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Interactions between species have catalyzed the evolution of multiscale 
ecological networks–including both nested and modular elements that regulate 
the function of diverse communities. One common assumption is that such 
complex pattern formation requires long evolutionary timescales, spatial 
isolation, or other exogenous processes. Here we show that multiscale network 
structure can evolve rapidly under simple ecological conditions without spatial 
structure. In just 21 days of laboratory coevolution, Escherichia coli and 
bacteriophage Φ21 coevolve and diversify to form elaborate cross-infection 
networks. By measuring ~10,000 phage–bacteria infections and testing the 
genetic basis of interactions, we identify the mechanisms that create each 
component of the multiscale pattern. Initially, nested patterns form through an 
arms race where hosts successively lose the original receptor (LamB) and 
phages evolve to use a second (OmpC) and then a third (OmpF) receptor. Next, 
modules form when the cost of losing the third receptor, OmpF, increases and 
bacteria evolve resistance mutations that modify the OmpF receptors’ 
extramembrane loops. In turn, phages evolve adaptations that facilitate 
specialized interactions with different OmpF variants. Nestedness reemerges 
within modules as bacteria evolve increased resistance and phages enhance 
infectivity against module-specific receptor variants. Our results demonstrate 
how multiscale networks evolve in parasite-host systems, illustrating Darwin’s 
idea that simple adaptive processes can generate entangled banks of ecological 
interactions. 
 
Recent analyses of ecological networks reveal structural patterns that recur in disparate 
ecosystems1–6. Two commonly observed patterns include nestedness, where 
specialized interactions are hierarchically embedded within generalized interactions1,7, 
and modularity, where specialized interactions form within—but not between—groups, 
generating distinct “modules” 2,6. Multiscale networks are also found in large-scale 
analyses of natural community interactions, whereby modularity is observed at broad 
scales and nestedness is observed within modules3–5,8,9. How multiscale patterns 
emerge within ecological networks is an open question. It has been suggested that 
formation of such intricate structures requires geographic separation8,10,11, long 
evolutionary timescales12,13, or other external drivers5,14. However, it has been 
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hypothesized that coevolution between interacting species could lead to such 
complexity even on short time scales and in simple, closed communities15. 
 
Bacteria and their viruses (phages) provide tractable systems for studying how complex 
ecological networks evolve4,16,17. By isolating phages and bacteria from a given 
ecosystem and measuring all-by-all pairwise infections, it is possible to construct phage-
bacteria interaction networks (PBINs) and analyze their underlying structure. Under 
controlled laboratory settings, phage-bacteria coevolution experiments rapidly generate 
rich ecological networks, allowing researchers to study the mechanisms underlying their 
formation7,18–20. For example, arms race dynamics produce nested patterns when 
bacteria evolve escalating resistance and phages counter with increasing infectivity4,7,21. 
Modules can form due to fluctuating selection dynamics18,20,22 or the presence of 
different phage defense elements that confer specialized immunity23. However, 
experiments have been unable to reproduce the complex multiscale PBINs observed in 
nature without artificially providing spatial isolation between evolving subpopulations24, 
reaffirming the common assumption that spatial structure and/or other external 
influences are a prerequisite for the evolution of intricate ecological networks. Here we 
decipher the molecular mechanisms of parasite-host coevolution and demonstrate that 
the process of coevolution itself is sufficient to drive the rapid emergence of complex 
multiscale networks in simple ecological contexts.  
 
Coevolution drives multiscale networks. We began by inoculating 3 well-mixed 
cultures with isogenic populations of Escherichia coli K-1225 and a lytic strain of 
bacteriophage 21 (Φ21)26. Cultures were incubated at 37°C and every 24 hours, 1% of 
each community was propagated into new media, allowing bacteria and phage to 
coevolve for 21 days. Each day, we tested phage populations for receptor use 
expansion and found that in 2 of 3 replicates, phages evolved to use two new receptors 
(described below). As a preliminary test, we then isolated a single phage from each 
population and timepoint. By comparing phage receptor usage in population 2, we 
discovered that phages initially expanded and then contracted their receptor use, 
consistent with an initial arms race transitioning to more specialized interactions. 
Therefore, we focused our efforts on population 2 (replicate experiments demonstrated 
that this transition was repeatable, a topic that we revisit later in the manuscript). 
 
