

1 **MdMYB44-like positively regulates salt and drought tolerance via the MdPYL8-MdPP2CA**
2 **module in apple**

3 Cui Chen, Zhen Zhang, Ying-Ying Lei, Wen-Jun Chen, Zhi-Hong Zhang, Xiao-Ming Li and
4 Hong-Yan Dai^{*}

5

6 College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang,
7 Liaoning 110866, China

8 * Correspondence: Hong-Yan Dai, E-mail: daihy@syau.edu.cn (H.-Y.D.); Tel: +86-24-88487143;
9 Fax: +86-24-88487143

10

11 **Short title:** MdMYB44-like improves salt and drought tolerance

12

13 **Author contributions**

14 H.-Y.D. and C.C. designed the research. C.C., Z.Z. and Y.-Y.L. performed the experiments. C.C.,
15 Z.Z., W.-J.C. and X.-M.L. analyzed the data. C.C., Z.-H.Z. and H.-Y.D. wrote and modified the
16 manuscript.

17

18 The author responsible for distribution of materials integral to the findings presented in this article
19 in accordance with the policy described in the Instructions for Authors
20 (<https://academic.oup.com/plphys/pages/General-Instructions>) is Hong-Yan Dai.

21 Abstract

22 Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular
23 mechanism remains unclear. Here, we demonstrated that the overexpression of *MdMYB44-like*, an
24 R2R3-MYB transcription factor (TF), significantly increases the salt and drought tolerance of
25 transgenic apple and Arabidopsis. *MdMYB44-like* inhibits the transcription of *MdPP2CA*, which
26 encodes a type 2C protein phosphatase that acts as a negative regulator in ABA response, thereby
27 enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that
28 *MdMYB44-like* and *MdPYL8*, an ABA receptor, form a protein complex that further enhances
29 the transcriptional inhibition of the *MdPP2CA* promoter by *MdMYB44-like*. Significantly, we
30 discovered that *MdPP2CA* can interfere with the physical association between *MdMYB44-like*
31 and *MdPYL8* in the presence of ABA, partially blocking the inhibitory effect of the
32 *MdMYB44-like*-*MdPYL8* complex on the *MdPP2CA* promoter. Thus, *MdMYB44-like*, *MdPYL8*,
33 and *MdPP2CA* form a regulatory loop that tightly controls ABA signaling homeostasis under salt
34 and drought stress. Our data revealed a previously unidentified mechanism by which
35 *MdMYB44-like* precisely modulates ABA-mediated salt and drought tolerance in apple through
36 the *MdPYL8*-*MdPP2CA* module.

37 **Keywords:** apple, *MdMYB44-like*, abscisic acid, salt tolerance, drought tolerance, *MdPYL8*,
38 *MdPP2CA*

39 Introduction

40 Salt and drought stresses are two major constraints affecting plant growth, development, and
41 geographic distribution (Ma et al., 2017; Zhao et al., 2019; Chen et al., 2022). Apple (*Malus*
42 *× domestica*) is an important economical fruit crop, and its fruit is a healthy food source. However,
43 salt and drought stress limit its global cultivation and promotion (Chen et al., 2019). Indeed, the
44 harsh conditions of salt and drought stress frequently cause reduced or even zero apple yields.
45 Therefore, studying the response mechanisms of apple to salt and drought stress is critical for the
46 genetic improvement of salt and drought tolerance.

47 Plant stress tolerance is mediated by a number of classical phytohormones, including

48 salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), and ethylene (ETH) (Fujita et al.,
49 2006; Skubacz et al., 2016; An et al., 2018). ABA is the most well-known signaling molecule that
50 mediates plant responses to salt and drought stress (Skubacz et al., 2016; Xue et al., 2022). For
51 example, salt and drought stress trigger endogenous ABA production (Xiong and Zhu, 2002;
52 Barrero et al., 2005; Guóth et al., 2009), and plant salt and drought resistance can be improved by
53 exogenous ABA treatment (Khadri et al., 2006; Etehadnia et al., 2008; Wei et al., 2015). Moreover,
54 ABA-deficient and -insensitive mutants show wilted phenotypes even under well-watered
55 conditions (Barrero et al., 2005).

56 Three main components of the ABA signaling module in higher plants have been
57 preliminarily determined over the past three decades (Fujii et al., 2009; Shi et al., 2022).
58 Pyrabactin resistance 1/PYR-like proteins/regulatory components of ABA receptors
59 (PYR1/PYLs/RCARs) function as ABA-binding receptors, type 2C protein phosphatases (PP2Cs)
60 as negative regulators, and SNF1-related protein kinases 2 (SnRK2s) as positive regulators. The
61 activities of SnRK2s are inhibited when PP2Cs interact with and dephosphorylate them in the
62 absence of ABA. In the presence of ABA, PYR1/PYLs/RCARs bind to ABA and interact with
63 PP2Cs, releasing and activating SnRK2s. Activated SnRK2s then phosphorylate and activate
64 downstream targets (Guo et al., 2011; Zhao et al., 2013). Although our understanding of ABA
65 signaling has been greatly enhanced by these discoveries, to fully comprehend the ABA signaling
66 network, additional signaling pathways must be identified due to the extremely complex
67 transmission and transduction of ABA signaling.

68 Transcription factors (TFs) play a crucial role in how plants react to ABA and shifting
69 environmental conditions (Shinozaki et al., 2003; Sah et al., 2016). A genetic network for stress
70 adaptation comprises various types of TFs, such as MYC, WRKY, NAC, bZIP, and MYB, which
71 affect downstream gene expression levels either dependently or independently (Kang et al., 2002;
72 Abe et al., 2003; Tran et al., 2004; Chen et al., 2012; Rushton et al., 2012; Yang et al., 2012; Chen
73 et al., 2019; Chen et al., 2021).

74 MYB TFs are categorized into 4 groups based on the amount and type of MYB domain
75 repeats: 1R-, R2R3-, 3R-, and 4R-MYB (Zhang et al., 2012; Li et al., 2015). According to
76 previous reports, many R2R3-type MYB TFs participate in ABA signaling-mediated plant

77 responses to salt/drought stress. In *Arabidopsis*, *MYB20* improves salt resistance by directly
78 suppressing the expression of PP2Cs (*AtAB11* and *AtPP2CA*) (Cui et al., 2013). In wheat,
79 *TaMYB70* targets the *TaPYL1-1B*^{ln-442} allele, which has an MBS motif in its promoter, increasing
80 the expression of *TaPYL1-1B* in genotypes that are tolerant to drought (Mao et al., 2022).
81 *TaMYB73* improves salt tolerance by binding to the promoter of *AtABF3*, which encodes an
82 ABA-responsive element-binding factor (He et al., 2012).

83 Despite much progress in knowledge of the roles of MYB TFs in ABA signaling and stress
84 responses, much remains to be elucidated. The differentially expressed gene *MdMYB44-like* was
85 identified in our laboratory by salt stress transcriptome sequencing (unpublished). In the present
86 study, we investigated its function by the stable transformation in apple and heterologous
87 transformation in *Arabidopsis*. We found that overexpression of *MdMYB44-like* enhances
88 transgenic apple and *Arabidopsis* salt and drought resistance. Further experiments showed that
89 *MdMYB44-like* interacts with *MdPYL8*, an ABA receptor, forming a protein complex that
90 inhibits *MdPP2CA* transcription. In addition, we found evidence of competitive interaction
91 between *MdMYB44-like* and *MdPP2CA* for binding to *MdPYL8*. When ABA is present,
92 *MdPP2CA* interferes with the transcriptional inhibition of the *MdPP2CA* promoter by the
93 *MdMYB44-like*-*MdPYL8* protein complex, which plays a feedback regulatory role in ABA
94 signaling. Collectively, our findings reveal that *MdMYB44-like* precisely mediates the salt and
95 drought stress responses through ABA signaling.

96 **Results**

97 **ABA treatment enhances the salt and drought tolerance of apple plantlets**

98 To explore the function of ABA in salt and drought stress responses in apple, rooted apple
99 plantlets treated with or without ABA were transferred to 200 mM NaCl or natural dehydration for
100 14 d. After salt and drought treatments, the control plants' growth was greatly affected, with the
101 leaves being yellowish brown and severely curled (Fig. 1A). However, the apple plantlets treated
102 with ABA showed better growth than the control plantlets (Fig. 1A). Compared with the control
103 plantlets, the ABA-treated apple plantlets contained more chlorophyll (Fig. 1B) and showed

104 higher activities of SOD, POD, and CAT (Fig. 1C-E) after salt and drought stress. These results
105 demonstrate that ABA plays a positive role in the salt and drought resistance of apple.

106 To investigate whether *MdMYB44-like* responds to salt and drought stress, we used qRT-PCR
107 to detect changes in *MdMYB44-like* expression levels after salt and drought stress treatments.
108 Expression of *MdMYB44-like* was notably upregulated under these stress treatments (Fig. 1F), and
109 ABA further increased its expression under salt and drought treatments (Fig. 1F). These data
110 suggest that *MdMYB44-like* plays a role in ABA signaling-mediated salt and drought resistance.

111 **Structural analysis and subcellular localization of *MdMYB44-like***

112 We isolated and cloned *MdMYB44-like* from GL-3 apple and investigated the phylogenetic
113 relationship between *MdMYB44-like* and 125 MYB family members of *Arabidopsis thaliana* (Fig.
114 S1). *MdMYB44-like* is strongly homologous to AtMYB73, AtMYB70, AtMYB44, and AtMYB77,
115 all of which belong to the R2R3-MYB family's S22 subfamily (Stracke et al., 2001). In
116 *Arabidopsis*, members of the S22 subfamily are associated with stress responses (Shim et al., 2013;
117 Li et al., 2015).

118 Alignment of *MdMYB44-like* with homologous proteins from other species indicated that
119 *MdMYB44-like* has a conserved structure (Fig. 2A). For example, *MdMYB44-like* contains
120 conserved R2 and R3 domains at its N-terminus and an R/B-like bHLH binding motif in the R3
121 domain (Gao et al., 2011); a transcriptional repressor domain, LxLxL (Hiratsu et al., 2003), is
122 present at the C-terminus (Fig. 2A).

123 To examine the localization pattern of *MdMYB44-like*, the recombinant plasmid
124 35S::*MdMYB44-like*-GFP was transiently expressed in onion epidermal cells, with 35S::GFP as
125 the control. Our findings indicate a nuclear localization of *MdMYB44-like* (Fig. 2B), suggesting a
126 transcriptional regulatory function for this protein.

127 **Overexpression of *MdMYB44-like* in plants enhances salt and drought tolerance**

128 To explore the biological functions of *MdMYB44-like* in salt and drought stress responses, three
129 stable *MdMYB44-like*-overexpressing (*MdMYB44-like*-OE) transgenic apple lines
130 (*MdMYB44-like*-OE#1, #2, and #5) were obtained by *Agrobacterium*-mediated transformation.

131 MdMYB44-like-OE apple lines were confirmed at DNA and RNA levels by RT-PCR (Fig. S2A)
132 and qRT-PCR (Fig. S2B), respectively. There was no discernible difference between
133 MdMYB44-like-OE and wild-type (WT) plantlets under normal conditions. However, after salt
134 (NaCl-simulated) and drought (mannitol-simulated) stress treatments, the MdMYB44-like-OE
135 lines displayed higher tolerance to these stresses than the WT. Greener leaves were found in
136 MdMYB44-like-OE lines, while yellowish brown and severely curled leaves were found in WT
137 (Fig. 3A). Histochemical staining with 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium
138 (NBT) revealed that the MdMYB44-like-OE plants accumulated fewer ROS than the WT plants
139 (Fig. 3B), and the MdMYB44-like-OE lines had higher chlorophyll contents under salt and
140 drought stresses (Fig. 3C). As mentioned above, ABA treatment greatly increased the expression
141 level of *MdMYB44-like* (Fig. 1F). To further explore MdMYB44-like transcriptional regulation,
142 the expression levels of ABA signaling-related genes in WT and MdMYB44-like-OE plantlets
143 under salt and drought treatments were examined. As shown by qRT-PCR, overexpression of
144 *MdMYB44-like* did not affect the expression of the ABA synthesis gene *MdNCED1* or the
145 ABA-responsive factor *MdABF3*, but it did drastically suppress the expression of PP2C-encoding
146 genes *MdABII* and *MdPP2CA* (Fig. 3D).

147 Additionally, three independent transgenic Arabidopsis lines (MdMYB44-like-L2, L5, and
148 L6) ectopically expressing *MdMYB44-like* were generated using the floral dip method (Fig. S2C,
149 D). Consistent with the findings in apple, overexpressing *MdMYB44-like* in Arabidopsis
150 significantly improved salt and drought tolerance (Fig. 3E-G). *AtABII* and *AtPP2CA* expression
151 levels were also reduced in *MdMYB44-like*-overexpressing Arabidopsis lines (Fig. 3H).

152 Collectively, our data indicate that MdMYB44-like may positively regulate salt and drought
153 tolerance in apple and Arabidopsis via the ABA signaling-mediated pathway.

154 **MdMYB44-like binds to the *MdPP2CA* promotor**

155 As the expression of *ABII* and *PP2CA* was repressed in *MdMYB44-like*-overexpressing plant
156 materials (Fig. 3D, H), we speculated that MdMYB44-like might directly regulate their expression.
157 MYB TFs modulate gene expression mainly via MYB-binding sites (MBSs) (Chang et al., 2013;
158 Zhang et al., 2020). Therefore, we searched for MBS elements in the promoters of *MdABII* and

159 *MdPP2CA*. We found that both *MdABII* (Fig. S3) and *MdPP2CA* (Fig. S4) had MBS elements in
160 their promoter regions. However, yeast one-hybrid (Y1H) assays revealed that MdMYB44-like
161 was able to bind directly to the *MdPP2CA* promoter (Fig. 4A) but not to the *MdABII* promoter
162 (Fig. S5). To test whether MdMYB44-like bind to the MBS motif of the *MdPP2CA* promoter, we
163 designed probes for electrophoretic mobility shift assays (EMSA) based on this motif (Fig. 4B).
164 According to the EMSA data, MdMYB44-like could bind to the MBS motif of the *MdPP2CA*
165 promoter, and this binding intensity gradually decreased when competitive probes were added (Fig.
166 4C). Subsequently, we performed an *in vivo* dual-luciferase reporter assay to investigate how
167 MdMYB44-like affects *MdPP2CA* promoter activity. We constructed the *proMdPP2CA::LUC*
168 reporter and the effector plasmid 35S::MdMYB44-like for this assay (Fig. 4D). According to the
169 results, the luminescence intensity of *proMdPP2CA::LUC* was reduced by the addition of
170 35S::MdMYB44-like (Fig. 4E, F). These observations show that MdMYB44-like binds directly to
171 the *MdPP2CA* promoter and inhibits its activity.

172 Overexpression of *MdPP2CA* in plants decreases salt and drought tolerance

173 SMART (<http://smart.embl-heidelberg.de/>) analysis of *MdPP2CA* revealed that it has a conserved
174 domain similar to other PP2Cs (Fig. S6A). In subcellular localization assays, *MdPP2CA* was
175 mostly found in the nucleus of onion epidermal cells, although a small fraction was also found in
176 the cytoplasm (Fig. S6B).

177 To confirm that *MdPP2CA* regulates the salt and drought stress in apple, we generated three
178 stable *MdPP2CA*-overexpressing apple lines (*MdPP2CA-OE#3*, #7, and #11) via
179 *Agrobacterium*-mediated transformation. The overexpressing plants exhibited amplified target
180 gene bands (Fig. S2E) and increased expression levels (Fig. S2F) of *MdPP2CA*, indicating
181 successful *MdPP2CA* overexpression. There was no discernible phenotypic difference between the
182 WT and *MdPP2CA-OE* apple lines under normal growth conditions. However, after being
183 subjected to salt and drought stress, the *MdPP2CA-OE* lines showed lower resistance than the WT
184 (Fig. 5A). Specifically, under salt and drought stress, *MdPP2CA-OE* apple lines had higher ROS
185 levels (Fig. 5B) and lower chlorophyll content (Fig. 5C) than WT plants. Moreover, transcriptional
186 analysis of the salt/drought stress-responsive marker genes revealed that *MdRD22*, *MdRD29A*,

187 *MdAREB1A*, and *MdRAB18* were significantly downregulated in *MdPP2CA*-overexpressing apple
188 plantlets (Fig. 5D).

