

¹ Journal name: Ecological Applications

² Manuscript type: Article

³ **Declining food availability and habitat shifts drive
4 community responses to marine hypoxia**

⁵ E Duskey^{1,2,*}, M Casini^{1,3}, KE Limburg^{1,2}, and A Gårdmark¹

⁶ ¹Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden

⁷ ²Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University
8 of New York, Syracuse, NY, USA

⁹ ³Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy

¹⁰ *Corresponding author. E-mail: elizabeth.duskey@slu.se

¹¹

¹² **Open Research statement:** All data and parameters necessary to replicate this modeling study
13 are available at <https://github.com/epduskey/hypoxiaSSM>. The code contained therein is a novel,
14 extensive modification of the R package mizer, available at <https://github.com/sizespectrum/mizer>.
15 Data and code will be archived in Zenodo upon publication.

¹⁶ **Keywords:** Baltic Sea; environmental hypoxia; fish community dynamics; food web models;
17 ocean deoxygenation; size spectrum models

18

Abstract

19 Worsening marine hypoxia has had severe negative consequences for fish communities
20 across the globe. While individual- and population-level impacts of deoxygenation have
21 been identified, it is unknown how they interact to drive changes in food webs. To address
22 this, we incorporated several major impacts of hypoxia, including declines in benthic re-
23 sources, habitat shifts, increasing mortality, and changes to rates of feeding, assimilation,
24 and reproductive efficiency, into an existing size spectrum food web modeling framework.
25 We used this structure to ask the following questions: which of these direct effects are most
26 critical to capturing population and community dynamics in a representative hypoxic sys-
27 tem, how do they interact to result in community responses to deoxygenation, and what are
28 the potential consequences of these effects in the context of accelerating deoxygenation?
29 We tested the effect of different combinations of oxygen-dependent processes, driven by
30 observed oxygen levels, on the food web model's ability to explain time series of observed
31 somatic growth, diets, biomass, and fishery yields of commercially relevant species in the
32 Baltic Sea. Model results suggest that food availability is most critical to capturing observed
33 dynamics. There is also some evidence for oxygen-dependent habitat use and physiological
34 rates as drivers of observed dynamics. Deoxygenation results in declining growth both of
35 benthic and benthopelagic fish species, as the latter are unable to compensate for the loss
36 of benthic resources by consuming more pelagic fish and resources. Analysis of scenarios
37 of ideal, declining, and degraded oxygen conditions show that deoxygenation results in a
38 decline in somatic growth of predators, an altered habitat occupancy resulting in changing
39 species interactions, and a shift in energy flow to benthopelagic predators from benthic to
40 pelagic resources. This may have important implications for management as oxygen declines
41 or improves.

42 Introduction

43 Marine hypoxia occurs when dissolved oxygen declines to levels that are sub-optimal for aerobic
44 life. Hypoxia may occur naturally in some systems, but it has increased worldwide in both sever-
45 ity and frequency due to anthropogenic nutrient enrichment (Breitburg et al. 2018), warming-
46 induced increases in oxygen consumption (Brewer and Peltzer 2016) and stratification (Diaz and
47 Breitburg 2009), and decreases in oxygen solubility with rising ocean temperatures, particularly
48 in the epipelagic (Schmidtko et al. 2017). There are a wide variety of negative impacts of hy-
49 poxia on fishes, ranging from altered functioning of cells to community reorganization (Pollock
50 et al. 2007). This presents a challenge to fish species and their prey and hinders society's ability
51 to use ocean resources sustainably (United Nations 2022).

52 The effects of deoxygenation are documented at several levels of biological organization. For
53 example, at the population level, we might observe changes in reproductive potential (Wang et al.
54 2016) and habitat use (Orio et al. 2019; Zhang et al. 2014). Changes in the chemical environment
55 may promote the production of toxicants, resulting in increased mortality (Diaz and Breitburg
56 2009). At the community level, differential responses among species or functional groups can
57 result in spatial reorganization (Chu and Gale 2017), changes in species composition (Slater et
58 al. 2020), and adaptive foraging resulting in significant changes in food web structure and en-
59 ergy flow (Breitburg et al. 1999; Breitburg et al. 2003; Pollock et al. 2007). Observations at these
60 higher levels of organization arise from behavioral and physiological responses of individuals.
61 There are several compensatory mechanisms that individual fish employ in order to mitigate the
62 effects of hypoxia, including an increase in ventilation and gill perfusion, increased hemoglobin
63 and oxygen extraction, decreases in activity (Farrell and Richards 2009), as well as behaviors
64 such as aquatic surface respiration (ASR; Dwyer et al. 2014), and changes in swimming activ-
65 ity (Domenici et al. 2013) and habitat occupancy (Eby et al. 2005; Stramma et al. 2012; Casini
66 et al. 2019). Indirect effects on fish may also be common. For example, benthic invertebrates
67 may significantly alter behavior and ultimately be subject to increased mortality under hypoxia

68 (Riedel et al. 2014). This may lead to changes in the diets of predatory fish that feed on them
69 (Powers et al. 2005). Overall, there is a good body of evidence linking low oxygen concentra-
70 tion to individual responses of fish, less evidence indicating how these result in population-level
71 responses (Bergman et al. 2019), and relatively little evidence describing how these in turn im-
72 pact community-level responses (Rose et al. 2009). Of the latter, investigations of the impacts of
73 hypoxia on predator-prey interactions suggest that differential sensitivity of each species to de-
74 clining oxygen can result in changes in spatial overlap, predator activity, and prey vulnerability
75 (Breitburg et al. 1997; Chu and Gale 2017). However, it is unknown which of these mechanisms,
76 if any, are most critical and how they interact to drive the observed, higher-level dynamics.

77 Integrative modeling may help to resolve some of these unknowns by drawing direct connec-
78 tions between the effects of environmental drivers on individuals and higher-level outcomes (Pol-
79 lock et al. 2007). Hypoxia operates on several physiological and behavioral pathways of fish si-
80 multaneously. Its impacts are dependent on body size (Ekau et al. 2010), and are often caused by
81 changes in feeding (Wang et al. 2009). Hypoxia may thus affect individuals, cause emergent ef-
82 fects on populations, and impact the overall community structure by changing competitive domi-
83 nance and feeding relationships. Therefore, a size structured food web model offers an appropri-
84 ate framework with which to evaluate the relative importance of major individual-level pathways
85 suggested by the literature as potential drivers of observed population and community dynamics
86 in hypoxic habitats (Koenigstein et al. 2016).

87 In this study, we developed an oxygen-dependent version of a size spectrum food web model
88 in order to ask the following questions: (1) Which individual-level impacts of deoxygenation are
89 most critical to capturing observed population and community dynamics? (2) How do they in-
90 teract to result in community-level responses to deoxygenation? and (3) What are the potential
91 consequences of these effects in the context of accelerating deoxygenation? We used the Baltic
92 Sea as a case study and fitted several parameters to a simplified fish food web to explore how en-
93 vironmental hypoxia can affect community composition and dynamics, as well as characteristics

94 of the commercial fisheries yield. By testing the ability of several individual-level pathways –
95 including food availability, vertical habitat occupancy, mortality, and physiological rates of feed-
96 ing, reproduction, and assimilation – to describe observations at the population and community
97 scale, we identified potential physiological and behavioral drivers of the deleterious effects of
98 hypoxia on marine food webs.

99 Methods

100 Size Spectrum Food Web Model

101 We modified the size-structured food web modeling framework **mizer** (Scott et al. 2014) in or-
102 der to represent fish community dynamics in response to declines in benthic oxygen levels. In
103 food web models of this sort, maximum body size serves as the master trait of each species, de-
104 termining somatic growth through feeding, reproduction through maturation size and growth, and
105 mortality through size-dependent predation and natural senescence (Peters 1986; Blanchard et
106 al. 2017). For our model, we built a general structure ([found here](#)) composed of a benthopelagic
107 predator, a benthic predator, two species of pelagic forage fish, as well as these species' basal re-
108 sources in separate benthic and pelagic habitats. This system reflects a community with two com-
109 peting benthic predators, one of which is more resilient to hypoxia than the other, two competing
110 pelagic prey fish species, and benthic and pelagic invertebrate fauna on which they feed.

111 The fundamental and theoretical foundation of these models is described in Andersen et al.
112 (2016). They are generally defined by three major ecological processes, all of which scale with
113 body size: somatic growth, reproduction, and mortality. The dynamic size spectrum of each
114 species and basal resource is determined by a flow of energy, or equivalent mass, via trophic rela-
115 tionships, as well as mortality. Conservation of mass is guided by the McKendrick-von Foerster

116 equation (Silvert and Platt 1978):

$$(1) \quad \frac{\partial n_i}{\partial t} + \frac{\partial g_i n_i}{\partial w} = -m_i n_i$$

117 where n_i , g_i , and m_i describe time-dependent population size, somatic growth, and mortality as
118 a function of body size for each species i , respectively. Recruitment of individuals of species i at
119 a minimal size w_0 is described by the boundary condition:

$$(2) \quad g_i(w_0)n_i(w_0) = R_i$$

120 Losses of individual biomass construed as metabolic activity, which also scales with body size
121 (see Brown et al. 2004), and assimilation efficiency, determine the conversion of ingested mass
122 into somatic and reproductive growth. Each individual of each species is recruited to the pop-
123 ulation at weight w_0 and grows by consuming a combination of basal resources and other fish.
124 Growth is also determined in part by species-specific von Bertalanffy growth parameters (Ess-
125 ington et al. 2001), here estimated from data. The basal resources are governed by a simple semi-
126 chemostat function, as well as by the degree of predation. Recruitment is limited by density de-
127 pendent processes, typically by the inclusion of a Beverton-Holt or Ricker type stock-recruitment
128 relationship. Feeding is guided by size- and species-preference, determined by both a distribu-
129 tion describing the preferred predator:prey mass ratio (PPMR) and a square matrix describing
130 horizontal spatial overlap of each species with all others. A maturity ogive guides the alloca-
131 tion of acquired energy to somatic growth versus reproduction throughout an individual's life.
132 Mortality occurs either through predation, unspecified natural processes, or fishing, the latter of
133 which is determined by user-defined fishing selectivity, effort, and catchability. We estimated
134 each of these parameters with data arising from the Central Baltic Sea (Appendix S2; Figures
135 S1–S5 and Tables S1 and S2 for parameter estimates and data sources). Given this model struc-
136 ture's focus on individual physiological processes and how these govern community dynamics, it
137 is appropriate for the inclusion of documented effects of hypoxia on feeding, habitat occupancy,

138 metabolism, and mortality (see Figure 1).

139 **Oxygen dependence**

140 In general, we included deleterious effects of hypoxia in our model by increasing costs and de-
141 creasing vital physiological and ecological rates with bounded and continuous functions of oxy-
142 gen decline (Appendix S1). Though the hypoxia threshold is often defined as an oxygen con-
143 centration of $2 \text{ mg}\cdot\text{L}^{-1}$ (Hrycik et al. 2017), a range of concentrations above this threshold are
144 known to have sub-lethal, yet critical effects on the ecology of fishes (Kramer 1987). These ef-
145 fects may or may not vary by body size (Hrycik et al. 2017; Pan et al. 2016), but they do vary by
146 species (Nilsson and Östlund-Nilsson 2008). In a size spectrum food web framework, each indi-
147 vidual may be affected to a greater or lesser degree relative to its competitors. Therefore, within
148 these models, hypoxia has the potential to change competitive and predatory interactions, and
149 the direction and magnitude is dependent on several characteristics of the species involved. This
150 flexibility, combined with a focus on individuals throughout ontogeny and ultimately leading to
151 dynamics at a scale at which they are observed, allows us to ask specific questions about the rele-
152 vance of individual processes at the community scale.

153 More specifically, we altered the baseline structure of **mizer** (Scott et al. 2014) by adding
154 dynamic independent variables for benthic and pelagic oxygen, given here in units of $\text{mL}\cdot\text{L}^{-1}$.
155 We used the concept of critical oxygen level, or P_{crit} , to describe individuals' relative sensitiv-
156 ity to estimated oxygen levels. The P_{crit} of an individual is the oxygen level below which stan-
157 dard metabolism can no longer be maintained and begins to decline with ambient levels (Ultsch
158 and Regan 2019). That is, it is the level at which oxyregulators (i.e. organisms which maintain
159 constant oxygen consumption) become oxyconformers (i.e. organisms whose oxygen consump-
160 tion varies with environmental conditions) due to the lack of adequate oxygen to cover basal
161 metabolic costs (Rogers et al. 2016). This value depends not only on species identity (Farrell and
162 Richards 2009), but also on salinity, temperature, and body weight (Rogers et al. 2016). While

163 we kept salinity and temperature constant, maximum weight is one of the defining attribute of
164 individuals in **mizer**, and therefore both behavioral and physiological responses to oxygen may
165 change throughout ontogeny.

166 We used a P_{crit} database (Rogers et al. 2021) to estimate P_{crit} as a function of temperature,
167 salinity, body size, and resting metabolic rate (RMR), as in Rogers et al. (2016) (Appendix S4;
168 see Figure S7). We scaled the following rates and values as a logistic function of each species'
169 oxygen exposure, where applicable: benthic resource carrying capacity, occupancy in the benthic
170 habitat, maximum consumption rate, fish search rate for prey, assimilation efficiency, and fish
171 egg survival. The general equation is:

$$172 \quad (3) \quad \xi(O_{iwt}) = \frac{1}{1 + \exp(-U_i(O_{iwt} - a_i P_{crit,iw}))}$$

173 where O_{iwt} is mean oxygen concentration experienced by species i of weight w at time t , and
174 U_i captures the sensitivity of species i to low oxygen, with lower values representing more grad-
175 ual declines at higher oxygen levels. The product $a_i P_{crit,iw}$ represents the oxygen level at which
176 rates of an individual of species i at weight w have fallen to 50% of their maximum. This scal-
177 ing function is very similar to that used by Luo et al. (2001), and reflects a simple and flexible
178 method by which to include individual responses to oxygen. All the rates that we scaled accord-
179 ing to equation 3 represent activities in excess of standard metabolic rate (SMR). SMR as rep-
180 resented by oxygen consumption can be approximated by P_{crit} (Ekau et al. 2010), and thus treat-
181 ing P_{crit} as a shifting inflection point may be appropriate. We estimated one set of parameters for
182 benthic resource carrying capacity, another for benthic occupancy, and a third set for maximum
183 consumption rate, fish search rate for prey, assimilation efficiency, and egg survival. Note that
184 inherent in this structure is the assumption that all oxygen-dependent physiological processes de-
185 cline with oxygen at the same rate. That is, the prioritization of activity, feeding, assimilation ef-
186 ficiency, etc. of fishes of each species does not change as hypoxia develops, aside from variation
187 in P_{crit} due to body size and species, as indicated in equation 3. This is a strong assumption, but

188 it significantly reduces the number of parameters that must be estimated, and serves as a simple
189 starting point for analyses of emergent community responses to deoxygenation.

190 In addition to the rates listed above, we also scaled metabolism and natural mortality (i.e.
191 mortality not due to fishing or, in this structure, predation) with exposure to hypoxic waters.
192 Metabolism in the **mizer** framework is treated as a cost, based on the assumption that costs for
193 maintenance scale proportionally to metabolic rate. This is because energy is assumed to flow
194 through the system as mass equivalents, with somatic growth arising as a balance between gains
195 via consumption and losses via respiration. We therefore scaled it with a simple negative expo-
196 nential function:

$$(4) \quad \xi(O_{iwt}) = 1 + \exp(-U_{\text{met},i}(O_{iwt} - a_{\text{met},i} P_{\text{crit},iw}))$$

197 Here, values of $U_{\text{met},i}$ and $a_{\text{met},i}$ play a similar role as their counterparts in equation 3, only $a_{\text{met},i} P_{\text{crit},iw}$
198 instead represents the oxygen level at which metabolic costs have doubled. Additional natu-
199 ral mortality due to exposure to hypoxic waters is expressed as a hazard function (Appendix
200 S4). Both this and occupancy as a function of dynamic variables are new additions to the **mizer**
201 framework, and reflect the flexibility built into the code provided (Scott et al. 2014).

