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Key Points:  

1. Sphingolipidomics separates acute myeloid leukemia (AML) patients and cell lines into two subtypes. 
2. The subtype with low hexosylceramide and high sphingomyelin defines a new high-risk subtype with 

poor clinical outcomes.  

Abstract (200 words max):  

Acute myeloid leukemia (AML) is an aggressive disease with complex and heterogeneous biology. 
Although several genomic classifications have been proposed, there is a growing interest in going beyond 
genomics to stratify AML. In this study, we profile the sphingolipid family of bioactive molecules in 213 primary 
AML samples and 30 common human AML cell lines. Using an integrative approach, we identify two distinct 
sphingolipid subtypes in AML characterized by a reciprocal abundance of hexosylceramide (Hex) and 
sphingomyelin (SM) species. The two Hex-SM clusters organize diverse samples more robustly than known 
AML driver mutations and are coupled to latent transcriptional states. Using transcriptomic data, we develop a 
machine-learning classifier to infer the Hex-SM status of AML cases in TCGA and BeatAML clinical 
repositories. The analyses show that the sphingolipid subtype with deficient Hex and abundant SM is enriched 
for leukemic stemness transcriptional programs and comprises an unappreciated high-risk subgroup with poor 
clinical outcomes. Our sphingolipid-focused examination of AML identifies patients least likely to benefit from 
standard of care and raises the possibility that sphingolipidomic interventions could switch the subtype of AML 
patients who otherwise lack targetable alternatives. (Words: 186) 

Introduction:  

Recent work has combined proteomics1, signaling2,3, or immunophenotypes4 with integrated genomic-
transcriptomic measurements to improve acute myeloid leukemia (AML) patient risk classifications beyond 
mutations and cytogenetics5. Although invaluable as resources, such approaches cannot extend retroactively 
to existing repositories nor prospectively to new AML cases lacking these data types. We sought to develop a 
more-extensible approach involving sphingolipids (Figure 1A), a family of bioactive molecules implicated in 
AML pathogenesis and therapeutic resistance6,7. Sphingolipid species are delicately balanced and several 
differentially regulate cell proliferation8, differentiation9, autophagy10, apoptosis11, and immune cell activation12. 
Recent evidence indicates that sphingolipid abundances in AML are heterogeneous13, prompting us to ask 
whether systematic sphingolipidomic profiling could meaningfully stratify AML patients and common AML cell 
lines. 

Study Design:  

Patient samples were obtained from the University of Virginia Cancer Center (UVA), Memorial Sloan 
Kettering Cancer Center (MSK), and Penn State Hershey Cancer Center (PSU, Figure 1A). Targeted 
sphingolipidomics by mass spectrometry and transcriptomics by RNASeq were performed on both primary 
AML samples and cell lines. Transcriptomic data for TCGA-AML and BeatAML were downloaded from the 
National Cancer Institute Genomic Data Commons data portal. The Hex-SM classifier was developed as a 
support vector machine with a linear kernel and 60-40 training-test data allocation. More details on the Study 
Design and Methods are described in the Supplemental Information.  

Results and Discussion:  

We quantified 33 sphingolipid metabolites in 213 primary AML samples, 30 human AML cell lines, and 
6 normal CD34+ enriched bone marrow samples after carefully controlling for cell purity and viability. 
Normalized sphingolipid profiles in AML cell lines and primary AML cases were highly dispersed (yet 
intermixed) and separable from normal samples (Figure 1B), motivating a pan-AML stratification. We applied 
consensus clustering to the normalized lipidomics data and identified two sphingolipidomic clusters that were 
statistically robust (Supplemental Figure S1A-C). The two clusters were equally populated with cell lines and 
primary samples, and neither was differentially enriched for common AML mutations (Supplemental Figure 
S1D, Supplemental Table 01; Fisher's exact test, Padj ≥ 0.27). In contrast, the clusters were divergent in their 
abundance of hexosylceramide (Hex) and sphingomyelin (SM) species (Figure 1C). Lipid cluster 1 exhibited 
proportionally less Hex and more SM (HexlowSMhigh), whereas cluster 2 exhibited more Hex and less SM 
(HexhighSMlow, Figure 1D-E). Additionally, the HexhighSMlow cluster was elevated in long-chain, C14-20-carbon 
chains relative to the HexlowSMhigh cluster (Supplemental Figure S1E; Mann-Whitney test, P < 10-9).  No 
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differences were detectable in the abundance of ceramide (Cer), other long-chain/sphingoid bases (LCB, 
comprised of sphingosine and its derivatives), or very-long-chain, C22-26 chain sphingolipids (Supplemental 
Figure S1F-H; Mann-Whitney test, P ≥ 0.20). Collectively, the analyses supported two sphingolipidomic 
subtypes with biochemical states that were largely uncoupled from the AML derivation or mutation status.  