189 Additionally, we generated *MdPP2CA* transgenic Arabidopsis lines (MdPP2CA-L2, L4, and
190 L7) (Fig. S2G, H). When Col-0 and transgenic lines in pot culture were treated with salt and
191 natural drought, overexpression of *MdPP2CA* in Arabidopsis significantly decreased salt and
192 drought tolerance (Fig. 5E-G). Furthermore, transcriptional analysis of *AtRD22*, *AtRD29A*,
193 *AtAREB1A*, and *AtRAB18* revealed that their expression was also downregulated in the
194 *MdPP2CA*-overexpressing Arabidopsis lines (Fig. 5H).

195 Together, our results show that *MdPP2CA* negatively regulates the salt and drought tolerance
196 of apples and Arabidopsis.

197 **MdMYB44-like interacts with MdPYL8 and synergistically enhances the transcriptional
198 repression of the target gene *MdPP2CA* by MdMYB44-like**

199 In Arabidopsis, the S22 subfamily of R2R3-MYB TFs appears to typically interact with PYL8 and
200 PYL9 (Jaradat et al., 2013; Li et al., 2014; Zhao et al., 2014). To further understand how
201 MdMYB44-like participates in ABA signaling, yeast two-hybrid (Y2H) assays were performed to
202 test their interactions. Interestingly, we found that MdPYL8, but not MdPYL9, physically interacts
203 with MdMYB44-like in yeast cells (Fig. 6A, S7), and our Y2H experiments showed that the
204 interaction between MdMYB44-like and MdPYL8 was not apparently regulated by ABA (Fig. S7).
205 Pull-down assays were next carried out to identify the MdMYB44-like-MdPYL8 interactions.
206 MdPYL8-GST was pulled down by MdMYB44-like-HIS (Fig. 6B), suggesting that
207 MdMYB44-like can interact with MdPYL8 in vitro. Furthermore, in luciferase complementation
208 imaging (LCI) assays, coexpression of MdMYB44-like-cLUC and MdPYL8-nLUC in *N.*
209 *benthamiana* leaves led to a strong fluorescence signal compared to the negative controls (Fig.
210 6C), indicating that MdMYB44-like could physically interact with the ABA receptor MdPYL8 in
211 vivo.

212 To determine whether MdPYL8 might affect the binding of MdMYB44-like to the
213 *MdPP2CA* promoter, EMSA assays were conducted using MdPYL8-HIS and
214 MdMYB44-like-HIS fusion proteins. The results showed that the binding of MdMYB44-like to

215 the *MdPP2CA* promoter was significantly intensified with the gradual addition of the *MdPYL8*
216 protein (Fig. 6D). In addition, dual-luciferase reporter assays revealed that coexpression of
217 *MdMYB44*-like and *MdPYL8* significantly reduced the activity of the *MdPP2CA* promoter
218 compared to the expression of *MdMYB44*-like alone (Fig. 6E-G). These observations suggest that
219 *MdPYL8* can interact with *MdMYB44*-like and synergistically enhance the transcriptional
220 repression of the target gene *MdPP2CA* by *MdMYB44*-like.

221 **MdPP2CA interferes with the interaction between *MdMYB44*-like and *MdPYL8* in the**
222 **presence of ABA**

223 In earlier research, *MdPP2CA* and the apple ABA receptor *MdPYL9* were shown to interact in
224 apple (Yang et al., 2022). We therefore hypothesized that *MdPP2CA* might also physically
225 interact with *MdPYL8*. We tested this hypothesis using Y2H, pull-down, and LCI assays and
226 found that *MdPP2CA* does interact with *MdPYL8* when ABA is present (Fig. S8).

227 The discovery that both *MdMYB44*-like and *MdPP2CA* interact with *MdPYL8* in the
228 presence of ABA (Fig. S7, 8) prompted us to explore whether *MdPP2CA* affects the interaction
229 between *MdMYB44*-like and *MdPP2CA* in the presence of ABA. We performed in vitro
230 competitive binding assays to test this idea. The results indicated that the binding strength of
231 *MdMYB44*-like-HIS and *MdPYL8*-GST was unaffected by the addition of either ABA or
232 *MdPP2CA*-MBP alone. However, their binding strength significantly decreased with the
233 simultaneous addition of ABA and *MdPP2CA* (Fig. 7A). In LCI assays, the fluorescence signal
234 intensities in *MdMYB44*-like-cLUC/*MdPYL8*-nLUC/*MdPP2CA*-coexpressing samples under the
235 addition of ABA (Fig. 7B, C, coinfiltration 4) were dramatically decreased by more than 50%
236 compared to those in *MdMYB44*-like-cLUC/*MdPYL8*-nLUC-coexpressing samples (Fig. 7B, C,
237 coinfiltration 1). Nevertheless, neither ABA (Fig. 7B, C, coinfiltration 2) nor *MdPP2CA* (Fig. 7B,
238 C, coinfiltration 3) alone had an obvious effect on the fluorescence intensity of samples in which
239 *MdMYB44*-like-cLUC and *MdPYL8*-nLUC were coexpressed. According to these data, we
240 propose that *MdPP2CA* attenuates the interaction between *MdMYB44*-like and *MdPYL8* in the
241 presence of ABA.

242 Furthermore, we discovered that the transcriptional inhibition effect of the

243 MdMYB44-like-MdPYL8 complex on the *MdPP2CA* promoter was significantly weakened under
244 the simultaneous addition of *MdPP2CA* and ABA (Fig. 7D). These observations suggest that
245 *MdPP2CA* might interfere with the interaction between MdMYB44-like and MdPYL8, ultimately
246 reducing the transcriptional inhibitory function of the MdMYB44-like-MdPYL8 complex toward
247 the downstream gene *MdPP2CA*.

248 **Discussion**

249 Salt and drought stress are two important environmental factors influencing fruit production and
250 agricultural crop growth (Nutan et al., 2019; Ma et al., 2021; Meng et al., 2023), and the
251 phytohormone ABA is involved in their regulation. Under salt/drought stress, ABA can generate
252 plant-adaptive responses by inducing stress-response genes expression, limit water loss by
253 controlling stomatal aperture, and reduce ROS damage by enhancing antioxidant enzyme activities
254 (Skubacz et al., 2016; Zhu, 2016). This study found that exogenous ABA significantly improved
255 apple plantlet resistance to salt and drought stress (Fig. 1A-E), implying that ABA contributes to
256 stress resistance in apple.

257 Many factors are involved in the ABA signaling pathway, and their precise functions are
258 controlled by transcription levels (Mao et al., 2022). For instance, many PYL genes' expression
259 levels can be induced by exogenous ABA, and some MYB TFs can bind to their promoters to
260 regulate ABA signaling (Mao et al., 2022; Yang et al., 2022). Although PP2Cs are also important
261 components of the ABA signaling module, their regulation at the transcriptional level remains
262 unclear. We discovered that apple MdMYB44-like binds directly to the MBS element in the
263 *MdPP2CA* promoter, thereby negatively regulating *MdPP2CA* expression (Fig. 4). Furthermore,
264 the ABA receptor MdPYL8 physically interacts with MdMYB44-like to enhance MdMYB44-like
265 binding to the *MdPP2CA* promoter (Fig. 6). Collectively, these results indicate that PP2C
266 expression is also tightly regulated at the transcriptional level.

267 Group A PP2Cs normally serve as negative regulatory factors of plant ABA response
268 (Schweighofer et al., 2004; Kim et al., 2013; Sah et al., 2016; Miao et al., 2020). For example, the
269 *Arabidopsis* loss-of-function mutants *abi1*, *abi2*, *pp2ca*, and *hab1* show greater sensitivity to ABA
270 and increased resistance to abiotic stresses including salt and drought (Merlot et al., 2001; Saez et

271 al., 2004; Zhang et al., 2013). In our study, we demonstrated that MdPP2CA could interact with
272 the ABA receptor MdPYL8 (Fig. S8) and the SNF1-related protein kinases MdSnRK2.3/2.6 (Fig.
273 S9), suggesting that MdPP2CA is a crucial part of the apple ABA core signaling pathway.
274 Functional verification revealed that apple and Arabidopsis plants overexpressing *MdPP2CA* were
275 less resistant to salt and drought stress than controls (Fig. 5), while apple and Arabidopsis plants
276 overexpressing *MdMYB44-like* showed the opposite effects (Fig. 3), which is consistent with the
277 findings that *MdMYB44-like* inhibits *MdPP2CA* expression (Fig. 4). To date, many MYB TFs,
278 such as *MYB5*, *MYB96*, *MYB63*, *MYB46*, *MYB91*, *MYB15*, and *MYB2*, have been found to be
279 involved in ABA and/or abiotic stress responses (Ding et al., 2009; Seo et al., 2009; Yang et al.,
280 2012; Guo et al., 2013; Zhu et al., 2015; Chen et al., 2019; Yu et al., 2020; Chen et al., 2021).

281 Notably, in this study, we found that MdPYL8, but not MdPYL9, interacted with
282 *MdMYB44-like* (Fig. 6A, S7). These findings suggest that although PYR1/PYLs/RCARs all act
283 as ABA receptors, they have distinct functions in plants. Furthermore, we observed that neither in
284 vitro nor in vivo interactions between *MdMYB44-like* and MdPYL8 require exogenous ABA
285 supplementation (Fig. 6A-C). Indeed, their interaction was unaffected by ABA treatment in Y2H
286 assays (Fig. S7). Additionally, ABA did not significantly alter the *MdMYB44-like*-MdPYL8
287 complex's inhibitory effect on *MdPP2CA* (Fig. 7D). Observations like these are not surprising, as
288 PYL8/9 interact with PIF to enhance PIF's ability to bind to the ABI5 promoter, independent of
289 ABA (Qi et al., 2020). However, it is notable that, unlike *MdMYB44-like* and MdPYL8, the
290 combination of MdPYL8 with MdPP2CA is ABA dependent (Fig. S8). A possible explanation for
291 this is the ABA dependence of the PYL-mediated inhibition of PP2Cs (Miyazono et al., 2009;
292 Klingler et al., 2010). In fact, the stress response process involves both ABA-independent and
293 ABA-dependent regulatory pathways (Ding et al., 2011; Sun et al., 2016).

294 Given that MdPP2CA and *MdMYB44-like* both interact with MdPYL8 when ABA is present
295 (Fig. S7, 8), we sought to determine whether MdPP2CA influences the interaction between
296 *MdMYB44-like* and MdPYL8 and, if so, how MdPP2CA affects the transcription factor function
297 of the *MdMYB44-like*-MdPYL8 complex. Previous research has shown that two different proteins
298 may interact in a competitive manner when they interact with the same protein. For example, in
299 Arabidopsis, DELLA-JAZ interactions affect the binding of MYC2 to JAZs, which in turn

300 modulates JA signaling (Hou et al., 2010). In our study, competitive binding, LCI, and
301 dual-luciferase reporter assays demonstrated that MdPP2CA interferes with the interaction
302 between MdMYB44-like and MdPYL8, ultimately reducing the transcriptional inhibition function
303 of the MdMYB44-like-MdPYL8 complex toward the downstream gene *MdPP2CA* (Fig. 7). We
304 speculate that this may be a type of PP2C-mediated negative feedback regulation in plants to
305 maintain ABA signaling homeostasis (Merlot et al., 2001). Under stress conditions, negative
306 feedback regulation allows plants to finely control ABA concentrations and ABA signaling (Wang
307 et al., 2018; Jung et al., 2020). However, whether MdMYB44-like influences the effect of
308 MdPYL8 on MdPP2CA phosphatase activities when ABA is present remains to be further
309 investigated.

310 Here, a hypothetical model of MdMYB44-like mechanism of action in ABA signaling is
311 proposed (Fig. 8). Specifically, MdMYB44-like positively regulates ABA signaling by inhibiting
312 *MdPP2CA* expression. Under salt and drought stress, ABA promotes *MdMYB44-like* gene
313 expression. MdPYL8 interacts with MdMYB44-like to form a protein complex that further
314 strengthens the transcriptional inhibition of MdMYB44-like on the *MdPP2CA* promoter.
315 Interestingly, MdPP2CA interferes with the interaction between MdMYB44-like and MdPYL8 in
316 the presence of ABA, thereby reducing the transcriptional inhibition of *MdPP2CA* by the
317 MdMYB44-like-MdPYL8 complex and thus balancing ABA signaling in plants. In conclusion,
318 MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop to tightly control ABA
319 signaling homeostasis when apple plants are under salt and drought stress. These findings shed
320 light on how MYB TFs control ABA signaling in response to salt and drought stress.

321 **Materials and methods**

322 **Plant materials and growth conditions**

323 The apple tissue culture plantlets GL-3 selected from *Malus × domestica* cv. Royal Gala plantlets
324 with high transformation efficiency (Dai et al., 2013) and their rooted apple plantlets were used in
325 this research. The culture medium formula and culture conditions of apple tissue culture plantlets
326 were strictly conducted as described previously (Chen et al., 2020). Rooted apple plantlets were

327 grown on soil substrate in an incubator under a 16 h light/8 h dark photoperiod at 24°C.

328 The culture conditions of Arabidopsis (Col-0) and tobacco (*N. benthamiana*) were as follows:

329 16 h light/8 h dark, 22°C.

330 **Overexpression of *MdMYB44-like* and *MdPP2CA* in apple and Arabidopsis**

331 The *MdMYB44-like* and *MdPP2CA* CDSs were inserted into the pRI101-AN vectors, respectively.

332 For apple transformation, the leaf disk method mediated by *Agrobacterium tumefaciens* was
333 used (Dai et al., 2013). Young apple leaves were cut with a sterile blade and incubated with *A.*
334 *tumefaciens* strain EHA105 carrying recombinant vectors for 8 min. Infected apple leaves were
335 cultured in the dark for about 20 d until callus developed from the cut in the leaves, after which
336 they were transferred to light culture. Transformed buds were obtained after screening with 25
337 mg/L kanamycin. For *A. thaliana* transformation, the floral dip method was carried out when
338 white buds were visible but not fully opened (Clough and Bent, 1998). After two days of dark
339 culture, the infected Arabidopsis was transferred to light for normal culture. The transgenic
340 materials were examined at both the DNA and RNA levels. Supplemental Table S1 lists all
341 primers used for gene cloning and identification of transgenic materials.

342 **Stress treatments**

343 For the stress treatment of apple tissue culture plantlets, 25-day-old GL-3 and
344 *MdMYB44/MdPP2CA*-overexpressing apple tissue culture plantlets were transferred to the solid
345 subculture medium containing 200 mM NaCl or 300 mM mannitol to simulate salt and drought
346 stress (Chen et al., 2019). For the stress treatment of rooted apple plantlets, 30-day-old rooted
347 GL-3 apple plantlets were sprayed with or without 10 µM ABA for 7 d and then treated with 200
348 mM NaCl or natural dehydration for 14 d. For the stress treatment of Arabidopsis, 40-day-old
349 Col-0 and *MdMYB44/MdPP2CA*-overexpressing Arabidopsis plantlets were used for salt and
350 drought treatments by 200 mM NaCl and natural dehydration, respectively.

351 **RNA extraction and qRT-PCR**

352 The RNA extraction was performed as previously described (Chang et al., 2007). qRT-PCR

353 experiments were conducted on an ABI 7500 real-time PCR instrument (Applied Biosystems,
354 Foster City, CA, USA) using UltraSYBR Green Mixture reagent (ComWin Biotech, Beijing,
355 China). The technique was repeated 3 times for each sample. Primers designed for PCR were used
356 using Beacon Designer 7.9. Supplemental Table S1 lists the primers used.

357 **DAB/NBT staining and measurements of chlorophyll content and SOD, POD, and CAT**
358 **activities**

359 The chlorophyll content was determined as previously described (An et al., 2022). The SOD, POD,
360 and CAT enzyme activities measurements and DAB (H_2O_2 detection)/NBT (O_2^- detection) staining
361 were performed with commercially available kits (Solarbio, BC0170, BC0200, BC0090, and
362 PR1100; ComWin Biotech, CW0125S).

363 **Y2H assay**

364 The *MdMYB44-like* and *MdPP2CA* CDSs were inserted into the pGBK7 vector
365 (*MdMYB44-like*-BD and *MdPP2CA*-BD). The *MdPYL8*, *MdPYL9*, *MdSnRK2.2*, *MdSnRK2.3*,
366 *MdSnRK2.4*, and *MdSnRK2.6* CDSs were inserted into the pGADT7 vector (*MdPYL8*-AD,
367 *MdPYL9*-AD, *MdSnRK2.2*-AD, *MdSnRK2.3*-AD, *MdSnRK2.4*-AD, and *MdSnRK2.6*-AD).
368 Yeast strain Y2H Gold cotransformed with the recombinant plasmids were grown in a 28 °C
369 incubator for about 2.5 d on the SD/-T/-L medium or SD/-T/-L/-H/-A medium. To determine
370 whether ABA affected their interactions, 10 μ M ABA was added to the specified medium.

