is known to be involved in C. elegans aging62.

Moslin determines the dynamics of transient fibroblasts in heart regeneration

The zebrafish heart regenerates after injuries, such as ventricular resections63 or
cryoinjuries64–66. A previous study used the integrated lineage-tracing and transcriptome profiling
technique LINNAEUS10 to generate a dataset of approximately 200,000 single cells in the
zebrafish heart across four time points: before injury (control), three days after injury (3dpi),
seven days after injury (7dpi) and thirty days after injury (30dpi). This dataset includes inferred
lineage trees and cell type annotations for each time point67 (Fig. 4a).

One key result from this study was the emergence of several transcriptomically distinct fibroblast
substates during regeneration. Analysis of lineage trees created with LINNAEUS showed that
some transient states originate from the endocardial layer and others from the epicardial layer.
The persistent constitutive fibroblasts share a lineage with the epicardial layer as well. One state
from the epicardial layer, a fibroblast subtype characterized by a high col12a1a-expression,
called col12a1a fibroblasts, was shown to be essential for regeneration: ablation of col12a1a
fibroblasts strongly reduces the regenerative capacity of the zebrafish heart. Another
epicardial-based transient state, the col11a1a fibroblast state, characterized by high col11a1a
expression, only occurs at 3dpi, and its role is unclear. This state could lead to col12a1a
fibroblasts, or it could be independent. Since the original analysis was restricted to individual
time points, this question could previously not be resolved, which precluded further analysis of
the underlying regulatory interactions. We reasoned that we could characterize this relationship
by combining time points using moslin.
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We apply moslin on all single cells in this dataset with lineage information - approximately
44,000 single cells from 20 individual animals across ctrl, 3dpi and 7dpi. We embed the
transcriptomic readout of all single cells with lineage information into a joint latent space using
scVI39, retaining the original cluster annotations. We calculate lineage distances as shortest path
distances along the original reconstructed trees and use moslin to calculate couplings between
cells at consecutive time points, using the interpolation parameter .α = 0. 5

Initially, we validate the performance of moslin in this challenging regeneration setting. We
design a test around the assumption that most persistent cell states should be their own
precursor; for example, precursors of atrial endocardial cells at 7dpi should be atrial endocardial
cells at 3dpi. We use a Welch-test-based framework to test whether cells of type A at t2 are
significantly coupled to cells of type A at t1, or to any other cell type B at t2 (Fig. 4b and
Methods). Under the expectation that a significant coupling of A at t1 to A at t2 is a true positive
and a significant coupling to any other cell type is a false positive, we visualize receiver
operating characteristic (ROC) curves for control-3dpi and 3dpi-7dpi couplings. Areas under the
ROC curve (AUCs) of 0.992 and 0.984, respectively, show that moslin can be used to determine
cell state relationships across time (Fig. 4c and Methods).

In this framework, we test a cell type A at t1 against all cell types at t2; all but one of these tests
(namely, the one where we test A at t1 against A at t2) is supposed to yield a negative result. To
ensure AUCs are not inflated by this high amount of true negatives, we also test whether cells of
type A at t2 are significantly coupled to cells of type A at t1 or to the ensemble of other cells.
Here we find AUCs of 0.9999 and 1 (Supplementary Fig. 11 and Methods). Finally, we find
moslin’s performance decreases by 3% (from AUC 0.99 to 0.96 at both time points) if isϵ
increased to 0.1; variations in other hyperparameters yield performance changes below 1%
(Supplementary Fig. 11), showing that moslin is robust to hyperparameter changes.

We next investigate the origins of transient fibroblast substates, including col11a1a and
col12a1a fibroblasts. In particular, the previously published analysis had left room for two
hypotheses: either col11a1a fibroblasts are an intermediary state between constitutive and
col12a1a fibroblasts, or these two fibroblast states arise from constitutive fibroblasts
independently. We calculate couplings with moslin, take weighted averages of cell type
frequencies over separate organisms, and aggregate couplings between cell types to quantify
cell type transitions during regeneration (Supplementary Fig. 12 and Methods). As expected, we
observe that persistent cell types couple strongly to themselves (Fig. 4d).

Furthermore, we observe that constitutive fibroblasts preferentially generate col11a1a
fibroblasts, and that most col12a1a fibroblasts originate from col11a1a fibroblasts: 21% (95%
confidence interval: 15-28%) of the mass generated by constitutive fibroblasts at control goes
towards col11a1a fibroblasts, whereas only 12% (95% confidence interval: 6-19%) goes directly
towards col12a1a fibroblasts. At 3dpi, 42% (95% confidence interval: 22-56%) of the mass
generated by col11a1a fibroblasts goes towards col12a1a fibroblasts, which constitutes 39%
(95% confidence interval: 26-47%) of the col12a1a fibroblast mass at 7dpi (Fig. 4e). Confidence
intervals for the frequencies and couplings were constructed by subsampling (Methods).
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Taken together, this suggests that the majority of col12a1a fibroblasts is generated by
constitutive fibroblasts that transition through a col11a1a-expressing state (Fig. 4e). We
hypothesize that the 3dpi col12a1a fibroblasts that seem to originate directly from constitutive
fibroblasts have actually transitioned through a col11a1a fibroblast state between injury and
3dpi. Our findings demonstrate the added value of temporal lineage models like moslin in
analyzing scLT time-course data.

Discussion
We demonstrate that combining intra-individual lineage similarity with inter-individual
gene-expression similarity improves trajectory reconstruction substantially for in-vivo single-cell
lineage-tracing (scLT) data. moslin outperforms competing methods on simulated and real data
by interpolating between Wasserstein and Gromov-Wasserstein regimes and using lineage
information at both time points. Crucially, we highlight in simulations that moslin compensates
for noisy lineage relations through gene expression information, rendering our method suitable
for real scLT data. We illustrate moslin’s capability to recover cell-state trajectories from real
scLT data in zebrafish heart regeneration67, where we predict a new origin for regenerative
activated fibroblast states. Importantly, moslin is the first computational method with
demonstrated success in this challenging real data setting.