202 Study System

203 We studied emergent responses to hypoxia in the relatively species poor food web of the Cen-
204 tral Baltic Sea, which here is mainly focused on commercially important fish species in the open
205 waters. This is an important case study, given the severity and extent of deoxygenation in the
206 region (Carstensen et al. 2014). Our model of this system includes benthopelagic cod (*Gadus*
207 *morhua*), benthic flounders (*Platichthys flesus* and *Platichthys solemdali*), and the pelagic clu-
208 peids sprat (*Sprattus sprattus*) and herring (*Clupea harengus*), as well as their benthic and pelagic
209 invertebrate prey. This region is particularly prone to episodes of deoxygenation, with a water
210 residence time of roughly 25-30 years, and a relatively stable vertical salinity gradient that iso-

211 lates bottom waters from oxygenated surface waters (Snoeijs-Leijonmalm and Andrén 2017).
212 Periodic major Baltic inflows (MBIs) rejuvenate oxygen concentrations in these waters, but
213 with decadal variability and with a lower frequency in the last three decades (Mohrholz 2018).
214 Though recent nutrient loading reduction has led to improving conditions, extensive eutrophica-
215 tion and a legacy of recycling nutrients continue to plague the Baltic Sea (McCrackin et al. 2018;
216 Andersen et al. 2017). As a result, hypoxic areas have expanded exponentially since the mid-
217 1990s, reducing the potential habitat for benthic fish such as cod (Limburg et al. 2011; Casini et
218 al. 2016; Casini et al. 2021). Fish otolith microchemistry has also confirmed individual cod ex-
219 posure to low oxygen, with negative effects on growth and body condition (Limburg and Casini
220 2018; Limburg and Casini 2019). For the Baltic Sea, there are extensive fisheries data arising
221 from scientific surveys and commercial data collection (ICES 2020), including mean weight
222 as well as time series of spawning stock biomass (SSB, the combined weight of all reproduc-
223 tively active individuals in the population), and fisheries yield (for the derivation of observation
224 data, see Appendix S2). For this system, we estimated oxygen trends from data provided by the
225 Swedish Meteorological and Hydrological Institute (SMHI; Appendix S3; Figure S6 and Table
226 S3). The availability of these data makes it ideal for studying the mechanisms that determine the
227 impacts of deoxygenation on fish communities.

228 **Oxygen-dependent processes explaining observed population trends**

229 We grouped the oxygen-dependent processes into four general categories: benthic resource
230 carrying capacity (B), cod benthic occupancy (O), mortality (M), and physiology (P) (Appendix
231 S1). The physiological component (P) includes both increases in metabolic costs and declines in
232 maximum consumption rate, search or clearance rate, assimilation efficiency, and reproductive
233 efficiency. We fit all 16 possible combinations of these groups, including both the full model and
234 a model with no scaling, to observations of spawning stock biomass (SSB), commercial yield,
235 and somatic growth of the four fish species during a calibration period (1991–2000; Appendix
236 S5). These models were then used to project forward during the years 2001–2019. We chose

237 the best model based on minimum weighted error during this projection period only, as out-of-
238 sample model selection is generally more robust (Cooke et al. 2014). We also performed a sensi-
239 tivity analysis (Appendix S6) to determine the robustness of our results. This procedure can pro-
240 vide insight into which pathways by which hypoxia affects individual fishes that are most critical
241 to an accurate representation of the observed community dynamics.

242 Scenario analyses

243 We used the best model from the procedure described above (and detailed in Appendix S5) in
244 order to test community responses under various oxygen scenarios. We ran the calibrated mod-
245 els during the projection period (2001–2019) with all individual components of the best model
246 in order to determine how they interact to produce the responses in each scenario. These sce-
247 narios tracked predicted SSB, yield, and fish weight (in grams) up to maximum observed age in
248 data sources (15 years for cod, 26 for flounder, 16 for sprat, 17 for herring), as well as energy or
249 equivalent mass flow through the food web. The latter values are calculated as a weighted aver-
250 age of diets for each fish species across body size classes. Weights are given by the biomass in
251 each body size class.

252 For each of these models, we ran three scenarios at benthic oxygen levels spanning the range
253 of observed values throughout the time series. Mean bottom oxygen concentration reached a
254 peak value of roughly $3 \text{ mL}\cdot\text{L}^{-1}$ during a period of inflow in the late 1980's and early 1990's and
255 fell to $1 \text{ mL}\cdot\text{L}^{-1}$ in the 2000's and beyond (Appendix S4; Figure S6). Therefore, we chose values
256 of 3, 2, and $1 \text{ mL}\cdot\text{L}^{-1}$ representing more ideal, deteriorating, and degraded conditions. We then
257 compared somatic growth, SSB, yield, and energy flow among the scenarios to determine how
258 communities respond to declining oxygen.

259 Implementation

260 We estimated all parameters, built all models, and analyzed and plotted all output in R (R Core
261 Team 2021). All code and parameters necessary to reproduce our results are available on GitHub
262 ([found here](#)).

263 Results

264 Oxygen dependence of observed dynamics

265 Model calibration results suggest there are interactions among the pathways by which deoxy-
266 genation affects individual fish. No single process nor a combination of processes provided a
267 superior representation of somatic growth, SSB, and yield observed in the four fish species (cod,
268 flounder, sprat, and herring) during the projection period (2001–2019; see Figures S9 and S8–
269 S19 and Tables S4 and S5). When we weighted errors during the projection period (2001–2019)
270 across outputs to reflect a high confidence in growth data, a moderate confidence in SSB esti-
271 mates, and a low confidence in yield estimates, the BOM model (i.e. the model with oxygen de-
272 pendent benthic resource carrying capacity (B), cod benthic occupancy (O), and direct mortality
273 (M) included) performed best (Appendix S5; Figure S11). However, note that direct mortality
274 due to hypoxia (M) does not vary at all with time for both cod and flounder (i.e. $b_i = 0$ for all
275 models; see equation S.3). Including this component in the BOM model merely adjusts the base-
276 line mortality of these two species. Only benthic food availability (B) and cod occupancy in the
277 benthic habitat (O) vary with oxygen. That is, the interaction of bottom water oxygen on cod
278 “decision” to occupy benthic habitats, combined with hypoxia-driven declines in benthic prey,
279 appears best at explaining observed SSB, yield, and growth of our focal fish species in the Baltic
280 Sea food web.

281 In general, the BOM model was able to track the observed annual variation in somatic growth
282 of cod throughout the projection period, particularly during the first eight years of life where data

283 are concentrated (Figure 2; see also Figure S15 in Appendix S7). At more advanced ages, the
284 model was prone to over-estimation (Appendix S7; Figure S18), but there are significantly fewer
285 data for these ages, and therefore less certainty regarding actual mean size-at-age. Among-model
286 variation of sizes-at-age is particularly notable at older ages (Figure 2). Growth patterns were rel-
287 atively static from year to year for other species (see Figures S18 and S19). Flounder scaling pa-
288 rameters were estimated by fitting to a mean predicted von Bertalanffy growth trajectory across
289 all years, in contrast to the other species for which we had annual estimates for quite a large sub-
290 set of years. On average, the model was also able to capture the relatively static growth of sprat
291 and herring (see Figures S18 and S19), in addition to the declines in growth of cod.

292 While there is variability, most models produced reasonable fits to trends of SSB and yield
293 during the projection period (Figure 3; see also Figure S16 in Appendix S7). Projections of yield
294 were often over- or under-estimated, but the model did capture the general patterns observed for
295 each species, although less so for flounder (Figure 4; see also Figure S17 in Appendix S7). Dif-
296 ferences among all of our models in fits to SSB and yield during the projection period were rel-
297 atively small (Figures 3 and 4); only those models including scaling of physiological rates (P)
298 without including cod occupancy (O) produced egregious errors (Figures S10 and S11). There-
299 fore, our methods may be less able to distinguish among drivers of observed trends at the popula-
300 tion level compared to those at the individual level.

301 Results of the sensitivity analysis (Appendix S6) indicate that the best model according to the
302 procedure described above and detailed in Appendix S5 may change depending upon the starting
303 values for scaling parameters. This is most certainly due in part to the the inter-dependency of all
304 model components and output. While the order of the best models does change somewhat from
305 run to run, two things remain consistent. First, models having the lowest relative weighted error
306 always include oxygen dependence of benthic food resources (Appendix S6; Figure S13); they
307 may or may not also include oxygen dependence of occupancy and physiological rates. Second,
308 models with the greatest error always include those with oxygen dependence of physiological

309 rates without oxygen-dependent cod occupancy in the benthic habitat (Appendix S6; Figure S13).
310 That is, benthic food availability and habitat use play a primary role in structuring the results.

311 **Emergent responses to oxygen scenarios**

312 Comparing the outcome of oxygen scenarios in the best model (BOM) to its components sug-
313 gests that changing cod occupancy (O) is a compensatory response to declining benthic food
314 availability (B; Figure 5). These results also show that the constant mortality rate has a relatively
315 minor effect on the results. Including oxygen dependence of benthic resource carrying capacity
316 alone (B model) produced unrealistically severe declines in SSB and yield of cod across oxy-
317 gen scenarios, as well as relatively extreme declines in somatic growth (Figure 5). Those models
318 including both B and O, by contrast, produce less severe, but still significant, declines in individ-
319 ual and population level metrics. The models without oxygen dependence of cod benthic occu-
320 pancy (O) show no variability of sprat and herring SSB and yield with oxygen (Figure 5). They
321 also tend to produce much greater estimates of biomass and yield of sprat and herring (see Figure
322 S16). This indicates that cod intensify feeding on sprat and herring when relocating to the pelagic
323 habitat, as expected (Figures 6 and 7; see also Table S6). Declines in cod growth, SSB, and yield
324 in the BOM model with declining oxygen (Figure 5) show that moving towards the pelagic habi-
325 tatt does not compensate entirely for the decline in benthic food.

326 Scenario results also suggest that deoxygenation changes the nature of competitive interactions
327 within and between species (Figure 5). Cod experience greater declines in somatic growth with
328 declining food availability (B model) compared to flounder. This also occurs with both declining
329 food availability and changing cod occupancy (BO model; Figures 5 and 7). When only cod ben-
330 thic occupancy depends upon oxygen (O model), flounder SSB and yield increase very slightly
331 as cod moves into the pelagic to escape hypoxia, having been released from moderate competi-
332 tion (Figure 5). If benthic food is impacted (B model), then flounder experience marked declines
333 in SSB and yield. While declines in SSB and yield of cod and flounder are of similar magnitude

334 in the B model, the relative decline in body size of cod is more severe than for flounder (Figure
335 5). This suggests that flounder are the superior competitor within this environment. By contrast,
336 when both benthic food and cod habitat occupancy are oxygen-dependent (BO and BOM model),
337 cod experience only moderate declines in SSB and yield compared to flounder (Figure 5). Low
338 food availability limits flounder in our model (Table S5), but unlike for cod, the limitation de-
339 creases flounder carrying capacity and does not affect growth as much. Given the paucity of reli-
340 able information on the Baltic flounder populations, it is generally unknown how they are faring
341 in the Central Baltic Sea as a whole. There is relatively more information for sprat and herring,
342 and here results show that SSB and yield of both sprat and herring decline (Figures 5 and 7). As
343 there are no direct effects of benthic deoxygenation on these pelagic species, this is caused by
344 intensifying predation as cod avoid hypoxic bottom waters. Declines are more severe for sprat,
345 as herring can largely outgrow their vulnerability to cod predation (Figure 6). This releases the
346 pelagic fishes from competition somewhat, resulting in further growth (Figure 5). We stress that
347 changes in sprat and herring growth are very minor, as their competition for pelagic food sources
348 is weak in the model. This is primarily caused by setting pelagic resource carrying capacity high
349 in order to reflect observed cod diet, as well as pelagic fish SSB (see Appendix S5). Nonetheless,
350 model results show that the availability of benthic resources and changing vertical habitat use of
351 cod reorder interactions both in the benthic and the pelagic habitats.

352 Finally, declining benthic food availability and increasing use of the pelagic habitat shifts en-
353 ergy flow to cod away from benthic and toward pelagic prey (Figures 6 and 7). As cod move up
354 in the water column in response to low oxygen, feeding on flounder and benthic resources de-
355 clines overall, while feeding on sprat and herring increases (Figure 7). Notably, these pelagic fish
356 increase from 25% to over 50% of the diet of large cod when oxygen levels decline from 3 to 1
357 $\text{mL}\cdot\text{L}^{-1}$, with the remainder of their diet consisting of benthic resources. As benthic resources de-
358 cline with deoxygenation, small cod feed increasingly on plankton, as they are too small to feed
359 significantly on the larger fish prey in the pelagic habitat (Figure 7).

360 Discussion

361 Marine hypoxia can have severe and complex consequences for fish and fisheries (Rose et al.
362 2019). Results from our modeling study suggest food availability in deoxygenated habitats, as
363 well as the use of oxygenated refugia, may be primary drivers of emergent patterns in fish pop-
364 ulations and communities. As the severity of hypoxia increases, community size structure shifts
365 among benthic and benthopelagic predators to favor smaller individuals, and consumption pat-
366 terns may change. This may be driven both by changes in size structure, and by changes in habi-
367 tat use. A mismatch in prey availability relative to the needs of predators could limit the ability of
368 changing habitat use to compensate for declines in somatic growth of benthopelagic species. All
369 of these impacts result in a change in the flow of energy among species in the food web. These
370 insights into potential mechanisms by which the effects of hypoxia on individuals may scale to
371 affect whole communities can provide valuable context for future studies and for the manage-
372 ment of fish populations.

373 We have attempted to answer three questions on drivers of food web responses to deoxygena-
374 tion with our analysis: first, which individual-level effects of marine deoxygenation are criti-
375 cal to capturing higher level dynamics in hypoxic systems? Our analysis of alternative oxygen-
376 dependent pathways in a size-structured food web model suggests that a decrease in the avail-
377 ability of benthic prey is essential for explaining observed responses (spawning stock biomass
378 or SSB, fisheries yield, and somatic growth) to deoxygenation. Model results support a decline
379 in the use of benthic habitats and subsequent changes in predatory fish feeding from benthic to
380 pelagic prey may also be critical. Our sensitivity analysis suggests, however, that changes in
381 habitat use may not be as critical as declines in benthic food resources, and that oxygen depen-
382 dence of physiological rates may also be important (Appendix S6; Figure S13). Observations in
383 the Baltic Sea do suggest a decline in benthic food availability (Karlson et al. 2020; Neuenfeldt
384 et al. 2020). *Saduria entomon*, a major food source for Baltic cod, is limited by oxygen concen-
385 trations below about $1.5 \text{ mL}\cdot\text{L}^{-1}$ (Haahtela 1990). Declining benthic food availability (B) remains

386 in all of the best models for the projection period whether or not they also include oxygen depen-
387 dence of cod benthic occupancy and physiological rates (Appendix S5; Figure S11). Accounting
388 for feeding interactions and their dependence on oxygen conditions thus appears to be essential
389 for understanding emergent food web dynamics to marine deoxygenation.

