

1 **Spt5 interacts genetically with Myc and is limiting for brain tumor 2 growth in Drosophila**

3 **Authors**

4 Julia Hofstetter^{*1}, Ayoola Ogunleye^{*2}, André Kutschke³, Lisa Marie Buchholz⁴, Elmar
5 Wolf^{§5}, Thomas Raabe^{§6}, Peter Gallant^{§7}

6 * co-first

7 § co-corresponding

8 **Affiliations**

9 1,3,5 Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University
10 of Würzburg, Würzburg, Germany

11 2,4,7 Department of Biochemistry and Molecular Biology, Theodor Boveri Institute,
12 Biocenter, University of Würzburg, Würzburg, Germany

13 6 Molecular Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074
14 Würzburg, Germany

15 emails:

16 elmar.wolf@uni-wuerzburg.de, thomas.raabe@uni-wuerzburg.de, peter.gallant@uni-wuerzburg.de

18 **ORCID**

19 1 0000-0003-4496-2394

20 2 0000-0001-8533-4875

21 5 0000-0002-5299-6335

22 6 0000-0001-9734-4464

23 7 0000-0002-8270-5738

24 **Abstract**

25 The transcription factor SPT5 physically interacts with MYC oncoproteins and is
26 essential for efficient transcriptional activation of MYC targets in cultured cells. Here
27 we use *Drosophila* to address the relevance of this interaction in a living organism.
28 Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc
29 cells. During later development, Spt5-knockdown has no detectable consequences on
30 its own, but strongly enhances eye defects caused by Myc-overexpression. Similarly,
31 Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain
32 development and survival of control flies, but dramatically shrinks the volumes of
33 experimentally induced neuroblast tumors and significantly extends the lifespan of
34 tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked
35 down systemically and after tumor initiation, highlighting SPT5 as a potential drug
36 target in human oncology.

37 **Introduction**

38 Expression of MYC oncogenes is deregulated in most human tumors. Up to 28 % of
39 all tumors exhibit gene amplification of one of the MYC isoforms (MYCN, MYCL or
40 MYC), defining MYC genes as the most frequently amplified oncogene family across
41 human cancers (Schaub *et al*, 2018). Indeed, MYC is a crucial driver of tumorigenesis
42 as demonstrated by mouse experiments involving MYC-overexpression (Adams *et al*,
43 1985; Kortlever *et al*, 2017), genetic depletion of endogenous (Sansom *et al*, 2007;
44 Walz *et al*, 2014) or exogenous MYC (Jain *et al*, 2002), and expression of a dominant-

negative variant of MYC (Soucek *et al*, 2008). MYC can therefore be considered a priority target for cancer therapy (Dang, 2012). At the same time, it is very challenging to target MYC directly, because it lacks enzymatic activity and probably pockets for small molecules (Nair & Burley, 2003). Instead, it seems possible to identify binding partners which the oncogenic function of MYC is fully dependent on, and to target them, for example the histone-methyl-transferase adapter protein WDR5 (Lorenzin *et al*, 2016; Thomas *et al*, 2015). In recent years, several additional MYC binding partners were identified by proteomic approaches, and MYC was shown to partake in multiple nuclear protein complexes (Baluapuri *et al*, 2019; Buchel *et al*, 2017; Dingar *et al*, 2018; Kalkat *et al*, 2018; Koch *et al*, 2007). To be considered as suitable for pharmaceutical targeting, such MYC binding partners should be (i) essential for MYC-driven oncogenic growth and (ii) dispensable for the integrity and proliferation of healthy tissue. The former is relatively easy to analyze systematically in transplantation-based murine tumor models (Vo *et al*, 2016), but the latter is very elaborate and expensive to study in mice. We therefore started to develop a *Drosophila* model to (i) validate the genetic interaction between MYC and its binding partners *in vivo*, and (ii) to estimate effects on healthy tissue of animals and thus the potential therapeutic window.

The *Drosophila* genome encodes a single MYC homolog that accomplishes the functions of its vertebrate counterparts in normal cells, and it also acts as an oncogene in *Drosophila* tumor models. Here, we focused on a brain tumor model derived from neural stem cells (type II neuroblasts = NB II), which allows to study proliferation and tumorigenesis during brain development. Briefly, NB II produce intermediate neural progenitors (INPs) with a restricted proliferation potential, which in turn generate ganglion mother cells as the precursors of neurons and glia cells (Homem & Knoblich, 2012). NB II express the cell fate determinant Brain tumor (Brat) and pass it on to their progeny (Bello *et al*, 2006; Betschinger *et al*, 2006; Lee *et al*, 2006). In case of brat mutations, INPs acquire NB II characteristics, resulting in large transplantable tumors (Bowman *et al*, 2008; Hakes & Brand, 2019; Janssens *et al*, 2014; Komori *et al*, 2018; Xiao *et al*, 2012). Brat belongs to the TRIM-NHL family of proteins, which regulate gene expression by reducing translation and causing degradation of multiple mRNAs (Connacher & Goldstrohm, 2021; Tocchini & Ciosk, 2015). Brat targets many mRNAs involved in NB self-renewal, including Myc (Betschinger *et al.*, 2006; Loedige *et al*, 2015). We exploited this tumor model to address the potential for interfering with tumor formation by targeting Myc interaction partners.

As a proof of the target validation concept, we chose the MYC binding partner SPT5. First, SPT5 was detected as a binding partner of both MYC (Baluapuri *et al.*, 2019) and MYCN (Buchel *et al.*, 2017), indicating that the interaction between MYC proteins and SPT5 is evolutionary conserved. Second, recombinantly expressed MYC and SPT5 build stable dimeric complexes *in vitro*, demonstrating their direct interaction (Baluapuri *et al.*, 2019). Third, SPT5 is essential for MYC-mediated transcriptional activation, which is considered a key oncogenic function of MYC (Baluapuri *et al*, 2019). A function of SPT5 in transcription was already evident upon its initial discovery in a pioneer genetic screen by Winston and colleagues in yeast. Several Suppressors of Ty (SPT) genes, including SPT5, were discovered, since their mutation reactivated the transcription of an auxotrophy gene that was silenced by proximal insertion of a Ty transposon (Winston *et al*, 1984). Subsequent work demonstrated direct interaction of SPT5 with SPT4 in yeast (Hartzog *et al*, 1998; Swanson *et al*, 1991) and the function of the mammalian SPT4/5 complex as a pausing factor named DSIF (DRB sensitivity inducing factor) (Wada *et al*, 1998). SPT5 binds RNA Polymerase II (RNAPII) and

1 promotes transcriptional elongation and termination (Cortazar *et al*, 2019; Fong *et al*,
2 2022; Henriques *et al*, 2018; Hu *et al*, 2021; Parua *et al*, 2018; Parua *et al*, 2020;
3 Shetty *et al*, 2017) and RNAPII processivity (Fitz *et al*, 2018) by binding to its DNA exit
4 region, facilitating re-winding of upstream DNA and preventing aberrant back-tracking
5 of RNAPII (Bernecky *et al*, 2017; Ehara *et al*, 2017). SPT5 homologues are found in
6 all domains of life. SPT5 shares the N-terminal (NGN) and one KOW domain with its
7 bacterial homolog NusG, but the eukaryotic protein contains several copies of the
8 KOW domain and additional N- and C-terminal sequences (Yakhnin & Babitzke,
9 2014). While SPT5 is an essential protein, its interaction with MYC could indicate that
10 tumor cells are more dependent on the full function of SPT5 than un-transformed cells.

11 Here, we explored the functional interaction between Myc and Spt5 *in vivo* in
12 *Drosophila* and analyzed the consequences of Spt5 depletion in brain tumors induced
13 by brat-knockdown. We demonstrate a clear genetic interaction between Myc and
14 Spt5 in developing eyes and a functional role of Spt5 in neuroblast proliferation.
15 Strikingly, systemic knockdown of Spt5 from late larval stages onwards inhibits
16 tumorigenesis, but is tolerated by normal tissue and massively extends the life span
17 of tumor prone flies. This demonstrates not only that SPT5 is an attractive candidate
18 for targeting MYC-mediated oncogenic growth, but also suggests that inhibition of an
19 essential process, such as transcription, could open a therapeutic window in tumor
20 treatment.

21 **Results**

22 *Genetic interaction of Spt5 and Myc in Drosophila*

23 The *Drosophila* genome encodes a single SPT5 homolog (Kaplan *et al*, 2000), which
24 is 50% homologous to human SPT5 and contains all identified protein domains (Fig.
25 1A). To investigate its genetic interaction with Myc we focused on adult eye
26 phenotypes, which are known to be highly sensitive to alterations in Myc levels. Myc-
27 overexpression in post-mitotic cells of this tissue (using GMR-GAL4; Fig. 1B) induced
28 excessive growth and apoptosis, resulting in oversized and aberrantly shaped adult
29 eyes (Montero *et al*. 2008, Steiger *et al*. 2008; Figs. 1C, S1A-B). siRNA-mediated
30 Spt5-knockdown had no discernible effect on control eyes (Figs. 1C-D, S1C).
31 Knockdown of Spt5 in the Myc-overexpression context however dramatically altered
32 eye morphology leading to a glassy surface, suggestive of apoptotic cell loss and
33 ensuing fusion of neighboring ommatidia (Figs. 1C, S1D). This phenotype was fully
34 penetrant and accompanied by a reduction in overall eye size (Fig. 1D). Importantly,
35 this effect was not due to experimental off-target artefacts, since it was completely
36 rescued by expression of a mutated Spt5 cDNA that codes for wild type Spt5 protein
37 but is not recognized by the siRNA (Figs. 1C, S1G-H). Overexpression of the siRNA-
38 resistant Spt5 itself showed effects neither in control nor in Myc-overexpressing flies
39 (Figs. 1C, S1E-F). Together, these observations demonstrate that Myc and Spt5
40 functionally interact and suggest that the transcriptional program activated by
41 excessive Myc levels is critically dependent on Spt5.

42 Next, we addressed the organismal role of Spt5 during development. As described
43 for yeast, Spt5 is an essential gene and Spt5 homozygous mutant flies do not reach
44 adulthood (Mahoney *et al*, 2006). Spt5 heterozygotes were largely normal, except for
45 a small but statistically significant reduction in adult body weight (Fig. 2A). Such a
46 weight defect was also described for hypomorphic *Myc^{P0}* mutants, which additionally
47 show a slight delay in development (Johnston *et al*. 1999). The combination of both
48 mutations did not affect the Myc-dependent developmental delay (Fig. S2A), but
49 resulted in a synergistic weight loss (BLISS score 14, SynergyFinder; Fig. 2A). In

1 addition, such doubly mutant flies showed deformed eyes (not shown). Such an eye
2 defect was not observed in either single mutant alone, but had previously been
3 described as a typical manifestation of the strong genetic interaction between Myc and
4 its partner RUVBL1/pontin (Bellosta *et al.*, 2005).

5 The synergy between Spt5 and Myc in proliferating cells became even more evident
6 when Spt5 and Myc levels were reduced specifically in developing eye imaginal discs
7 (Fig. 2B). In line with earlier publications, partial loss of Myc in this system impaired
8 growth of eye imaginal disc cells and resulted in smaller adult eyes made up of smaller
9 ommatidia (Figs. 2C-D, S2B-I; Bellosta *et al.*, 2005). Combination of the partial loss of
10 Myc with Spt5-knockdown showed clear synergy (BLISS score 16, SynergyFinder)
11 and nearly eliminated eye development. These observations confirm a functional
12 collaboration between Spt5 and Myc in the control of cellular growth and proliferation.

13 *Effect of Spt5 on NB II-tumor development*

14 Having confirmed the importance of Spt5 for Myc-dependent physiological
15 processes, we set out to explore the role of Spt5 in brain tumors that were induced by
16 knockdown of the tumor suppressor brat specifically in larval NB II. The adult brains
17 of brat-knockdown animals are enlarged with a massive increase of cell number in the
18 cortex region and a complete disruption of neuropil structures (Figs. 3A-B). In contrast,
19 knockdown of Spt5 in NB II had only minor effects on adult brain structures, e.g.
20 resulting in a ventral opening of the ellipsoid body of the central complex, which is one
21 descendant of NB II cell lineages. Simultaneous knockdown of Spt5 and brat
22 abrogated the overgrowth phenotype and largely restored normal brain structures (Fig.
23 3B). To quantify this effect, we expressed luciferase in the cells experiencing brat-
24 knockdown. Luminometry of total lysates from young adults confirmed the strong
25 growth-suppressive effect of Spt5-knockdown specifically in tumorous animals as
26 opposed to control animals; expression of the siSpt5-insensitive Spt5 transgene
27 abrogated the effects of siSpt5, demonstrating its specificity (Fig. 3C). Consistent with
28 these findings, brat-knockdown led to a massive expansion of NB II cell lineages,
29 which was largely abolished by simultaneous Spt5-knockdown (Fig. S3A).

