

1 **Plasma cells are formed in waning germinal centers via an affinity-independent
2 process**

3

4 Henry J. Sutton¹, Brian J. Parker^{2,3}, Mariah Lofgren⁴, Cherrelle Dacon⁵, Deepyan Chatterjee¹, Xin
5 Gao¹, Hannah G. Kelly¹, Robert A. Seder⁴, Joshua Tan⁵, Azza H. Idris⁴, Teresa Neeman² and Ian A.
6 Cockburn^{1*}

7

8 1. Department of Immunology and Infectious Disease, John Curtin School of Medical Research,
9 The Australian National University, Canberra, ACT, 2601, Australia

10

11 2. Biological Data Science Institute, The Australian National University, Canberra, ACT, 2601,
12 Australia

13

14 3. School of Computing, ANU College of Engineering, Computing & Cybernetics, The Australian
15 National University, Canberra, ACT, 2601, Australia

16

17 4. Malaria Unit, Vaccine Research Center, National Institute of Allergy and Infectious Diseases,
18 National Institutes of Health, Bethesda, MD 20892, USA

19

20 5. Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and
21 Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA

22

23 * To whom correspondence should be addressed (ian.cockburn@anu.edu.au)

24 **Summary**

25

26 Long-lived plasma cells (PCs) secrete antibodies that can provide sustained immunity against
27 infection. It has been proposed that high affinity cells are preferentially selected into this
28 compartment, potentiating the immune response. Here we used single cell RNA-seq to track the
29 development of Ig h^{2A10} cells, specific for the *Plasmodium falciparum* circumsporozoite protein
30 (*PfCSP*) within the germinal center (GC). We identified cells differentiating into memory B cells
31 (MBC) or PCs and estimated their affinity by V(D)J sequencing. While pre-memory cells were of
32 lower affinity than GC B cells generally, the affinity of pre-PC cells was indistinguishable. Rather,
33 a larger proportion of cells differentiated into PCs in waning GCs. These later emigrants replaced
34 early arrivals in the bone marrow allowing the development of a high affinity PC compartment.

35

36 **Keywords**

37

38 Germinal center; Plasma cells; B cells; single cell RNA seq; Affinity maturation; *Plasmodium*

39 **Introduction**

40

41 Following vaccination, antibody responses to many pathogens can be sustained for periods of
42 decades, in some cases conferring life-long protection against disease ^{1,2}. Sustained antibody
43 production is maintained by long-lived Plasma Cells (PCs) which reside in multiple organs, but
44 notably the bone marrow (BM) and spleen ^{3,4}. BM PCs secrete high affinity antibodies that have
45 undergone a process of somatic hypermutation and selection called affinity maturation ^{5,6}. This
46 process takes place in structures called germinal centers (GC) where antigen specific B cells cycle
47 between the dark zone (DZ), the primary site of cell proliferation and the light zone (LZ) where B
48 cells encounter cognate antigen and obtain help from T cell ⁷⁻⁹. Cells that fail to bind antigen and
49 obtain T cell help will die facilitating a Darwinian selection process called affinity maturation. Cells
50 that survive make a fate choice between continuing to cycle in the GC or exiting as a Memory B
51 cell (MBC) or PC.

52

53 It has long been noticed that MBCs are generally of lower affinity than PCs ¹⁰. It has also been
54 shown that low affinity cells in the GC are preferentially selected into the MBC compartment ^{11,12}.
55 PC formation requires T cell help and it is proposed that high affinity B cells obtain more antigen
56 for presentation on MHC, facilitating their differentiation into antibody secreting cells ¹³⁻¹⁵.
57 However, paradoxically, access to stronger T cell help by high affinity cells also aids their recycling
58 into the DZ ¹⁶. Another model based on BrdU pulse-chase labelling of B cells proposes that longer
59 lived PCs in the BM are preferentially formed in the late GC ¹⁷. As late GCs contain more affinity
60 matured cells, this temporal switch model would not require the preferential differentiation of high
61 affinity GC cells into PCs. A recent study using tamoxifen lineage tracking mice challenged the
62 temporal switch model by showing that PCs emerge at a constant rate from the GC ¹⁸. However
63 similar lineage tracing experiments have proposed that early GC emigrants are replaced by later
64 emigrants, explaining why most long lived PCs derive from the late GC ^{19,20}. To examine the role of
65 affinity in this process we tracked Ig h^{g2A} ¹⁰ cells specific for the malaria vaccine antigen *P.*
66 *falciparum* circumsporozoite protein (*PfCSP*) by single cell RNA-seq in the GC. Transcriptomic
67 data allowed us to identify Pre-Memory cells (PreMem) and Pre-PCs (PrePC) among LZ B cells,
68 while BCR sequencing allowed us to estimate the affinity of these cells and thus understand the
69 relationship between affinity and cell fate choices in the GC.

70

71 **Results**

72

73 *Stochastic cell fate choice and stereotypic affinity maturation in Igh^{g2A10} cells*

74

75 Igh^{g2A10} mice have the unmutated common ancestor (UCA) of the heavy chain of the 2A10 mAb,
76 specific for the *PfCSP* repeat domain knocked into the IgM locus ²¹. Because the Igh^{g2A10} heavy
77 chain is free to pair with any light chain we reasoned we might detect populations in this mouse that
78 vary in their ability to bind to *PfCSP*. In agreement with this we identified populations binding
79 high, intermediate, and low amounts of *PfCSP* probe relative to their IgM expression (Figure 1A).
80 Single cell BCR sequencing revealed that all *PfCSP*-binding cells utilized the *Igkv10-94* gene,
81 which is also used by the 2A10 mAb ^{22,23}. However, in the different *PfCSP*-binding populations this
82 *Igkv* gene was paired with *Igkj2* (J2; high), *Igkj2* (J1; intermediate) or *Igkj4* (J4; low) genes
83 resulting in different aromatic amino acids being present at position LC_116 (Figure 1B). ELISA of
84 recombinant antibodies (rAbs) carrying each light chain confirmed that these changes resulted in
85 expected reductions in affinity compared to the 2A10 UCA (Figure 1C).

86

87 It has been proposed that high affinity cells preferentially become PCs, while GCs are formed from
88 cells with lower affinity, though others have suggested this initial fate choice is stochastic ²⁴⁻²⁶. To
89 test this hypothesis Igh^{g2A10} cells were transferred to mice which were subsequently immunized
90 with irradiated *P. berghei* sporozoites expressing *PfCSP* in place of their endogenous *P. berghei*
91 CSP molecule (PbPf-SPZ) ²⁷. Immunization with irradiated sporozoites is an established method for
92 generating sterilising immunity against malaria in mice and humans ^{28,29}. Four days after
93 immunization, plasmablasts (PB), GC B cells, and early memory (EM) B cells were single cell
94 sorted and the light chains sequenced (Figure 1D). Overall, when cells were separated by cell fate
95 ($\chi^2=11.3$; df=9; p=0.25) or J chain use ($\chi^2=1.89$; df=4; p=0.76) there was no clear difference in the
96 propensity to enter a particular cell fate (Figure 1E- F). Thus, our data are consistent with early cell
97 fate choices being largely stochastic.