390 Second, we asked: how do critical individual-level impacts of deoxygenation interact with
391 one another to result in community-level responses? Examining the ability of all models to ex-
392 plain emergent dynamics in spawning stock biomass (SSB), yield, and fish body growth in the
393 four main commercially exploited fish stocks in the Central Baltic Sea reveals that interactions
394 between mechanisms are important. The inclusion of some level of oxygen-driven change in
395 feeding, whether through a decline in the biomass of benthic invertebrates (B) and in cod oc-
396 cupancy of benthic habitats (O), through a decline in feeding activity, assimilation efficiency,
397 and egg survival (P), or all three of these, all appear in superior models (Appendix S5; Figure
398 S11). The former two mechanisms are supported by observations of a decline in cod feeding
399 on benthos (Neuenfeldt et al. 2020) and in benthic occupancy of cod (Casini et al. 2019). The
400 latter is supported by observations of reduced appetite in hypoxic conditions (Pichavant et al.
401 2001; Chabot and Claireaux 2008), as well as reduced assimilation efficiency (Wang et al. 2009)
402 and egg survival (Köster et al. 2005) of cod. Of note is that model results suggest both of these
403 mechanisms (B and P) likely operate alongside altered cod occupancy of the benthic habitat
404 (O) for best model performance (Appendix S5; Figure S11), though the implications differ. For
405 models with physiological oxygen dependence (P), this implies that, given observed dynamics,
406 there must be an opportunity for cod to escape from degraded environments. For the best model
407 (BOM), there must be an alternative food source (i.e. access to pelagic prey fish). The impor-
408 tance of dynamic occupancy of the benthic habitat in representing cod population dynamics and
409 somatic growth is supported by the literature. Shifts in the relative use of benthic habitat in cod
410 have been observed in the Baltic Sea (Casini et al. 2019), in addition to shifts in cod diets to-
411 wards clupeids (Pachur and Horbowy 2013). Furthermore, it has been observed that diets of cod

412 are driven at least in part by differences in vertical overlap caused by the dynamics of salinity
413 and oxygen in bottom waters (Neuenfeldt and Beyer 2006; Pachur and Horbowy 2013). Though
414 changing habitat use may serve as a compensatory mechanism, it is clearly unable to compensate
415 fully for the loss of benthic habitat and benthic prey in our case study. Given this body of evi-
416 dence, in addition to our own results, accounting both for the negative effects of deoxygenation
417 as well as potential compensatory mechanisms allows for a more complete understanding of both
418 direct and indirect effects of deoxygenation that emerge in communities of interacting species in
419 connected habitats.

420 Lastly we asked: how might we expect declining oxygen levels to affect fish population and
421 community metrics? Scenario results suggest that, as oxygen declines, most population metrics
422 may also be expected to decline. That said, at moderate oxygen levels ($2 \text{ mL}\cdot\text{L}^{-1}$), cod SSB and
423 yield experienced modest increases on the order of 4-5% relative to more ideal oxygen condi-
424 tions ($3 \text{ mL}\cdot\text{L}^{-1}$; Figure 5). This is due to the expanded access to an additional food source (clu-
425 peids). Recall that the model assumes constant areal overlap of fish species, and oxygen as the
426 only factor motivating cod movement between habitats. In reality, the horizontal overlap of cod
427 and clupeid prey fish has decreased in the past three decades, with cod concentrated in the south-
428 ern Baltic Sea and clupeids in the northern areas (Casini et al. 2011; Casini et al. 2016). Note
429 that, while our model tracks declines in cod benthic occupancy during the calibration period, it
430 fails to account for more recent increases (Appendix S5; Figure S9). Therefore, this projected in-
431 crease in overlap and moderate increase in SSB may be an artefact of model assumptions. How-
432 ever, at minimum observed oxygen levels ($1 \text{ mL}\cdot\text{L}^{-1}$), both SSB and yield of cod decline, with
433 the latter declining more severely. This is due to stunted growth. Empirical evidence links re-
434 duced growth of cod to increasing exposure to hypoxia (Limburg and Casini 2018; Casini et al.
435 2021). While selectivity is constant across scenarios, the yield becomes dominated by smaller
436 individuals as oxygen declines. All other species experience declines in SSB and yield across
437 deoxygenation scenarios. The response in body growth depends on species. Growth of pelagic

438 clupeids is largely insensitive to benthic deoxygenation relative to the declines in growth of the
439 benthic species. Both cod and flounder experience declines in growth, with that of the former
440 being more severe. Herring and sprat do experience very slight increases in growth as cod rise
441 in the water column and prey upon the sprat and the herring, more so the former than the latter.
442 Changes in sprat and herring are particularly interesting, given that their responses to deoxygena-
443 tion are driven entirely by interactions with cod as they move through the water column. Thus,
444 all species experience changes at the population level across scenarios, though it varies greatly
445 by species. Indirect effects arise, particularly with reference to clupeids, as food web interactions
446 change in response to declining oxygen.

447 Energy flow through the food web also changes in response to marine deoxygenation, primar-
448 ily as benthopelagic cod move vertically in the water column. This mediates indirect effects of
449 hypoxia. Our model results suggest that size and species composition of prey are altered as cod
450 escape hypoxic conditions. As benthic food declines, the proportion of pelagic food in the diet
451 of small cod increases, shifting the overall size distribution of cod prey towards smaller items in
452 the early years of life. Similar shifts in size and species composition of prey sources of cod are
453 observed in the Baltic Sea (Pihl 1994; Haase et al. 2020; Neuenfeldt et al. 2020). Pelagic fishes
454 become more important in the diet of cod as they grow (Griffiths et al. 2017). According to our
455 results, oxygen declines may intensify this shift. Overall, the consequences of the interaction be-
456 tween declining benthic food and changing habitat use is a reorganization of energy flow away
457 from benthic and towards pelagic prey among benthopelagic species in the food web, and dra-
458 matic changes in the community size structure. Most notable, this includes a sharp decline in
459 large predators. It is unlikely that pelagic forage fish are otherwise unaffected by benthic oxygen,
460 as they may use deeper habitats as feeding grounds (Möllmann et al. 2004; Ludsin et al. 2009),
461 or refugia from warming waters, thus altering food web structure (Tunney et al. 2014). That said,
462 it is clear that strong indirect effects can arise in systems driven by deoxygenation. Community
463 species that are concentrated within oxygenated refugia may suffer from increased predation,

464 while species escaping deoxygenated habitats may suffer from a mismatch in dietary needs rela-
465 tive to availability.

466 We made several simplifying assumptions in our model which explicitly defy observations.
467 For example, we used a static representation of size at maturation during the calibration period
468 for all species, whereas evidence suggests that size at maturation has declined for Baltic cod
469 (Vainikka et al. 2009; Köster et al. 2017). We also assumed a constant temperature. There is
470 strong evolutionary pressure on both thermal and hypoxic limits for fishes (Deutsch et al. 2020).
471 Sustained increases in both temperature, and in the frequency and severity of hypoxic events,
472 may thus result in rapid evolutionary changes. In general, we would expect there to be strong in-
473 teractions between declining oxygen and warming, as temperature affects both oxygen supply
474 and demand (Roman et al. 2019). It is known that these two stressors can act synergistically (Ek-
475 ström et al. 2021), though the system-specific response will depend on species identity, species
476 interactions, and community plasticity (McBryan et al. 2013). Which mechanisms may drive this
477 interaction is generally unknown, and currently unexplored in our model structure. We also ig-
478 nored individual variability in the model outside of differences in species and maximum body
479 size. Neither did we account for sex. In reality, differences amongst individuals, including those
480 dependent upon sex, may cause variation in both space and time. For example, some fish with
481 higher metabolic rates tend to be more active and more willing to take risks in hypoxic environ-
482 ments (Killen et al. 2012). Depending on the outcome, and given that metabolic rate is an herita-
483 ble trait (Maciak and Konarzewski 2010), spatiotemporal variability could potentially be driven
484 by changes in selective forces that are in turn driving the distribution of metabolic rates among
485 the population. Our conclusions may only hold if the variation and mechanisms described above
486 and elsewhere are negligible. However, even if hypoxia acts through vulnerability to increasing
487 temperature, incidence of parasitism and disease, or other drivers, our model is general enough
488 to capture declines in community metrics due to implicit drivers. One may include individual-
489 level impacts of alternative drivers both in addition to, and in place of, the drivers included here

490 to determine whether they are important.

491 Do our conclusions hold if we broaden our perspective to other systems? In the Gulf of Mex-
492 ico, pelagic prey fishes move into alternative habitats where prey is scarce and the risk of pred-
493 ation is high in response to changes in habitat quality wrought by hypoxia and warming (Zhang
494 et al. 2014). In Lake Erie, demersal Yellow Perch (*Perca flavescens*) move either horizontally or
495 vertically in response to hypoxic bottom waters (Roberts et al. 2009). Though they continue to
496 dive into degraded waters for their benthic prey (Behrens et al. 2012), diet composition still shifts
497 towards pelagic sources (Roberts et al. 2009). Differences in susceptibility to hypoxia among
498 species in our simplified Baltic Sea food web serve also to reorganize energy flow. This has been
499 observed for example in the Neuse River Estuary in North Carolina, where the strength of the es-
500 cape response and therefore changes in predation pressure vary by species (Bell and Eggleston
501 2005). Looking at lower trophic levels in the Chesapeake Bay, escape response of benthic inver-
502 tebrates can significantly alter the flow of energy from the sediment to demersal predators (Pihl
503 et al. 1992). Differential responses across species in other community assemblages will likely
504 result in different responses, though even species resistant to hypoxia may still be observed to
505 exhibit similar responses (e.g. diet shifts in Atlantic croaker; Mohan and Walther 2016; Steube
506 et al. 2021) Therefore, there seems to be broad support for our conclusions across systems.

507 Overall, our study suggests that declining benthic food availability and escape of demersal
508 predators towards pelagic habitats are important pathways by which persistent and severe hy-
509 poxia affects community dynamics. These ecological consequences can help to inform forecasts
510 of biomass, yield, and growth of component species as hypoxia stagnates, worsens, or, more op-
511 timistically, as environmental conditions improve. Failing to account for the potential impacts
512 of deoxygenation may lead to erroneous stock assessments and poor management advice (Rose
513 et al. 2019). For example, ignoring changes in natural mortality caused by increased predation
514 by displaced benthopelagic predators on pelagic prey fishes could introduce significant bias into
515 biomass estimates and therefore into recommended quotas (Clark 1999). Resultant changes in

516 community size structure, and uncertainty therein introduced by developing stressors like de-
517 clining oxygen and rising temperatures, are necessary components of projections used in the
518 decision-making process (Reum et al. 2020). While our approach is only a first step towards par-
519 titioning observed fish community dynamics among environmental impacts, it may serve as a
520 useful baseline with which to rigorously evaluate various precautionary approaches to fishing in
521 communities burdened by hypoxic waters.

522 **Conflict of Interest Statement**

523 The authors declare there are no conflicts of interest.

524 **Acknowledgements**

525 We are grateful to Gustav Delius and Ken Andersen for discussions regarding proper use of
526 **mizer**. We would also like to thank Max Lindmark for his guidance on using **mizer** to investi-
527 gate environmental effects on food webs. The entire SPECTRE reading and discussion group
528 encouraged our use and understanding of size spectrum models more generally. This work was
529 supported by funding for Project Breathless (NSF OCE1923965; to KL, MC and AG). Additional
530 funding was provided by the Swedish Research Council Formas (grant no. 2018-00775 to MC).

531 References

532 Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fleming-Lehtinen, V.,
533 Gustafsson, B. G., Josefson, A. B., Norkko, A., Villnäs, A., and Murray, C. (2017).
534 “Long-term temporal and spatial trends in eutrophication status of the Baltic Sea”. In:
535 *Biological Reviews* 92.1, pp. 135–149. DOI: [10.1111/brv.12221](https://doi.org/10.1111/brv.12221).

536 Andersen, K. H., Jacobsen, N. S., and Farnsworth, K. D. (2016). “The theoretical foundations for
537 size spectrum models of fish communities”. In: *Canadian Journal of Fisheries and Aquatic
538 Sciences* 73.4, pp. 575–588. DOI: [10.1139/cjfas-2015-0230](https://doi.org/10.1139/cjfas-2015-0230).

539 Behrens, J. W., Axelsson, M., Neuenfeldt, S., and Seth, H. (2012). “Effects of Hypoxic Exposure
540 During Feeding on SDA and Postprandial Cardiovascular Physiology in the Atlantic cod,
541 *Gadus morhua*”. In: *PLoS ONE* 7.9, e46227. DOI: [10.1371/journal.pone.0046227](https://doi.org/10.1371/journal.pone.0046227).

542 Bell, G. and Eggleston, D. (2005). “Species-specific avoidance responses by blue crabs and fish
543 to chronic and episodic hypoxia”. In: *Marine Biology* 146.4, pp. 761–770. DOI:
544 [10.1007/s00227-004-1483-7](https://doi.org/10.1007/s00227-004-1483-7).

545 Bergman, J. N., Bennett, J. R., Binley, A. D., Cooke, S. J., Fyson, V., Hlina, B. L., Reid, C. H.,
546 Vala, M. A., and Madliger, C. L. (2019). “Scaling from individual physiological measures to
547 population-level demographic change: case studies and future directions for conservation
548 management”. In: *Biological Conservation* 238, p. 108242. DOI:
549 [10.1016/j.biocon.2019.108242](https://doi.org/10.1016/j.biocon.2019.108242).

550 Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R., and Richardson, A. J. (2017).
551 “From Bacteria to Whales: using Functional Size Spectra to Model Marine Ecosystems”. In:
552 *Trends in Ecology & Evolution* 32.3, pp. 174–186. DOI: [10.1016/j.tree.2016.12.003](https://doi.org/10.1016/j.tree.2016.12.003).

553 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V.,
554 Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S.,
555 Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
556 Yasuhara, M., and Zhang, J. (2018). “Declining oxygen in the global ocean and coastal
557 waters”. In: *Science* 359.6371, eaam7240. DOI: [10.1126/science.aam7240](https://doi.org/10.1126/science.aam7240).

558 Breitburg, D. L., Adamack, A., Rose, K. A., Kolesar, S. E., Decker, B., Purcell, J. E.,

559 Keister, J. E., and Cowan, J. H. (2003). “The pattern and influence of low dissolved oxygen

560 in the Patuxent River, a seasonally hypoxic estuary”. In: *Estuaries* 26.2, pp. 280–297. DOI:

561 [10.1007/BF02695967](https://doi.org/10.1007/BF02695967).

562 Breitburg, D. L., Loher, T., Pacey, C. A., and Gerstein, A. (1997). “VARYING EFFECTS OF

563 LOW DISSOLVED OXYGEN ON TROPHIC INTERACTIONS IN AN ESTUARINE

564 FOOD WEB”. In: *Ecological Monographs* 67.4, pp. 489–507. DOI:

565 [10.1890/0012-9615\(1997\)067\[0489:VEOLDO\]2.0.CO;2](https://doi.org/10.1890/0012-9615(1997)067[0489:VEOLDO]2.0.CO;2).

566 Breitburg, D. L., Rose, K. A., and Cowan Jr, J. H. (1999). “Linking water quality to larval

567 survival: predation mortality of fish larvae in an oxygen-stratified water column”. In: *Marine*

568 *Ecology Progress Series* 178, pp. 39–54. DOI: [10.3354/meps178039](https://doi.org/10.3354/meps178039).

569 Brewer, P. G. and Peltzer, E. T. (2016). “Ocean chemistry, ocean warming, and emerging

570 hypoxia: Commentary”. In: *Journal of Geophysical Research: Oceans* 121.5, pp. 3659–3667.

571 DOI: [10.1002/2016JC011651](https://doi.org/10.1002/2016JC011651).

572 Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. (2004). “TOWARD A

573 METABOLIC THEORY OF ECOLOGY”. In: *Ecology* 85.7, pp. 1771–1789. DOI:

574 [10.1890/03-9000](https://doi.org/10.1890/03-9000).

575 Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J. (2014). “Deoxygenation of

576 the Baltic Sea during the last century”. In: *Proceedings of the National Academy of Sciences*

577 111.15, pp. 5628–5633. DOI: [10.1073/pnas.1323156111](https://doi.org/10.1073/pnas.1323156111).

578 Casini, M., Hansson, M., Orio, A., and Limburg, K. (2021). “Changes in population depth

579 distribution and oxygen stratification are involved in the current low condition of the eastern

580 Baltic Sea cod (*Gadus morhua*)”. In: *Biogeosciences* 18.4, pp. 1321–1331. DOI:

581 [10.5194/bg-18-1321-2021](https://doi.org/10.5194/bg-18-1321-2021).