To analyze the dynamics in population 2, we isolated coevolved phages (n=74) and 
bacteria (n=128) from communities every third day and measured all 9,472 pairwise 
infections to generate a PBIN. Initially, the network showed a nested pattern, as 
bacteria and phages evolved broader resistance and host range over time (Fig. 1a; 
Extended Data Fig. 1, p<0.001 for bacteria and phage, linear model). However, the 
nested pattern was disrupted between days 18 and 21; phages isolated on day 21 
broadened their host range to infect day-18 hosts while losing the ability to infect day-15 
hosts. This tit-for-tat pattern led us to hypothesize that specialized interactions may 
have formed, creating modules in the network.  
 
We tested for the emergence of modules using the LP-BRIM (Label Propagation and 
Bipartite Recursively Induced Modules) algorithm which searches for community 
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configuration in a bipartite network that maximizes the modularity metric (0 < Qb ≤ 1, 
where 1 denotes fully modular; see Methods)27,28. The LP-BRIM algorithm identified 3 
modules (Fig. 1b; Qb=0.210, p<0.0001; Extended Data Fig. 2b). The first module 
includes bacteria isolates from days 3-9 and (nearly exclusively) early phage isolates 
from days 3-12. In contrast, modules 2 and 3 include phage and bacteria isolates 
exclusively from days 12-21. Next, we tested all 3 modules for nestedness, using the 
“Nestedness metric based on Overlap and Decreasing Fill” (NODF) method29 (see 
Methods); all 3 modules were significantly nested (module 1 NODF=0.766, p<0.0001; 
module 2 NODF=0.802, p<0.0001; module 3 NODF= 0.777, p<0.0001). Notably, phage-
bacteria infections amongst early isolates in module 1 were more nested (NODF=0.766, 
p<0.0001) than later isolates in modules 2 and 3 combined (NODF=0.602, p<0.0001) 
while infection between later isolates were significantly more modular (Qb=0.315, 
p<0.0001) than early isolates (Qb=0.194, p<0.0001)–a result of reduced cross-infections 
between phages of module 2 or 3 with bacteria of module 3 or 2, respectively (Fig. 1c).  
 
To validate the nested pattern within modules, as well as the repeatability of PBIN 
measurements, we remeasured representative interactions within modules 2 and 3, 
which recapitulated nestedness within each module (Fig. 1d, e) and we independently 
remeasured 3654-interaction subsets of the full PBIN twice, which were significantly 
correlated with Fig. 1a (p<0.001, Mantel test, Extended Data Fig. 3). After 
demonstrating that coevolution between E. coli and phage Φ21 led to the emergence of 
a multiscale, nested-modular network, we endeavored to determine the evolutionary 
and molecular processes responsible for each pattern: 1) initial nestedness, 2) the 
formation of modules, and 3) nestedness reemerging within modules. 
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Fig. 1. Phage–bacteria coevolution generates multiscale network patterns in 21 days. a, Phage–
bacteria interaction network (PBIN) comprised of 9,472 pairwise infections between 128 E. coli and 74 
Φ21 strains isolated from various days of coevolution. b, Community detection of the PBIN using the LP-
BRIM algorithm reveals 3 modules (1, 2, and 3 indicated in black, pink, green, respectively: Qb=0.2100***, 
N=3). c, Nestedness (NODF) and modularity (LP-BRIM) of interactions between isolates from early (i, 
days 3-9: NODF=0.7655, Qb=0.1935, N=2) and late (ii, days 12-21: NODF=0.6019, Qb=0.3151, N=2) in 
the coevolution (p<0.0001 ***).  d and e, Infections between representative isolates from modules 2 and 3 
were remeasured and recapitulate within-module nestedness. d and e serve as roadmaps for proceeding 
figures. Label aesthetics are applied consistently for continuity. 
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Initial nestedness. We first investigated the factors driving the emergence of 
nestedness in module 1. Prior studies of coevolution between E. coli and phage λ show 
that arms race dynamics produce nested patterns as bacteria evolve resistance by 
mutating λ-receptor LamB and phages counter by innovating to use a new receptor, 
OmpF21,31,32. We tested whether similar arms race dynamics drove nestedness in 
module 1 by measuring the frequency of host receptor mutations and phage receptor 
use in the population from days 0–12 (Fig. 2a). Population dynamics revealed multiple 
cycles of an arms race, as bacteria sequentially mutated outer membrane proteins 
LamB, OmpC, and OmpF, and phages that initially infected through LamB innovated to 
use OmpC and then OmpF. We then determined the receptor use of individual phage 
isolates by spotting them onto different lawns of bacteria with 2 of 3 relevant receptors 
deleted. This revealed that phages from day 3 could use either LamB or OmpC alone as 
receptors and phages from day 9 could use LamB, OmpC, or OmpF, representing the 
first instance of a documented triple-receptor phage we are aware of (Fig. 2b). Lastly, to 
confirm that consecutive receptor mutations and innovations were responsible for 
nestedness in module 1, we compared and found direct concordance between phage 
isolates from days 0, 3, and 9 infecting naturally coevolved bacteria and hosts 
genetically engineered with nonsense or deletion mutations in corresponding receptors 
(Fig. 2c). Altogether, our results confirm that multiple rounds of host receptor loss and 
phage receptor-use gain drove initial nestedness in the network. 
 