98

99 To understand how Igh^{g2A10} cells mature in the GC we extended the earlier analysis to multiple time
100 points after immunization (Figure 1G). Our previous investigation of the 2A10 antibody showed
101 that most affinity maturation occurs in the LC so we focussed on this chain ²². At day 7 some cells
102 carried a C328T mutation that codes for a LC_L114F substitution (Figure S1A-B; Figure 1H). This
103 mutation was more common initially in J1 cells which had become rarer than at day 4, perhaps
104 because of greater selective pressure on these initially lower affinity cells (Figure 1H). By day 8 the
105 LC_L114F mutation had swept through the GC and was found in ~80% of cells (Figure 1H). By

106 day 21 an LC_Q106X substitution occurring in ~50% of GC B cells had become next most
107 common (Figure 1H). At this position multiple different changes were observed, notably
108 LC_Q106R on the J1 light chain (15/30 mutated J1 chains), with LC_Q106K (22/75) or LC_Q106L
109 (18/75) on the J2 light chain (Figure S1A-B; Figure 1H). Competition ELISA of rAbs carrying
110 these mutations confirmed that these mutations resulted in progressively higher affinity for the
111 (NANP)₉ repeat (Figure 1I). To precisely measure the effect of these mutations on BCR affinity we
112 generated antigen-binding fragments (Fab) containing these mutations and measured binding to
113 *PfCSP* by surface plasmon resonance (SPR; Figure S1C). The SPR analysis revealed that the L114F
114 mutation on its own resulted in a modest (1.49-fold) increase in affinity over the J2 UCA.
115 Improvements in affinity due to the L114F substitution could not be determined in the J1 lineage
116 due to the negligible binding signals of the J1 UCA. Interestingly the C328T mutation occurs at a
117 WGCW super-hotspot for AID targeting³⁰, potentially explaining the rapid selective sweep of this
118 mutation despite a relatively small affinity advantage. Additional LC_Q106K/Q106R mutations
119 substantially enhanced affinity in both lineages, conferring a 65-fold increase in affinity to the
120 J2/L114F light chain and an 18.2-fold increase in affinity to the J1/L114F light chain respectively
121 (Figure 1J).

122

123 *Single cell RNA sequencing allows the identification of PrePCs and PreMems within the GC.*

124

125 Because we can see stereotypic selective sweeps occurring among GC B cells based on Ig h^{g2A10}
126 cells we exploited this feature to determine if these affinity changes were related to cell fate
127 decisions in the GC. Specifically, we aimed to use single cell RNA-seq to identify PrePCs or
128 PreMem cells among Ig h^{g2A10} cells in the GCs and combine this transcriptomic data with V(D)J
129 sequencing to determine if these PreMem and PrePC populations contained generally higher or
130 lower affinity cells (Figure 2A). Accordingly, we sorted and sequenced IgD $^{-}$ Ig h^{g2A10} cells from 5
131 mice each at days 7 and 21 post immunization with PbPf-SPZ. Days 7 and 21 were chosen as at
132 each of these days ~50% of GC B cells carried the LC_L114F and LC_Q106X mutations
133 respectively. To facilitate the identification of PrePC and PreMem populations we included CITE-
134 seq³¹ Abs specific for the PrePC marker CD69 and CD38 which is upregulated on PreMem cells
135^{15,32,33}. We also included antibodies specific for CD11c and CXCR3 to distinguish atypical B cells
136 from conventional MBCs^{34,35}.

137

138 Dimensionality reduction analysis showed 4 major populations of cells (Figure 2B) which we
139 identified as dying cells, GC B cells, PCs and MBCs using a combination of gene set enrichment
140 and the expression of hallmark genes (Figure S2A-B). The dying cells had higher levels of mtRNA

141 (Figure S2A) and might include cells harmed by experimental manipulation as well as those counter
142 selected in the GC and so were excluded from downstream analysis. Among MBCs, we could
143 detect a population of cells with high surface CD11c expression that were identified at atBCs
144 (Figure 2C). The PC population could be divided into PC1 and PC2 based principally on the
145 expression of cell cycle genes (Figure S2C). Among GC B cells we identified two clusters of DZ
146 cells based on their cell cycle stage and the expression of *Aicda*, *Mki67* and *Ccnb1* (Figure S2B-C)
147 which conform to a previous classification of DZ cells as proliferating (DZp) or differentiating
148 (DZd)³⁶. Three populations were observed with high expression of LZ genes including *Cxcr5*,
149 *Cd86* and *Cd83* (Figure 2B and Figure S2B). Cells from the first of these clusters were simply
150 defined as LZ B cells, however, a second cluster was located proximal to the MBC population in
151 our UMAP projection (Figure 2B) and had a similar gene expression profile to MBCs (Figure S2A).
152 CITE-seq analysis revealed that these had slightly higher surface expression of CD38 so this
153 population was designated PreMem (Figure 2C). The third LZ cluster, similar to one identified in a
154 recent study³⁷, was enriched for genes including *Cd86*, *Irf4*, *Myc*, *Cd40* and *Icam1* which have
155 been associated with a population of *Bcl6*^{low} *CD69*^{hi} PrePC cells (Figure S2A-C). These cells also
156 had increased surface expression of CD69 (Figure 2C) further supporting their designation and
157 PrePC cells¹⁵. Pseudotime analysis showed that when LZ B cells were set as the root, 3 distinct
158 trajectories could be seen, one leading to DZ recycling and the other two passing through either
159 PreMem to MBC or PrePC to PC (Figure S2D).

160

161 *PC differentiation is affinity independent*

162

163 Having identified PreMem and PrePCs we asked if we could relate these cell fates to the presence
164 of affinity-increasing mutations. 7 days after immunization, ~63% were J2, ~36% were J1 while
165 <1% were J4. While the cellular makeup of the of J1 and J2 populations were similar at day 7, J4
166 cells were largely found in the memory compartment (Figure 2D), suggesting that even if these cells
167 were capable of entering the GC (Figure 1E-F) they were rapidly outcompeted. atMBC, MBC and
168 PC cells were mostly unmutated, however ~50% of cells in the GC carried the LC_L114F mutation,
169 though this was more common in the DZd, DZp, and LZ populations compared to the PreMem and
170 PrePC populations (Figure 2E). Logistic regression analyses revealed that PreMem cells were much
171 less likely to contain the LC_L114F mutation compared with other cell fates (OR = 0.096, 95% CI
172 [0.046,0.21]). Conversely DZp cells were enriched relative to other cells in the LC_L114F mutation
173 (OR=2.7, 95% CI [1.66,2.86] and *Igkj2* gene (OR = 1.92, 95% CI = [1.66,2.86]) consistent with
174 rapid selection of this mutant at this time (Figure 2F). One possibility is that PreMem are lower
175 affinity because they began to differentiate before the LC_L114F selective sweep had begun.

