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16  Abstract
17 Background: Detection of viruses by host pattern recognition receptors induces the expression
18  of type | interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication.
19 Retroviruses such as HIV-1 are subject to sensing by both RNA and DNA sensors, and whether
20  there are any particular features of the viral genome or reverse transcripts that facilitate or
21  enhance this sensing is currently unknown.
22 Results: Whilst investigating the determinants of innate detection of HIV-1 we noticed that
23 infection of THP-1 cells or primary macrophages with a virus expressing Gag fused to a reporter
24  gene (luciferase or GFP) induced a robust IFN and ISG response that was not observed with
25  an equivalent virus with similar genome length and composition, but expressing wild-type Gag.
26  Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and
27 DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation
28  of the Gag-fusion viral particles revealed maturation defects, as evidenced by incomplete Gag
29  cleavage and a diminished capacity to saturate restriction factor TRIM5a, likely due to aberrant
30 particle formation. We propose that expression of the Gag fusion protein disturbs the correct
31 cleavage and maturation of wild-type Gag, yielding viral particles that are unable to effectively
32 shield viral DNA from detection by innate sensors including cGAS.
33 Conclusions: These data highlight the crucial role of capsid in innate evasion and support
34 growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA-
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35  and cGAS-dependent innate immune response. Together these data demonstrate a protective
36  role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from
37  enhanced innate and adaptive immunity in vivo.

38

39 Background

40  Viral infection can be sensed by host pattern recognition receptors (PRRSs) that detect viral
41 nucleic acids and/or proteins. PRR engagement activates transcription factors belonging to the
42 nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and interferon (IFN)
43 regulatory factor (IRF) families, to induce expression of type | IFNs and inflammatory cytokines
44 and chemokines[1]. IFNs activate signalling cascades dependent on Janus kinase (JAK) and
45 signal transducer and activator of transcription (STAT) and the expression of IFN-stimulated
46  genes (ISGs), including viral restriction factors[2]. A series of studies have demonstrated
47  sensing of HIV-1 by RNA and DNA sensors. For example, the RNA genome has been reported
48 to be sensed by DDX3[3] and MDA5[4] and viral DNA reverse transcripts by cyclic GMP-AMP
49 synthase (CGAS)[5-7], IFI16[8, 9], PQBP1[10, 11] and NONOJ[12]. Further, DDX41 may sense
50 RNA/DNA hybrids formed during reverse transcription[13]. Importantly, the central HIV DNA
51 sensor appears to be cGAS, as it is required for HIV detection by other DNA sensors. cGAS is
52 DNA sequence independent and when activated catalyses synthesis of cyclic GMP-AMP (2',3'-
53  cGAMP)[14-16] which induces STING phosphorylation and translocation to perinuclear regions
54 [17]. STING recruitment of TBK1 and IRF3 results in IRF3 phosphorylation by TBK1 and IRF3
55 nuclear translocation[18, 19]. Activated STING also activates IKK and the NF-kB family of
56 transcription factors[20], which with IRF3, activate expression of type | IFN and subsequently
57  ISGs. ISGs include an array of anti-HIV restriction factors including APOBEC3G, SAMHD1,
58 tetherin, TRIM5a, MxB and the IFITMs[21]. Despite all these examples of HIV-1 sensing, other
59  studies demonstrate HIV replication in permissive primary cells without IFN induction. We
60 hypothesise that sensing is context and particularly viral dose dependent. Thus whilst high dose
61 infection can be sensed, particularly in cells that do not support HIV replication, e.g dendritic
62 cells[6, 22], in permissive macrophages and T-cells, HIV-1 replication is a poor stimulator of

63 IFN[23, 24] and the virus can replicate without triggering innate immune sensing through hiding
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64 nucleic acid PAMPs inside intact capsids[7, 25, 26], which uncoat and release genome inside
65  the nucleus immediately prior to integration[27-30].

66

67 Growing evidence supports a crucial role for cellular cofactors in HIV-1 avoiding host immunity.
68 Recruitment of cleavage and polyadenylation specificity factor 6 (CPSF6) and cyclophilin A
69 (cypA) promote evasion of sensing, with cypA being particularly important for escaping HIV-1
70  capsid sensing by TRIM5a[7, 31]. Conversely, other cellular proteins that target the HIV-1
71  capsid, including NONO[12] and PQBP1[11], have been described to promote sensing by
72 CGAS. In order to better understand the role of the HIV-1 capsid in sensing, and establish
73 whether it promotes evasion, or is responsible for HIV-1 detection in infected cells, we tested
74 the effect of making HIV-1 by co-expressing a truncated capsid with wild type Gag-pol. We
75  found that truncated Gag fused to luciferase or GFP had a dominant negative effect on wild
76  type Gag cleavage and caused a potent IFN response in THP-1 cells and macrophages that
77 was not observed with wild-type (WT) HIV-1. Truncated Gag bearing viruses showed defective
78 cleavage of wild type Gag, and failed to saturate TRIM5a or shield viral DNA from cGAS
79 detection. These findings further evidence a role for the HIV-1 capsid in protecting HIV-1
80  genome from being sensed and support a model in which the principle function of capsid is to
81 protect viral genomes from sensors to promote replication in sensing-competent target cells.
82