Moslin’s key advantage over previous analysis paradigms for in-vivo scLT data is that it relates
cells across time points rather than focusing on individual, isolated time points. While tree
reconstruction from a single time-point of lineage-traced cells can uncover shared lineage
ancestry10–13,16,18,19, it falls short of characterising the molecular properties of these ancestors.
Moslin links putative ancestors to their descendants based on lineage and gene expression
information; this enables us to relate the different activated fibroblast states as a function of the
time past injury, a hypothesis that remains to be validated experimentally. Cell states undergo
far-reaching changes over time in many situations such as cancer, cardiovascular- and
neurodegenerative diseases. To understand the gene regulatory events that underlie these
changes, it is crucial to identify the corresponding sequence of state transitions. Moslin now
provides a unified framework for this identification from time-resolved single-cell lineage tracing
studies.

Under the hood, moslin is based on moscot, a robust and easy-to-use framework for OT
applications in single-cell genomics. As such, it benefits from moscot’s interoperability with the
scverse68,69 ecosystem and can take advantage of future moscot improvements concerning
scalability and usability. Moslin’s interface with CellRank22 grants it access to a range of
established, constantly growing downstream-analysis functions. We demonstrate the power of
combining moslin with CellRank on the C. elegans data, where their combination reveals
long-range state-change trajectories, driver genes, and temporal dynamics. Moslin’s couplings
could further be employed to regularize the inference of gene regulatory networks70,71, or to
improve perturbation predictions72.
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In this study, we focus on the independent clonal evolution experimental design because it
allows us to apply our method to in-vivo scLT data. In this setting, lineage relationships are only
comparable within one time point. In contrast, for in-vitro experiments, cells from the same
population can be sampled at different time points, rendering their lineage information directly
compatible across time points. Previously, OT-like approaches14,15 have been suggested for this
clonal resampling experimental design24. Moslin could be extended towards this setting by
adjusting the cost-matrix definition.

While moslin is robust to noise in lineage information, it will benefit from improved experimental
lineage tracing technologies. Recent innovations, including mitochondrial lineage tracing26,27,73

and base/prime editing74–77, represent compelling use cases for moslin. Improved lineage
resolution will allow our method to yield highly-accurate trajectory reconstructions in challenging
disease contexts like cancer or inflammation.

Currently, moslin is limited to one replicate per time point. In the zebrafish data67, where several
replicates per time-point are available, we address this by computing pairwise replicate linkages
across time points and aggregating our insights across these. With the increasing popularity of
scLT approaches, we expect more complex, multi-replicate time series to become available. For
these, as an alternative to the aggregation approach above, we envisage a two-step process,
first computing a consensus lineage representation per time point across replicates, and
second, linking the consensus representations across time points.

Moslin could further be extended towards multi-modal scLT data78,79 to link molecular layers
across time. For example, this could reveal how epigenetic changes manifest in altered gene
expression dynamics80,81. Additionally, spatially-resolved lineage tracing data would enable
moslin to regularise the coupling computation further using spatial neighbourhoods. In this
setting, moslin’s inferred trajectories could be used to interrogate the relative contribution of
internal state versus external signals towards observed fate decisions. scLT is a fast-moving
field; we anticipate computational tools like moslin to play a crucial role in analyzing and
interpreting novel lineage-traced datasets.
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Fig. 1 | Moslin maps lineage-traced single cells across time points.

a. Schematic of scRNA-seq time-course experiment with time points t1 (circles) and t2
(triangles). Cells are destroyed upon sequencing; this makes it difficult to study the trajectories
of early cells giving rise to late cells. We highlight a rare population (brown triangles) that only
appears at t2, with uncertain origin at t1. b. Illustration of independent clonal evolution (ICE)
experimental design for scLT studies. ICE samples cells from different individuals at different
time points and is applicable to in-vivo settings. c. Overview of moslin's optimal-transport
(OT)-based objective function for in-vivo scLT. The grey outline shows a simplified state
manifold; shapes and colors as in (a). The dashed inset highlights lineage trees reconstructed
independently for each time point16; these trees may be used in moslin to quantify lineage
similarity. We use Wasserstein (W) and Gromov-Wasserstein (GW)-terms to compare cells in
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terms of gene expression and lineage similarity, respectively. The combination of W- and
GW-terms gives rise to moslin’s Fused Gromow-Wasserstein (FGW) objective function on the
right (Methods). d. The moslin workflow; based on gene expression matrices X and Y, marginals
a and b, and lineage information across time points, we compute distance matrices CX, CY and
C, and use moslin to reconstruct a coupling matrix P, probabilistically matching early to late
cells. The marginals may be used to quantify measurement uncertainty or cellular growth and
death. The coupling matrix P may be analyzed directly or passed to CellRank22 to compute fate
probabilities, driver genes and expression trends- or cascades. Figure created using
BioRender.
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Fig. 2 | Moslin obtains accurate couplings for simple and complex trajectory topologies.

a. Visualization of the four different kinds of simulated trajectories in gene expression space. b.
Each subplot presents the evaluation of a different simulated trajectory. Per trajectory, the mean
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error (the mean value of the ancestors and descendants error) is evaluated for the true tree or a
reconstructed fitted tree for all methods, LineageOT, OT, GW and moslin (Methods). Error bars
depict the 95% confidence interval across 10 random simulations. c-e. Simulated tree and
expression using TedSim42. The cell state tree (c) defines the underlying trajectories of cell
differentiation. TedSim simulations yield gene expression (d) and a cell division tree (e), which
represents the true lineage and barcode for each cell. f. Mean prediction error of moslin
compared to LineageOT. As a function of the stochastic silencing rate. Error bars depict the
95% confidence interval across 10 random simulations.
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Fig. 3 | Moslin accurately captures C. elegans embyogenesis.

a. UMAP82 of approx. 6.5k C. elegans ABpxp cells, colored by time point (left) and cell type
(right)7. b. Bar chart of the mean error for moslin and LineageOT21 across time points (Methods).
c. Left: UMAP of 330-390 min cells, colored in grey (390 min cells) or by the difference in
descendant error between moslin and LineageOT (330 min cells). Black inset highlights RIM
parent cells, which transition towards RIM cells7. Right: ground-truth, moslin and LineageOT
couplings for the RIM parent population; “error” indicates the aggregated descendant error over
this population (Methods) d. UMAP, showing the top 30 cells per moslin/CellRank22 computed
terminal state. e. UMAPs of aggregated fate probabilities towards Ciliated neurons, Non-ciliated
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neurons, and Glia and excretory cells (Supplementary Fig. 6 and Methods). f. Scatter plot,
showing the correlation of gene expression (GEX) with Non-ciliated- (x-axis) and Ciliated
(y-axis) neuronal fate probabilities. Annotated TFs are known to be involved in the
developmental trajectory they correlate with (Supplementary Table 1). Right: UMAPs, showing
expression of exemplary TFs. g. Left: heatmap showing expression values for the top 50
predicted driver genes of Non-ciliated neurons (all gene names shown in Supplementary Fig.
10). Each row corresponds to a gene, smoothed using fate probabilities (e) and the Palantir
pseudotime53 (x-axis, Supplementary Fig. 9). We annotate a few TFs, including cnd-148,49,
fax-156, and zag-157–59 (black), and other genes, including syg-183–85, madd-486–88, and flp-156,89