By day 9, evolved bacteria had lost the first two receptors (LamB and OmpC) and 
phages countered by evolving to use a third receptor, OmpF. We discovered that 
bacteria could evolve complete resistance by deleting the final OmpF receptor (day 12, 
1 of 13 isolates), yet completely resistant mutants did not increase in frequency until day 
21 (23 of 25 isolates). Bacterial fitness competitions revealed that the sequential loss of 
LamB, OmpC, and then OmpF receptors correlated with 14%, 31%, and 50% 
reductions in growth rate, respectively, with completely resistant isolates paying 
immense costs (Extended Data Fig. 4). These results support a coevolutionary 
mechanism by which bacteria maintained the OmpF receptor until phage-induced lysis 
became sufficiently intense to select for complete resistance between days 18 and 21. 
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Fig. 2. Initial nestedness is driven by multiple cycles of host receptor loss and phage receptor 
innovation. a, Frequency of phage receptor use (solid) and bacterial receptor mutations (dotted) in 
populations across coevolution days 0–12. Frequency of receptor use was calculated as the titer of 
phages on ΔOmpC ΔOmpF, ΔLamB ΔOmpF, or ΔLamB ΔOmpC K-12 hosts relative to K-12 WT. 
Frequency of receptor mutations was calculated as the frequency of whole population sequencing reads 
with mutations affecting each receptor. b, Ability of 41 phage isolates from coevolution days 0–12 to use 
host receptors LamB, OmpC, or OmpF, determined by spotting phages on agar infused with different 
dual-receptor knockout hosts. c, Ability of phage isolates with expanding receptor use to infect naturally 
coevolved and genetically engineered bacteria with mutations successively eliminating receptors. 
 

 
Module formation. The separation of modules 2 and 3, comprised of phages and 
bacteria isolated on Day 12 and beyond implies that as phages gained the ability to 
infect new hosts, the phages lost infectivity on other, evolved hosts (see Fig. 1b, d, e, 
Extended Data Fig. 2). Because bacteria retained the OmpF receptor and began 
evolving nucleotide substitutions within ompF, we hypothesized that modules formed 
due to specialized interactions between different phages and variants of OmpF. To 
investigate, we focused on bacteria and phages with the narrowest resistance or 
infectivity range within each module, as interactions between these isolates initiate the 
divergence of modules in the network. We refer to these strains as “founder” isolates. 
As expected, founder phages could infect within, but not between, modules 2 and 3 
(Fig. 3a). Importantly, this tit-for-tat pattern was recapitulated when phages were tested 
against ΔLamB ΔOmpC hosts engineered with ompF mutations from founder bacteria, 
confirming that interactions between different phages and OmpF variants drove module 
formation (Fig. 3a).  
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Fig. 3. Modules form due to specialized interactions between different phages and OmpF variants. 
a, Infection assay of Φ21 and module founder phages spotted onto lawns of K-12 WT, module founder 
bacteria, and ΔLamB ΔOmpC hosts engineered with ompF mutations from corresponding founder 
bacteria. b, AlphaFold predicted structures of the phage host-recognition central tail fiber protein J (top) 
and solved structure of host OmpF receptor (bottom). Mutations in module 1 and 2 isolates are annotated 
in pink and green, respectively. Phage T21_L-F-_1 has 7 mutations (green) in addition to the 5 mutations 
present in phage T12_WT_1 (pink). OmpF mutants do not share any mutations. 

