
 

 

  Title: Machine Learning Ensemble Directed Engineering of Genetically 

Encoded Fluorescent Calcium Indicators.  

 

Authors  

Sarah J. Wait1,2, Michael Rappleye2,3, Justin Daho Lee1,2, Netta Smith3, Andre Berndt*1,2,3,4.  

 

Affiliations:  

1: Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 

2: Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 

3: Department of Bioengineering, University of Washington, Seattle, WA 

4: Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, 

WA  

*: corresponding author  

Conflicts of interest:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536801doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536801
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

Abstract 
Real-time monitoring of biological activity can be achieved through the use of genetically encoded 
fluorescent indicators (GEFIs). GEFIs are protein-based sensing tools whose biophysical characteristics 
can be engineered to meet experimental needs. However, GEFIs are inherently complex proteins with 
multiple dynamic states, rendering optimization one of the most challenging problems in protein 
engineering. Most GEFIs are engineered through trial-and-error mutagenesis, which is time and 
resource-intensive and often relies on empirical knowledge for each GEFI. We applied an alternative 
approach using machine learning to efficiently predict the outcomes of sensor mutagenesis by analyzing 
established libraries that link sensor sequences to functions. Using the GCaMP calcium indicator as a 
scaffold, we developed an ensemble of three regression models trained on experimentally derived 
GCaMP mutation libraries. We used the trained ensemble to perform an in silico functional screen on a 
library of 1423 novel, untested GCaMP variants. The mutations were predicted to significantly alter the 
fluorescent response, and off-rate kinetics were advanced for verification in vitro. We found that the 
ensemble’s predictions of novel variants’ biophysical characteristics closely replicated what we observed 
of the variants in vitro. As a result, we identified the novel ensemble-derived GCaMP (eGCaMP) variants, 
eGCaMP and eGCaMP+, that achieve both faster kinetics and larger fluorescent responses upon 
stimulation than previously published fast variants. Furthermore, we identified a combinatorial mutation 
with extraordinary dynamic range, eGCaMP2+, that outperforms the tested 6th, 7th, and 8th generation 
GCaMPs. These findings demonstrate the value of machine learning as a tool to facilitate the efficient 
prescreening of mutants for functional characteristics. By leveraging the learning capabilities of our 
ensemble, we were able to accelerate the identification of promising mutations and reduce the 
experimental burden associated with screening an entire library. Machine learning tools such as this have 
the potential to complement emerging high-throughput screening methodologies that generate massive 
datasets, which can be tedious to analyze manually. Overall, these findings have significant implications 
for developing new GEFIs and other protein-based tools, demonstrating the power of machine learning 
as an asset in protein engineering. 

 
Introduction 
Genetically encoded fluorescent indicators (GEFIs) are protein-based sensors that allosterically link fluorescent 
proteins to protein domains that bind with specific ligands. Changes in fluorescence intensity upon ligand binding 
can be quantified spatiotemporally, allowing researchers to monitor ligands such as intracellular second 
messengers or neuromodulators in freely moving animals1. Today, GEFIs are essential tools in neuroscience, 
with sensors already developed for calcium, dopamine, norepinephrine, endocannabinoids, and opioids, 
amongst others2–11. To align each sensor's biophysical properties to experimental needs, GEFIs require 
extensive engineering (i.e., mutation). However, most current engineering techniques, such as trial-and-error 
mutagenesis, are time and resource intensive. We require novel approaches that ameliorate the experimental 
burden associated with GEFI engineering. Here, we use data-driven interrogation of a mutational library to 
investigate the sequence-function relationships of GEFIs and predict the functional characteristics of novel 
mutants.  

Machine learning (ML) algorithms are valuable tools in protein engineering, demonstrating their ability to 
understand complex interactions without prior knowledge of intricate structure-function relationships.12. These 
algorithms have been employed to engineer enzymes, fluorescent proteins, and optogenetic tools with varying 
levels of ML-pipeline complexity. 13–18.  In this study, we integrate the strengths of these previous examples into 
a novel and enhanced approach. Firstly, our approach is based on the sequence-function relationship, ensuring 
that the resulting model can be applied to any mutation library. This versatility allows for broader adaptability 
across various protein engineering problems. Secondly, we utilize multiple models in parallel, implementing an 
ensembling process that informs our final predictions with increased accuracy and robustness. This methodology 
offers an advantage, as it remains applicable regardless of the availability of a molecular structure. By combining 
these elements, we developed an improved ML-based approach with the potential to broadly impact protein 
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engineering. The resulting pipeline is not only adaptable and versatile but also offers better predictive 
capabilities, paving the way for more efficient engineering of proteins.  

We selected the calcium indicator GCaMP as a protein sensor scaffold to develop this platform. GCaMP 
is a chimeric protein that consists of circularly-permuted GFP (cpGFP) fused to calmodulin (CaM) and 
calmodulin-binding peptide (CBP). GCaMP sensors have been widely adopted and have seen several 
improvements to optimize their capabilities2–6,19,20. As a result, data from the in vitro characterizations of >1000 
mutants became publicly available4,5. Using this data, we developed a stacked ensemble capable of predicting 
in vitro functional characteristics of previously untested GCaMP mutants. As a result, we identified mutations 
that accelerate the off-rate kinetics and increase the fluorescent responses of jGCaMP7s. Our study 
demonstrates that ML ensembles can effectively learn from complex mutational datasets and that we can 
harness their predictive power to prescreen mutation libraries for enhancing biophysical properties. This quality 
is increasingly important to complement the growing suite of high-throughput protein engineering methodologies, 
streamlining the analysis process and further advancing the field. 

 

Results 
Description of Variant Library, Computational Approach, and Predictions on Novel Sequences 

We used public data from two previous publications to form our GCaMP variant libraries, which consisted 
of 1078 characterized mutants and their in vitro functional characteristics derived from cultured neuron 
screening4,5. Within the variant library, we focused on the fluorescent response (∆F/F0) to one action potential 
(AP) stimulation (1AP ∆F/F0) and decay kinetics of the fluorescent response (𝜏1/2, decay half-time after 10 APs) 

(Figure 1A). When normalized to GCaMP6s as the baseline for the target attributes (i.e., 1AP ∆F/F0 and 𝜏1/2 = 
1.0), we can see a broad distribution of variant capabilities and mutation locations within the GCaMP structure 
(Figure 1B, C; Supp. Fig. 1A). We found that the sequence similarity is not deterministic for either the 
fluorescent or kinetic response, as seen by the variability in mutation performance regardless of GCaMP 
generation (Supp. Fig. 1B, D).  

Before model training, the variants in the library were randomly assigned to training and testing sets at 
an 80/20 ratio for downstream cross-validation, where the mean values between the train and test sets were not 
significantly different in either the fluorescence or kinetics library (Supp. Fig. 1C, E). To improve prediction 
capabilities, we performed a stacked ensemble comprising a random forest regressor (RFR), K-neighbors 
regressor (KNR), and multi-layer perceptron network regressor (MPNR)21,22. We encoded each position in the 
GCaMP sequence in the train and test sets using values that quantify amino acid (AA) properties such as size, 
polarity, hydrophobicity, etc. (554 property datasets x 3 models). (Figure 1D). The cross-validation R2 value was 
used to benchmark each AA property’s ability to predict the functional ability of the withheld test set (Supp. 
Figure 2A). Only the top five AA property datasets for each model were considered in the final ensemble to 
reduce the computational burden, time, and storage space. Interestingly, the underlying AA properties that led 
to high R2 values were associated with hydrophobicity for the fluorescence library and conformation for the 
kinetics library (Supp. Fig. 2B, C, D; Supp. Table 1, 2).  