(grey) that are known to be involved in the process (Supplementary Table 1). Right: UMAPs,
showing expression of previously unknown predicted driver TFs.
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Fig. 4 | Moslin recovers lineage relations among transient fibroblast subsets.
a. Underlying data describes zebrafish heart regeneration, measured through single-cell
transcriptomic and lineage profiling before injury (n=4), at 3dpi (n=9) and 7dpi (n=7)67. b.
Welch's t-test for cell type persistence (Methods). c. ROC curves for same-cell type
ancestors. d. Flow diagram of cell type transitions. e. Flow diagram of transient epicardial
fibroblasts corroborates col11a1a fibroblasts as an intermediary state between constitutive
and col12a1a fibroblasts.
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1 The moslin algorithm

1.1 Introduction and model overview

Moslin is an algorithm aimed at linking single-cell profiles across experimental time points. Computa-
tional linkage is required as sequencing is destructive; moslin thus allows linking molecular differences
among cells at early time points with their eventual fate outcome at later time points. Critically,
moslin uses molecular similarities and lineage tracing information to solve this challenging recon-
struction problem. Specifically, moslin is applicable to dynamic, CRISPR-Cas based approaches1–12

that record lineage relationships in vivo. While previous analysis approaches for this type of lin-
eage tracing data remained limited to individual, isolated time-points4,5,13–21, moslin embeds clonal
dynamics in their temporal context.

Moslin’s inputs. The input to moslin are pairs of state matrices and linege information (X ∈ RN×G,
ξ) and (Y ∈ RM×G, ζ) corresponding to N and M observed cells at early (t1) and late (t2) time points.
State matrices X and Y typically represent gene expression (scRNA-seq) across G genes; however,
moslin can also be applied to modalities like chromatin accessibility. The lineage information arrays
ξ and ζ contain the lineage tracing outcome for every cell; their exact nature depends on the lineage
tracing technology (Section 1.2). Optionally, moslin takes marginal distributions a ∈ ∆N and
b ∈ ∆M over cells at t1 and t2 for probability simplex ∆N := {a ∈ RN

+ |
∑N

i=1 ai = 1}. These
marginals can represent any cell-level prior information; we use them to incorporate the effects of
cellular growth and death.

Moslin’s outputs. The output of moslin is a coupling matrix P ∈ U(a, b) where U(a, b) is the
set of feasible coupling matrices given by

U(a, b) := {P ∈ RN×M
+ |P1M = a, P⊤1N = b} , (1)

for constant one vector 1N = [1, ..., 1]⊤ ∈ RN . The coupling matrix P links cells at t1 with cells at
t2; the i-th row Pi,: tells us how cell i from t1 distributes its probability mass across cells at t2 and
the j-th column P:,j tells us how much probability mass cell j at t2 receives from cells at t1. The
set U(a, b) contains all matrices P which are compatible with the prescribed marginals a at t1 and
b at t2.

With these definitions at hand, we can formalize the aim of moslin: we seek to find the coupling
matrix P ∈ U(a, b) which simultaneously minimizes the distance cells have to travel in phenotypic
space between t1 and t2 while respecting lineage relationships. We explain how we find such a matrix
in Subsection 1.3

1.2 In vivo single-cell lineage tracing (scLT)

Moslin uses lineage tracing data to guide the reconstruction of a coupling matrix P between t1 and
t2 cells. Early methods for lineage tracing were labor-intensive, limited to transparent organisms,
and relied on manual observation of individual cells in time-lapse microscopy22,23, recent approaches
are sequencing-based and use heritable genetic barcodes23–27. While a multitude of such techniques
exists, moslin is geared towards those that achieve single-cell resolution, yield joint lineage and gene
expression readout, and can be applied in vivo.

Clonal resampling (CR) versus independent clonal evolution (ICE). Critically, moslin is able to
describe non-steady state biological processes like development or regeneration that require time-
series experimental designs to capture cell-state trajectories. Experimentally, this can be achieved

2
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using either clonal resampling (CR) or independent clonal evolution (ICE) designs, which assay cells
from the same or different clones across several time points, respectively.

In clonal resampling (CR), the aim is to observe the same clone (cells sharing the same barcode)
across several time points, i.e., for a single phylogenetic tree, we aim to observe some ancestral
nodes besides the leaf nodes. As this approach relies on the repeated sampling of clonally related
cells, it applies primarily to in-vitro settings28–30, in vivo transplantation settings28 or in vivo
regenerative systems like human PBMC and CD34+ samples31,32 or the zebrafish fin2. Beyond these
transplantation and regenerative settings, applying time-series scLT in vivo requires independent
clonal evolution (ICE), i.e., different individuals, sequenced at different time points with independent
clonal evolution proceeding in each animal. This represents an additional challenge since the lineage
of cells in different individuals cannot be compared directly. We designed moslin for the challenging
ICE setting that allows us to model in-vivo systems.

1.3 Moslin’s objective function for in-vivo ICE

With the definition of ICE at hand, we return to moslin’s key task: finding a coupling matrix
P ∈ U(a, b) which simultaneously minimizes the distance cells have to travel in phenotypic space
while respecting lineage relationships. Mathematically, we cast this task as an Optimal Transport
(OT) problem33; in particular, we use a Fused Gromov Wasserstein 34 (FGW) formulation which
allows us to include terms for across- and within time-point similarity (Supplementary Note 1).
Previous single-cell methods successfully used OT to map cells across time points without lineage
information35,36, impute gene expression in spatial data37, predict perturbation response38–40, learn
patient manifolds41,42, integrate data across modalities43 and infer cell-cell communication44. In
particular, we make the following assumptions (A):

• A1: cells change their state gradually; overall, they minimize the distance traveled in pheno-
typic space between t1 and t2.