582 Casini, M., Käll, F., Hansson, M., Plikshs, M., Baranova, T., Karlsson, O., Lundström, K.,

583 Neuenfeldt, S., Gårdmark, A., and Hjelm, J. (2016). “Hypoxic areas, density-dependence and

584 food limitation drive the body condition of a heavily exploited marine fish predator”. In:
585 *Royal Society open science* 3.160416. DOI: [10.1098/rsos.160416](https://doi.org/10.1098/rsos.160416).

586 Casini, M., Kornilovs, G., Cardinale, M., Möllmann, C., Grygiel, W., Jonsson, P., Raid, T.,
587 Flinkman, J., and Feldman, V. (2011). “Spatial and temporal density dependence regulates the
588 condition of central Baltic Sea clupeids: compelling evidence using an extensive international
589 acoustic survey”. In: *Population Ecology* 53.4, pp. 511–523.

590 Casini, M., Tian, H., Hansson, M., Grygiel, W., Strods, G., Statkus, R., Sepp, E., Gröhsler, T.,
591 Orio, A., and Larson, N. (2019). “Spatio-temporal dynamics and behavioural ecology of a
592 “demersal” fish population as detected using research survey pelagic trawl catches: the
593 Eastern Baltic Sea cod (*Gadus morhua*)”. In: *ICES Journal of Marine Science* 76.6,
594 pp. 1591–1600. DOI: [10.1093/icesjms/fsz016](https://doi.org/10.1093/icesjms/fsz016).

595 Chabot, D. and Claireaux, G. (2008). “Environmental hypoxia as a metabolic constraint on fish:
596 the case of Atlantic cod, *Gadus morhua*”. In: *Marine Pollution Bulletin* 57.6, pp. 287–294.
597 DOI: [10.1016/j.marpolbul.2008.04.001](https://doi.org/10.1016/j.marpolbul.2008.04.001).

598 Chu, J. W. and Gale, K. S. (2017). “Ecophysiological limits to aerobic metabolism in hypoxia
599 determine epibenthic distributions and energy sequestration in the northeast Pacific ocean”.
600 In: *Limnology and Oceanography* 62.1, pp. 59–74. DOI: [10.1002/lno.10370](https://doi.org/10.1002/lno.10370).

601 Clark, W. G. (1999). “Effects of an erroneous natural mortality rate on a simple age-structured
602 stock assessment”. In: *Canadian Journal of Fisheries and Aquatic Sciences* 56.10,
603 pp. 1721–1731. DOI: [10.1139/f99-085](https://doi.org/10.1139/f99-085).

604 Cooke, R. M., Wittmann, M. E., Lodge, D. M., Rothlisberger, J. D., Rutherford, E. S., Zhang, H.,
605 and Mason, D. M. (2014). “Out-of-Sample Validation for Structured Expert Judgment of
606 Asian Carp Establishment in Lake Erie”. In: *Integrated Environmental Assessment and
607 Management* 10.4, pp. 522–528. DOI: [10.1002/ieam.1559](https://doi.org/10.1002/ieam.1559).

608 Deutsch, C., Penn, J. L., and Seibel, B. (2020). “Metabolic trait diversity shapes marine
609 biogeography”. In: *Nature* 585, pp. 557–562. DOI: [10.1038/s41586-020-2721-y](https://doi.org/10.1038/s41586-020-2721-y).

610 Diaz, R. J. and Breitburg, D. L. (2009). “The Hypoxic Environment”. In: *Fish Physiology*.
611 Vol. 27. Elsevier, pp. 1–23. DOI: [10.1016/S1546-5098\(08\)00001-0](https://doi.org/10.1016/S1546-5098(08)00001-0).

612 Domenici, P., Herbert, N., Lefrançois, C., Steffensen, J., and McKenzie, D. (2013). “The Effect
613 of Hypoxia on Fish Swimming Performance and Behaviour”. In: *Swimming Physiology of*
614 *Fish*. Ed. by A. P. Palstra and J. V. Planas. Berlin, Heidelberg: Springer, pp. 129–159. DOI:
615 [10.1007/978-3-642-31049-2_6](https://doi.org/10.1007/978-3-642-31049-2_6).

616 Dwyer, G. K., Stoffels, R. J., and Pridmore, P. A. (2014). “Morphology, metabolism and
617 behaviour: responses of three fishes with different lifestyles to acute hypoxia”. In: *Freshwater*
618 *Biology* 59.4, pp. 819–831. DOI: [10.1111/fwb.12306](https://doi.org/10.1111/fwb.12306).

619 Eby, L. A., Crowder, L. B., McClellan, C. M., Peterson, C. H., and Powers, M. J. (2005).
620 “Habitat degradation from intermittent hypoxia: impacts on demersal fishes”. In: *Marine*
621 *Ecology Progress Series* 29.1, pp. 249–262. DOI: [10.3354/meps291249](https://doi.org/10.3354/meps291249).

622 Ekau, W., Auel, H., Pörtner, H.-O., and Gilbert, D. (2010). “Impacts of hypoxia on the structure
623 and processes in pelagic communities (zooplankton, macro-invertebrates and fish)”. In:
624 *Biogeosciences* 7.5, pp. 1669–1699. DOI: [10.5194/bg-7-1669-2010](https://doi.org/10.5194/bg-7-1669-2010).

625 Ekström, A., Sundell, E., Morgenroth, D., McArley, T., Gårdmark, A., Huss, M., and
626 Sandblom, E. (2021). “Cardiorespiratory adjustments to chronic environmental warming
627 improve hypoxia tolerance in European perch (*Perca fluviatilis*)”. In: *Journal of*
628 *Experimental Biology* 224.6. jeb241554. DOI: [10.1242/jeb.241554](https://doi.org/10.1242/jeb.241554).

629 Essington, T. E., Kitchell, J. F., and Walters, C. J. (2001). “The von Bertalanffy growth function,
630 bioenergetics, and the consumption rates of fish”. In: *Canadian Journal of Fisheries and*
631 *Aquatic Sciences* 58.11, pp. 2129–2138. DOI: [10.1139/f01-151](https://doi.org/10.1139/f01-151).

632 Farrell, A. P. and Richards, J. G. (2009). “Defining Hypoxia: An Integrative Synthesis of the
633 Responses of Fish to Hypoxia”. In: *Fish Physiology*. Vol. 27. Elsevier, pp. 487–503. DOI:
634 [10.1016/S1546-5098\(08\)00011-3](https://doi.org/10.1016/S1546-5098(08)00011-3).

635 Griffiths, J. R., Kadin, M., Nascimento, F. J., Tamlander, T., Törnroos, A., Bonaglia, S.,
636 Bonsdorff, E., Brüchert, V., Gårdmark, A., Järnström, M.,

637 Jonne Kotta MARTIN Lindegren, M. C. N., Norkko, A., Olsson, J., Weigel, B., Žydelis, R.,
638 Blenckner, T., Niiranen, S., and Winder, M. (2017). “The importance of benthic–pelagic
639 coupling for marine ecosystem functioning in a changing world”. In: *Global change biology*
640 23.6, pp. 2179–2196. DOI: [10.1111/gcb.13642](https://doi.org/10.1111/gcb.13642).

641 Haahtela, I. (1990). “What do Baltic studies tell us about the isopod *Saduria entomon* (L.)?” In:
642 *Annales Zoologici Fennici*. Vol. 27. 3. JSTOR, pp. 269–278. URL:
643 <https://www.jstor.org/stable/23736048>.

644 Haase, K., Orio, A., Pawlak, J., Pachur, M., and Casini, M. (2020). “Diet of dominant demersal
645 fish species in the Baltic Sea: Is flounder stealing benthic food from cod?” In: *Marine
646 Ecology Progress Series* 645, pp. 159–170. DOI: [10.3354/meps13360](https://doi.org/10.3354/meps13360).

647 Hrycik, A. R., Almeida, L. Z., and Höök, T. O. (2017). “Sub-lethal effects on fish provide insight
648 into a biologically-relevant threshold of hypoxia”. In: *Oikos* 126.3, pp. 307–317. DOI:
649 [10.1111/oik.03678](https://doi.org/10.1111/oik.03678).

650 ICES (2020). *Baltic Fisheries Assessment Working Group (WGBFAS)*. Tech. rep. 45. ICES
651 Scientific Reports, p. 643. DOI: [10.17895/ices.pub.6024](https://doi.org/10.17895/ices.pub.6024).

652 Karlson, A. M., Gorokhova, E., Gårdmark, A., Pekcan-Hekim, Z., Casini, M., Albertsson, J.,
653 Sundelin, B., Karlsson, O., and Bergström, L. (2020). “Linking consumer physiological status
654 to food-web structure and prey food value in the Baltic Sea”. In: *Ambio* 49.2, pp. 391–406.
655 DOI: [10.1007/s13280-019-01201-1](https://doi.org/10.1007/s13280-019-01201-1).

656 Killen, S. S., Marras, S., Ryan, M. R., Domenici, P., and McKenzie, D. J. (2012). “A relationship
657 between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile
658 European sea bass”. In: *Functional Ecology* 26.1, pp. 134–143. DOI:
659 [10.1111/j.1365-2435.2011.01920.x](https://doi.org/10.1111/j.1365-2435.2011.01920.x).

660 Koenigstein, S., Mark, F. C., Gößling-Reisemann, S., Reuter, H., and Poertner, H.-O. (2016).
661 “Modelling climate change impacts on marine fish populations: process-based integration of
662 ocean warming, acidification and other environmental drivers”. In: *Fish and Fisheries* 17.4,
663 pp. 972–1004. DOI: [10.1111/faf.12155](https://doi.org/10.1111/faf.12155).

664 Köster, F. W., Huwer, B., Hinrichsen, H.-H., Neumann, V., Makarchouk, A., Eero, M.,
665 Dewitz, B. V., Hüsse, K., Tomkiewicz, J., Margonski, P., Temming, A., Hermann, J.-P.,
666 Oesterwind, D., Dierking, J., Kotterba, P., and Plikshs, M. (2017). “Eastern Baltic cod
667 recruitment revisited—dynamics and impacting factors”. In: *ICES Journal of Marine Science*
668 74.1, pp. 3–19. DOI: [10.1093/icesjms/fsw172](https://doi.org/10.1093/icesjms/fsw172).

669 Köster, F. W., Möllmann, C., Hinrichsen, H.-H., Wieland, K., Tomkiewicz, J., Kraus, G.,
670 Voss, R., Makarchouk, A., MacKenzie, B. R., St. John, M. A., Schnack, D., Rohlf, N.,
671 Linkowski, T., and Beyer, J. E. (2005). “Baltic cod recruitment—the impact of climate
672 variability on key processes”. In: *ICES Journal of Marine Science* 62.7, pp. 1408–1425. DOI:
673 [10.1016/j.icesjms.2005.05.004](https://doi.org/10.1016/j.icesjms.2005.05.004).

674 Kramer, D. L. (1987). “Dissolved oxygen and fish behavior”. In: *Environmental Biology of
675 Fishes* 18.2, pp. 81–92. DOI: [10.1007/BF00002597](https://doi.org/10.1007/BF00002597).

676 Limburg, K. E. and Casini, M. (2018). “Effect of Marine Hypoxia on Baltic Sea Cod *Gadus
677 morhua*: evidence From Otolith Chemical Proxies”. In: *Frontiers in Marine Science* 5.482.
678 DOI: [10.3389/fmars.2018.00482](https://doi.org/10.3389/fmars.2018.00482).

679 — (2019). “Otolith chemistry indicates recent worsened Baltic cod condition is linked to
680 hypoxia exposure”. In: *Biology Letters* 15.12, p. 20190352. DOI:
681 [10.1098/rsbl.2019.0352](https://doi.org/10.1098/rsbl.2019.0352).

682 Limburg, K. E., Olson, C., Walther, Y., Dale, D., Slomp, C. P., and Høie, H. (2011). “Tracking
683 Baltic hypoxia and cod migration over millennia with natural tags”. In: *Proceedings of the
684 National Academy of Sciences* 108.22, E177–E182. DOI: [10.1073/pnas.1100684108](https://doi.org/10.1073/pnas.1100684108).

685 Ludsin, S. A., Zhang, X., Brandt, S. B., Roman, M. R., Boicourt, W. C., Mason, D. M., and
686 Costantini, M. (2009). “Hypoxia-avoidance by planktivorous fish in Chesapeake Bay:
687 implications for food web interactions and fish recruitment”. In: *Journal of Experimental
688 Marine Biology and Ecology* 381, S121–S131. DOI: [10.1016/j.jembe.2009.07.016](https://doi.org/10.1016/j.jembe.2009.07.016).

689 Luo, J., Hartman, K. J., Brandt, S. B., Cerco, C. F., and Rippetoe, T. H. (2001). “A
690 spatially-explicit approach for estimating carrying capacity: an application for the Atlantic

691 menhaden (*Brevoortia tyrannus*) in Chesapeake Bay”. In: *Estuaries* 24.4, pp. 545–556. DOI:
692 [10.2307/1353256](https://doi.org/10.2307/1353256).

693 Maciak, S. and Konarzewski, M. (2010). “Repeatability of standard metabolic rate (SMR) in a
694 small fish, the spined loach (*Cobitis taenia*)”. In: *Comparative Biochemistry and Physiology*
695 *Part A: Molecular & Integrative Physiology* 157.2, pp. 136–141. DOI:
696 [10.1016/j.cbpa.2010.05.017](https://doi.org/10.1016/j.cbpa.2010.05.017).

697 McBryan, T., Anttila, K., Healy, T., and Schulte, P. (2013). “Responses to Temperature and
698 Hypoxia as Interacting Stressors in Fish: implications for Adaptation to Environmental
699 Change”. In: *Integrative and Comparative Biology* 53.4, pp. 648–659. DOI:
700 [10.1093/icb/ict066](https://doi.org/10.1093/icb/ict066).

701 McCrackin, M. L., Muller-Karulis, B., Gustafsson, B. G., Howarth, R. W., Humborg, C.,
702 Svanbäck, A., and Swaney, D. P. (2018). “A Century of Legacy Phosphorus Dynamics in a
703 Large Drainage Basin”. In: *Global Biogeochemical Cycles* 32.7, pp. 1107–1122. DOI:
704 [10.1029/2018GB005914](https://doi.org/10.1029/2018GB005914).

705 Mohan, J. and Walther, B. (2016). “Out of breath and hungry: natural tags reveal trophic
706 resilience of Atlantic croaker to hypoxia exposure”. In: *Marine Ecology Progress Series* 560,
707 pp. 207–221. DOI: [10.3354/meps11934](https://doi.org/10.3354/meps11934).

708 Mohrholz, V. (2018). “Major Baltic Inflow Statistics–Revised”. In: *Frontiers in Marine Science*
709 5, p. 384. DOI: [10.3389/fmars.2018.00384](https://doi.org/10.3389/fmars.2018.00384).

710 Möllmann, C., Kornilovs, G., Fetter, M., and Köster, F. (2004). “Feeding ecology of central
711 Baltic Sea herring and sprat”. In: *Journal of Fish Biology* 65.6, pp. 1563–1581. DOI:
712 [10.1111/j.0022-1112.2004.00566.x](https://doi.org/10.1111/j.0022-1112.2004.00566.x).

713 Neuenfeldt, S., Bartolino, V., Orio, A., Andersen, K. H., Andersen, N. G., Niiranen, S.,
714 Bergström, U., Ustups, D., Kulatska, N., and Casini, M. (2020). “Feeding and growth of
715 Atlantic cod (*Gadus morhua* L.) in the eastern Baltic Sea under environmental change”. In:
716 *ICES Journal of Marine Science* 77.2, pp. 624–632. DOI: [10.1093/icesjms/fsz248](https://doi.org/10.1093/icesjms/fsz248).

717 Neuenfeldt, S. and Beyer, J. E. (2006). “Environmentally driven predator–prey overlaps
718 determine the aggregate diet of the cod *Gadus morhua* in the Baltic Sea”. In: *Marine Ecology
719 Progress Series* 310, pp. 151–163. DOI: [10.3354/meps310151](https://doi.org/10.3354/meps310151).

