

1 **Four additional natural 7-deazaguanine derivatives in phages and how to 2 make them**

3 Liang Cui¹, Seetharamsingh Balalkundu^{1,2}, Chuanfa Liu², Hong Ye², Jacob Hourihan³, Astrid Rausch^{3,a},
4 Christopher Hauß^{3,b}, Emelie Nilsson⁴, Matthias Hoetzinger^{4,c}, Karin Holmfeldt⁴, Weijia Zhang⁵, Laura
5 Martinez-Alvarez⁵, Xu Peng⁵, Denise Tremblay^{6,7,8}, Sylvain Moinau^{6,7,8}, Natalie Solonenko⁹, Matthew
6 B. Sullivan^{9,10}, Yan-Jiun Lee¹¹, Andrew Mulholland¹¹, Peter Weigele¹¹, Valérie de Crécy-Lagard^{3,12},
7 Peter C. Dedon^{1,13}, Geoffrey Hutinet^{3,*}.

8 ¹ Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary
9 Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602,
10 Singapore.

11 ² School of Biological Sciences, Nanyang Technological University, Singapore

12 ³ Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.

13 ⁴ Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391
14 82 Kalmar, Sweden

15 ⁵ Department of Biology, University of Copenhagen, Copenhagen N, Denmark.

16 ⁶ Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie,
17 Université Laval, Québec City, Québec, Canada.

18 ⁷ Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec
19 City, Québec, Canada.

20 ⁸ Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Québec,
21 Canada.

22 ⁹ Department of Microbiology, Ohio State University, Columbus, Ohio, USA

23 ¹⁰ Department of Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science,
24 Ohio State University, Columbus, Ohio, USA

25 ¹¹ Research Department, New England Biolabs, Ipswich, MA, 01938, USA.

26 ¹² University of Florida, Genetics Institute, Gainesville, Florida 32610, USA.

27 ¹³ Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts
28 Institute of Technology, Cambridge, MA 02139, USA.

29 * To whom correspondence should be addressed. Email: ghutinet@ufl.edu

30 Present Address:

31 ^a Hirsch-Apotheke Wöllstein, Alzeyer Str. 5, 55597 Wöllstein, Germany

32 ^b Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Max-
33 von-Laue-Str. 9, 60438 Frankfurt am Main, Germany

34 ^c Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway

1 **ABSTRACT**

2 Bacteriophages and bacteria are engaged in a constant arms race, continually evolving new
3 molecular tools to survive one another. To protect their genomic DNA from restriction
4 enzymes, the most common bacterial defence systems, double-stranded DNA phages have
5 evolved complex modifications that affect all four bases. This study focuses on modifications
6 at position 7 of guanines. Eight derivatives of 7-deazaguanines were identified, including four
7 previously unknown ones: 2'-deoxy-7-(methylamino)methyl-7-deazaguanine (mdPreQ₁), 2'-
8 deoxy-7-(formylamino)methyl-7-deazaguanine (fdPreQ₁), 2'-deoxy-7-deazaguanine (dDG),
9 and 2'-deoxy-7-carboxy-7-deazaguanine (dCDG). These modifications are inserted in DNA by
10 a guanine transglycosylase named DpdA. Three subfamilies of DpdA had been previously
11 characterized: bDpdA, DpdA1, and DpdA2. Two additional subfamilies were identified in this
12 work: DpdA3, which allows for complete replacement of the guanines, and DpdA4, which is
13 specific to archaeal viruses. Transglycosylases have now been identified in all phages and
14 viruses carrying 7-deazaguanine modifications, indicating that the insertion of these
15 modifications is a post-replication event. Three enzymes were predicted to be involved in the
16 biosynthesis of these newly identified DNA modifications: 7-carboxy-7-deazaguanine
17 decarboxylase (DpdL), dPreQ₁ formyltransferase (DpdN), and dPreQ₁ methyltransferase
18 (DpdM), which was experimentally validated and harbors a unique fold not previously
19 observed for nucleic acid methylases.

20

1 INTRODUCTION

2 Because of their intrinsic properties, such as resistance to nucleases (1), or fluorescence
3 quenching (2), 7-deazaguanine derivatives have long been employed in synthetic biology. Two
4 of these derivatives are tRNA modifications, queuosine (Q) and archaeosine (G⁺). They are
5 respectively involved in the avoidance of translational errors and in tRNA stabilization (3).
6 Recently, 7-deazaguanine derivatives have been found in DNA as components of
7 restriction/modification systems in bacteria (4, 5), and anti-restriction systems in phages (4, 6,
8 7). Epigenetic modifications are common among phages (8–11) to resists to various bacterial
9 defense systems (11–16).

10 Members of a transglycosylase superfamily are responsible for the incorporation of 7-
11 deazaguanine derivatives into both tRNA and DNA. Proteins of the Tgt subgroup modify
12 tRNA, while DpdA subgroup proteins modify DNA (3), both by replacing the target guanine
13 with a specific 7-deazaguanine derivative. Tgt enzyme 7-deazaguanine substrates differ
14 between organisms. One of these substrates is queuine (q), which is inserted at position 34 of
15 the GUN anticodon tRNAs in eukaryotes and in certain bacteria (3). 7-aminomethyl-7-
16 deazaguanine (preQ₁) is inserted at the same position in most bacteria. 7-cyano-7-deazaguanine
17 (preQ₀) is inserted at position 15 or 16 of many tRNAs in archaea (3). Similarly, all DpdA
18 enzymes tested thus far insert preQ₀ in DNA (4, 5, 7), and sequence specificity has been
19 identified for one of them (17). DpdA homologs are divided in three groups: bacterial DpdA
20 (bDpdA), and two phage DpdA (DpdA1 and DpdA2) (7). Of note, DpdA homologs have not
21 been identified in some of the phages that contain modified 7-deazaguanine derivatives (6, 7).

22 PreQ₀, the key intermediate in all experimentally validated pathways is synthesized from
23 guanosine triphosphate (GTP) by a pathway involving four proteins (FolE, QueD, QueE and
24 QueC, see Figure 1A) found in archaea, bacteria, and some phages (3, 7). The pathways then
25 diverge, producing various modifications. PreQ₀ is reduced by QueF into preQ₁ in bacteria
26 through a NADPH dependent reaction (18). QueF proteins can be categorized into two
27 subgroups. Members of the unimodular subgroup harbor the NADPH binding site and the
28 catalytic residues on the same domain. Members of the bimodular subgroup contain two
29 repeating domains: the N-terminal domain with the NADPH binding site, and the C-terminal
30 domain with the catalytic residues (19). PreQ₁ is inserted in tRNA by the bacterial tRNA
31 transglycosylase bTGT (20) and further modified in two steps to produce Q (3). PreQ₀ is
32 directly inserted in tRNA in archaea by arcTGT, where it is further modified into G⁺. The
33 distant TGT paralog, ArcS (21), as well as Gat-QueC, a fusion protein of QueC and a glutamine
34 amidotransferase (22), and QueF-L, a paralog of the unimodular QueF that lacks the NADPH-
35 dependent reduction activity (22, 23), have been found as interchangeable proteins for this
36 reaction.