• A2: on average, molecular similarity is conserved between t1 and t2; similar cell pairs at t1 are
likely to transition into similar cell pairs at t2.

• A3: on average, lineage relations are concordant across time-points; cells with similar lineage
history at t1 are likely to transition into cells with similar lineage history at t2.

All three assumptions may be challenged in practice:

• Batch effects and incomplete molecular information challenge A1.

• Rapid transcriptional convergence and divergence challenges A2.

• Noisy or incomplete lineage readout challenges A3.

Thus, rather than enforcing A1-A3 exactly, we design custom cost functions to balance them in our
FGW objective function; individual cells may violate any combination of assumptions at the cost of
incurring a penalty.

A combined approach for in vivo scLT data. In ICE, gene expression information is comparable
across time points but lineage information is not (Section 1.2). Our FGW setting allows us to define
terms that handle both type of information:

• A linear Wasserstein (W) term for comparable features, encouraging A1. This term quantities
gene expression similarity.

• A quadratic Gromov-Wasserstein (GW) term for incomparable features, encouraging A2 and
A3. This term quantifies lineage and expression concordance.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.14.536867doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536867
http://creativecommons.org/licenses/by-nc-nd/4.0/


The W term for individual comparisons. To encourage A1, we consider a W term33 which com-
pares individual cells in the source (t1) and target (t2) distributions in terms of their gene expression
vectors. Given gene expression vectors (xi,yj) ∈ X × Y, we construct a cost matrix, C ∈ RN×M

+

with Cij = c(xi,yj) for cost function c. An entry in the cost matrix, Cij , depicts the distance
between cells i and j according to the cost function c. We define the cost function to represent
squared euclidean distance in a joint latent space over X and Y , computed using PCA or scVI45.
Formally, the mapping problem is defined as

P ∗ := argmin
P∈U(a,b)

⟨C,P ⟩ = argmin
P∈U(a,b)

∑
ij

CijPij , (2)

for optimal coupling matrix P ∗. This objective function defines a convex linear program; the optimal
P ∗ will be the one accumulating the lowest cost according to C when transporting cells from t1 to
t2.

The GW term for pairwise comparisons. To encourage A2 and A3, we consider a GW term33,46,47

which compares cell pairs in the source (t1) and target (t2) distributions in terms of their gene
expression and lineage information. Given gene expression vectors and lineage information, we
define two independent cost matrices, CX ∈ RN×N

+ and CY ∈ RM×M
+ with CX

ij = cX (xi,xj) and
CY
kl = cY(yk,yl) for cost functions cX and cY .

Focusing on the early time point, consider latent space samples xi and lineage information ξi. Define
the composite t1-cost function

cX (xi, ξi,xj , ξj) = β cl
(
fX (ξi), f

X (ξj)
)
+ (1− β)||xi − xj ||22 , (3)

for parameter β ∈ [0, 1], controlling the weight given to lineage versus molecular state, mapping
function fX , providing a representation of the lineage information at t1, and lineage distance function
cl. Lineage information is typically noisy and incomplete; we include molecular similarity at weight
(1− β) as a regularization. Moslin supports two ways of representing lineage information:

• barcode representation: fX is the identity and cl quantifies hamming distance between raw
barcodes.

• lineage tree representation: fX is a lineage-tree reconstruction computed using a method like
Cassiopeia13 or LINNAEUS1 and cl quantifies shortest path distance along reconstructed trees.

We employ an analogous set of definitions for the t2-cost function cY . We apply these cost functions
to all (pairs of) cells to yield the cost matrices CX ∈ RN×N and CY ∈ RM×M . With the cost matrices
at hand, we define a quadratic GW term that compares pairwise distances across time-points,

P ∗ := argmin
P∈U(a,b)

∑
ijkl

L
(
CX
ij , C

Y
kl

)
PikPjl , (4)

for some distance metric L that compares cost-matrix entries. By default, we use the l2 distance in
moslin. Intuitively, this term encourages similar cells at t1 to be matched to similar cells at t2.

Moslin’s Fused Gromov-Wasserstein (FGW) approach. To simultaneously encourage A1, A2,
and A3, we combine the W with the GW term to yield moslin’s objective function for in-vivo ICE
data,

P ∗ = argmin

P∈U(a,b)

α
∑
ijkl

L
(
CX
ij , C

Y
kl

)
PikPjl︸ ︷︷ ︸

A2 and A3

+(1− α)
∑
ik

CikPik︸ ︷︷ ︸
A1

, (5)

which is known as a Fused Gromov-Wasserstein (FGW) problem34 (Supplementary Note 1). The pa-
rameter α ∈ [0, 1] controls the interpolation between the W and GW terms. Using this interpolation,
we jointly optimize the coupling with respect to gene expression and lineage information.
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Entropic regularization and optimization. The combined objective of Equation (5) defines a
quadratic programming problem; to introduce a notion of uncertainty and to speed up the optimiza-
tion, we follow previous approaches35,48 and include and entropy regularization term,

H(P ) = −
∑
ij

Pij(logPij − 1) , (6)

and the regularized FGW objective reads

P ∗ := argmin
P∈U(a,b)

α
∑
ijkl

L
(
CX
ij , C

Y
kl

)
PikPjl + (1− α)

∑
ik

CikPik − ϵH(P ) , (7)

for regularization strength ϵ. Intuitively, the entropy term H(P ) favors probabilistic over deter-
ministic couplings. We optimize the entropy-regularized FGW objective function using a mirror
descent scheme; each inner iteration of the algorithm reduces to well-known Sinkhorn iterations33,48

(Supplementary Note 1). To determine convergence, we check whether the current and previous
regularized OT costs are close using jax.numpy.isclose(..., rtol=R_TOL), with R_TOL = 1e-3
by default.

Marginals endcode prior biological information. If additional information about sampled cells
is available, e.g., growth- and death-rates, uncertainty, etc., we incorporate them via the marginals
a and b. If no additional information is available, we assign them uniformly. By default, in moslin,
we choose the right marginal b uniformly, bj = 1/M ∀j ∈ {1, ...,M}, and adjust the left marginal
to accommodate cellular growth and death between t1 and t2,

ai =
g(xi)

t2−t1∑N
j=1 g(xj)t2−t1

∀i ∈ {1, ..., N} , (8)

where g : RD → R is modeled as the expected value of a birth-death process with proliferation at
rate β(x) and death at rate δ(x), thus g(x) = eβ(x)−δ(x) for β(x) and δ(x) estimated from curated
marker gene sets for proliferation and apoptosis, respectively35.