176 However, overall levels of mutation were similar in this population compared to other GC
177 populations, suggesting these cells had only just exited GC cycling (Figure 2G).

178
179 By day 21 the LC_L114F mutation had swept through all GC populations, and the small number of
180 spleen PC cells; however, some MBC and most atBC were unmutated even at day 21 suggesting
181 these cells are either GC-independent or formed very early in the response (Figure 2H). Because the
182 LC_L114F mutation was ubiquitous in the GC and no longer useful for distinguishing affinity, we
183 examined the prevalence of mutations at LC_Q106. These were present in roughly 50% of DZd,
184 DZp and LZ cells, but only around 30% of PreMem and PrePC cells (Figure 2I). Logistic regression
185 analysis revealed that the LC_Q106X mutations were under-represented in PreMem cells (OR =
186 0.28, 95% CI [0.17-0.47]), and over-represented in DZp cells (OR = 1.50, 95% CI [1.12,2.02])
187 (Figure 2I). There was no evidence that cells with LC_Q106X mutations were preferentially
188 selected into the PrePC compartment (OR = 0.61, 95% CI [0.30,1.27]). Finally, as at day 7, overall
189 mutation frequencies were similar among all GC populations in all mice indicating recent
190 differentiation into the PrePC or PreMem compartments (Figure 2J).

191
192 *Lineage analysis of Ig^hg^{2A10} GC B cells*
193
194 We were concerned that our results were biased by focussing on a small number of pre-selected
195 mutations. We therefore examined the frequency of other mutations in the Ig^hg^{2A10} lineage and their
196 associations with cell fate. After LC_114 and LC_106, mutations at amino acids HC_39, HC_59
197 and HC_68 were the next most common across all mice (Figure 3A; Figure S3A-B). Collectively
198 mutations at the top 10 positions accounted for around 40% of the mutation burden Ig^hg^{2A10} cells
199 (Figure 3B). Phylogenetic analysis of cell lineages at day 21 revealed that these mutations typically
200 arose close to the root of the trees and were responsible for small selective sweeps among the GC B
201 cells (Figure 3C-D; Supplementary dataset 3). These mutations generally arose independently of
202 each other, though mutations at positions HC_39, HC_40 and the light chain CDR3 were slightly
203 favoured when a LC_Q106X mutation was present (Figure S3C).

204
205 To address whether any specific mutations were associated with cell fate we performed a main-
206 effects logistic regression analysis which showed that mutations at 3 of the 5 most mutated
207 positions (LC_106; HC_59; HC_40) were significantly under-represented in PreMem cells (Figure
208 3E). Notably the HC_N59I mutation, has been shown to contribute to the affinity of the 2A10 mAb
209 ²². Again, no clear signature could be determined among PrePC cells though mutations at HC_59
210 were significantly rarer in this population. Overall, these data support the hypothesis that PreMem

211 cells are generally derived from lower affinity cells in the GC but that PrePCs differentiate in an
212 affinity independent manner.

213

214 *Late GC emigrants replace early emigrants in the BM*

215

216 The lack of a clear affinity signature for PrePCs led us to examine the hypothesis that PrePCs
217 preferentially emerge late in the GC reaction ¹⁷. Comparison of the B cell populations at days 7 and
218 21 showed that DZ populations made up a smaller proportion of GC B cells while the proportion of
219 PrePCs had increased from ~1% to 3% (Figure S4A, Figure 4A). To investigate the kinetics of GC
220 exit we performed flow cytometry analysis of the GC and PrePC response from mice that had
221 received Ig h^{g2A10} cells and been immunized with PbPf-SPZ (Figure 4B). Based on our single cell
222 RNA seq analysis PrePCs were identified as cells with elevated expression of Irf4, CD86 and
223 CD69, however while cells that upregulated all these markers could be detected (Figure S4B), these
224 cells did not form a distinct population that could be objectively gated. Accordingly, to estimate the
225 number of PrePCs we quantified the number of GC B cells that were above the 80th percentile for
226 all three markers (Figure S4B). This revealed an excess of Irf4^{hi} CD69^{hi} CD86^{hi} cells compared to
227 the proportion (0.8%) that would be expected by chance (Figure 4C). Consistent with later GCs
228 favouring PC formation the estimated proportion of PrePC cells increased over the course of the GC
229 reaction, but in terms of absolute numbers this still corresponded to a peak output of PrePCs at day
230 10 when the GC is largest but with a slow decline while the total GC wanes rapidly (Figure 4D).
231 This relatively flat output of PrePC is in broad agreement with a recent study examining PC
232 formation using Blimp1 fate-tracking models ¹⁸.

233

234 As the BM is the site of residence of long-lived PCs, we tracked Ig h^{g2A10} PCs in this organ after
235 immunization using Blimp1-GFP reporter mice ³⁸ to facilitate the identification of BM PCs (Figure
236 4E-F). Despite an approximately constant formation of PrePCs in the GC we did not observe the
237 expected increase in the number of BM PCs. Rather the number of BM PCs remained static after
238 day 14 (Figure 4G). To determine the identity of the cells that form the BM PC population we
239 single cell sorted these cells and sequenced them at days 7, 10, 14 and 84 post-immunization. This
240 analysis showed that early unmutated cells were largely replaced by later emigrants carrying
241 mutations at both position LC_114 and LC_106, though replacement was not absolute as a small
242 number of unmutated cells were still detected at day 84 (Figure 4H-I). Overall, these data are
243 consistent with the bulk of the BM PC compartment emerging after the peak of the GC response
244 when the overall affinity of GC B cell is likely to be highest.

245

246 **Discussion**

247

248 Our single cell RNA-seq data are consistent with a model in which the early waxing GC favours the
249 recycling and expansion of cells in the dark zone but the later waning GC favours PC formation. As
250 such our data are consistent with a temporal switch model of PC formation ¹⁷. Nonetheless, in
251 absolute terms PC formation may still be significant at the peak of the GC response due to the size
252 of the GC which may explain why others have reported a steadier output of cells from the GC ¹⁸.
253 Regardless it is likely that early arrivals in the BM are replaced by later cells due to the natural rate
254 of decay^{19,20}. Collectively these processes appear to be sufficient to result in a high affinity BM PC
255 compartment even without the need for affinity-dependent selection of PrePCs in the GC.
256 Conversely, our data would appear to contradict models in which high affinity cells efficiently
257 obtain T cell help and then differentiate to become PCs ¹⁵. However previous work suggested that
258 high affinity antigen-BCR affinity interactions may result in antigen not being available for
259 processing and presentation on MHC Class II ^{39,40}. Thus, high BCR affinity may not automatically
260 translate to a greater ability to obtain T cell help. An excessive diversion of high affinity cells away
261 from DZ recycling in the GC reaction may also be detrimental to the overall process of affinity
262 maturation, thus the stochastic formation of PCs in the waning GC may be the most efficient
263 strategy for generating protective immune responses.