37 G⁺ was the first 7-deazaguanine derivative found in phages, replacing 25 % of the Gs in the
38 dsDNA genome of *Enterobacteri*a phage 9g. The enzymes FolE, QueD, QueE and Gat-QueC
39 are all encoded by this phage, as is DpdA1 (4), which inserts preQ₀ into DNA (7). A related
40 phage, *Escherichia* phage CAjan, that encodes QueC rather than Gat-QueC, was found to
41 replace 32% of its Gs with preQ₀ (7). Furthermore, two other 7-deazaguanine derivatives were
42 discovered in phage genomes: 7-amido-7-deazaguanine (ADG), that modifies *Campylobacter*
43 phage CP220 DNA at 100 % (6), and preQ₁ that modifies 30 % of the guanines in Halovirus
44 HVT-1, a virus that encodes a QueF (7). No DpdA was previously detected in these two last
45 viruses. In bacteria, bDpdA, in complex with DpdB, inserts preQ₀ into DNA, that is further
46 modified into ADG by DpdC (5).

1 In our bioinformatics effort to expand the set of phages that contain 7-deazaguanine derivatives
2 in their genome, we identified four unique 7-deazaguanine derivatives not previously observed
3 in DNA: 7-deazaguanine (DG), 7-(methylamino)methyl-7-deazaguanine (mpreQ₁), 7-
4 (formylamino)methyl-7-deazaguanine (fpreQ₁) and 7-carboxy-7-deazaguanine (CDG). We
5 predicted and validated a preQ₁ methyltransferase enzyme and predicted the involvement of
6 five additional proteins in the synthesis of these modifications, including two additional
7 subfamilies of DpdA, DpdA3 and DpdA4, and three enzymes with unprecedented chemistry.

8

9 MATERIAL AND METHODS

10 Strains and plasmids

11 All strains and plasmids used in this study are referenced in Table S1 and S2, respectively.

12 Mass spectrometry analysis

13 DNA analysis followed our previous publication (7). Purified DNA (10 µg) was hydrolyzed in
14 10 mM Tris-HCl (pH 7.9) with 1 mM MgCl₂ with Benzonase (20U), DNase I (4U), calf
15 intestine phosphatase (17U) and phosphodiesterase (0.2U) for 16 h at ambient temperature.
16 Following passage through a 10 kDa filter to remove proteins, the filtrate was analyzed by
17 liquid chromatography-coupled triple quadrupole mass spectrometry (LC-MS/MS).

18 Quantification of the modified 2'-deoxynucleosides (dADG, dQ, dPreQ₀, dPreQ₁, mdPreQ₁,
19 dG⁺, dCDG and m⁶dA) and the four canonical deoxyribonucleosides (dA, dT, dG, and dC)
20 was achieved by liquid chromatography-coupled triple quadrupole mass spectrometry (LC-
21 MS/MS) and liquid chromatography-coupled diode array detector (LC-DAD), respectively.
22 Aliquots of hydrolysed DNA were injected onto a Phenomenex Luna Omega Polar C18 column
23 (2.1 x 100 mm, 1.6 µm particle size) equilibrated with 98% solvent A (0.1 % v/v formic acid
24 in water) and 2 % solvent B (0.1 % v/v formic acid in acetonitrile) at a flow rate of 0.25 mL/min
25 and eluted with the following solvent gradient: 2-12 % B in 10 min; 12-2 % B in 1 min; hold
26 at 2 % B for 5 min. The HPLC column was coupled to an Agilent 1290 Infinity DAD and an
27 Agilent 6490 triple quadrupole mass spectrometer (Agilent, Santa Clara, CA). The column was
28 kept at 40 °C and the auto-sampler was cooled at 4°C. The UV wavelength of the DAD was
29 set at 260 nm and the electrospray ionization of the mass spectrometer was performed in
30 positive ion mode with the following source parameters: drying gas temperature 200 °C with a
31 flow of 14 L/min, nebulizer gas pressure 30 psi, sheath gas temperature 400 °C with a flow of
32 11 L/min, capillary voltage 3,000 V and nozzle voltage 500 V. Compounds were quantified in
33 multiple reaction monitoring (MRM) mode with the following transitions: *m/z* 310.1 → 194.1,
34 310.1 → 177.1, 310.1 → 293.1 for dADG; *m/z* 394.1 → 163.1, 394.1 → 146.1, 394.1 → 121.1 for
35 dQ; *m/z* 292.1 → 176.1, 176.1 → 159.1, 176.1 → 52.1 for dPreQ₀; *m/z* 296.1 → 163.1,
36 296.1 → 121.1, 296.1 → 279.1 for dPreQ₁; *m/z* 310.1 → 163.1, 310.1 → 121.1 for mdPreQ₁; *m/z*
37 309.1 → 193.1, 309.1 → 176.1, 309.1 → 159.1 for dG⁺; *m/z* 311.1 → 177.1, 311.1 → 78.9 for
38 dCDG and 266.1 → 150.1, 266.1 → 108.1, 266.1 → 55.1 for m⁶dA. External calibration curves
39 were used for the quantification of the modified 2'-deoxynucleosides and the four canonical
40 deoxyribonucleosides. The calibration curves were constructed from replicate measurements
41 of six concentrations of each standard. A linear regression with *r*² > 0.995 was obtained in all
42 relevant ranges. The limit of detection (LOD), defined by a signal-to-noise ratio (S/N) of 3,

1 ranged from 0.1 to 1 fmol for the modified 2'-deoxynucleosides. Data acquisition and
2 processing were performed using MassHunter software (Agilent, Santa Clara, CA).

3 Unknown DNA modification analysis was performed using Agilent 1290 ultrahigh pressure
4 liquid chromatography system equipped with DAD and 6550 QTOF mass detector managed
5 by a MassHunter workstation. The column used for the separation was a Waters ACQUITY
6 HSS T3 column (2.1'150 mm, 1.8 μ m). The oven temperature was set at 45 °C. The gradient
7 elution involved a mobile phase consisting of (A) 0.1 % formic acid in water and (B) 0.1 %
8 formic acid in acetonitrile. The initial condition was set at 2 % B. A 25 min linear gradient to
9 7 % B was applied, followed by a 15 min gradient to 100 % B which was held for 5 min, then
10 returned to starting conditions over 0.1 min. Flow rate was set at 0.3 ml/min, and 2 μ L of
11 samples was injected. The electrospray ionization mass spectra were acquired in positive ion
12 mode. Mass data were collected between m/z 100 and 1000 Da at a rate of two scans per second.
13 The electrospray ionization of the mass spectrometer was performed in positive ion mode with
14 the following source parameters: drying gas temperature 250 °C with a flow of 14 L/min,
15 nebulizer gas pressure 40 psi, sheath gas temperature 350 °C with a flow of 11 L/min, capillary
16 voltage 3,500 V and nozzle voltage 500 V. Two reference masses were continuously infused
17 to the system to allow constant mass correction during the run: m/z 121.0509 (C₅H₄N₄) and m/z
18 922.0098 (C₁₈H₁₈O₆N₃P₃F₂₄). Raw spectrometric data were analyzed by MassHunter
19 Qualitative Analysis software (Agilent Technologies, US).