30 To study the underlying cellular differences between the different genotypes, we
31 analyzed NB II lineages in 3rd instar larval brains by concurrent expression of GFP and
32 stainings for Deadpan (Dpn) and Asense (Ase). In control flies, there are only 8 NB II
33 in each brain hemisphere, which express Dpn but not Ase (Dpn+ Ase-), in contrast to
34 approximately 100 type I neuroblasts, where both proteins are present (Dpn+ Ase+).
35 The intermediate neural progenitors (INPs) generated by each NB II pass through a
36 maturation process (from Dpn- Ase-, to Dpn- Ase+, to Dpn+ Ase+) before ganglion
37 mother cells are born (Fig. 3D). As reported previously, brat-knockdown causes a
38 massive expansion of NB II like cells (Dpn+ Ase-) at the expense of INPs (Bowman *et*
39 *al.*, 2008; Janssens *et al.*, 2014; Komori *et al.*, 2018; Xiao *et al.*, 2012). Brain
40 hemispheres were enlarged, with the dorsal part being nearly completely covered with
41 Dpn+ Ase- cells without signs of further lineage progression (Fig. 3D). Spt5-
42 knockdown resulted in a strong suppression of the overgrowth phenotype caused by
43 brat-knockdown and reduced the total number of cells within each lineage, but
44 nevertheless allowed the generation of mature INPs (Ase+ Dpn+) (Fig. 3D). Distinct
45 GFP-positive cell clusters were visible similar to the control situation. However, within
46 each cluster most cells still displayed NB II characteristics (Dpn+ Ase-) and only few
47 cells expressed Ase as a marker for INP maturation (Fig. 3D). Based on these
48 observations we concluded that, although Spt5-knockdown cannot efficiently revert
49 transformed NB II like cells into further differentiated INPs, it nevertheless has a major
50 negative impact on tumor formation, possibly by interfering with NB II proliferation. We

1 confirmed this assumption by pulse labeling S-phase cells with EdU in larval brains
2 (Figs. 3E-F). Knockdown of Spt5 alone or in combination with brat abolished EdU-
3 incorporation within the GFP-labeled cell clones (highlighted areas), whereas the
4 brains with brat-knockdown alone contained multiple cells in S-phase that actively
5 incorporated EdU. Although we noticed a moderate increase in apoptotic cells
6 (positive for the cleaved effector caspase Dcp-1) in brat-/Spt5-knockdown conditions
7 within the GFP-labeled cell clones (Fig. S3B), the major tumor suppressive
8 mechanism of Spt5-knockdown can be ascribed to impaired proliferation.

9 *Effects of Spt5 on tumor transcriptomes*

10 To identify the molecular basis of the observations described above, we isolated NB
11 II from 96 hours-old larvae and analyzed their transcriptomes. As shown in Fig. 4A,
12 control and brat-/Spt5-codepleted cells were highly similar to each other and clearly
13 distinct from brat-depleted (tumorous) cells with respect to principal component 1,
14 consistent with the reversion of overgrowth by Spt5-knockdown.

15 Comparison of control with brat-depleted neuroblasts revealed several alterations of
16 uncharacterized genes (shown in grey) as well as expected changes in gene
17 expression (Figs. 4B,C): brat levels were clearly reduced, whereas the RNA-binding
18 protein Imp (Samuels *et al*, 2020), the long noncoding RNA cherub (Landskron *et al*,
19 2018), the mitochondrial fusion factor Marf (Bonnay *et al*, 2020), Myc and Myc target
20 genes (Betschinger *et al.*, 2006; Herter *et al*, 2015; Neumuller *et al*, 2013), as well as
21 glycolytic enzymes (Bonnay *et al.*, 2020; van den Ameele & Brand, 2019) were all
22 strongly upregulated in response to brat-knockdown. All of these changes had been
23 observed before and they contribute to the tumorous phenotype. In addition, the
24 transcription factor Foxo and its target Thor/4E-BP were overexpressed in brat-
25 depleted NB II.

26 Next, we analyzed the impact of Spt5-knockdown on tumors caused by brat-
27 knockdown. Brat levels themselves were not altered, but Myc targets were significantly
28 down-regulated, in line with observations in mammalian cancer cells (Fig 4B,D). The
29 other described genes were moderately (Marf, Imp) or strongly (lncRNA:cherub)
30 reduced in their expression upon Spt5-knockdown (Figs. 4D). In addition, Gart (the
31 second enzyme of the purine biosynthesis pathway; Welin *et al*, 2010) was
32 significantly repressed, and Gadd45 (an inhibitor of cell cycle progression and inducer
33 of apoptosis; Tamura *et al*, 2012) was strongly activated. We also noted that the levels
34 of Foxo and Thor/4E-BP dropped in Spt5-knockdown cells. Together, these
35 expression changes are sufficient to explain the reduction in tumor growth and cellular
36 proliferation and most of them can be ascribed to an impairment of Myc-dependent
37 gene activation upon Spt5-knockdown. However, some of the affected genes are not
38 *bona fide* Myc targets, e.g. lncRNA:cherub (Herter *et al.*, 2015). To find other
39 candidate upstream regulators of these genes, we explored publicly available NB II
40 transcriptome data, and found a significant correlation between Spt5-controlled genes
41 and Mediator target genes. Notably, Gart, lncRNA:cherub, Foxo, and Thor all require
42 Mediator for their full expression (Fig 4E; Homem *et al*, 2014), raising the possibility
43 that Spt5 might affect their expression via an interaction with Mediator.

44 *Organismal consequences of Spt5 depletion*

45 Despite the massive brain overgrowth upon brat-knockdown in NB II lineages, the
46 tumor-bearing animals reached adulthood at expected frequencies (Fig. S4A).
47 However, all of them died within less than 10 days of eclosion, whereas the majority
48 of control flies were still alive after 60 days (Fig. 5A; for statistical significance of
49 various comparisons see Table S1). Myc-knockdown slightly extended the survival of

1 tumor-bearing flies, showing that these tumors are Myc-dependent (Fig. S4B). The
2 survival benefits are presumably limited by the requirement for Myc in NB II, as seen
3 by the reduced longevity upon single Myc-knockdown (Fig. S4B). In contrast, Spt5-
4 knockdown did not impair the survival of control flies, but extended the life span of
5 tumor-bearing animals to more than 26 days (Fig. 5A). This rescue was fully reverted
6 by co-expression of an siRNA-resistant version of Spt5, ruling out off-target effects.
7 Overexpression of Spt5 on its own had the opposite effect and significantly shortened
8 the life of tumorous animals, but had only minor effects on healthy controls. Together,
9 these observations emphasize the importance of Spt5 for abnormal, tumorous tissue
10 growth.

11 To explore whether this dependency could potentially be exploited in a curative
12 context, we modified the NB II tumor model. In this new setup, NB II tumors are
13 induced with the same brat-knockdown transgene as used above. In contrast, Spt5-
14 knockdown is driven by the Actin5C promoter that is ubiquitously active in the entire
15 organism. This transgene is initially activated by a heat-shock, administered to 120
16 hours-old larvae (well after the onset of GAL4-expression driving brat-knockdown in
17 NB II; Albertson *et al.*, 2004) and remains active thereafter (Fig. 5B). The transgene
18 expresses the same Spt5-siRNA as used in the earlier setup, although presumably at
19 a lower level, since this approach does not involve any GAL4/UAS amplification loop.
20 When flies carrying brat- and Spt5-knockdown transgenes were reared in the absence
21 of heat-shock, they succumb to tumors within 10 days of adult eclosion; control flies
22 lacking the brat-knockdown transgene had the expected life span (Fig. 5C). After heat-
23 shock, flies lacking the siSpt5-transgene showed an analogous behavior. However, in
24 combination with heat-shock the siSpt5-transgene almost doubled the lifespan of
25 tumorous flies (Fig. 5C; Table S1). We conclude that systemic targeting of Spt5 is
26 beneficial for cancer bearing flies.

27 Discussion

28 Several experimental approaches allow the identification of potential cancer drug
29 targets at a medium- to large-scale level. These include the analysis of gain-of-function
30 or overexpression mutations in human tumor samples, systematic knockdown or
31 knockout screens in human cancer cell lines (e.g. Boehm & Golub, 2015), silencing or
32 depletion of candidate genes in mouse transplant models. However, targets identified
33 by these approaches could also be relevant for healthy tissues. It is therefore essential
34 to determine the “therapeutic window” of any putative target. This is usually done by
35 analysing appropriate mouse models, containing e.g. floxed target genes in
36 combination with an OHT-activatable Cre recombinase, or expressing shRNAs
37 against the target gene. Such approaches are more laborious and expensive than the
38 initial genetic screens, and hence therapeutic windows are often addressed only once
39 target-specific inhibitors are available, resulting in high attrition rates at late pre-clinical
40 stages. Our present analysis suggests that *Drosophila* can be used to reveal the
41 existence of such therapeutic windows.

42 The elongation factor Spt5 initially caught our attention because of its physical
43 interaction with Myc in cultured human cancer cells (Baluapuri *et al.*, 2019). Here, we
44 found that it also collaborates with Myc functionally *in vivo*. Simultaneous reduction of
45 both proteins during larval development synergistically impaired the growth of imaginal
46 tissue, consistent with the notion that Myc-dependent efficient activation of growth-
47 promoting genes requires association with Spt5. Combining Spt5-knockdown with
48 Myc-overexpression during post-proliferative eye disc development resulted in a
49 striking novel phenotype, indicative of massive apoptosis not seen with either

1 treatment alone. This could indicate that some Myc targets do not require Spt5 for their
2 expression, and that the balance of Spt5-dependent and -independent targets
3 determines the biological outcome of Myc activation, e.g. tissue growth versus attrition
4 (similar to what was suggested by Steiger *et al.*, 2008). Alternatively, combined Spt5-
5 knockdown and Myc-overexpression might titrate Spt5 away from some genes,
6 affecting their expression and resulting in the observed phenotype (similar to what was
7 suggested by Baluapuri *et al.*, 2019).

8 We used Spt5 as an example of an essential Myc co-factor and evaluated the
9 consequences of knocking down Spt5 in a Myc-dependent NB II brain tumor model.
10 In a first approach, we used the same expression system to target both brat (in order
11 to generate the NB II tumors) and Spt5 specifically in NB II. In this setting, Spt5-
12 knockdown almost completely reverted the tumorous tissue overgrowth and more than
13 tripled adult animal survival. Knockdown of Spt5 in selected neuroblasts of control
14 animals without brain tumors had mild effects on brain development, and did not
15 negatively impact adult survival, demonstrating the potential value of Spt5 as a
16 therapeutic target. However, in clinical settings it is typically not possible to direct a
17 therapy exclusively at transformed cells and therapeutic intervention cannot be
18 initiated at early tumor development. For this reason, we developed a second system
19 that allowed temporal separation of tumor initiation and Spt5-knockdown, and that
20 targeted Spt5 not only in NB II but throughout the organism. While this approach relied
21 on the same system to deplete brat and the same Spt5-targeting siRNA as the first
22 approach above, the latter was induced by a heat-shock and directly driven by the
23 Actin5C promoter rather than being amplified by a GAL4/UAS loop, presumably
24 resulting in lower siRNA expression and less efficient Spt5 depletion in NB II.
25 Nevertheless, Spt5-knockdown had a strong therapeutic benefit for tumorous flies, as
26 it almost doubled their survival time. Importantly, ubiquitous Spt5-knockdown did not
27 impair the survival of tumor-free control animals, nor did heat-shocks *per se* have any
28 deleterious effect on longevity. A molecular explanation for this tumor-suppressive
29 effect is provided by our analysis of NB II transcriptomes: Spt5-knockdown resulted in
30 strong down-regulation of several genes associated with NB II transformation, and an
31 up-regulation of genes opposing uncontrolled proliferation. Most of these expression
32 changes can be ascribed to a reduction of Myc:Spt5 complexes, while some probably
33 reflect a functional interaction of Spt5 with the Mediator complex, which itself plays a
34 role in NB II tumor formation. As expected, Myc-knockdown also extended the
35 longevity of tumor-bearing flies, but this effect was less pronounced than for Spt5-
36 knockdown. This difference might indicate that Myc:Spt5 complexes are more critical
37 for transformed cells than for normal tissues. In any case, our experiments
38 demonstrate that targeting a protein, Spt5, which was selected based on its physical
39 interaction with Myc, can reduce tumor mass and provide a survival benefit for tumor-
40 bearing animals, even though this protein is essential for normal development. It is
41 open, though, whether Spt5 is the best-suited target in Myc-dependent cancers, as
42 many additional proteins have been shown to bind Myc. Our *Drosophila*-based
43 approach allows a simple pre-screening of these candidates to filter for the best targets
44 that can subsequently be funneled into more laborious analyses in mice.