264 **References**

265

- 266 1. Plotkin, S.A. (2020). Updates on immunologic correlates of vaccine-induced protection. Vaccine 38, 2250-2257. 10.1016/j.vaccine.2019.10.046.
- 267 2. Amanna, I.J., Carlson, N.E., and Slifka, M.K. (2007). Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 357, 1903-1915. 10.1056/NEJMoa066092.
- 268 3. Slifka, M.K., Matloubian, M., and Ahmed, R. (1995). Bone marrow is a major site of long-term antibody production after acute viral infection. J Virol 69, 1895-1902. 10.1128/JVI.69.3.1895-1902.1995.
- 269 4. Slifka, M.K., and Ahmed, R. (1996). Long-term antibody production is sustained by antibody-secreting cells in the bone marrow following acute viral infection. Ann N Y Acad Sci 797, 166-176. 10.1111/j.1749-6632.1996.tb52958.x.
- 270 5. Jerne, N.K. (1951). A study of avidity based on rabbit skin responses to diphtheria toxin-antitoxin mixtures. Acta Pathol Microbiol Scand Suppl (1926) 87, 1-183.
- 271 6. Eisen, H.N., and Siskind, G.W. (1964). Variations in Affinities of Antibodies during the Immune Response. Biochemistry 3, 996-1008. 10.1021/bi00895a027.
- 272 7. Nieuwenhuis, P., and Opstelten, D. (1984). Functional anatomy of germinal centers. Am J Anat 170, 421-435. 10.1002/aja.1001700315.
- 273 8. Victora, G.D., Schwickert, T.A., Fooksman, D.R., Kamphorst, A.O., Meyer-Hermann, M., Dustin, M.L., and Nussenzweig, M.C. (2010). Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592-605. 10.1016/j.cell.2010.10.032.
- 274 9. Allen, C.D., Okada, T., Tang, H.L., and Cyster, J.G. (2007). Imaging of germinal center selection events during affinity maturation. Science 315, 528-531. 10.1126/science.1136736.
- 275 10. Smith, K.G., Light, A., Nossal, G.J., and Tarlinton, D.M. (1997). The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J 16, 2996-3006. 10.1093/emboj/16.11.2996.
- 276 11. Viant, C., Weymar, G.H.J., Escolano, A., Chen, S., Hartweger, H., Cipolla, M., Gazumyan, A., and Nussenzweig, M.C. (2020). Antibody Affinity Shapes the Choice between Memory and Germinal Center B Cell Fates. Cell 183, 1298-1311 e1211. 10.1016/j.cell.2020.09.063.
- 277 12. Wong, R., Belk, J.A., Govero, J., Uhrlaub, J.L., Reinartz, D., Zhao, H., Errico, J.M., D'Souza, L., Ripperger, T.J., Nikolic-Zugich, J., et al. (2020). Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity 53, 1078-1094 e1077. 10.1016/j.immuni.2020.09.001.
- 278 13. Krautler, N.J., Suan, D., Butt, D., Bourne, K., Hermes, J.R., Chan, T.D., Sundling, C., Kaplan, W., Schofield, P., Jackson, J., et al. (2017). Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J Exp Med 214, 1259-1267. 10.1084/jem.20161533.
- 279 14. Inoue, T., Moran, I., Shinnakasu, R., Phan, T.G., and Kurosaki, T. (2018). Generation of memory B cells and their reactivation. Immunol Rev 283, 138-149. 10.1111/imr.12640.
- 280 15. Ise, W., Fujii, K., Shiroguchi, K., Ito, A., Kometani, K., Takeda, K., Kawakami, E., Yamashita, K., Suzuki, K., Okada, T., and Kurosaki, T. (2018). T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates Entry into Plasma Cell or Recycling Germinal Center Cell Fate. Immunity 48, 702-715 e704. 10.1016/j.immuni.2018.03.027.
- 281 16. Gitlin, A.D., Shulman, Z., and Nussenzweig, M.C. (2014). Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637-640. 10.1038/nature13300.
- 282 17. Weisel, F.J., Zuccarino-Catania, G.V., Chikina, M., and Shlomchik, M.J. (2016). A Temporal Switch in the Germinal Center Determines Differential Output of Memory B and Plasma Cells. Immunity 44, 116-130. 10.1016/j.immuni.2015.12.004.

315 18. Robinson, M.J., Dowling, M.R., Pitt, C., O'Donnell, K., Webster, R.H., Hill, D.L., Ding, Z.,
316 Dvorscek, A.R., Brodie, E.J., Hodgkin, P.D., et al. (2022). Long-lived plasma cells
317 accumulate in the bone marrow at a constant rate from early in an immune response. *Sci
318 Immunol* 7, eabm8389. 10.1126/sciimmunol.abm8389.

319 19. Koike, T., Fujii, K., Kometani, K., Butler, N.S., Funakoshi, K., Yari, S., Kikuta, J., Ishii, M.,
320 Kurosaki, T., and Ise, W. (2023). Progressive differentiation toward the long-lived plasma
321 cell compartment in the bone marrow. *J Exp Med* 220. 10.1084/jem.20221717.

322 20. Xu, A.Q., Barbosa, R.R., and Calado, D.P. (2020). Genetic timestamping of plasma cells in
323 vivo reveals tissue-specific homeostatic population turnover. *Elife* 9. 10.7554/eLife.59850.

324 21. McNamara, H.A., Idris, A.H., Sutton, H.J., Vistein, R., Flynn, B.J., Cai, Y., Wiehe, K.,
325 Lyke, K.E., Chatterjee, D., Kc, N., et al. (2020). Antibody Feedback Limits the Expansion
326 of B Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral
327 Response. *Cell Host Microbe* 28, 572-585 e577. 10.1016/j.chom.2020.07.001.

328 22. Fisher, C.R., Sutton, H.J., Kaczmarski, J.A., McNamara, H.A., Clifton, B., Mitchell, J., Cai,
329 Y., Dups, J.N., D'Arcy, N.J., Singh, M., et al. (2017). T-dependent B cell responses to
330 Plasmodium induce antibodies that form a high-avidity multivalent complex with the
331 circumsporozoite protein. *PLoS Pathog* 13, e1006469. 10.1371/journal.ppat.1006469.

332 23. Anker, R., Zavala, F., and Pollok, B.A. (1990). VH and VL region structure of antibodies
333 that recognize the (NANP)3 dodecapeptide sequence in the circumsporozoite protein of
334 Plasmodium falciparum. *Eur J Immunol* 20, 2757-2761. 10.1002/eji.1830201233.