720 Nilsson, G. E. and Östlund-Nilsson, S. (2008). “Does size matter for hypoxia tolerance in fish?”
721 In: *Biological Reviews* 83.2, pp. 173–189. DOI: [10.1111/j.1469-185X.2008.00038.x](https://doi.org/10.1111/j.1469-185X.2008.00038.x).

722 Orio, A., Bergström, U., Florin, A.-B., Lehmann, A., Šics, I., and Casini, M. (2019). “Spatial
723 contraction of demersal fish populations in a large marine ecosystem”. In: *Journal of
724 Biogeography* 46.3, pp. 633–645. DOI: [10.1111/jbi.13510](https://doi.org/10.1111/jbi.13510).

725 Pachur, M. E. and Horbowy, J. (2013). “FOOD COMPOSITION AND PREY SELECTION OF
726 COD, *GADUS MORHUA* (ACTINOPTERYGII: GADIFORMES: GADIDAE), IN THE
727 SOUTHERN BALTIC SEA”. In: *Acta Ichthyologica et Piscatoria* 43.2, pp. 109–118. DOI:
728 [10.3750/AIP2013.43.2.03](https://doi.org/10.3750/AIP2013.43.2.03).

729 Pan, Y., Ern, R., and Esbaugh, A. (2016). “Hypoxia tolerance decreases with body size in red
730 drum *Sciaenops ocellatus*”. In: *Journal of Fish Biology* 89.2, pp. 1488–1493. DOI:
731 [10.1111/jfb.13035](https://doi.org/10.1111/jfb.13035).

732 Peters, R. H. (1986). *The ecological implications of body size*. Vol. 2. Cambridge University
733 Press.

734 Pichavant, K., Person-Le-Ruyet, J., Bayon, N. L., Severe, A., Roux, A. L., and Boeuf, G. (2001).
735 “Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in
736 juvenile turbot and European sea bass”. In: *Journal of Fish Biology* 59.4, pp. 875–883. DOI:
737 [10.1111/j.1095-8649.2001.tb00158.x](https://doi.org/10.1111/j.1095-8649.2001.tb00158.x).

738 Pihl, L. (1994). “Changes in the Diet of Demersal Fish due to Eutrophication-Induced Hypoxia in
739 the Kattegat, Sweden”. In: *Canadian Journal of Fisheries and Aquatic Sciences* 51.2,
740 pp. 321–336. DOI: [10.1139/f94-033](https://doi.org/10.1139/f94-033).

741 Pihl, L., Baden, S. P., Diaz, R. J., and Schaffner, L. C. (1992). “Hypoxia-induced structural
742 changes in the diet of bottom-feeding fish and Crustacea”. In: *Marine Biology* 112.3,
743 pp. 349–361. DOI: [10.1007/BF00356279](https://doi.org/10.1007/BF00356279).

744 Pollock, M., Clarke, L., and Dubé, M. (2007). “The effects of hypoxia on fishes: from ecological
745 relevance to physiological effects”. In: *Environmental Reviews* 15.NA, pp. 1–14.

746 Powers, S. P., Peterson, C. H., Christian, R. R., Sullivan, E., Powers, M. J., Bishop, M. J., and
747 Buzzelli, C. P. (2005). “Effects of eutrophication on bottom habitat and prey resources of
748 demersal fishes”. In: *Marine Ecology Progress Series* 302, pp. 233–243. DOI:
749 [10.3354/meps302233](https://doi.org/10.3354/meps302233).

750 R Core Team (2021). *R: A Language and Environment for Statistical Computing*. v. 4.2.2. R
751 Foundation for Statistical Computing. Vienna, Austria. URL:
752 <https://www.R-project.org/>.

753 Reum, J. C., Blanchard, J. L., Holsman, K. K., Aydin, K., Hollowed, A. B., Hermann, A. J.,
754 Cheng, W., Faig, A., Haynie, A. C., and Punt, A. E. (2020). “Ensemble Projections of Future
755 Climate Change Impacts on the Eastern Bering Sea Food Web Using a Multispecies Size
756 Spectrum Model”. In: *Frontiers in Marine Science* 7.124. DOI:
757 [10.3389/fmars.2020.00124](https://doi.org/10.3389/fmars.2020.00124).

758 Riedel, B., Pados, T., Prettereiner, K., Schiemer, L., Steckbauer, A., Haselmair, A., Zuschin, M.,
759 and Stachowitsch, M. (2014). “Effect of hypoxia and anoxia on invertebrate behaviour:
760 ecological perspectives from species to community level”. In: *Biogeosciences* 11.6,
761 pp. 1491–1518. DOI: [10.5194/bg-11-1491-2014](https://doi.org/10.5194/bg-11-1491-2014).

762 Roberts, J. J., Höök, T. O., Ludsin, S. A., Pothoven, S. A., Vanderploeg, H. A., and Brandt, S. B.
763 (2009). “Effects of hypolimnetic hypoxia on foraging and distributions of Lake Erie yellow
764 perch”. In: *Journal of Experimental Marine Biology and Ecology* 381. Ecological Impacts of
765 Hypoxia on Living Resources, S132–S142. DOI: [10.1016/j.jembe.2009.07.017](https://doi.org/10.1016/j.jembe.2009.07.017).

766 Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J., Birchenough, S. N., and
767 Wilson, R. W. (2021). *Database of critical oxygen level (P_{crit}) in freshwater and marine
768 fishes 1974–2015*. Version 1. Cefas, UK. DOI: [10.14466/CefasDataHub.121](https://doi.org/10.14466/CefasDataHub.121).

769 Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J., and Wilson, R. W. (2016). “A new
770 analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P_{crit})”. In:
771 *Conservation Physiology* 4.1. cow012. DOI: [10.1093/conphys/cow012](https://doi.org/10.1093/conphys/cow012).

772 Roman, M. R., Brandt, S. B., Houde, E. D., and Pierson, J. J. (2019). “Interactive Effects of
773 Hypoxia and Temperature on Coastal Pelagic Zooplankton and Fish”. In: *Frontiers in Marine
774 Science* 6, p. 139. DOI: [10.3389/fmars.2019.00139](https://doi.org/10.3389/fmars.2019.00139).

775 Rose, K. A., Adamack, A. T., Murphy, C. A., Sable, S. E., Kolesar, S. E., Craig, J. K.,
776 Breitburg, D. L., Thomas, P., Brouwer, M. H., Cerco, C. F., and Diamond, S. (2009). “Does
777 hypoxia have population-level effects on coastal fish? Musings from the virtual world”. In:
778 *Journal of Experimental Marine Biology and Ecology* 381, S188–S203. DOI:
779 [10.1016/j.jembe.2009.07.022](https://doi.org/10.1016/j.jembe.2009.07.022).

780 Rose, K. A., Gutiérrez, D., Breitburg, D., Conley, D., Craig, K. J., Froehlich, H. E.,
781 Jeyabaskaran, R., Kripa, V., Mbaye, B. C., Mohamed, K., Padua, S., and Prema, D. (2019).
782 “Impacts of ocean deoxygenation on fisheries”. In:
783 Schmidtko, S., Stramma, L., and Visbeck, M. (2017). “Decline in global oceanic oxygen content
784 during the past five decades”. In: *Nature* 542.7641, pp. 335–339. DOI:
785 [10.1038/nature21399](https://doi.org/10.1038/nature21399).

786 Scott, F., Blanchard, J. L., and Andersen, K. H. (2014). “mizer: an R package for multispecies,
787 trait-based and community size spectrum ecological modelling”. In: *Methods in Ecology and
788 Evolution* 5.10, pp. 1121–1125. DOI: [10.1111/2041-210X.12256](https://doi.org/10.1111/2041-210X.12256).

789 Silvert, W. and Platt, T. (1978). “Energy flux in the pelagic ecosystem: a time-dependent
790 equation”. In: *Limnology and Oceanography* 23.4, pp. 813–816. DOI:
791 [10.4319/lo.1978.23.4.0813](https://doi.org/10.4319/lo.1978.23.4.0813).

792 Slater, W. L., Pierson, J. J., Decker, M. B., Houde, E. D., Lozano, C., and Seuberling, J. (2020).
793 “Fewer Copepods, Fewer Anchovies, and More Jellyfish: How Does Hypoxia Impact the
794 Chesapeake Bay Zooplankton Community?” In: *Diversity* 12.1, p. 35. DOI:
795 [10.3390/d12010035](https://doi.org/10.3390/d12010035).

796 Snoeijs-Leijonmalm, P. and Andrén, E. (2017). “Why is the Baltic Sea so special to live in?” In:
797 *Biological oceanography of the Baltic Sea*. Ed. by P. Snoeijs-Leijonmalm, H. Schubert, and
798 T. Radziejewska. Springer, pp. 23–84. DOI: [10.1007/978-94-007-0668-2_2](https://doi.org/10.1007/978-94-007-0668-2_2).

799 Steube, T. R., Altenritter, M. E., and Walther, B. D. (2021). “Distributive stress: individually
800 variable responses to hypoxia expand trophic niches in fish”. In: *Ecology* 102.6, e03356.
801 DOI: [10.1002/ecy.3356](https://doi.org/10.1002/ecy.3356).

802 Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, D. W.,
803 Brandt, P., and Körtzinger, A. (2012). “Expansion of oxygen minimum zones may reduce
804 available habitat for tropical pelagic fishes”. In: *Nature Climate Change* 2, pp. 33–37. DOI:
805 [10.1038/nclimate1304](https://doi.org/10.1038/nclimate1304).

806 Tunney, T. D., McCann, K. S., Lester, N. P., and Shuter, B. J. (2014). “Effects of differential
807 habitat warming on complex communities”. In: *Proceedings of the National Academy of
808 Sciences* 111.22, pp. 8077–8082. DOI: [10.1073/pnas.1319618111](https://doi.org/10.1073/pnas.1319618111).

809 Ultsch, G. R. and Regan, M. D. (2019). “The utility and determination of P_{crit} in fishes”. In:
810 *Journal of Experimental Biology* 222.22. jeb203646. DOI: [10.1242/jeb.203646](https://doi.org/10.1242/jeb.203646).

811 United Nations (2022). *Department of Economic and Social Affairs, Sustainable Development*.
812 URL: <https://sdgs.un.org/goals>.

813 Vainikka, A., Gårdmark, A., Bland, B., and Hjelm, J. (2009). “Two-and three-dimensional
814 maturation reaction norms for the eastern Baltic cod, *Gadus morhua*”. In: *ICES Journal of
815 Marine Science* 66.2, pp. 248–257. DOI: [10.1093/icesjms/fsn199](https://doi.org/10.1093/icesjms/fsn199).

816 Wang, S. Y., Lau, K., Lai, K.-P., Zhang, J.-W., Tse, A. C.-K., Li, J.-W., Tong, Y., Chan, T.-F.,
817 Wong, C. K.-C., Chiu, J. M.-Y., Sze-Tsai Wong, A., Yuen-Chong Kong, R., and
818 Shiu-Sun Wu, R. (2016). “Hypoxia causes transgenerational impairments in reproduction of
819 fish”. In: *Nature communications* 7.12114, pp. 1–9. DOI: [10.1038/ncomms12114](https://doi.org/10.1038/ncomms12114).

820 Wang, T., Lefevre, S., Huong, D. T. T., Cong, N. van, and Bayley, M. (2009). “The Effects of
821 Hypoxia on Growth and Digestion”. In: *Fish Physiology*. Vol. 27. Elsevier, pp. 361–396.
822 DOI: [10.1016/S1546-5098\(08\)00008-3](https://doi.org/10.1016/S1546-5098(08)00008-3).

823 Zhang, H., Mason, D. M., Stow, C. A., Adamack, A. T., Brandt, S. B., Zhang, X., Kimmel, D. G.,

824 Roman, M. R., Boicourt, W. C., and Ludsin, S. A. (2014). “Effects of hypoxia on habitat

825 quality of pelagic planktivorous fishes in the northern Gulf of Mexico”. In: *Marine Ecology*

826 *Progress Series* 505, pp. 209–226. DOI: [10.3354/meps10768](https://doi.org/10.3354/meps10768).

827 **Figure Captions**

828 **Figure 1.** A conceptual illustration of key components and outcomes of the oxygen-dependent
829 size spectrum food web model. Quantitative descriptions of food- and size-dependent growth (a),
830 size-based feeding preference (b), density dependent reproduction (c), fisheries size selectivity
831 (d), and size-dependent maturation determine the central processes of growth, reproduction, and
832 mortality. In this model, metabolism depends on oxygen with a negative exponential function
833 (e), whereas other physiological processes scale with oxygen according to a logistic function.
834 Together, these processes produce an emergent number and mass of individuals in the population
835 (size spectra) of each of the interacting fish species (g).

836 **Figure 2.** Projections of body growth for cod during the projection period (2001–2019) arising
837 from the best model (BOM i.e. oxygen dependence of benthic food, cod occupancy in the benthic
838 habitat, and mortality), all possible combinations of its components, as well as the model with no
839 oxygen dependence (None). Data are included as small, black triangles. Dotted, light blue lines
840 are von Bertalanffy growth estimates from each year. Note that those lines either with or without
841 oxygen dependence of benthic food availability (B), typically fall nearly beneath or above one
842 another.

843 **Figure 3.** Projections of biomass of mature size classes (SSB) throughout the calibration period
844 (1991–2000; shaded region) and the projection period (2001–2019). Model abbreviations as in
845 Figure 2. Blue triangles are observations (as estimated from stock assessments; see Methods in
846 main text).

847 **Figure 4.** Projections of yield at observed fishing mortality, throughout the calibration period
848 (1991–2000; shaded region) and the projection period (2001–2019). Model abbreviations as in
849 Figure 2. Symbols as in Figure 3.

850 **Figure 5.** Modeled spawning stock biomass (SSB; kt), yield (kt) at mean fishing mortality ob-
851 served during the calibration period (1991–2000), and size (g) of individuals at maximum ob-
852 served age for all species (cod, 15; flounder, 26; sprat, 16; herring, 13) under three oxygen sce-
853 narios applied in the best model (BOM) and all possible combinations of its components. Model
854 abbreviations as in Figure 2. We also included model results with no oxygen-dependence (None;
855 for which results were identical across oxygen scenarios).

856 **Figure 6.** Changes in proportion of each prey item consumed by cod across body sizes as oxygen-
857 dependent benthic food availability (B) and cod benthic occupancy (O) change with declines in
858 ambient oxygen concentration. The BOM model is used, but note that mortality (M) does not
859 vary with oxygen level.

860 **Figure 7.** Changes in energy flow among community members as oxygen-dependent benthic
861 food availability (B) and cod occupancy of the benthic habitat (O) change with declines in am-
862 bient oxygen concentration. The BOM model is used, but note that mortality (M) does not vary
863 with oxygen level. The position of the cod relative to the center black line is calculated from their
864 occupancy of the benthic versus the pelagic habitat, while length and height of the fish draw-
865 ings reflect declines in body length and weight (g), respectively. The arrows reflect energy flow.
866 Arrow thickness is proportional to the natural log of flow in $\text{g} \cdot \text{year}^{-1}$. Arrow colors represent
867 changes in flow on the linear scale in each scenario relative to those in the $3 \text{ mL} \cdot \text{L}^{-1}$ scenario.
868 On this scale, red shades represent declines, while blues represent increases.

