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Abstract 21 

Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular 22 

mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an 23 

R2R3-MYB transcription factor (TF), significantly increases the salt and drought tolerance of 24 

transgenic apple and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which 25 

encodes a type 2C protein phosphatase that acts as a negative regulator in ABA response, thereby 26 

enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that 27 

MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances 28 

the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we 29 

discovered that MdPP2CA can interfere with the physical association between MdMYB44-like 30 

and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the 31 

MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, 32 

and MdPP2CA form a regulatory loop that tightly controls ABA signaling homeostasis under salt 33 

and drought stress. Our data revealed a previously unidentified mechanism by which 34 

MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apple through 35 

the MdPYL8-MdPP2CA module. 36 

Keywords: apple, MdMYB44-like, abscisic acid, salt tolerance, drought tolerance, MdPYL8, 37 

MdPP2CA 38 

Introduction 39 

Salt and drought stresses are two major constraints affecting plant growth, development, and 40 

geographic distribution (Ma et al., 2017; Zhao et al., 2019; Chen et al., 2022). Apple (Malus 41 

× domestica) is an important economical fruit crop, and its fruit is a healthy food source. However, 42 

salt and drought stress limit its global cultivation and promotion (Chen et al., 2019). Indeed, the 43 

harsh conditions of salt and drought stress frequently cause reduced or even zero apple yields. 44 

Therefore, studying the response mechanisms of apple to salt and drought stress is critical for the 45 

genetic improvement of salt and drought tolerance. 46 

Plant stress tolerance is mediated by a number of classical phytohormones, including 47 
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salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), and ethylene (ETH) (Fujita et al., 48 

2006; Skubacz et al., 2016; An et al., 2018). ABA is the most well-known signaling molecule that 49 

mediates plant responses to salt and drought stress (Skubacz et al., 2016; Xue et al., 2022). For 50 

example, salt and drought stress trigger endogenous ABA production (Xiong and Zhu, 2002; 51 

Barrero et al., 2005; Guóth et al., 2009), and plant salt and drought resistance can be improved by 52 

exogenous ABA treatment (Khadri et al., 2006; Etehadnia et al., 2008; Wei et al., 2015). Moreover, 53 

ABA-deficient and -insensitive mutants show wilted phenotypes even under well-watered 54 

conditions (Barrero et al., 2005).  55 

Three main components of the ABA signaling module in higher plants have been 56 

preliminarily determined over the past three decades (Fujii et al., 2009; Shi et al., 2022). 57 

Pyrabactin resistance 1/PYR-like proteins/regulatory components of ABA receptors 58 

(PYR1/PYLs/RCARs) function as ABA-binding receptors, type 2C protein phosphatases (PP2Cs) 59 

as negative regulators, and SNF1-related protein kinases 2 (SnRK2s) as positive regulators. The 60 

activities of SnRK2s are inhibited when PP2Cs interact with and dephosphorylate them in the 61 

absence of ABA. In the presence of ABA, PYR1/PYLs/RCARs bind to ABA and interact with 62 

PP2Cs, releasing and activating SnRK2s. Activated SnRK2s then phosphorylate and activate 63 

downstream targets (Guo et al., 2011; Zhao et al., 2013). Although our understanding of ABA 64 

signaling has been greatly enhanced by these discoveries, to fully comprehend the ABA signaling 65 

network, additional signaling pathways must be identified due to the extremely complex 66 

transmission and transduction of ABA signaling. 67 

Transcription factors (TFs) play a crucial role in how plants react to ABA and shifting 68 

environmental conditions (Shinozaki et al., 2003; Sah et al., 2016). A genetic network for stress 69 

adaptation comprises various types of TFs, such as MYC, WRKY, NAC, bZIP, and MYB, which 70 

affect downstream gene expression levels either dependently or independently (Kang et al., 2002; 71 

Abe et al., 2003; Tran et al., 2004; Chen et al., 2012; Rushton et al., 2012; Yang et al., 2012; Chen 72 

et al., 2019; Chen et al., 2021). 73 

MYB TFs are categorized into 4 groups based on the amount and type of MYB domain 74 

repeats: 1R-, R2R3-, 3R-, and 4R-MYB (Zhang et al., 2012; Li et al., 2015). According to 75 

previous reports, many R2R3-type MYB TFs participate in ABA signaling-mediated plant 76 
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responses to salt/drought stress. In Arabidopsis, MYB20 improves salt resistance by directly 77 

suppressing the expression of PP2Cs (AtABI1 and AtPP2CA) (Cui et al., 2013). In wheat, 78 

TaMYB70 targets the TaPYL1-1BIn-442 allele, which has an MBS motif in its promoter, increasing 79 

the expression of TaPYL1-1B in genotypes that are tolerant to drought (Mao et al., 2022). 80 

TaMYB73 improves salt tolerance by binding to the promoter of AtABF3, which encodes an 81 

ABA-responsive element-binding factor (He et al., 2012). 82 

Despite much progress in knowledge of the roles of MYB TFs in ABA signaling and stress 83 

responses, much remains to be elucidated. The differentially expressed gene MdMYB44-like was 84 

identified in our laboratory by salt stress transcriptome sequencing (unpublished). In the present 85 

study, we investigated its function by the stable transformation in apple and heterologous 86 

transformation in Arabidopsis. We found that overexpression of MdMYB44-like enhances 87 

transgenic apple and Arabidopsis salt and drought resistance. Further experiments showed that 88 

MdMYB44-like interacts with MdPYL8, an ABA receptor, forming a protein complex that 89 

inhibits MdPP2CA transcription. In addition, we found evidence of competitive interaction 90 

between MdMYB44-like and MdPP2CA for binding to MdPYL8. When ABA is present, 91 

MdPP2CA interferes with the transcriptional inhibition of the MdPP2CA promoter by the 92 

MdMYB44-like-MdPYL8 protein complex, which plays a feedback regulatory role in ABA 93 

signaling. Collectively, our findings reveal that MdMYB44-like precisely mediates the salt and 94 

drought stress responses through ABA signaling. 95 

Results 96 

ABA treatment enhances the salt and drought tolerance of apple plantlets 97 

To explore the function of ABA in salt and drought stress responses in apple, rooted apple 98 

plantlets treated with or without ABA were transferred to 200 mM NaCl or natural dehydration for 99 