83  Results

84 HIV-1 Gag-fusion viruses trigger arobust type | IFN-dependent innate immune response
85 in THP-1cells

86  Whilst seeking to design an HIV-1 reporter by fusing luciferase (LUC) in frame with capsid (CA),
87  we found that viruses made by co-transfecting the Gag-LUC reporter (Suppl Fig 1, Fig 1A) with
88  wild type Gag-pol, and a VSV-G envelope, triggered sensing in THP-1 cells. The Gag-LUC
89 reporter was based on HIV-1 LAI strain[32] and also encodes GFP in the place of Nef. It
90 activated a dose-dependent innate immune response whilst, the WT VSV-G pseudotyped AEnv
91 LAI-GFP did not, as previously observed [26] (LAI, Suppl Fig 1, Fig 1A). Innate induction was
92 assessed by measuring luciferase activity in the supernatants of infected monocytic THP-1 cells

93 that had been modified to express Gaussia luciferase under the control of the IFIT-1 (also
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9 known as ISG56) promoter, which is both IRF-3- and IFN-sensitive[33]. Virus dose in these
95  experiments was normalised according to RT activity, as measured by SG-PERT (see
96 Methods). The number of infectious units per unit of RT (Suppl Fig 2A), or per genome copy
97 (Suppl Fig 2B), was equivalent between WT and Gag-fusion viruses. Innate induction was not
98 unigue to the Gag-luciferase fusion as a second HIV-1 LAl virus carrying a similar Gag-GFP
99 fusion also resulted in dose-dependent ISG induction (Gag-GFP, Suppl Fig 1, Fig 1A), ruling
100  out an immunostimulatory feature in the luciferase sequence. Fusion of Gag to either GFP or
101  Iuciferase makes it non-functional, therefore co-transfection with a WT Gag-pol packaging
102 construct (e.g. p8.91, Suppl. Fig 1) is required to produce infectious particles. To rule out
103 differences in 8.91 and LAl Gag sequences/proteins that could potentially explain the observed
104 differences in innate immune activation, we also co-transfected WT LAI with 8.91 Gag-pol by
105 co-transfecting the AEnv LAl genome and p8.91 packaging construct (8.91 LAI, Suppl Fig 1).
106  This virus behaved the same as WT AEnv LAl alone and failed to induce ISG reporter activity
107 at the doses tested, thus ruling out differences in Gag as an explanation for ISG induction in
108  the Gag fusion viruses (Fig 1A).
109
110  To confirm the findings above from monocytic THP-1 cells, we also infected PMA differentiated
111  THP-1 cells stably depleted for restriction factor SAMHD1. SAMHD1 was depleted to permit
112 HIV transduction [26, 34]. The Gag-LUC virus, but not WT LAI, again induced high levels of
113  endogenous ISGs IFIT-2 (Fig 1B), MxA (Fig 1C) and CXCL-10 (Fig 1D) measured by gPCR,
114  as well as CXCL-10 protein (Fig 1E), measured by ELISA. Levels of viral reverse transcripts
115  were equivalent in WT- and Gag fusion virus-infected cells, as assessed by gPCR (Fig 1F).
116
117  To assess whether Gag-fusion viruses induced type | IFN production we infected THP-1 Dual
118  reporter cells (Invivogen) that also express luciferase under the control of an IRF- and I1SG-
119 sensitive promoter, in the presence of JAK1/2 inhibitor ruxolitinib[35]. Signal transduction
120  downstream of the type | IFN receptor is dependent on JAK and thus ruxolitinib efficiently blocks
121 IFNB-induced ISG induction (Fig 1G-l). Expression of luciferase (Fig 1G), as well as

122  endogenous IFIT-2 (Fig 1H) and CXCL-10 (Fig 11) was significantly reduced following ruxolitinib
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123  treatment of Gag-LUC-infected cells indicating that infection with this Gag-LUC fusion virus
124 induces type | IFN production, to induce endogenous ISG and IFN reporter expression.

125

126  HIV-1 Gag-fusion viruses activate a restrictive type | IFN response in primary
127  macrophages

128  To determine whether HIV-1 Gag-fusion viruses also induced a type | IFN response in primary
129 human cells we infected primary monocyte-derived macrophages (MDM) with the Gag-LUC
130  virus and the corresponding pseudotyped WT LAl strain and measured ISG induction by gPCR
131  and ELISA. As in THP-1 cells, infection of MDM with Gag-LUC induced a robust type | IFN
132  response leading to significantly higher expression of CXCL-10 (Fig 2A), IFIT-2 (Fig 2B) and
133  MxA (Fig 2C), as well as CXCL-10 protein (Fig 2D) compared to VSV-G pseudotyped LAI
134 infection, all of which was reduced by ruxolitinib treatment. Gag-LUC virus infection levels were
135 lower in MDM than WT LAl at the same input dose, assessed by measuring GFP-positive cells
136 by flow cytometry, and this was partially rescued by blocking IFN signalling with ruxolitinib
137 indicating an IFN-dependent suppression of infection (Fig 2E). Taken together, Gag-fusion
138 viruses, unlike their WT counterparts, induce a robust type | IFN response, which is restrictive
139 even in a single round infection in primary macrophages.