371 **Pull-down assay**

372 The *MdMYB44-like* and *MdPP2CA* CDSs were cloned into the pET32a vector which carries a HIS
373 tag (*MdMYB44-like*-HIS and *MdPP2CA*-HIS). The *MdPYL8* CDS was cloned into the
374 pGEX4T-1 vector which carries a GST tag (*MdPYL8*-GST). The vector constructed above was
375 transformed into *E.coli* and induced by IPTG (TransGen Biotech, Beijing, China). Proteins were
376 purified using commercially available kits (CWbio, Beijing, China). Anti-GST or anti-HIS
377 antibodies (TransGen Biotech, Beijing, China) were used to detect the eluted samples.

378 **LCI assay**

379 The *MdMYB44-like* and *MdPP2CA* CDSs were inserted into pCAMBIA1300-cLUC vector
380 (MdMYB44-like-cLUC and MdPP2CA-cLUC). The *MdPYL8*, *MdSnRK2.2*, *MdSnRK2.3*,
381 *MdSnRK2.4*, and *MdSnRK2.6* CDSs were inserted into pCAMBIA1300-nLUC vector
382 (MdPYL8-nLUC, MdSnRK2.2-nLUC, MdSnRK2.3-nLUC, MdSnRK2.4-nLUC, and
383 MdSnRK2.6-nLUC). As previously described, the above recombinant plasmids were introduced
384 into *A. tumefaciens* GV3101 cells (Chen et al., 2008). The infiltrated tobacco leaves were
385 photographed after 72 h of retaining in the dark. The living fluorescence imager (Tanon-5200,
386 Shanghai, China) was used to detect luciferase activity.

387 **Y1H assay**

388 The *MdMYB44-like* CDS was inserted into the pGADT7 vector (MdMYB44-like-AD), and the
389 promoter fragments of *MdPP2CA* and *MdABI1* were inserted into the pHIS2 vector
390 (MdPP2CA-pHIS2 and MdABI1-pHIS2). To determine their interactions, the recombinant pHIS2
391 and MdMYB44-like-AD plasmids were co-transformed into the yeast strains Y187 using a
392 PEG/LiAC method and coated on the SD/-T/-H/-L medium (containing optimal 3-AT dosage).
393 The transformed yeast was cultured in a 28 °C incubator for about 2.5 d.

394 **EMSA**

395 The CDS of *MdMYB44-like* and *MdPYL8* were inserted into the pET32a vector
396 (MdMYB44-like-HIS and MdPYL8-HIS). The His-tagged fusion protein was induced by IPTG
397 (TransGen Biotech, Beijing, China) in *E.coli*. The EMSA was carried out using a LightShift
398 Chemiluminescent EMSA Kit (Beyotime, Shanghai, China). Supplemental Table S1 lists the
399 primers and biotin-labeled promoter sequences used.

400 **Dual-luciferase reporter assay**

401 The plasmids of the 35S::MdMYB44-like and 35S::MdPYL8 were constructed as effectors. The
402 *MdPP2CA* promoter (containing the MBS site) was inserted into the pGreenII0800-LUC vector to

403 construct the plasmids of the *proMdPP2CA::LUC* as a reporter (Lei et al., 2020). With the helper
404 plasmid pSoup, the above recombinant plasmids and the empty vectors were introduced into *A.*
405 *tumefaciens* GV3101 cells and infiltrated into *N. benthamiana* leaves (4-week-old). After 72 h of
406 retaining in the dark, the living fluorescence imager (Tanon-5200, Shanghai, China) was used to
407 observe luciferase signaling. A luciferase detection kit (Beyotime, Shanghai, China) was used to
408 detect LUC/REN activity. For each sample, three biological repeats were measured.

409 **Competitive binding assays**

410 We conducted competitive binding experiments using a GST-tagged Protein Purification kit
411 (TransGen Biotech, Beijing, China) as previously described (An et al., 2022). The mixture of
412 MdMYB44-like-HIS and MdPP2CA-MBP was added to immobilized MdPYL8-GST. 10 μ M
413 ABA was added or not added into the protein pull-down incubation buffer. The purified samples
414 were detected using GST, HIS, and MBP antibodies (TransGen Biotech, Beijing, China).

415 **Statistical Analysis**

416 We carried out all experiments in triplicate. Values are means of 3 replicates \pm SDs. Tukey's test
417 was used for statistical significance analysis with DPS software (*P < 0.05, **P < 0.01).

418

419 **Accession numbers**

420 The sequence data in this article are available in the GDR (<https://www.rosaceae.org/>), NCBI
421 (<https://www.ncbi.nlm.nih.gov/>), and TAIR (<https://www.arabidopsis.org/>) databases:
422 MdMYB44-like (NM_001328721.1, MD15G1288600), MdPYL8 (XM_008382402.3,
423 MD01G1216100), MdPYL9 (XM_008352390.3, MD07G1147700), MdPP2CA
424 (XM_008373834.3, MD01G1139200), MdABI1 (MD15G1212000), MdABI2 (MD02G1084600),
425 MdABF3 (MD05G1082000), MdNCED1 (XM_008384748.3), MdRD29A (XM_008345499.3),
426 MdAREB1A (XM_029094247.1), MdRD29B (XM_008378353.3), MdRD22 (XM_017333810.2),
427 MdSnRK2.2 (KJ563283), MdSnRK2.3 (KJ563284), MdSnRK2.4 (JX569851), MdSnRK2.6
428 (KJ563286), AtNCED1 (AT3G63520), AtABI1 (AT4G26080), AtABI2 (AT5G57050), AtPP2CA
429 (AT3G11410), AtABF3 (AT4G34000), AtRD22 (AT5G25610), AtRD29A (AT5G52310),

430 AtAREB1A (AT1G45249), AtRD29B (AT5G52300), and AtRAB18 (AT1G43890).

431

432 **Funding information**

433 This research was supported by the National Natural Science Foundation of China (Grant No.

434 31972380).

435

436 **Acknowledgments**

437 We thank Prof. Che Wang (College of Bioscience and Biotechnology, Shenyang Agricultural
438 University) and Prof. Yue Ma (College of Horticulture, Shenyang Agricultural University) for
439 their helpful comments on the article.

440

441 **Conflict of interest**

442 The authors declare no conflict of interest.

443

444 **Figure legends**

445 **Fig. 1** Effects of exogenous ABA treatment on the salt and drought tolerance of apple plantlets.

446 (A) Phenotypes of GL-3 apple plantlets treated with or without ABA under salt and drought stress.

447 ABA, apple plantlets with 10 μ M ABA treatment; Control, apple plantlets without ABA treatment.

448 (B) Determination of chlorophyll content in the apple plantlets presented in (A). (C-E) SOD, POD,
449 and CAT activities of the apple plantlets shown in (A). (F) Relative expression level of
450 *MdMYB44-like* in the apple plantlets under salt and drought stress shown in (A). The value of the
451 control at 0 d in each group (Salt treatment and Drought treatment) was set to 1. Values are means
452 of 3 replicates \pm SDs. Tukey's test was used for statistical significance analysis with DPS software
453 (*P < 0.05, **P < 0.01).

454 **Fig. 2** Sequence alignment and subcellular localization of *MdMYB44-like*.

455 (A) Alignment of multiple sequences for *MdMYB44-like* and its homologs in different plants.

456 AsMYB44: *Aegilops tauschii* subsp. *Tauschii*, XP_020146152.1; AtMYB44: *Arabidopsis thaliana*,
457 AT5G67300; AtMYB73: *Arabidopsis thaliana*, AT4G37260; BdMYB44: *Brachypodium*
458 *distachyon*, XP_003575562; MdMYB44-like: *Malus × domestica*, LOC103453725;

459 PaMYB44-like: *Prunus avium*, XM_021974049; PbMYB44-like: *Pyrus × bretschneideri*,
460 XM_009374172; PdMYB44-like: *Phoenix dactylifera*, XM_008801354; RaMYB44-like:
461 *Rhodamnia argentea*, XM_030682060; SbMYB44: *Sorghum bicolor*, XP_002462029; TaMYB70:
462 *Triticum aestivum*, MK024291.1; ZmMYB44: *Zea mays*, PWZ15207.1. (B) Subcellular
463 localization of MdMYB44-like in onion epidermal cells. Bar, 20 μ m.

464 **Fig. 3** Overexpression of *MdMYB44-like* enhances the salt and drought resistance in apple and
465 Arabidopsis.

466 (A) Wild-type (WT) and three *MdMYB44-like*-overexpressing apple lines (MdMYB44-like-OE#1,
467 #2, and #5) were cultured under simulated salt and drought stress. 25-day-old apple tissue culture
468 plantlets were cultivated for 10 days under 200 mM NaCl or 300 mM mannitol. (B) DAB and
469 NBT staining of apple leaves from plantlets shown in (A). (C) Chlorophyll content of the apple
470 plantlets shown in (A). (D) Expression levels of ABA signaling-related genes (*MdNCED1*,
471 *MdABI1*, *MdABI2*, *MdPP2CA*, and *MdABF3*) in WT and MdMYB44-like-OE apple plantlets
472 under salt and drought stress. (E) Phenotypes of 40-day-old transgenic *Arabidopsis thaliana* plants
473 after salt and drought treatments. Col-0, wild-type; MdMYB44-like-L2, L5, and L6,
474 *MdMYB44-like*-overexpressing Arabidopsis plants. (F) DAB and NBT staining of Arabidopsis
475 leaves from plants shown in (E). (G) Chlorophyll content of the Arabidopsis plants shown in (E).
476 (H) Expression analysis of ABA signaling-related genes (*AtNCED1*, *AtABI1*, *AtABI2*, *AtPP2CA*,
477 and *AtABF3*) in Col-0 and *MdMYB44-like* transgenic Arabidopsis plants under salt and drought
478 stress. Values are means of 3 replicates \pm SDs. Tukey's test was used for statistical significance
479 analysis with DPS software (*P < 0.05, **P < 0.01).

480 **Fig. 4** MdMYB44-like binds to the *MdPP2CA* promoter to inhibit transcription.

481 (A) Y1H assays. The blue plaque indicates the interaction between MdMYB44-like and the
482 *MdPP2CA* promoter. (B) Schematic diagram of the *MdPP2CA* promoter probe used in EMSAs.
483 MBS indicates a potential MdMYB44-like binding site. (C) EMSA demonstrating the binding of
484 MdMYB44-like to the *MdPP2CA* promoter. The mutant probe had two nucleotide changes.
485 Increasing amounts of competitor and mutant probes were added (100- and 200-fold probe
486 concentrations). (D) Constructs used in the dual-luciferase reporter assay. Effectors,
487 35S::MdMYB44-like; Reporter, *proMdPP2CA::LUC*. (E, F) The effect of MdMYB44-like on

488 *MdPP2CA* promoter activity in tobacco leaves was determined by a dual-luciferase reporter assay.
489 The LUC/REN ratio of the empty vector +*proMdPP2CA*::LUC samples was set to 1. Values are
490 means of 3 replicates ± SDs. Statistical significance is indicated by different lowercase letters
491 (P<0.05).

492 **Fig. 5** Overexpression of *MdPP2CA* reduces the salt and drought resistance in apple and
493 Arabidopsis.

494 (A) WT and three *MdPP2CA*-overexpressing apple lines (*MdPP2CA*-OE#3, #7, and #11) were
495 cultured under simulated salt and drought stress. 25-day-old apple tissue culture plantlets were
496 cultivated for 8 days under 200 mM NaCl or 300 mM mannitol. (B) DAB and NBT staining of
497 apple leaves from plantlets shown in (A). (C) Chlorophyll content of the apple plantlets shown in
498 (A). (D) Relative expression levels of salt/drought stress-responsive marker genes (*MdRD22*,
499 *MdRD29A*, *MdRD29B*, *MdAREB1A*, and *MdRAB18*) in WT and *MdPP2CA*-OE apple plantlets
500 under salt and drought treatments. (E) Phenotypes of 40-day-old transgenic Arabidopsis plants
501 under salt and drought treatments. Col-0, wild-type; *MdPP2CA*-L2, L4, and L7,
502 *MdPP2CA*-overexpressing Arabidopsis plants. (F) DAB and NBT staining of Arabidopsis leaves
503 from plants shown in (E). (G) Chlorophyll content of the Arabidopsis plants presented in (E). (H)
504 Expression analysis of salt/drought stress-responsive marker genes (*AtRD22*, *AtRD29A*, *AtRD29B*,
505 *AtAREB1A*, and *AtRAB18*) in Col-0 and *MdPP2CA* transgenic Arabidopsis plants under salt and
506 drought treatments. Values are means of 3 replicates ± SDs. Tukey's test was used for statistical
507 significance analysis with DPS software (*P < 0.05, **P < 0.01).

508 **Fig. 6** *MdMYB44*-like interacts with *MdPYL8* and synergistically enhances the repression of
509 *MdMYB44*-like toward the target gene *MdPP2CA*.

510 (A) Y2H assays. The blue line indicates the interactions between *MdMYB44*-like and *MdPYL8*.
511 (B) Pull-down assays demonstrating the in vitro interaction of the *MdMYB44*-like and *MdPYL8*
512 proteins. Purified *MdMYB44*-like-HIS and *MdPYL8*-GST proteins were used in this research. (C)
513 *MdMYB44*-like interacts with *MdPYL8* in LCI assays. (D) EMSA results show that *MdPYL8*
514 increases the binding of *MdMYB44*-like to the *MdPP2CA* promoter. The gradient indicates the
515 increasing amounts of *MdPYL8*-HIS. (E) Constructs used in the dual-luciferase reporter assay.
516 Effectors, 35S::*MdMYB44*-like and 35S::*MdPYL8*; Reporter, *proMdPP2CA*::LUC. (F, G)

517 Dual-luciferase reporter assay revealing the effect of MdMYB44-like on the expression of
518 *MdPP2CA* in the presence of MdPYL8. The LUC/REN ratio of the
519 35S::MdMYB44-like+*proMdPP2CA*::LUC samples was used as the reference and set to 1. Values
520 are means of 3 replicates ± SDs. Statistical significance is indicated by different lowercase letters
521 (P<0.05).

522 **Fig. 7** MdPP2CA interferes with the physical association of MdMYB44-like and MdPYL8 in the
523 presence of ABA.

524 (A) Competitive binding of MdMYB44-like and MdPP2CA with MdPYL8 in the presence of
525 ABA. A mixture of MdPP2CA-MBP and MdMYB44-like-HIS was added to immobilized
526 MdPYL8-GST. The gradient shows the increasing concentrations of MdPP2CA-MBP. The
527 symbols '+' and '-' denote the presence and absence of the indicated protein or 10 µM ABA,
528 respectively. (B) LCI assay demonstrating that the association between MdMYB44-like and
529 MdPYL8 is significantly compromised by coexpression of MdPP2CA in the presence of ABA.
530 +ABA indicates that 10 µM ABA was added to *N. benthamiana* (4-week-old) leaves 10 h before
531 fluorescence detection. (C) Quantification of the relative fluorescence intensity presented in (B).
532 The value for combination 1 was set to 1. (D) Dual-luciferase reporter assays reveal that the
533 transcriptional inhibition effect of the MdMYB44-like-MdPYL8 complex on the *MdPP2CA*
534 promoter is weakened with the simultaneous addition of MdPP2CA and ABA. +ABA indicates
535 that 10 µM ABA was added to tobacco leaves 10 h before fluorescence detection. The LUC/REN
536 ratio of combination A was set to 1. Values are means of 3 replicates ± SDs. Statistical
537 significance is indicated by different lowercase letters (P<0.05).

538 **Fig. 8** Proposed model whereby MdMYB44-like modulates ABA signaling-regulated salt and
539 drought tolerance in apple through the MdPYL8-MdPP2CA module.

540 Under salt and drought stress, MdMYB44-like positively regulates ABA signaling by directly
541 binding to the MBS motif in the *MdPP2CA* promoter and inhibiting its expression. ABA promotes
542 *MdMYB44-like* gene expression, and MdMYB44-like interacts with the ABA receptor MdPYL8 in
543 an ABA-independent manner. MdPYL8 enhances the binding of MdMYB44-like to the *MdPP2CA*
544 promoter and positively regulates MdMYB44-like-mediated *MdPP2CA* inactivation. In addition,
545 MdPP2CA acts as a negative feedback regulator by interfering with the interaction between

546 MdMYB44-like and MdPYL8 in the presence of ABA, reducing the transcriptional inhibition of
547 *MdPP2CA* by the MdMYB44-like-MdPYL8 complex and balancing ABA signaling in plants. In
548 summary, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly controls
549 ABA signaling homeostasis when apple plants are exposed to salt and drought stress.