14 d. After salt and drought treatments, the control plants’ growth was greatly affected, with the 100 

leaves being yellowish brown and severely curled (Fig. 1A). However, the apple plantlets treated 101 

with ABA showed better growth than the control plantlets (Fig. 1A). Compared with the control 102 

plantlets, the ABA-treated apple plantlets contained more chlorophyll (Fig. 1B) and showed 103 
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higher activities of SOD, POD, and CAT (Fig. 1C-E) after salt and drought stress. These results 104 

demonstrate that ABA plays a positive role in the salt and drought resistance of apple. 105 

To investigate whether MdMYB44-like responds to salt and drought stress, we used qRT-PCR 106 

to detect changes in MdMYB44-like expression levels after salt and drought stress treatments. 107 

Expression of MdMYB44-like was notably upregulated under these stress treatments (Fig. 1F), and 108 

ABA further increased its expression under salt and drought treatments (Fig. 1F). These data 109 

suggest that MdMYB44-like plays a role in ABA signaling-mediated salt and drought resistance. 110 

Structural analysis and subcellular localization of MdMYB44-like 111 

We isolated and cloned MdMYB44-like from GL-3 apple and investigated the phylogenetic 112 

relationship between MdMYB44-like and 125 MYB family members of Arabidopsis thaliana (Fig. 113 

S1). MdMYB44-like is strongly homologous to AtMYB73, AtMYB70, AtMYB44, and AtMYB77, 114 

all of which belong to the R2R3-MYB family’s S22 subfamily (Stracke et al., 2001). In 115 

Arabidopsis, members of the S22 subfamily are associated with stress responses (Shim et al., 2013; 116 

Li et al., 2015). 117 

Alignment of MdMYB44-like with homologous proteins from other species indicated that 118 

MdMYB44-like has a conserved structure (Fig. 2A). For example, MdMYB44-like contains 119 

conserved R2 and R3 domains at its N-terminus and an R/B-like bHLH binding motif in the R3 120 

domain (Gao et al., 2011); a transcriptional repressor domain, LxLxL (Hiratsu et al., 2003), is 121 

present at the C-terminus (Fig. 2A). 122 

To examine the localization pattern of MdMYB44-like, the recombinant plasmid 123 

35S::MdMYB44-like-GFP was transiently expressed in onion epidermal cells, with 35S::GFP as 124 

the control. Our findings indicate a nuclear localization of MdMYB44-like (Fig. 2B), suggesting a 125 

transcriptional regulatory function for this protein. 126 

Overexpression of MdMYB44-like in plants enhances salt and drought tolerance 127 

To explore the biological functions of MdMYB44-like in salt and drought stress responses, three 128 

stable MdMYB44-like-overexpressing (MdMYB44-like-OE) transgenic apple lines 129 

(MdMYB44-like-OE#1, #2, and #5) were obtained by Agrobacterium-mediated transformation. 130 
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MdMYB44-like-OE apple lines were confirmed at DNA and RNA levels by RT-PCR (Fig. S2A) 131 

and qRT-PCR (Fig. S2B), respectively. There was no discernible difference between 132 

MdMYB44-like-OE and wild-type (WT) plantlets under normal conditions. However, after salt 133 

(NaCl-simulated) and drought (mannitol-simulated) stress treatments, the MdMYB44-like-OE 134 

lines displayed higher tolerance to these stresses than the WT. Greener leaves were found in 135 

MdMYB44-like-OE lines, while yellowish brown and severely curled leaves were found in WT 136 

(Fig. 3A). Histochemical staining with 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium 137 

(NBT) revealed that the MdMYB44-like-OE plants accumulated fewer ROS than the WT plants 138 

(Fig. 3B), and the MdMYB44-like-OE lines had higher chlorophyll contents under salt and 139 

drought stresses (Fig. 3C). As mentioned above, ABA treatment greatly increased the expression 140 

level of MdMYB44-like (Fig. 1F). To further explore MdMYB44-like transcriptional regulation, 141 

the expression levels of ABA signaling-related genes in WT and MdMYB44-like-OE plantlets 142 

under salt and drought treatments were examined. As shown by qRT-PCR, overexpression of 143 

MdMYB44-like did not affect the expression of the ABA synthesis gene MdNCED1 or the 144 

ABA-responsive factor MdABF3, but it did drastically suppress the expression of PP2C-encoding 145 

genes MdABI1 and MdPP2CA (Fig. 3D). 146 

Additionally, three independent transgenic Arabidopsis lines (MdMYB44-like-L2, L5, and 147 

L6) ectopically expressing MdMYB44-like were generated using the floral dip method (Fig. S2C, 148 

D). Consistent with the findings in apple, overexpressing MdMYB44-like in Arabidopsis 149 

significantly improved salt and drought tolerance (Fig. 3E-G). AtABI1 and AtPP2CA expression 150 

levels were also reduced in MdMYB44-like-overexpressing Arabidopsis lines (Fig. 3H). 151 

Collectively, our data indicate that MdMYB44-like may positively regulate salt and drought 152 

tolerance in apple and Arabidopsis via the ABA signaling-mediated pathway. 153 

MdMYB44-like binds to the MdPP2CA promotor 154 

As the expression of ABI1 and PP2CA was repressed in MdMYB44-like-overexpressing plant 155 

materials (Fig. 3D, H), we speculated that MdMYB44-like might directly regulate their expression. 156 

MYB TFs modulate gene expression mainly via MYB-binding sites (MBSs) (Chang et al., 2013; 157 

Zhang et al., 2020). Therefore, we searched for MBS elements in the promoters of MdABI1 and 158 
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MdPP2CA. We found that both MdABI1 (Fig. S3) and MdPP2CA (Fig. S4) had MBS elements in 159 

their promoter regions. However, yeast one-hybrid (Y1H) assays revealed that MdMYB44-like 160 

was able to bind directly to the MdPP2CA promoter (Fig. 4A) but not to the MdABI1 promoter 161 