45 **Author contributions**

46 JH and AO performed the cloning and RNAseq experiment. PG analysed the
47 RNAseq data. AO, AK and LMB conducted the *in vivo* experiments. AO, LMB and TR
48 performed microscopy. TR and PG planned the *in vivo* experiments. JH, EW, TR and
49 PG designed the study, supervised the experiments and wrote the paper.

1 **Acknowledgements**

2 We thank David Gilmour, Erich Buchner, Fernando Diaz-Benjumea, Jürgen Knoblich
3 and Georg Krahne for generously providing antibodies and fly stocks, Hugo Stocker
4 for critical reading of the manuscript, the DFG for grants WO 2108/1-1 & GRK 2243 to
5 EW, and the ERC for grant TarMyc to EW.

6 **Figure legends**

7 **Figure 1. Genetic interaction of Spt5 with overexpressed Myc.** **A**, alignment of
8 *Drosophila melanogaster* and human Spt5 proteins over all identified domains. **B**,
9 scheme depicting GMR-GAL4 dependent transgene expression in differentiating eye
10 imaginal disc cells from the second half of the 3rd larval instar onward. GAL4 activates
11 expression of a Myc cDNA and/or an Spt5 siRNA and/or an Spt5 cDNA (coding for
12 wildtype Spt5 protein, but refractory to siSpt5). **C**, representative pictures of adult eyes
13 of the indicated genotypes. **D**, quantification of the eye areas from control (black) or
14 Myc-overexpressing (green) flies. Median adult eye size from 4 independent flies
15 each. P value was calculated using unpaired Student's t-test.

16 **Figure 2. Genetic interaction of Spt5 with a hypomorphic Myc-mutant.** **A**,
17 median dry weight of adult males (n=6-109) with or without Spt5-knockdown, in a
18 Myc^{wildtype} ("Ctr", black) or Myc^{P0} (green) background. P values were calculated using
19 an unpaired Student's t-test. **B**, scheme illustrating the genetic manipulation: a
20 ubiquitously expressed Myc cDNA was eliminated specifically in eye imaginal discs
21 throughout larval development, thereby exposing the hypomorphic Myc^{P0} allele or
22 Myc^{wildtype} ("Ctr") while simultaneously driving Spt5-overexpression and/or -knockdown
23 (see Methods). **C**, representative pictures of adult eyes. **D**, quantification of eye areas,
24 normalized in each case to the area of the matching Myc^{wildtype} flies ("Ctr", black); n=8
25 flies per genotype.

26 **Figure 3. Spt5-knockdown reduces growth of brat-depleted tumors.** **A**, scheme
27 of the NB II tumor model, showing expression of luciferase and/or brat-dsRNA and/or
28 Spt5-siRNA in NB II. **B**, adult brains were stained for the synaptic protein Bruchpilot
29 (green) to label neuropil structures and the nuclear membrane protein Lamin (red) to
30 visualize the brain cortex. Single pictures were taken at the level of the ellipsoid body
31 of the central complex. Scale bar: 50 µm. **C**, quantification of luciferase activity, relative
32 to that of control flies; n=6-16 single adult flies per genotype. **D**, NB II lineages in brains
33 from 3rd instar larvae were marked with mCD8::GFP (green) and co-stained for the
34 nuclear proteins Dpn and Ase to distinguish the large NB II (Dpn+ Ase-), newborn
35 INPs (Dpn- Ase-), immature INPs (Dpn- Ase+), and mature INPs (Dpn+ Ase+).
36 Neighboring type I NBs co-express Dpn and Ase. In control brains, two out of eight NB
37 II lineages per brain hemisphere are shown. Spt5-knockdown causes incomplete NB
38 II lineages, whereas brat-knockdown results in massive expansion of cells with
39 characteristics of NB II (Dpn+ Ase-). In the double-knockdown, separate clusters like
40 in controls are observed, but cells maintain mostly NB II characteristics and only few
41 cells express Ase as an indicator of further differentiation. Scale bar: 10 µm. **E**, EdU
42 incorporation (cyan) in S-phase cells within a period of 90 min in whole mount brain
43 preparations. Compact EdU signals are seen in the lateral regions representing the
44 proliferation centers of the optic lobes, dispersed signals are evident in the central
45 brain with NB II and their lineages labeled in green. Scale bar: 100 µm. **F**, in higher
46 magnifications, many proliferating cells outside and within NB II lineages (outlined with
47 dashed lines) are seen in controls, with a strong increase upon brat-KD. No EdU

1 positive cells are detected in NB II lineages under Spt5-KD and brat-KD/Spt5-KD
2 conditions. Scale bar: 10 μ m.

3 **Figure 4. Effects of brat- and Spt5-knockdown on NB II transcriptomes.** **A**,
4 principal component analysis of NB II transcriptomes from control (black, “ctr”),
5 tumorous (red, “tum_WT”) or tumorous flies with Spt5-knockdown (blue, “tum_KD”).
6 **B**, expression levels of Myc-bound or -activated genes that were previously identified
7 in cultured S2 cells (Herter *et al.*, 2015) in brat-depleted NB II relative to control NB II
8 (red), and in Spt5-/brat-codepleted NB II relative to control NB II (blue). **C**, **D**, volcano
9 plots showing expression in brat-depleted NB II (tumors) relative to control NB II (**C**),
10 and in Spt5-/brat-codepleted NB II relative to brat-depleted NB II (**D**). Horizontal lines
11 mark significance level (FDR q-value) of 0.05. Labeled genes are described in the text;
12 for a complete listing of all genes see Tables S2,3. **E**, expression levels of previously
13 identified Med27-activated or -repressed genes in brat-depleted NB II relative to
14 control NB II (red), and in Spt5-/brat-codepleted NB II relative to control NB II (blue).
15 P values are derived from a paired Student’s t-test.

16 **Figure 5. Impact of Spt5-knockdown on longevity of tumorous flies.** **A**, survival
17 of male flies with the indicated genotypes in days after adult eclosion (n=100 flies for
18 each genotype). **B**, scheme for ubiquitous and temporally controlled Spt5-depletion in
19 tumorous and control animals (for details see text). **C**, survival of male flies with the
20 indicated genotypes +/- heat-shock induced ubiquitous Spt5-depletion in days after
21 adult eclosion. Spt5-knockdown significantly extended the lifespan of tumorous flies
22 (p=1.1 * 10⁻¹¹; n=30 flies for each genotype).

23 **Figure S1: A-H**, pictures of adult eyes having experienced GMR-driven Myc-
24 overexpression +/- Spt5-overexpression +/- Spt5-knockdown. Pertains to Fig. 1C,D.

25 **Figure S2: A**, duration of development, in hours from egg deposition to adult eclosion
26 (n=34-82 males per genotype). **B-I**, pictures of adult eyes having experienced Spt5-
27 overexpression and/or Spt5-knockdown in the background of wildtype or mutant Myc.
28 Pertains to Fig. 2 C,D.

29 **Figure S3: A**, number of NB II-derived (GFP-positive) cells per larva (based on 3-7
30 independent dissections per genotype, each involving 130-240 larvae). **B**, NB II
31 lineages in brains from 3rd instar larvae were marked with mCD8::GFP (green) and
32 co-stained for the nuclear proteins Dpn (red) and the apoptosis marker Dcp-1 (blue).
33 Few apoptotic cells are observed in control, Spt5-KD and brat-KD brains but their
34 number increases under double-knockdown conditions. Scale bar: 10 μ m.

35 **Figure S4: A**, eclosion rate of flies with or without NB II tumors in the presence or
36 absence of Spt5-knockdown. Percentage of eclosed adult flies relative to the expected
37 fraction (n=171-271 per genotype). **B**, effect of Myc-depletion in tumorous or normal
38 NB II on survival of adult male flies (n=65 to 100 flies for each genotype).

39 **Table S1:** statistical significance of differences in longevity. Pertains to Fig. 5A,C.

40 **Table S2:** raw read counts from control NB II or brat-knockdown NB II +/- Spt5-
41 knockdown. Pertains to Fig. 4B,C.

42 **Table S3:** normalized expression values, p-values & FDR q-values from pairwise
43 comparisons of genotypes. Pertains to Fig. 4B,C.

44 Materials & Methods

45 Flies

46 Sources of flies: “GMR-GAL4” and “GMR-GAL4 3x(UAS-Myc)” were characterized
47 by (Montero *et al.*, 2008; Steiger *et al.*, 2008); “wor-GAL4 ase-GAL80 UAS-GFP UAS-
48 Luciferase” and “wor-GAL4 ase-GAL80 UAS-brat-IR UAS-GFP UAS-Luciferase” were
49 initially generated by (Neumuller *et al.*, 2013) and also described in (Herter *et al.*,

1 2015); “ey-FLP tub-FRT-Myc-FRT-GAL4” was described in (Bellosta et al., 2005);
2 UAS-Spt5[resistant to siSpt5] (Qiu & Gilmour, 2017); UAS-siSpt5 (Bloomington stock
3 number B-34837; Perkins et al, 2015); mutant allele “Spt5[SIE-27]” (Mahoney et al.,
4 2006). “act-FRT-stop-FRT-siSpt5” was generated by inserting
5 “AggccagtCAGAAGCTACAGTCCATTCAAtgttatattcaagcataTTGAATGGACTGTAG
6 CTTCTGgcggccAGTC” (“siSpt5_f”) into pAct-FRT-stop-FRT3-FRT3-GAL4_attB
7 (AddGene vector #52889; Bosch et al, 2015). The resulting construct pACT5C-FRT-
8 stop-FRT-siSpt5 was inserted in ZH86Fb by GenetiVision Corp (Houston, Tx).

9 *Genetic manipulation of Spt5 and Myc in eyes*

10 Eye specific reduction of Myc levels as used for Fig. 2C,D was described by Bellosta et
11 al. 2005. Briefly, a Myc cDNA was ubiquitously expressed under the control of the tubulin
12 promoter by the transgene “tub-FRT-Myc-FRT-GAL4” (inserted on the X-chromosome),
13 which increases Myc levels to <180% as compared to control (Wu & Johnston, 2010). The
14 same X-chromosome carries an ey-FLP transgene, which eliminates the Myc cDNA
15 specifically in eye imaginal disc cells, resulting in expression of GAL4 instead. Flies
16 designated as “Myc^{P0}” additionally carry the hypomorphic allele Myc^{P0} on the same X-
17 chromosome, whereas “ctr” flies are wild type for Myc and only carry the two described
18 transgenes. Hence, eye imaginal discs of the Myc^{P0} flies described in Fig. 1C,D are mutant
19 for Myc specifically in the eye primordia, thus expressing less than 40% of Myc mRNA.
20 Importantly, this Myc allele only reduces the amount of Myc protein, but does not alter its
21 amino acid sequence.

22 *Targeted expression*

23 Type II neuroblasts were targeted by a combination of worniu (wor)-GAL4, which is
24 expressed in type I and II NBs, and asense (ase)-GAL80 to repress GAL4 activity in
25 the type I NBs (Neumüller et al, 2011).

26 To knock down Spt5 ubiquitously after the onset of tumor generation, the system
27 above (wor-GAL4 ase-GAL80 UAS-brat-KD) was combined with the transgenes “hs-
28 FLP” and “pACT5C-FRT-stop-FRT-siSpt5”. siSpt5 expression was initiated by
29 transferring larvae at 120 h after egg deposition for 1 h to a water bath at 37°C.