20 Protein sequence detection in phages

21 HHpred online tool (<https://toolkit.tuebingen.mpg.de/tools/hhpred>) (24, 25) was used with
22 default setting against the pfam database (Pfam-A_v35) (26) to investigate the deduced
23 proteins encoded by genes flanking the 7-deazaguanine modification genes in *Cellulophaga*
24 phage phiSM, *Cellulophaga* phage phiST, and Halovirus HVT-1. DpdL, DpdM, DpdA3 and
25 DpdA4 were predicted this way. DpdN was discovered by looking at the annotations of the
26 genes in the vicinity of the 7-deazaguanine modification genes in *Flavobacterium* phage
27 vB_FspM_immuto_2-6A. These proteins were then used as queries to retrieve homologs in the
28 proteome of viruses publicly available in NCBI GenBank database (July 2022) using
29 psIBLAST version 2.13.0 (27), with at most three iterations. Other previously discovered
30 proteins involved in the 7-deazaguanine derivative DNA modifications (Data S1) (7) were used
31 to identify homologs in viral genomes encoding for at least one of DpdL, DpdM, DpdN,
32 DpdA3, or DpdA4 using BLASTp version 2.13.0 (28). HHpred and expert annotation were
33 used to sort these proteins and curate false positives. All protein matches are summarized in
34 Data S1.

35 Alignments, trees and structures

36 Protein sequences were collected from the NCBI database, using the protein id collected from
37 the detection. Multiple sequence alignments were generated using MAFFT (29) online server
38 (version 7, <https://mafft.cbrc.jp/alignment/server/>), with default settings and then visualized
39 using Jalview version 2.11.2.4. Clustering trees were generated using Graph Splitting (30)
40 online server (version 2.0, <http://gs.bs.s.u-tokyo.ac.jp/>), with default settings. Protein structures
41 were predicted using the multimer collab notebook of AlphaFold2 (version 2.2.4 (31),
42 <https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb>). Protein structures were visualized using ChimeraX version: 1.5rc202210241843 (32),
43 and already published protein structure were imported from PDB (<https://www.rcsb.org>, (33)).
44 Autodock Vina was used to predict the docking of chemicals in enzymes.
45

1

2 **RESULTS**

3 **7-(methylamino)-methyl-7-deazaguanine in Cellulophaga phage phiSM DNA**

4 Cellulophaga phage phiSM encodes a complete set of dPreQ₁ synthesis genes, including DpdA,
5 FolE, QueD, QueE, QueC, and QueF (Figure 1, Data S1) and thus should harbor preQ₁ in its
6 genome, as previously observed for Halovirus HVTV-1 (7). To test this hypothesis, we used
7 liquid chromatography coupled to diode array UV detection and a tandem mass spectrometer
8 (LC-UV-MS/MS) to analyze of the nucleosides obtained from enzymatic digestion of phiSM
9 genomic DNA, as we previously described (4, 7). A 2'-deoxynucleoside form of preQ₁
10 (dPreQ₁) was indeed detected (3,790 modifications per 10⁶ nucleotides, ~ 1.1 % of the Gs,
11 Table 1). In addition to the UV peaks for the four canonical nucleosides, dA, dC, dT and dG,
12 an unknown UV peak with a mass of 310 Da was observed at a retention time of 6.5 min
13 (Figure 2A, 212 modifications per 10⁶ nucleotides, ~ 0.1 % of the Gs, Table 1). The collision-
14 induced dissociation (CID) MS/MS spectra of the unknown peak revealed the protonated 2'-
15 deoxyribose ion (*m/z* 117) and its further dehydration ions (*m/z* 99 and 81), confirming that the
16 unknown peak corresponded to a non-canonical nucleoside (Figure 2B). The CID MS/MS
17 spectra of dPreQ₁ and the unknown modification showed very similar patterns. Both
18 compounds showed fragment [M+H]⁺ ions at *m/z* 163 and *m/z* 279, indicating that the unknown
19 modification could be a derivative of dPreQ₁ (Figure 2B). The mass of the unknown
20 modification is 14 Da greater than that of dPreQ₁, implying that it is a methylated product of
21 dPreQ₁. The high-resolution mass spectrometry (HRMS) of the protonated [M+H]⁺ ion (*m/z*
22 310.1511) of the unknown modification matches the theoretical mass of protonated
23 methylated-dPreQ₁ very well (*m/z* 310.1515, mass error = 1.29 ppm). The MS/MS spectra of
24 the unknown modification revealed a fragment ion with a loss of 31 Da (*m/z* 310 → *m/z* 279),
25 corresponding to a methylamino group (Figure 2B). The loss of the methylamino group was
26 observed in the MS/MS spectra at low CID energy, indicating that the methyl group is likely
27 linked to the 7-amino group, which is less stable than the linkage to the 2-amino group in CID
28 MS/MS experiment.

29 We chemically synthesized 7-(methylamino)methyl-2'-deoxy-7-deazaguanine (mdPreQ₁,
30 Scheme 1), which was purified by HPLC and characterized by NMR and HRMS, to test
31 whether methylation at the 7-amino position of dPreQ₁ corresponds to the unknown DNA
32 modification. The standard was then analyzed using LC-UV-MS/MS. The retention time and
33 MS/MS spectra of mdPreQ₁ standard were identical to those of the unknown non-canonical
34 nucleoside (Figure S1), confirming that the unknown modification is mdPreQ₁. The same
35 modification was identified in Cellulophaga phages phi38:2 and phi47:1 (Figure S2), which
36 are related to phage phiSM (34).

37 **Phage and bacterial QueF have similar function**

38 Given the presence of dPreQ₁ in DNA (7) and its subsequent modification to mdPreQ₁, one
39 must ask which precursor molecule (preQ₀ or preQ₁) is directly inserted in the genome. Indeed,
40 to date, all characterized DpdAs insert preQ₀ into DNA (5, 7). Hence, the phage QueF should
41 behave like the Archaeal QueF-L (22) and generate preQ₁ from preQ₀ inserted into DNA.
42 However, if phage QueF proteins are similar to the bacterial QueF (35) and form preQ₁ base
43 from preQ₀ base, then the DpdA of these phages should have changed in substrate specificity
44 to insert preQ₁ in DNA. QueF family sequences were collected from phages (Data S1 and (7))

1 and compared to the sequences of three experimentally validated QueF proteins: the bimodular
2 QueF of *Escherichia coli* (NP_417274), the unimodular QueF of *Bacillus subtilis* (NP_389258)
3 and the QueF-L of *Pyrobaculum calidifontis* (WP_011848915). Surprisingly, no phage QueF
4 sequences aligned with QueF-L (Alignment S1). The bimodular sequence aligned with half of
5 the phage QueF sequences (Figure S3A and B), while the unimodular one aligned with the
6 other half (Figure S3B). The NADPH binding motif, E(S/L)K(S/A)hK(L/Y)(Y/F/W), and most
7 of the amino acids characteristic of the QueF family sequences (Figure S3B, stared conserved
8 residues (19, 36)) were conserved in all phage sequences with the exception of a tyrosine (Y221
9 in *E. coli*, Y87 in *B. subtilis*, Y52 in *P. calidifontis*) in the unimodular phage sequences. This
10 degree of conservation strongly suggests that the phage QueF proteins are NADPH-dependent
11 preQ₀ reductases.