550

551 **References**

552 **Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K** (2003) *Arabidopsis AtMYC2*
553 (bHLH) and *AtMYB2* (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling. *The*
554 *Plant Cell* **15**: 63-78

555 **An J, Xu R, Liu X, Su L, Yang K, Wang X, Wang G, You C** (2022) Abscisic acid insensitive 4
556 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple.
557 *Journal of Experimental Botany* **73**: 980-997

558 **An JP, Yao JF, Xu RR, You CX, Wang XF, Hao YJ** (2018) An apple NAC transcription factor
559 enhances salt stress tolerance by modulating the ethylene response. *Physiol Plant* **164**: 279-289

560 **Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, Ponce MR, Micol JL**
561 (2005) A mutational analysis of the ABA1 gene of *Arabidopsis thaliana* highlights the involvement of
562 ABA in vegetative development. *Journal of Experimental Botany* **56**: 2071-2083

563 **Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen Q** (2013) Barley MLA Immune Receptors
564 Directly Interfere with Antagonistically Acting Transcription Factors to Initiate Disease Resistance
565 Signaling. *The Plant Cell* **25**: 1158-1173

566 **Chang L, Zhang Z, Yang H, Li H, Dai H** (2007) Detection of Strawberry RNA and DNA Viruses by
567 RT-PCR Using Total Nucleic Acid as a Template. *Journal of Phytopathology* **155**: 431-436

568 **Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou J** (2008) Firefly Luciferase
569 Complementation Imaging Assay for Protein-Protein Interactions in Plants. *Plant Physiology* **146**:
570 323-324

571 **Chen K, Guo Y, Song M, Liu L, Xue H, Dai H, Zhang Z** (2020) Dual role of *MdSND1* in the
572 biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple.
573 *Horticulture Research* **7**: 204

574 **Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z** (2019) *MdMYB46* could enhance salt and
575 osmotic stress tolerance in apple by directly activating stress-responsive signals. *Plant Biotechnology*
576 *Journal* **17**: 2341-2355

577 **Chen K, Tang X, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z** (2021) Functional identification
578 of *MdMYB5* involved in secondary cell wall formation in apple. *Fruit Research* **1**: 1-10

579 **Chen L, Song Y, Li S, Zhang L, Zou C, Yu D** (2012) The role of WRKY transcription factors in
580 plant abiotic stresses. *Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms* **1819**:
581 120-128

582 **Chen P, Zhi F, Li X, Shen W, Yan M, He J, Bao C, Fan T, Zhou S, Ma F, Guan Q** (2022)
583 Zinc-finger protein *MdB BX7/MdCOL9*, a target of *MdMIEL1* E3 ligase, confers drought tolerance in
584 apple. *Plant Physiology* **188**: 540-559

585 **Clough SJ, Bent AF** (1998) Floral dip: a simplified method for Agrobacterium-mediated
586 transformation of *Arabidopsis thaliana*. *The Plant Journal* **16**: 735-743

587 **Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS** (2013)
588 An *Arabidopsis* R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C
589 serine/threonine protein phosphatases to enhance salt tolerance. *FEBS Letters* **587**: 1773-1778

590 **Dai H, Li W, Han G, Yang Y, Ma Y, Li H, Zhang Z** (2013) Development of a seedling clone with
591 high regeneration capacity and susceptibility to *Agrobacterium* in apple. *Scientia Horticulturae* **164**:
592 202-208

593 **Ding Y, Avramova Z, Fromm M** (2011) The *Arabidopsis* trithorax-like factor ATX1 functions in
594 dehydration stress responses via ABA-dependent and ABA-independent pathways. *The Plant Journal*
595 **66**: 735-744

596 **Ding Z, Li S, An X, Liu X, Qin H, Wang D** (2009) Transgenic expression of MYB15 confers
597 enhanced sensitivity to abscisic acid and improved drought tolerance in *Arabidopsis thaliana*. *Journal*
598 of *Genetics and Genomics* **36**: 17-29

599 **Etehadnia M, Waterer DR, Tanino KK** (2008) The Method of ABA Application Affects Salt Stress
600 Responses in Resistant and Sensitive Potato Lines. *Journal of Plant Growth Regulation* **27**: 331-341

601 **Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S, Cutler SR, Sheen J, Rodriguez**
602 **PL, Zhu J** (2009) In vitro reconstitution of an abscisic acid signalling pathway. *Nature* **462**: 660-664

603 **Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K**
604 (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of
605 convergence in the stress signaling networks. *Current Opinion in Plant Biology* **9**: 436-442

606 **Gao J, Shen X, Zhang Z, Peng R, Xiong A, Xu J, Zhu B, Zheng J, Yao Q** (2011) The myb
607 transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic *Arabidopsis*. *Plant*
608 *Cell, Tissue and Organ Culture (PCTOC)* **106**: 235-242

609 **Guo J, Yang X, Weston DJ, Chen J** (2011) Abscisic Acid Receptors: Past, Present and FutureF.
610 *Journal of Integrative Plant Biology* **53**: 469-479

611 **Guo L, Yang H, Zhang X, Yang S** (2013) Lipid transfer protein 3 as a target of MYB96 mediates
612 freezing and drought stress in *Arabidopsis*. *Journal of Experimental Botany* **64**: 1755-1767

613 **Guóth A, Tari I, Gallé Á, Csizsár J, Pécsváradi A, Cseuz L, Erdei L** (2009) Comparison of the
614 Drought Stress Responses of Tolerant and Sensitive Wheat Cultivars During Grain Filling: Changes in
615 Flag Leaf Photosynthetic Activity, ABA Levels, and Grain Yield. *Journal of Plant Growth Regulation*
616 **28**: 167-176

617 **He Y, Li W, Lv J, Jia Y, Wang M, Xia G** (2012) Ectopic expression of a wheat MYB transcription
618 factor gene, TaMYB73, improves salinity stress tolerance in *Arabidopsis thaliana*. *Journal of*
619 *Experimental Botany* **63**: 1511-1522

620 **Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M** (2003) Dominant repression of target genes by
621 chimeric repressors that include the EAR motif, a repression domain, in *Arabidopsis*. *Plant J* **34**:
622 733-739

623 **Hou X, Lee LYC, Xia K, Yan Y, Yu H** (2010) DELLA_s Modulate Jasmonate Signaling via
624 Competitive Binding to JAZs. *Developmental Cell* **19**: 884-894

625 **Jaradat MR, Feurtado JA, Huang D, Lu Y, Cutler AJ** (2013) Multiple roles of the transcription
626 factor AtMYB1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. *BMC Plant Biol*
627 **13**: 192

628 **Jung C, Nguyen NH, Cheong J** (2020) Transcriptional Regulation of Protein Phosphatase 2C Genes
629 to Modulate Abscisic Acid Signaling. *International Journal of Molecular Sciences* **21**: 9517

630 **Kang J, Choi H, Im M, Kim SY** (2002) *Arabidopsis* Basic Leucine Zipper Proteins That Mediate

631 Stress-Responsive Abscisic Acid Signaling. *The Plant Cell* **14**: 343-357

632 **Khadri M, Tejera NA, Lluch C** (2006) Alleviation of Salt Stress in Common Bean (*Phaseolus*
633 *vulgaris*) by Exogenous Abscisic Acid Supply. *Journal of Plant Growth Regulation* **25**: 110-119

634 **Kim W, Lee Y, Park J, Lee N, Choi G** (2013) HONSU, a protein phosphatase 2C, regulates seed
635 dormancy by inhibiting ABA signaling in *Arabidopsis*. *Plant Cell Physiol* **54**: 555-572

636 **Klingler JP, Batelli G, Zhu JK** (2010) ABA receptors: the START of a new paradigm in
637 phytohormone signalling. *Journal of Experimental Botany* **61**: 3199-3210

638 **Lei Y, Sun Y, Wang B, Yu S, Dai H, Li H, Zhang Z, Zhang J** (2020) Woodland strawberry
639 WRKY71 acts as a promoter of flowering via a transcriptional regulatory cascade. *Horticulture*
640 research **7**: 137

641 **Li C, Ng CKY, Fan L** (2015) MYB transcription factors, active players in abiotic stress signaling.
642 *Environmental and Experimental Botany* **114**: 80-91

643 **Li D, Li Y, Zhang L, Wang X, Zhao Z, Tao Z, Wang J, Wang J, Lin M, Li X, Yang Y** (2014)
644 Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor,
645 AtMYB44. *International Journal of Molecular Sciences* **15**: 8473-8490

646 **Ma L, Hu L, Fan J, Amombo E, Khaldun ABM, Zheng Y, Chen L** (2017) Cotton GhERF38 gene is
647 involved in plant response to salt/drought and ABA. *Ecotoxicology* **26**: 841-854

648 **Ma Y, Xue H, Zhang F, Jiang Q, Yang S, Yue P, Wang F, Zhang Y, Li L, He P, Zhang Z** (2021)
649 The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression.
650 *Plant Biotechnology Journal* **19**: 311-323

651 **Mao H, Jian C, Cheng X, Chen B, Mei F, Li F, Zhang Y, Li S, Du L, Li T, Hao C, Wang X,**
652 **Zhang X, Kang Z** (2022) The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance
653 and grain yield by increasing water - use efficiency. *Plant Biotechnology Journal* **20**: 846-861

654 **Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M**
655 (2023) The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and
656 drought stresses. *Plant Physiology* **191**: 747-771

657 **Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J** (2001) The ABI1 and ABI2 protein
658 phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. *The*
659 *Plant Journal* **25**: 295-303

660 **Miao J, Li X, Li X, Tan W, You A, Wu S, Tao Y, Chen C, Wang J, Zhang D, Gong Z, Yi C, Yang**
661 **Z, Gu M, Liang G, Zhou Y** (2020) OsPP2C09, a negative regulatory factor in abscisic acid signalling,
662 plays an essential role in balancing plant growth and drought tolerance in rice. *New Phytol* **227**:
663 1417-1433

664 **Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang H, Asano A, Miyauchi Y, Takahashi M,**
665 **Zhi Y, Fujita Y, Yoshida T, Kodaira K, Yamaguchi-Shinozaki K, Tanokura M** (2009) Structural
666 basis of abscisic acid signalling. *Nature* **462**: 609-614

667 **Nutan KK, Singla-Pareek SL, Pareek A** (2019) The Saltol QTL-localized transcription factor
668 OsGATA8 plays an important role in stress tolerance and seed development in *Arabidopsis* and rice.
669 *Journal of Experimental Botany* **2**: 684-698

670 **Qi L, Liu S, Li C, Fu J, Jing Y, Cheng J, Li H, Zhang D, Wang X, Dong X, Han R, Li B, Zhang Y,**
671 **Li Z, Terzaghi W, Song CP, Lin R, Gong Z, Li J** (2020) PHYTOCHROME-INTERACTING
672 FACTORS Interact with the ABA Receptors PYL8 and PYL9 to Orchestrate ABA Signaling in
673 Darkness. *Mol Plant* **13**: 414-430

674 **Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L,**

675 **Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ** (2012) WRKY transcription
676 factors: key components in abscisic acid signalling. *Plant Biotechnology Journal* **10**: 2-11

677 **Saez A, Apostolova N, Gonzalez Guzman M, Gonzalez Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL** (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase
678 2CHAB1 reveal its role as a negative regulator of abscisic acid signalling. *The Plant Journal* **37**:
680 354-369

681 **Sah SK, Reddy KR, Li J** (2016) Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. *Frontiers*
682 in Plant Science **7**: 571

683 **Schweighofer A, Hirt H, Meskiene I** (2004) Plant PP2C phosphatases: emerging functions in stress
684 signaling. *Trends in Plant Science* **9**: 236-243

685 **Seo PJ, Xiang F, Qiao M, Park J, Lee YN, Kim S, Lee Y, Park WJ, Park C** (2009) The MYB96
686 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis.
687 *Plant Physiology* **151**: 275-289

688 **Shi Y, Liu X, Zhao S, Guo Y** (2022) The PYR-PP2C-CKL2 module regulates ABA-mediated actin
689 reorganization during stomatal closure. *New Phytol* **233**: 2168-2184

690 **Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD** (2013)
691 AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic
692 acid and jasmonic acid signaling. *Plant J* **73**: 483-495

693 **Shinozaki K, Yamaguchi-Shinozaki K, Sekiz M** (2003) Regulatory network of gene expression in
694 the drought and cold stress responses. *Current Opinion in Plant Biology* **6**: 410-417

695 **Skubacz A, Daszkowska-Golec A, Szarejko I** (2016) The Role and Regulation of ABI5
696 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk.
697 *Frontiers in Plant Science* **7**: 1884

698 **Stracke R, Werber M, Weisshaar B** (2001) The R2R3-MYB gene family in *Arabidopsis thaliana*.
699 *Current Opinion in Plant Biology* **4**: 447-456

700 **Sun X, Sun C, Li Z, Hu Q, Han L, Luo H** (2016) AsHSP17, a creeping bentgrass small heat shock
701 protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate
702 plant response to abiotic stress. *Plant, Cell & Environment* **39**: 1320-1337

703 **Tran LP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K** (2004) Isolation and Functional Analysis of *Arabidopsis*
704 Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the
705 early responsive to dehydration stress 1 Promoter. *The Plant Cell* **16**: 2481-2498

706 **Wang K, He J, Zhao Y, Wu T, Zhou X, Ding Y, Kong L, Wang X, Wang Y, Li J, Song C, Wang B, Yang S, Zhu J, Gong Z** (2018) EAR1 Negatively Regulates ABA Signaling by Enhancing 2C
707 Protein Phosphatase Activity. *The Plant Cell* **30**: 815-834

708 **Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G** (2015) Abscisic acid enhances tolerance of wheat
709 seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione
710 biosynthesis. *Frontiers in Plant Science* **6**: 458

711 **Xiong L, Zhu JK** (2002) Molecular and genetic aspects of plant responses to osmotic stress. *Plant,*
712 *Cell & Environment* **25**: 131-139

713 **Xue L, Wei Z, Zhai H, Xing S, Wang Y, He S, Gao S, Zhao N, Zhang H, Liu Q** (2022) The
714 IbPYL8-IbbHLH66-IbbHLH118 complex mediates the abscisic acid-dependent drought response in
715 sweet potato. *New Phytol* **236**: 2151-2171

716 **Yang A, Dai X, Zhang W** (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and

719 dehydration tolerance in rice. *Journal of Experimental Botany* **63**: 2541-2556

720 **Yang J, Wang M, Zhou S, Xu B, Chen P, Ma F, Mao K** (2022) The ABA receptor gene MdPYL9
721 confers tolerance to drought stress in transgenic apple (*Malus domestica*). *Environmental and*
722 *Experimental Botany* **194**: 104695