(Fig. S5). To test whether MdMYB44-like bind to the MBS motif of the MdPP2CA promoter, we 162 

designed probes for electrophoretic mobility shift assays (EMSAs) based on this motif (Fig. 4B). 163 

According to the EMSA data, MdMYB44-like could bind to the MBS motif of the MdPP2CA 164 

promoter, and this binding intensity gradually decreased when competitive probes were added (Fig. 165 

4C). Subsequently, we performed an in vivo dual-luciferase reporter assay to investigate how 166 

MdMYB44-like affects MdPP2CA promoter activity. We constructed the proMdPP2CA::LUC 167 

reporter and the effector plasmid 35S::MdMYB44-like for this assay (Fig. 4D). According to the 168 

results, the luminescence intensity of proMdPP2CA::LUC was reduced by the addition of 169 

35S::MdMYB44-like (Fig. 4E, F). These observations show that MdMYB44-like binds directly to 170 

the MdPP2CA promoter and inhibits its activity. 171 

Overexpression of MdPP2CA in plants decreases salt and drought tolerance 172 

SMART (http://smart.embl-heidelberg.de/) analysis of MdPP2CA revealed that it has a conserved 173 

domain similar to other PP2Cs (Fig. S6A). In subcellular localization assays, MdPP2CA was 174 

mostly found in the nucleus of onion epidermal cells, although a small fraction was also found in 175 

the cytoplasm (Fig. S6B). 176 

To confirm that MdPP2CA regulates the salt and drought stress in apple, we generated three 177 

stable MdPP2CA-overexpressing apple lines (MdPP2CA-OE#3, #7, and #11) via 178 

Agrobacterium-mediated transformation. The overexpressing plants exhibited amplified target 179 

gene bands (Fig. S2E) and increased expression levels (Fig. S2F) of MdPP2CA, indicating 180 

successful MdPP2CA overexpression. There was no discernible phenotypic difference between the 181 

WT and MdPP2CA-OE apple lines under normal growth conditions. However, after being 182 

subjected to salt and drought stress, the MdPP2CA-OE lines showed lower resistance than the WT 183 

(Fig. 5A). Specifically, under salt and drought stress, MdPP2CA-OE apple lines had higher ROS 184 

levels (Fig. 5B) and lower chlorophyll content (Fig. 5C) than WT plants. Moreover, transcriptional 185 

analysis of the salt/drought stress-responsive marker genes revealed that MdRD22, MdRD29A, 186 
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MdAREB1A, and MdRAB18 were significantly downregulated in MdPP2CA-overexpressing apple 187 

plantlets (Fig. 5D). 188 

Additionally, we generated MdPP2CA transgenic Arabidopsis lines (MdPP2CA-L2, L4, and 189 

L7) (Fig. S2G, H). When Col-0 and transgenic lines in pot culture were treated with salt and 190 

natural drought, overexpression of MdPP2CA in Arabidopsis significantly decreased salt and 191 

drought tolerance (Fig. 5E-G). Furthermore, transcriptional analysis of AtRD22, AtRD29A, 192 

AtAREB1A, and AtRAB18 revealed that their expression was also downregulated in the 193 

MdPP2CA-overexpressing Arabidopsis lines (Fig. 5H). 194 

Together, our results show that MdPP2CA negatively regulates the salt and drought tolerance 195 

of apples and Arabidopsis. 196 

MdMYB44-like interacts with MdPYL8 and synergistically enhances the transcriptional 197 

repression of the target gene MdPP2CA by MdMYB44-like  198 

In Arabidopsis, the S22 subfamily of R2R3-MYB TFs appears to typically interact with PYL8 and 199 

PYL9 (Jaradat et al., 2013; Li et al., 2014; Zhao et al., 2014). To further understand how 200 

MdMYB44-like participates in ABA signaling, yeast two-hybrid (Y2H) assays were performed to 201 

test their interactions. Interestingly, we found that MdPYL8, but not MdPYL9, physically interacts 202 

with MdMYB44-like in yeast cells (Fig. 6A, S7), and our Y2H experiments showed that the 203 

interaction between MdMYB44-like and MdPYL8 was not apparently regulated by ABA (Fig. S7). 204 

Pull-down assays were next carried out to identify the MdMYB44-like-MdPYL8 interactions. 205 

MdPYL8-GST was pulled down by MdMYB44-like-HIS (Fig. 6B), suggesting that 206 

MdMYB44-like can interact with MdPYL8 in vitro. Furthermore, in luciferase complementation 207 

imaging (LCI) assays, coexpression of MdMYB44-like-cLUC and MdPYL8-nLUC in N. 208 

benthamiana leaves led to a strong fluorescence signal compared to the negative controls (Fig. 209 

6C), indicating that MdMYB44-like could physically interact with the ABA receptor MdPYL8 in 210 

vivo. 211 

To determine whether MdPYL8 might affect the binding of MdMYB44-like to the 212 

MdPP2CA promoter, EMSA assays were conducted using MdPYL8-HIS and 213 

MdMYB44-like-HIS fusion proteins. The results showed that the binding of MdMYB44-like to 214 
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the MdPP2CA promoter was significantly intensified with the gradual addition of the MdPYL8 215 

protein (Fig. 6D). In addition, dual-luciferase reporter assays revealed that coexpression of 216 

MdMYB44-like and MdPYL8 significantly reduced the activity of the MdPP2CA promoter 217 

compared to the expression of MdMYB44-like alone (Fig. 6E-G). These observations suggest that 218 

MdPYL8 can interact with MdMYB44-like and synergistically enhance the transcriptional 219 

repression of the target gene MdPP2CA by MdMYB44-like. 220 

MdPP2CA interferes with the interaction between MdMYB44-like and MdPYL8 in the 221 

presence of ABA 222 

In earlier research, MdPP2CA and the apple ABA receptor MdPYL9 were shown to interact in 223 

apple (Yang et al., 2022). We therefore hypothesized that MdPP2CA might also physically 224 

interact with MdPYL8. We tested this hypothesis using Y2H, pull-down, and LCI assays and 225 

found that MdPP2CA does interact with MdPYL8 when ABA is present (Fig. S8). 226 

The discovery that both MdMYB44-like and MdPP2CA interact with MdPYL8 in the 227 

presence of ABA (Fig. S7, 8) prompted us to explore whether MdPP2CA affects the interaction 228 

between MdMYB44-like and MdPP2CA in the presence of ABA. We performed in vitro 229 

competitive binding assays to test this idea. The results indicated that the binding strength of 230 