30 *Relevant genotypes:*

31 **Figure 1C-D; Figure S1**

32 GMR-GAL4/+
33 GMR-GAL4/+; UAS-siSpt5/+
34 GMR-GAL4/+; UAS-Spt5/+
35 GMR-GAL4/+; UAS-Spt5 UAS-siSpt5/+
36 GMR-GAL4 3x(UAS-Myc)/+
37 GMR-GAL4 3x(UAS-Myc)/+ ; UAS-siSpt5/+
38 GMR-GAL4 3x(UAS-Myc)/+ ; UAS-Spt5/+
39 GMR-GAL4 3x(UAS-Myc)/+ ; UAS-Spt5 UAS-siSpt5/+

40 **Figure 2A ; Figure S2A**

41 +/Y
42 +/Y; Spt5[SIE-27]/+
43 dm[P0]/Y
44 dm[P0]/Y; Spt5[SIE-27]/+
45 **Figure 2C-D; Figure S2B-I**
46 tub-FRT-Myc-FRT-GAL4 ey-FLP/Y
47 tub-FRT-Myc-FRT-GAL4 ey-FLP/Y; UAS-siSpt5/+
48 tub-FRT-Myc-FRT-GAL4 ey-FLP/Y; UAS-Spt5/+
49 tub-FRT-Myc-FRT-GAL4 ey-FLP/Y; UAS-Spt5 UAS-siSpt5/+

1 dm[P0] tub-FRT-Myc-FRT-GAL4 ey-FLP/Y
2 dm[P0] tub-FRT-Myc-FRT-GAL4 ey-FLP/Y; UAS-siSpt5/+
3 dm[P0] tub-FRT-Myc-FRT-GAL4 ey-FLP/Y; UAS-Spt5/+
4 dm[P0] tub-FRT-Myc-FRT-GAL4 ey-FLP/Y; UAS-Spt5 UAS-siSpt5/+

5 **Figure 3B,D,E; Figure 4; Figure S3; Figure S4A**

6 wor-GAL4 ase-GAL80 UAS-mCD8::GFP
7 wor-GAL4 ase-GAL80 UAS-mCD8::GFP UAS-brat-KD
8 wor-GAL4 ase-GAL80 UAS-mCD8::GFP UAS-siSpt5
9 wor-GAL4 ase-GAL80 UAS-mCD8::GFP UAS-brat-KD UAS-siSpt5

10 **Figure 3C**

11 wor-GAL4 ase-GAL80 UAS-RLuc
12 wor-GAL4 ase-GAL80 UAS-RLuc UAS-siSpt5
13 wor-GAL4 ase-GAL80 UAS-RLuc UAS-Spt5
14 wor-GAL4 ase-GAL80 UAS-RLuc UAS-siSpt5 UAS-Spt5
15 wor-GAL4 ase-GAL80 UAS-FLuc UAS-brat-KD
16 wor-GAL4 ase-GAL80 UAS-FLuc UAS-brat-KD UAS-siSpt5
17 wor-GAL4 ase-GAL80 UAS-FLuc UAS-brat-KD UAS-Spt5
18 wor-GAL4 ase-GAL80 UAS-FLuc UAS-brat-KD UAS-siSpt5 UAS-Spt5

19 **Figure 5A**

20 wor-GAL4 ase-GAL80 UAS-RLuc
21 wor-GAL4 ase-GAL80 UAS-RLuc UAS-siSpt5
22 wor-GAL4 ase-GAL80 UAS-RLuc UAS-Spt5
23 wor-GAL4 ase-GAL80 UAS-RLuc UAS-siSpt5 UAS-Spt5

24 **Figure 5C**

25 hs-FLP wor-GAL4 ase-GAL80
26 hs-FLP wor-GAL4 ase-GAL80 UAS-brat-KD
27 hs-FLP wor-GAL4 ase-GAL80 act-FRT-stop-FRT-siSpt5
28 hs-FLP wor-GAL4 ase-GAL80 UAS-brat-KD act-FRT-stop-FRT-siSpt5

29 **Figure S4B**

30 wor-GAL4 ase-GAL80
31 wor-GAL4 ase-GAL80 UAS-brat-KD
32 wor-GAL4 ase-GAL80 UAS-Myc-KD
33 wor-GAL4 ase-GAL80 UAS-brat-KD UAS-Myc-KD

34 *Confocal microscopy*

35 For immunostainings, brains from late 3rd instar larvae or adults were dissected in
36 PBS (10 mM Na₂HPO₄, 2 mM KH₂PO₄, 2.7 mM KCl, 137 mM NaCl) and fixed on ice
37 for 25 min in PLP solution (4% paraformaldehyde, 10 mM NaIO₄, 75 mM lysine, 30 mM
38 sodium phosphate buffer, pH 6.8). All washings were done in PBT (PBS plus 0.3%
39 Triton X-100). After blocking in PBT containing 5% normal goat serum for 1 h, tissues
40 were incubated overnight at 4°C with combinations of the following primary antibodies:
41 rabbit anti-Ase (1:400; F. Diaz-Benjumea, Madrid, Spain), mouse anti-Bruchpilot
42 (1:30, clone nc82; E. Buchner, Würzburg, Germany), rabbit anti-Dcp-1 (1:100, Cell
43 Signaling Techn. # 9578, Danvers, MA, USA), guinea pig anti-Dpn (1:1000, J.
44 Knoblich, Vienna, Austria), chicken anti-GFP (1:1500; abcam #ab13970, Cambridge,
45 UK), guinea pig anti-Lamin DmO (1:300; G. Krohne, Würzburg, Germany). Secondary
46 antibodies conjugated with AlexaFluor 488, Cy3 or Cy5-conjugated were purchased
47 from Molecular Probes (Eugene, OR, USA) and Dianova (Hamburg, Germany).

48 For 5-ethynyl-2'-deoxyuridine (EdU) labeling, larval brains from 3rd instar larvae
49 were dissected in PBS and incubated with 20 µM EdU in PBS for 90 min. After fixation
50 in 4% paraformaldehyde for 15 min, followed by immunostaining for GFP and Dpn,

1 before EdU incorporation into replicating DNA was detected with the Click-iT® Alexa
2 Fluor 647 EdU imaging kit (Thermo Fisher Scientific (Invitrogen), Waltham MA, USA).
3 Embedding of brains was done in Vectashield (Vector Laboratories, Burlingame, CA,
4 USA) and confocal images were collected with a Leica SPE or SP8 microscope (Leica
5 Microsystems, Wetzlar, Germany). Image processing was carried out with the ImageJ
6 distribution Fiji (Schindelin *et al*, 2012).

7 *Phenotypic Analysis*

8 To measure adult eye sizes, adult males were collected at 1 to 7 days after eclosion
9 and killed by freezing. One eye per individual fly was photographed on a Zeiss
10 Discovery.V8 stereomicroscope fitted with a 1.5x lens and processed with Axiovision
11 Extended Focus software and the ImageJ distribution Fiji.

12 To measure luciferase activity, male flies were collected within one day of adult
13 eclosion and frozen individually at -20°C until use. Each fly was then lysed in 50 µl
14 Passive Lysis Buffer (Promega) and homogenized with approximately 10 steel beads
15 in a 'Bullet Blender Blue' Homogenizer at speed 10 for 2 minutes, followed by a 4'
16 centrifugation at 12,000 g. Ten µl of the supernatant was transferred into a black 96-
17 well plate and assayed for luciferase expression using the Dual Luciferase Reporter
18 Assay System in an automated luminometer. Note that the tumorous brat-KD flies
19 contain a "UAS-FireflyLuciferase" transgene, whereas the non-tumorous flies without
20 the brat-KD carry a "UAS-RenillaLuciferase" transgene. Hence, luciferase activities
21 can only be compared within each series of genotypes, but not between the brat-WT
22 genotypes (shown in black in Fig 3C) and the brat-KD genotypes (shown in red in Fig
23 3C).

24 For weighing flies, 1 to 4 day old adult flies were dried for 20' at 95° (first for 10' with
25 a closed, then with an opened lid) and then stored at room temperature. Before
26 weighing on a Mettler UMT5 Comparator scale (Mettler Toledo), the flies were allowed
27 to equilibrate with ambient atmosphere for at least 30'.

28 To determine duration of development, timed egg lays (5 – 14 h) were performed
29 and eclosion was monitored 2 to 3 times a day.

30 *Survival analysis*

31 Parents were transferred to a fresh food vial every three days. Offspring was
32 collected within one day of adult eclosion, and subsequently transferred to fresh vials
33 every two days. The number of living flies was monitored daily for a period of 60 days.

34 *Isolation of type II neuroblasts*

35 Processing of larvae for next-generation sequencing was carried out as described
36 by (Harzer *et al*, 2013). Briefly, five-day old larvae were washed sequentially in PBS,
37 70% ethanol and Schneider's medium. Within ≤1 h larvae were dissected and brains
38 transferred to a 0.5 ml low-binding Eppendorf tube containing Rinaldini's solution (8
39 g/l NaCl, 0.2 g/l KCl, 50 mg NaH₂PO₄, 1 g/l NaHCO₃, 1 g/l Glucose). After 2 washes,
40 Rinaldini's solution was replaced with dissociation solution (Schneider's medium
41 containing 100 ml/l heat-inactivated fetal bovine serum, 2 ml/l insulin, 20 ml/l penicillin-
42 streptomycin, 100 ml L-glutamine, 20 mg/l L-glutathione, 20 mg/ml collagenase I, 20
43 mg/ml papain), and the brains were stirred up by pipetting. After one hour incubation
44 at 30°C with occasional mixing, the brains were washed twice with Rinaldini's solution
45 and with Schneider's medium, and then mechanically dissociated by pipetting. The
46 resulting cell suspension was filtered through a 30-µm mesh 5-ml FACS tube, which
47 was then filled up with Schneider's medium to a total volume of 10 µl per dissected
48 larval brain and sorted in a BD FACSAria™ III sorter. Type II Neuroblasts were
49 identified based on side scatter (SSC), forward scatter (FSC) and GFP intensity,

1 collected into 96-well microtiter plates, containing 1 μ l β -mercaptoethanol and 100 μ l
2 Lysis Buffer (Agilent Technologies Absolutely RNA Nanoprep Kit) per well, and
3 subsequently stored at -80°C until use.

4 *mRNA library preparation*

5 RNA was isolated using Agilent Technologies' Absolutely RNA Nanoprep Kit
6 (including DNase I digestion). RNA concentration and quality were determined on
7 2100 Bioanalyzer Instrument (Agilent Technologies) using the Agilent RNA 6000 Pico
8 Kit (Agilent Technologies). Library preparation was performed using the Poly(A)
9 mRNA Magnetic Isolation Module (New England Biolabs) and the NEBNext Ultra II
10 Directional RNA library Prep Kit for Illumina (New England Biolabs). For library
11 amplification 17 or 24 PCR cycles were used. Library size distribution and
12 concentration were analyzed on the Fragment Analyzer (Agilent Technologies) using
13 the NGS Fragment High Sensitivity Analysis Kit (1-6,000 bp; Agilent Technologies).
14 The libraries were sequenced on Illumina instrument (NEXTSeq500).

15 *Bioinformatics*

16 Bliss synergy scores (Bliss, 1939) were calculated using the R package
17 synergyfinder 1.10.7 (Zheng *et al*, 2022), where scores >10 suggest a synergistic
18 interaction; n=6 to 10 collections per genotype for Fig. 2A, median derived of 8 flies
19 for each genotype for Fig. 2C,D.

20 For RNAseq analysis, reads were mapped to version BDGP6 of the *Drosophila*
21 genome, using bowtie2 with the setting “very-sensitive-local” (Langmead & Salzberg,
22 2012) (2.2 to 9.8 million mapped reads per sample). Differentially expressed genes
23 were identified using edgeR 3.26.8 (Robinson *et al*, 2010). Gene set enrichment
24 analysis was carried out with GSEA 4.0.2. (Subramanian *et al*, 2005) and GO-terms
25 obtained from the ENSEMBL annotation for BDGP6.32. Volcano & box plots were
26 generated in R.