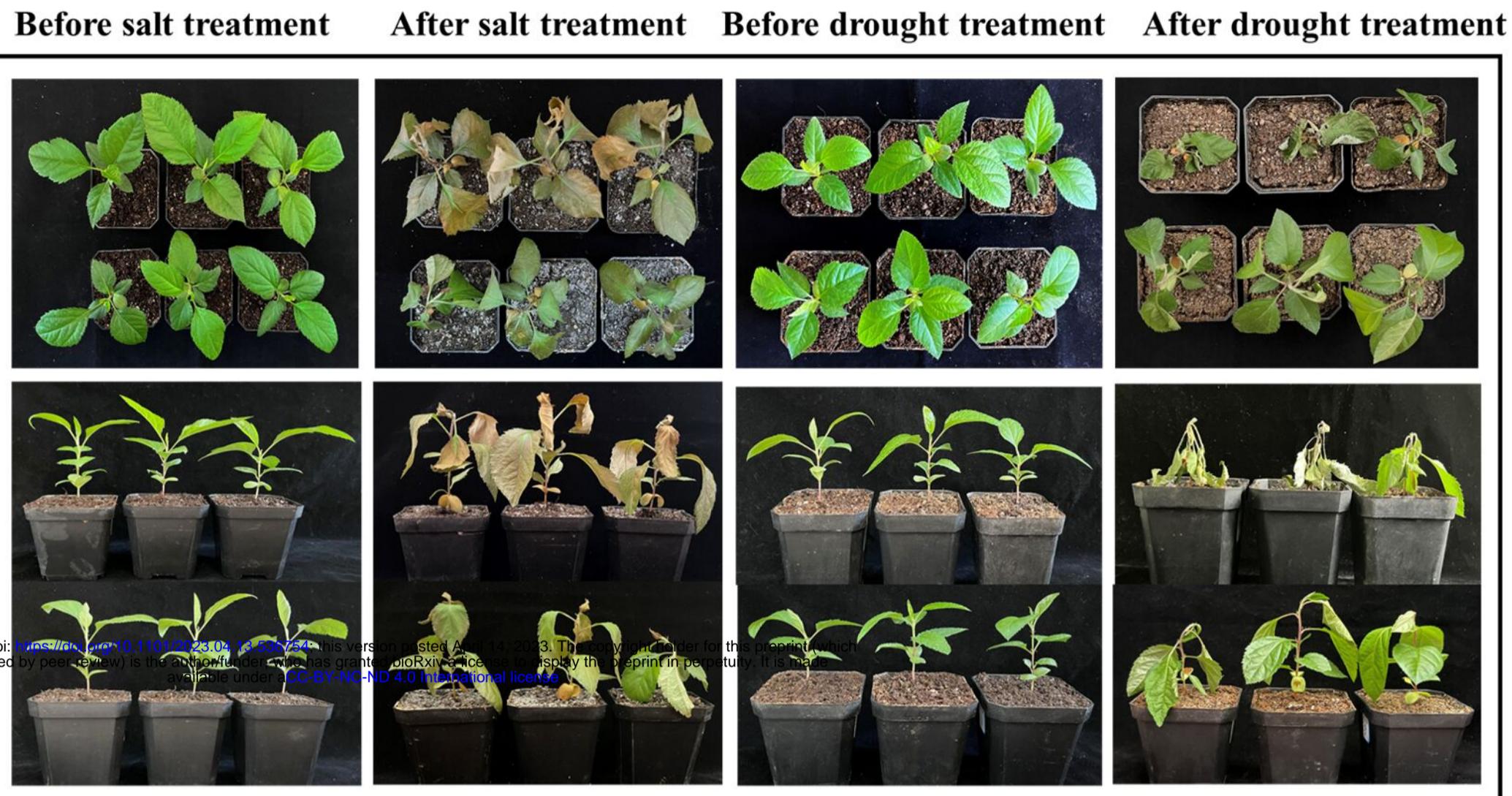
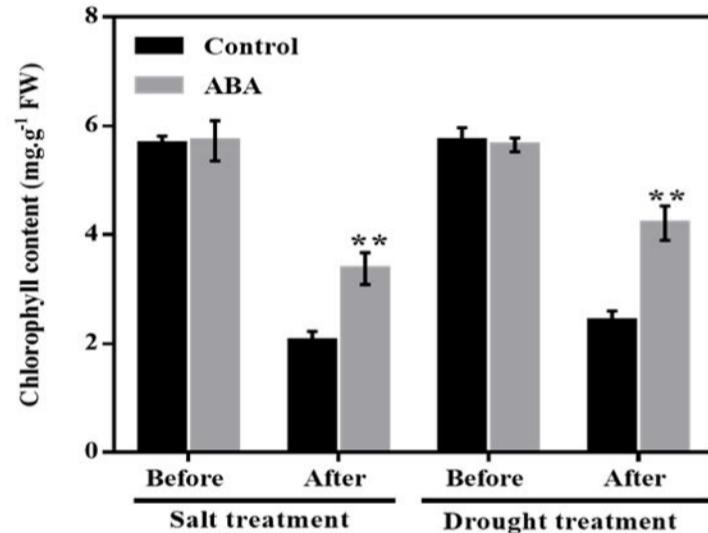
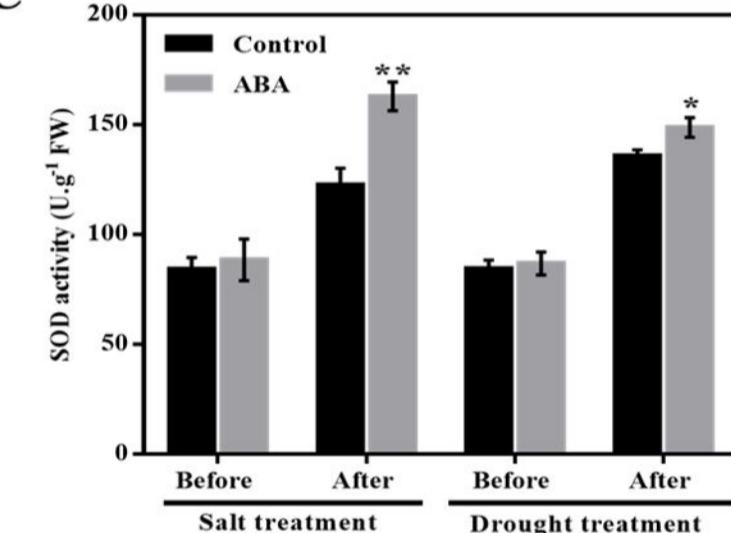
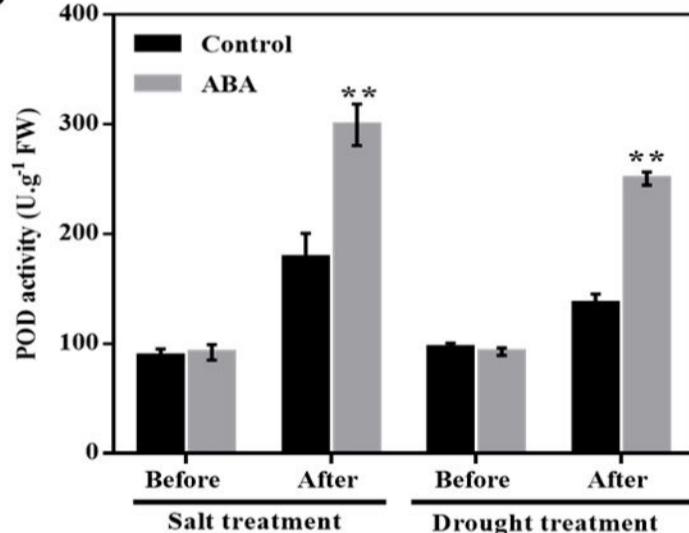
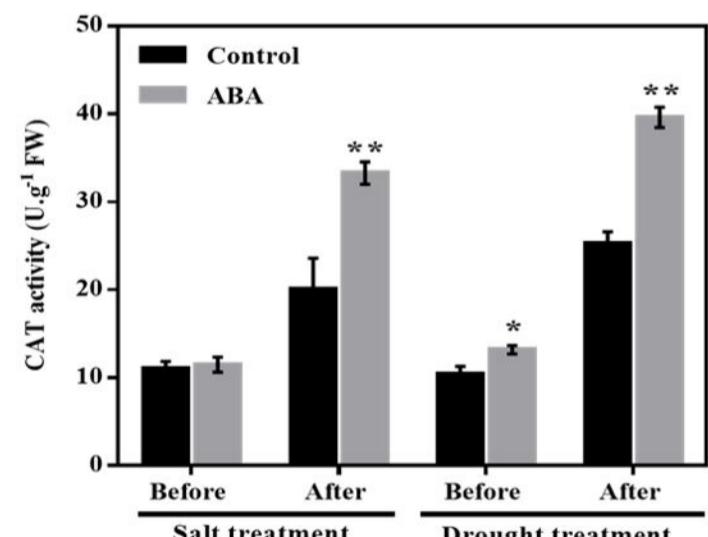
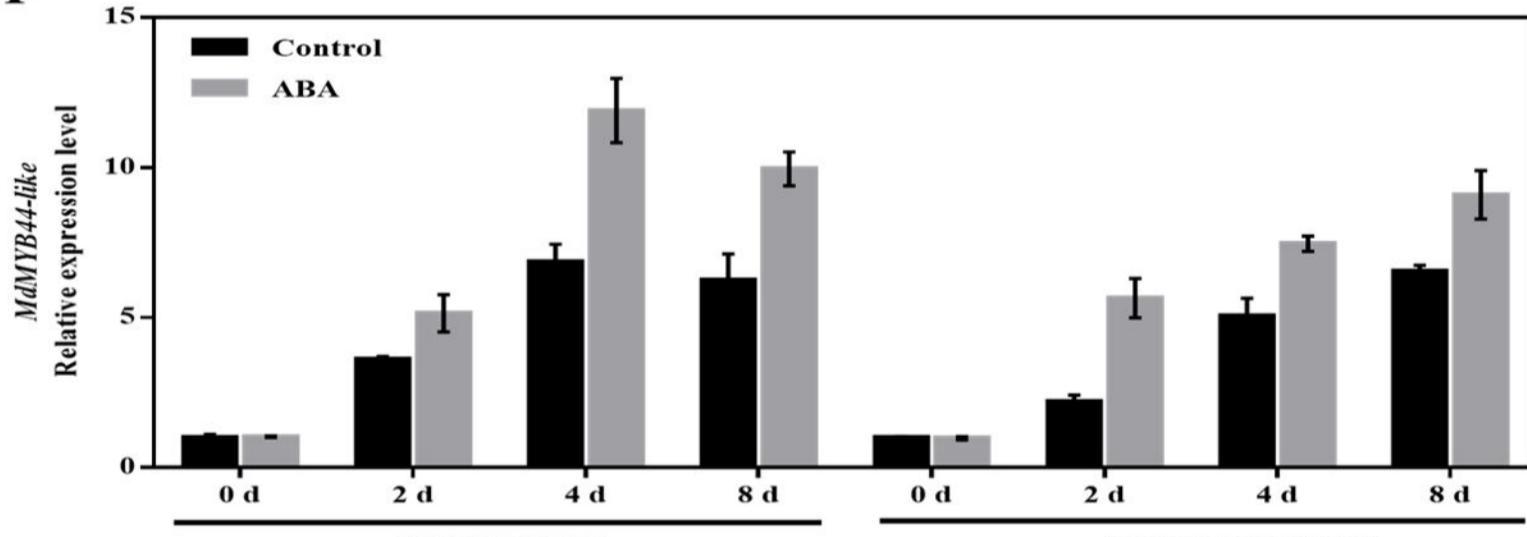
723 **Yu L, Liu W, Guo Z, Li Z, Jiang H, Zou Q, Mao Z, Fang H, Zhang Z, Wang N, Chen X** (2020)
724 Interaction between MdMYB63 and MdERF106 enhances salt tolerance in apple by mediating Na⁺/H⁺
725 transport. *Plant Physiology and Biochemistry* **155**: 464-471

726 **Zhang J, Li X, He Z, Zhao X, Wang Q, Zhou B, Yu D, Huang X, Tang D, Guo X, Liu X** (2013)
727 Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in *Arabidopsis*
728 *thaliana*. *Molecular Biology Reports* **40**: 2633-2644

729 **Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X** (2012) An R2R3 MYB transcription
730 factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses
731 through regulation of defense- and stress-related genes. *New Phytol* **196**: 1155-1170

732 **Zhang Z, Tian C, Zhang Y, Li C, Li X, Yu Q, Wang S, Wang X, Chen X, Feng S** (2020)
733 Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin
734 accumulation in pear. *BMC Plant Biology* **20**: 129

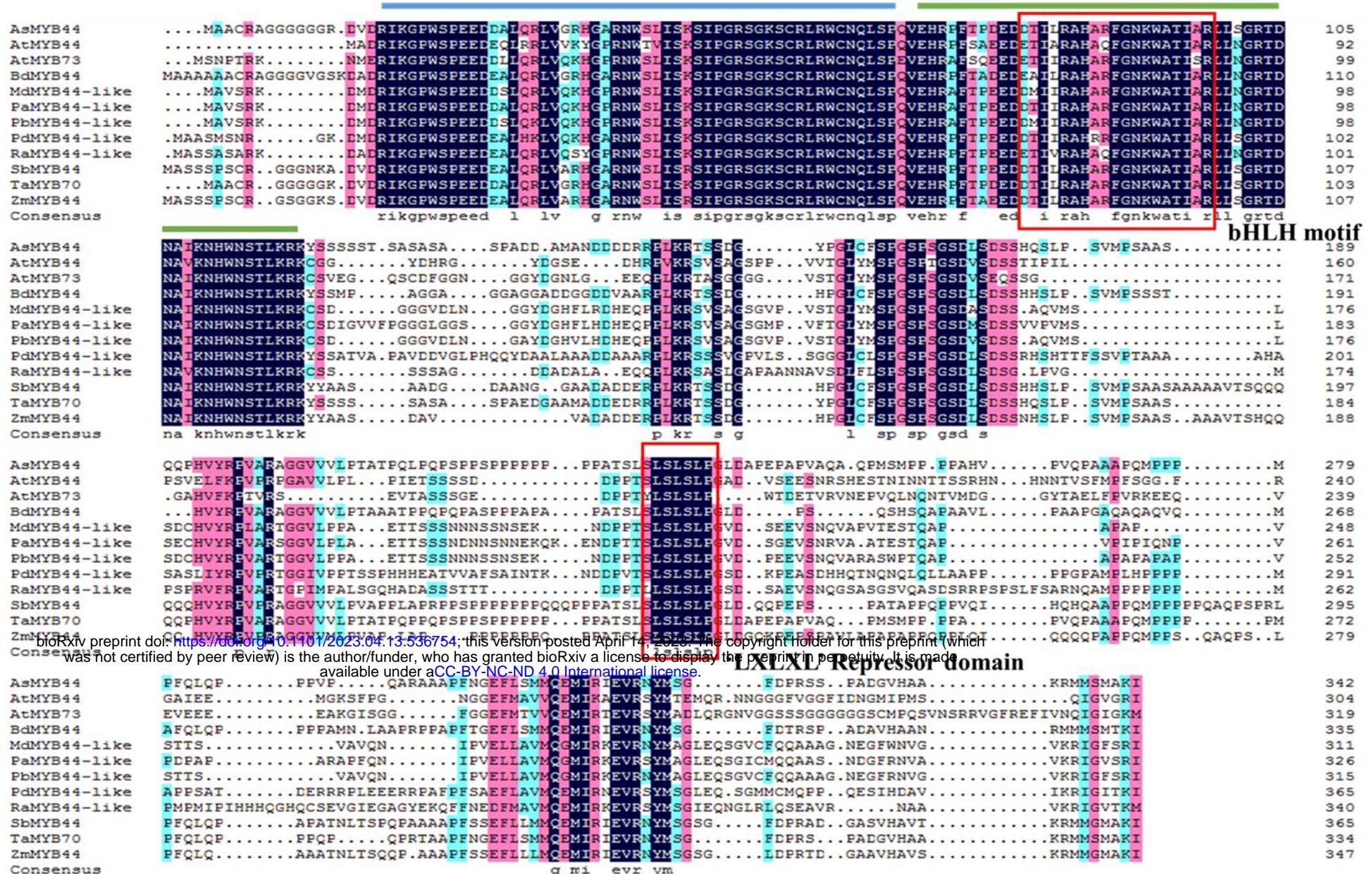
735 **Zhao Y, Chan Z, Xing L, Liu X, Hou Y, Chinnusamy V, Wang P, Duan C, Zhu J** (2013) The
736 unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress
737 signaling. *Cell research* **23**: 1380-1395







738 **Zhao Y, Xing L, Wang X, Hou Y, Gao J, Wang P, Duan C, Zhu X, Zhu J** (2014) The ABA
739 Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of
740 Auxin-Responsive Genes. *Science Signaling* **7**: 53