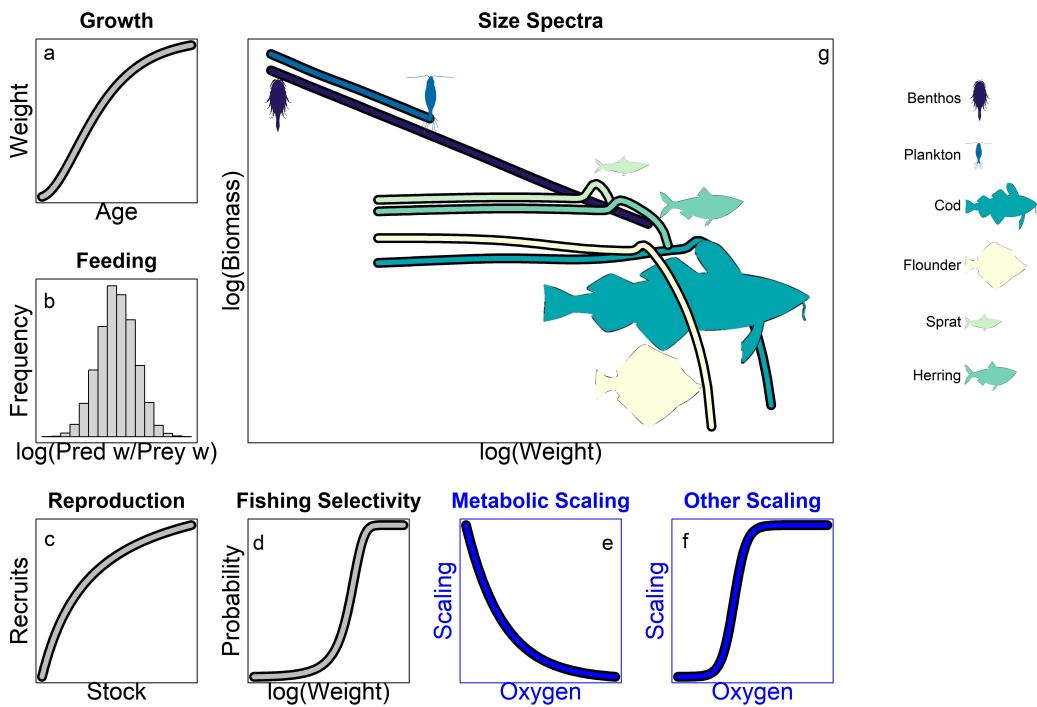


Figure 1

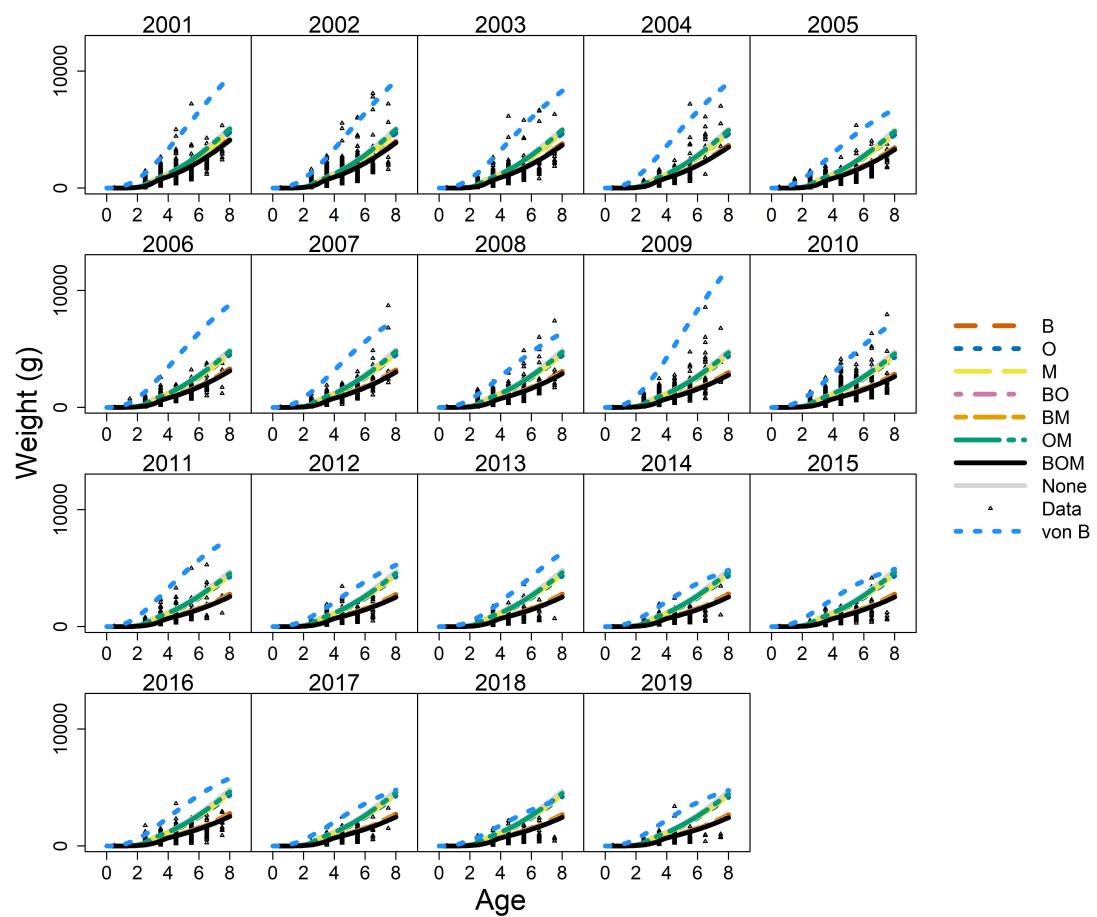


Figure 2

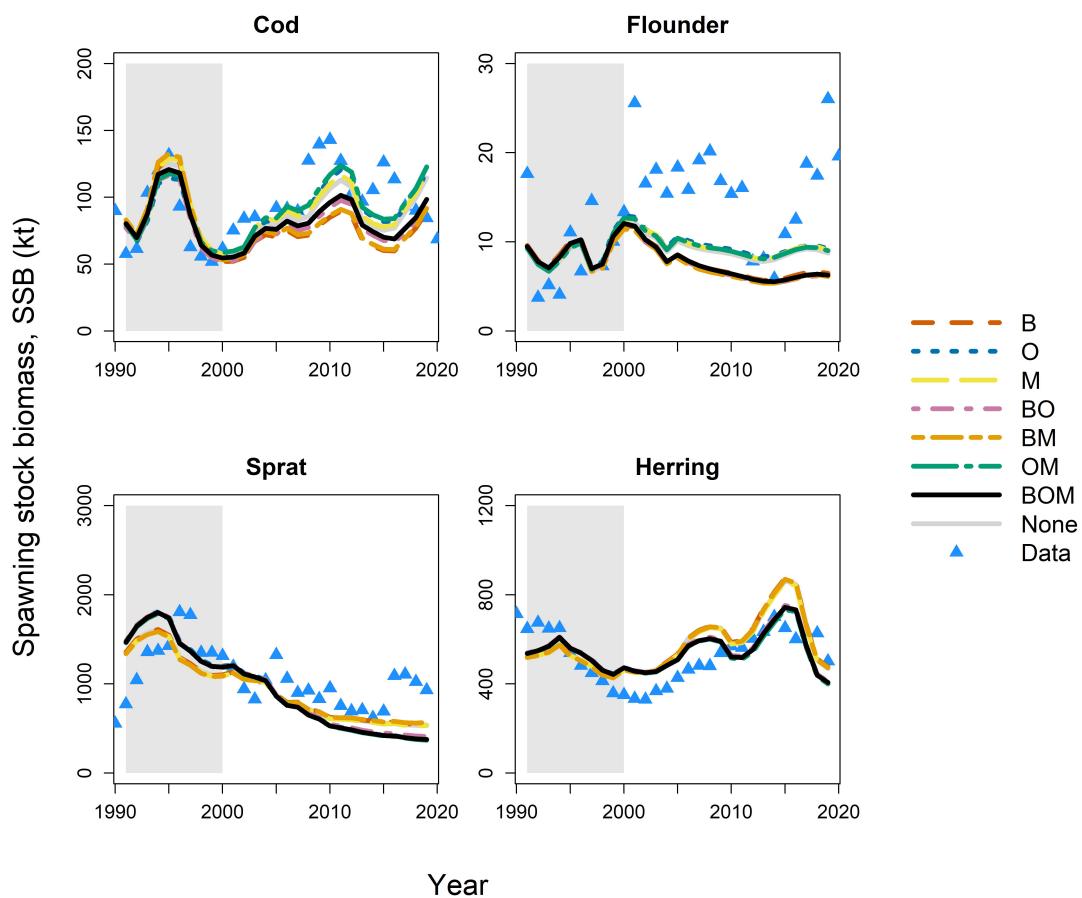


Figure 3

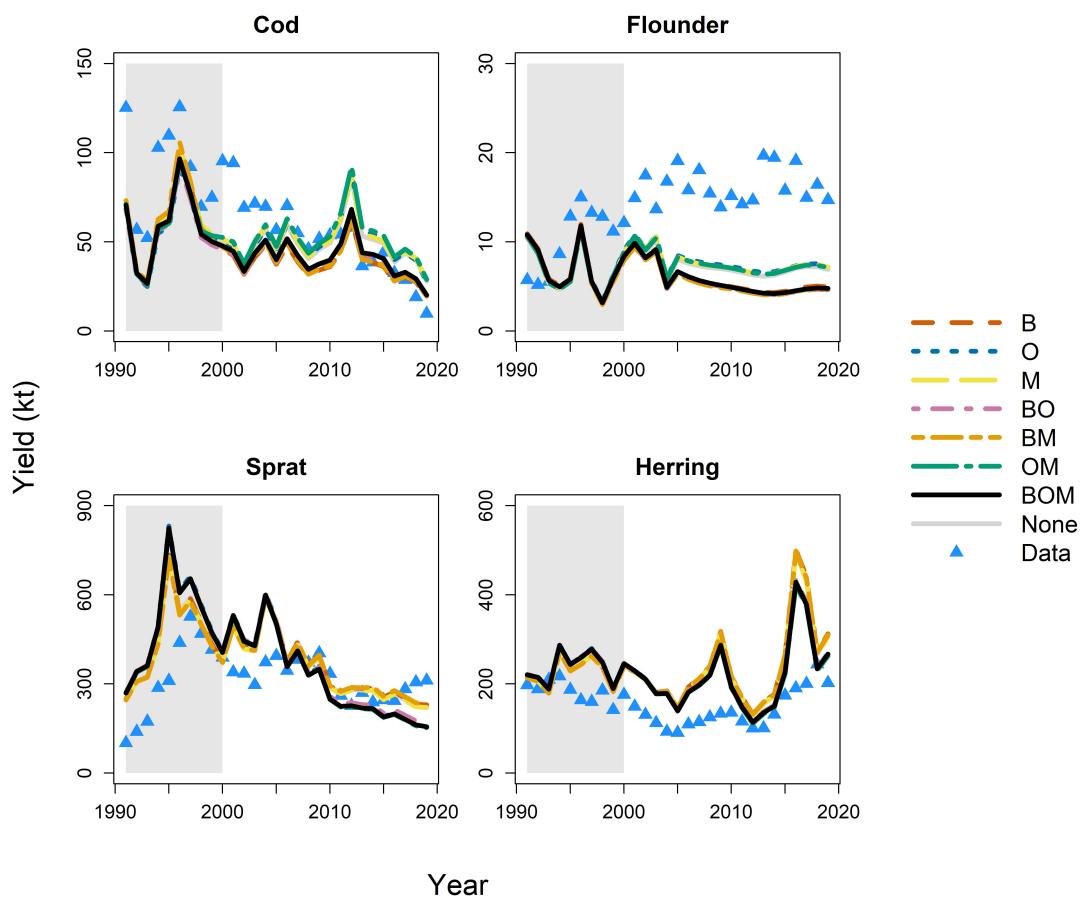


Figure 4

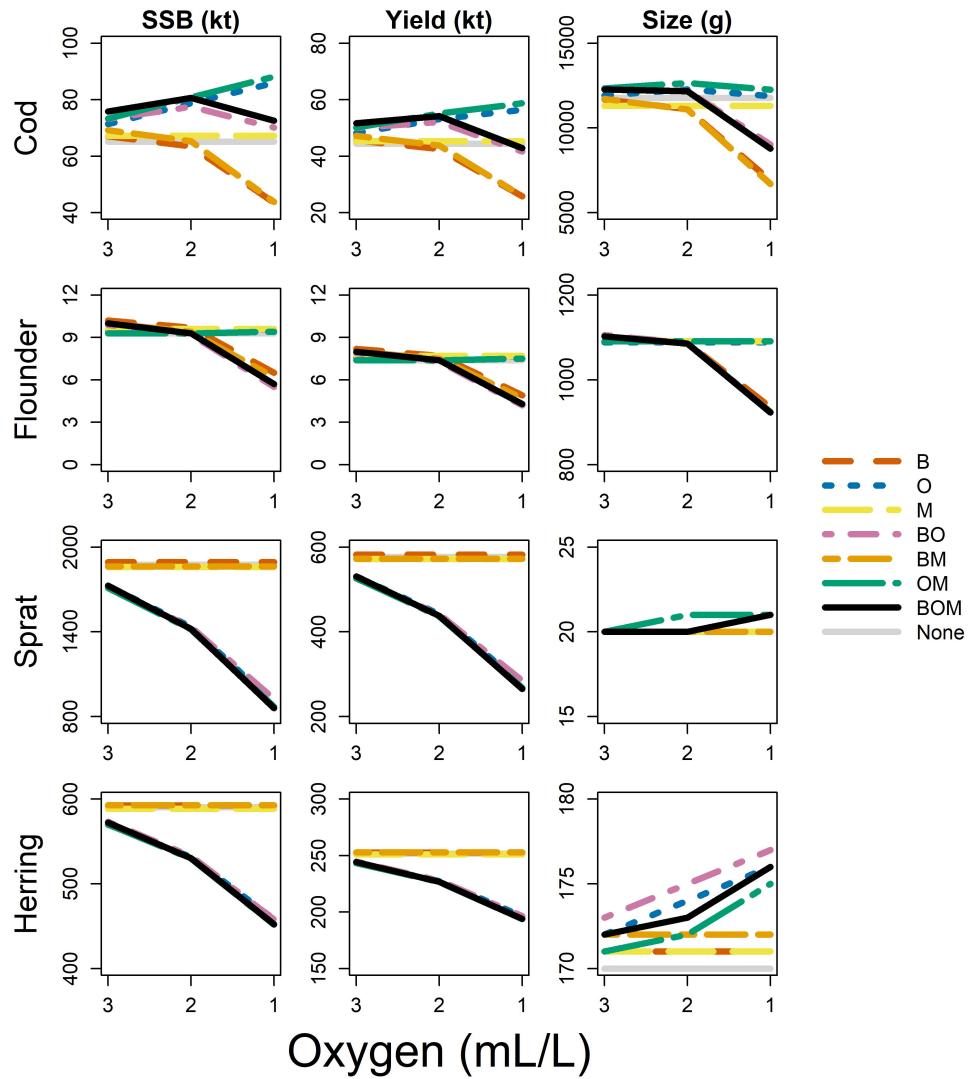


Figure 5

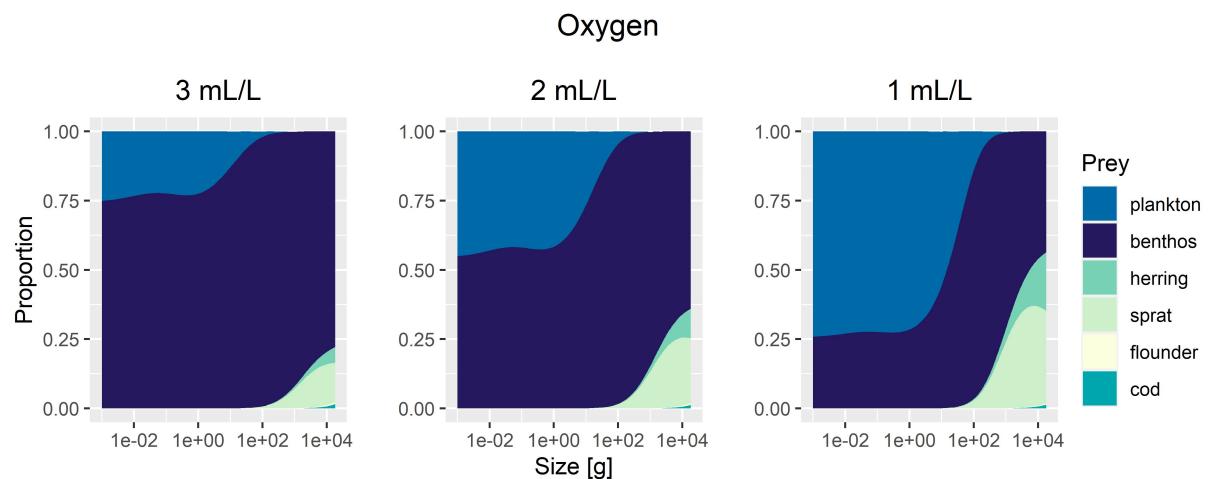