12 To validate this prediction, an *E. coli* *ΔqueF* mutant was transformed with plasmids expressing
13 *queF* genes from three phages/viruses, namely Cellulophaga phage phiSM, Vibrio phage
14 VH7D, and Halovirus HVT-1. We observed that expression of the phiSM and VH7D *queF*
15 genes, but not of the HVT-1 one, complemented the *ΔqueF* strain's Q-deficiency phenotype
16 (Figure S3C). Because HVT-1 is a virus infecting a hyper-saline archaeon, *Haloarcula*
17 *valismortis*, expressing its *queF* gene in *E. coli* in a low salt environment may have been
18 challenging. Nonetheless, these experiments confirmed that phage QueF, like its bacterial
19 counterpart, catalyzed the reduction of preQ₀ to preQ₁.

20 To confirm that phage DpdA encoded in QueF-like reductase switched specificity to preQ₁, we
21 cloned phiSM *dpdA1* and VH7D *dpdA2* in pBAD24 vector and expressed them in several
22 mutants of *E. coli*. In our experiments, phiSM DpdA1 was found to be inactive, while VH7D
23 DpdA2 inserted preQ₁ in DNA (2,765 modifications per 10⁶ nucleotides), proving that this
24 DpdA substrate specificity indeed adapted to preQ₁. Interestingly, VH7D DpdA2 also inserted
25 preQ₀ at a lower efficiency (712 modifications per 10⁶ nucleotides) in a strain that does not
26 produce preQ₁ and accumulates preQ₀ (*ΔqueF*, see pathway in Figure 1A), as well as CDG at
27 a very low efficiency (67 modifications per 10⁶ nucleotides) in a strain that accumulates CDG
28 (*ΔqueC*, see Figure 1A).

29 Prediction and validation of a preQ₁ methyltransferase

30 Phages that harbor the mdPreQ₁ modification should encode a methyltransferase that appends
31 a methyl group onto the nitrogen of the methylamino group of preQ₁ in genomic DNA. There
32 are four genes coding for proteins of unknown function in the cluster of genes encoding the
33 preQ₁ pathway in phage phiSM, namely CEPG_00048, CEPG_00054, CEPG_00056 and
34 CEPG_00057. The proteins CEPG_00048 and CEPG_00057 were ruled out as candidates
35 because they encode short proteins (~ 60 amino acids) and are not found by psiBLAST in other
36 phages encoding a deazaguanine DNA modification pathway (Data S2 and S3). CEPG_00056
37 homologs were observed in closely related *Cellulophaga* phages and in eukaryotic herpes
38 viruses (Data S4). This candidate was eliminated because no deazaguanine DNA modification
39 was ever found in eukaryotic viruses (7) and eukaryotes do not produce any preQ₁ (3). Finally,
40 CEPG_00054 homologs were found in seven other phages, including Vibrio phages phi-Grn1,
41 phi-ST2, and VH7D, which were predicted to encode preQ₁ modification pathways (Figure 1B,
42 Data S1 and S5). This protein belongs to the DUF3109 family (Data S6) and has an *E. coli*
43 homolog, YkgJ, which is annotated as a zinc or iron binding protein, making CEPG_00054 the
44 leading candidate for the missing preQ₁ methyltransferase, and tentatively renaming it DpdM.

1 We found that the genome of *Vibrio* phages phi-Grn1 and phi-ST2 DNA, encoding DpdM
2 homologs (Figure 1B, Data S1), were also modified with mdPreQ1 (Figure S4, Table 1) at a
3 rate of 0.01 % of the Gs for both phages (35 and 44 modifications per 10^6 nucleotides,
4 respectively, Table 1). Finally, expressing the predicted VH7D *dpdM* gene in an *E. coli* strain
5 already expressing the *dpdA2* of *Vibrio* phage VH7D resulted in the formation of low levels of
6 mdPreQ1 in plasmid DNA (Table 2). Taken altogether, these data linked mdPreQ1 with the
7 presence of DpdM (Figure 1B, Data S1).

8 As shown above with VH7D *dpdA2* expression alone, when both the VH7D *dpdA2* and *dpdM*
9 genes were expressed in a $\Delta queF$ background, which does not produce preQ1 but accumulates
10 preQ0, preQ0 was inserted into bacterial DNA at a ~ 5-time lower efficiency. Similarly, when
11 a $\Delta queC$ background that accumulates CDG was used, CDG was found in DNA with a ~ 40-
12 fold decrease in efficiency (Table 2).

13 **DpdM proteins likely bind two metals**

14 Although the initial amino acid sequence analysis of DpdM from *Cellulophaga* phage phiSM
15 revealed a CxxxCxxCC metal binding motif (Data S6), this motif was missing in the *Vibrio*
16 phage phi-ST2 homolog. We found that the *orf* encoding this protein was miscalled and
17 discovered that by selecting a start codon 171 nucleotides prior to the originally predicted one
18 now resulted in a polypeptide containing the CxxxCxxCC motif (phi-ST2 corrected in
19 Alignment S2).

20 The tertiary and quaternary structures of DpdM from both *Cellulophaga* phage phiSM and
21 *Vibrio* phage VH7D were predicted using AlphaFold2. Both proteins were predicted to be
22 monomeric, with only a few amino acids interacting between monomers (data not shown). The
23 phiSM DpdM prediction (Figure S5A) had a higher confidence score than the VH7D prediction
24 (Figure S5B). We found small domains around the VH7D predicted structure with unknown
25 function as shown in the alignment. However, the core parts of the protein were well aligned
26 (Figure S5C).

27 The phiSM DpdM structure contains a tunnel that has an electro-positively charged groove on
28 one side (Figure 3A), which could be a candidate site for DNA binding, and a second groove
29 on the opposite side (Figure 3B), which could be a site for a methyl donor binding. Surprisingly,
30 majority of the conserved residues are clustered around this tunnel (Figures 3C and D). The
31 CxxxCxxCC motif appears to be divided into two metal binding sites rather than one. The
32 CxxxCxxC motif (orange in Figure S5H; representing C33, C38, and C41), is a known motif
33 for a Fe4S4 cluster and SAM binding (37), but the presence of a fourth cysteine, C150 (red in
34 Figure 3E), in the pocket would disrupt the Fe4S4 binding and may bind another metal instead,
35 as well as a different methyl donor. It appears that the fourth cysteine in the CxxxCxxCC motif
36 is involved in another metal binding pocket containing three other cysteine residues (yellow in
37 Figure 3F; representing C42, C92, C102, and C112). Both these metal binding pockets are
38 found in the DpdM tunnel implying that they both participate in the transfer of the methyl group
39 from the methyl donor to preQ1 in DNA.