140

141  IFN induction by HIV-1 Gag-fusion viruses is dependent on viral DNA synthesis

142 To establish whether the source of immune stimulation during Gag-fusion virus infection was
143  the viral genome, reverse transcripts, or a later stage of infection we generated Gag-LUC
144  viruses that were defective for reverse transcription (Gag-LUC RT D185E) or integration (Gag-
145  LUC INT D116N) by co-transfecting p8.91 Gag-pol carrying the RT D185E and INT D116N
146 mutations. Luciferase IFN reporter in monocytic THP-1 IFIT-1 reporter cells (Fig 3A) and
147  endogenous ISG induction in PMA-differentiated THP-1 shSAMHD1 cells (Fig 3B-D) was
148  entirely RT-dependent (RT mutant did not trigger sensing) and did not require integration
149 (litegrase mutant triggered normally). Concordantly, reporter activity (Fig 3E) and ISG
150 expression (Fig 3F, G) was also significantly reduced in monocytic THP-1 Dual reporter cells

151  following treatment with RT inhibitor nevirapine, but not with integrase inhibitor raltegravir.
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152  As expected, no GFP positive cells were observed following Gag-LUC RT D185E infection
153 (Suppl Fig 3A, B) and levels of infectivity were also significantly reduced following nevirapine
154  treatment (Suppl Fig 3C). Whilst GFP positivity was minimal in integrase defective Gag-LUC
155 infection in differentiated THP-1 cells (Suppl Fig 3B), GFP positive cells were still detected with
156  Gag-LUC INT D116N infection (Suppl Fig 3A) or following raltegravir treatment (Suppl Fig 3C)
157 in monocytic THP-1 cells. This is in agreement with our previous findings[26] and likely due to
158 GFP expression from unintegrated 2’-LTR circles that have been observed in other cell
159  types[36, 37]. Together, these data rule out the viral RNA genome as the immunostimulatory
160 feature of the Gag-fusion viruses and instead point to innate immune detection of viral DNA.
161

162 ISG induction by HIV-1 Gag-fusion virus is dependent on cGAS and STING

163  To further investigate the source for immune stimulation in the Gag-fusion viruses we sought
164  to determine which host innate sensors were required for innate immune detection. As
165  expected, THP-1 IFIT-1 reporter cells lacking STING failed to respond to herring testis DNA
166  (HT-DNA) stimulation, but did respond to transfected RNA mimic poly I:C and TLR4 agonist
167  lipopolysaccharide (LPS). MAVS -/- cells responded to HT-DNA and LPS, but not transfected
168 poly I:C (Suppl. Fig 4A). Luciferase reporter activity (Fig 4A) and endogenous ISG expression
169  (Fig 4B, C) of Gag-LUC infection was entirely dependent on STING. Levels of infection were
170  equivalent between WT and STING- or MAVS-null cells (Suppl Fig 4B). Furthermore, THP-1
171  Dual cells lacking cGAS failed to respond to HT-DNA (Suppl Fig 4C) and Gag-LUC infection
172 (Fig 4D-F), consistent with a cGAS/STING-dependent DNA sensing response. Again, levels of
173 infection were equivalent in WT and cGAS-/- cells (Suppl Fig 4D). Finally luciferase reporter
174  activity in Gag-LUC infected THP-1 Dual cells was significantly reduced in the presence of
175  STING inhibitor H151[38] and cGAS inhibitor RU.521[39] (Fig 4G, Suppl! Fig 4E), confirming
176  cGAS/STING-dependent sensing of viral reverse transcripts during Gag-fusion virus infection.
177

178 Gag-fusion viruses display defects in maturation and are less able to saturate TRIM5a
179 Given that the genome sequences of the LAl and Gag-LUC/Gag-GFP viruses only differ by the
180 inclusion of the chimeric Gag-LUC/GFP reporter gene, and encode for all the same accessory

181 proteins, we hypothesised that rather than specific features of the genome enhancing sensing,
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182  the Gag-fusion viruses may instead fail to efficiently shield RT products from cGAS through a
183  dominant negative effect of the Gag fusion. Indeed, immunoblots of extracted viral particles,
184  detecting HIV-1 capsid protein, showed that both Gag-fusion viruses had evidence of
185 maturation defects, with increased levels of MA-NC and other partial Gag cleavage products
186  below MA-CA (Fig 5A).

187

188  To assess HIV-1 core integrity in the Gag-fusion viruses we measured their ability to saturate
189  rhesus monkey TRIM5a in an abrogation-of-restriction assay. Rhesus monkey TRIM5a binds
190 and forms hexameric cage-like structures around intact HIV capsid lattices[40, 41], leading to
191 proteasome-dependent viral disassembly and subsequent innate immune activation[42-44].
192 Restriction by TRIM5a can be overcome by co-infection with high doses of a saturating virus,
193  dependent on the stability of the incoming viral capsid[45, 46]. The Gag-LUC fusion protein was
194  cloned into the p8.91 Gag-pol packaging plasmid and HEK 293T cells were transfected with
195  varying proportions of WT or Gag-LUC p8.91, thus producing VSV-G psuedotyped viruses with
196 increasing amounts of Gag-fusion protein. In all cases the same genome expressing luciferase
197  (CSLW) was packaged. Rhesus FRhK cells were then co-infected with a fixed dose of HIV-1
198 LAI bearing GFP and increasing doses of the WT/Gag-LUC chimeric viruses. Flow cytometry
199  was used to assess rescue of HIV-1 LAI infectivity from TRIM5a restriction measuring GFP
200  positive cells. As expected, the virus with 100% WT Gag (0% Gag-LUC) efficiently saturated
201  TRIM5a restriction and rescued HIV-1 LAl GFP expression (Fig 5B, Suppl. Fig 5). Increasing
202  the proportion of luciferase-fused Gag in the saturating virus, reduced rescue of GFP
203  expression, which reached statistical significance at the highest proportion of Gag-LUC (90%
204  Gag-LUC, Fig 5B).