MdMYB44-like-HIS and MdPYL8-GST was unaffected by the addition of either ABA or 231 

MdPP2CA-MBP alone. However, their binding strength significantly decreased with the 232 

simultaneous addition of ABA and MdPP2CA (Fig. 7A). In LCI assays, the fluorescence signal 233 

intensities in MdMYB44-like-cLUC/MdPYL8-nLUC/MdPP2CA-coexpressing samples under the 234 

addition of ABA (Fig. 7B, C, coinfiltration 4) were dramatically decreased by more than 50% 235 

compared to those in MdMYB44-like-cLUC/MdPYL8-nLUC-coexpressing samples (Fig. 7B, C, 236 

coinfiltration 1). Nevertheless, neither ABA (Fig. 7B, C, coinfiltration 2) nor MdPP2CA (Fig. 7B, 237 

C, coinfiltration 3) alone had an obvious effect on the fluorescence intensity of samples in which 238 

MdMYB44-like-cLUC and MdPYL8-nLUC were coexpressed. According to these data, we 239 

propose that MdPP2CA attenuates the interaction between MdMYB44-like and MdPYL8 in the 240 

presence of ABA. 241 

Furthermore, we discovered that the transcriptional inhibition effect of the 242 
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MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter was significantly weakened under 243 

the simultaneous addition of MdPP2CA and ABA (Fig. 7D). These observations suggest that 244 

MdPP2CA might interfere with the interaction between MdMYB44-like and MdPYL8, ultimately 245 

reducing the transcriptional inhibitory function of the MdMYB44-like-MdPYL8 complex toward 246 

the downstream gene MdPP2CA. 247 

Discussion 248 

Salt and drought stress are two important environmental factors influencing fruit production and 249 

agricultural crop growth (Nutan et al., 2019; Ma et al., 2021; Meng et al., 2023), and the 250 

phytohormone ABA is involved in their regulation. Under salt/drought stress, ABA can generate 251 

plant-adaptive responses by inducing stress-response genes expression, limit water loss by 252 

controlling stomatal aperture, and reduce ROS damage by enhancing antioxidant enzyme activities 253 

(Skubacz et al., 2016; Zhu, 2016). This study found that exogenous ABA significantly improved 254 

apple plantlet resistance to salt and drought stress (Fig. 1A-E), implying that ABA contributes to 255 

stress resistance in apple. 256 

Many factors are involved in the ABA signaling pathway, and their precise functions are 257 

controlled by transcription levels (Mao et al., 2022). For instance, many PYL genes’ expression 258 

levels can be induced by exogenous ABA, and some MYB TFs can bind to their promoters to 259 

regulate ABA signaling (Mao et al., 2022; Yang et al., 2022). Although PP2Cs are also important 260 

components of the ABA signaling module, their regulation at the transcriptional level remains 261 

unclear. We discovered that apple MdMYB44-like binds directly to the MBS element in the 262 

MdPP2CA promoter, thereby negatively regulating MdPP2CA expression (Fig. 4). Furthermore, 263 

the ABA receptor MdPYL8 physically interacts with MdMYB44-like to enhance MdMYB44-like 264 

binding to the MdPP2CA promoter (Fig. 6). Collectively, these results indicate that PP2C 265 

expression is also tightly regulated at the transcriptional level. 266 

Group A PP2Cs normally serve as negative regulatory factors of plant ABA response 267 

(Schweighofer et al., 2004; Kim et al., 2013; Sah et al., 2016; Miao et al., 2020). For example, the 268 

Arabidopsis loss-of-function mutants abi1, abi2, pp2ca, and hab1 show greater sensitivity to ABA 269 

and increased resistance to abiotic stresses including salt and drought (Merlot et al., 2001; Saez et 270 
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al., 2004; Zhang et al., 2013). In our study, we demonstrated that MdPP2CA could interact with 271 

the ABA receptor MdPYL8 (Fig. S8) and the SNF1-related protein kinases MdSnRK2.3/2.6 (Fig. 272 

S9), suggesting that MdPP2CA is a crucial part of the apple ABA core signaling pathway. 273 

Functional verification revealed that apple and Arabidopsis plants overexpressing MdPP2CA were 274 

less resistant to salt and drought stress than controls (Fig. 5), while apple and Arabidopsis plants 275 

overexpressing MdMYB44-like showed the opposite effects (Fig. 3), which is consistent with the 276 

findings that MdMYB44-like inhibits MdPP2CA expression (Fig. 4). To date, many MYB TFs, 277 

such as MYB5, MYB96, MYB63, MYB46, MYB91, MYB15, and MYB2, have been found to be 278 

involved in ABA and/or abiotic stress responses (Ding et al., 2009; Seo et al., 2009; Yang et al., 279 

2012; Guo et al., 2013; Zhu et al., 2015; Chen et al., 2019; Yu et al., 2020; Chen et al., 2021). 280 

Notably, in this study, we found that MdPYL8, but not MdPYL9, interacted with 281 

MdMYB44-like (Fig. 6A, S7). These findings suggest that although PYR1/PYLs/RCARs all act 282 

as ABA receptors, they have distinct functions in plants. Furthermore, we observed that neither in 283 

vitro nor in vivo interactions between MdMYB44-like and MdPYL8 require exogenous ABA 284 

supplementation (Fig. 6A-C). Indeed, their interaction was unaffected by ABA treatment in Y2H 285 

assays (Fig. S7). Additionally, ABA did not significantly alter the MdMYB44-like-MdPYL8 286 

complex’s inhibitory effect on MdPP2CA (Fig. 7D). Observations like these are not surprising, as 287 