 
To illustrate this result, we mapped bacterial mutations onto solved structures of OmpF 
and phage mutations onto predicted structures of the host-recognition protein, (similar 
to λ central tail fiber protein, J) (Fig. 3b). We found that OmpF mutations were located 
on extramembrane loops and J mutations were concentrated on extruding finger-like 
projections. The exposure of these sites on the outer surface of the host receptor and 
phage tail fiber strongly suggests that infectivity between founder phages and bacteria 
is governed by specific binding between accessible surfaces on variants of J and 
OmpF. Interestingly, although infectivity between phages and OmpF variants is 
modular, the phage phylogeny is nested. Module 3 phage T21_L-F-_1 is a descendant 
of module 2 phage T12_WT_1, indicating that 7 additional mutations caused it to gain 
function on module 3 OmpF variants and lose function on module 2 OmpF variants. 
Phage mutations with the capacity to cause simultaneous gain and loss of hosts have 
been observed previously22,33 and similar breakdowns between phylogenetic and 
phenotypic patterns have been observed in E. coli–λ coevolution21. 
 
Nestedness within modules. Lastly, we investigated the final pattern in our multiscale 
PBIN: the formation of nestedness within modules. In line with our observations for 
module formation, we hypothesized that additional ompF and J mutations produced 
nestedness within modules. Focusing on module 2, we used a similar approach as 
described above. First, we measured interactions between representative phages and 
bacteria, recapitulating nestedness within the module (Fig. 4a). Notably, phylogenies of 
phage and bacterial isolates were also nested. As phages accumulated J mutations and 
bacteria accumulated ompF mutations, they gained increasing host and resistance 
range, respectively, although different ompF mutations conferred different amounts of 
protection. When we tested the same phages on ΔLamB ΔOmpC hosts engineered with 
ompF mutations from coevolved bacteria, we found the same pattern, confirming that 
within-module nestedness was driven by the accumulation of mutations in J and ompF 
(Fig. 4b). 
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Fig. 4. Lock-and-key arms race dynamics create within-module nestedness. a, Phylogenies of J and 
ompF mapped onto a PBIN of representative phage and bacterial isolates from module 2 (see Fig. 1d). 
Mutations are indicated on the phylogeny in red and OmpF mutations are annotated in pink, blue, and 
orange. b, Infection assay of phages spotted onto lawns of coevolved bacteria or ΔLamB ΔOmpC hosts 
engineered with ompF mutations from corresponding bacteria. 

 
Discussion. In this study, we demonstrated that coevolutionary processes are sufficient 
to generate complex multiscale ecological networks rapidly and without external 
influences or spatial structure. By determining the basis of key interactions, we revealed 
the evolutionary and molecular mechanisms underlying three major patterns in the 
network (summarized in Fig. 5): Initially, nestedness emerges as bacteria lose receptors 
and phages innovate to use new receptors through multiple cycles of an arms race. 
Modules form when bacteria are forced to retain the final OmpF receptor and phages 
evolve specialized interactions with mutated receptor variants. Finally, nestedness 
reemerges within modules as phages and bacteria accumulate mutations to increase 
infectivity and resistance via lock-and-key arms race dynamics.  
 
Notably, key features of the coevolution between E. coli and Φ21 were repeatable: Φ21 
evolved to use a second receptor, OmpC in each of the 3 originally conducted replicates 
and 9 additional replicates conducted later in the same fashion. In 5 of 12 of these 
replicates, Φ21 evolved to use a third receptor, OmpF (Extended Data Fig. 5). In every 
case where OmpF use evolved, such use arose after phages evolved the ability to infect 
hosts via OmpC, suggesting similar coevolutionary mechanisms drove the dynamics. 
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Fig. 5. Mechanisms underlying three key patterns in the multiscale network. 1) Initial nestedness 
emerges due to multiple cycles of host receptor loss and phage receptor use gain. 2) Modules form due 
to specialized interactions between different phages and variants of the final receptor, OmpF. 3) 
Nestedness reemerges within modules due to lock-and-key arms race dynamics as mutations accumulate 
in phages and host receptors. 
 