205

206  We conclude that expression of this Gag-LUC fusion protein during viral production interferes
207  with the maturation process of co-transfected WT Gag, yielding particles with reduced stability
208  and a diminished ability to saturate TRIM5a, which fail to shield their RT products from DNA
209 sensor cGAS. This finding adds to growing literature that intact capsid plays a crucial role in
210 HIV-1 evasion of cGAS and that antiviral activity of capsid-targeting antivirals may benefit from

211  triggering innate immune detection and subsequent antiviral gene expression in vivo.
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212

213  Discussion

214 Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro[6, 7, 23,
215 26] unless infection is high dose or target cells are not usually permissive to HIV replication e.g
216  dendritic cells[6, 22]. This suggests that, like many other viruses, HIV-1 has evolved strategies
217 to evade the host response. In addition to encoding accessory proteins that block innate
218  signalling cascades and activation of transcription factors such as NF-kB and IRF3[47-52],
219 growing evidence points to a critical role for capsid in innate immune evasion. Cellular cofactors
220 CPSF6 and cyclophilin A are recruited by capsid and are critical for evasion of sensing, the
221 latter being important for avoiding TRIM5a restriction[7, 31]. Encapsidated DNA synthesis is
222  expected to protect viral RT products from DNA sensors such as cGAS and from degradation
223 by cellular nucleases such as TREX-1[7, 45, 53]. Supporting this, recent studies have linked
224  capsid stability to activation of cGAS sensing [54], including our own work demonstrating that
225 disrupting capsid maturation using protease inhibitors, or by mutating cleavage sites in Gag,
226 yields aberrant viral particles that fail to protect RT products from cGAS[26]. Furthermore,
227  differences in the ability of HIV-1, and HIV-2 and other non-pandemic lentiviruses to evade
228  innate immunity has been mapped to the viral capsid, with the ability to evade cGAS activation
229  and TRIM5a correlating with pandemicity [6, 25]. In this study we report the unexpected finding
230  that unlike WT HIV-1, HIV-1 viruses carrying a truncated Gag fusion protein trigger a robust
231 type | IFN response in macrophages (Fig 1, 2), dependent on reverse transcription (Fig 3) and
232  host DNA sensing machinery cGAS and STING (Fig 4). Importantly, virus made with Gag
233  fusions showed evidence of maturation defects and had a reduced capacity to saturate
234 restriction factor TRIM5a in an abrogation-of-restriction assay, indicative of defective capsids
235 (Fig 5). This work adds to a growing body of evidence that the HIV-1 capsid plays a crucial role
236  in shielding RT products from cGAS.

237

238 Exactly how the expression of Gag fused to a reporter gene such as luciferase or GFP inhibits
239 Gag cleavage and functional capsid formation is not known. Given maturation occurs post-
240 budding it is plausible that the Gag fusion proteins are incorporated into nascent virions and

241 interfere with maturation. The defective viruses may have altered stability, may prematurely
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242  uncoat and subsequently activate a potent host innate response that is not observed for similar
243  doses of WT virus. Furthermore, interactions with host proteins may also differ, and whether
244  the Gag-LUC and Gag-GFP viruses used in this study still interact appropriately with cofactors
245 including as CPSF6 and cypA, or incorporate the capsid stabilising cellular metabolite inositol
246  hexakisphosphate (IP6) that is dependent on the immature lattice[55], remains to be
247  determined.

248

249  Thus far cGAS has been described to sense DNA in a sequence-independent manner[15, 56],
250 but whether there are particular features of viruses or their genomes that enhance recognition
251 is unclear. Additional proteins may be involved in fine-tuning the cGAS response or breaking
252 capsid open to expose viral DNA within. For example, PQBP1 has recently been described to
253  directly bind and decorate the HIV-1 capsid, ‘licensing’ it for subsequent cGAS recruitment and
254  sensing of viral DNA[11].

255

256 As we have previously observed[26], activation of an IFN response by maturation defective
257 viruses during single round infection of THP-1 cells was not sufficient to block infection, with
258  WT and Gag-LUC/GFP viruses being equally infectious in THP-1 and U87 cells (Supp! Fig 2).
259 Infectivity of the Gag-LUC virus was however reduced compared to WT in primary
260  macrophages, and this was partially rescued by blocking IFN signalling (Suppl Fig 2E). Primary
261 cells may express higher levels of IFN, be more sensitive to IFN, or may express a wider range
262 of restrictive 1SGs than cell lines such as THP-1 that could explain these differences.
263 Unprotected RT products during Gag-LUC infection may also be subject to degradation by
264  TREX1, which could also account for some of the remaining restriction in MDM.

265

266 In summary we have discovered an unanticipated effect on the maturation of WT Gag by
267 coexpression of a Gag fusion protein, yielding aberrant viral particles that fail to shield their
268 DNA from cGAS and induce a restrictive type | IFN response in macrophages. This finding
269 supports the crucial role of capsid in innate immune evasion and highlights this viral protein as
270  animportant target for novel therapeutics. Indeed, it will be interesting to test whether recently

271 described capsid-targeting inhibitors, such as those from Gilead [57], also induce sensing of
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272  HIV-1 RT products as we recently demonstrated for PF-74[26], which accelerates capsid
273  opening[58]. Likewise, maturation inhibitors such as bevirimat[59] may also lead to enhanced
274  sensing in a similar manner to that observed with protease inhibitors[26]. It remains to be seen
275  whether capsid or protease inhibitors leverage innate immune responses to improve their
276  efficacy in vivo.