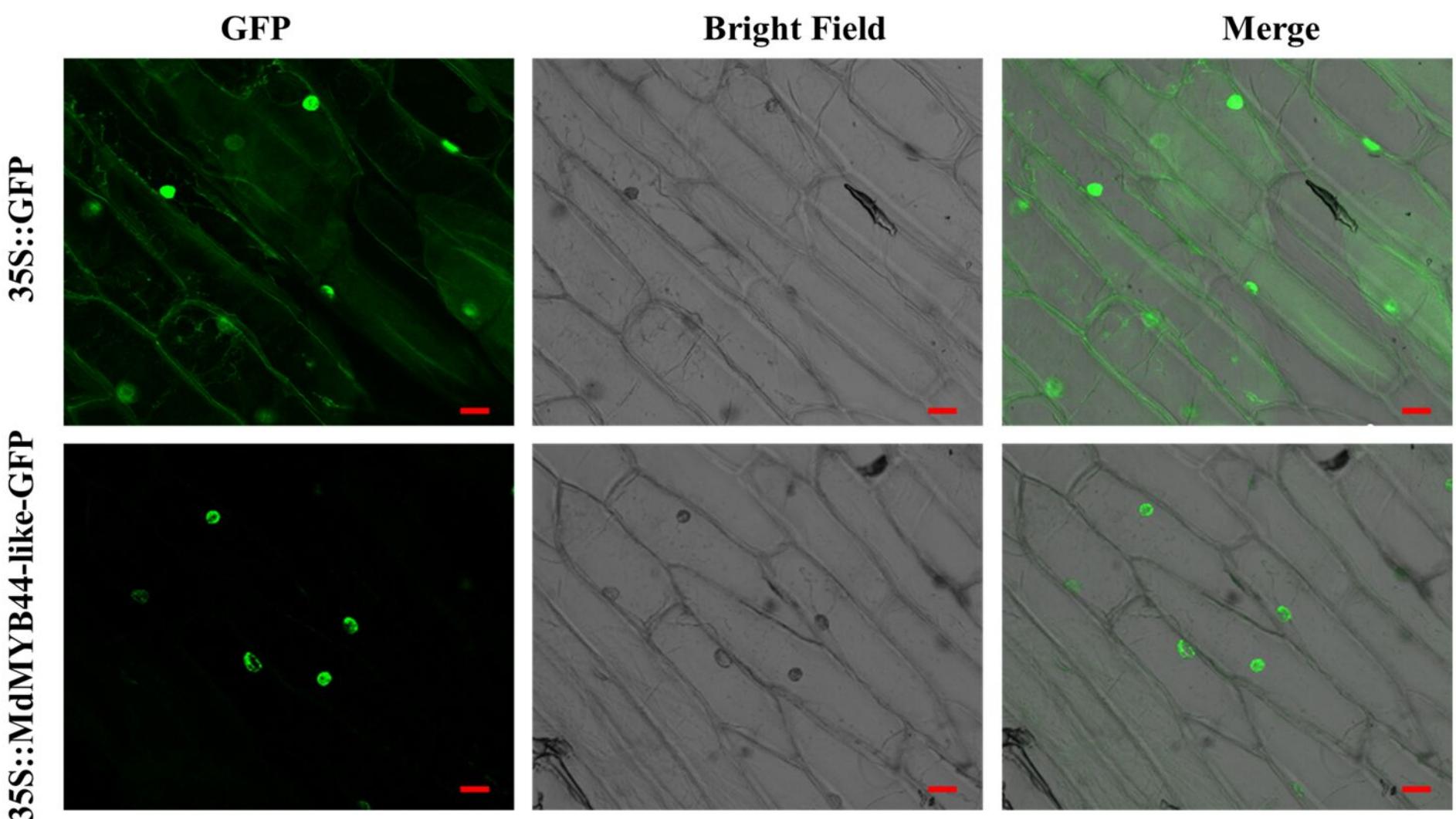
741 **Zhao Y, Yang Z, Ding Y, Liu L, Han X, Zhan J, Wei X, Diao Y, Qin W, Wang P, Liu P, Sajjad M,**
742 **Zhang X, Ge X** (2019) Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to
743 salt stress in transgenic *Arabidopsis*. *Plant Science* **286**: 28-36

744 **Zhu J** (2016) Abiotic Stress Signaling and Responses in Plants. *Cell* **167**: 313-324

745 **Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou D, Yang W, Zhao Y** (2015) The R2R3-type MYB gene
746 OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. *Plant Science*
747 **236**: 146-156

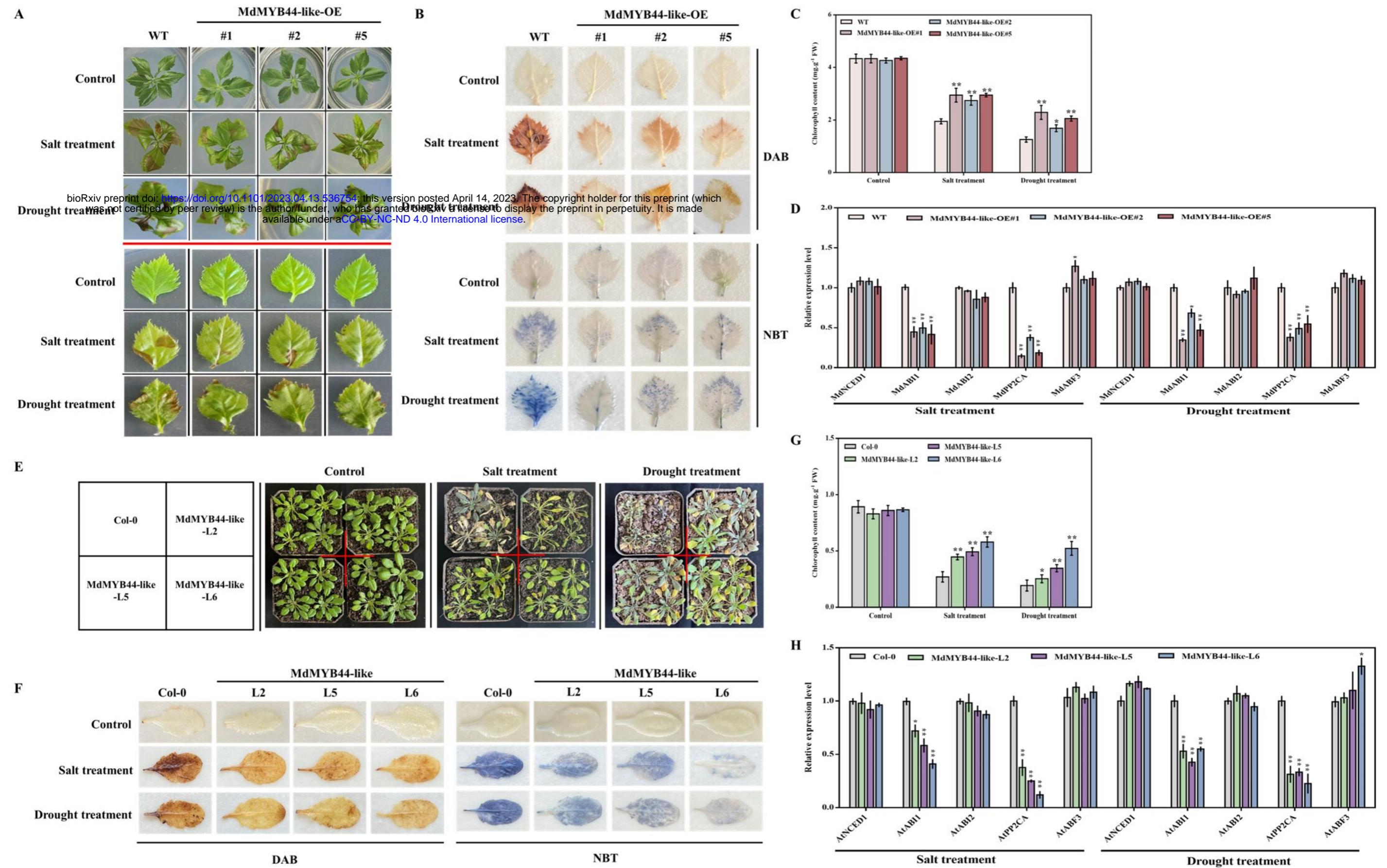

748

A**B****C****D****E****F**

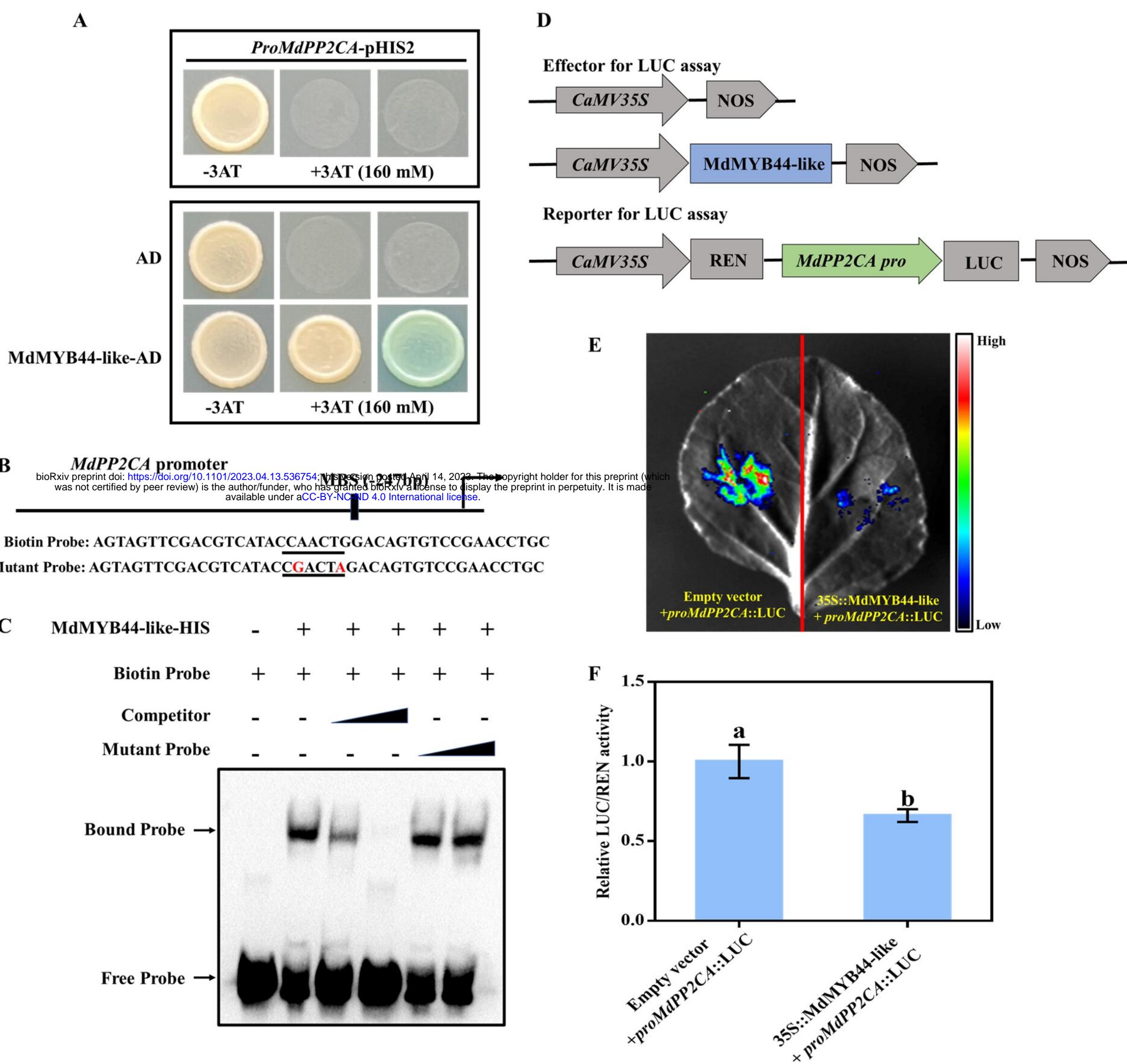

Fig. 1 Effects of exogenous ABA treatment on the salt and drought tolerance of apple plantlets.

(A) Phenotypes of GL-3 apple plantlets treated with or without ABA under salt and drought stress. ABA, apple plantlets with 10 μ M ABA treatment; Control, apple plantlets without ABA treatment. (B) Determination of chlorophyll content in the apple plantlets presented in (A). (C-E) SOD, POD, and CAT activities of the apple plantlets shown in (A). (F) Relative expression level of *MdMYB44-like* in the apple plantlets under salt and drought stress shown in (A). The value of the control at 0 d in each group (Salt treatment and Drought treatment) was set to 1. Values are means of 3 replicates \pm SDs. Tukey's test was used for statistical significance analysis with DPS software (* $P < 0.05$, ** $P < 0.01$).

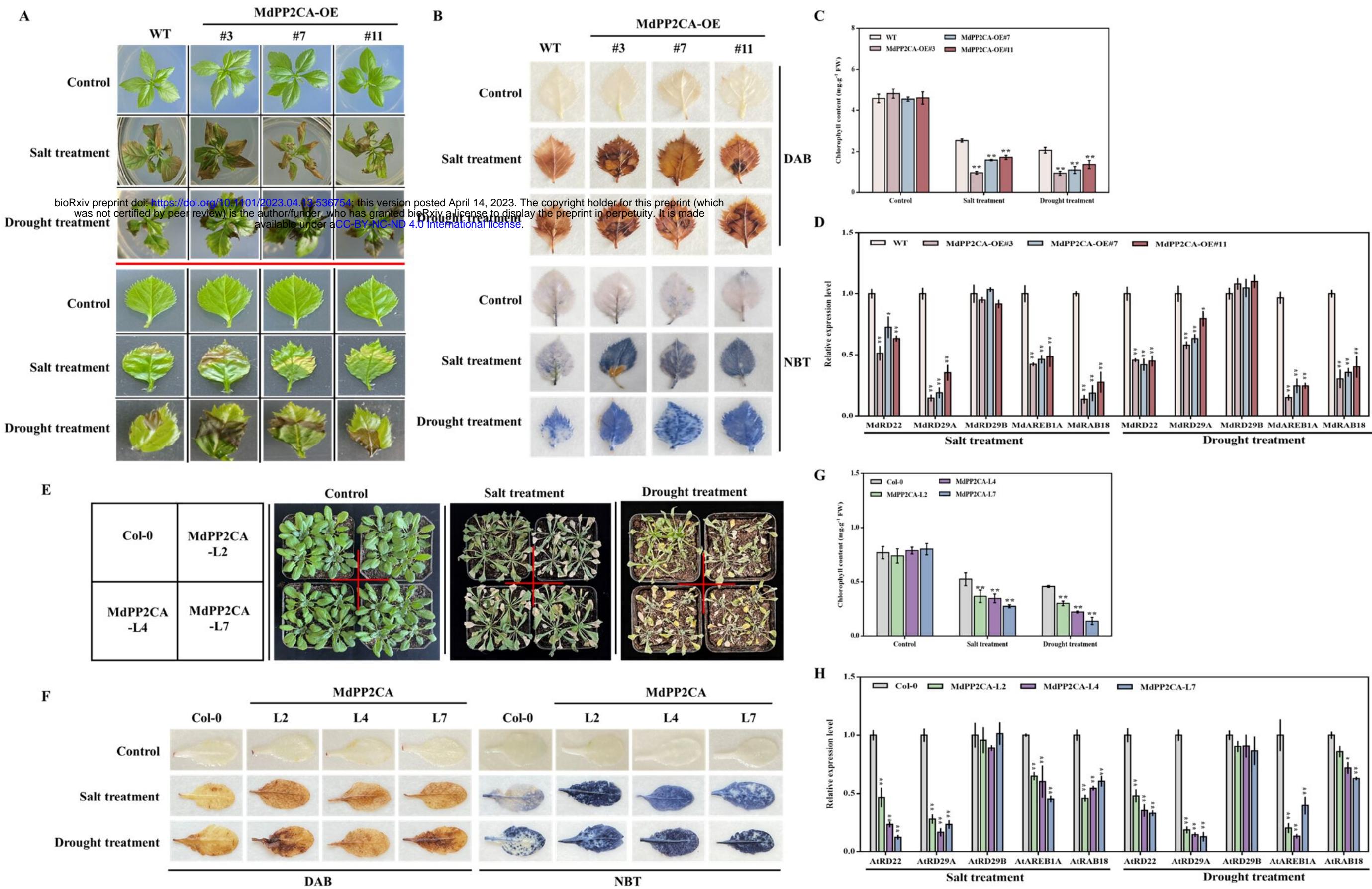
A



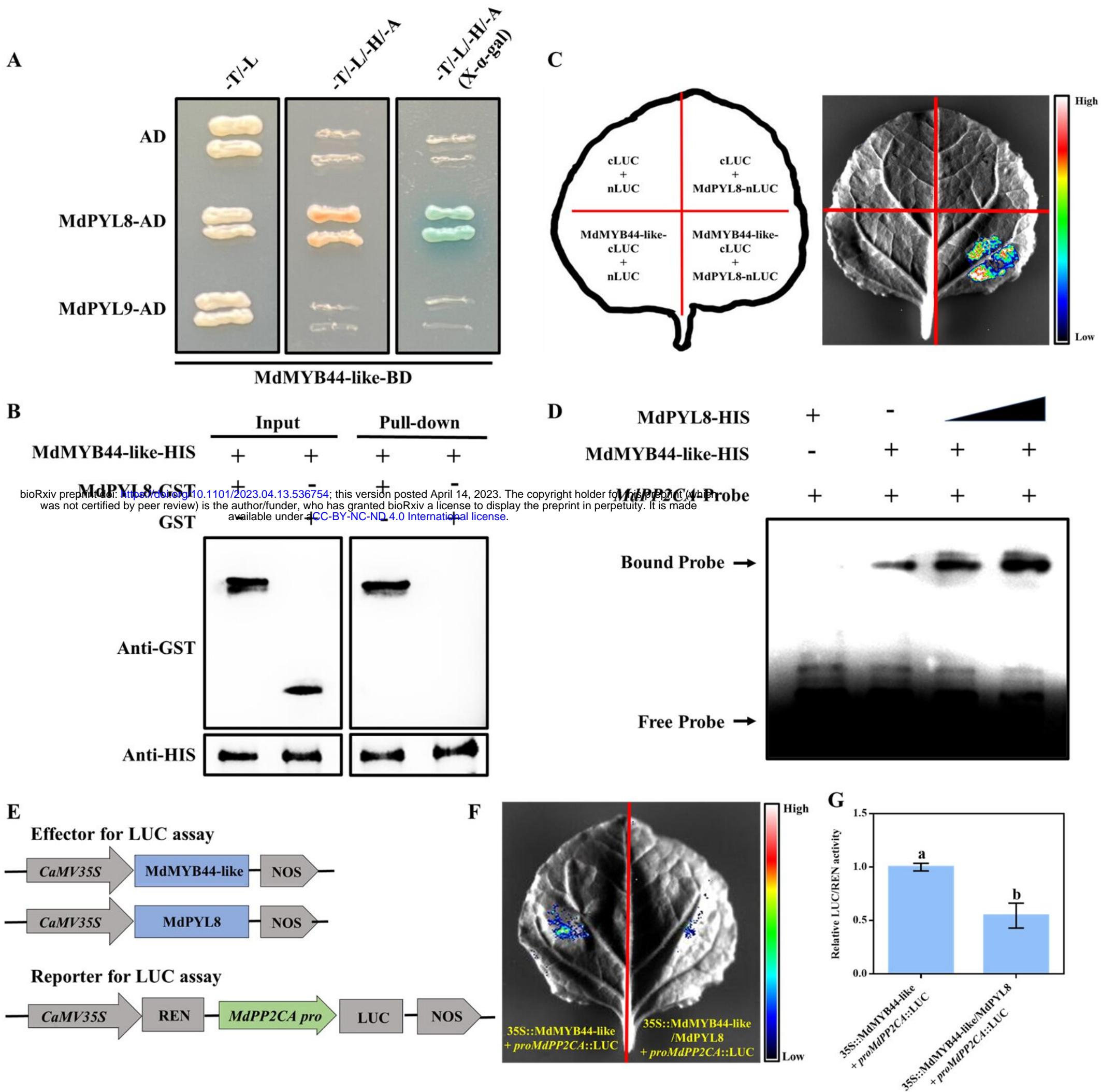
B


Fig. 2 Sequence alignment and subcellular localization of MdMYB44-like.