27 **References**

1. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. *Nature* 318: 533-538
2. Albertson R, Chabu C, Sheehan A, Doe CQ (2004) Scribble protein domain mapping reveals a multistep localization mechanism and domains necessary for establishing cortical polarity. *Journal of Cell Science* 117: 6061-6070
3. Baluapuri A, Hofstetter J, Dudvarski Stankovic N, Endres T, Bhandare P, Vos SM, Adhikari B, Schwarz JD, Narain A, Vogt M *et al* (2019) MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. *Mol Cell* 74: 674-687 e611
4. Bello B, Reichert H, Hirth F (2006) The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of *Drosophila*. *Development* 133: 2639-2648
5. Bellobusta P, Hulf T, Balla Diop S, Usseglio F, Pradel J, Aragnol D, Gallant P (2005) Myc interacts genetically with Tip48/Reptin and Tip49/Pontin to control growth and proliferation during *Drosophila* development. *Proc Natl Acad Sci USA* 102: 11799-11804
6. Bernecky C, Plitzko JM, Cramer P (2017) Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp. *Nature structural & molecular biology* 24: 809-815

1 7. Betschinger J, Mechtler K, Knoblich JA (2006) Asymmetric Segregation of the
2 Tumor Suppressor Brat Regulates Self-Renewal in Drosophila Neural Stem Cells. *Cell*
3 124: 1241
4 8. Bliss CI (1939) THE TOXICITY OF POISONS APPLIED JOINTLY1. *Annals of*
5 *Applied Biology* 26: 585-615
6 9. Boehm JS, Golub TR (2015) An ecosystem of cancer cell line factories to
7 support a cancer dependency map. *Nature Reviews Genetics* 16: 373-374
8 10. Bonnay F, Veloso A, Steinmann V, Kocher T, Abdusselamoglu MD, Bajaj S,
9 Rivelles E, Landskron L, Esterbauer H, Zinzen RP *et al* (2020) Oxidative Metabolism
10 Drives Immortalization of Neural Stem Cells during Tumorigenesis. *Cell* 182: 1490-
11 1507 e1419
12 11. Bosch JA, Tran NH, Hariharan IK (2015) CoinFLP: a system for efficient mosaic
13 screening and for visualizing clonal boundaries in Drosophila. *Development* 142: 597-
14 606
15 12. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA
16 (2008) The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast
17 lineages in Drosophila. *Dev Cell* 14: 535-546
18 13. Buchel G, Carstensen A, Mak KY, Roeschert I, Leen E, Sumara O, Hofstetter
19 J, Herold S, Kalb J, Baluapuri A *et al* (2017) Association with Aurora-A Controls N-
20 MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during
21 the Cell Cycle. *Cell Rep* 21: 3483-3497
22 14. Connacher RP, Goldstrohm AC (2021) Molecular and biological functions of
23 TRIM-NHL RNA-binding proteins. *Wiley Interdiscip Rev RNA* 12: e1620
24 15. Cortazar MA, Sheridan RM, Erickson B, Fong N, Glover-Cutter K, Brannan K,
25 Bentley DL (2019) Control of RNA Pol II Speed by PNUTS-PP1 and Spt5
26 Dephosphorylation Facilitates Termination by a "Sitting Duck Torpedo" Mechanism.
27 *Mol Cell* 76: 896-908 e894
28 16. Dang CV (2012) MYC on the path to cancer. *Cell* 149: 22-35
29 17. Dingar D, Tu WB, Resetca D, Lourenco C, Tamachi A, De Melo J, Houlahan
30 KE, Kalkat M, Chan P-K, Boutros PC *et al* (2018) MYC dephosphorylation by the
31 PP1/PNUTS phosphatase complex regulates chromatin binding and protein stability.
32 *Nature Communications* 9: 3502
33 18. Ehara H, Yokoyama T, Shigematsu H, Yokoyama S, Shirouzu M, Sekine SI
34 (2017) Structure of the complete elongation complex of RNA polymerase II with basal
35 factors. *Science* 357: 921-924
36 19. Fitz J, Neumann T, Pavri R (2018) Regulation of RNA polymerase II
37 processivity by Spt5 is restricted to a narrow window during elongation. *The EMBO*
38 *journal* 37
39 20. Fong N, Sheridan RM, Ramachandran S, Bentley DL (2022) The pausing zone
40 and control of RNA polymerase II elongation by Spt5: Implications for the pause-
41 release model. *Mol Cell* 82: 3632-3645 e3634
42 21. Hakes AE, Brand AH (2019) Neural stem cell dynamics: the development of
43 brain tumours. *Curr Opin Cell Biol* 60: 131-138
44 22. Hartzog GA, Wada T, Handa H, Winston F (1998) Evidence that Spt4, Spt5,
45 and Spt6 control transcription elongation by RNA polymerase II in *Saccharomyces*
46 *cerevisiae*. *Genes Dev* 12: 357-369
47 23. Harzer H, Berger C, Conder R, Schmauss G, Knoblich JA (2013) FACS
48 purification of Drosophila larval neuroblasts for next-generation sequencing. *Nat*
49 *Protoc* 8: 1088-1099

1 24. Henriques T, Scruggs BS, Inouye MO, Muse GW, Williams LH, Burkholder AB,
2 Lavender CA, Fargo DC, Adelman K (2018) Widespread transcriptional pausing and
3 elongation control at enhancers. *Genes Dev* 32: 26-41

4 25. Herter EK, Stauch M, Gallant M, Wolf E, Raabe T, Gallant P (2015) snoRNAs
5 are a novel class of biologically relevant Myc targets. *BMC Biol* 13: 25

6 26. Homem CCF, Knoblich JA (2012) Drosophila neuroblasts: a model for stem cell
7 biology. *Development* 139: 4297-4310

8 27. Homem CCF, Steinmann V, Burkard TR, Jais A, Esterbauer H, Knoblich JA
9 (2014) Ecdysone and Mediator Change Energy Metabolism to Terminate Proliferation
10 in Drosophila Neural Stem Cells. *Cell* 158: 874-888

11 28. Hu S, Peng L, Xu C, Wang Z, Song A, Chen FX (2021) SPT5 stabilizes RNA
12 polymerase II, orchestrates transcription cycles, and maintains the enhancer
13 landscape. *Mol Cell* 81: 4425-4439 e4426

14 29. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD,
15 Bishop JM, Felsher DW (2002) Sustained loss of a neoplastic phenotype by brief
16 inactivation of MYC. *Science* 297: 102-104

17 30. Janssens DH, Komori H, Grbac D, Chen K, Koe CT, Wang H, Lee CY (2014)
18 Earmuff restricts progenitor cell potential by attenuating the competence to respond to
19 self-renewal factors. *Development* 141: 1036-1046

20 31. Kalkat M, Resetca D, Lourenco C, Chan PK, Wei Y, Shiah YJ, Vitkin N, Tong
21 Y, Sunnerhagen M, Done SJ *et al* (2018) MYC Protein Interactome Profiling Reveals
22 Functionally Distinct Regions that Cooperate to Drive Tumorigenesis. *Molecular cell*
23 72: 836-848 e837

24 32. Kaplan CD, Morris JR, Wu Ct, Winston F (2000) Spt5 and Spt6 are associated
25 with active transcription and have characteristics of general elongation factors in *D. melanogaster*. *Genes Dev* 14: 2623-2634

27 33. Koch HB, Zhang R, Verdoort B, Bailey A, Zhang CD, Yates JR, 3rd, Menssen
28 A, Hermeking H (2007) Large-scale identification of c-MYC-associated proteins using
29 a combined TAP/MudPIT approach. *Cell Cycle* 6: 205-217

30 34. Komori H, Golden KL, Kobayashi T, Kageyama R, Lee CY (2018) Multilayered
31 gene control drives timely exit from the stem cell state in uncommitted progenitors
32 during Drosophila asymmetric neural stem cell division. *Genes Dev* 32: 1550-1561

33 35. Kortlever RM, Sodir NM, Wilson CH, Burkhardt DL, Pellegrinet L, Brown Swigart
34 L, Littlewood TD, Evan GI (2017) Myc Cooperates with Ras by Programming
35 Inflammation and Immune Suppression. *Cell* 171: 1301-1315 e1314

36 36. Landskron L, Steinmann V, Bonnay F, Burkard TR, Steinmann J, Reichardt I,
37 Harzer H, Laurenson A-S, Reichert H, Knoblich JA (2018) The asymmetrically
38 segregating lncRNA cherub is required for transforming stem cells into malignant cells.
39 *eLife* 7

40 37. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2.
41 *Nat Methods* 9: 357-359

42 38. Lee C-Y, Wilkinson BD, Siegrist SE, Wharton RP, Doe CQ (2006) Brat Is a
43 Miranda Cargo Protein that Promotes Neuronal Differentiation and Inhibits Neuroblast
44 Self-Renewal. *Developmental Cell* 10: 441-449

45 39. Loedige I, Jakob L, Treiber T, Ray D, Stotz M, Treiber N, Hennig J, Cook KB,
46 Morris Q, Hughes TR *et al* (2015) The Crystal Structure of the NHL Domain in Complex
47 with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene
48 Regulation. *Cell Rep* 13: 1206-1220

1 40. Lorenzin F, Benary U, Baluapuri A, Walz S, Jung LA, von Eyss B, Kisker C,
2 Wolf J, Eilers M, Wolf E (2016) Different promoter affinities account for specificity in
3 MYC-dependent gene regulation. *Elife* 5

4 41. Mahoney MB, Parks AL, Ruddy DA, Tiong SYK, Esengil H, Phan AC,
5 Philandrinos P, Winter CG, Chatterjee R, Huppert K *et al* (2006) Presenilin-Based
6 Genetic Screens in *Drosophila melanogaster* Identify Novel Notch Pathway Modifiers.
7 *Genetics* 172: 2309-2324

8 42. Montero L, Muller N, Gallant P (2008) Induction of apoptosis by *Drosophila* Myc.
9 *Genesis* 46: 104-111

10 43. Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max
11 recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription
12 factors. *Cell* 112: 193-205

13 44. Neumuller RA, Gross T, Samsonova AA, Vinayagam A, Buckner M, Founk K,
14 Hu Y, Sharifpoor S, Rosebrock AP, Andrews B *et al* (2013) Conserved regulators of
15 nucleolar size revealed by global phenotypic analyses. *Sci Signal* 6: ra70

16 45. Neumüller RA, Richter C, Fischer A, Novatchkova M, Neumüller KG, Knoblich
17 JA (2011) Genome-Wide Analysis of Self-Renewal in *Drosophila* Neural Stem Cells
18 by Transgenic RNAi. *Cell Stem Cell* 8: 580-593

19 46. Parua PK, Booth GT, Sanso M, Benjamin B, Tanny JC, Lis JT, Fisher RP (2018)
20 A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase
21 II. *Nature* 558: 460-464

22 47. Parua PK, Kalan S, Benjamin B, Sanso M, Fisher RP (2020) Distinct Cdk9-
23 phosphatase switches act at the beginning and end of elongation by RNA polymerase
24 II. *Nat Commun* 11: 4338

25 48. Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D,
26 Flockhart I, Binari R, Shim H-S *et al* (2015) The Transgenic RNAi Project at Harvard
27 Medical School: Resources and Validation. *Genetics* 201: 843-852

28 49. Qiu YJ, Gilmour DS (2017) Identification of Regions in the Spt5 Subunit of DRB
29 Sensitivity-inducing Factor (DSIF) That Are Involved in Promoter-proximal Pausing.
30 *Journal of Biological Chemistry* 292: 5555-5570

31 50. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package
32 for differential expression analysis of digital gene expression data. *Bioinformatics* 26:
33 139-140

34 51. Samuels TJ, Jarvelin AI, Ish-Horowicz D, Davis I (2020) Imp/IGF2BP levels
35 modulate individual neural stem cell growth and division through myc mRNA stability.
36 *Elife* 9: e51529

37 52. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, Vass JK,
38 Athineos D, Clevers H, Clarke AR (2007) Myc deletion rescues Apc deficiency in the
39 small intestine. *Nature* 446: 676-679

40 53. Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, Zhao
41 W, Zhang X, Ventura A, Liu Y *et al* (2018) Pan-cancer Alterations of the MYC
42 Oncogene and Its Proximal Network across the Cancer Genome Atlas. *Cell Syst* 6:
43 282-300 e282

44 54. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,
45 Preibisch S, Rueden C, Saalfeld S, Schmid B *et al* (2012) Fiji: an open-source platform
46 for biological-image analysis. *Nature methods* 9: 676-682

47 55. Shetty A, Kallgren SP, Demel C, Maier KC, Spatt D, Alver BH, Cramer P, Park
48 PJ, Winston F (2017) Spt5 Plays Vital Roles in the Control of Sense and Antisense
49 Transcription Elongation. *Molecular cell* 66: 77-88 e75

1 56. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis
2 AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy.
3 *Nature* 455: 679-683

4 57. Steiger D, Furrer M, Schwinkendorf D, Gallant P (2008) Max-independent
5 functions of Myc in *Drosophila*. *Nature Gen* 40: 1084-1091

6 58. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
7 Paulovich A, Pomeroy SL, Golub TR, Lander ES *et al* (2005) Gene set enrichment
8 analysis: a knowledge-based approach for interpreting genome-wide expression
9 profiles. *Proc Natl Acad Sci USA* 102: 15545-15550

10 59. Swanson MS, Malone EA, Winston F (1991) SPT5, an essential gene important
11 for normal transcription in *Saccharomyces cerevisiae*, encodes an acidic nuclear
12 protein with a carboxy-terminal repeat. *Mol Cell Biol* 11: 4286

13 60. Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini
14 LF (2012) GADD45 proteins: central players in tumorigenesis. *Curr Mol Med* 12: 634-
15 651

16 61. Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM, Sun Q, Olejniczak ET,
17 Clark T, Dey S, Lorey S *et al* (2015) Interaction with WDR5 promotes target gene
18 recognition and tumorigenesis by MYC. *Mol Cell* 58: 440-452

19 62. Tocchini C, Ciosk R (2015) TRIM-NHL proteins in development and disease.
20 *Semin Cell Dev Biol* 47-48: 52-59