 
Previous observations of geographically isolated modules have suggested that spatial 
separation assists in the formation of such patterns5,8,9,24. While it is reasonable to 
expect that space plays a role34, it is also possible that modules may separate in space 
after they form in sympatry. Similar pitfalls have been encountered when inferring past 
speciation processes from modern species distributions35–37. Instead, our finding 
provides a tractable experimental example of how diversity begets further diversity and, 
in turn, complex interaction structures38,39 akin to Darwin’s entangled bank40. While 
limits on diversity must exist, it seems that life–even in simple environments–is evolving 
far from these bounds.  
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Methods 
 
Strains. To study phage–bacteria coevolution, we used Escherichia coli strain K-12 
BW25113 (WT)25 and bacteriophage 21 (Φ21, GenBank: OL657228)26. Φ21 is a 
“lambdoid” phage, sharing genetic similarity and a similar life cycle to phage λ, but its 
evolution is not well studied41. Using the wildtype, lysogenic Φ21, we inserted 2 stop 
mutations and a 1 bp frameshift deletion in the cI–like repressor gene (CPT_21_51) 
using techniques described below. We sequenced whole phage genomes which 
confirmed that cI engineering was successful and revealed one mutational difference 
between our Φ21 and the GenBank reference (G18903A, central tail fiber CPT_21_21, 
similar to phage λ gene J). To characterize phage receptor use and elucidate the 
molecular mechanisms underlying key interactions in our study, we also utilized a suite 
of hosts derived from the KEIO gene knockout collection25 with additional genetic 
mutations that functionally knock out 2 of the 3 relevant receptors. ΔLamB ΔOmpC and 
ΔOmpC ΔOmpF hosts were derived from KEIO strain JW2203 (ΔompC) and have 
nonsense mutations in lamB or ompF. ΔLamB ΔOmpF was derived from KEIO strain 
JW0912 (ΔompF) and has a nonsense mutation in lamB. 
 
Initial coevolution experiment. E. coli WT (~105 cells) and lytic Φ21 (~105 particles) 
were inoculated into three replicate 50-mL flasks containing 10 mL Tris-LB media (0.28 
g K2HPO4, 0.08 g KH2PO4, 1 g (NH4)2SO4, 10 g tryptone, and 5 g yeast extract per liter 
of water supplemented to a final concentration of 50 mM Tris (pH 7.4), 0.2 mM CaCl2, 
and 10 mM MgSO4). Flasks were incubated at 37°C while shaking at 120 rpm. Every 24 
hours, 100 μL from each community was transferred into new flasks containing 10 mL of 
fresh media. Populations were propagated for 21 days. Each day, we measured phage 
densities by centrifuging cultures for 5 minutes at 3900 x g to pellet cells, serially diluting 
the supernatant, and spotting 2 μL aliquots onto infused soft agar lawns (LB agar except 
with 0.7% w/w agar and inoculated with ~108 cells WT). Every 3 days, aliquots were 
preserved by freezing at –70°C in 15% v/v glycerol. 
 
Φ21 uses LamB as its native receptor. To monitor the coevolution experiment for phage 
receptor use innovation, we also aliquoted 2 μL of undiluted supernatant onto lawns of 
KEIO strain JW3996 (ΔlamB) each day. When phages demonstrated the ability to lyse 
ΔlamB cells, we spotted them onto a suite of knockout hosts missing LamB plus one 
additional outer membrane protein in order to determine the novel receptor31. Phages 
could not lyse ΔLamB ΔOmpC cells, revealing that OmpC was the new receptor. We 
began to test coevolving phages on lawns of ΔLamB ΔOmpC cells, allowing us to 
discover another iteration of receptor use innovation. We determined that the third 
receptor was OmpF by first sequencing whole genomes of coevolved resistant bacteria 
isolated from the experiment, revealing mutations in ompF, and then spotting phage 
supernatant on engineered ΔLamB ΔOmpC ΔOmpF hosts. The inability of phages to 
infect ΔLamB ΔOmpC ΔOmpF hosts confirmed OmpF as the final receptor. 
 