335 24. Glaros, V., Rauschmeier, R., Artemov, A.V., Reinhardt, A., Ols, S., Emmanouilidi, A.,
336 Gustafsson, C., You, Y., Mirabello, C., Bjorklund, A.K., et al. (2021). Limited access to
337 antigen drives generation of early B cell memory while restraining the plasmablast response.
338 *Immunity* 54, 2005-2023 e2010. 10.1016/j.immuni.2021.08.017.

339 25. Chan, T.D., Gatto, D., Wood, K., Camidge, T., Basten, A., and Brink, R. (2009). Antigen
340 affinity controls rapid T-dependent antibody production by driving the expansion rather than
341 the differentiation or extrafollicular migration of early plasmablasts. *J Immunol* 183, 3139-
342 3149. 10.4049/jimmunol.0901690.

343 26. Paus, D., Phan, T.G., Chan, T.D., Gardam, S., Basten, A., and Brink, R. (2006). Antigen
344 recognition strength regulates the choice between extrafollicular plasma cell and germinal
345 center B cell differentiation. *J Exp Med* 203, 1081-1091. 10.1084/jem.20060087.

346 27. Espinosa, D.A., Christensen, D., Munoz, C., Singh, S., Locke, E., Andersen, P., and Zavala,
347 F. (2017). Robust antibody and CD8(+) T-cell responses induced by *P. falciparum* CSP
348 adsorbed to cationic liposomal adjuvant CAF09 confer sterilizing immunity against
349 experimental rodent malaria infection. *NPJ Vaccines* 2. 10.1038/s41541-017-0011-y.

350 28. Seder, R.A., Chang, L.J., Enama, M.E., Zephir, K.L., Sarwar, U.N., Gordon, I.J., Holman,
351 L.A., James, E.R., Billingsley, P.F., Gunasekera, A., et al. (2013). Protection against malaria
352 by intravenous immunization with a nonreplicating sporozoite vaccine. *Science* 341, 1359-
353 1365. 10.1126/science.1241800.

354 29. Nussenzweig, R.S., Vanderberg, J., Most, H., and Orton, C. (1967). Protective immunity
355 produced by the injection of x-irradiated sporozoites of plasmodium berghei. *Nature* 216,
356 160-162. 10.1038/216160a0.

357 30. Pham, P., Bransteitter, R., Petruska, J., and Goodman, M.F. (2003). Processive AID-
358 catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation.
359 *Nature* 424, 103-107. 10.1038/nature01760.

360 31. Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P.K.,
361 Swerdlow, H., Satija, R., and Smibert, P. (2017). Simultaneous epitope and transcriptome
362 measurement in single cells. *Nat Methods* 14, 865-868. 10.1038/nmeth.4380.

363 32. Laidlaw, B.J., Schmidt, T.H., Green, J.A., Allen, C.D., Okada, T., and Cyster, J.G. (2017).
364 The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory
365 precursor B cells. *J Exp Med* 214, 639-649. 10.1084/jem.20161461.

366 33. Suan, D., Krautler, N.J., Maag, J.L.V., Butt, D., Bourne, K., Hermes, J.R., Avery, D.T.,
367 Young, C., Statham, A., Elliott, M., et al. (2017). CCR6 Defines Memory B Cell Precursors
368 in Mouse and Human Germinal Centers, Revealing Light-Zone Location and Predominant
369 Low Antigen Affinity. *Immunity* 47, 1142-1153 e1144. 10.1016/j.jimmuni.2017.11.022.

370 34. Perez-Mazliah, D., Gardner, P.J., Schweighoffer, E., McLaughlin, S., Hosking, C.,
371 Tumwine, I., Davis, R.S., Potocnik, A.J., Tybulewicz, V.L., and Langhorne, J. (2018).
372 Plasmodium-specific atypical memory B cells are short-lived activated B cells. *Elife* 7.
373 10.7554/eLife.39800.

374 35. Sutton, H.J., Aye, R., Idris, A.H., Vistein, R., Nduati, E., Kai, O., Mwacharo, J., Li, X., Gao,
375 X., Andrews, T.D., et al. (2021). Atypical B cells are part of an alternative lineage of B cells
376 that participates in responses to vaccination and infection in humans. *Cell Rep* 34, 108684.
377 10.1016/j.celrep.2020.108684.

378 36. Kennedy, D.E., Okoreeh, M.K., Maienschein-Cline, M., Ai, J., Veselits, M., McLean, K.C.,
379 Dhungana, Y., Wang, H., Peng, J., Chi, H., et al. (2020). Novel specialized cell state and
380 spatial compartments within the germinal center. *Nat Immunol* 21, 660-670.
381 10.1038/s41590-020-0660-2.

382 37. Chen, S.T., Oliveira, T.Y., Gazumyan, A., Cipolla, M., and Nussenzweig, M.C. (2023). B
383 cell receptor signaling in germinal centers prolongs survival and primes B cells for selection.
384 *Immunity* 56, 547-561 e547. 10.1016/j.jimmuni.2023.02.003.

385 38. Kallies, A., Hasbold, J., Tarlinton, D.M., Dietrich, W., Corcoran, L.M., Hodgkin, P.D., and
386 Nutt, S.L. (2004). Plasma cell ontogeny defined by quantitative changes in blimp-1
387 expression. *J Exp Med* 200, 967-977. 10.1084/jem.20040973.

388 39. Batista, F.D., and Neuberger, M.S. (2000). B cells extract and present immobilized antigen:
389 implications for affinity discrimination. *EMBO J* 19, 513-520. 10.1093/emboj/19.4.513.

390 40. Batista, F.D., and Neuberger, M.S. (1998). Affinity dependence of the B cell response to
391 antigen: a threshold, a ceiling, and the importance of off-rate. *Immunity* 8, 751-759.
392 10.1016/s1074-7613(00)80580-4.

393

394 **Acknowledgments:**

395

396 We thank M. Devoy, H. Vohra, and C. Gillespie of the Flow Cytometry Facility at the John Curtin
397 School of Medical Research for assistance with flow cytometry. We further thank the Maxim
398 Nekrasov and Peter Milburn for of the Biomedical Resource Facility at the John Curtin School of
399 Medical Research for assistance with single cell RNA seq.

400

401 **Funding:**

402

403 This study was funded by grants (GNT1158404, GNT2003035 and GNT2008648) from the
404 National Health and Medical Research Council (Australia) to IAC.