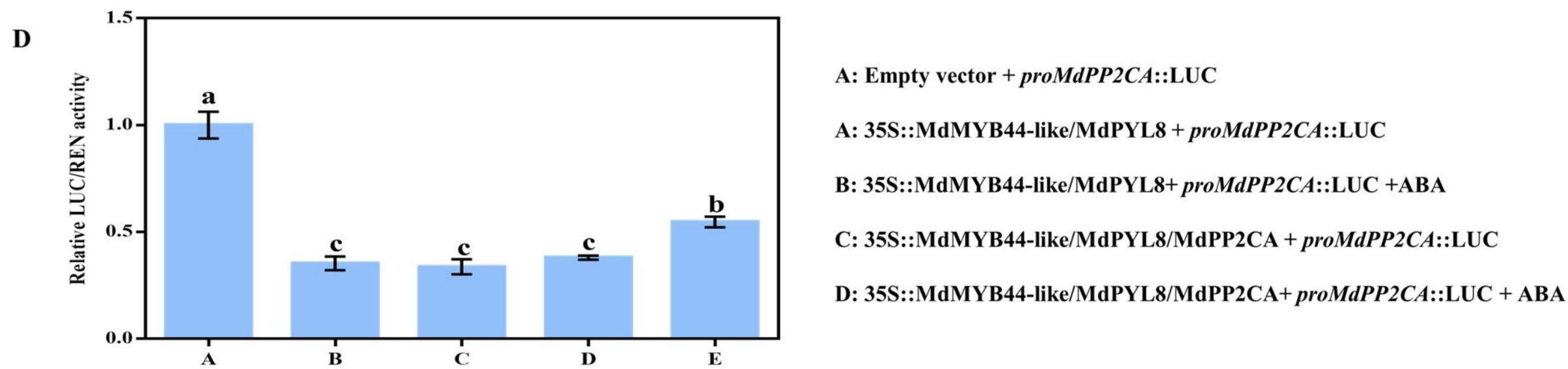
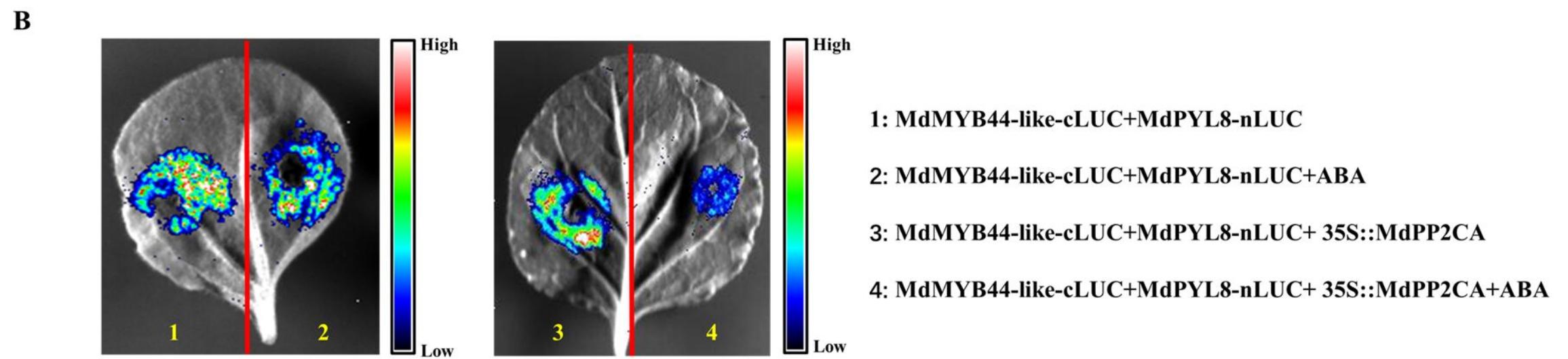
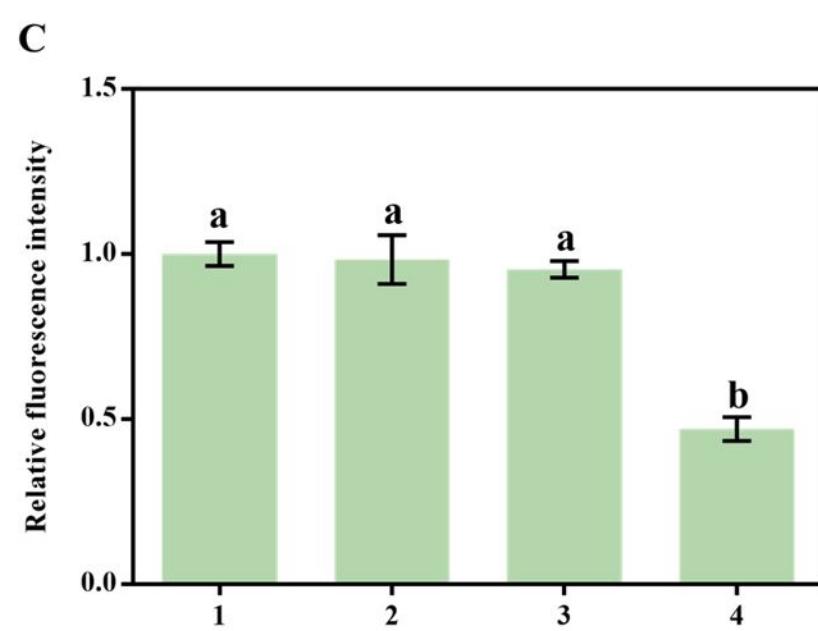
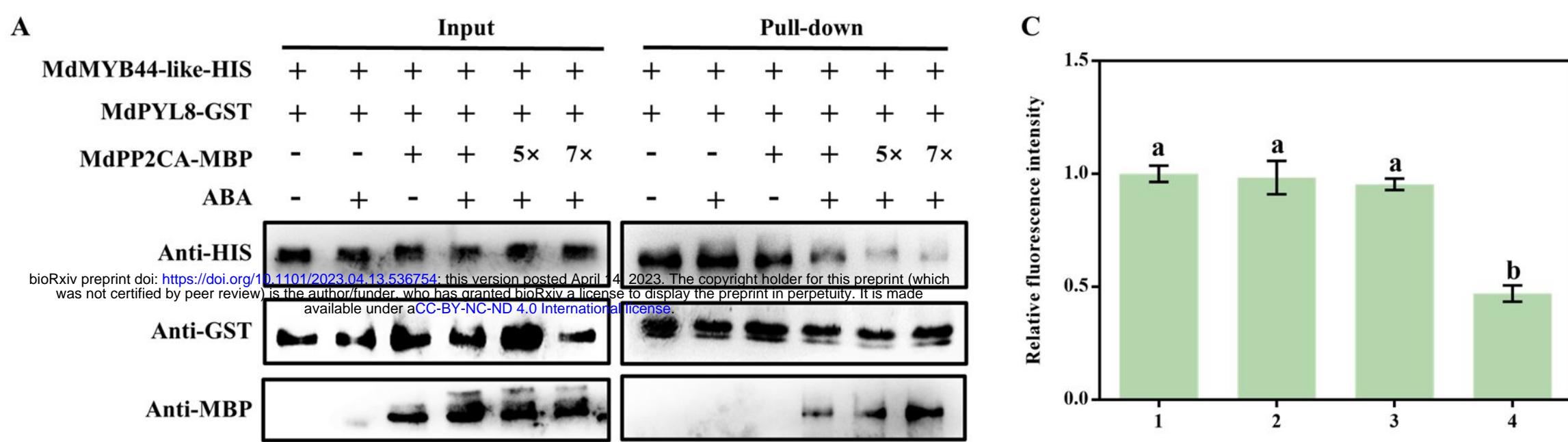
(A) Alignment of multiple sequences for MdMYB44-like and its homologs in different plants. AsMYB44: *Aegilops tauschii* subsp. *Tauschii*, XP_020146152.1; AtMYB44: *Arabidopsis thaliana*, AT5G67300; AtMYB73: *Arabidopsis thaliana*, AT4G37260; BdMYB44: *Brachypodium distachyon*, XP_003575562; MdMYB44-like: *Malus × domestica*, LOC103453725; PaMYB44-like: *Prunus avium*, XM_021974049; PbMYB44-like: *Pyrus × bretschneideri*, XM_009374172; PdMYB44-like: *Phoenix dactylifera*, XM_008801354; RaMYB44-like: *Rhodamnia argentea*, XM_030682060; SbMYB44: *Sorghum bicolor*, XP_002462029; TaMYB70: *Triticum aestivum*, MK024291.1; ZmMYB44: *Zea mays*, PWZ15207.1. (B) Subcellular localization of MdMYB44-like in onion epidermal cells. Bar, 20 μm.


Fig. 3 Overexpression of *MdMYB44-like* enhances the salt and drought resistance in apple and Arabidopsis.

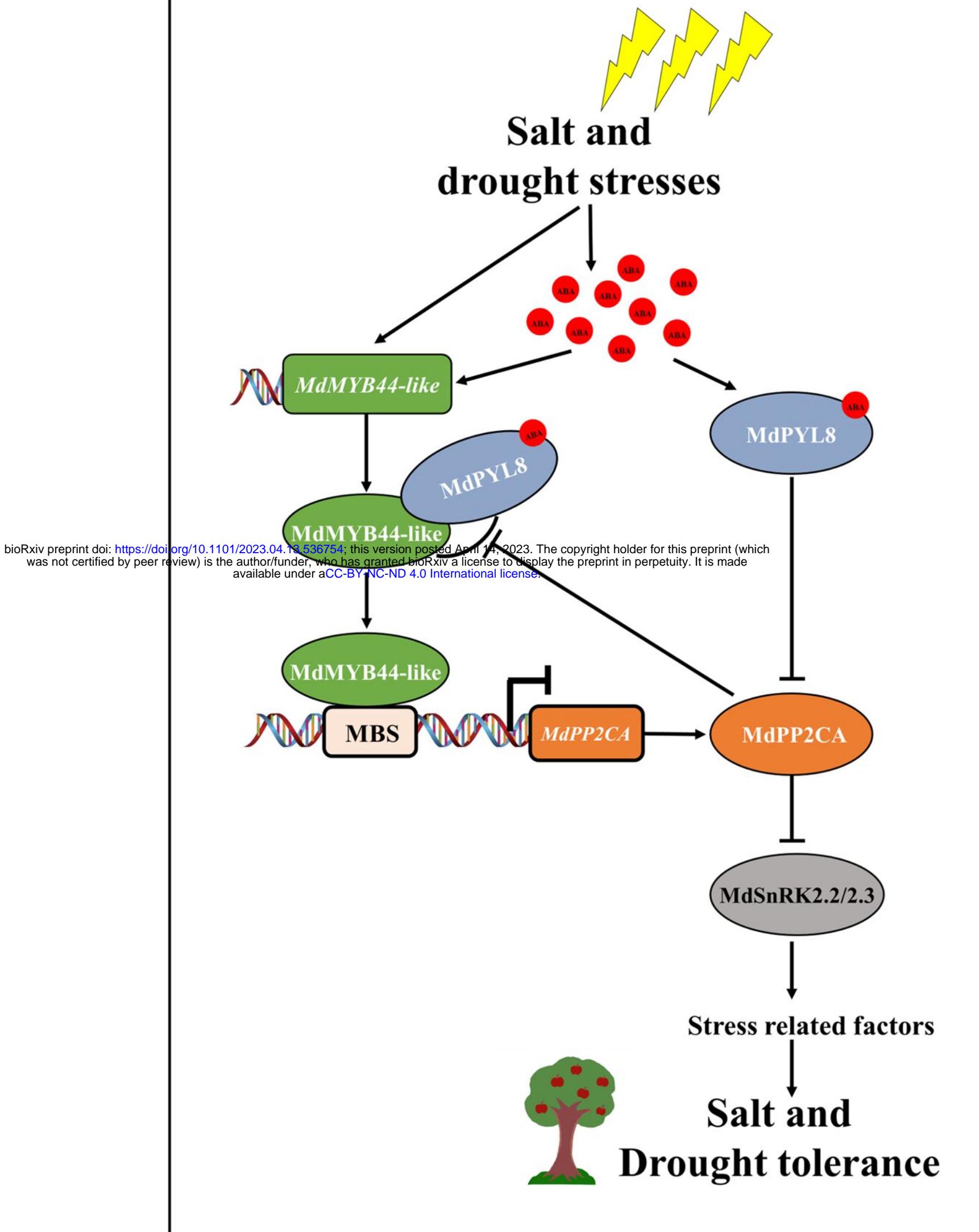
(A) Wild-type (WT) and three *MdMYB44-like*-overexpressing apple lines (*MdMYB44-like*-OE#1, #2, and #5) were cultured under simulated salt and drought stress. 25-day-old apple tissue culture plantlets were cultivated for 10 days under 200 mM NaCl or 300 mM mannitol. (B) DAB and NBT staining of apple leaves from plantlets shown in (A). (C) Chlorophyll content of the apple plantlets shown in (A). (D) Expression levels of ABA signaling-related genes (*MdNCED1*, *MdABI1*, *MdABI2*, *MdPP2CA*, and *MdABF3*) in WT and *MdMYB44-like*-OE apple plantlets under salt and drought stress. (E) Phenotypes of 40-day-old transgenic *Arabidopsis thaliana* plants after salt and drought treatments. Col-0, wild-type; *MdMYB44-like*-L2, L5, and L6, *MdMYB44-like*-overexpressing Arabidopsis plants. (F) DAB and NBT staining of Arabidopsis leaves from plants shown in (E). (G) Chlorophyll content of the Arabidopsis plants shown in (E). (H) Expression analysis of ABA signaling-related genes (*AtNCED1*, *AtABI1*, *AtABI2*, *AtPP2CA*, and *AtABF3*) in Col-0 and *MdMYB44-like* transgenic Arabidopsis plants under salt and drought stress. Values are means of 3 replicates \pm SDs. Tukey's test was used for statistical significance analysis with DPS software (*P < 0.05, **P < 0.01).


Fig. 4 MdMYB44-like binds to the *MdPP2CA* promoter to inhibit transcription.