The ensemble's predictions for each mutation are the average response from the 15 models (5 AA 
properties x 3 models). During cross-validation, the ensembles for fluorescence and kinetics achieved R2 values 
greater than 0.80 for predictions made on the test dataset (Figure 1E, F). The fluorescence ensemble achieved 
a higher R2 value than any of the models contributing to the prediction, pointing to the beneficial collaborative 
effect of ensembling (Supp. Fig. 2C). Importantly, we found that the addition of the amino acid property 
information improves the model's ability to generalize the variant library, as evidenced by label encoded libraries 
achieving R2 values of 0.66/0.68 and one-hot encoded libraries achieving R2 values of 0.70/0.66 for the 
fluorescence (1AP ∆F/F0) and kinetics (𝜏1/2) predictions, respectively (Supp. Fig. 2C).  

 
Identification of Mutations of Interest From Ensemble Predictions 
We utilized the trained ensembles to predict a novel library's fluorescence and kinetics capabilities. This library 
was created by taking jGCaMP7s and substituting each of the 75 positions previously mutated in the variant 
library with the remaining 19 amino acids (Figure 1C). After removing redundant variants, the novel library 
contained 1423 untested variants. We calculated the 'Predicted Change From jGCaMP7s' by subtracting the 
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average predicted value of jGCaMP7s from the predicted value for each mutant. We performed an unpaired t-
test between the 15 predictions made for each mutant (one from each contributor model) and the 15 predictions 
made for jGCaMP7s within the same library. These two metrics allowed us to isolate mutations whose predicted 
value differs significantly from jGCaMP7s (Figure 2Ai). Next, we isolated the residues in each library whose 
mutations had the strongest positive or negative impact on fluorescence and kinetics (Figure 2Aii). From these 
normalized value predictions, we can ascertain how mutations were predicted to affect the biophysical 
characteristics of jGCaMP7s in both the fluorescence and kinetics (Figure 2B, C). In our model training, the 
jGCaMP7s sequence was purposely withheld. Nevertheless, the ensemble prediction ranked the base 
jGCaMP7s sequence within the top 15% of variants for high fluorescence readout. Consequently, the ensemble 
predicted most variants to have a decreased fluorescent response compared to jGCaMP7s. Variants such as 
L317E, L317K, L317N, L317D, and L317H were all predicted to have a decreased fluorescent response (<-2.2 
a.u.) compared to jGCaMP7s, while variants such as G392F, G392I, and G392W were all predicted to have an 
increased (>0.25 a.u.) fluorescent response (Figure 2B). In the kinetics library, L317E, L317D, L317N, and 
L317K were all predicted to decay faster (<-0.6 a.u.) than jGCaMP7s, while variants such as A390Y, L302D, and 
L302C were all predicted to decay slower (>0.3 a.u.) than jGCaMP7s (Figure 2C). The variants discussed above 
all fell outside 99.7% (±3𝝈) of -log10(P-Values), except for high fluorescence predictions, indicating that the 15 

contributing models displayed confidence in the effect of the mutation (±3𝝈, fluorescence: 0.612, kinetics: 0.242) 
(Figure 2B, C).  

We found that 22% and 18% of the impactful residues in the fluorescence and kinetics libraries, 
respectively, were L317 predictions (Figure 2D), despite only 1.3% of variants in the novel library harboring an 
L317 mutation. Similarly, L302 predictions accounted for 14% and 16% of the impactful residues of the 
fluorescence and kinetics libraries, respectively (Figure 2D). L317 is located on the interface between CaM and 
CBP, while L302 is part of the linker between CaM and cpGFP-both are key positions within GCaMP (Supp. Fig. 
3A, B, C). In contrast, residue A390 was found to be 4.5 times more impactful in the kinetics predictions than in 
the fluorescence predictions. Like L317, A390 is located on the interface between CaM and CBP but on the 
opposing side (Supp. Fig. 3D). Impactful residues for each biophysical property also tended to cluster. For 
instance, the kinetics library displays 38% prediction prevalence surrounding residue clusters Y380, R381, R383, 
and L302, P303, Q305. The prevalence of these residues is 2.38x higher in kinetics predictions than the 
fluorescence predictions. These residues are located close to each other in 3D space representing the residue 

linker and one of the inward loops of CaM (Supp. Fig. 3E). Within the fluorescence predictions, residue clusters 
N44, K45, H48, V52, and M374, M378, K379 displayed 31% prediction prevalence, 3.9x higher than the kinetics 
library. Interestingly, when mapping residues H48, V52, L317, M374, M378, and K379 back onto the crystal 
structure, we observed that all of these residues face inward toward one another, suggesting that they may be 
involved in interactions essential for the fluorescent response (Supp. Fig. 3F). These observations allow us to 
concentrate mutation efforts on key residues and identify specific residues or residue interactions that may be 
most advantageous to target for each biophysical characteristic. 

 
In Vitro Performance of Ensemble Predictions 

 We tested mutations predicted by the ML-ensemble to enhance biophysical properties by stimulating 
HEK293 cells with acetylcholine2,3,23. This process activates calcium channels in the endoplasmic reticulum (ER) 
through Gq/IP3 coupled pathways24,25 (Figure 3A). Mutations predicted to have a greater ∆F/F0 than jGCaMP7s 
(P303F, P303W, G392F, and G392W) all achieved >130% increase in fluorescence over jGCaMP7s (Figure 
3B, Supp. Table 3A). We also found three variants (L302G, L302H, and L302R) that satisfied their predicted 
decrease in fluorescent response, with an average of 1.75x lower fluorescent response (Figure 3B, Supp. Table 
3A). However, we found that the L317 mutants, which were predicted to have a decreased fluorescent response 
displayed the opposite characteristic in vitro. For example, all four L317 mutants achieved 2x greater ∆F/F0 than 
jGCaMP7s. A retrospective analysis of the previous GCaMP mutations showed that variants containing 317N, 
317E, 317K, or 317H saw almost a complete reduction of the fluorescent response (Supp. Fig. 4A, B). 
Accordingly, we found that the L317H mutation in jGCaMP7f led to the predicted reduction of fluorescent 
response (Supp. Fig. 4C). This reflects findings in the Dana et al. 2019 dataset, in which variant 10.1035 
(jGCaMP7f L317H) saw a 95% reduction in ∆F/F0 to 1AP stimuli compared to 10.9210 (jGCaMP7f)5. We 
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speculate that this learned association is why the ensemble predicted mutations at L317 are detrimental to the 
sensor’s fluorescent response. Regardless, we found multiple examples of mutations that led to the altered 
fluorescent response we were aiming to tune.  

The mutations that changed kinetics largely aligned with the ensemble predictions (Figure 3C). Variants 
P303D, L317E, L317H, L317K, L317N, G392F, and G392W were predicted to accelerate decay kinetics. Of 
these variants, 85% showed shorter decay times than jGCaMP7s, with L317K displaying a decay time that was 
5x faster than jGCaMP7s (Figure 3C, Supp. Table 3B). Additionally, 71% of the variants predicted to decrease 
decay (L302C, L302D, L302G, L302H, L302R, A390R, A390Y) demonstrated the predicted behavior, with L302G 
exhibiting a decay time 2.18 times longer than jGCaMP7s (Figure 3C, Supp. Table 3B). 