PYL8/9 interact with PIF to enhance PIF's ability to bind to the ABI5 promoter, independent of 288 

ABA (Qi et al., 2020). However, it is notable that, unlike MdMYB44-like and MdPYL8, the 289 

combination of MdPYL8 with MdPP2CA is ABA dependent (Fig. S8). A possible explanation for 290 

this is the ABA dependence of the PYL-mediated inhibition of PP2Cs (Miyazono et al., 2009; 291 

Klingler et al., 2010). In fact, the stress response process involves both ABA-independent and 292 

ABA-dependent regulatory pathways (Ding et al., 2011; Sun et al., 2016). 293 

Given that MdPP2CA and MdMYB44-like both interact with MdPYL8 when ABA is present 294 

(Fig. S7, 8), we sought to determine whether MdPP2CA influences the interaction between 295 

MdMYB44-like and MdPYL8 and, if so, how MdPP2CA affects the transcription factor function 296 

of the MdMYB44-like-MdPYL8 complex. Previous research has shown that two different proteins 297 

may interact in a competitive manner when they interact with the same protein. For example, in 298 

Arabidopsis, DELLA-JAZ interactions affect the binding of MYC2 to JAZs, which in turn 299 
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modulates JA signaling (Hou et al., 2010). In our study, competitive binding, LCI, and 300 

dual-luciferase reporter assays demonstrated that MdPP2CA interferes with the interaction 301 

between MdMYB44-like and MdPYL8, ultimately reducing the transcriptional inhibition function 302 

of the MdMYB44-like-MdPYL8 complex toward the downstream gene MdPP2CA (Fig. 7). We 303 

speculate that this may be a type of PP2C-mediated negative feedback regulation in plants to 304 

maintain ABA signaling homeostasis (Merlot et al., 2001). Under stress conditions, negative 305 

feedback regulation allows plants to finely control ABA concentrations and ABA signaling (Wang 306 

et al., 2018; Jung et al., 2020). However, whether MdMYB44-like influences the effect of 307 

MdPYL8 on MdPP2CA phosphatase activities when ABA is present remains to be further 308 

investigated. 309 

Here, a hypothetical model of MdMYB44-like mechanism of action in ABA signaling is 310 

proposed (Fig. 8). Specifically, MdMYB44-like positively regulates ABA signaling by inhibiting 311 

MdPP2CA expression. Under salt and drought stress, ABA promotes MdMYB44-like gene 312 

expression. MdPYL8 interacts with MdMYB44-like to form a protein complex that further 313 

strengthens the transcriptional inhibition of MdMYB44-like on the MdPP2CA promoter. 314 

Interestingly, MdPP2CA interferes with the interaction between MdMYB44-like and MdPYL8 in 315 

the presence of ABA, thereby reducing the transcriptional inhibition of MdPP2CA by the 316 

MdMYB44-like-MdPYL8 complex and thus balancing ABA signaling in plants. In conclusion, 317 

MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop to tightly control ABA 318 

signaling homeostasis when apple plants are under salt and drought stress. These findings shed 319 

light on how MYB TFs control ABA signaling in response to salt and drought stress. 320 

Materials and methods 321 

Plant materials and growth conditions 322 

The apple tissue culture plantlets GL-3 selected from Malus × domestica cv. Royal Gala plantlets 323 

with high transformation efficiency (Dai et al., 2013) and their rooted apple plantlets were used in 324 

this research. The culture medium formula and culture conditions of apple tissue culture plantlets 325 

were strictly conducted as described previously (Chen et al., 2020). Rooted apple plantlets were 326 
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grown on soil substrate in an incubator under a 16 h light/8 h dark photoperiod at 24°C. 327 

The culture conditions of Arabidopsis (Col-0) and tobacco (N. benthamiana) were as follows: 328 

16 h light/8 h dark, 22°C. 329 

Overexpression of MdMYB44-like and MdPP2CA in apple and Arabidopsis 330 

The MdMYB44-like and MdPP2CA CDSs were inserted into the pRI101-AN vectors, respectively. 331 

For apple transformation, the leaf disk method mediated by Agrobacterium tumefaciens was 332 

used (Dai et al., 2013). Young apple leaves were cut with a sterile blade and incubated with A. 333 

tumefaciens strain EHA105 carrying recombinant vectors for 8 min. Infected apple leaves were 334 

cultured in the dark for about 20 d until callus developed from the cut in the leaves, after which 335 

they were transferred to light culture. Transformed buds were obtained after screening with 25 336 

mg/L kanamycin. For A. thaliana transformation, the floral dip method was carried out when 337 

white buds were visible but not fully opened (Clough and Bent, 1998). After two days of dark 338 

culture, the infected Arabidopsis was transferred to light for normal culture. The transgenic 339 

materials were examined at both the DNA and RNA levels. Supplemental Table S1 lists all 340 

primers used for gene cloning and identification of transgenic materials. 341 

Stress treatments 342 

For the stress treatment of apple tissue culture plantlets, 25-day-old GL-3 and 343 

MdMYB44/MdPP2CA-overexpressing apple tissue culture plantlets were transferred to the solid 344 

subculture medium containing 200 mM NaCl or 300 mM mannitol to simulate salt and drought 345 

stress (Chen et al., 2019). For the stress treatment of rooted apple plantlets, 30-day-old rooted 346 

GL-3 apple plantlets were sprayed with or without 10 µM ABA for 7 d and then treated with 200 347 

mM NaCl or natural dehydration for 14 d. For the stress treatment of Arabidopsis, 40-day-old 348 

Col-0 and MdMYB44/MdPP2CA-overexpressing Arabidopsis plantlets were used for salt and 349 

drought treatments by 200 mM NaCl and natural dehydration, respectively. 350 

RNA extraction and qRT-PCR 351 

The RNA extraction was performed as previously described (Chang et al., 2007). qRT-PCR 352 
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experiments were conducted on an ABI 7500 real-time PCR instrument (Applied Biosystems, 353 

Foster City, CA, USA) using UltraSYBR Green Mixture reagent (ComWin Biotech, Beijing, 354 