Accommodating uncertainty in the inputs. As we estimate growth- and death rates from marker
genes, they represent a noisy estimate of the underlying ground truth growth- and death rates. In
addition, we randomly sample cells from a population, which leads to deviations from the ground-
truth cell-type proportions.

Accordingly, we allow small deviations from the exact marginals a and b in an unbalanced FGW
framework49 where we replace the hard constraint P ∈ U(a, b) with soft Kullback–Leibler (KL)
divergence penalties, giving rise to moslin’s final objective function for time-series scLT data. To
control the weight given to left (a) and right (b) marginal constraints, we use two parameters τa, τb ∈
(0, 1) (Supplementary Note 1). For the optimization, we employ the algorithm presented by Séjourné
et al. 49 which is based on a bi-convex relaxation leading to alternate Sinkhorn iterations.

Implementation. Moslin is available at https://github.com/theislab/moslin. Under the
hood, moslin is based on moscot, our open-source framework for Multi-Omic Single-Cell Optimal
Tranport. moscot is a scalable, easy-to-use, open-source solution for OT-based analysis in single-
cell genomics; it interfaces with optimal transport tools50 (OTT) in the backend to support GPU
acceleration and just-in-time compilation via JAX51.
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1.4 Downstream usage of coupling matrices

Once we have identified the optimal coupling matrix P , we use it to link observed cells between t1
and t2. Note that the coupling matrix P combines the information from molecular similarity and
lineage history; thus, all downstream analysis is lineage- and state informed.

Consider a t1 cell state P of interest. This state could represent, e.g., a rare or transient popula-
tion with unknown position in the differentiation hierarchy. Define the corresponding normalized
indicator vector,

pt1(x) :=

{
1
|P| x ∈ P ,

0 else ,
(9)

where x is a cell from t1 and |P| corresponds to the number of cells in state P. Following Schiebinger
et al. 35 , we compute t2 descendants of cell state P by a push-forward operation of pt1 ,

pt2 = P⊤pt1 , (10)

where pt2(x) is the probability mass that cell state P distributes to cell x at t2. Similarly, to
compute ancestors of a cell state Q at t2, consider the corresponding normalized indicator vector
qt2 . To compute the ancestor distribution, we use a pull-back operation,

qt1 = Pqt2 , (11)

where qt1(x) is the probability mass that cell x contributes towards cell state Q at t2. For further
downstream analysis, e.g. to identify initial and terminal states, driver genes of fate decisions, and
gene expression trends, we interface with CellRank52, a fate mapping toolkit which analyzes our
coupling matrices using a Markov framework.

Coupling cells across more than two-time points. Moslin relates cells across more than two-
time points; consider a time-series experiment with sequencing at time points {t1, ..., tT }. Follow-
ing Schiebinger et al. 35 , we solve for individual pairwise couplings between adjacent time points;
this yields coupling matrices {P t1,t2 , ..., P tT−1,tT }. We construct longer-range couplings by matrix-
multiplying individual couplings. For example, to couple initial-day cells to final-day cells, we
obtain

P t1,tT = P t1,t2P t2,t3 ... P tT−1,tT . (12)

We compute ancestors and descendants for multi-day couplings in the same way as above (Equa-
tions (10) and (11)).

2 Datasets

2.1 2-gene simulations

We use a simulation setting suggested by Forrow and Schiebinger 53 which constructs a vector field
to recreate a biologically plausible trajectory structure. Under the simulation, cells follow the vector
field with diffusion and occasional cell division. The simulation assigns a heritable lineage barcode
that is randomly mutated, to each cell. Four different types of trajectories, of increasing complexity,
are considered in this simulated setting:

1. bifurcation (B): a simple bifurcation of a single progenitor cell type into two descendant cell
types.

2. partial convergent (PC): two initial clusters split independently, following the split, two of the
resulting four clusters merge together for a total of three clusters.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.14.536867doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536867
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. convergent (C): two initial clusters converge to a single final cell type.

4. mismatched clusters (MC): two initial clusters both split into two late-time clusters, and cells
from two of the resulting clusters are transcriptomically closer to early cells that are not their
ancestors

The simulated data provides us with what Forrow and Schiebinger 53 define as an embedded lineage
tree, referring to the collection of branching paths due to cell divisions within a population (whereas
a lineage tree denotes the coordinate-free tree structure). For each of the trajectories, we simulate
10 different data sets with a different random seed and measure the embedded lineage tree at two
time points (with 64 and 1024 cells respectively). All simulations were performed using the default
settings provided in the LineageOT code package: https://github.com/aforr/LineageOT.

Given the simulated data, which consists of gene expression, barcodes, and the true lineage tree,
we compute couplings between time points in two manners, considering the true tree or a fitted
tree. For the latter, the tree is inferred using the neighbor-joining algorithm54 as implemented in
LineageOT53. LineageOT uses the tree (true or fitted) directly to compute the couplings. In moslin,
we construct the lineage costs by computing distances between cells along the tree. The distance is
defined as the length of a weighted shortest path found using Dijkstra’s algorithm55 with weights
associated to edges according to "time" between two nodes. We compare the performance of moslin
to LineageOT, and two extreme cases of the moslin formulation: using only gene expression in a
W-term (α = 0), and using only lineage information in a GW-term (α = 1). We quantify method
performance using the ancestor and descendant errors introduced in Forrow and Schiebinger 53 .
For ground truth coupling P ∗ and predicted coupling P , we compare their predicted ancestors
and descendants per cell using a Wasserstein-2 distance (Supplementary Note 1). To obtain the
descendant error ED(P ), we compute

ED(P ) =
N∑
i=1

aiW
2
2 (P

∗
i,:, Pi,:) , (13)

for squared Wasserstein-2 distance W 2
2 (Supplementary Note 1) and right marginal ai =

∑
j Pij .

Similarly, to obtain the ancestor error EA(P ), we compute

EA(P ) =

M∑
j=1

bjW
2
2 (P

∗
:,j , P:,j) , (14)

for left marginal bj =
∑

i Pij . Note that we compare rows for ED(P ) and columns for EA(P ),
scaled by the corresponding marginal to adapt the weight we give to each cell. Thus, a value of
zero in either metric means that we are on par with the ground-truth coupling. Additionally, we
independently normalize ancestor and descendant errors using the outer product of the marginals,
P̂ = ab⊤, corresponding to an uninformative coupling with the same marginals as the predicted
coupling P . Specifically, we compute ED(P )/ED(P̂ ) and EA(P )/EA(P̂ ), such that a value of one
corresponds to an uninformative result. Our final error metric is given by the mean of the two
quantities53.