405

406 **Author Contributions**

407

408 Conceptualization: HJS

409 Methodology: HJS, BP, ML, CD, DC, XG, HGK

410 Investigation: HJS, ML, CD, DC, XG, HGK

411 Visualization: HJS, BP

412 Formal Analysis: HJS, BP, TN

413 Resources: RAS, JT, AHI

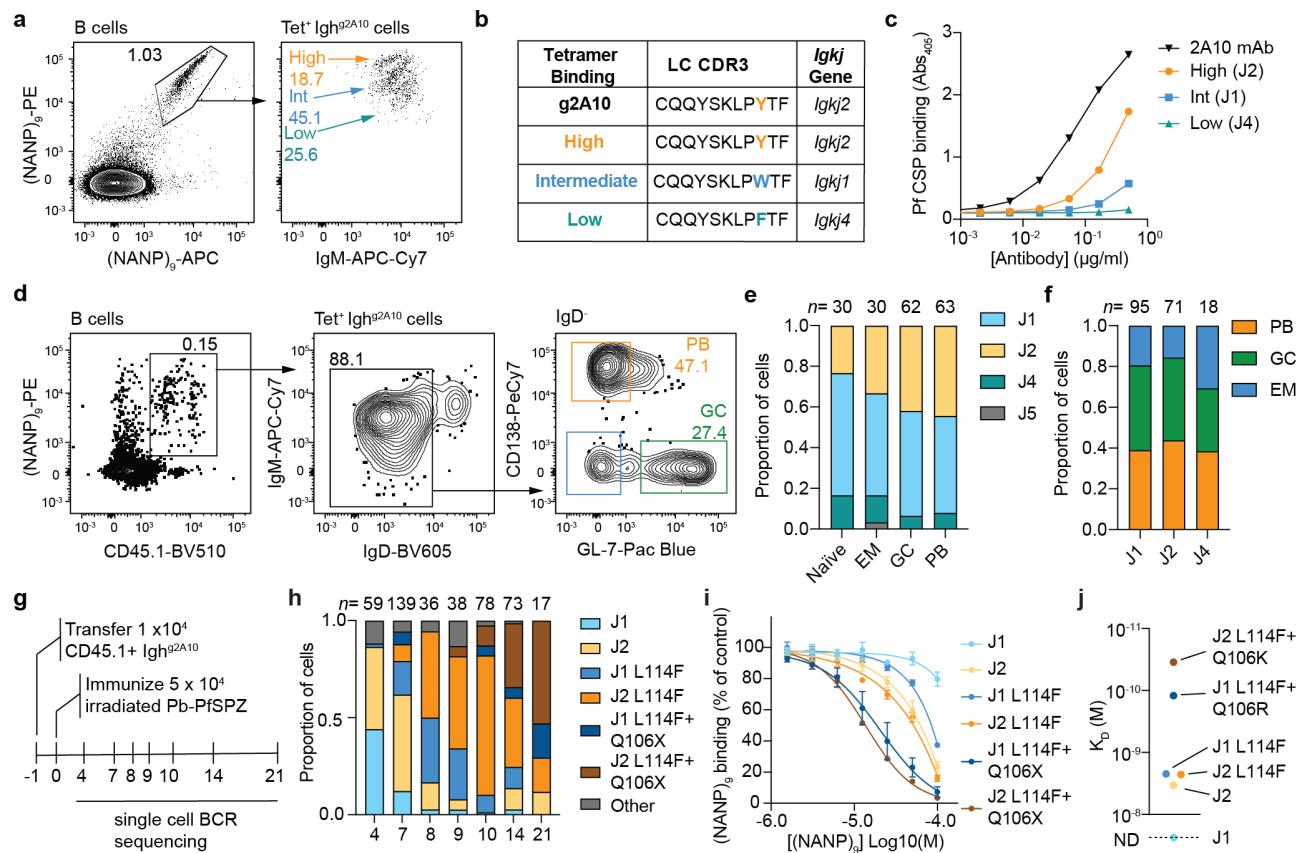
414 Funding acquisition: IAC

415 Project administration: IAC

416 Supervision: JT, AHI, TN, IAC

417 Writing – original draft: HJS, IAC

418 Writing – review & editing: HJS, AHI, TN, IAC

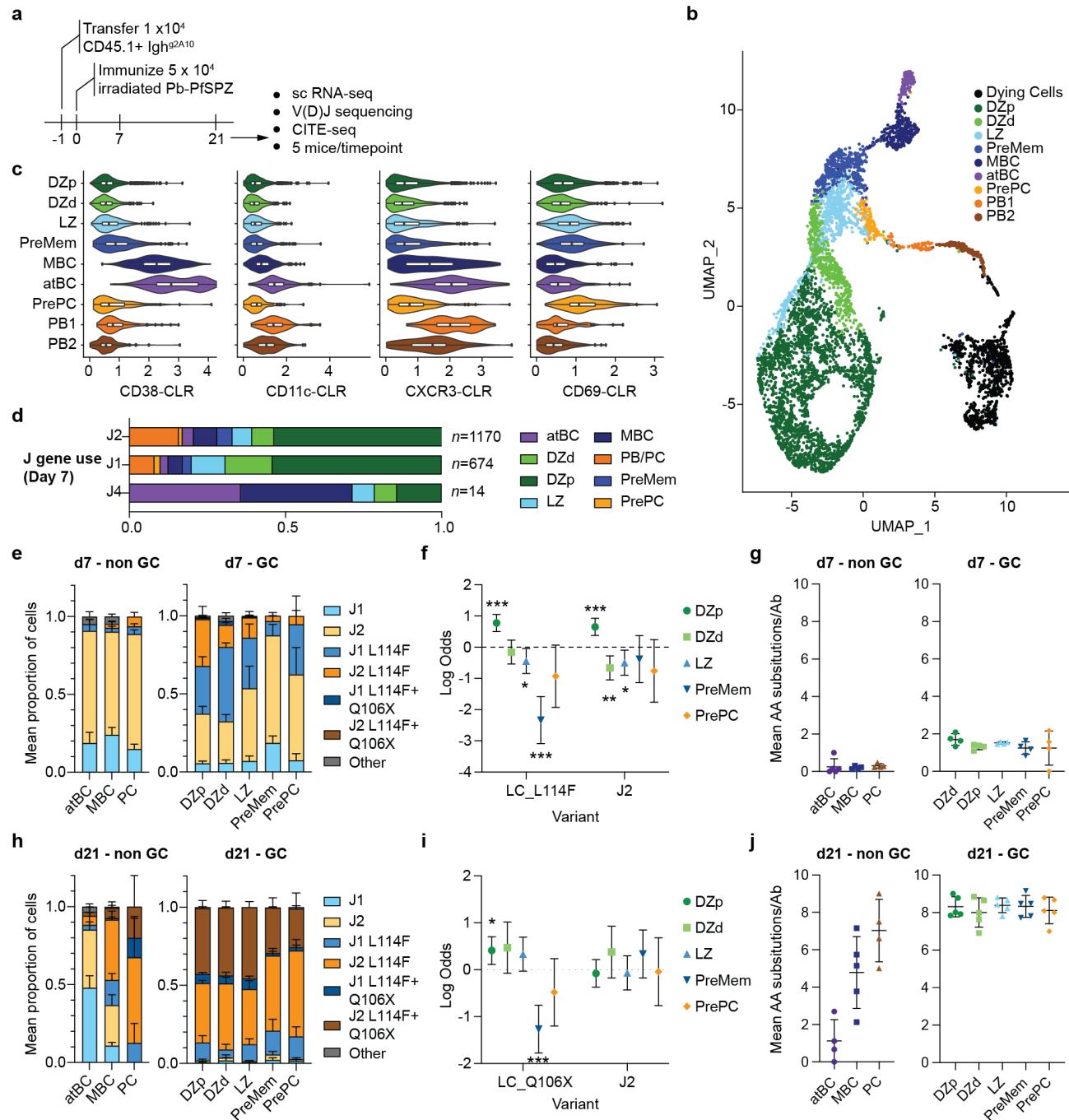

419

420 **Competing interests:** Authors declare that they have no competing interests.