277

278  Materials and Methods

279  Cells and reagents

280  HEK293T, FRhK and U87 cells were maintained in DMEM (Gibco) supplemented with 10 %
281  foetal bovine serum (FBS, Labtech) and 100 U/ml penicillin plus 100 pg/ml streptomycin
282  (Pen/Strep; Gibco). THP-1 cells were maintained in RPMI (Gibco) supplemented with 10 %
283  FBS and Pen/Strep. THP-1-IFIT-1 cells that had been modified to express Gaussia luciferase
284 under the control of the IFIT-1 promoter[33] and versions lacking MAVS or STING[34] were
285  described previously. THP-1 cells stably depleted for SAMHD1 were also previously
286  described[26]. THP-1 Dual Control and cGAS-/- cells were obtained from Invivogen. Nevirapine
287  and raltegravir were obtained from AIDS reagents. STING inhibitor H151 and cGAS inhibitor
288 RU.521 were obtained from Invivogen. JAK inhibitor ruxolitinib was obtained from CELL
289 guidance systems. Lipopolysaccharide and IFN were obtained from Peprotech. Herring-testis
290 DNA was obtained from Sigma. cGAMP and poly I:C were obtained from Invivogen. For
291 stimulation of cells by transfection, transfection mixes were prepared using lipofectamine 2000
292  according to the manufacturer’s instructions (Invitrogen).

293

294  Isolation of primary monocyte-derived macrophages

295 Primary monocyte-derived macrophages (MDM) were prepared from fresh blood from healthy
296  volunteers as described previously[26]. The study was approved by the joint University College
297 London/University College London Hospitals NHS Trust Human Research Ethics Committee
298  and written informed consent was obtained from all participants. Replicate experiments were
299  performed with cells derived from different donors.

300

301  Generation of Gag fusion, RT D185E and INT D116N viruses

10
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302  pLAIAEnvGFP.Gag-LUC/GFP and p8.91 Gag-LUC were generated by cloning the firefly
303 luciferase gene/GFP into the unique Spel site of CA. pLAIAEnvGFP.Gag-LUC RT D185E and
304 INT D116N were generated by site-directed mutagenesis using Pfu Turbo DNA polymerase
305  (Agilent) and the following primers:

306  LAI_RT D185E fwd: 5 ATAGTTATCTATCAATACATGGAAGATTTGTATG 3

307  LAI_RT D185E rev: 5 AAGTCAGATCCTACATACAAATCTTCCATGTATTG 3

308 LAI_ INT D116N fwd: 5 GGCCAGTAAAAACAATACATACAAACAATGGCAGC 3’

309 LAI_ INT D116N rev: 5 ACTGGTGAAATTGCTGCCATTGTTTGTATGTATTG 3’

310 In all cases mutated sequences were confirmed by sequencing, excised by restriction digestion
311  and cloned back into the original plasmid.

312

313  Viral production in HEK293T cells

314 Lentiviral particles were produced by transfection of HEK293T cells in T150 flasks using
315 Fugene 6 transfection reagent (Promega) according to the manufacturer's instructions. For LAl
316  WT each flask was transfected with 2.5 pg of VSV-G glycoprotein expressing plasmid pMDG
317  (Genscript) and 6.25 ug pLAIAEnvVGFP (Suppl. Fig. 1). For viruses requiring a packaging
318 plasmid each flask was transfected with 2.5 pg of pMDG (Genscript), 2.5 ug of p8.91 (encoding
319 Gag-Pol, Tat and Rev)[60], and 3.75 ug of genome plasmid (pLAIAEnvGFP,
320  pLAIAEnVGFP.Gag-LUC, pLAIAEnvGFP.Gag-GFP, Suppl. Fig. 1). WT/Gag-LUC chimeric
321  viruses were generated by transfecting cells with 2.5 ug of pMDG, 3.75 ug of a firefly luciferase-
322 expressing genome plasmid (CSLW) and varying proportions of p8.91 and p8.91Gag-LUC
323 packaging plasmids, up to 2.5 ug per flask. Virus supernatants were harvested at 48 and 72 h
324 post-transfection, pooled, DNase treated (2 h at 37 °C, DNasel, Sigma) and subjected to
325  ultracentrifugation over a 20 % sucrose cushion. Viral particles were resuspended in RPMI
326  supplemented with 10 % FBS. Viral titres were calculated by infecting PMA-treated THP-1 cells
327 (2x10°5 cells/ml) or U87 cells (10° cells/ml) with dilutions of virus in the presence of polybrene
328 (8 pg/ml, Sigma) for 48 h and enumerating GFP-positive cells by flow cytometry using the FACS
329  Calibur (BD). Analysis was performed using FlowJo software.

330

331  SG-PERT
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332 Reverse transcriptase activity of virus preparations was quantified by qPCR using a SYBR
333  Green-based product-enhanced RT (SG-PERT) assay as described [61].

334

335  Genome copy/RT products measurements

336  Viral genome copies and RT products were measured by gPCR as previously described using
337  primers specific for GFP[26]:

338 GFP fwd: 5- CAACAGCCACAACGTCTATATCAT -3’

339  GFPrev: 5- ATGTTGTGGCGGATCTTGAAG -3’

340 GFP probe: 5’- FAM-CCGACAAGCAGAAGAACGGCATCAA-TAMRA -3’

341

342  Infection assays

343  THP-1 cells were infected at a density of 2x105 cells/ml in 24 well plates for luciferase reporter
344 assays or 12 well plates for gPCR and ELISA. For differentiation, THP-1 cells were treated with
345 50 ng/ml phorbol 12-myristate 13-acetate (PMA, Peprotech) for 48 h. Infections in THP-1 cells
346  were performed in the presence of polybrene (8 pg/ml, Sigma). Input dose of virus was
347  normalised either by RT activity (measured by SG-PERT) or genome copies (measured by
348  gPCR) as indicated. Infection levels were assessed at 48 h post-infection through enumeration
349  of GFP positive cells by flow cytometry.