Strain isolation and culture techniques. To isolate bacteria, scrapes (~2 μL) of frozen 
preserved communities were streaked onto LB agar plates and incubated overnight at 
37°C. Then, colonies were picked randomly and streaked twice more to obtain clonal 
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strains devoid of phage. Finally, purified strains were grown overnight at 37°C and 
preserved by freezing, as described above. Bacteria were named by isolation day and a 
unique identifier (e.g., T3_1 is day 3 isolate 1).  
 
To isolate phages, scrapes were first suspended in 1 mL Tris-LB. Then, aliquots were 
inoculated into molten (~55°C) soft agar infused with cells, poured over LB agar plates, 
and incubated overnight at 37°C. We isolated ~12 phages per timepoint. Three phages 
were isolated on soft agar infused with WT and, to enhance diversity of receptor use 
types, we also isolated 3 phages on ΔOmpC ΔOmpF, ΔLamB ΔOmpF, and ΔLamB 
ΔOmpC hosts. From some timepoints, we were unable to isolate phages on particular 
hosts/receptors. For example, on day 3, we could not recover phages that used OmpF 
(ΔLamB ΔOmpC hosts). To purify phage isolates, plaques were randomly picked and 
re-plated with respective isolation hosts twice more. Finally, purified plaques were 
picked into Tris-LB with respective isolation hosts and grown overnight at 37°C. The 
next day, phages were filtered through 0.2 μm filters to remove cells and preserved by 
freezing, as described above. Phages were named by isolation day, isolation host (WT, 
C-F-, L-F-, L-C-), and a unique identifier (e.g., T03_C-F-_1 was isolated from day 3 on 
ΔOmpC ΔOmpF hosts and was the first strain picked). 
 
PBIN measurements. We measured phage-bacteria interaction networks (PBINs) by 
testing pairwise infections between phages and bacteria in conventional spot assays. 
Bacterial freezer stocks were inoculated into 18 mm tubes containing 4 mL of LB media. 
Phage freezer stocks were inoculated into 4 mL of Tris-LB with ~107 cells. All tubes 
were incubated overnight at 37°C shaking at 220 rpm. For measuring the full PBIN (Fig. 
1a), phages were grown with respective isolation hosts. However, we later found that 
results were more robust when phages were grown with WT (hosts/receptors used for 
isolation were not always preferred by phages, leading to large differences in phage 
titers). Thus, proceeding PBINs were measured with phages grown with WT (Extended 
Data Fig. 3a, b). 
 
To conduct spot assays, bacteria (~108 cells) were infused into molten soft agar and 
poured over LB agar plates. Overnight phage cultures were centrifuged for 10 minutes 
at 3900 x g to pellet cells. Then, 2 μL aliquots of undiluted phage supernatant were 
spotted onto bacteria-infused soft agar plates and incubated overnight at 37°C. The 
next day, plates were visualized. Phages that produced visible zones of cell lysis were 
deemed able to infect and phages failing to produce any visible clearing were deemed 
unable to infect.  
 
Network analyses and statistics. We used the BiMat MATLAB library to conduct 
bipartite network analyses (see documentation at https://bimat.github.io)28. The number 
of modules in the network was optimized by maximizing the modularity metric Qb. Initial 
community detection was calculated using the LP-BRIM algorithm30. To test the multi-
scale nature of patterns we calculated and tested nestedness and modularity for module 
1 and module 2 & 3 where nestedness was based on the NODF algorithm29 and 
modularity was based on the LP-BRIM algorithm30. Finally, we calculated and tested 
nestedness of each module using NODF. All results were statistically tested against a 
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null-model where the overall and marginal connectances are held fixed on average. We 
performed 1000 runs for significance. All other statistical tests were conducted in R 
(version 4.1.1)42. All code and data for network analyses are available at 
https://github.com/aluciasanz/nestedness_modularity_pbin_analysis and for all other 
analyses and figures at https://github.com/joshborin/phi21multiscalePBIN. 
 
Characterizing phage receptor use. Phage receptor use was determined by utilizing a 
suite of receptor knockout hosts (see Strains). Each host presents one of three relevant 
receptors, allowing us to pinpoint which receptor(s) each phage could use. To estimate 
the frequency of receptor use in whole population samples (Fig. 1a), scrapes of frozen 
preserved communities from various timepoints were suspended in Tris-LB, inoculated 
into soft agar infused with WT or knockout hosts, and poured over LB agar plates. After 
incubating plates overnight at 37°C, we counted the number of plaques on each host 
and calculated the frequency compared to WT. 
 