421

422

Figure 1

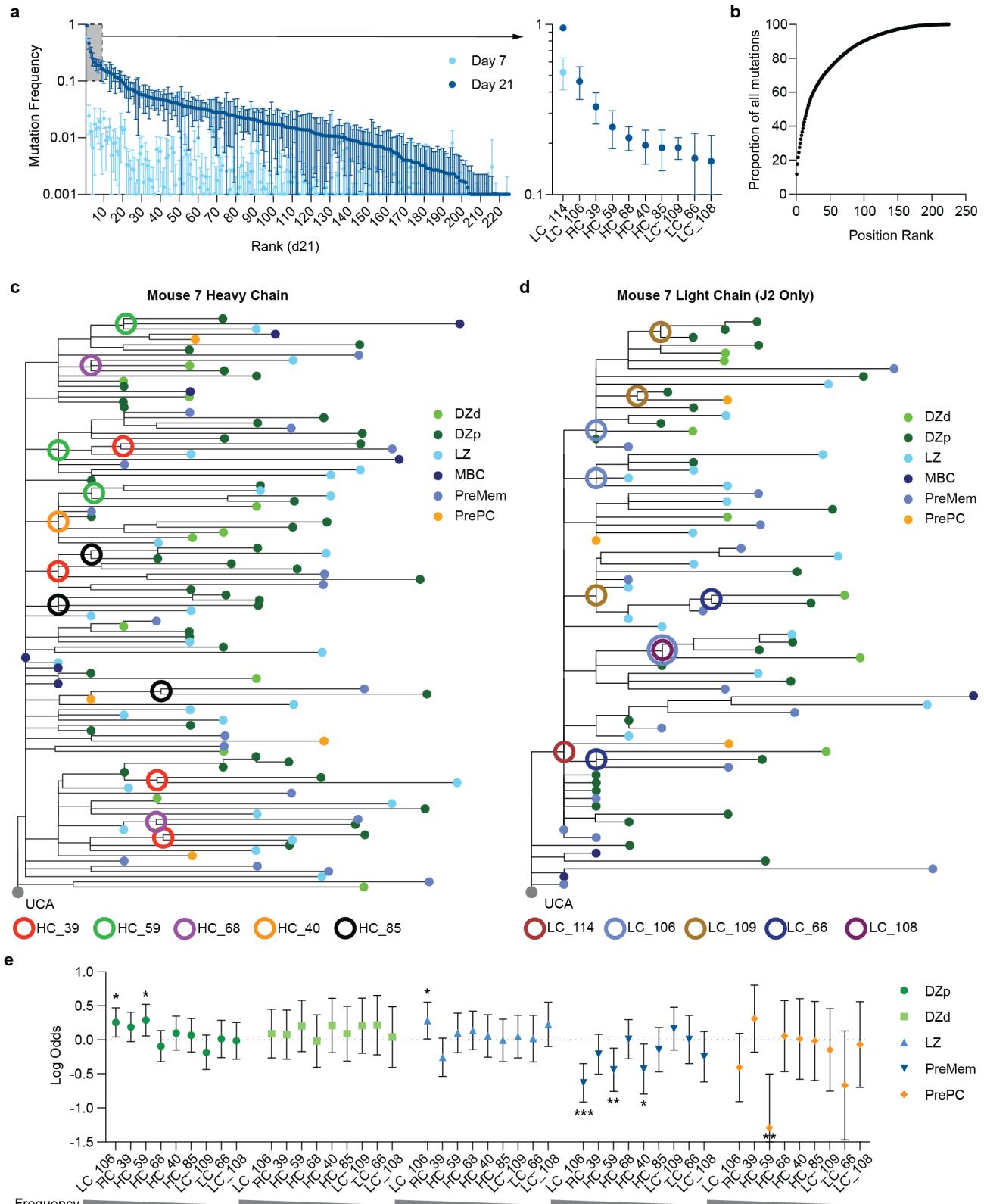


423

424

425 **Figure 1 Affinity determinants and their influence on early cell fate choice in Ig^{g2A10} cells** **A.**
426 Flow cytometry plots demonstrating 3 distinct populations of Ig^{g2A10} B cells separated by their
427 binding to PfCSP repeat ((NANP)₉-PE and (NANP)₉-APC probes **B.** The LC-CDR3 amino acid
428 sequence and Igk^j gene used by each probe binding population compared to the predicated germline
429 2A10 LC-CDR3. **C.** ELISA showing the PfCSP binding ability of recombinant antibodies generated
430 using sequences from (C) compared to 2A10 **D.** Representative flow plots demonstrating the gating
431 strategy used to sort PfCSP-specific Ig^{g2A10} PB, GC and EM B cells 4 days post PbPf-SPZ
432 immunizations. **E.** Igk^j gene usage in either naïve Ig^{g2A10} B cells or PB, GC and EM B cells 4 days
433 post immunization with PbPf-SPZ **F.** Proportions of Ig^{g2A10} PB, GC or EM B cells utilizing either
434 the J1, J2 or J4 Igk^j gene **G.** Experimental schematic of time course analysis of Ig^{g2A10} GC
435 evolution. **H.** Frequency of J gene usage and occurrence of L114X and/or Q106X mutations 4, 7, 8,
436 9, 10, 14 and 21 days post immunization with PbPf-SPZ **I.** Competition ELISA showing the binding
437 of the indicated rAbs to plate bound (NANP)₉ peptide in the presence of the indicated
438 concentrations of soluble (NANP)₉ peptide; Mean ± SEM shown from 3 independent experiments.
439 **J.** Affinities (KD) of mAbs carrying the indicated variants; all values represent the geometric mean
440 of binding signals collected in duplicate from n = 2 independent experiments. ND, could not be
441 determined.