350

351  Luciferase reporter assays

352 Gaussia/Lucia luciferase activity in supernatants was measured by transferring 10 pl to a white
353 96 well assay plate, injecting 50 pl per well of coelenterazine substrate (Nanolight
354  Technologies, 2 pg/ml) and analysing luminescence on a FLUOstar OPTIMA luminometer
355 (Promega). Fold inductions were calculated by normalising to a mock-treated control.

356

357 I1SG gPCR

358 ISG induction in infected THP-1 cells and primary MDM was assessed by qPCR as previously
359 described[26]. Expression of each gene was normalised to an internal control (GAPDH) and
360 these values were then normalised to mock-treated control cells to yield a fold induction. The

361  following primers were used:
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362  GAPDH Fwd: 5-GGGAAACTGTGGCGTGAT-3,

363  GAPDH Rev: 5-GGAGGAGTGGGTGTCGCTGTT-3

364 CXCL-10 Fwd: 5-TGGCATTCAAGGAGTACCTC-3

365 CXCL-10 Rev: 5-TTGTAGCAATGATCTCAACACG-3’

366 IFIT-2 Fwd: 5-CAGCTGAGAATTGCACTGCAA-3’

367 IFIT-2 Rev: 5-CGTAGGCTGCTCTCCAAGGA-3’

368  MxA Fwd: 5-ATCCTGGGATTTTGGGGCTT-3'

369 MxARev: 5-CCGCTTGTCGCTGGTGTCG-3

370 RSAD2 Fwd: 5-CTGTCCGCTGGAAAGTG-3’

371 RSAD2 Rev: 5-GCTTCTTCTACACCAACATCC-3

372

373  ELISA

374 Cell supernatants were harvested for ELISA at 24 h post-infection/stimulation and stored at -
375 80 °C. CXCL-10 protein was measured using Duoset ELISA reagents (R&D Biosystems)
376  according to the manufacturer’s instructions.

377

378  Immunoblotting

379 For immunoblotting of viral particles, 2x10'! genome copies of virus were boiled for 10 min in
380  6X Laemmli buffer (50 mM Tris-HCI (pH 6.8), 2 % (w/v) SDS, 10% (v/v) glycerol, 0.1% (w/v)
381  bromophenol blue, 100 mM B-mercaptoethanol) before separating on 4-12 % Bis-Tris
382 polyacrylamide gradient gel (Invitrogen). After PAGE, proteins were transferred to a Hybond
383 ECL membrane (Amersham biosciences) using a semi-dry transfer system (Biorad). Mouse-
384  anti-HIV-1capsid p24 was from AIDS reagents (183-H12-5C) and was detected with goat-anti-
385 mouse IRdye 800CW infrared dye secondary antibody and membranes imaged using an
386  Odyssey Infrared Imager (LI-COR Biosciences).

387

388  Abrogation-of-restriction assay

389 FRhK cells were plated in 48 well plates at 5x10* cells/ml. The following day cells were co-
390 transduced in the presence of polybrene (8 pg/ml, Sigma) with a fixed dose of HIV-1 LAl

391 expressing GFP (5x107 genome copies/ml) and increasing doses of the WT/Gag-LUC chimeric
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392  viruses carrying a luciferase-expressing genome, CSLW (0.0005 —1 U RT/ml). Rescue of GFP
393  infectivity was assessed 48 h later by flow cytometry using the FACS Calibur (BD) and
394  analysing with FlowJo software.

395

396  Statistical analyses

397 Statistical analyses were performed using an unpaired Student’s t-test (with Welch’s correction
398  where variances were unequal) or a 2-way ANOVA with multiple comparisons, as indicated. *
399  P<0.05, ** P<0.01, *** P<0.001.

400

401 List of abbreviations

402 cGAMP cyclic GMP-AMP

403 cGAS cyclic GMP-AMP synthase
404 CA capsid

405 CPSF6 cleavage and polyadenylation specificity factor 6
406  cypA cyclophilin A

407  env envelope

408 GFP green fluorescent protein

409  HIV human immunodeficiency virus
410 HT-DNA herring testis DNA

411 IFN interferon

412  1P6 inositol hexakisphosphate 6
413 IRF interferon regulatory factor
414 I1SG interferon stimulated gene

415 U infectious unit

416 JAK Janus kinase

417  LPS lipopolysaccharide

418 LTR long terminal repeat

419  Luc luciferase

420 MA matrix

421  MDM monocyte-derived macrophage
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422 NC nucleocapsid

423  NF-xB nuclear factor kappa B

424  PAMP pathogen-associated molecular pattern
425  PMA phorbol 12-myristate 13-acetate

426 PRR pattern recognition receptor

427 RT reverse transcriptase

428  SG-PERT SYBR Green-based product-enhanced RT
429 sp spacer peptide

430  STAT signal transducer and activator of transcription
431 Wt wild-type

432  VSV-G vesicular stomatitis virus G protein
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474
475 Figure 1: HIV-1 expressing a Gag-fusion protein triggers a type | IFN response in THP-1 cells

476 A: IFIT-1 reporter activity from monocytic THP-1-IFIT-1 cells transduced for 24 h with WT LAl
477  (LAI), LAI packaged with 8.91 Gag (8.91 LAI), LAI expressing gag fused to luciferase and
478 packaged with 8.91 Gag (Gag-LUC) or LAI expressing Gag fused to GFP and packaged with

479  8.91 Gag (Gag-GFP) (See Suppl. Fig 1) at 0.5, 1 or 2 U RT/ml.
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480 B-D: ISG gRT-PCR from PMA-treated THP-1 shSAMHD1 cells transduced for 24 h with LAl or
481  Gag-LUC viruses at 0.125, 0.25 and 0.5 U RT/ml.