We perform a grid search to find the optimal parameters for each data set and method. For
all settings, the entropy parameter is optimized over 15 values of ϵ log-spaced between 1e − 4
and 1e + 1. For moslin, we also perform a grid search for the interpolation parameter, α ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98, 0.999}.

2.2 TedSim simulated data

We utilize TedSim56 (single-cell temporal dynamics simulator), which simulates cell division events
from root cells to present-day cells, simultaneously generating two data modalities for each cell, gene
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expression, and a lineage barcode. The cell lineage tree is simulated as a binary tree that models the
cell division events. In order to simulate diverse cell types, the notion of asymmetric divisions57–59

is used. The asymmetric divisions allow cells to divide into cells with different cellular fates. One
cell evolves into a new state and the other preserves the ancestor state. The evolution of cells is
governed by a cell state tree. Two user-defined parameters control this simulation process:

1. step_size: defines the distance between two adjacent sampled states on the cell state tree.
Larger step_size implies more distinct cell states along the tree.

2. pa: the probability for a division in the sampled tree to be asymmetric. Larger pa implies
rapid transitions in the sampled tree.

In accordance with the original publication56, we noticed that these parameters have a small effect
on the mapping accuracy hence report results for pa = 0.4 and step_size = 0.4.

For the lineage information, barcodes are simulated as an accumulation of CRISPR/Cas9-induced
scars along the paths from the root to all the leaf cells. Here, we add to the TedSim simulated
barcodes a stochastic silencing rate, corresponding to the rate at which entire segments are removed
from the barcode. With this, we aim to simulate the expected dropout due to low sensitivity of
assays.

To obtain the datasets we follow the TedSim published tutorial, Simulate-data-multi.Rmd. Setting
pa = 0.4 and step_size = 0.4 and creating 10 different data sets using different random seeds.

Given the simulated gene expression and barcodes, we define moslin’s lineage costs as the scaled
hamming distance between the barcodes, as defined by Forrow and Schiebinger 53 . The scaling is
defined such that: (i) the number of sites where both cells were measured is taken into account, (ii)
the distance between two scars is twice the distance from scarred to unscarred sites. For LineageOT,
similarly to the previous setting, the barcodes are used internally to construct a fitted tree. To
benchmark moslin, we ran a grid search over α ∈ {0.1, 0.25, 0.5, 0.75, 0.9, 1} and ϵ ∈ {1e− 3, 1e− 4}.
For LineageOT, we tested with ϵ ∈ {1e− 1, 1}.

2.3 C. elegans embryonic development

The C. elegans development dataset60 contains gene expression for approx. 86k single cells, se-
quenced using 10x genomics. The original authors60 mapped these cells towards the known C.
elegans lineage tree22 and obtained lineage information for a subset of cells. Additionally, they
mapped their data towards a bulk time-series dataset61 to estimate the developmental stage of indi-
vidual cells. Binning these estimated cell times gave rise to several pseudo-experimental time points,
spanning 150-580 min past fertilization.

Preprocessing. To evaluate moslin’s performance, we required ground-truth lineage information.
The original study’s60 mapping inferred partial lineage information for a subset of approx. 46k cells.
To obtain precise lineage information, we implemented two suggestions by Forrow and Schiebinger 53 :

1. Strategy 1: subsetting to the ABpxp lineage. This is a symmetric lineage where "x" indicates
either the right ("r") or the left ("l") cell.

2. Strategy 2: subsetting to all cells with precise lineage information.

As the lineage for cells obtained from strategy 1 is not fully specified due to "x", the two strategies
lead to disjoint subsets of cells, allowing us to test moslin’s performance in two different scenar-
ios.

For either cell subset, we preprocessed the data using SCANPY62, and used default parameters if not
indicated otherwise. In particular, we normalized total counts, log-transformed the data, annotated
the top 3k highly variable genes using the "seurat" flavor63, and computed 50 principal components
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in the space of highly variable genes. To have a sufficient number of cells per time point, we removed
time points that contained less than 100 cells. This left us with the following 7 time points: 170,
210, 270, 330, 390, 450 and 510 min past fertilization.

Embedding and cell-type labels. Using the top 10 principal components, we computed a k-nearest
neighbor (kNN) graph for 30 nearest neighbors and visualize it by computing a UMAP embedding64.
To reduce complexity and focus on the main groups of terminal cell states, we aggregated original
cluster annotations60 slightly to arrive at the annotations we show in Fig. 2 and Supplementary
Fig. 2. Our aggregation entailed the following steps:

• Summarize AIM, AIY, AVB, DB, PVP, RIB, RIC, SIA and RIV as "other terminal non-ciliated
neurons".

• Summarize Neuroblast_PVC_LUA and Parents_of_U_F_B_DVA as "other pre-terminal
non-ciliated neurons".

• Summarize pm7, DVA, GLR, DA and Pharyngeal_neuron as "other terminal cells".

• Summarize AIN_parent, M1_parent, PVQ_parent, RME_LR_parent,
Parents_of_Y_DA6_DA7_DA9, Parent_of_tail_spike_and_hyp10 and
Parents_of_PHsh_hyp8_hyp9 as "other pre-terminal cells".

The vast majority of cells we labeled "other terminal cells" are Pharyngeal neurons (24/30 cells),
and the vast majority of cells we labeled "other pre-terminal cells" are pre-terminal hypodermis
cells (Parent_of_tail_spike_and_hyp10 with 53/90 cells and Parents_of_PHsh_hyp8_hyp9 with
25/90 cells). We show the original cluster annotations, prior to aggregation, in Supplementary Fig.
2.

We labeled cells that had neither terminal or pre-terminal cell-type label (but lineage annotation)
as "progenitors". These correspond to earlier cells in the lineage tree, for which terminal identity
has not been established yet.

2.3.1 Benchmarking moslin with LineageOT

Shared moslin/LineageOT parameters and settings. We benchmarked moslin with LineageOT
on the two cell subsets (Strategy 1 and 2), using the pre-processing described above. We use the
marginals a and b to capture the effects of cellular growth and death, and calculate them using
the lineage tree following Forrow and Schiebinger 53 . Gene-expression distances among cells from
different time-points were measured using squared Euclidean distance in the PCA space, and passed
to both methods in the mean-scaled cost matrix C.