Figure 6

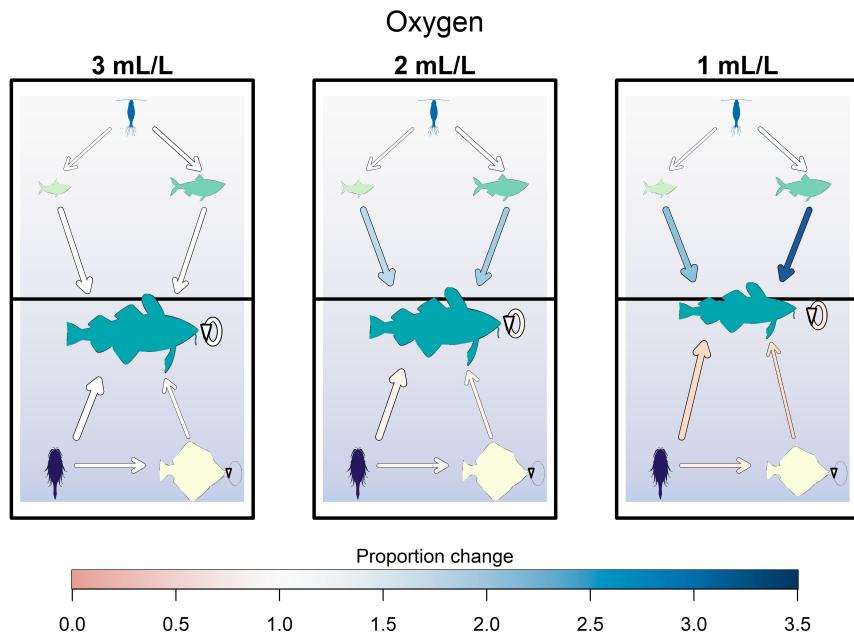
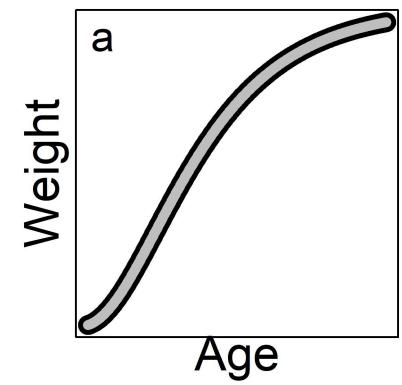
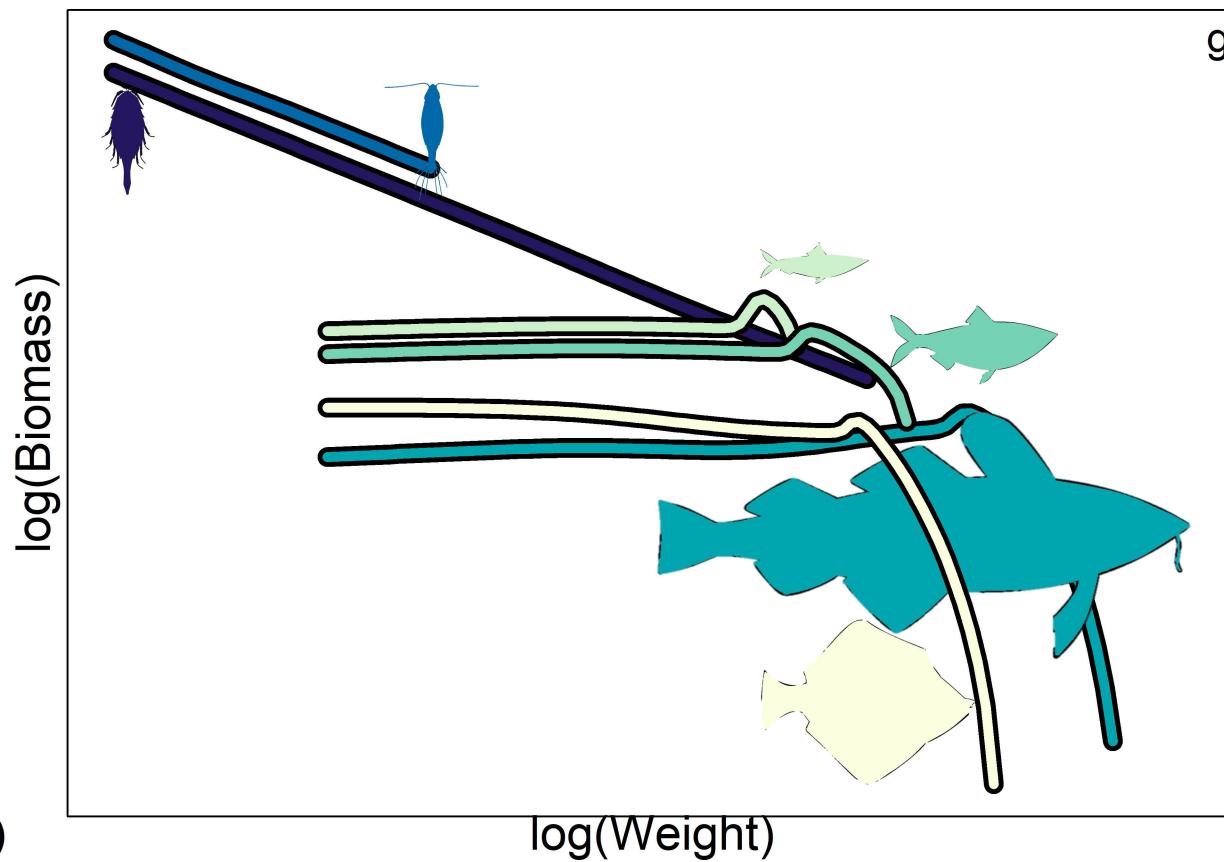
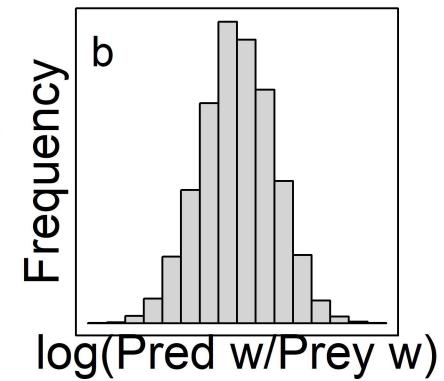
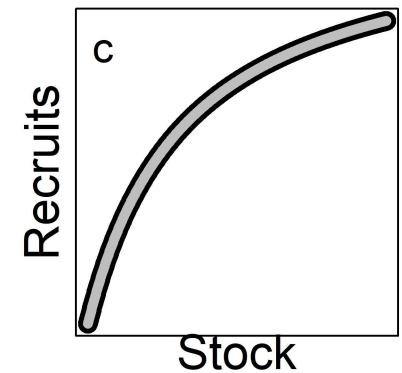
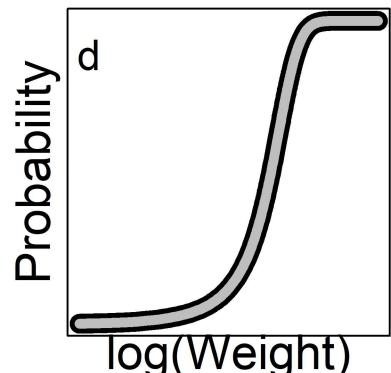
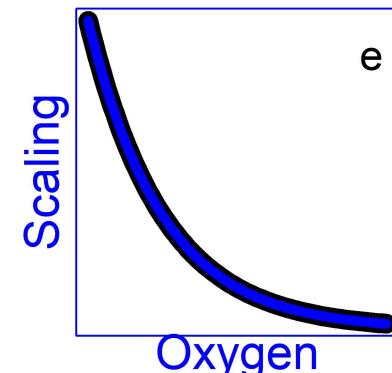