To determine the receptor use of individual phage genotypes (Fig. 2b, Extended Data 
Fig. 7), phage freezer stocks were scraped into Tris-LB with WT and incubated 
overnight at 37°C. Then, cells were pelleted by centrifugation at 3900 x g and 2 μL 
aliquots were spotted onto lawns containing WT cells or knockout hosts. Plates were 
incubated overnight at 37°C and phages were deemed able to use a given receptor if 
they could lyse respective knockout hosts. 
 
Bacteria and phage genomics. Genomes were extracted and analyzed as described 
in Borin et al., 202143, except with the following differences: Bacteria were grown in LB. 
Phages were grown with WT in Tris-LB. Extracted genomes were sent to SeqCenter 
(Pittsburgh, PA) where they were indexed and sequenced on an Illumina NextSeq 2000. 
To conduct whole population sequencing (Fig. 2a), genomes were extracted as 
described for bacteria, except overnight cultures were inoculated with scrapes from 
frozen preserved communities instead of purified bacterial isolates. After sequencing, 
whole populations were analyzed using the computational analysis pipeline breseq 
(version 0.35.0) set to polymorphism mode44. 
 
Genetic engineering. To engineer phages and bacteria, we used a modified protocol45 
for Multiplexed Automated Genome Engineering (MAGE)46, which employs the Lambda 
Red recombineering system (residing on plasmid pKD46) to recombine double-stranded 
DNA fragments or 90 bp single-stranded oligonucleotides (oligos) to edit genomes 
(Table 1). To make the wildtype Φ21 strain lytic, we conducted MAGE on K-12 lysogens 
using an oligo that introduces two successive stop codons and a 1 bp deletion 
frameshift early in the cI gene. After electroporation, ~108 WT cells were added to 
recovery cultures as fodder to enrich for successfully engineered lytic phages. Recovery 
cultures were then plated on lawns of WT and clear plaques, indicative of lytic 
mutations, were isolated, confirmed by whole genome sequencing, and preserved by 
freezing as described above. 
 
To engineer bacteria, we used MAGE to introduce ompF mutations into ΔLamB ΔOmpC 
hosts. Mutations observed in module “entry-level” strains (S53R, E93K and G347D) 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.04.13.536812doi: bioRxiv preprint 

https://github.com/aluciasanz/nestedness_modularity_pbin_analysis
https://github.com/joshborin/phi21multiscalePBIN
https://doi.org/10.1101/2023.04.13.536812
http://creativecommons.org/licenses/by-nc/4.0/


were engineered using mutant ompF gene fragments instead of oligos. Fragments were 
obtained using PCR to amplify ompF from coevolved bacteria containing mutations of 
interest (T12_12, T15_14) (Primers in Table 2). Then, MAGE was used to recombine 
mutated ompF fragments into ΔLamB ΔOmpC hosts. Strains that were successfully 
engineered with the S53R mutation were used as a scaffold to introduce additional 
ompF mutations using oligos (Table 1).  
 
After electroporating ΔLamB ΔOmpC hosts with either ompF PCR fragments or MAGE 
oligos, cells were recovered for 2 hours at 37°C and then 40 μL was transferred into 4 
mL of fresh LB media and incubated for another 4 hours. This allowed transformants to 
divide, thus diluting away OmpF proteins that were expressed before electroporation. 
Then, we enriched for successful transformants using phage selection in 96-well plate 
reader experiments. Recovered cultures were serially diluted and 10 μL aliquots were 
added to wells containing 150 μL of Tris-LB and 50 μL of phage lysate. Plates were 
incubated at 37°C and after ~6 hours. When optical density increased above the limit of 
detection (OD600 ≈ 0.15), suggesting growth of resistant transformants, bacteria were 
streaked from cultures onto LB agar plates for isolation, as described above. For phage 
selection, we used the PBIN to choose phages that could infect the pre-engineered form 
of OmpF but not the successfully transformed variant of the OmpF. After purifying 
bacterial isolates, we confirmed that engineering was successful; PCR was used to 
amplify ompF fragments (primers in Table 2) which were sent to Azenta Life Sciences 
(La Jolla, CA) for Sanger sequencing. 
 