 We next examined whether AML patients from the two subtypes differed in their clinical outcomes. 
Complete data across the three centers were available for 70 HexlowSMhigh and 73 HexhighSMlow cases sampled 
at diagnosis before intensive induction chemotherapy (Supplemental Table 02).  Based on European 
LeukemiaNet (ELN) 2022 criteria5, patients in the HexlowSMhigh subtype had a twofold higher rate of failure 
compared to patients that were HexhighSMlow (Supplementary Figure S2A; Fisher's exact test, P = 0.02). The 
HexlowSMhigh subtype also trended towards shorter event-free survival (EFS) and overall survival (OS), 
although the difference was not statistically significant (Figure 2A-B; median EFS = 139 vs. 239 days, log-rank 
P = 0.16; median OS = 454 vs. 786 days, log-rank P = 0.38). To eliminate confounding caused by events that 
occurred before the first round of induction therapy was complete, we excluded patients with EFS < 20 days 
and observed significant differences in EFS and OS (Supplemental Figure S2B-C; median EFS = 142 vs. 
339 days, log-rank P = 0.014; median OS = 454 vs. 1577 days, log-rank P = 0.03). These results were robust 
to the choice of EFS threshold (Supplemental Figure S2D) and suggested that the sphingolipidomic subtypes 
have prognostic value.  

 To associate broader transcriptional differences with the subtypes, we collected RNASeq data for 29 
primary AML samples and 30 AML cell lines with sphingolipidomic profiles. We appended RNASeq data from 
additional AML cell lines available through CCLE14, which were batch-corrected and merged with our data 
alongside two clinical RNASeq repositories for AML: TCGA-AML15 and BeatAML16 (Supplemental Figure 
S2E-F, see Methods). For the cell lines and primary samples with sphingolipidomics, we identified 734 
transcripts increased in the HexlowSMhigh subtype and 1125 transcripts increased in the HexhighSMlow subtype 
(Figure 2C, Supplemental Table 03; FDR-adjusted Padj < 0.05), including five enzymes involved in sphingolipid 
metabolism (UGCG, ST3GAL3, B3GALT1, FUT4, NAGA). Genes characteristic of the clinically favorable 
HexhighSMlow subtype were enriched for hallmark gene sets related to immune activation (Supplemental 
Figure S2G-H). In contrast, genes for the clinically unfavorable HexlowSMhigh subtype were enriched for four of 
five gene signatures associated with leukemic stem cells (LSCs)17–20 (Figure 2D, Supplemental Figure S2I-
L). We concluded that the two sphingolipid subtypes were more coupled to transcriptomic states than AML 
driver mutations (Supplemental Figure S1D) and may relate to differences in biological mechanisms of the 
disease. 