40 The tunnel observed in phiSM DpdM, the positively charged groove (Figure S3D), and the
41 binding site on the opposite side of the protein (Figure S5E), are absent in the VH7D DpdM
42 structure. If the conserved residues in both VH7D and phiSM DpdM proteins are mostly
43 clustered at the same place (Figure S5F and G), the two metal binding sites are located in one

1 side of the enzyme in VH7D DpdM (Figure S5H and I; in orange C45, C50, C52; in red C222;
2 in yellow C53, C120, C129, C146).

3 **Discovery of 7-deazaguanine in *Cellulophaga* phage phiST DNA**

4 Cellulophaga phage phiST encodes FolE, QueD and QueE but not QueC or DpdA (Figure 1,
5 Data S1) (7). The product from the reaction catalyzed by QueE, 7-carboxyl-7-deazaguanine
6 (CDG; see Figure 1A) (3) was not detected in this phage DNA using LC-UV-MS/MS analysis.
7 Meanwhile, peaks corresponding to three of the canonical nucleosides, dA, dC, and dT were
8 observed, along with an unknown peak with a mass of 267 Da and retention time of 8.2 min
9 (Figure 2A). The CID MS/MS spectra of the unknown peak revealed the protonated nucleobase
10 $[B+H]^+$ ion at m/z 151, corresponding to the glycosidic bond cleavage with the loss of a neutral
11 2'-deoxyribose (m/z 116). The presence of a protonated 2'-deoxyribose ion (m/z 117) and its
12 dehydration ions (m/z 99 and 81) confirmed that the unknown peak corresponds to a non-
13 canonical nucleoside (Figure 2B). A signal for dG was not detected, suggesting that it had been
14 completely replaced by the unknown non-canonical nucleoside. Although CDG was not
15 detected, the unknown modification could have been a CDG derivative. The mass of the
16 unknown modification is 1 Da less than dG and the HRMS of its protonated $[M+H]^+$ ion (m/z
17 267.1094) matches well with the theoretical mass of the protonated $[M+H]^+$ ion of the
18 decarboxylated derivative of dCDG, 2'-deoxy-7-deazaguanine (dDG, m/z 267.1093, mass error
19 = 0.37 ppm). We analyzed a synthetic dDG standard by LC-UV-MS/MS and found that its
20 retention time and CID MS/MS spectra matched those of the unknown non-canonical
21 nucleoside (Figure S6), confirming that the unknown modification was dDG. The same
22 modification was found in Cellulophaga phages phi19:2 and phi13:1 (Figure S7), which are
23 related to phage phiST (34).

24 **Prediction of a decarboxylase leading to 7-deazaguanine**

25 The discovery of dDG suggested that phiST encodes a CDG decarboxylase that could remove
26 the carboxyl moiety of CDG to form DG. Between the CDG pathway and the polymerase genes
27 of phiST lie five genes coding for protein of unknown function: CGPG_00064, CGPG_00065,
28 CGPG_00066, CGPG_00067 and CGPG_00068. Other phages containing 7-deazaguanine
29 modifications pathway do not encode CGPG_00064 and CGPG_00066 homologs (Data S7 and
30 S8). CGPG_00068 encodes a dUTPase (99.15% probability matching to PF08761.14 by
31 HHpred, Supplementary Data S9) or MazG (98.4% probability matching to PF12643.10 by
32 HHpred, Data S9), which has been shown to hydrolyze dNTP in phages (38). CGPG_00065 is
33 a distant homolog of a TGT/DpdA (98.83% probability matching to PF01702.21 by HHpred,
34 Data S10) and its function is discussed in the sections below. CGPG_00067 is highly similar
35 to QueD (99.89% probability matching to PF01242.22 by HHpred, Data S11). T-fold enzymes
36 like QueD bind pterins or purines (39), and three of them are involved in preQ₀ synthesis (3).
37 This gene was also found in other phages encoding for a DpdA, FolE, QueE, and QueD but not
38 QueC (Figure 1B; Data S1 and S12). Because of these findings, CGPG_00067 was chosen as
39 the best candidate for the missing CDG decarboxylase and renamed DpdL.

40 To investigate structural differences between QueD and DpdL, we aligned the sequences of
41 QueD from *E. coli* (NP_417245.1) and *B. subtilis* (NP_389256.1) with all the proposed
42 decarboxylase phage protein sequences (Alignment S3). Both proteins share three histidines
43 and two glutamic acids, but the position of the fourth histidine differs in the multiple alignment.
44 The signature motif of QueD CxxxHGH (40) is also changed to LxxxHRHxF in DpdL. Both
45 histidines of the motif coordinate the zinc ion in the active site, and the cysteine is required for

1 the catalyzation of the reaction. Because the glycine residue is not involved in ligand binding
2 or catalysis, changing it to arginine would not change any essential properties of the active site.
3 The conversion of cysteine to leucine does, as QueD is inactive without this cysteine (41). The
4 predicted structure of DpDM indicated that it would catalyze the reaction on the base
5 (Supplementary Text, Figure S8) via an alkaline decarboxylation mechanism involving zinc or
6 other bound metal. This would imply that the specificity of the co-encoded DpdA would be
7 changed from preQ₀ to DG.

8 We expressed *dpdL* genes from phage phiST and *Acidovorax* phage ACP17 in *E. coli* alongside
9 their respective *dpdA* genes, but we were unable to detect any dDG in this heterologous system
10 (data not shown). Proteins may be inactive in *E. coli* due to temperature, salt, or codon
11 optimization differences with their host organisms, or other unknown enzymes may be required
12 to complete the reaction.

13 A DpdA is encoded in all phages that harbor 7-deazaguanine derivatives

14 As previously stated, CGPG_00065 is a distant homolog of a TGT/DpdA and is also found in
15 Campylobacter phages (Figure 1B; Data S1 and S13), which have been previously shown to
16 be modified by ADG (6). This DpdA3 family had not previously been identified (6) and is the
17 most logical candidate for the enzyme inserting a 7-deazaguanine derivate in the DNA of both
18 phiST and *Campylobacter* phages (6).

19 It is difficult to predict the substrate specificity of the DpdA3 family (Figure 1A). DpdA3 is
20 unlikely to insert preQ₀ as the full pathways are absent in phiST and the Campylobacter phages
21 stop the synthesis at CDG (6). As a result, DpdA3 may insert CDG, a common precursor of
22 dADG and dDG. Because the nucleoside form of ADG was detected in the cytoplasm of
23 *Campylobacter jejuni* infected with phage CP220 (6), the DpdA3 might have shifted their
24 substrate specificity to insert DG or ADG.