 

Table 1. MAGE oligos used in the study. 
Position Mutation Gene Sequence (5’ → 3’) 

34,816 
34,807 
34,803 

CAC → ATT 
CAA → ATT 

Δ1 bp 

Φ21 cI 
(CPT_21_51) 

CAAGATTAGGCAGGCTGCCCTTGGCAAGATG 
GTTGGCTAATCTAATTAAGCTTTTCCCAATGG 

GAGCGATCTGAAACTGAGCCCAATGGC 

981,635 
N268K 

AAC → AAA 
ompF 

GTGAAACCCGTAACGCTACGCCGATCACTAA 
TAAATTTACAAAAACCAGCGGCTTCGCCAAC 

AAAACGCAAGACGTTCTGTTAGTTGCGC 

981,627 
G271D 

GGC → GAC 
ompF 

GTGAAACCCGTAACGCTACGCCGATCACTAAT 
AAATTTACAAACACCAGCGACTTCGCCAACAA 

AACGCAAGACGTTCTGTTAGTTGCGC 
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Table 2. Primers used in the study. 
Gene Forward Primer Reverse Primer (5’ → 3’) 

Φ21 cI 
(CPT_21_51) 

GGGCGTGAATTTAGTTTGTC ACTGATGGGTGAGCGTATTC 

ompF CAGGGTAACGGGAGATTTACAA AGATGCCTGCAGACACATAAA 

 
 
Bacterial fitness competitions. Competitions were conducted between query strains 
(coevolved bacterial isolates or K-12 WT, which are manXYZ+) and a manXYZ–-marked 
common competitor (bacterial isolate T06_6). To differentiate strains, tetrazolium-
mannose agar (Tet-man) indicator plates (10 g tryptone, 1 g yeast extract, 5 g NaCl, 16 
g agar, 10 g mannose per liter of water, and supplemented to a final concentration of 
0.005% triphenyl tetrazolium chloride [TTC] indicator dye) were used for plating. 
Bacteria were grown from freezer stocks overnight, as described above. The next day, 
query strains and the marked competitor were inoculated into flasks containing 10 mL 
Tris-LB in a 1:1 or 99:1 ratio to a final volume of 100 μL. Upon inoculation, flasks were 
mixed and aliquots were diluted and plated to enumerate initial densities (T0). After 
incubating for 24 hours at 37°C, competitions were again diluted and plated to obtain 
final densities (TF). Finally, relative fitness (W) was calculated for each strain where W = 
MA / MB and where MA = ln(TF / T0) of the query strain and MB = ln(TF / T0) of the marked 
competitor. To relate coevolved isolate fitness values to their common WT ancestor, we 
divided all fitness values by relative fitness of WT to the marked competitor. 
 
Protein structures. To visualize the positions of mutations responsible for module 
formation and within-module nestedness, we modeled the protein structures of host 
receptor OmpF and phage host recognition protein J. For OmpF, we used a structure 
solved by x-ray diffraction (PDB 3HW9, 2.61 Å resolution) and for J we used a publicly 
available version (v1.5.2)47 of AlphaFold48,49 to predict protein structures. We relied on 
predicted J structures because no experimentally solved structures are available for 
Φ21 J or closely related proteins. For example, λ phage J is unsolved, however 
previous work on predicted structures of λ’s J shows that well-characterized mutations 
occur in expected regions of the protein: mutations affecting host tropism occur on 
finger-like projections on the outward surface of the protein and mutations affecting 
thermostability are located distal from the surface50. We modeled a truncated version of 
J containing the 153 most C-terminal amino acids (positions 1008-1160, as in Strobel et 
al. (2022)). Protein data bank files (.pdb) were then visualized and annotated in 
ChimeraX (v1.5)51. 
 
Replay coevolution experiment. To study the repeatability of dynamics reported in our 
study, we conducted 9 additional replicate populations as described above but for 24 
days. Because we expected phages to evolve new receptor usage, we measured the 
titer of phage populations on each of our knockout hosts, allowing us to capture the 
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population dynamics of phage receptor innovation with higher resolution (Extended 
Data Fig. 5, bottom). 
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