For subsequent experiments, we focussed on mutations that increased ∆F/F0 and accelerated decay kinetics, 
as these biophysical characteristics could improve the detection of fast calcium signaling, such as those found 
in neurons firing APs. We found that the variants with large fluorescent responses, including G392W, G392F, 
P303F, P303W, L317N, L317K, L317E, and L317H, maintained an average signal-to-noise ratio (SNR, Eq. 2) 
1.5x greater than jGCaMP7s (Figure 3D, Supp. Table 3C). To highlight variants with large fluorescence and 
fast kinetics, we created a performance score by dividing SNR by the tau value (Eq. 2/Eq. 4) (Figure 3E). L317E, 
L317K, L317H, and L317N achieved performance scores on average 10.28x greater than jGCaMP7s (Supp. 
Table 3D). Among them, L317H had the highest performance score of 54.49 (a.u.), 14.23x greater than 
jGCaMP7s. Based on this assessment, we selected the jGCaMP7s L317H variant for further characterization 
and named it “ensemble-GCaMP” (eGCaMP). These in vitro results demonstrate that the ensemble could 
effectively predict sensor functionality, significantly reducing the experimental burden required to identify variants 
with desired biophysical properties. 

 
Combinatorial Mutations and Mutation Transfer Led to the Identification of eGCaMP+ and eGCaMP2+ 

We introduced the 317H mutation into jGCaMP8f6 to test if the beneficial effects could similarly alter divergent 
GCaMP iterations. Residue L317 in jGCaMP7s is located in a conserved region of CaM and is equivalent to 
A289 in jGCaMP8f (Supp. Fig. 5A). The A289H mutation on jGCaMP8f improved the fluorescent response 4x 
over jGCaMP8f (Figure 4A). jGCaMP8f A289H also showed 36% faster decay than jGCaMP8f (Figure 4B). The 
fast decay kinetics combined with large fluorescent responses provide a promising variant that we named 
ensemble GCaMP + (eGCaMP+), which we advanced for further downstream testing.  

Next, we tested a select combination of additional mutations on eGCaMP. For example, we chose the 
jGCaMP7s variants L302D, P303D, A390R, and G392W for their increased ∆F/F0 in vitro (Figure 3B). Other 
mutants were selected based on their locations. Namely, L302 and P303 are key functional residues in the linker 
between cpGFP and CaM3,26(Figure 4C). Residue G392 forms a hydrogen bond with residue G398, which lies 
in one of the EF-hand domains and has been previously observed to influence the Ca2+ affinity3,27 (Supp. Fig. 
3D), and A390 lies on the interaction face between CaM and CBP (Figure 4D). We tested Q305 due to its 
proximity to the linker residues (Figure 4C), hydrogen bonding interactions with Y380 (Supp. Fig. 3E), and 
prevalence in the impactful residues for kinetics (Figure 2D).  

All combinations, except for L317H/G392W, led to functional proteins (Figure 4E, F; Supp. Fig. 5B, C).On 
Average, all variants exhibited decay times 5.0x faster than jGCaMP7s (Supp. Fig. 5B; Supp. Table 4B). Within 
the tested variants, 50% displayed equal or improved fluorescent response to that of eGCaMP (Figure 4E; 
Supp. Table 4A). We observed the largest ∆F/F0 in the L317H/Q305D mutation, with an almost 2.5-fold increase 
in ∆F/F0 over eGCaMP and a 5-fold increase over jGCaMP7s (Figure 4E; Supp. Table 4A). The variant also 
achieved the highest performance score (i.e., large SNR, fast decay) of all variants, a 1.36x fold increase over 
eGCaMP (Figure 4F; Supp. Fig. 5B, C; Supp. Table 4D). We chose the jGCaMP7s L317H/Q305D for further 
characterization and named it ensemble-GCaMP2+ (eGCaMP2+).  

We benchmarked the baseline fluorescence, ∆F/F0 capabilities, and kinetic decays of eGCaMP, eGCaMP2+, 
and eGCaMP+ against published variants at different acetylcholine concentrations, including widely used 
constructs such as GCaMP6s, GCaMP6f, jGCaMP7s, jGCaMP7f, jGCaMP8s, jGCaMP8m, and jGCaMP8f4–6. 
Using c-terminally red fluorescent protein (RFP) tagged constructs, we found that eGCaMP, eGCaMP+, and 
eGCaMP2+ maintained higher dynamic ranges and SNRs but have lower baseline fluorescences than GCaMP6s, 
jGCaMP7s, and jGCaMP8f (Figure 4F; Supp. Figure 6C, D). In the acetylcholine concentration curve, we found 
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that the three ensemble variants demonstrated impressive fluorescent responses compared to the previously 
published constructs (Figure 4G). At every tested concentration, eGCaMP+ and eGCaMP2+ maintained larger 
∆F/F0s than all previously published variants (Figure 4G; Supp. Table 5). For example, eGCaMP2+ achieved 
2.5 times greater ∆F/F0s at 0.1µM acetylcholine than the highest performing published variant, with decay times 
comparable to jGCaMP7f  (Figure 4G, H; Supp. Table 5). Additionally, the decay time of eGCaMP+ was the 
fastest of all tested variants (46% faster than jGCaMP8f, its parental construct) while the maximum ∆F/F0, was 
second only to eGCaMP2+ (Figure 4G, H; Supp. Table 5). The eGCaMP achieved a ∆F/F0 close to jGCaMP7f 
but with a 26% faster decay (Figure 4G, H; Supp. Table 5).  

 
eGCaMP, eGCaMP+, and eGCaMP2+ Performance in Primary Neurons 

 Next, we tested eGCaMP variants in cultured primary rat cortical neurons while stimulating using 
extracellular electrical fields4,5,28. eGCaMP2+ displayed a ∆F/F0 of 10.1% in response to 1 AP stimuli, similar to 
amplitudes obtained by jGCaMP8f (Figure 5A; Supp. Table 6A). eGCaMP2+’s impressive response amplitudes 
became more apparent with increasing numbers of elicited action potentials. At 10 AP, eGCaMP2+ achieved 
2.34x greater response than jGCaMP7s (the next closest variant), and at 80 AP stimuli, eGCaMP2+ achieved 
1.82x greater response than GCaMP6s (the next closest variant) (Figure 5B, C; Supp. Table 6B, C). These 
results were recapitulated in saturation responses, where the average ∆F/F0 response to 40 mM KCl was 1938% 
for cells expressing eGCaMP2+ (Figure 5E; Supp. Table 6E). This ∆F/F0  is 2x greater than those observed in 
GCaMP6s, the sensor that saw the second-greatest responses to 40 mM KCl (Figure 5E; Supp. Table 6E). 
While the KCl saturation responses were quantified using the cell body, the proximal projections in eGCaMP2+ 
maintained >1000% fluorescent increases (Figure 5F). At 80 AP trains, both eGCaMP and eGCaMP+ achieved 
higher fluorescent response amplitudes than the previously published fast variants GCaMP6f and jGCaMP8f 
(Figure 5C; Supp. Table 6C). These results are compounded by both eGCaMP and eGCaMP+ achieving 10 AP 
half decay times (𝜏1/2) of 1.17s and 0.74s for each variant, respectively. These decay times are faster than 
jGCaMP8f’s, whose 10 AP half decay time was 1.49s (Figure 5D; Supp. Table 6D). Furthermore, eGCaMP’s 
decay kinetics was 8x faster than jGCaMP7s, highlighting the ability of the ensemble to correctly predict the 
single point mutation’s functional effect (Figure 5D; Supp. Table 6).  