21 63. van den Ameele J, Brand AH (2019) Neural stem cell temporal patterning and
22 brain tumour growth rely on oxidative phosphorylation. *Elife* 8

23 64. Vo BT, Wolf E, Kawauchi D, Gebhardt A, Rehg JE, Finkelstein D, Walz S,
24 Murphy BL, Youn YH, Han Y-G *et al* (2016) The Interaction of Myc with Miz1 Defines
25 Medulloblastoma Subgroup Identity. *Cancer cell* 29: 5-16

26 65. Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S,
27 Yano K, Hartzog GA, Winston F *et al* (1998) DSIF, a novel transcription elongation
28 factor that regulates RNA polymerase II processivity, is composed of human Spt4 and
29 Spt5 homologs. *Genes Dev* 12: 343-356

30 66. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, Rycak L,
31 Dumay-Odelot H, Karim S, Bartkuhn M *et al* (2014) Activation and repression by
32 oncogenic MYC shape tumour-specific gene expression profiles. *Nature* 511: 483-487

33 67. Welin M, Grossmann JG, Flodin S, Nyman T, Stenmark P, Tresaugues L,
34 Kotenyova T, Johansson I, Nordlund P, Lehtio L (2010) Structural studies of tri-
35 functional human GART. *Nucleic Acids Res* 38: 7308-7319

36 68. Winston F, Chaleff DT, Valent B, Fink GR (1984) Mutations affecting Ty-
37 mediated expression of the HIS4 gene of *Saccharomyces cerevisiae*. *Genetics* 107:
38 179-197

39 69. Wu DC, Johnston LA (2010) Control of wing size and proportions by *Drosophila*
40 myc. *Genetics* 184: 199-211

41 70. Xiao Q, Komori H, Lee CY (2012) klumpfuss distinguishes stem cells from
42 progenitor cells during asymmetric neuroblast division. *Development* 139: 2670-2680

43 71. Yakhnin AV, Babitzke P (2014) NusG/Spt5: are there common functions of this
44 ubiquitous transcription elongation factor? *Curr Opin Microbiol* 18: 68-71

45 72. Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, Pessia A,
46 Tang J (2022) SynergyFinder Plus: Toward Better Interpretation and Annotation of
47 Drug Combination Screening Datasets. *Genomics, Proteomics & Bioinformatics* 20:
48 587-596

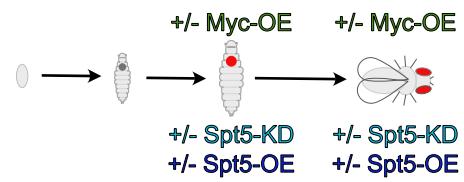
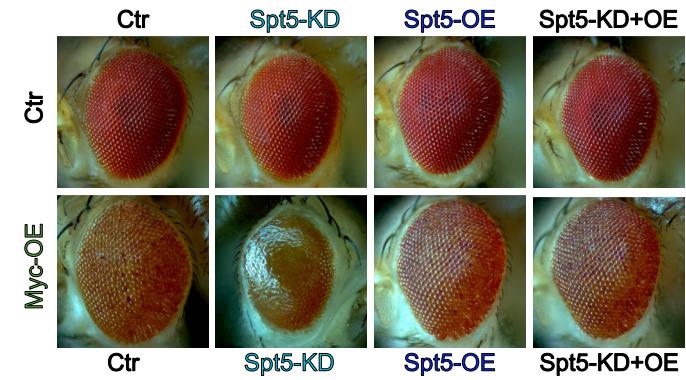
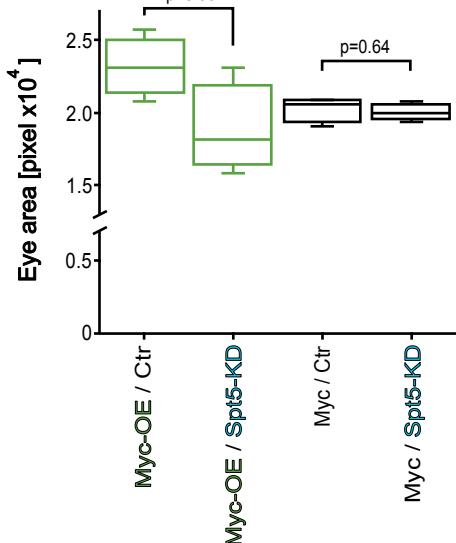
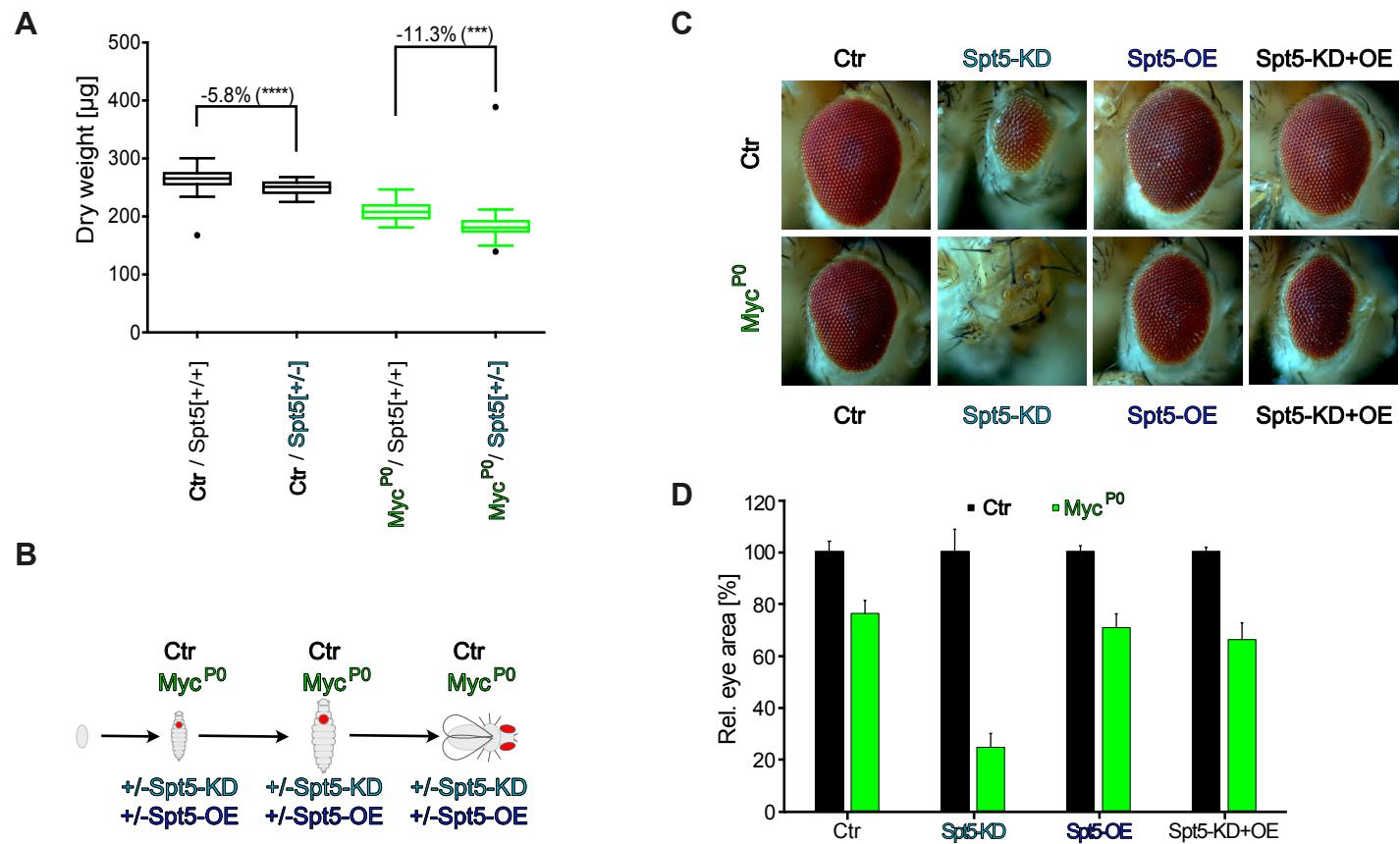

49

Figure 1


A

<u>KOW1:</u>			
Human	1	LKP KSWRLKRG IYKDDIAQV D YVEPS	27
Drosophila	2	LK K WVRLKRG+YKDDIAQV D YV+ + LKV KQWVRLKRG L YKDDIAQV D YV DLA	28
<u>KOW2:</u>			
Human	1	FQPGDNVEVCEGELINLQGKILSVDG	26
Drosophila	2	F GDNVEVC G+L NLQ KI+++DG FSMGDNVEVCVG DLENLQAKIV AIDG	27
<u>KOW3:</u>			
Human	1	FKMGDHVKVIAGR FEGDTGL IVR VEE NFVIL	31
Drosophila	1	FK GDH +V+AGR+EG+TGLI+RVE V+L FKTGDHARVLAGRYEGETGLIIRVEPTRVVL	31
<u>KOW4:</u>			
Human	1	IHV KDIVKVIDGPHSGREGEIRHLFRSFAFLHCK	34
Drosophila	1	I +D+VKV++GPH+GR GEI+HL+RS AFLHC+ IRRRDVVKVMEGPHAGRSGEIKHLYRSLAFLHCR	34
<u>KOW5:</u>			
Human	1	ELIGQTVRISQGPYKG YIGVVKDATESTARVELH	34
Drosophila	1	E++G+T++IS GPYKG +G+VKDATESTARVELH EILGKTIKISGGPYKGAVGIVKDATESTARVELH	34
<u>NGN:</u>			
Human	1	DPNLWTVKCKIGEERATAISLMRKFIAYQFTDPLQIKSVVAPEHVKG YIYVEAYKQTHV	60
Drosophila	1	DPNLW VKC+IGEE+ATA+ LMRK++ Y TD PLQIKS++APE VKGYIY+EAYKQTHV DPNLW MVKCRIGEEKATA LLMRKYLTYLNTDDPLQIKSIIAPEGVKGYIYLEAYKQTHV	60
Human	61	KQ AIEGVGNLRLGYWNQQMVP I KEMTDVLKVVKE	94
Drosophila	61	K I+ VGNLR+G W Q+MVP I KEMTDVLKVVKE KTCIDNVGNLRLMGKWKQEMVP I KEMTDVLKVVKE	94