25 With the discovery of the DpdA3 subfamily, only a few of the phages/viruses identified in our
26 previous study remained with no encoded DpdA (7). We reanalyzed the genome of Halovirus
27 HVT1-1, which is modified with preQ₁. HVT1-69 gene product had a 100 % probability of
28 matching with PF20314.1, a domain of unknown function (DUF6610), by HHpred, but also
29 92.5 % with PF01702.21, a tRNA-guanine transglycosylase (Data S14). Furthermore,
30 homologs of this protein were found to be encoded in other archaeal viruses that also contain
31 preQ₁ synthesis genes, as well as a singleton modification gene in a few other viral genomes,
32 including Halorubrum phage HF2 (Figure 1B; Data S1 and S15). With the discovery of this
33 final DpdA subgroup, renamed DpdA4, all phages known to harbor a 7-deazaguanine in their
34 DNA encode a DpdA family protein, which now could be considered a signature protein family
35 for the presence of such DNA modifications.

36 7-(Formylamino)-methyl-7-deazaguanine in **Flavobacterium** phage 37 vB_FspM_immuто_2-6A DNA

38 Flavobacterium phage vB_FspM_immuто_2-6A encodes DpdA3, FolE, QueD, QueE, QueC,
39 and QueF (Figure 1, Data S1) and should thus have complete guanosine replacement to preQ₁.
40 However, dPreQ₁ was not detected in this phage genome using LC-UV-MS/MS analysis.
41 Meanwhile, peaks corresponding to three of the canonical nucleosides, dA, dC and dT, as well
42 as an unknown peak at a retention time of 9 min with a mass of 324 Da were observed in the
43 LC-UV-MS/MS analysis of this phage DNA (Figure 2A). The CID MS/MS spectra of the

1 unknown peak revealed fragment ions at m/z 208, 117, 99, and 81, which could be attributed
2 similarly to the loss of 2'-deoxyribose to form $[B+H]^+$ ion and protonated 2'-deoxyribose ion
3 and its further dehydration ions, respectively, confirming the unknown peak is a noncanonical
4 nucleoside (Figure 2B). The dG peak was not detected, indicating that it has been completely
5 replaced by the unknown non-canonical nucleoside. The CID MS/MS spectra of preQ₁,
6 mdPreQ₁ and the unknown modification showed very similar pattern, with fragment $[M+H]^+$
7 ions observed at m/z 163 and m/z 279 for all three compounds, indicating that the unknown
8 modification could also be a dPreQ₁ derivative (Figure 2B). The unknown modification had a
9 mass of 28 Da greater than dPreQ₁, corresponding to one additional carbon and one oxygen
10 (formyl group) or two additional carbons and four hydrogens (ethyl or dimethyl group). The
11 unknown modification mass (m/z 324.1313) matched well with the theoretical mass of
12 protonated $[M+H]^+$ ion of formyl-dPreQ₁ (m/z 324.1308, mass error = 1.56 ppm, Figure S9)
13 but not with the theoretical mass of protonated ethyl- or dimethyl-dPreQ₁ (m/z 324.1672, mass
14 error = 112.32 ppm). The MS/MS spectra of the unknown modification at low CID energy
15 revealed a fragment ion with a loss of 45 Da (m/z 324 → m/z 279), corresponding to a
16 formylamino group. This suggested that the formyl group was most likely linked to the 7-amino
17 group, which is less stable than the 2-amino group in CID MS/MS experiment. To test our
18 hypothesis, we chemically synthesized fdPreQ₁, which was then purified using HPLC and
19 characterized using NMR and HRMS. (Scheme 2, Figure S9). The standard was then analyzed
20 using LC-UV-MS/MS. The standard retention time and MS/MS spectra were identical to those
21 of the unknown noncanonical nucleoside, confirming that the unknown modification is fdPreQ₁
22 (Figure S10). This finding suggested that the vB_FspM_immu_2-6A genome may encode a
23 formyltransferase that adds a formyl group to dPreQ₁.

24 **Prediction of a preQ₁ formyltransferase**

25 A protein annotated as PF00551 formyltransferase is encoded close to the 7-deazaguanine
26 insertion gene cluster of phage vB_FspM_immu_2-6A (locus tag KNV73_gp067, Figure 1B,
27 Data S1). This protein was used to identify similar proteins in other viral genomes (Figure 1B;
28 Supplementary Data S1, S16). We found six phages that encode a similar protein and shared
29 the entire pathway from FolE to QueF, including a DpdA, and 15 other phages that encode a
30 similar protein but lacked any 7-deazaguanine modification genes. These sequences could be
31 divided into three groups, according to a multiple sequence alignment (Alignment S4) and a
32 clustering cladogram (Figure S11). One of them include four proteins that are co-encoded with
33 the modification pathway (DpdA and FolE to QueF, Data S1): YP_010114479.1, of phage
34 vB_FspM_immu_2-6A, as well as CAB5226463.1, CAB4142580.1 and CAB5221950.1, all
35 three encoded by uncultured *Caudoviral* phages and renamed DpdN. The two other groups
36 appear to be unrelated to the fdPreQ₁ modification because group 2 is encoded by phage that
37 do not encode the proteins involved in the modification pathway and group 3 contains members
38 that are longer forms of the formylase, which are likely to be involved in other reactions
39 (Supplementary Data S1). As DpdN is a member of the same superfamily as the enzyme PurN,
40 which catalyzed the formylation of 5-phospho-ribosyl-glycinamide in the purine synthesis
41 pathway (42), it likely uses the same formyl donor 5-methyl-5,6,7,8-tetrahydrofolate
42 (Supplementary Text and Figure S12).

43 **7-Carboxy-7-deazaguanine in *Sulfolobus* virus STSV-2**

44 Because Sulfolobus virus STSV-2 encodes DpdA and ArcS (Figure 1, Supplementary Data
45 S1), it should harbor dG⁺ in its genome. As we previously described (4, 7), we used LC-UV-
46 MS/MS to analyze the nucleosides obtained from enzymatic digestion of STSV-2 genomic

1 DNA. dCDG, but not dG⁺, was detected at a rate of 0.04 % of the Gs (149 modifications per
2 10⁶ nucleotides, Figure S13, Table1).

3 There was no other neighboring gene that was clearly shared with other phages or viruses (data
4 not shown). Surprisingly, the host archaeon, *Sulfolobus tengchongensis*, does not encode any
5 proteins involved in the Q or G⁺ biosynthesis pathway (data not shown). We believed that its
6 ArcS evolved to revert preQ₀ into CDG. To investigate this, we aligned STSV-2 ArcS sequence
7 with canonical ArcS proteins (21) and with homologs previously identified in other viruses (7)
8 (Alignment S5). The phage/virus ArcS corresponds to only the core catalytic domain of the
9 canonical ArcS (PF17884.4 annotated as DUF5591, 99.9 % similar for STSV2_16 encoded by
10 *Sulfolobus* virus STSV2, Supplementary Data S17, and 99.9 % for VPFG_00169 encoded by
11 *Vibrio* phage nt-1, Data S18). It has previously been demonstrated that the ArcS have a high
12 degree of diversity (21). Initially, four domains were identified in ArcS (Nt, C1, C2 and PUA).
13 The PUA domain is specific to RNA binding, the Nt domain is similar to the TGT catalytic
14 domain and the C1 domain is specific to ArcS and contains the catalytic core of the functions.
15 These four domains are found in others, but in some organisms, the Nt domain is separated
16 from the other three domains. In some archaea, the C1 domain is encoded independently, as in
17 the phages. The C1 domain's specific motif, PC-X3-KPY-X2-S-X2-H (21), was conserved in
18 STSV-2 ArcS but slightly degenerated in *Vibrio* phage nt-1 ArcS (Figure S14, Alignment S5).