 

Discussion 
Incorporating machine learning into our engineering pipeline enabled us to efficiently identify new GCaMP 

variants with enhanced fluorescent responses and kinetics. We achieved impressive predictive performance in 
the cross-validation phase by using an ensemble of three regressor models, encoding our dataset with amino 
acid characteristics, and focusing solely on sequence inputs for learning. These predictive capabilities translated 
to the in vitro space, where many in silico predicted characteristics accuratly reflected the mutant's true 
performance. As a result of these engineering efforts, we identified three new variants, eGCaMP, eGCaMP+, 
and eGCaMP2+.  

While the constructs presented here have not been previously described, clues from the literature may 
explain the impact of these mutations. For example, Residue L317 is known to be involved in extensive 
hydrophobic interactions between CaM and CBP27. Each mutation at L317 that the ensemble proposed is 
capable of forming hydrogen bonds which may destabilize the CaM and CBP interactions, accelerate kinetics, 
and altering ∆F/F0. Our retrospective analysis revealed previous GCaMP variants that contained a 317E/H/K/N 
mutation had decreased fluorescent capability compared to jGCaMP7s, which the ensemble learned from the 
variant library (Supp. Fig. 4A). Interestingly, the ensemble identified potential meaningful interactions between 
residues 52 and 317, both of which are involved in the interaction between CaM and CBP, as all of these variants 
contained an Alanine at residue 52 (Supp. Fig. 4B). Consequently, when we tested the L317H variant in 
jGCaMP7f, which contains A52, we observed the loss of fluorescence that the model predicted and mirrored 
previous findings from the Dana et al. 2019 study (Supp. Fig. 4C). These locations may constitute a promising 
target for further mutation library studies. 

 The impressive dynamic range of the Q305D mutation in eGCaMP2+ may result from intraprotein interactions 
within CaM. One possible explanation is that the decreased R-group length in the Q305D mutation requires a 
more substantial conformational change to form the hydrogen bond with residue Y380 (Suppl. Fig. 3E). The 
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resulting conformational change may have downstream effects on both the cp-GFP/CaM linker (Figure 4A) and 
on residue R381, which faces inward toward the chromophore (Suppl. Fig. 3E). Hence, the dramatic effects of 
this mutation on the ∆F/F0 suggest a collaborative role between the cp-GFP/CaM linker and inward loop of CaM 
in stabilizing the phenol/phenolate transition of the chromophore29,30,31. 

We made several critical design decisions while forming this methodology, such as our encoding method, 
chosen models, ensemble, and devotion to sequence-only inputs. Dataset encoding is a crucial step in model 
training as it determines the underlying patterns on which the generalizations are formed12. For this reason, we 
encoded the sequence with biophysical properties underlying the amino acids in each position to form meaningful 
learning patterns. We derived our AA property datasets from the online repository AAINDEX32; however, other 
similar online databases do exist33. Encoding with the property matrices improved the cross-validation R2 value 
by an average of 20% over one-hot encoded or label-encoded libraries (Supp. Fig 2C).  

Ensembling ML models (i.e., considering the input from multiple models) is advantageous as no singular 
model is perfectly optimized to perform all tasks34. We consider inputs from a random forest regressor (RFR), a 
K-neighbors regressor (KNR), and a multi-layer perceptron network regressor (MPNR). Decision tree learning 
methods, such as RFRs, are computationally efficient models well suited for small training libraries, such as the 
variant library, making them a strong foundation within our ensemble’s learning12. KNRs are computationally 
demanding but simple35, where KNR’s similarity metric can capture the degree of variability between the 
performances of nearly identical sequences. The similarity metric highlights residues whose mutation led to large 
differences in the targeted biophysical property. MPNRs are deep-learning models capable of extracting high-
level features from the data, making them useful for identifying key residues or properties that lead to the 
observed biophysical response12. The three selected models have diverse learning strategies and make different 
assumptions about the data, which is important when ensembling. When the predictions from each model are 
ensembled, the cross-validation predictive accuracy matches or improves the sole contributor’s performance 
(Supp. Fig 2C).  

While structural insights guided the engineering of previously published GCaMPs, we developed the 
ensemble pipeline to be structure agnostic. This design consideration was crucial, as we aim to engineer 
subsequent GEFIs using this pipeline without relying on molecular structures. Due to the exclusion of structure 
information, extrapolation outside of the observed sequence space may be difficult. This tool is best suited for 
data generalization and exploration within a sequence space with only minor variations from the training dataset, 
such as point mutations at tested residues. However, one could incorporate spatial information from crystal 
structures or structure prediction tools in the ensemble's learning to aid extrapolation in the future. 

The machine learning ensemble used in this study has demonstrated an impressive capacity to guide 
fluorescent biosensor engineering. The ensemble's predictions helped identify variants with high dynamic ranges 
and fast decay kinetics while highlighting clusters of impactful residues for each biophysical property, which may 
be further exploited by mutation library-based high-throughput screening. These findings illustrate the 
ensemble's ability to guide engineering efforts and improve experimental efficiency. Moreover, since our model's 
learning is based solely on the sequence-function relationship and all contributor model optimization is unbiased, 
the final ensemble platform can be broadly applied to any genotype-to-phenotype mutation library. Applying this 
ML platform to mutation studies of proteins with quantifiable output characteristics, including other protein 
sensors, has the potential to accelerate the engineering of these proteins. 
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Plasmids for eGCaMP+ and eGCaMP2+ can be obtained directly from Addgene for mammalian 
expression or subcloning encoded in pCAG backbones (#201147, #201148) and virus production for cre 
dependent expression encoded in pAAV-ef1a-DIO backbones (#201149, #201150). 

 

Methods 
Data Preprocessing 

The Chen and Dana studies provide a functional characterization of >1000 GCaMP variants that span the 
GCaMP6 and jGCaMP7 iterations4,5. The experimental conditions from each study were standardized across 
experiments, allowing a direct comparison of the GCaMP mutation’s properties36. Each study normalized the 
results to base constructs for data such as the fluorescent response (∆F/F0, Eq.1) to stimuli of 1 AP, 3 AP, 10 
AP, 160 AP, and decay half-time after 10 AP. To cross-compare mutation libraries, we re-normalized the Chen 
et al. 2013 dataset such that GCaMP6s was 1.0 for all metrics. The authors linked the functional ability of each 
variant to a primary key identifier and the identities of the mutations within each variant. The list of mutations 
was relative to either GCaMP3 or GCaMP6s for Chen et al. 2013 and Dana et al. 2019, respectively. To generate 
a dataset compatible with ML algorithms, we replaced the list of mutations with a Pandas DataFrame containing 
one column per residue. The resultant data structure comprised 453 columns: one column containing the primary 
key identifiers present in the parent datasets, 451 columns corresponding to the sequence of GCaMP, and the 
final column containing each variant’s empirically derived performance. The mutations that occurred in each 
variant were reflected in their respective sequence positions within the DataFrame. Any duplicated variants that 
were present were isolated, and their responses were averaged before compiling them back into the variant 
library. This duplicate data consideration ensures that each variant only occurs once in the final variant library 
and ameliorates instances of data leakage between train and test data. 