China). The technique was repeated 3 times for each sample. Primers designed for PCR were used 355 

using Beacon Designer 7.9. Supplemental Table S1 lists the primers used. 356 

DAB/NBT staining and measurements of chlorophyll content and SOD, POD, and CAT 357 

activities 358 

The chlorophyll content was determined as previously described (An et al., 2022). The SOD, POD, 359 

and CAT enzyme activities measurements and DAB (H2O2 detection)/NBT (O2
- detection) staining 360 

were performed with commercially available kits (Solarbio, BC0170, BC0200, BC0090, and 361 

PR1100; ComWin Biotech, CW0125S). 362 

Y2H assay 363 

The MdMYB44-like and MdPP2CA CDSs were inserted into the pGBKT7 vector 364 

(MdMYB44-like-BD and MdPP2CA-BD). The MdPYL8, MdPYL9, MdSnRK2.2, MdSnRK2.3, 365 

MdSnRK2.4, and MdSnRK2.6 CDSs were inserted into the pGADT7 vector (MdPYL8-AD, 366 

MdPYL9-AD, MdSnRK2.2-AD, MdSnRK2.3-AD, MdSnRK2.4-AD, and MdSnRK2.6-AD). 367 

Yeast strain Y2H Gold cotransformed with the recombinant plasmids were grown in a 28 ℃ 368 

incubator for about 2.5 d on the SD/-T/-L medium or SD/-T/-L/-H/-A medium. To determine 369 

whether ABA affected their interactions, 10 μM ABA was added to the specified medium. 370 

Pull-down assay 371 

The MdMYB44-like and MdPP2CA CDSs were cloned into the pET32a vector which carries a HIS 372 

tag (MdMYB44-like-HIS and MdPP2CA-HIS). The MdPYL8 CDS was cloned into the 373 

pGEX4T-1 vector which carries a GST tag (MdPYL8-GST). The vector constructed above was 374 

transformed into E.coli and induced by IPTG (TransGen Biotech, Beijing, China). Proteins were 375 

purified using commercially available kits (CWbio, Beijing, China). Anti-GST or anti-HIS 376 

antibodies (TransGen Biotech, Beijing, China) were used to detect the eluted samples. 377 
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LCI assay  378 

The MdMYB44-like and MdPP2CA CDSs were inserted into pCAMBIA1300-cLUC vector 379 

(MdMYB44-like-cLUC and MdPP2CA-cLUC). The MdPYL8, MdSnRK2.2, MdSnRK2.3, 380 

MdSnRK2.4, and MdSnRK2.6 CDSs were inserted into pCAMBIA1300-nLUC vector 381 

(MdPYL8-nLUC, MdSnRK2.2-nLUC, MdSnRK2.3-nLUC, MdSnRK2.4-nLUC, and 382 

MdSnRK2.6-nLUC). As previously described, the above recombinant plasmids were introduced 383 

into A. tumefaciens GV3101 cells (Chen et al., 2008). The infiltrated tobacco leaves were 384 

photographed after 72 h of retaining in the dark. The living fluorescence imager (Tanon-5200, 385 

Shanghai, China) was used to detect luciferase activity. 386 

Y1H assay 387 

The MdMYB44-like CDS was inserted into the pGADT7 vector (MdMYB44-like-AD), and the 388 

promoter fragments of MdPP2CA and MdABI1 were inserted into the pHIS2 vector 389 

(MdPP2CA-pHIS2 and MdABI1-pHIS2). To determine their interactions, the recombinant pHIS2 390 

and MdMYB44-like-AD plasmids were co-transformed into the yeast strains Y187 using a 391 

PEG/LiAC method and coated on the SD/-T/-H/-L medium (containing optimal 3-AT dosage). 392 

The transformed yeast was cultured in a 28 ℃ incubator for about 2.5 d. 393 

EMSA  394 

The CDS of MdMYB44-like and MdPYL8 were inserted into the pET32a vector 395 

(MdMYB44-like-HIS and MdPYL8-HIS). The His-tagged fusion protein was induced by IPTG 396 

(TransGen Biotech, Beijing, China) in E.coli. The EMSA was carried out using a LightShift 397 

Chemiluminescent EMSA Kit (Beyotime, Shanghai, China). Supplemental Table S1 lists the 398 

primers and biotin-labeled promoter sequences used. 399 

Dual-luciferase reporter assay 400 

The plasmids of the 35S::MdMYB44-like and 35S::MdPYL8 were constructed as effectors. The 401 

MdPP2CA promoter (containing the MBS site) was inserted into the pGreenII0800-LUC vector to 402 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.04.13.536754doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536754
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

construct the plasmids of the proMdPP2CA::LUC as a reporter (Lei et al., 2020). With the helper 403 

plasmid pSoup, the above recombinant plasmids and the empty vectors were introduced into A. 404 

tumefaciens GV3101 cells and infiltrated into N. benthamiana leaves (4-week-old). After 72 h of 405 

retaining in the dark, the living fluorescence imager (Tanon-5200, Shanghai, China) was used to 406 

observe luciferase signaling. A luciferase detection kit (Beyotime, Shanghai, China) was used to 407 

detect LUC/REN activity. For each sample, three biological repeats were measured. 408 

Competitive binding assays 409 

We conducted competitive binding experiments using a GST-tagged Protein Purification kit 410 

(TransGen Biotech, Beijing, China) as previously described (An et al., 2022). The mixture of 411 

MdMYB44-like-HIS and MdPP2CA-MBP was added to immobilized MdPYL8-GST. 10 μM 412 

ABA was added or not added into the protein pull-down incubation buffer. The purified samples 413 

were detected using GST, HIS, and MBP antibodies (TransGen Biotech, Beijing, China). 414 

Statistical Analysis 415 

We carried out all experiments in triplicate. Values are means of 3 replicates ± SDs. Tukey's test 416 

was used for statistical significance analysis with DPS software (*P < 0.05, **P< 0.01). 417 

 418 

Accession numbers 419 

The sequence data in this article are available in the GDR (https://www.rosaceae.org/), NCBI 420 

(https://www.ncbi.nlm.nih.gov/), and TAIR (https://www.arabidopsis.org/) databases: 421 