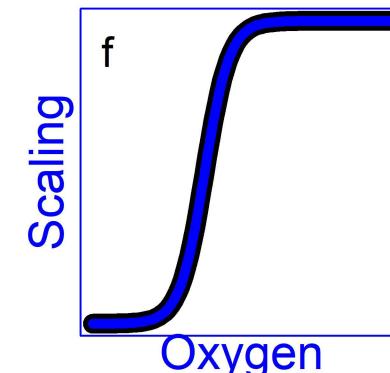
Figure 7

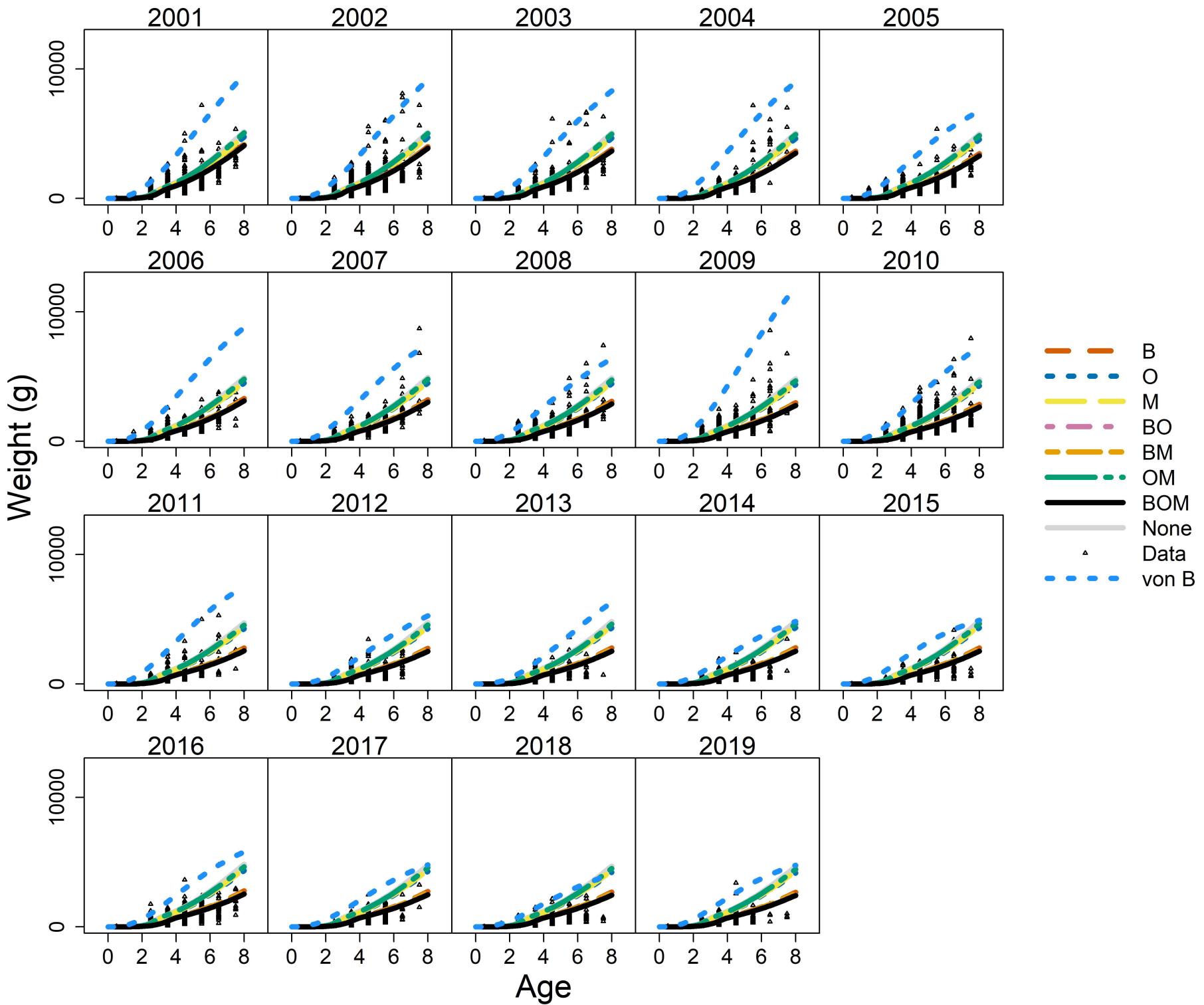

Growth


Size Spectra

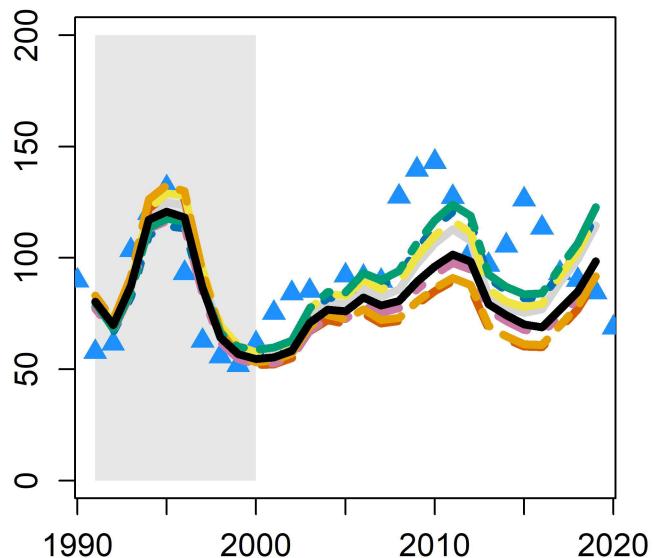

Feeding

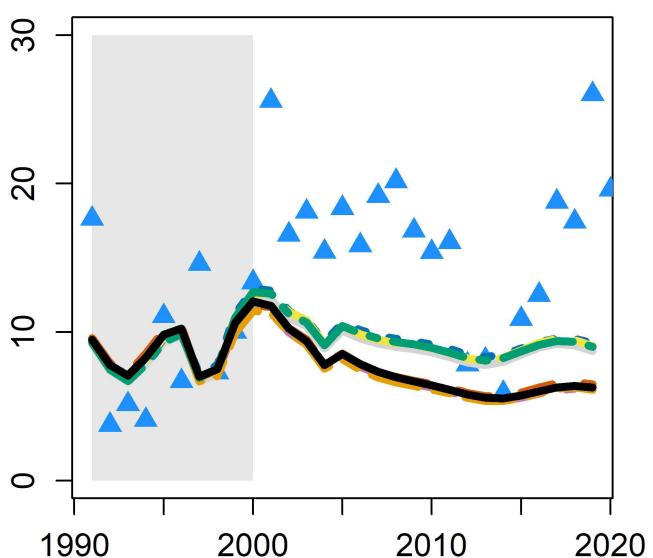

Reproduction


Fishing Selectivity

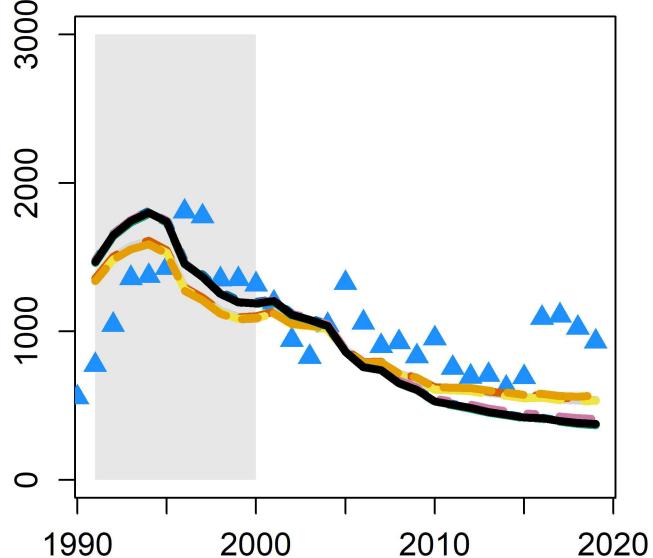


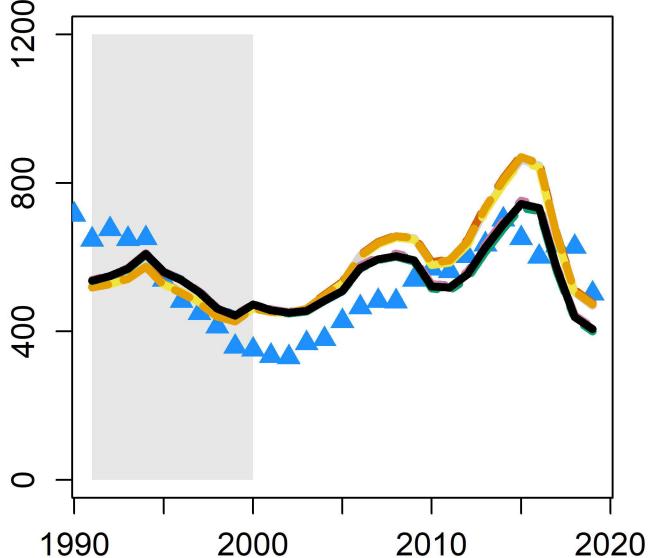
Metabolic Scaling


Other Scaling



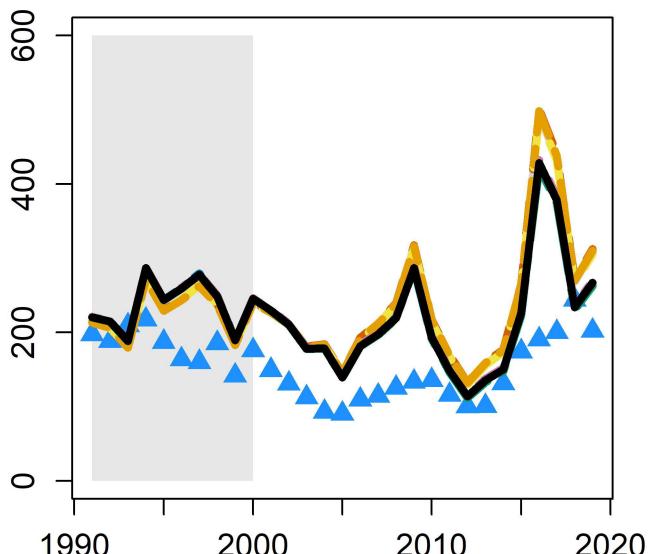
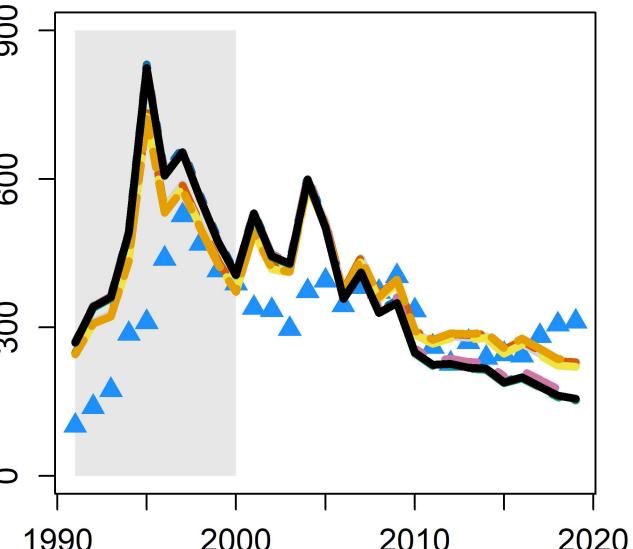
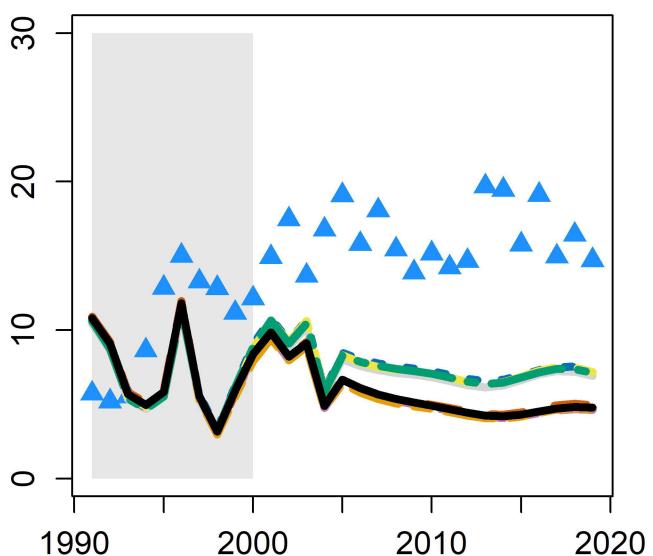
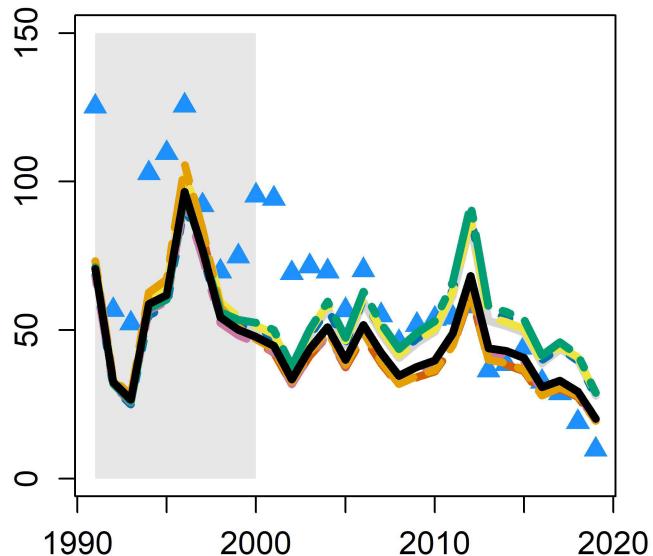
Spawning stock biomass, SSB (kt)


Cod


Flounder

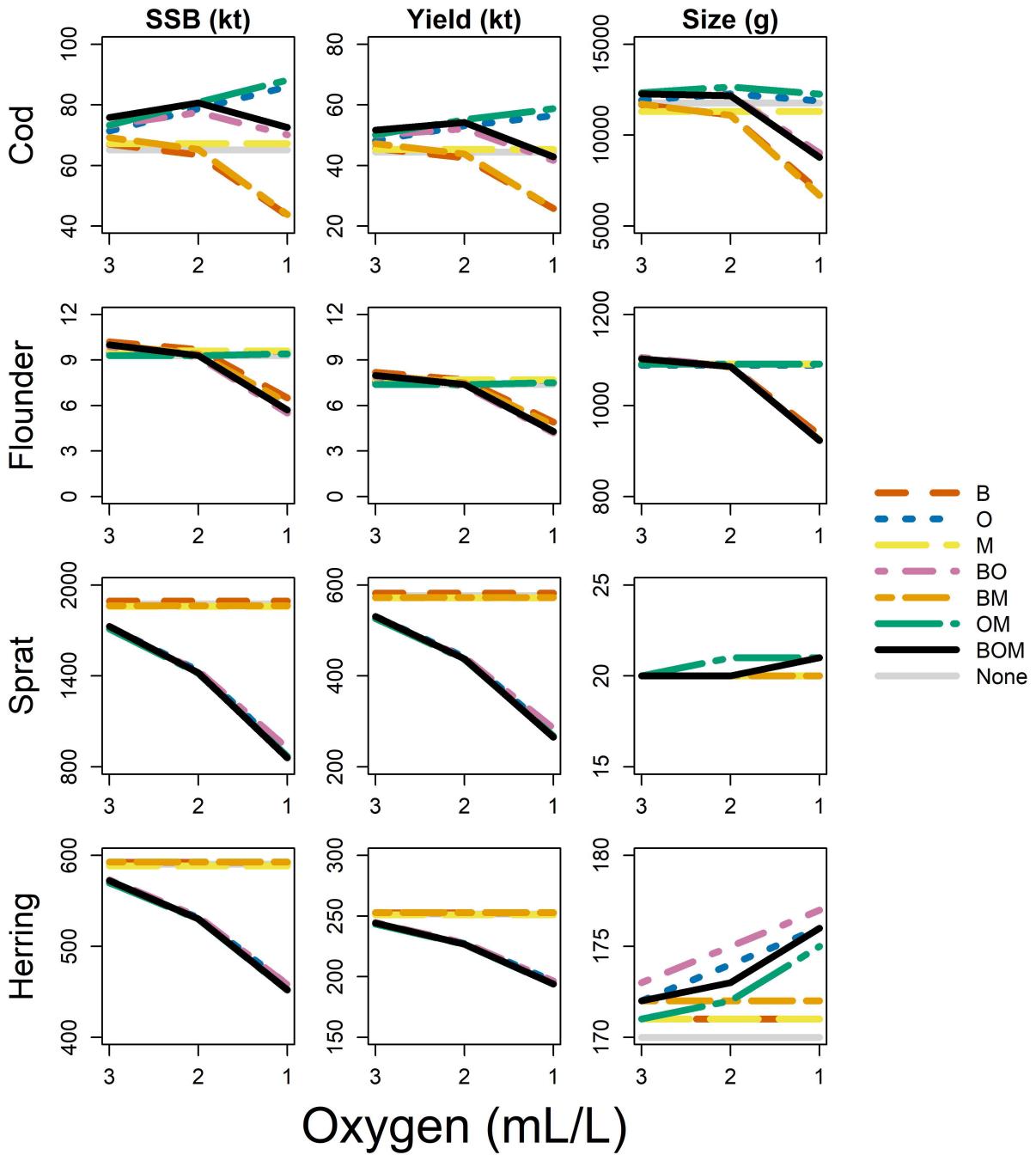
Sprat

Herring

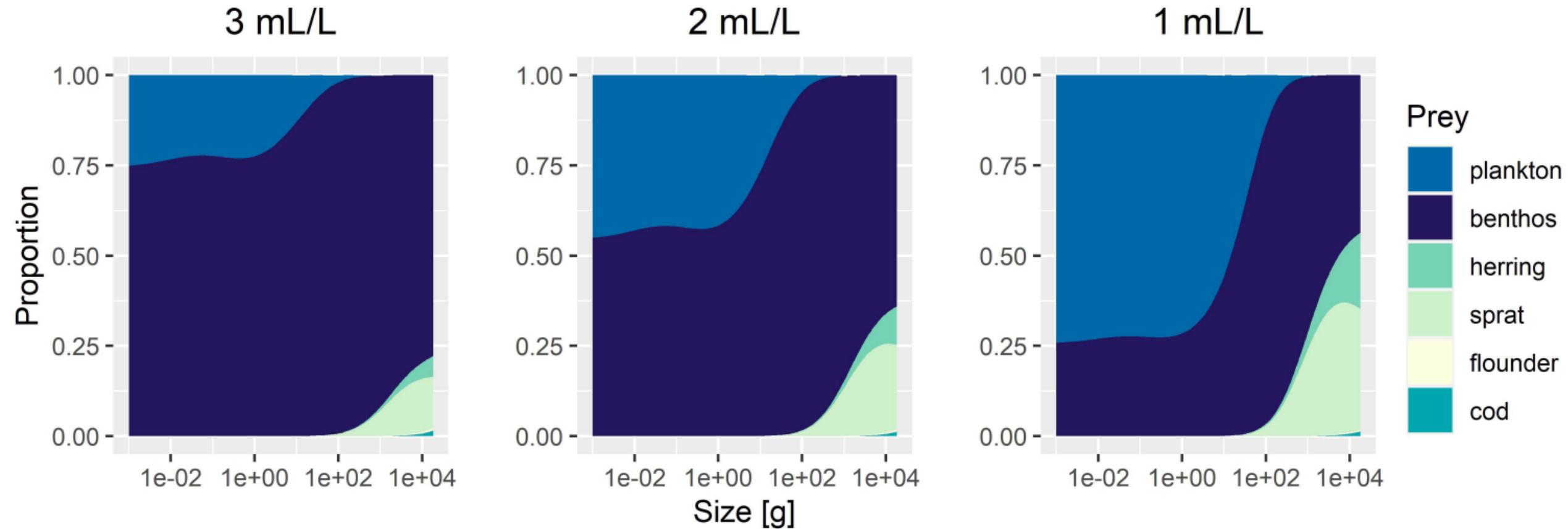





Year

B
O
M
BO
BM
OM
BOM
None
Data



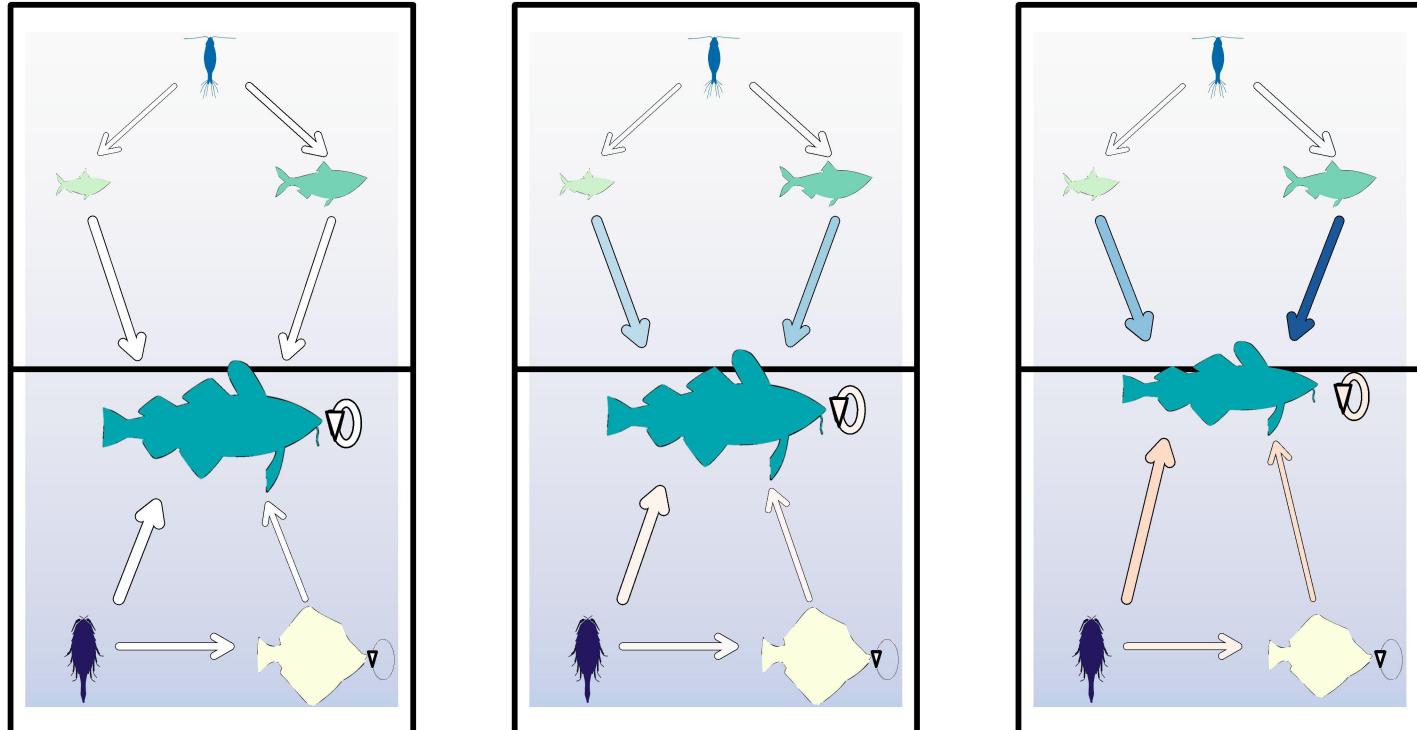
Yield (kt)



Year

—	B
—	O
—	M
—	BO
—	BM
—	OM
—	BOM
—	None
▲	Data

Oxygen



Oxygen

3 mL/L

2 mL/L

1 mL/L

Proportion change