Figure 2



442
443
444

445 **Figure 2: Single cell RNAseq identifies PreMem and PrePC populations within the GC A.**
446 Experimental Schematic. **B.** Unsupervised clustering of PfCSP -specific IgHg^{g2A10} B cells pooled
447 from all mice visualized using UMAP. Each cell is represented by a point and coloured by cluster
448 C. Violin and box plots showing the centred log ratio (CLR)-normalized expression of surface
449 proteins used to identify MBC, PreMem and PrePC populations using CITE-seq. D. Proportion of
450 J1, J2 and J4 cells in each B cell population identified by single cell transcriptomics 7 days post
451 immunization. E. Frequency of J gene usage and occurrence of LC_L114F and LC_Q106X
452 mutations 7 days post immunization in non-GC and GC populations; data are expressed as mean ±
453 SD of the 5 mice. F. Likelihood of the LC_L114F mutation being present in different GC
454 populations 7 days post immunization; data are expressed as Log Odds ±95% CI from logistic

455 regression analysis controlling for mouse as random effect. **G.** Mean AA substitutions in each
456 mouse 7 days post immunization in non-GC and GC populations; data are expressed as mean \pm SD.
457 **H.** Frequency of J gene usage and occurrence of L114X and/or Q106X mutations 21 days post
458 immunization in non-GC and GC populations; data are expressed as mean \pm SD of the 5 mice. **I.**
459 Likelihood of the LC_Q106X mutation being present in different GC populations 21 days post
460 immunization; data are expressed as Log Odds \pm 95% CI from logistic regression analysis
461 controlling for mouse as random effect. **J.** Mean AA substitutions in each mouse 21 days post
462 immunization in non-GC and GC populations; data are expressed as mean \pm SD.

Figure 3

463

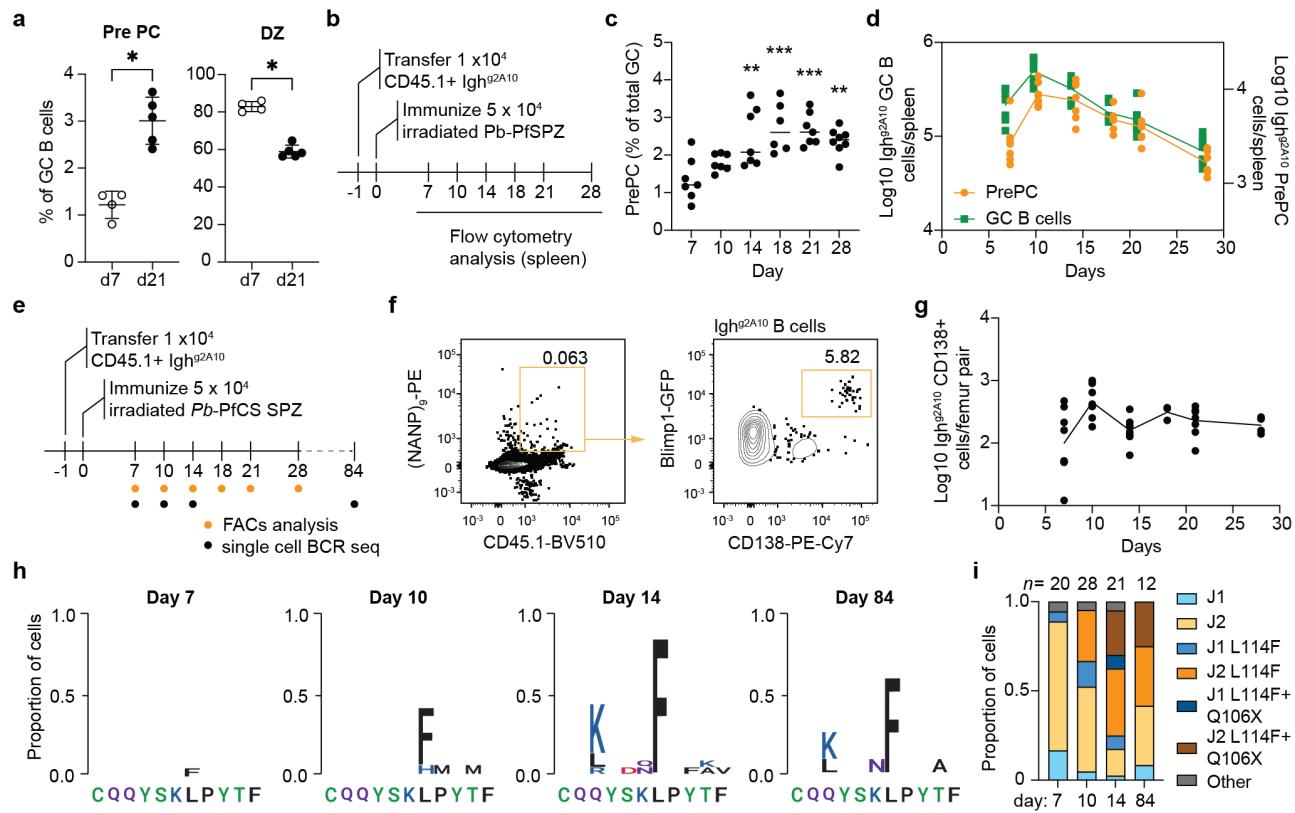
464

465

466

467

407


468

469

Figure 3: Mutational dynamics in the germinal center. Mice were immunized and analyzed as in Figure 2A. **A.** Frequency (mean \pm SEM) of mutation at each HC and LC AA position in each mouse ranked from highest to lowest, inset shows the frequency of the top 10 mutations at day 21. **B.** Proportion of mutations accounted for by mutations at each position, ranked from most to least common. **C.** and **D.** Phylogenetic trees based on heavy chain (**C**) and light chain (**D**) mutations linking

470 the Ig h^{g2A10} cells in a representative mouse (mouse 7); closed circles at the tips represent the
471 phenotype of the cell, open circles represent the nodes where common mutations arise. **E.** Likelihood
472 of each of the top 10 most common mutations being found in cells in different GC populations; data
473 are expressed as Log Odds $\pm 95\%$ CI from main effect logistic regression analysis controlling for
474 mouse as random effect.

Figure 4

475
476

477 **Figure 4: PC formation is favoured in waning GCs. A.** Percentage of *PfCSP*-specific Igh^{g2A10} GC B cells that are PrePCs or DZ cells at 7 and 21 days post immunization as identified by single cell RNA-seq as described in Figure 2A **B.** Experimental Schematic to examine PrePC populations in the spleen. **C.** Estimated PrePCs as percentage of total GCs over time. **D.** The total number of *PfCSP*-specific Igh^{g2A10} GCs (green) and *PfCSP*-specific Igh^{g2A10} PrePCs (orange) over time. **E.** Experimental schematic to examine BM PCs after immunization **F.** Representative flow cytometry plot plots demonstrating the gating strategy used to identify *PfCSP*-specific Igh^{g2A10} PCs in the BM. **G.** The number of *PfCSP*-specific Igh^{g2A10} PC per femur pair over time **H.** Logos plots of LC-CDR3s showing AA changes in *PfCSP*-specific Igh^{g2A10} PCs over time. **I.** Frequency of J gene usage and occurrence of L114X and/or Q106X mutations in BM PCs overtime.