MdMYB44-like (NM_001328721.1, MD15G1288600), MdPYL8 (XM_008382402.3, 422 

MD01G1216100), MdPYL9 (XM_008352390.3, MD07G1147700), MdPP2CA 423 

(XM_008373834.3, MD01G1139200), MdABI1 (MD15G1212000), MdABI2 (MD02G1084600), 424 

MdABF3 (MD05G1082000), MdNCED1 (XM_008384748.3), MdRD29A (XM_008345499.3), 425 

MdAREB1A (XM_029094247.1), MdRD29B (XM_008378353.3), MdRD22 (XM_017333810.2), 426 

MdSnRK2.2 (KJ563283), MdSnRK2.3 (KJ563284), MdSnRK2.4 (JX569851), MdSnRK2.6 427 

(KJ563286), AtNCED1 (AT3G63520), AtABI1 (AT4g26080), AtABI2 (AT5g57050), AtPP2CA 428 

(AT3G11410), AtABF3 (AT4G34000), AtRD22 (AT5G25610), AtRD29A (AT5G52310), 429 
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AtAREB1A (AT1G45249), AtRD29B (AT5G52300), and AtRAB18 (AT1G43890). 430 

 431 

Funding information 432 

This research was supported by the National Natural Science Foundation of China (Grant No. 433 

31972380). 434 

 435 

Acknowledgments 436 

We thank Prof. Che Wang (College of Bioscience and Biotechnology, Shenyang Agricultural 437 

University) and Prof. Yue Ma (College of Horticulture, Shenyang Agricultural University) for 438 

their helpful comments on the article. 439 

 440 

Conflict of interest 441 

The authors declare no conflict of interest. 442 

 443 

Figure legends 444 

Fig. 1 Effects of exogenous ABA treatment on the salt and drought tolerance of apple plantlets. 445 

(A) Phenotypes of GL-3 apple plantlets treated with or without ABA under salt and drought stress. 446 

ABA, apple plantlets with 10 μM ABA treatment; Control, apple plantlets without ABA treatment. 447 

(B) Determination of chlorophyll content in the apple plantlets presented in (A). (C-E) SOD, POD, 448 

and CAT activities of the apple plantlets shown in (A). (F) Relative expression level of 449 

MdMYB44-like in the apple plantlets under salt and drought stress shown in (A). The value of the 450 

control at 0 d in each group (Salt treatment and Drought treatment) was set to 1. Values are means 451 

of 3 replicates ± SDs. Tukey's test was used for statistical significance analysis with DPS software 452 

(*P < 0.05, **P< 0.01). 453 

Fig. 2 Sequence alignment and subcellular localization of MdMYB44-like. 454 

(A) Alignment of multiple sequences for MdMYB44-like and its homologs in different plants. 455 

AsMYB44: Aegilops tauschii subsp. Tauschii, XP_020146152.1; AtMYB44: Arabidopsis thaliana, 456 

AT5G67300; AtMYB73: Arabidopsis thaliana, AT4G37260; BdMYB44: Brachypodium 457 

distachyon, XP_003575562; MdMYB44-like: Malus × domestica, LOC103453725; 458 
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PaMYB44-like: Prunus avium, XM_021974049; PbMYB44-like: Pyrus × bretschneideri, 459 

XM_009374172; PdMYB44-like: Phoenix dactylifera, XM_008801354; RaMYB44-like: 460 

Rhodamnia argentea, XM_030682060; SbMYB44: Sorghum bicolor, XP_002462029; TaMYB70: 461 

Triticum aestivum, MK024291.1; ZmMYB44: Zea mays, PWZ15207.1. (B) Subcellular 462 

localization of MdMYB44-like in onion epidermal cells. Bar, 20 μm. 463 

Fig. 3 Overexpression of MdMYB44-like enhances the salt and drought resistance in apple and 464 

Arabidopsis. 465 

(A) Wild-type (WT) and three MdMYB44-like-overexpressing apple lines (MdMYB44-like-OE#1, 466 

#2, and #5) were cultured under simulated salt and drought stress. 25-day-old apple tissue culture 467 

plantlets were cultivated for 10 days under 200 mM NaCl or 300 mM mannitol. (B) DAB and 468 

NBT staining of apple leaves from plantlets shown in (A). (C) Chlorophyll content of the apple 469 

plantlets shown in (A). (D) Expression levels of ABA signaling-related genes (MdNCED1, 470 

MdABI1, MdABI2, MdPP2CA, and MdABF3) in WT and MdMYB44-like-OE apple plantlets 471 

under salt and drought stress. (E) Phenotypes of 40-day-old transgenic Arabidopsis thaliana plants 472 

after salt and drought treatments. Col-0, wild-type; MdMYB44-like-L2, L5, and L6, 473 

MdMYB44-like-overexpressing Arabidopsis plants. (F) DAB and NBT staining of Arabidopsis 474 

leaves from plants shown in (E). (G) Chlorophyll content of the Arabidopsis plants shown in (E). 475 

(H) Expression analysis of ABA signaling-related genes (AtNCED1, AtABI1, AtABI2, AtPP2CA, 476 

and AtABF3) in Col-0 and MdMYB44-like transgenic Arabidopsis plants under salt and drought 477 

stress. Values are means of 3 replicates ± SDs. Tukey's test was used for statistical significance 478 

analysis with DPS software (*P < 0.05, **P< 0.01). 479 

Fig. 4 MdMYB44-like binds to the MdPP2CA promoter to inhibit transcription. 480 

(A) Y1H assays. The blue plaque indicates the interaction between MdMYB44-like and the 481 

MdPP2CA promoter. (B) Schematic diagram of the MdPP2CA promoter probe used in EMSAs. 482 

MBS indicates a potential MdMYB44-like binding site. (C) EMSA demonstrating the binding of 483 

MdMYB44-like to the MdPP2CA promoter. The mutant probe had two nucleotide changes. 484 

Increasing amounts of competitor and mutant probes were added (100- and 200-fold probe 485 

concentrations). (D) Constructs used in the dual-luciferase reporter assay. Effectors, 486 