  ∆𝐹/𝐹0  =  
(𝐹 −𝐹0) 

𝐹0
∗ 100                                          (Eq.1) 

The resultant dataset is the basis for our dependent and independent variables used to train our ML 
algorithms. Within the variant library used for model training, the independent variable consists of the sequence 
of each mutation. The dependent variable is the fluorescent response (1AP ∆F/F0) or kinetics capability (𝜏1/2).  
However, because the sequence is a series of string-type values, the complexities of the identities of each amino 
cannot be understood by the algorithms. The sequences need to be encoded with quantitative values. Dataset 
encoding can be performed in several capacities: label encoding, one-hot encoding, or by adding functional 
information. Within our label encoding, we randomly assigned an integer value to each amino acid and replaced 
each residue label in the GCaMP sequence with the dummy label. For one-hot encoding, the full extent of 
possible residues at each position is considered in a boolean manner (20 amino acids x 450 residue positions). 
The start codon, methionine, is considered a one in column 1-M, where every other 1-x contains a zero. Finally, 
to perform encoding with functional data, we developed a dictionary of amino acid properties by web scraping 
the AAINDEX database32,37. AAINDEX consists of matrices that each describe a different AA property (e.g., Size 
(Dawson, 1972), Polarity (Grantham, 1974), Hydrophobicity (Jones, 1975)). We used the 554 complete property 
datasets to formulate an unbiased model training paradigm in two steps. The AAINDEX contains 566 datasets 
of published work’s float type values for various amino acid properties, though only 554 contain a value for all 
20 amino acids. These 554 datasets became the amino acid property dictionary we used to encode our variant 
library. The final variant library used in model training consisted of the fully encoded GCaMP sequence and the 
variants empirically derived performance capability.  

 
Generation of the novel variant library: 

To generate a library of unknown sequences, we performed a single-point saturation of the jGCaMP7s 
sequence at 75 residue locations. These 75 residues correspond to the 75 residues that contain mutagenesis 
information in the variant library. The outcome was a novel point-saturation-mutation library that contained 1500 
sequences. To ensure each variant was a previously untested sequence, we removed variants that had 
sequences redundant to any that occurred in the variant library, including any redundancies with jGCaMP7s, 
such that the final point-saturation-mutation library contained 1423 variants. Specifically, 75 variants were 
redundant with the base jGCaMP7s sequence, and two variants (jGCaMP7s L317A and jGCaMP7s H78K) were 
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redundant with previously characterized variants. The fluorescence and kinetics ensembles generated 
predictions of the functional capabilities of the 1423 novel variants in the novel library with jGCaMP7s included 
as a control. These final predictions serve as the basis for mutations considered for in vitro testing.  

 
Ensemble Training 

The learning capabilities of any model are limited when tasked to predict outcomes where the factors 
underlying response have innumerable contributing factors. Under this assumption, we trained and optimized 
three regressors that would each contribute to the mutation predictions we tested in vitro. Our ultimate goal was 
to ensemble these weak learners and focus our downstream efforts on mutually agreed upon mutations. The 
models that we developed were from the pip installable package Scikit Learn in Python 3.8.5 to develop a 
Random Forest Regressor (RFR), K-Neighbors Regressor (KNR), and a Multi-layer Perceptron Network 
Regressor (MPNR) (Supp. Table 7). The models were trained on the encoded sequence of each variant linked 
to their empirically derived performance capability. The performance capabilities correspond to their fluorescent 
response to one AP or half decay time after 10 AP. The data was split into train/test sets at a ratio of 80:20 with 
a random seed of 42 for downstream optimization efforts. Due to the inherent complexity of the 451-residue 
feature space of the GCaMP sequence, we performed the ‘Sel ectKBest’ feature selection function found in Scikit 
Learn to rank the importance of each input feature before model training. This feature selection was critical to 
reduce the dimensionality of the data and, ultimately, decreasing the required runtime.  Optimization of the model 
was done by grid-search hyperparameter tuning. We used the coefficient of determination (R2) and mean 
squared error (MSE) to track the fitting of each model. Additionally, we optimized each model using the key 
considerations that govern model performance, such as the number of neighbors in KNR and the number of 
estimators in RFR. Conditions that lead to the highest R2 of the test set were compared between each AA 
property dataset used for encoding to individually optimize and associate predictive capabilities with the 
underlying amino acid property. This process was repeated over each of the 554 datasets for the three models 
(~1662x). Each model's top five performing property datasets were advanced to generate predictions on the 
novel variant library. Each contributor model (5 AA property x 3 Regressor models) forms predictions 
independently, and the final predictions are the average response from each contributor model for each target 
attribute (fluorescent response 1AP ∆F/F0 or kinetics capability 𝜏1/2). The predicted values returned by the 
ensembles are numeric values originating from a normalized library, making the predictions unitless. For 
example, smaller numeric values in the fluorescence library would correspond to a predicted decreased 
fluorescent response, and smaller numeric values in the kinetics library would correspond to a predicted faster 
decay speed (see Figure 2). 

 
PCA Clustering 

Each feature within the data was first scaled using Sklearn’s StandardScaler. We passed the scaled data 
into Sklearn’s PCA function with no defined number of components. We chose the optimum number of 
components by finding where the explained variance of the PCA of the data passed 0.8. We reinitialized the 
PCA with the determined number of principal components and fit the function with the standardized data. We 
then used the principal component space coordinates to find the ideal number of clusters for K-Means clustering. 
We determined the ideal number of clusters by using the ‘elbow method’ on the Within Cluster Sum of Square.  
After finding the clusters, we labeled each input to their K-means-defined cluster. 

 
Molecular Cloning 

Predicted mutations were reflected into the CMV-jGCaMP7s backbone (Addgene ID: 104463) using point-
mutation primers ordered from Integrated DNA Technologies (IDT) and PCR amplification with either Q5-
polymerase (catalog: M0492L) or Superfi-II polymerase (catalog: 12368010). Amplification of the DNA fragment 
was verified with agarose gel electrophoresis. Blunt-end DNA circularization was achieved with Kinase, Ligase, 
and DpnI enzyme (KLD) treatment (New England Biolabs: E0554S). Circularized DNA was transformed into 
competent E.Coli cells (DH5ɑ or TOP10) and grown on agar plates that contain either ampicillin or kanamycin 
selection antibiotic (50 µg/mL). Upon colony formation, single colonies were picked and grown in 5mL cultures 
containing LB Broth (Fisher BioReagents; BP9723-2) and selection antibiotic (ampicillin/kanamycin; 50 µg/mL) 
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overnight (37°C, 230 RPM). DNA was isolated using Machery Nagel DNA prep kits (Machery Nagel; 
740490.250). Sanger sequencing (Genewiz; Seattle, WA) of the isolated plasmid DNA was used to confirm the 
presence of the intended mutation.  

 Genes encoding the GCaMP variants were cloned into a CAG-driven backbone, pCAG-Archon1-KGC-
EGFP-ER2-WPRE (Addgene; #108423), using Gibson assembly (New England Biolabs; E2621L). All 
subsequences were verified with Sanger sequencing (Genewiz; Seattle, Wa).  