B


C

D

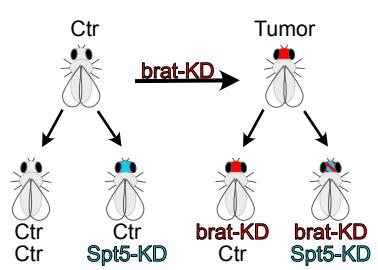


Figure 2

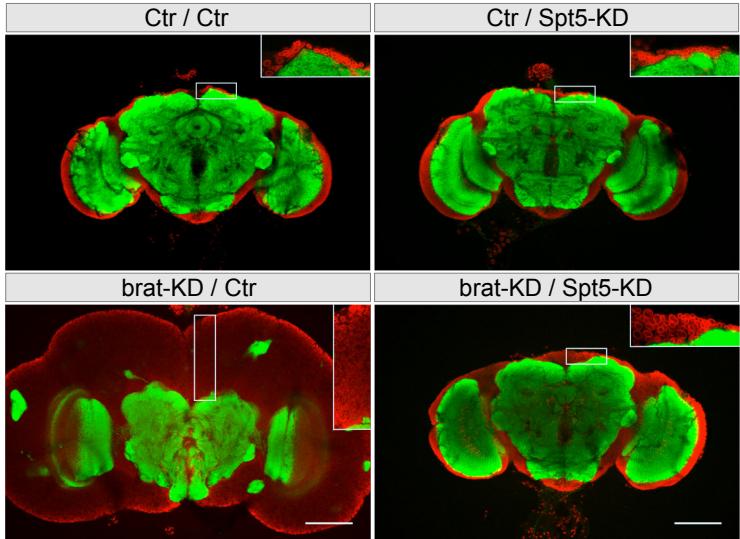
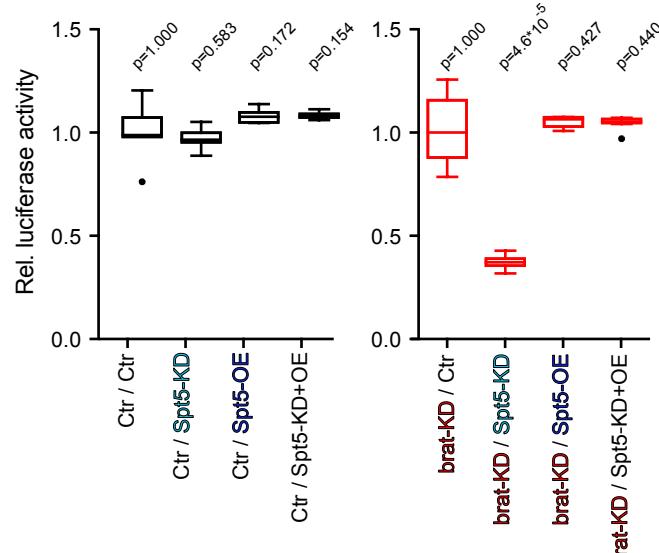
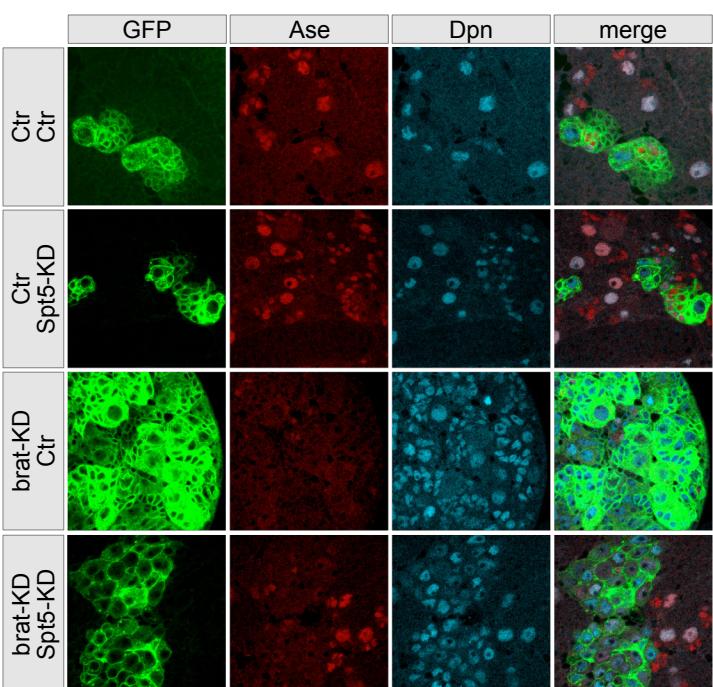
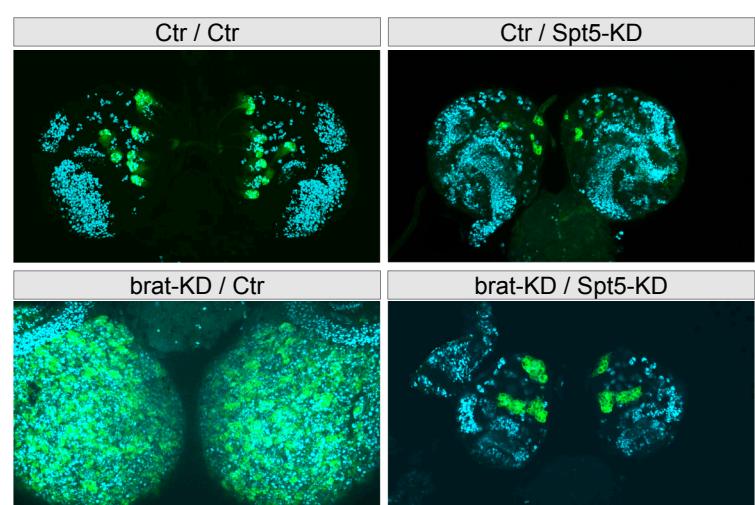
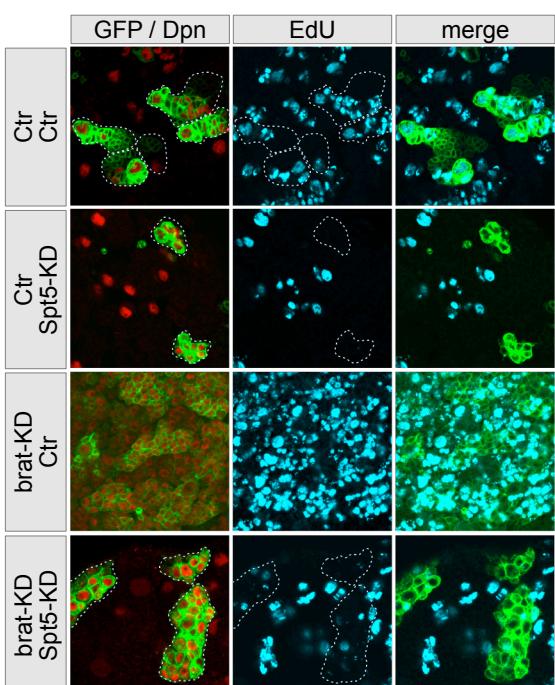


Figure 3

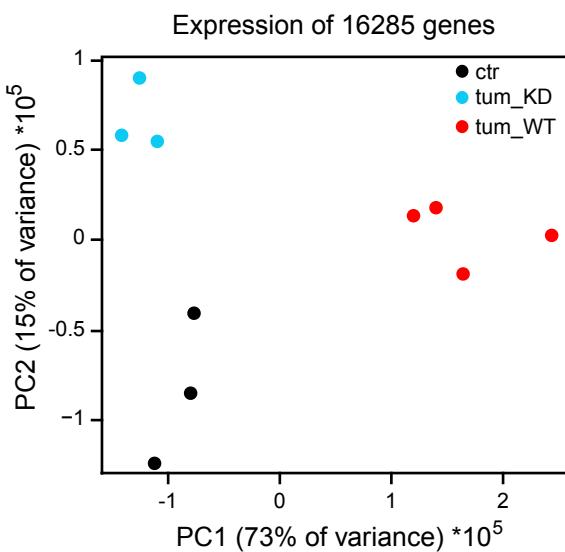

A


B


C


D

E



F

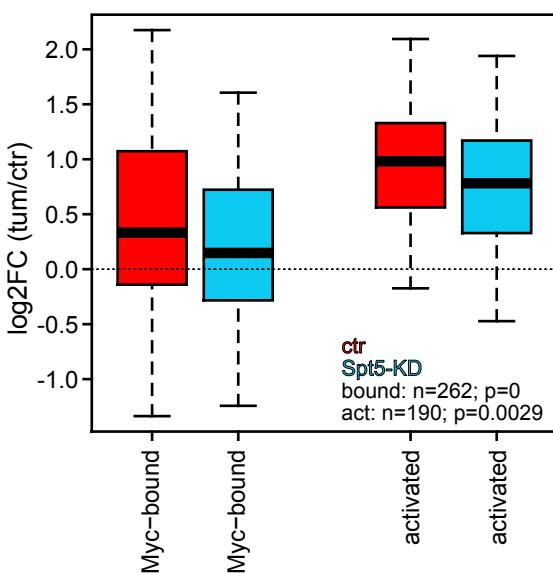
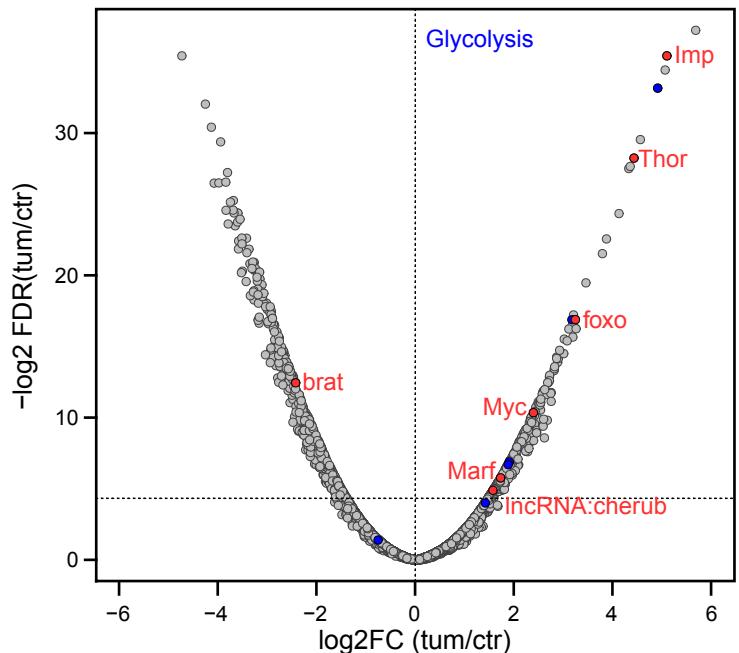
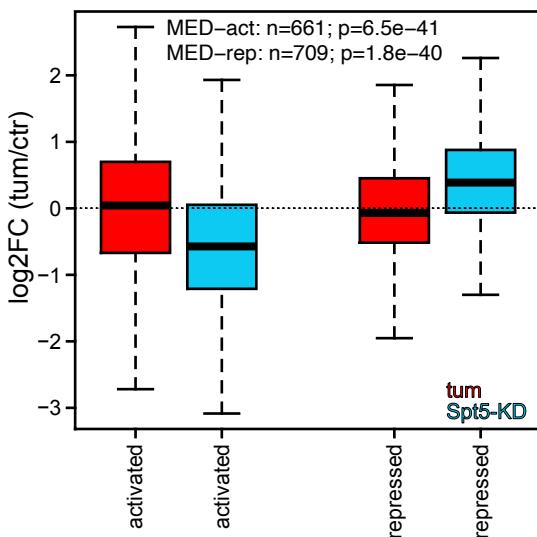
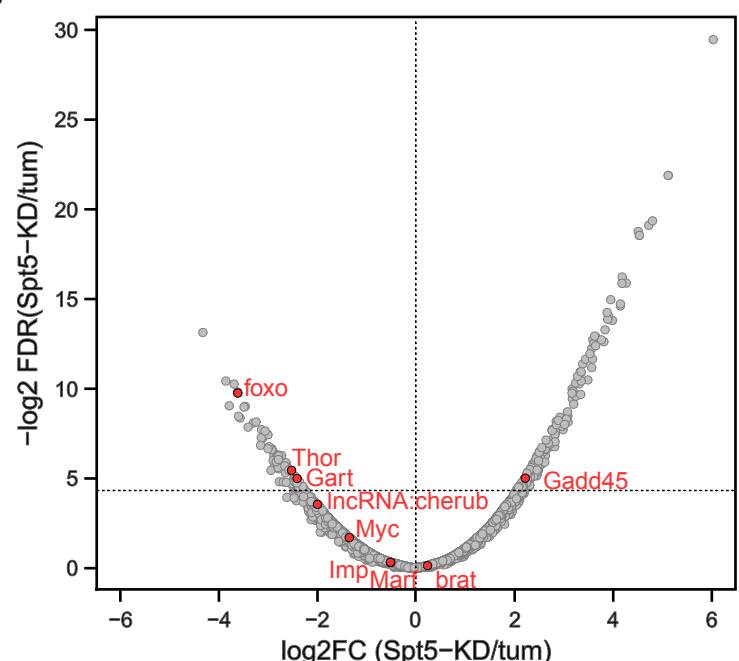