19 We decided to test the ArcS of phage nt-1 because the ArcS from a hyperthermophile organism
20 might be inactive in our *E. coli* double plasmid test system, as hypothesized previously (7).
21 Both nt-1 *dpdA2* and *arcS* were cloned in pBAD24 and pBAD33 vectors, expressed in *E. coli*,
22 and the plasmids were extracted. We found that dPreQ₀ is inserted into DNA when nt-1 DpdA2
23 is expressed alone, and dG⁺ is present when nt-1 ArcS is co-expressed (Table 3). This suggested
24 that STSV-2 ArcS, which is less degenerate than nt-1 ArcS, may have the same function,
25 generating dG⁺. Therefore, additional STSV-2 proteins yet to be identified are required to
26 catalyze the insertion of CDG in DNA in this virus.

27 DISCUSSION

28 In this current era of active discoveries of new bacterial defence systems against phages driven
29 by genomic data mining (12–14), the identification of phage counter defences (11), including
30 DNA modifications, is also rising. This study focused on a group of guanine modifications,
31 known as 7-deazaguanines, where the nitrogen in position 7 of guanine is replaced by a carbon
32 allowing an easier addition of various side chains at this position. In a previous study, we
33 presented four side chains, namely dPreQ₁ and dG⁺ (7) in the genome of some viruses, and
34 dADG and dPreQ₀ in both phage and bacterial DNA (4, 7). Here, we have doubled the number
35 of 7-deazaguanine derivatives identified in DNA, with the description of four new epigenetic
36 marks (a) two modifications that represent further modification of dPreQ₁, namely mdPreQ₁
37 and fdPreQ₁; (b) one precursor of preQ₀, namely dCDG; (c) and one unprecedented natural 7-
38 deazaguanine, dDG. In addition, we identified five previously undescribed families of viral
39 enzymes involved in the synthesis of these modified bases (Figure 1).

40 Phage genomic DNAs encoding QueF homologs always contain dPreQ₁, or derivatives.
41 Indeed, viral QueF proteins are preQ₀ reductases (Figure S3), like the bacterial ones (7). Two
42 hypermodified dPreQ₁ that each require an additional enzymatic step for their synthesis were
43 identified. One of the enzymes involved in this step is the dPreQ₁ methyltransferase, now named
44 DpdM, and found in Cellulophaga phage phiSM. We showed that the *Vibrio* phage VH7D
45 DpdM homolog methylated dPreQ₁ into mdPreQ₁ *in vivo* (Table 2). Based on the analysis of

1 the protein structures, we propose that DpdM methylates preQ₁ already inserted in DNA using
2 two metal groups (Figure 3 and S5). We also identified a potential preQ₁ or dPreQ₁
3 formyltransferase, DpdN, leading to fdPreQ₁, in the genome of *Flavobacterium* phage
4 vB_FspM_immuto_2-6A. Finally, we identified a candidate protein, *Cellulophaga* phage
5 phiST DpDL, that most certainly promotes alkaline decarboxylation of CDG to lead to dDG in
6 phage genomes. Unfortunately, we were unable to demonstrate its activity.

7 The presence of dCDG in *Sulfolobus* virus SVST-2 is puzzling because this virus only encodes
8 discernible DpdA and ArcS homologs. Furthermore, its host does not modify its tRNA with 7-
9 deazaguanines. The proteins encoded in the vicinity of *dpdA* and *arcS* were not found in any
10 other phage or virus encoding a 7-deazaguanine modification pathway. We do not know what
11 the source of 7-deazaguanine for this virus is, nor how it ends up on dCDG. Indeed, we
12 expected dG⁺ instead because *Vibrio* phage nt-1 ArcS produces dG⁺ (Table 3). Hence, we
13 renamed this enzyme ArcS2 to differentiate from its tRNA-acting homolog (21).

14 Thus far, the DNA transglycosylases that insert preQ₀ into DNA have been classified into three
15 subfamilies: bDpdA (4), DpdA1, and DpdA2 (7). We identified two other subfamilies in
16 viruses, DpdA3 and DpdA4. All viruses encoding 7-deazaguanine synthesis genes now encode
17 a member a DpdA subgroup. Thus, we propose that all 7-deazaguanine DNA modifications
18 reported to date are post-replication modifications. Interestingly, the efficiency of insertion by
19 DpdA members varied between subgroups. bDpdA appears to have a low insertion rate, less
20 than 0.1 % of the Gs (4), similar ot what was observed for DpdA2 (7) (Table 1). However,
21 modification levels vary from 0.1 to 30 % of the Gs for DpdA1 (7). The genome of the only
22 DpdA4 encoding virus tested (*Halovirus* HVT-1) was modified at 30 % (7). DpdA3 is the
23 most efficient, completely modifying the genomes of *Campylobacter* phage CP220 (6),
24 *Cellulophaga* phage phiST, and *Flavobacterium* phage vB_FspM_immuto_2-6A (Table 1).
25 Our attempts to test members of the DpdA3 and DpdA4 families in our *E. coli* model were
26 unsuccessful.

27 In this study, we showed that the substrate specificity of some DpdA has shifted toward other
28 7-deazaguanines. For example, the change in substrate specificity between dPreQ₀ and dPreQ₁
29 seems to have occurred several times in evolution, as phages acquired both unimodular and
30 bimodular QueF (Figure 3), and almost all DpdA sub-families have a member that may insert
31 preQ₁ into DNA (Data S1). We predict that dPreQ₀ was the first 7-deazaguanine DNA
32 modification, as it is the modification that requires the fewest enzymes. Interestingly, *Vibrio*
33 phage VH7D DpdA2 inserted various 7-deazaguanine derivatives in its DNA with different
34 efficiencies (Table 2). *Vibrio* phage nt-1 DpdA2 did not insert preQ₁ in DNA in our assay but
35 could insert preQ₀ and possibly G⁺ (Table 3). It was previously reported that this phage
36 harbored three 7-deazaguanine DNA modifications, at various levels (7). DpdA2 family
37 exhibits promiscuity for substrate specificity.

38 We previously showed that 7-deazaguanine protect DNA from restriction enzymes at various
39 levels depending on the modification (7). Phages have likely evolved different DNA
40 modification strategies, including the addition of deazapurines in their genome, to counteract
41 nucleic acid-based defence systems (11–16). It is also tempting to speculate that bacteria likely
42 have evolved anti-phage systems targeting 7-deazaguanine. Consequently, in this “arms race”
43 with their hosts, phages may have been driven to diversify their 7-deazaguanine into various
44 derivatives in their genome, thereby explaining the presence of various deazapurine in viral
45 DNA.