 
Acetylcholine Assays 

HEK293 cells were cultured in Dulbecco’s Modified Eagle Medium + GlutaMAX (Gibco; 10569-010) 
supplemented with 10% fetal bovine serum (Biowest; S1620). When cultures reached 85% confluency, the 
cultures were seeded at 100,000 cells/well or 50,000 cells per well in 24-well and 48-well plates, respectively. 
24 hours after cell seeding, the cells were transfected using Lipofectamine3000 (Invitrogen; L3000015) at 1000 
ng of DNA per well of a 24-well plate, according to the manufacturer’s instructions. 

 48 hours post-transfection, the plates were prepared for imaging by washing and then replacing culturing 
media volume with imaging solution (Tyrode’s pH = 7.33; 125mM NaCl, 2mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 
mM Dextrose, 25 mM HEPES (triple supplemented with 1% Glutamax (Gibco; 35050-1), 1% Sodium Pyruvate 
(GIBCO; 11360-070), and 1% MEM Non-Essential Amino Acids (Gibco; 11140-050)). Crystalline power 
Acetylcholine Chloride (Alfa Aesar; L02168.14) was resuspended into imaging solution (Tyrode's pH = 7.33; 
125mM NaCl, 2mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM Dextrose, 25 mM HEPES) into 2x the desired final 
concentration. During imaging, 1:1 volumes of the acetylcholine-tyrodes imaging solution were hand-pipetted 
into the bath volume to bring the final acetylcholine concentration to the desired concentration. Imaging was 
performed on a sCMOS camera (Photometrics Prime95B) on an epifluorescent microscope (Leica DMI8) using 
a 20X objective (Leica HCX PL FLUOTAR L 20x/0.40 NA CORR). A Lumencor Light Engine LED and Semrock 
Filters (Excitation: FF01-474-27; Emission: FF01-620/35) were used for fluorescence imaging.  

 
Analysis of Fluorescent Assays 

Analysis of Human Embryonic Kidney (HEK293; ATCC Ref: CRL-1573) cell fluorescence imaging data was 
done by FluorAREA, a custom cloud-based semi-automated time series fluorescence data analysis platform 
written in Python. First, the cell segmentation quality of the selected Cellpose38 model was manually verified. For 
the segmentation of cells expressing cytosolic fluorescent indicators, model 'cyto' was selected as our base 
model. If the selected Cellpose model was low-performing, we further trained the Cellpose model using the 
Cellpose 2.0 human-in-the-loop system39. Using an "optimized" segmentation model, fluorescence time-series 
data is extracted for each region of interest. This allows for unbiased extraction of change in cellular fluorescence 
information for a complete set of experimental samples. Using the raw fluorescence data, % fluorescence change 
from the baseline (∆F/F0) over time was calculated using Eq.1. The signal-to-noise ratio (SNR) was calculated 
using Eq.2. 

     𝑆𝑁𝑅 =  
(𝐹𝑚𝑎𝑥−𝐹0)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐹0)
                                    (Eq.2) 

The exponential decay constant (𝝀) was calculated using Eq.3, where F(t) is the change in fluorescence at 
a time (t) after the max fluorescence (F0) was achieved. Importantly, F0 was normalized to 1.0, such that F(t) 
depicts the change in fluorescence over time, t.  

𝐹(𝑡)  =  𝐹0𝑒−𝜆𝑡                                                       (Eq.3) 

The exponential time constant (𝛕) was isolated by using the known reciprocal relationship of 𝝀 and 𝛕 (Eq.4).  

𝜏 =  
1

𝜆
                                                              (Eq.4) 

The dynamic range (DR) was defined as the ratio of the max fluorescent intensity to the baseline fluorescent 
intensity (Eq.5). All ∆F/F0, SNR, 𝛕, and DR values were quantified using a custom python script. 

𝐷𝑅 =  
𝐹𝑚𝑎𝑥

𝐹0
                                                       (Eq.5) 

 
Isolation of Cortical Neurons 
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 Primary cortical neurons were prepared as previously described40,41. Briefly, 24-well tissue culture plates 
were coated with matrigel (mixed 1:20 in cold-PBS, Corning; 356231) solution and incubated at 4°C overnight 
prior to use. Sterile dissection tools were used to isolate cortical brain tissue from P0 rat pups. Tissue was minced 
until 1mm pieces remained, then lysed in equilibrated (37°C, 5% CO2) enzyme (20 U/mL Papain (Worthington 
Biochemical Corp; LK003176) in 5mL of EBSS (Sigma; E3024)) solution for 30 minutes at 37°C, 5% CO2 
humidified incubator. Lysed cells were centrifuged at 200xg for 5 minutes at room temperature, and the 
supernatant was removed before cells were resuspended in 3 mLs of EBSS (Sigma; E3024). Cells were triturated 
24x with a pulled Pasteur pipette in EBSS until homogenous. EBSS was added until the sample volume reached 
10 mLs prior to spinning at 0.7 rcf for 5 minutes at room temperature. Supernatant was removed, and enzymatic 
dissociation was stopped by resuspending cells in 5 mLs EBSS (Sigma; E3024) + final concentration of 10 mM 
HEPES Buffer (Fisher; BP299-100) + trypsin inhibitor soybean (1 mg/ml in EBSS at a final concentration of 0.2%; 
Sigma, T9253) + 60 µl of fetal bovine serum (Biowest; S1620) + 30 µl 100 U/mL DNase1 (Sigma;11284932001). 
Cells were washed 2x by spinning at 0.7 rcf for 5 minutes at room temperature and removing supernatant + 
resuspending in 10 mLs of Neuronal Basal Media (Invitrogen; 10888022) supplemented with B27 (Invitrogen; 
17504044) and glutamine (Invitrogen; 35050061) (NBA++). After final wash spin and supernatant removal, cells 
were resuspended in 10 mLs of NBA++ prior to counting. Just before neurons were plated, matrigel was 
aspirated from the wells. Neurons were plated on the prepared culture plates at desired seeding density. Twenty-
four hours after plating, 1µM AraC (Sigma; C6645) was added to the NBA++ growth media to prevent the growth 
of glial cells.Plates were incubated at 37°C and 5% CO2 and maintained by exchanging half of the media volume 
for each well with fresh, warmed Neuronal Basal Media (Invitrogen; 10888022) supplemented with B27 
(Invitrogen; 17504044) and glutamine (Invitrogen; 35050061) every three days.  

 
Electrical Field Stimulation 

Isolated primary cortical neurons were transfected using the calcium phosphate transfection kit from Sigma 
Aldrich (Sigma-Aldrich; CAPHOS-1KT). Half of the neuron media was changed 24 hours before transfection, 
saving the removed conditioned media to add to the neurons after transfection. Reagents were mixed in a ratio 
of 3 µl CaCl2: 24.5 µl H2O: 1000 ng DNA before being added dropwise to bubbled 2x HEPES Buffered Saline 
(30 µl). The final solution was vortexed for 4 seconds and left undisturbed for 20 minutes. The solution was 
added dropwise to each well of neurons in a 24-well plate and shaken to distribute equally. Neurons were left to 
incubate for 1 hr at 370C with 5% CO2. The cells were rinsed twice with HBSS before adding the conditioned 
media removed from the day prior and mixed with half-fresh media.  