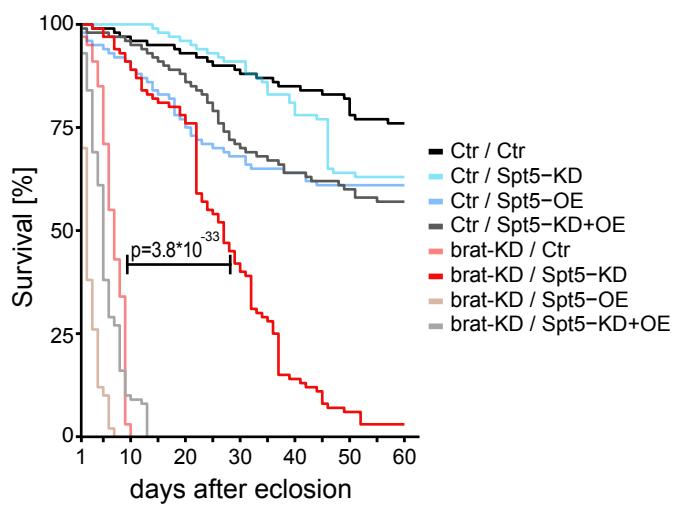
Figure 4


A


B


C

E



D

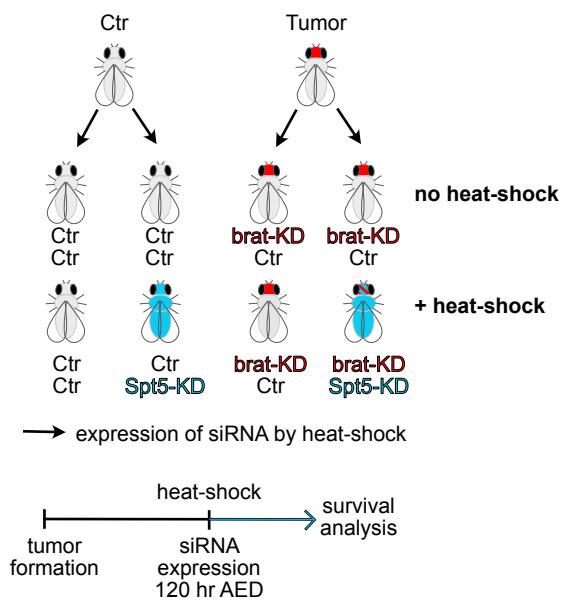
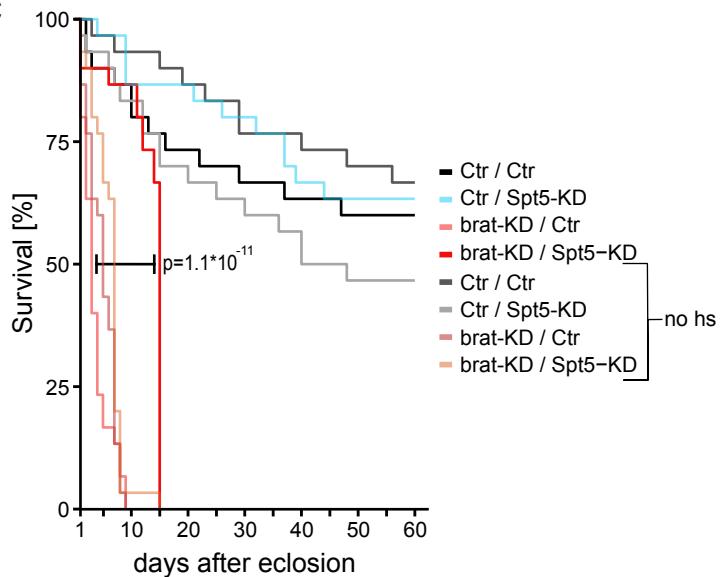
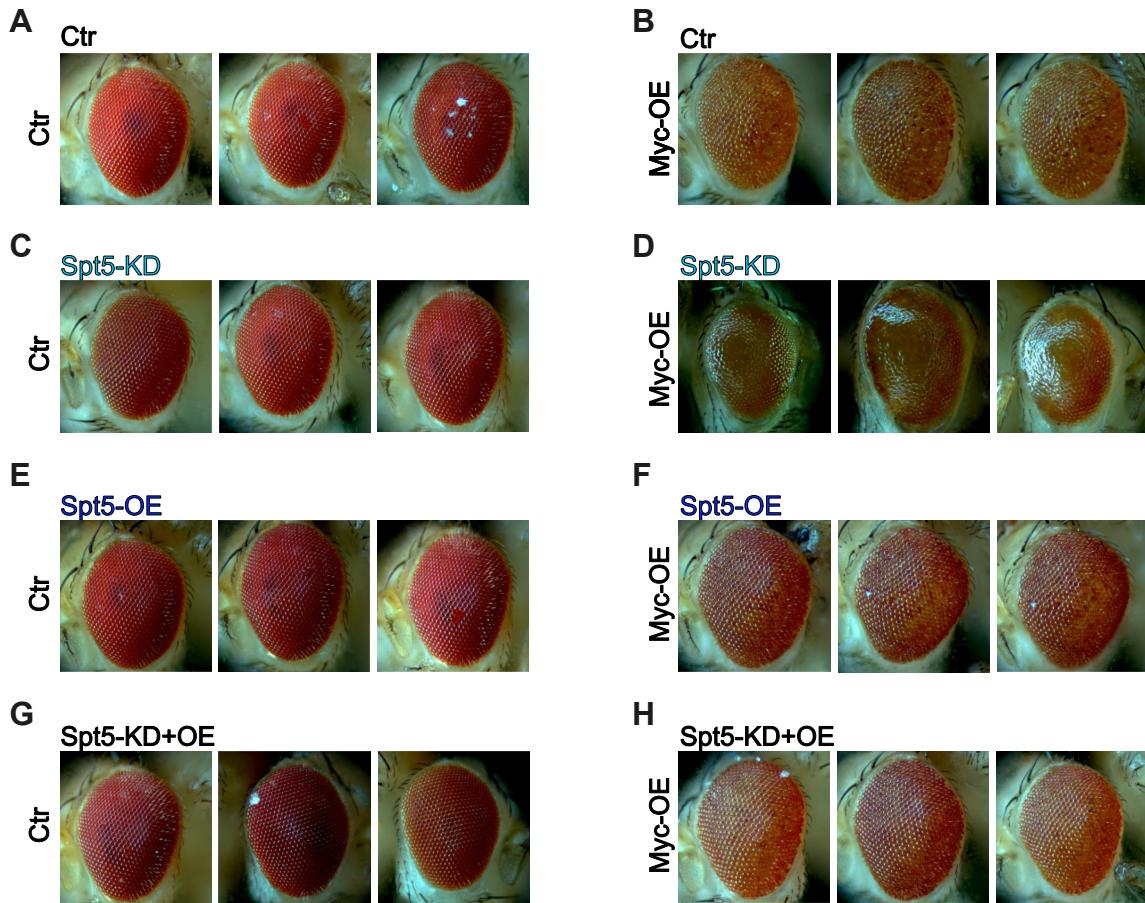
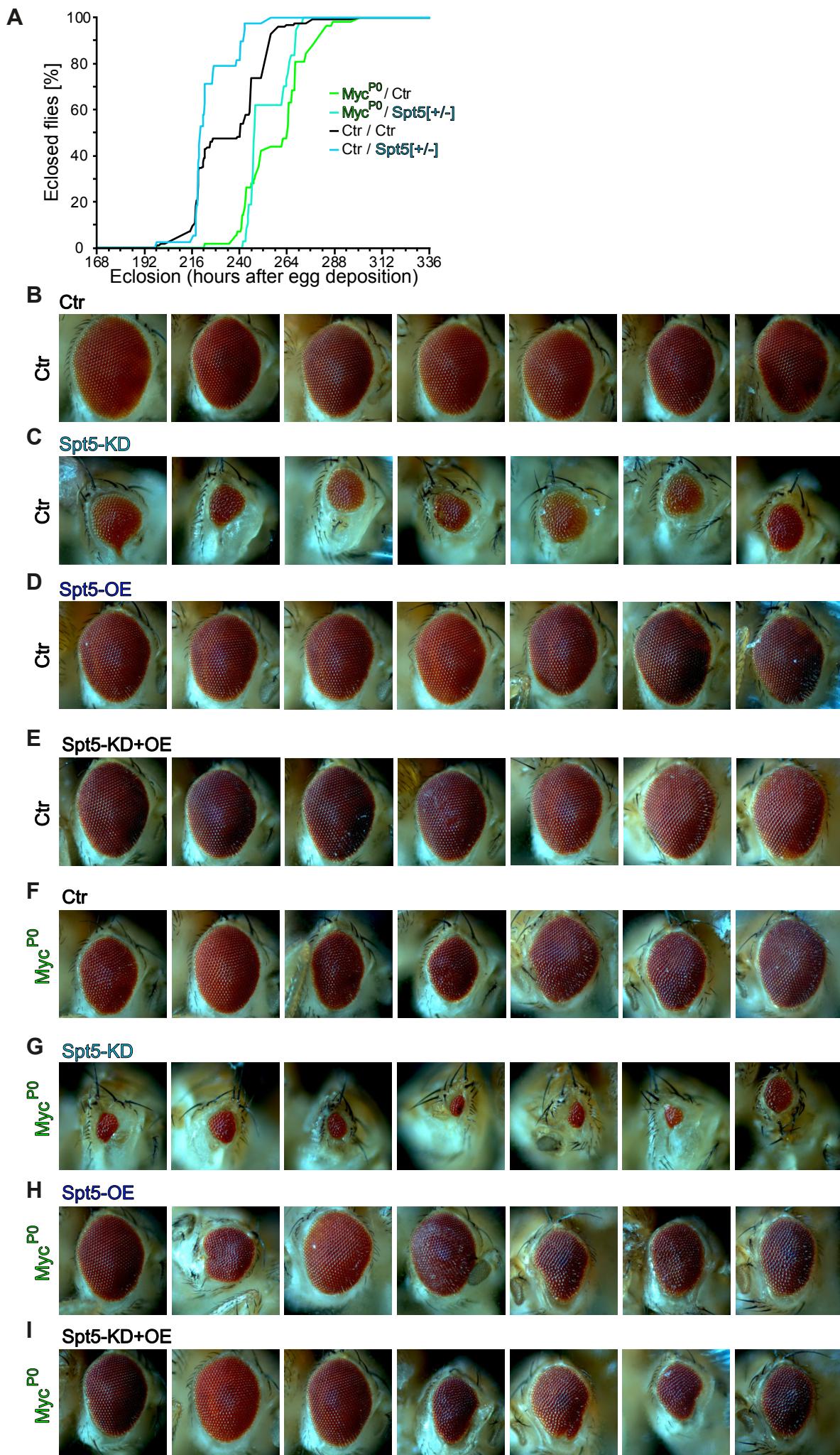


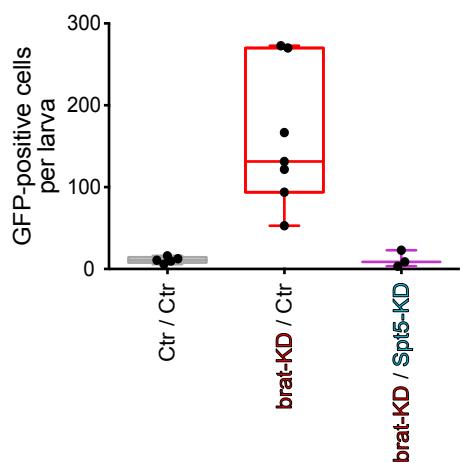
Figure 5


A

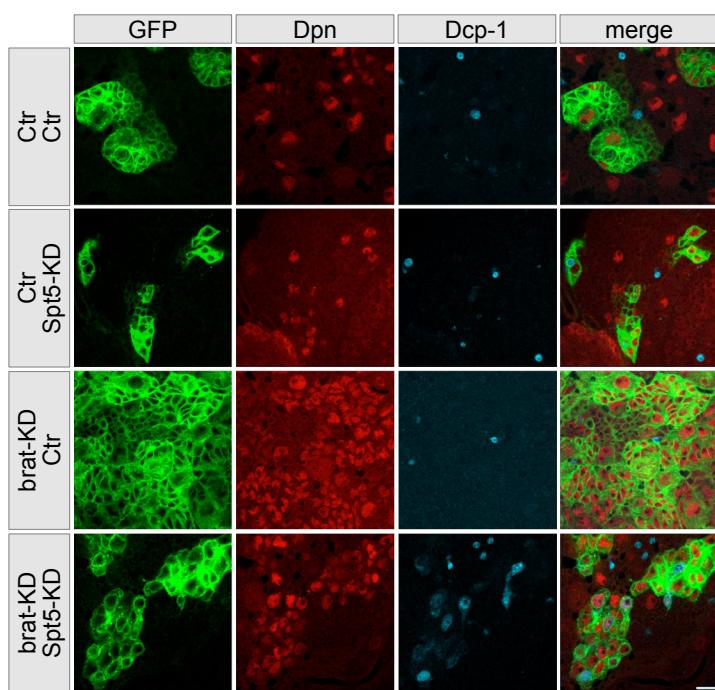

B


C

Supplemental Figure S1

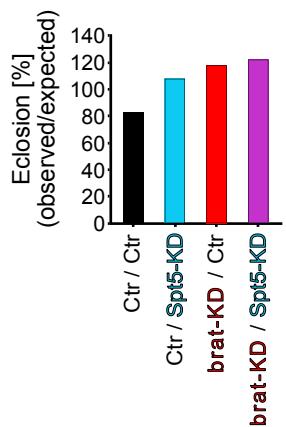


Supplemental Figure S2

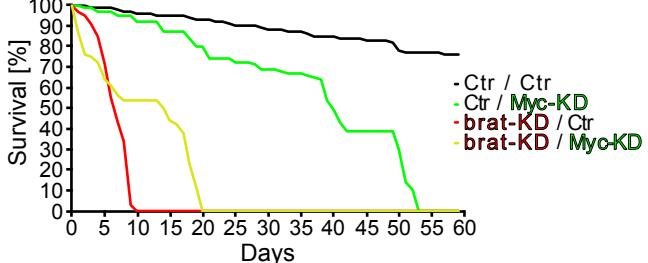


Supplemental Figure S3

A



B



Supplemental Figure S4

A

B