Additional moslin parameters. We did not allow for deviations from the marginals via unbalanced-
ness in this application, as the marginals are lineage-informed and thus more accurate compared to
other applications. We set β = 0, i.e. the GW term corresponds to pure lineage information. To
construct the lineage cost matrices CX and CY , we compute distances between same-time point
cells along the lineage tree. The distance is defined as the length of a weighted shortest path found
using Dijkstra’s algorithm55. The weights represent the temporal difference between a node and its
parent. Additionally, we mean-scaled the CX and CY cost matrices.

Additional LineageOT parameters. We run LineageOT following the original authors’ repro-
ducibility repository. LineageOT runs the Sinkhorn algorithm as implemented in python optimal
transport (POT)65 under the hood; their convergence criterion checks that the constraints imposed
by the marginal distributions are satisfied within a certain threshold. We set this threshold to
10−3.
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Grid search. To identify the best hyperparameters for either method per time-point pair, we run
a grid search over the following parameter grid:

• Moslin:

– α ∈ [0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.98]

– ϵ ∈ [0.001, 0.01, 0.05, 0.1, 0.5]

• LineageOT:

– ϵ ∈ [0.001, 0.01, 0.05, 0.1, 0.5]

For each method, the performance we report corresponds to the best performance found across this
grid.

Mean error computation. To quantify method performance per time-point, we computed the
ancestor and descendant errors over the PCA space, as described above for our simulation study.
We used the mean over ancestor and descendant errors as our final accuracy metric.

Zoom in to the 330/390 min time point pair. To visualize the transitions predicted by moslin
and LineageOT for the RIM_parent population, we selected 330 min RIM_parent cells. Out of
these, we further restricted our attention to those cells assigned to the ABpxppaapa lineage; these
cells represented the vast majority (80/85) of the RIM_parent population. We considered the
corresponding rows in the moslin/LineageOT-predicted coupling matrices. To focus on the most
confident predicted links, we only retained matrix elements exceeding 10% of the maximum coupling
value, i.e. we required Pij > 0.1 maxij Pij , separately for moslin, LineageOT, and the ground-truth
coupling. We visualized the remaining matrix elements in a UMAP embedding by connecting each
RIM_parent cell to its confidently predicted descendants. To quantify method performance over the
RIM_parent population, independent of the UMAP embedding and of any thresholding scheme, we
computed the descendant error for RIM_parent cells, as described in our simulation study.

2.3.2 Combining moslin with CellRank for fate mapping analysis

We focused on the ABpxp lineage (Strategy 1), and run moslin with the optimal hyperparameters
identified in our grid search. We filtered out cells assigned a zero value in the marginal distributions
to arrive at 6,476 cells used for this analysis. In the following, we used CellRank with default
parameters if not indicated otherwise.

Transition matrix construction in CellRank. CellRank52 is a fate mapping framework that was
originally designed for RNA velocity66,67 data. In version 2, it has been extended towards other
data modalities, including time-series data. We make use of this extension here to construct a
joint transition matrix T across all time-points for downstream CellRank analysis. Starting from an
all-zero matrix T , containing cells from all time points, we execute the following steps:

1. First, we place moslin’s coupling matrices on the superdiagonal of T for transporting cells from
early to late time points.

2. Second, we compute transition matrices within each time point based on gene expression
similarity. We place these matrices on the diagonal of T .

3. Third, we compute a global transition matrix T ′ across all time points based on gene expression
similarity. We combine T with T ′ with weights 0.9 and 0.1, respectively. This step improves
matrix conditioning and yields the matrix T ′′.
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We row-normalize T ′′ to arrive at the final CellRank transition matrix, which we interpret as a
Markov chain. We simulated 200 random walks, each containing 500 steps, to visualize the predicted
cell dynamics, starting from randomly selected 170 min cells.

Identifying terminal states and computing aggregated fate probabilities. We used CellRank’s
GPCCA estimator68,69 to compute 7 terminal states. We represented each terminal state by the 30
cells most confidently assigned to it. We aggregated individual terminal states to represent Ciliated
neurons, Non-Ciliated neurons, and Glia and excretory cells, by combining the 30 cells identified per
state. We computed absorption probabilities on the Markov chain towards these combined cell sets
per terminal state group, and interpreted these as fate probabilities.

We used two-sided unequal variance Welch t-tests to asses whether fate probabilities were higher
among pre-terminal cells for each terminal state group:

• for Ciliated neurons, we tested 647 pre-terminal ciliated neurons against 4,179 other pre-
terminal and progenitor cells. We found t = 40.7, P = 6.4 · 10−182.

• for Non-ciliated neurons, we tested 890 pre-terminal non-ciliated neurons against 3,882 other
pre-terminal and progenitor cells. We found t = 29.3, P = 3.0 · 10−160.

• for Glia and excretory cells, we tested 361 pre-terminal Glia and excretory cells against 4,227
other pre-terminal and progenitor cells. We found t = 82.2, P = 2.1 · 10−255.

Predicting driver genes. Using CellRank, we correlated each gene’s expression with the computed
fate probabilities across all cells and subsetted to known C. elegans transcription factors70 (TFs).
We focused on the top 20 most strongly correlated TFs per terminal cell group and treated these as
predicted driver TFs.

Computing a Palantir pseudotime. Using Palantir71, we computed a pseudotime from a randomly
selected cell from the earliest embryo stage in our data. We used 30-nearest neighbors and sampled
1200 waypoint cells.

Visualizing expression trends in a heatmap. To visualize expression trends towards the non-
ciliated neuron terminal state group, we selected the top 50 genes most strongly correlated with
the corresponding fate probabilities (not subsetting to TFs). We imputed gene expression using
MAGIC72 and fitted Generalized Additive Models (GAMs) to each gene’s imputed expression as
a function of the Palantir pseudotime, supplying non-ciliated neuron fate probabilities as cell-level
weights to the loss function. Specifically, we used a spline basis and fitted GAMs with the mgcv
package73, through the CellRank interface.