On the day of imaging, ~24-36 hours post-transfection, cells were washed once with imaging solution and 
then transferred to E-Stim Tyrode's (pH = 7.33; 150 mM NaCl, 4 mM KCl, 3 mM CaCl2, 1 mM MgCl2, 10 mM 
Dextrose, 10 mM HEPES)28. A custom wire holding piece was designed to fit into 48-well plates with silver wires 
10 mm apart. 100 mA pulses, with a 3 ms pulse width, were administered at a 10 Hz frequency using a pulse 
generator (Warner Instruments; SIU-102B), triggered with Sutter Instruments Integrated Patch Amplifier with 
Patch Panel, time-locked using Igor Pro 8. Imaging was performed with a digital camera (Hamamatsu ORCA-
Flash4.0; C11440) at 100ms exposure attached to an epifluorescent microscope (Leica DM IL). The light was 
generated using a SOLA Light Engine (Lumencor; SOLA SE 5-LCR-SB) with a 488 nm wavelength filter lens. 
Bulk fluorescence traces were acquired using FIJI imaging software with background subtraction (rolling = 50 
stack) and hand-drawn ROIs. The baseline was defined as the first 50 measurements before the event trigger. 
Max ∆F/F0 and decay values were obtained using a custom Python script. Final traces were plotted in Prism9.  

 
Potassium Chloride Assays 

Isolated primary cortical neurons were transfected using the calcium phosphate transfection kit from Sigma 
Aldrich (Sigma-Aldrich; CAPHOS-1KT). Half of the neuron media was changed 24 hours before transfection, 
saving the removed conditioned media to add to the neurons after transfection. Reagents were mixed in a ratio 
of 3 µl CaCl2: 24.5 µl H2O: 1000 ng DNA before being added dropwise to bubbled 2x HEPES Buffered Saline 
(30 µl). The final solution was vortexed for 4 seconds and left undisturbed for 20 minutes. The solution was 
added dropwise to each well of neurons in a 24-well plate and shaken to distribute equally. Neurons were left to 
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incubate for 1 hr at 370C with 5% CO2. The cells were rinsed twice with HBSS before adding the conditioned 
media removed from the day prior and mixed with half-fresh media.  

On the day of imaging, ~24-36 hours post-transfection, cells were washed once with imaging solution, then 
replaced with imaging solution (Tyrode’s pH = 7.33; 125mM NaCl, 2mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM 
Dextrose, 25 mM HEPES (triple supplemented with 1% Glutamax (Gibco; 35050-1), 1% Sodium Pyruvate 
(Gibco; 11360-070), and 1% MEM Non-Essential Amino Acids (Gibco; 11140-050)). Powdered Potassium 
Chloride (Sigma; P9541-500G) was diluted in ddH2O to a concentration of 2M. This solution was then diluted to 
80mM in imaging solution (Tyrode's pH = 7.33; 125mM NaCl, 2mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM 
Dextrose, 25 mM HEPES). During imaging, 1:1 volumes of KCl solution were hand-pipetted into the bath to bring 
the final KCl concentration to the desired concentration. Imaging was performed on a sCMOS camera 
(Photometrics Prime95B) on an epifluorescent microscope (Leica DMI8) using a 20X objective (Leica HCX PL 
FLUOTAR L 20x/0.40 NA CORR). A Lumencor Light Engine LED, and Semrock Filters (Excitation: FF01-474-
27; Emission: FF01-620/35) were used for fluorescence imaging. Bulk fluorescence traces were acquired using 
FIJI imaging software with background subtraction (rolling = 50 stack) and hand-drawn ROIS. The baseline was 
defined as the first 30 measurements before KCl addition. Max ∆F/F0 values were obtained using a custom 
Python script. Final traces were plotted in Prism9. 
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Figure 1: Description of Variant Library, Computational Approach, and Ensemble Cross-Validation 

A. Description of the biophysical attributes of the GCaMP sensor targeted for engineering. Fluorescence 
(∆F/F0) is the change between the baseline and maximal fluorescence upon calcium sensing. Kinetics 
(𝝉1/2) refers to the decay from maximum ∆F/F0 to half-maximal ∆F/F0.  

B. Scatter plot depicts the 1AP ∆F/F0 by the 𝝉1/2 for each of the 1078 variants in the variant library4,5. Each 

value was normalized to GCaMP6s as 1.0 for 1AP ∆F/F0 and 𝝉1/2. Published variants are indicated with 
colored dots and text labels. 

C. Crystal structure of GCaMP3-D380Y (RCSB: 3SG3, gray) with 75 residues (red) in which mutation 
information exists in the variant library4,5. These 75 residues indicate the positions used to form the novel 
library.  

D. Overview of model training schema. The variant library4,5 was split randomly into an 80% training set and 
a 20% testing set. The data was encoded using the AAINDEX property datasets. The train set underwent 
feature selection before being optimized using a grid search of key hyperparameters for each model. The 
optimized model was used to form predictions on the 20% test set and the novel library. The final 
predictions for both the test set and novel library were cached for downstream analysis. 
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E. Cross-validation of the fluorescence ensemble. The scatter plot x-axis represents the true ∆F/F0 value 
for each variant in the test set, and the y-axis represents the predictions made by the ensemble of the 
variants in the test set. The dotted line depicts perfect agreement between true values and predicted 
values. R2 value denotes the goodness of fit of scatter data with the dotted line. 

F. Cross-validation of the kinetic ensemble. The scatter plot’s x-axis represents the true 𝝉1/2 value contained 
for each variant in the test set and the y-axis represents the predictions made by the ensemble of the 
variants in the test set. The dotted line depicts perfect agreement between true values and predicted 
values. R2 value denotes the goodness of fit of scatter data with the dotted line. 
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Figure 2: Predictions Derived From the Ensembles Led to Mutations of Interest for In Vitro Verification 

A. Brief description of prediction analysis. From each model, the predictions from the top five property 
datasets were combined in the stacked ensemble. The stacked ensemble predictions were formed by 
averaging the predictions from the 15 contributor models for each variant (Predn) in the novel library. The 
raw output is thus the prediction (Predn) for each mutant, with a prediction for jGCaMP7s as a benchmark. 
The volcano plots were formed by subtracting the benchmark jGCaMP7s prediction from the variant 
prediction (x-axis) and P-values were derived by performing an unpaired t-test between the 15 predictions 
for variantn and the 15 predictions for jGCaMP7s (i). The bubble plot indicates the prevalence (or the 
number of occurrences) of each residue that resides in the top 2.5% and bottom 2.5% of predictions (ii).  

B. Volcano plots depicting the ensemble's prediction for a given mutation change in fluorescent response 
from jGCaMP7s (x-axis) and the log10(P-value) of the given prediction. P-values were derived by 
performing an unpaired t-test on ensemble prediction (15 models) for jGCaMP7s and given mutation. 
Kernel density estimation (right) depicts the spread of log10(P-values) obtained. 
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C. Volcano plots depicting the ensemble's prediction for given mutations change kinetic capability from 
jGCaMP7s (x-axis) and the log10(P-value) of the given prediction. P-values were derived using an 
unpaired t-test on ensemble prediction (15 models) for jGCaMP7s and given mutation. Kernel density 
estimation (right) depicts the spread of log10(P-values) obtained. 