For inferring sphingolipidomic subtypes from transcriptional states alone, we developed a support 
vector machine classifier of Hex-SM status using the 284 most variable and differentially expressed genes 
between the subtypes (Supplemental Table 04). When trained on 60% of the samples with paired 
transcriptomics and sphingolipidomics (including both primary cases and AML cell lines), the classifier showed 
excellent predictive performance on the remaining 40% of samples (Figure 2E; area under the receiver 
operating characteristics curve = 0.91; balanced accuracy = 81%; one-sided binomial test P < 10-3). We then 
used the classifier with the batch-corrected transcriptomic data from TCGA-AML and BeatAML to infer 
sphingolipidomic subtypes. For both repositories, the classifier predicted a balanced proportion of HexlowSMhigh 
and HexhighSMlow cases, supporting that neither subtype is rare. Consistent with our independent cohort 
(Supplemental Figure S2B-C), patients inferred to be HexlowSMhigh had significantly worse survival outcomes 
than those predicted to be HexhighSMlow (Figure 2F-G; log-rank P = 0.029 for BeatAML, log-rank P < 10-4 for 
TCGA-AML). Among patients with molecularly defined risk classes in both datasets, we found that the 
HexhighSMlow subtype was enriched for the Favorable/Good group (Fisher's exact test, P < 10-4), while the 
HexlowSMhigh subtype was enriched for the Adverse/Poor group (Fisher's exact test, P = 0.03; Supplemental 
Figure S2M-N). Interestingly, the Intermediate risk group was not detectably skewed by subtype (Fisher's 
exact test, P = 0.07; Supplemental Figure S2M-N). Last, we stratified by risk group and examined whether 
patients in the two sphingolipid subtypes differ in their clinical outcomes. Overall survival of the HexlowSMhigh 
subtype was similar to HexhighSMlow in the Favorable/Good risk group (log-rank P = 0.86), slightly worse in the 
Adverse/Poor risk group (log-rank P = 0.051), and significantly worse in the Intermediate risk group (log-rank P 
= 0.009; median OS = 439 vs. 723 days; Supplemental Figure S2O-P; Figure 2H). This extension to public 
AML datasets strengthens the conclusion that HexlowSMhigh is a high-risk subtype with poor clinical outcomes, 
especially for patients whose molecular risk classification is Intermediate.  
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By examining AML from the perspective of sphingolipid metabolism, our work uncovers a stratification 
that eluded prior gene-based classifications16,17,21. The RNASeq-based classifier suggests that 
sphingolipidomic subtypes are embedded in a fraction of the transcriptome that is not prominent when 
clustering is performed in an unsupervised manner. Indeed, the sphingolipid profiles of AML cell lines are much 
more concordant with primary samples (Figure 1C), unlike when their whole transcriptomes are co-clustered 
(Supplemental Figure S3A-C). The stemness transcriptional programs enriched in the high-risk HexlowSMhigh 
subtype are consistent with the importance of sphingolipid homeostasis in maintaining hematopoietic stem 
cells13. Since gene expression panels are used clinically22, our sphingolipid-guided transcript classifier could be 
useful for identifying patients least likely to benefit from the intensive induction combination chemotherapy and 
thus most eligible to receive experimental therapeutics. Future studies should confirm these findings and 
investigate the pharmacologic vulnerabilities of the two sphingolipid subtypes. Given the promise of targeting 
sphingolipid metabolism in AML7,23,24, we envision that sphingolipidomic subtyping could contribute to tailored 
treatment selections for AML patients that otherwise lack targetable alternatives.  
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Figure Legends for Main Figures: 
 
Figure 1: AML cell lines and patients separate into two sphingolipidomic clusters that differ in their 
abundance of hexosylceramide and sphingomyelin. 

(A) Strategy to identify sphingolipidomic subtypes in AML. Sphingolipidomics of ceramide (Cer), 
hexosylceramide (Hex), sphingomyelin (SM), and long-chain bases (LCB, comprised of sphingosine and its 
derivatives) was performed on primary AML samples and AML cell lines by LC-MS, and the normalized data 
were consensus clustered to identify a stable number of sphingolipid clusters. Cluster-specific gene signatures 
were extracted to train a Hex-SM classifier that infers sphingolipidomic subtype from RNASeq.  

(B) Sphingolipidomic heterogeneity is similar in AML cell lines and patient samples but distinct from normal 
CD34+ bone marrow. Normalized sphingolipidomics for normal bone marrow samples (magenta, n = 6), 
primary AML samples (purple, n = 213), and AML cell lines (orange, n = 30) were displayed by Uniform 
Manifold Approximation and Projection (UMAP).  

(C) Row-standardized lipid abundances organized by sphingolipid family:  hexosylceramide (Hex), 
sphingomyelin (SM), ceramide (Cer), and long-chain bases (LCB). The HexlowSMhigh and HexhighSMlow 
consensus clusters are separately clustered and annotated as cell lines (orange) and patient samples (purple). 

(D-E) Normalized Z-scores of lipid species within the Hex (D) and SM (E) families were summed and 
differences between consensus clusters were assessed by the Mann-Whitney test with continuity correction. 
Colors indicate the sample type: AML cell lines (orange, n = 30) and primary samples (purple, n = 213).  

Figure 2: The HexlowSMhigh and HexhighSMlow AML subtypes differ in gene expression and survival 
outcome. 