482  E: CXCL-10 protein in supernatants from B-D (0.5 U RT/ml, ELISA).

483  F: RT products from THP-1-IFIT-1 cells transduced for 24 h with 1 U RT/ml of the indicated
484  viruses.

485 G: IRF reporter activity from monocytic THP-1 Dual cells transduced for 24 h with 1.5 U RT/ml
486 LAl or Gag-LUC viruses, or stimulated with 1 ng/ml IFNB as a control, in the presence of DMSO
487  vehicle or 2 uM ruxolitinib.

488 H, I: ISG gRT-PCR from monocytic THP-1 Dual cells transduced for 24 h with 1.5 U RT/ml LAI
489 or Gag-LUC viruses, or stimulated with 1 ng/ml IFNB as a control, in the presence of DMSO
490  vehicle or 2 uM ruxolitinib.

491 Data are mean = SD, n = 3, representative of at least 3 repeats. Statistical analyses were
492 performed using Student's t-test, with Welch's correction where appropriate, comparing each
493  virus with WT LAl at the same dose (A-E) or pairs of samples -/+ ruxolitinib (G-I). *P < 0.05, **P

494 < 0.01, ***P < 0.001.

495
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497

498 Suppl Fig 1: Schematic of wild-type and Gag-fusion viruses
499 Schematic representation of the plasmids transfected into HEK293T cells to produce WT and
500  Gag-fusion viruses. The genome plasmid of each virus is based on the HIV-1 LAI strain[32]

501  with a deletion in envelope (Aenv) and expressing GFP in the place of Nef (pLAIAEnVGFP).
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Each virus was pseudotyped with VSV-G, and for 8.91 LAI, Gag-LUC and Gag-GFP viruses,
were co-transfected with p8.91 packaging construct encoding Gag-Pol, Tat and Rev[60]. LTR:
long terminal repeat, MA: matrix, CA: capsid, SP: spacer peptide, NC: nucleocapsid, env:

envelope, Luc: firefly luciferase, GFP: green fluorescent protein.
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Suppl Fig 2: Particle infectivity of wild-type and Gag-fusion viruses

A: Virus infectivity (infectious units, 1.U.) on THP-1 cells differentiated with PMA or U87 cells
(measured by flow cytometry at 48 h post-transduction) normalised to units of RT (measured
by SG-PERT).

B: Virus infectivity (infectious units, 1.U.) on THP-1 cells differentiated with PMA or U87 cells
(measured by flow cytometry at 48 h post-transduction) normalised to genome copy number
(measured by qPCR).

Data are mean + SD, n = 3, representative of at least 2 repeats.
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Fig 2: HIV-1 Gag-fusion viruses activate a restrictive type | IFN response in primary
macrophages

A-C: ISG qRT-PCR from primary MDM transduced for 24 h with 0.5 U RT/ml LAl or Gag-LUC
viruses, or stimulated with 1 ng/ml IFNB as a control, in the presence of DMSO vehicle or 2 yM
ruxolitinib.

D: CXCL-10 protein in supernatants from A-C (ELISA).

E: Infection data from A-D measured by flow cytometry at 48 h.

Data are mean = SD, n = 3, representative of at least 3 repeats. Statistical analyses were
performed using Student's t-test, with Welch's correction where appropriate, comparing pairs

of samples -/+ ruxolitinib as indicated. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig 3: ISG induction by HIV-1 Gag-fusion virus is RT-dependent

A: IFIT-1 reporter activity from monocytic THP-1-IFIT-1 cells transduced for 24 h with Gag-LUC,
RT-defective Gag-LUC (Gag-LUC RT D185E) or integrase-defective Gag-LUC (Gag-LUC INT
D116N) at 1.25x10°, 2.5x10°and 5x10° genomes/ml.

B, C: ISG gRT-PCR from PMA-treated THP-1 shSAMHDZ1 cells transduced for 24 h with Gag-
LUC, Gag-LUC RT DI185E or Gag-LUC INT D116N at 1.25x10° 2.5x10° and 5x10°
genomes/ml.

D: CXCL-10 protein in supernatants from B, C (ELISA).
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538 E: IRF reporter activity from THP-1 Dual cells transduced for 24 h with 8.91 LAI or Gag-Luc
539 (1.5 U RT/ml) in the presence of DMSO vehicle, 5 uM neviripine or 10 uM raltegravir.

540 F, G: ISG gRT-PCR from THP-1 Dual cells transduced for 24 h with 8.91 LAl or Gag-Luc (1.5
541 U RT/mI) in the presence of DMSO vehicle, 5 M neviripine or 10 uM raltegravir.

542 Data are mean = SD, n = 3, representative of at least 3 repeats. Statistical analyses were
543 performed using Student's t-test, with Welch's correction where appropriate, comparing mutant
544  viruses with WT Gag-LUC at the same dose (A-D) or to the DMSO control as indicated (E-G).

545  *P <0.05, *P < 0.01, n.s. non-significant.
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548  Suppl. Fig 3: ISG induction by HIV-1 Gag-fusion virus is RT-dependent

549  A: Infection data from Fig 3A. THP-1-IFIT-1 cells transduced for 48 h with Gag-LUC, RT-
550  defective Gag-LUC (Gag-LUC RT D185E) or integrase-defective Gag-LUC (Gag-LUC INT
551 D116N) at 1.25x10°, 2.5x10%and 5x10° genomes/ml.

552  B: Infection data from Fig 3B-D. PMA-treated THP-1 shSAMHD1 cells transduced for 48 h with
553 Gag-LUC, Gag-LUC RT D185E or Gag-LUC INT D116N at 1.25x10°, 2.5x10° and 5x10°
554  genomes/ml.