2.4 Zebrafish heart regeneration (LINNAEUS)

The zebrafish heart regeneration dataset74 consists of hearts from 25 organisms; four uninjured
hearts (ctrl), nine at three days after injury (3dpi), and seven at seven days after injury (7dpi). We
use moslin to calculate couplings P ab

ik , with a and b denoting datasets at consecutive timepoints. For
ease of reading, we will suppress indices a and b in the following unless necessary.

2.4.1 Mapping datasets

We embed the transcriptomic readout of all single cells with lineage information into a joint latent
space using scVI45, retaining the original cluster annotations. We calculate tree distances as shortest
path distances along the original reconstructed trees. We use the moslin unbalanced FGW setting
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to calculate couplings between cells at consecutive timepoints. The standard parameters used are:
α = 0.5, ϵ = 1e − 2, τa = 0.9, τb = 1, and β = 0.2. To understand the influence of the hyper-
parameters on the performance we re-compute the mappings, changing a single parameter at a time
within the following grids: α ∈ {0, 4, 0.6}, ϵ =∈ {5e − 3, 1e − 2, 1e − 1}, τa ∈ {0, 85, 0.95}, τb = 1,
and β ∈ {0, 1, 0.3}.

In our calculations, we provide growth rates as initial marginals. To calculate growth rates, we use
cell cycle marker genes typically used in single cell data75 and the GSEA Hallmark apoptosis geneset
(https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_APOPTOSIS.html). These
are converted to their zebrafish orthologues using orthologues from Alliance, as previously de-
scribed74. Next, we use these two gene sets to calculate growth rates76. For cells at 3dpi, that
are in the regeneration process, we use the growth rates as calculated. However, cells at control are
not in a regenerating heart and the calculated growth rates may not correlate with the actual injury
response. Instead, we use cell type average growth rates as an approximation of the tendency of cell
types to proliferate.

2.4.2 Test for persistence of cell states

We expect that cells of the same, non-transient, type are persistent over time; cells of type A at
time t2 should, for the most part, stem from cells of type A at time t1. This means moslin-computed
couplings between those cells should be higher than those between cells of type B (with B ̸= A) at
time t1 and cells of type A at time t2. To test this, we first select cell types at t1 and t2 with more
than 10 cells that exist at both time points. We then define the distribution of couplings between
cells of type B at t1 and cells of type A at t2 as

γ(B,A) := {Pik : i type B, k type A} (15)

and perform a Welch’s t-test to calculate the significance level of the hypothesis

µ(γ(B,A)) > µ(γ(B,A)) (16)

where B is the complement of B, i.e. all cells that are not type B (Fig. 5b), and µ(γ) is the
mean of the population γ. Note that due to our requirement that every cell type at every time
point contain at least 10 cells, all distributions here will have 100 or more datapoints, ample to
assume the sample means are close to normal by the central limit theorem and therefore satisfy the
normality assumption underlying a Welch’s t-test. The expectation of persistent non-transient cell
types means that a significant test result for ⟨γ(A,A)⟩ >

〈
γ(A,A)

〉
is a true positive, and a significant

test result for ⟨γ(B,A)⟩ >
〈
γ(B,A)

〉
with B ̸= A is a false positive. With this formulation, we can

create receiver operating characteristic (ROC) curves by iterating over the p-values from the t-tests
and calculate the area under the ROC curve (AUC) value for a single combination of t1 and t2
datasets.

To create ROC curves for all control-3dpi and 3dpi-7dpi couplings, we perform this test between all t1
cell types and all t2 cell types within all combinations of datasets. We calculate AUCs to be 0.992 for
control-3dpi and 0.984 for 3dpi-7dpi at hyper-parameter values α = 0.5, β = 0.2, ϵ = 0.01, τa = 0.9
(Fig. 5c and Subsection 1.3). To understand the influence of individual dataset couplings, we use
the same procedure to calculate AUCs for all possible subsets of dataset combinations and plot the
histogram of these AUCs (Fig. 5c, inset). Finally, to understand the influence of hyper-parameters
α, β, ϵ, and τa, we used the same procedure to calculate AUCs for couplings with different hyper-
parameter values (Supp. Fig. 1). We observe no noticeable differences in AUCs.

Since the above described test follows a one-versus-one strategy, its AUC values may be inflated by
a high amount of true negatives. We therefore implemented a variation of the cell type persistency
test, following a one-versus-rest strategy. Here, we only test whether

⟨γ(A,A)⟩ >
〈
γ(A,A)

〉
. (17)
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We calculate ROC curves as above and find areas under the curve of 0.9999 and 1 (up to eight
decimals). We conclude that both in one-versus-one and one-versus-rest strategies, the cell type
persistency test shows a very high performance of moslin.

2.4.3 Calculating cellular flows

Given a coupling Pik between a t1 dataset a and a t2 dataset b, cell type transitions from type A to
type B can be quantified as

P ab
AB =

∑
i∈A,k∈B

P ab
ik , (18)

which satisfies
∑

AB PAB = 1 since
∑

ik Pik = 1. We construct weighted averages of these cell
type transitions over all dataset combinations, weighing by the product of #a and #b, with #a the
number of cells in a:

P̃AB :=
∑
ab

(
P ab
AB

#a ∗#b∑
a#a ∗

∑
b#b

)
. (19)

This definition satisfies
∑

AB P̃AB = 1.

We similarly obtain cell type frequencies at every timepoint by a weighted average of cell type
frequencies fa

A in each dataset a with weights #a:

f̃A :=
∑
a

#a∑
a#a

fa
A. (20)

Again,
∑

A f̃A = 1 since
∑

A fa
A = 1 for each a.

To calculate the proportion sAB of cells of type A becoming cells of type B, we divide P̃AB by the
total mass outgoing from A:

sAB :=
P̃AB∑
C P̃AC

, (21)

while the proportion tAB of cells type B being generated by cells of type A is similarly calculated
as

tAB =
P̃AB∑
C P̃CB

. (22)

Finally, we subsampled the datasets used to calculate the proportions sAB, and then used the range
of obtained values to determine confidence intervals. To reduce the amount of data roughly by half,
we randomly selected three out of four control datasets, six out of nine 3dpi datasets and five out
of seven 7dpi datasets, meaning 18 instead of 36 couplings between control and 3dpi datasets, and
30 instead of 63 couplings between 3dpi and 7dpi datasets. This method of random selection allows
for a total of 7056 combinations: (

4

3

)
∗
(
9

6

)
∗
(
7

5

)
= 7056. (23)

We explicitly calculated sAB for all 7056 combinations to determine confidence intervals.
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