(A-B) Kaplan-Meier plots of event-free survival (EFS) (A) and overall survival (OS) (B) for AML patients 
grouped into HexlowSMhigh (purple, n = 70) and HexhighSMlow (green, n = 73) subtypes. The study cohort 
comprised patients from three institutions (UVA, MSK, and PSU). Patients who received intensive induction 
chemotherapy treatment (“7+3”) were included in the analyses. Within each plot are the corresponding risk 
tables for the two groups. 

(C) Volcano plot of differentially expressed genes between the HexlowSMhigh and HexhighSMlow subtypes. Purple 
genes are upregulated in the HexlowSMhigh cluster whereas green genes are upregulated in the HexhighSMlow 
cluster. 

(D) The HexlowSMhigh subtype is enriched for the leukemic stemness (LSC) program. Gene set enrichment 
analysis score plot for a leukemic stem cell signature of 104 genes17. The y-axis is the running enrichment 
score along the ranked gene list. The enrichment score is the maximum deviation from zero encountered in 
walking the list and represents the degree to which a gene set is over-represented at the top or the bottom of 
the ranked gene list. The normalized enrichment score (NES) is the enrichment score normalized for variation 
in gene set sizes. The adjusted p-value (Padj) for the NES is shown.  

(E) An RNASeq-based classifier accurately distinguishes sphingolipidomic subtypes. Receiver operating 
characteristics curve for a 284-gene support vector machine classifier applied to test data that includes both 
primary AML samples and cell lines with paired RNASeq and sphingolipidomic data. The area under the curve 
(AUC), its 95% confidence interval in brackets, and the one-sided binomial test p-value (Pbinom) of the classifier 
are shown. 

(F-H) Kaplan-Meier plots for AML patients inferred to be HexlowSMhigh (purple) or HexhighSMlow (green) in 
BeatAML (npurple = 102, ngreen  = 72) (F), TCGA-AML (npurple = 67, ngreen = 84) (G), and the molecularly defined 
Intermediate risk group combined for both BeatAML and TCGA-AML (npurple = 80, ngreen  = 58) (H).  Only AML 
patients who received standard intensive induction chemotherapy were included in the analyses for both 
datasets. Log-rank p-values, Hazard ratio (HR), and 95% confidence interval in brackets are shown. The 
bottom of each plot shows risk tables for the two subtypes. 
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Figure Legends for Supplementary Figures: 

Supplemental Figure S1: Genomic and sphingolipidomic associations within the two AML consensus 
clusters. 

(A) Consensus clustering on normalized lipidomics data was used to identify stable sphingolipid clusters in 
human AML primary samples and AML cell lines. The consensus score heatmap for two clusters (k = 2) is 
shown, illustrating the frequency that a given pair of samples was placed in the same cluster over 1,000 
iterations. Each point denotes a pair of samples colored by consensus score from white (0, never co-cluster) to 
blue (1, always co-cluster). Colors denote primary AML samples (purple, n = 213) or AML cell lines (orange, n 
= 30).  

(B-C) Cluster statistics supporting two stable clusters. Proportions of ambiguous clustering (PAC) scores (B) 
and Silhouette scores (C) for clusters k = 2 to k = 6. The cluster with the lowest PAC and highest Silhouette 
score was chosen as the optimum sphingolipid cluster for AML samples. 

(D) Two sphingolipid metabolic clusters do not differ in their mutational profiles. Heatmap for the estimated 
variant allele frequency (VAF) for genes detected as mutated (VAF > 0) in over 10% of AML samples. Samples 
(columns) are separated based on their sphingolipid cluster, either HexlowSMhigh or HexhghSMlow; colors indicate 
primary AML samples (purple, n = 57), and AML cell lines (orange, n = 30). No differences in mutation 
frequency were detected between the clusters by Fisher’s exact test (P ≥ 0.27). 

(E-H) Normalized Z-scores for lipid species within the long-chain (C14-C20-carbon) sphingolipid species (E), 
Ceramide (Cer) (F), sphingolipid long-chain/sphingoid bases (LCB) (G), or very-long-chain (C22-C26-carbon) 
sphingolipid species (H) were summed and differences between the two sphingolipid consensus clusters were 
assessed by Mann-Whitney test with continuity correction. Colors indicate primary AML samples (purple, n = 
213), and AML cell lines (orange, n = 30).  