(A) Y1H assays. The blue plaque indicates the interaction between MdMYB44-like and the *MdPP2CA* promoter. (B) Schematic diagram of the *MdPP2CA* promoter probe used in EMSAs. MBS indicates a potential MdMYB44-like binding site. (C) EMSA demonstrating the binding of MdMYB44-like to the *MdPP2CA* promoter. The mutant probe had two nucleotide changes. Increasing amounts of competitor and mutant probes were added (100- and 200-fold probe concentrations). (D) Constructs used in the dual-luciferase reporter assay. Effectors, 35S::MdMYB44-like; Reporter, *proMdPP2CA::LUC*. (E, F) The effect of MdMYB44-like on *MdPP2CA* promoter activity in tobacco leaves was determined by a dual-luciferase reporter assay. The LUC/REN ratio of the empty vector +*proMdPP2CA::LUC* samples was set to 1. Values are means of 3 replicates \pm SDs. Statistical significance is indicated by different lowercase letters ($P < 0.05$).





Fig. 5 Overexpression of *MdPP2CA* reduces the salt and drought resistance in apple and Arabidopsis.

(A) WT and three *MdPP2CA*-overexpressing apple lines (*MdPP2CA-OE*#3, #7, and #11) were cultured under simulated salt and drought stress. 25-day-old apple tissue culture plantlets were cultivated for 8 days under 200 mM NaCl or 300 mM mannitol. (B) DAB and NBT staining of apple leaves from plantlets shown in (A). (C) Chlorophyll content of the apple plantlets shown in (A). (D) Relative expression levels of salt/drought stress-responsive marker genes (*MdRD22*, *MdRD29A*, *MdRD29B*, *MdAREB1A*, and *MdRAB18*) in WT and *MdPP2CA-OE* apple plantlets under salt and drought treatments. (E) Phenotypes of 40-day-old transgenic Arabidopsis plants under salt and drought treatments. Col-0, wild-type; *MdPP2CA*-L2, L4, and L7, *MdPP2CA*-overexpressing Arabidopsis plants. (F) DAB and NBT staining of Arabidopsis leaves from plants shown in (E). (G) Chlorophyll content of the Arabidopsis plants presented in (E). (H) Expression analysis of salt/drought stress-responsive marker genes (*AtRD22*, *AtRD29A*, *AtRD29B*, *AtAREB1A*, and *AtRAB18*) in Col-0 and *MdPP2CA* transgenic Arabidopsis plants under salt and drought treatments. Values are means of 3 replicates \pm SDs. Tukey's test was used for statistical significance analysis with DPS software (*P < 0.05, **P < 0.01).


Fig. 6 MdMYB44-like interacts with MdPYL8 and synergistically enhances the repression of MdMYB44-like toward the target gene *MdPP2CA*.

(A) Y2H assays. The blue line indicates the interactions between MdMYB44-like and MdPYL8. (B) Pull-down assays demonstrating the in vitro interaction of the MdMYB44-like and MdPYL8 proteins. Purified MdMYB44-like-HIS and MdPYL8-GST proteins were used in this research. (C) MdMYB44-like interacts with MdPYL8 in LCI assays. (D) EMSA results show that MdPYL8 increases the binding of MdMYB44-like to the *MdPP2CA* promoter. The gradient indicates the increasing amounts of MdPYL8-HIS. (E) Constructs used in the dual-luciferase reporter assay. Effectors, 35S::MdMYB44-like and 35S::MdPYL8; Reporter, *proMdPP2CA::LUC*. (F, G) Dual-luciferase reporter assay revealing the effect of MdMYB44-like on the expression of *MdPP2CA* in the presence of MdPYL8. The LUC/REN ratio of the 35S::MdMYB44-like+*proMdPP2CA::LUC* samples was used as the reference and set to 1. Values are means of 3 replicates \pm SDs. Statistical significance is indicated by different lowercase letters ($P < 0.05$).

Fig. 7 MdPP2CA interferes with the physical association of MdMYB44-like and MdPYL8 in the presence of ABA.

(A) Competitive binding of MdMYB44-like and MdPP2CA with MdPYL8 in the presence of ABA. A mixture of MdPP2CA-MBP and MdMYB44-like-HIS was added to immobilized MdPYL8-GST. The gradient shows the increasing concentrations of MdPP2CA-MBP. The symbols '+' and '-' denote the presence and absence of the indicated protein or 10 μ M ABA, respectively. (B) LCI assay demonstrating that the association between MdMYB44-like and MdPYL8 is significantly compromised by coexpression of MdPP2CA in the presence of ABA. +ABA indicates that 10 μ M ABA was added to *N. benthamiana* (4-week-old) leaves 10 h before fluorescence detection. (C) Quantification of the relative fluorescence intensity presented in (B). The value for combination 1 was set to 1. (D) Dual-luciferase reporter assays reveal that the transcriptional inhibition effect of the MdMYB44-like-MdPYL8 complex on the *MdPP2CA* promoter is weakened with the simultaneous addition of MdPP2CA and ABA. +ABA indicates that 10 μ M ABA was added to tobacco leaves 10 h before fluorescence detection. The LUC/REN ratio of combination A was set to 1. Values are means of 3 replicates \pm SDs. Statistical significance is indicated by different lowercase letters ($P < 0.05$).

Fig. 8 Proposed model whereby *MdMYB44-like* modulates ABA signaling-regulated salt and drought tolerance in apple through the *MdPYL8*-*MdPP2CA* module.

Under salt and drought stress, *MdMYB44-like* positively regulates ABA signaling by directly binding to the MBS motif in the *MdPP2CA* promoter and inhibiting its expression. ABA promotes *MdMYB44-like* gene expression, and *MdMYB44-like* interacts with the ABA receptor *MdPYL8* in an ABA-independent manner. *MdPYL8* enhances the binding of *MdMYB44-like* to the *MdPP2CA* promoter and positively regulates *MdMYB44-like*-mediated *MdPP2CA* inactivation. In addition, *MdPP2CA* acts as a negative feedback regulator by interfering with the interaction between *MdMYB44-like* and *MdPYL8* in the presence of ABA, reducing the transcriptional inhibition of *MdPP2CA* by the *MdMYB44-like*-*MdPYL8* complex and balancing ABA signaling in plants. In summary, *MdMYB44-like*, *MdPYL8*, and *MdPP2CA* form a regulatory loop that tightly controls ABA signaling homeostasis when apple plants are exposed to salt and drought stress.

Parsed Citations

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling. *The Plant Cell* 15: 63-78

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

An J, Xu R, Liu X, Su L, Yang K, Wang X, Wang G, You C (2022) Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. *Journal of Experimental Botany* 73: 980-997

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

An JP, Yao JF, Xu RR, You CX, Wang XF, Hao YJ (2018) An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. *Physiol Plant* 164: 279-289

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of *Arabidopsis thaliana* highlights the involvement of ABA in vegetative development. *Journal of Experimental Botany* 56: 2071-2083

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen Q (2013) Barley MLA Immune Receptors Directly Interfere with Antagonistically Acting Transcription Factors to Initiate Disease Resistance Signaling. *The Plant Cell* 25: 1158-1173

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chang L, Zhang Z, Yang H, Li H, Dai H (2007) Detection of Strawberry RNA and DNA Viruses by RT-PCR Using Total Nucleic Acid as a Template. *Journal of Phytopathology* 155: 431-436

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou J (2008) Firefly Luciferase Complementation Imaging Assay for Protein-Protein Interactions in Plants. *Plant Physiology* 146: 323-324

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen K, Guo Y, Song M, Liu L, Xue H, Dai H, Zhang Z (2020) Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. *Horticulture Research* 7: 204

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z (2019) MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. *Plant Biotechnology Journal* 17: 2341-2355

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen K, Tang X, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z (2021) Functional identification of MdMYB5 involved in secondary cell wall formation in apple. *Fruit Research* 1: 1-10

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. *Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms* 1819: 120-128

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen P, Zhi F, Li X, Shen W, Yan M, He J, Bao C, Fan T, Zhou S, Ma F, Guan Q (2022) Zinc-finger protein MdBBX7/MdCOL9, a target of MdMIEL1 E3 ligase, confers drought tolerance in apple. *Plant Physiology* 188: 540-559

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of *Arabidopsis thaliana*. *The Plant Journal* 16: 735-743

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS (2013) An *Arabidopsis* R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. *FEBS Letters* 587: 1773-1778

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dai H, Li W, Han G, Yang Y, Ma Y, Li H, Zhang Z (2013) Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. *Scientia Horticulturae* 164: 202-208

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ding Y, Avramova Z, Fromm M (2011) The *Arabidopsis* trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. *The Plant Journal* 66: 735-744

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in *Arabidopsis thaliana*. *Journal of Genetics and Genomics* 36: 17-29

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Etehadnia M, Waterer DR, Tanino KK (2008) The Method of ABA Application Affects Salt Stress Responses in Resistant and Sensitive Potato Lines. Journal of Plant Growth Regulation 27: 331-341

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S, Cutler SR, Sheen J, Rodriguez PL, Zhu J (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462: 660-664

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9: 436-442

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gao J, Shen X, Zhang Z, Peng R, Xiong A, Xu J, Zhu B, Zheng J, Yao Q (2011) The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture (PCTOC) 106: 235-242

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo J, Yang X, Weston DJ, Chen J (2011) Abscisic Acid Receptors: Past, Present and Future. Journal of Integrative Plant Biology 53: 469-479

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo L, Yang H, Zhang X, Yang S (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. Journal of Experimental Botany 64: 1755-1767

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guóth A, Tari I, Gallé Á, Csiszár J, Pécsvárdi A, Cseuz L, Erdei L (2009) Comparison of the Drought Stress Responses of Tolerant and Sensitive Wheat Cultivars During Grain Filling: Changes in Flag Leaf Photosynthetic Activity, ABA Levels, and Grain Yield. Journal of Plant Growth Regulation 28: 167-176

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

He Y, Li W, Lv J, Jia Y, Wang M, Xia G (2012) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. Journal of Experimental Botany 63: 1511-1522

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34: 733-739

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLA Modulates Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell 19: 884-894

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jaradat MR, Feurtado JA, Huang D, Lu Y, Cutler AJ (2013) Multiple roles of the transcription factor AtMYB1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biol 13: 192

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jung C, Nguyen NH, Cheong J (2020) Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. International Journal of Molecular Sciences 21: 9517

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kang J, Choi H, Im M, Kim SY (2002) Arabidopsis Basic Leucine Zipper Proteins That Mediate Stress-Responsive Abscisic Acid Signaling. The Plant Cell 14: 343-357

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Khadri M, Tejera NA, Lluch C (2006) Alleviation of Salt Stress in Common Bean (*Phaseolus vulgaris*) by Exogenous Abscisic Acid Supply. Journal of Plant Growth Regulation 25: 110-119

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim W, Lee Y, Park J, Lee N, Choi G (2013) HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant Cell Physiol 54: 555-572

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. Journal of Experimental Botany 61: 3199-3210

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lei Y, Sun Y, Wang B, Yu S, Dai H, Li H, Zhang Z, Zhang J (2020) Woodland strawberry WRKY71 acts as a promoter of flowering via a transcriptional regulatory cascade. Horticulture research 7: 137

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li C, Ng CKY, Fan L (2015) MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany 114: 80-91

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li D, Li Y, Zhang L, Wang X, Zhao Z, Tao Z, Wang J, Wang J, Lin M, Li X, Yang Y (2014) Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44. International Journal of Molecular Sciences 15: 8473-8490

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ma L, Hu L, Fan J, Amombo E, Khaldun ABM, Zheng Y, Chen L (2017) Cotton GhERF38 gene is involved in plant response to salt/drought and ABA. Ecotoxicology 26: 841-854

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ma Y, Xue H, Zhang F, Jiang Q, Yang S, Yue P, Wang F, Zhang Y, Li L, He P, Zhang Z (2021) The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression. Plant Biotechnology Journal 19: 311-323

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mao H, Jian C, Cheng X, Chen B, Mei F, Li F, Zhang Y, Li S, Du L, Li T, Hao C, Wang X, Zhang X, Kang Z (2022) The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnology Journal 20: 846-861

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M (2023) The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. Plant Physiology 191: 747-771

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal 25: 295-303

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miao J, Li X, Li X, Tan W, You A, Wu S, Tao Y, Chen C, Wang J, Zhang D, Gong Z, Yi C, Yang Z, Gu M, Liang G, Zhou Y (2020) OsPP2C09, a negative regulatory factor in abscisic acid signalling, plays an essential role in balancing plant growth and drought tolerance in rice. New Phytol 227: 1417-1433

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang H, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira K, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signalling. Nature 462: 609-614

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nutan KK, Singla-Pareek SL, Pareek A (2019) The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in *Arabidopsis* and rice. Journal of Experimental Botany 2: 684-698

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Qi L, Liu S, Li C, Fu J, Jing Y, Cheng J, Li H, Zhang D, Wang X, Dong X, Han R, Li B, Zhang Y, Li Z, Terzaghi W, Song CP, Lin R, Gong Z, Li J (2020) PHYTOCHROME-INTERACTING FACTORS Interact with the ABA Receptors PYL8 and PYL9 to Orchestrate ABA Signaling in Darkness. Mol Plant 13: 414-430

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnology Journal 10: 2-11

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Saez A, Apostolova N, Gonzalez Guzman M, Gonzalez Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal 37: 354-369

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sah SK, Reddy KR, Li J (2016) Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science 7: 571

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends in Plant Science 9: 236-243

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Seo PJ, Xiang F, Qiao M, Park J, Lee YN, Kim S, Lee Y, Park WJ, Park C (2009) The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in *Arabidopsis*. Plant Physiology 151: 275-289

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shi Y, Liu X, Zhao S, Guo Y (2022) The PYR-PP2C-CKL2 module regulates ABA-mediated actin reorganization during stomatal closure. New Phytol 233: 2168-2184

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD (2013) AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73: 483-495

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shinozaki K, Yamaguchi-Shinozaki K, Sekiz M (2003) Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6: 410-417

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. Frontiers in Plant Science 7: 1884

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in *Arabidopsis thaliana*. Current Opinion in Plant Biology 4: 447-456

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sun X, Sun C, Li Z, Hu Q, Han L, Luo H (2016) AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. Plant, Cell & Environment 39: 1320-1337

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tran LP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and Functional Analysis of *Arabidopsis* Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter. The Plant Cell 16: 2481-2498

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang K, He J, Zhao Y, Wu T, Zhou X, Ding Y, Kong L, Wang X, Wang Y, Li J, Song C, Wang B, Yang S, Zhu J, Gong Z (2018) EAR1 Negatively Regulates ABA Signaling by Enhancing 2C Protein Phosphatase Activity. The Plant Cell 30: 815-834

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Frontiers in Plant Science 6: 458

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment 25: 131-139

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xue L, Wei Z, Zhai H, Xing S, Wang Y, He S, Gao S, Zhao N, Zhang H, Liu Q (2022) The IbPYL8-IbbHLH66-IbbHLH118 complex mediates the abscisic acid-dependent drought response in sweet potato. New Phytol 236: 2151-2171

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yang A, Dai X, Zhang W (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany 63: 2541-2556

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yang J, Wang M, Zhou S, Xu B, Chen P, Ma F, Mao K (2022) The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple (*Malus domestica*). Environmental and Experimental Botany 194: 104695

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yu L, Liu W, Guo Z, Li Z, Jiang H, Zou Q, Mao Z, Fang H, Zhang Z, Wang N, Chen X (2020) Interaction between MdMYB63 and MdERF106 enhances salt tolerance in apple by mediating Na⁺/H⁺ transport. Plant Physiology and Biochemistry 155: 464-471

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang J, Li X, He Z, Zhao X, Wang Q, Zhou B, Yu D, Huang X, Tang D, Guo X, Liu X (2013) Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in *Arabidopsis thaliana*. Molecular Biology Reports 40: 2633-2644

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X (2012) An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to *Bipolaris sorokiniana* and drought stresses through regulation of defense- and stress-related genes. New Phytol 196: 1155-1170

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang Z, Tian C, Zhang Y, Li C, Li X, Yu Q, Wang S, Wang X, Chen X, Feng S (2020) Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear. BMC Plant Biology 20: 129

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao Y, Chan Z, Xing L, Liu X, Hou Y, Chinnusamy V, Wang P, Duan C, Zhu J (2013) The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell research 23: 1380-1395

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao Y, Xing L, Wang X, Hou Y, Gao J, Wang P, Duan C, Zhu X, Zhu J (2014) The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes. *Science Signaling* 7: 53

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao Y, Yang Z, Ding Y, Liu L, Han X, Zhan J, Wei X, Diao Y, Qin W, Wang P, Liu P, Sajjad M, Zhang X, Ge X (2019) Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic *Arabidopsis*. *Plant Science* 286: 28-36

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhu J (2016) Abiotic Stress Signaling and Responses in Plants. *Cell* 167: 313-324

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou D, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. *Plant Science* 236: 146-156

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)