D. Bubble plot depicting the number of times each residue (x-axis) appeared in the top 2.5% and bottom 
2.5% of predicted values for each regressor that comprise each ensemble. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536801doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536801
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Gq/IP3 Assay in HEK293 Cells To Validate Ensemble Predictions 

A. Brief description of the methods contained in the figure. Mutation predictions isolated from the ensemble 
are used as the basis for downstream variant analysis. Variants of interest are cloned into the jGCaMP7s 
(Addgene, #104463) backbone. These variants are then transfected into HEK293 cells using 
lipofectamine transfection. Forty-eight hours post-transfection, cells are time-course imaged using an 
epifluorescent microscope. The stimulation protocol contains a period to collect baseline fluorescence, a 
bath addition of 10 µM acetylcholine, and a decay period. Visual representations of the qualifications in 
B./C. are found on the representative response trace.  

B. Max fluorescent responses (Eq.1) that were obtained from each mutant of jGCaMP7s expressed in 
HEK293 cells and stimulated with ten µM acetylcholine. Heat mapping demonstrates the ensemble’s 
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prediction of the given mutation’s performance in vitro. Mutations are sorted in order of the ensemble's 
predicted performance. (n = number of cells quantified; bars depict mean + bootstrapped 95% ci42) 

C. Decay values (𝝉, tau, Eq.4) obtained from each mutant of jGCaMP7s expressed in HEK293 cells and 
stimulated with ten µM acetylcholine. Heat mapping demonstrates the ensemble’s prediction of the given 
mutation’s performance in vitro. Mutations are sorted in order of the ensemble’s predicted performance. 
(n = number of cells quantified; bars depict mean + bootstrapped 95% ci42).  

D. Signal-to-noise ratio (SNR, Eq.2) of each mutant of jGCaMP7s expressed in HEK293 cells and stimulated 
with ten µM acetylcholine. (n = number of cells quantified; bars depict mean + bootstrapped 95% ci42). 

E. Performance score, consisting of the SNR/𝝉 (Eq.2/Eq.4), obtained from each mutant of jGCaMP7s 
expressed in HEK293 cells and stimulated with ten µM acetylcholine. Heat mapping highlights the 
highest-scoring mutants or those with high ∆F/F0 (%) responses and fast decay speeds. (n = the number 
of cells quantified; bars depict mean + 95% bootstrapped ci42).  
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Figure 4: Mutation Transfer and Combinatorial Mutation For The Identification of eGCaMP+ and 
eGCaMP2+ 

A. Max fluorescent responses (Eq.1) obtained from each variant indicated on the x-axis, expressed in 
HEK293 cells and stimulated with ten µM acetylcholine. Wild Type (WT) indicates the parent construct 
of either jGCaMP7s (7s) or jGCaMP8f (8f). Mutation (Mut) indicates the parental construct with the 
addition of L317H in jGCaMP7s and A289H in jGCaMP8f. Each parental/variant pair is normalized to the 
base construct mean = 1.0 (n = the number of cells quantified; bars depict mean + bootstrapped 95% 
ci42; **** = <0.0001 (unpaired t-test)). jGCaMP8f A289H is called eGCaMP+ in Figure 4G. and 4H.  

B. Decay values (𝝉, tau, Eq.4) obtained from each variant indicated on the x-axis, expressed in HEK293 
cells and stimulated with ten µM acetylcholine. Wild Type (WT) indicates the parent construct of either 
jGCaMP7s (7s) or jGCaMP8f (8f). Mutation (Mut) indicates the parental construct with the addition of 
L317H in jGCaMP7s and A289H in jGCaMP8f. Each parental/variant pair is normalized to the base 
construct mean = 1.0 (n = the number of cells quantified; bars depict mean + bootstrapped 95% ci42; **** 
= <0.0001 (unpaired t-test)). jGCaMP8f A289H is called eGCaMP+ in Figure 4G. and 4H. Crystal structure 
of GCaMP3-D380Y (RCSB: 3SG3, gray) with Q305 and linker residues P303 and L302 colored in dark 
blue with sidechains visible. CaM and cpGFP labels are included to orient linker locations.  

C. Crystal structure of GCaMP3-D380Y (RCSB: 3SG3, gray) with A390 and G392 colored dark blue with 
sidechains visible. Bound Ca2+ (green spheres) in the EF-Hand motifs and the CBP (orange) are included.  
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D. Max fluorescent responses (Eq.1) obtained from each combinatorial variant of jGCaMP7s expressed in 
HEK293 cells and stimulated with ten µM acetylcholine. Mutations are sorted in order of ∆F/F0 
performance and identified on the x-axis of D. (n = the number of cells quantified; bars depict mean + 
bootstrapped 95% ci42; **** = <0.0001 (unpaired t-test)). 

E. Performance score, consisting of the SNR/𝝉 (Eq.2/Eq.4), obtained from each combinatorial variant of 
jGCaMP7s expressed in HEK293 cells and stimulated with 10 µM acetylcholine. Mutations are sorted in 
order of ∆F/F0 performance. (n = number of cells quantified; bars depict mean + bootstrapped 95% ci42) 
jGCaMP7s L317H Q305D is called eGCaMP2+ in Figure 4G. and 4H.  

F. Fluorescent responses (∆F/F0, Eq. 1) of indicated variant, expressed in HEK293 cells and stimulated with 
different acetylcholine concentrations (x-axis). Plotted points indicate the mean ∆F/F0 response for each 
variant to indicated stimuli, and error bars display the SEM. The solid line depicts the non-linear fit of 
scatter data. Additional information on plotted points is included in Supplementary Table 3. 

G. Kinetic decay (𝝉, tau, Eq.4) of indicated variant, expressed in HEK293 cells and stimulated with 5 µM 
acetylcholine. Plotted points indicate the mean tau for each variant to the indicated stimuli, and error bars 
display the SEM. Additional information on plotted points is included in Supplementary Table 3. 
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Figure 5: eGCaMP, eGCaMP+, and eGCaMP2+ Fluorescence and Kinetics Characteristics in Primary 
Neurons 

A. ∆F/F0 (%) recordings of each variant to 1 AP stimuli applied at 1 Hz over 3 seconds (lines depict mean, 
shading depicts SEM). The applied stimulus is shown in gray. Graph inset displays max ∆F/F0 (%) of 
each variant to first applied AP (mean + SEM, above-bar annotations = mean).  

B. ∆F/F0 (%) recordings of each variant to 10 AP stimuli applied at 10 Hz over 1 second (lines depict mean, 
shading depicts SEM). The applied stimulus is shown in gray. Graph inset displays max ∆F/F0 (%) of 
each variant to 10 AP stimulus (mean + SEM, above-bar annotations = mean).  

C. ∆F/F0 (%) recordings of each variant to 80 AP stimuli applied at 10 Hz over 8 seconds (lines depict mean, 
shading depicts SEM). The applied stimulus is shown in gray. Graph inset displays max ∆F/F0 (%) of 
each variant to 80 AP stimulus (mean + SEM, above-bar annotations = mean).  

D. Half decay time values after 10 AP stimuli, scatter depicts neurons quantified. (bars depict mean + SEM; 
* = 0.045 (Unpaired t-test, Two-tailed)).  

E. Maximum ∆F/F0 (%) achieved after stimulation with 40 mM KCl. (bars depict mean + SEM; **** = < 0.0001 
(Unpaired t-test, Two-tailed)). 
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F. Representative images of maximal fluorescent response to 40 mM KCl stimulation variant indicated 
above image. Heat Mapping displays ∆F/F0 (%) achieved by each pixel. (Scale bar = 50 µm).  
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