35S::MdMYB44-like; Reporter, proMdPP2CA::LUC. (E, F) The effect of MdMYB44-like on 487 
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MdPP2CA promoter activity in tobacco leaves was determined by a dual-luciferase reporter assay. 488 

The LUC/REN ratio of the empty vector +proMdPP2CA::LUC samples was set to 1. Values are 489 

means of 3 replicates ± SDs. Statistical significance is indicated by different lowercase letters 490 

(P<0.05). 491 

Fig. 5 Overexpression of MdPP2CA reduces the salt and drought resistance in apple and 492 

Arabidopsis. 493 

(A) WT and three MdPP2CA-overexpressing apple lines (MdPP2CA-OE#3, #7, and #11) were 494 

cultured under simulated salt and drought stress. 25-day-old apple tissue culture plantlets were 495 

cultivated for 8 days under 200 mM NaCl or 300 mM mannitol. (B) DAB and NBT staining of 496 

apple leaves from plantlets shown in (A). (C) Chlorophyll content of the apple plantlets shown in 497 

(A). (D) Relative expression levels of salt/drought stress-responsive marker genes (MdRD22, 498 

MdRD29A, MdRD29B, MdAREB1A, and MdRAB18) in WT and MdPP2CA-OE apple plantlets 499 

under salt and drought treatments. (E) Phenotypes of 40-day-old transgenic Arabidopsis plants 500 

under salt and drought treatments. Col-0, wild-type; MdPP2CA-L2, L4, and L7, 501 

MdPP2CA-overexpressing Arabidopsis plants. (F) DAB and NBT staining of Arabidopsis leaves 502 

from plants shown in (E). (G) Chlorophyll content of the Arabidopsis plants presented in (E). (H) 503 

Expression analysis of salt/drought stress-responsive marker genes (AtRD22, AtRD29A, AtRD29B, 504 

AtAREB1A, and AtRAB18) in Col-0 and MdPP2CA transgenic Arabidopsis plants under salt and 505 

drought treatments. Values are means of 3 replicates ± SDs. Tukey's test was used for statistical 506 

significance analysis with DPS software (*P < 0.05, **P< 0.01). 507 

Fig. 6 MdMYB44-like interacts with MdPYL8 and synergistically enhances the repression of 508 

MdMYB44-like toward the target gene MdPP2CA. 509 

(A) Y2H assays. The blue line indicates the interactions between MdMYB44-like and MdPYL8. 510 

(B) Pull-down assays demonstrating the in vitro interaction of the MdMYB44-like and MdPYL8 511 

proteins. Purified MdMYB44-like-HIS and MdPYL8-GST proteins were used in this research. (C) 512 

MdMYB44-like interacts with MdPYL8 in LCI assays. (D) EMSA results show that MdPYL8 513 

increases the binding of MdMYB44-like to the MdPP2CA promoter. The gradient indicates the 514 

increasing amounts of MdPYL8-HIS. (E) Constructs used in the dual-luciferase reporter assay. 515 

Effectors, 35S::MdMYB44-like and 35S::MdPYL8; Reporter, proMdPP2CA::LUC. (F, G) 516 
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Dual-luciferase reporter assay revealing the effect of MdMYB44-like on the expression of 517 

MdPP2CA in the presence of MdPYL8. The LUC/REN ratio of the 518 

35S::MdMYB44-like+proMdPP2CA::LUC samples was used as the reference and set to 1. Values 519 

are means of 3 replicates ± SDs. Statistical significance is indicated by different lowercase letters 520 

(P<0.05). 521 

Fig. 7 MdPP2CA interferes with the physical association of MdMYB44-like and MdPYL8 in the 522 

presence of ABA. 523 

(A) Competitive binding of MdMYB44-like and MdPP2CA with MdPYL8 in the presence of 524 

ABA. A mixture of MdPP2CA-MBP and MdMYB44-like-HIS was added to immobilized 525 

MdPYL8-GST. The gradient shows the increasing concentrations of MdPP2CA-MBP. The 526 

symbols ‘+’ and ‘−’ denote the presence and absence of the indicated protein or 10 μM ABA, 527 

respectively. (B) LCI assay demonstrating that the association between MdMYB44-like and 528 

MdPYL8 is significantly compromised by coexpression of MdPP2CA in the presence of ABA. 529 

+ABA indicates that 10 μM ABA was added to N. benthamiana (4-week-old) leaves 10 h before 530 

fluorescence detection. (C) Quantification of the relative fluorescence intensity presented in (B). 531 

The value for combination 1 was set to 1. (D) Dual-luciferase reporter assays reveal that the 532 

transcriptional inhibition effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA 533 

promoter is weakened with the simultaneous addition of MdPP2CA and ABA. +ABA indicates 534 

that 10 μM ABA was added to tobacco leaves 10 h before fluorescence detection. The LUC/REN 535 

ratio of combination A was set to 1. Values are means of 3 replicates ± SDs. Statistical 536 

significance is indicated by different lowercase letters (P<0.05). 537 

Fig. 8 Proposed model whereby MdMYB44-like modulates ABA signaling-regulated salt and 538 

drought tolerance in apple through the MdPYL8-MdPP2CA module. 539 

Under salt and drought stress, MdMYB44-like positively regulates ABA signaling by directly 540 

binding to the MBS motif in the MdPP2CA promoter and inhibiting its expression. ABA promotes 541 

MdMYB44-like gene expression, and MdMYB44-like interacts with the ABA receptor MdPYL8 in 542 

an ABA-independent manner. MdPYL8 enhances the binding of MdMYB44-like to the MdPP2CA 543 

promoter and positively regulates MdMYB44-like-mediated MdPP2CA inactivation. In addition, 544 

MdPP2CA acts as a negative feedback regulator by interfering with the interaction between 545 
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MdMYB44-like and MdPYL8 in the presence of ABA, reducing the transcriptional inhibition of 546 

MdPP2CA by the MdMYB44-like-MdPYL8 complex and balancing ABA signaling in plants. In 547 

summary, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly controls 548 

ABA signaling homeostasis when apple plants are exposed to salt and drought stress. 549 
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