 

Supplemental Figure S2: Gene expression and survival outcome differences between the two 
sphingolipidomic AML subtypes. 

(A) Barplot for proportions of AML patients grouped into HexlowSMhigh (n = 65) and HexhighSMlow (n = 66) 
subtypes with response or failure to intensive induction combination therapy. The difference in response 
between the clusters was significant by Fisher’s exact test (P = 0.02). 

(B-C) Kaplan-Meier plots for AML patients grouped into HexlowSMhigh (purple) and HexhighSMlow (green) 
subtypes for patients in the study cohort with the exclusion of early death or events within the first 20 days of 
intensive induction chemotherapy treatment; event-free survival (B), overall survival (C). Log-rank p-values, 
Hazard ratio (HR), and 95% confidence interval in brackets are shown. The bottom of each plot shows risk 
tables for the two subtypes.  

(D) Sensitivity of the EFS threshold for discriminating differences between the two clusters in EFS for the study 
cohort. The -log10 of log-rank p-values is plotted versus the minimum EFS day for thresholding. The dotted line 
denotes PLog-rank = 0.1.  

(E-F) Integration of RNASeq data from the study cohort, TCGA, and BeatAML. Principal component analysis 
(PCA) with the top 50% of most variable genes before (E) and after (F) batch correction. The data were 
normalized using DESeq2 and log-transformed with log2 (normalized counts + 1). Colors indicate the source of 
the data, and study cohort (green, n = 148), TCGA (blue, n = 151), and BeatAML (pink, n =510). 

(G-H) Hallmark complement pathways (G), and Hallmark inflammatory response (H) are enriched in the trailing 
genes upregulated in HexhighSMlow. 

(I-L) The HexlowSMhigh subtype is enriched for the leukemic stem cell (LSC) program. Gene set enrichment 
score plot for genes up-regulated in functionally defined LSC from AML patients18 (I), genes shared between 
hematopoietic stem cells (HSC) and AML LSC genes18 (J), genes up-regulated in LSC compared to leukemic 
progenitor cells from AML patients20 (K), genes upregulated in leukemic stem CD34+CD38- cells from AML 
compared to the CD34+CD38+ cells19 (L). The y-axis is the running enrichment score (ES) along the ranked 
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gene list. The enrichment score is the maximum deviation from zero encountered in walking the list and 
represents the degree to which a gene set is over-represented at the top or the bottom of the ranked gene list. 
The normalized enrichment score (NES) is the ES normalized for variation in gene set sizes. The adjusted p-
value (Padj) for the NES is shown. 

(M-N) Proportional distributions of molecularly defined risk classification in the two sphingolipidomic subtypes 
for BeatAML with European LeukemiaNet (ELN) 2017 categories (M), and TCGA-AML with molecularly defined 
risk categories (N).  

(O-P) Kaplan-Meier plots for overall survival of AML patients predicted to be HexlowSMhigh (purple) and 
HexhighSMlow (green) subtypes for patients in the BeatAML, and TCGA-AML separated by their molecularly 
defined risk classifications:  Favorable/Good risk (O) and Adverse/Poor risk (P). Log-rank p-values, Hazard 
ratio (HR), and 95% confidence interval in brackets are shown. The bottom of each plot shows risk tables for 
the two subtypes. 

 

Supplemental Figure S3: Whole transcriptomes separate AML samples into four stable clusters that 
segregate cell lines and patient samples.  

(A) Sample-to-sample differences in row standardized expression of 2000 most variably expressed genes, 
separated by consensus clusters based on transcriptomic data of AML cell lines and primary samples. 
Expression values are from batch-adjusted, DESeq2-normalized data and log-transformed with log2 
(normalized counts + 1). Colors indicate the sample type: AML cell lines (orange, n = 53) and primary samples 
(purple, n = 38). C1 is enriched in patient samples (P < 10-11), whereas C2, C3 and C4 are enriched in cell 
lines  (C2: P = 0.01; C3: P = 0.03; C4: P < 10-4 ; Fisher’s exact test). 

(B-C) Cluster statistics supporting four stable clusters based on RNASeq data. Proportions of ambiguous 
clustering (PAC) scores (B) Silhouette scores (C) for clusters, k = 2 to k = 6. The cluster with the lowest PAC 
and highest Silhouette score was chosen as the optimum sphingolipid cluster for AML cell lines and primary 
samples. 
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