555  C: Infection data from Fig 3E-G. THP-1 Dual cells transduced for 48 h with 8.91 LAl or Gag-
556  Luc (1.5 U RT/ml) in the presence of DMSO vehicle, 5 uM neviripine or 10 uM raltegravir.

557  Data are mean + SD, n = 3, representative of at least 3 repeats.
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558
559 Fig 4: ISG induction by HIV-1 Gag-fusion virus is dependent on cGAS and STING

560 A: IFIT-1 reporter activity from monocytic THP-1-IFIT-1 cells lacking STING or MAVS, or a
561  gRNA control (Ctrl) cell line transduced for 24 h with WT LAl or Gag-LUC (1.5 U RT/ml).

562 B, C:ISG gPCR from monocytic THP-1-IFIT-1 cells lacking STING or MAVS, or a gRNA control
563  (Ctrl) cell line transduced for 24 h with WT LAl or Gag-LUC (1.5 U RT/ml).

564 D: IRF reporter activity from monocytic THP-1 Dual cells lacking cGAS, or a gRNA control (Ctrl)
565  cell line transduced for 24 h with WT LAl or Gag-LUC (1.5 U RT/ml).

566 E, F:ISG gPCR from monocytic THP-1 Dual cells lacking cGAS, or a gRNA control (Ctrl) cell
567 line transduced for 24 h with WT LAI or Gag-LUC (1.5 U RT/ml).

568 G: IRF reporter activity from monocytic THP-1 Dual cells lacking cGAS, or a gRNA control (Ctrl)

569 cell line transduced for 24 h with WT LAl or Gag-LUC (1.5 U RT/ml), or stimulated by
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570  transfection with 0.05 pug/ml HT-DNA in the presence of DMSO vehicle, 0.5 ug/ml STING
571  inhibitor H151 or 10 ug/ml cGAS inhibitor RU.521.

572 Data are mean = SD, n = 3, representative of at least 3 repeats. Statistical analyses were
573  performed using Student's t-test, with Welch's correction where appropriate, comparing to Ctrl
574  cells (A-F), or to DMSO vehicle treated cells (G) as indicated. *P < 0.05, **P < 0.01, **P <

575  0.001, n.s. non-significant.
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578  Suppl. Fig 4: ISG induction by HIV-1 Gag-fusion virus is dependent on cGAS and STING

579  A:CXCL-101SG gPCR from monocytic THP-1-IFIT-1 cells lacking STING or MAVS, or a gRNA
580  control (Ctrl) cell line stimulated for 24 h with 0.1 pg/ml HT-DNA, 0.5 ug/ml poly I:C or 50 ng/ml
581  LPS.

582 B: Infection data from Fig 4A-C. THP-1-IFIT-1 cells lacking STING or MAVS, or a gRNA control
583  (Ctrl) cell line transduced for 48 h with WT LAI or Gag-LUC (1.5 U RT/ml).

584  C:IFIT-2 ISG gPCR from monocytic THP-1 Dual cells lacking cGAS, or a gRNA control (Ctrl)

585  cell line stimulated for 24 h with 0.1 ug/ml HT-DNA, 0.5 pg/ml poly I:C or 50 ng/ml LPS.
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586 D: Infection data from Fig 4D-F. THP-1 Dual cells lacking cGAS, or a gRNA control (Ctrl) cell
587 line transduced for 48 h with WT LAl or Gag-LUC (1.5 U RT/ml).

588  E:Infection data from Fig 4G. THP-1 Dual cells lacking cGAS, or a gRNA control (Ctrl) cell line
589  transduced for 48 h with WT LAl or Gag-LUC (1.5 U RT/ml) in the presence of DMSO vehicle,
590 0.5 pg/ml STING inhibitor H151 or 10 pug/ml cGAS inhibitor RU.521

591 Data are mean = SD, n = 3, representative of at least 3 repeats. Statistical analyses were
592 performed using Student's t-test, with Welch's correction where appropriate, comparing to Ctrl

593  cells as indicated. *P < 0.05, **P < 0.01.
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596 Fig 5: Gag-fusion viruses display defects in maturation and are less able to saturate TRIM5a
597  A: Immunoblot of WT LAI, 8.91 LAI, Gag-LUC and Gag-GFP virus particles (2x10! genomes)
598  detecting p24 and a schematic of intermediate Gag cleavage products. MA: matrix, CA: capsid,
599  SP1: spacer peptide 1, NC: nucleocapsid, SP2: spacer peptide 2.

600 B: Abrogation-of-restriction assay in FRhK4 cells expressing restrictive rhesus TRIM5. FRhK4

601 cells were co-transduced with a fixed dose of WT LAIL.GFP (5x107 genomes/ml) and increasing
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doses of the WT/Gag-LUC chimeric viruses carrying a luciferase-expressing genome (0.0005
—1 U RT/ml). Rescue of GFP infectivity was assessed by flow cytometry at 48 h. Data are
singlet % GFP values and two repeats of the experiment are shown. Statistical analyses were

performed using 2-way ANOVA with multiple comparisons. * P<0.05, n.s. non-significant.
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Suppl. Fig 5: Gag-fusion viruses have reduced capacity to saturate TRIM5a

Third replicate assay of data presented in Fig. 5B. FRhK4 cells were co-transduced with a fixed
dose of WT LAIL.GFP (5x107 genomes/ml) and increasing doses of the WT/Gag-LUC chimeric
viruses carrying a luciferase-expressing genome (0.0005 — 1 U RT/ml). Rescue of GFP

infectivity was assessed by flow cytometry at 48 h. Data are singlet % GFP values.
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