1

2 **SUPPLEMENTARY DATA**

3 Supplementary Materials:

- 4 • Supplementary Text
- 5 • Supplementary Material and Methods
- 6 • Supplementary Alignments S1 to S5
- 7 • Supplementary Figure S1 to S14
- 8 • Supplementary Schemes S1 and S2
- 9 • Supplementary Tables S1 and S2
- 10 • Legends of Supplementary Data

11 Supplementary Data S1 to S18

12 Supplementary Data are available at NAR online.

13 **ACKNOWLEDGEMENT**

14 **FUNDING**

15 The project had partial support from the Human Frontier Science Program (grant number
16 HFSP-RGP0024/2018) to VdCL and SM and from National Institutes of Health (GM70641 to
17 VdCL and ES031576 to PCD) and from the National Research Foundation of Singapore under
18 the Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance IRG. SM
19 holds the Canada Research Chair in Bacteriophages. Funding for open access charge: National
20 Institutes of Health (GM70641).

21 **CONFLICT OF INTEREST**

22 No conflict of interest to be reported.

23 **DATA AVAILABILITY**

24 Protein model predicted by AlphaFold2 were deposited in ModelArchive:

- 25 • *Cellulophaga* phage phiSM DpdM DOI: (not active) 10.5452/ma-tqgw7
- 26 • *Vibrio* phage VH7D DpdM DOI: (not active) 10.5452/ma-117yh
- 27 • *Cellulophaga* phage phiST DpdL DOI: (not active) 10.5452/ma-bxwuk
- 28 • *Flavobacterium* phage vB_FspM_immuто_2-6A DpdN DOI: (not active) 10.5452/ma-
29 t6vzw

30 **REFERENCES**

1. 1. M. Mačková, S. Boháčová, P. Perlíková, L. Poštováslavětínská, M. Hocek, Polymerase
2. Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-
3. Deazaguanine Nucleobases. *ChemBioChem.* **16**, 2225–2236 (2015).
4. 2. P. Ménová, D. Dziuba, P. Güixens-Gallardo, P. Jurkiewicz, M. Hof, M. Hocek, Fluorescence
5. Quenching in Oligonucleotides Containing 7-Substituted 7-Deazaguanine Bases Prepared by
6. the Nicking Enzyme Amplification Reaction. *Bioconjug. Chem.* **26**, 150129153326001 (2015).
7. 3. G. Hutinet, M. A. Swarjo, V. de Crécy-Lagard, Deazaguanine derivatives, examples of
8. crosstalk between RNA and DNA modification pathways. *RNA Biol.* **14**, 1175–1184 (2017).
9. 4. J. J. Thiaville, S. M. Kellner, Y. Yuan, G. Hutinet, P. C. Thiaville, W. Jumpathong, S.
10. Mohapatra, C. Brochier-Armanet, A. V. Letarov, R. Hillebrand, C. K. Malik, C. J. Rizzo, P. C.
11. Dedon, V. de Crécy-Lagard, Novel genomic island modifies DNA with 7-deazaguanine
12. derivatives. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E1452-9 (2016).
13. 5. Y. Yuan, G. Hutinet, J. G. Valera, J. Hu, R. Hillebrand, A. Gustafson, D. Iwata-Reuyl, P. C.
14. Dedon, V. de Crécy-Lagard, Identification of the minimal bacterial 2'-deoxy-7-amido-7-
15. deazaguanine synthesis machinery. *Mol. Microbiol.* **110**, 469–483 (2018).
16. 6. C. S. Crippen, Y.-J. Lee, G. Hutinet, A. Shahajan, J. C. Sacher, P. Azadi, V. de Crécy-Lagard,
17. P. R. Weigle, C. M. Szymanski, Deoxyinosine and 7-Deaza-2-Deoxyguanosine as Carriers
18. of Genetic Information in the DNA of Campylobacter Viruses. *J. Virol.* **93**, 1–14 (2019).
19. 7. G. Hutinet, W. Kot, L. Cui, R. Hillebrand, S. Balamkundu, S. Gnanakalai, R. Neelakandan, A.
20. B. Carstens, C. F. Lui, D. Tremblay, D. Jacobs-sera, M. Sasanfar, Y. Lee, P. Weigle, S.
21. Moineau, G. F. Hatfull, P. C. Dedon, L. H. Hansen, V. de Crécy-Lagard, 7-Deazaguanine
22. modifications protect phage DNA from host restriction systems. *Nat. Commun.* **10**, 1–12
23. (2019).
24. 8. P. Weigle, E. A. Raleigh, Biosynthesis and Function of Modified Bases in Bacteria and Their
25. Viruses. *Chem. Rev.* **116**, 12655–12687 (2016).
26. 9. G. Hutinet, Y. Lee, Hypermodified DNA in Viruses of *E. coli* and *Salmonella*. *EcoSal Plus.* **9**
27. (2021), doi:<https://doi.org/10.1128/ecosalplus.ESP-0028-2019>.
28. 10. Y. Lee, N. Dai, I. M. Stephanie, C. Guan, M. J. Parker, M. E. Fraser, S. E. Walsh, J. Sridar, A.
29. Mulholland, K. Nayak, Z. Sun, Y. Lin, D. G. Comb, K. Marks, R. Gonzalez, D. P. Dowling, V.
30. Bandarian, L. Saleh, I. R. Corr, P. R. Weigle, NAR Breakthrough Article Pathways of
31. thymidine hypermodification ^ Jr, 1–17 (2021).
32. 11. Y. Wang, H. Fan, Y. Tong, Unveil the Secret of the Bacteria and Phage Arms Race. *Int. J. Mol.
33. Sci.* **24**, 1–24 (2023).
34. 12. L. Gao, H. Altae-Tran, F. Böhning, K. S. Makarova, M. Segel, J. L. Schmid-Burgk, J. Koob, Y.
35. I. Wolf, E. V Koonin, F. Zhang, Diverse enzymatic activities mediate antiviral immunity in
36. prokaryotes. *Science.* **369**, 1077–1084 (2020).
37. 13. A. B. Isaev, O. S. Musharova, K. V. Severinov, Microbial Arsenal of Antiviral Defenses – Part I.
38. *Biochem.* **86**, 319–337 (2021).
39. 14. A. B. Isaev, O. S. Musharova, K. V. Severinov, Microbial Arsenal of Antiviral Defenses. Part II.
40. *Biochem.* **86**, 449–470 (2021).
41. 15. S. Doron, S. Melamed, G. Ofir, A. Leavitt, A. Lopatina, M. Keren, G. Amitai, R. Sorek,
42. Systematic discovery of antiphage defense systems in the microbial pangenome. *Science*
43. (80-.). **359**, 0–12 (2018).
44. 16. A. Millman, S. Melamed, A. Leavitt, S. Doron, A. Bernheim, J. Hör, J. Garb, N. Bechon, A.
45. Brandis, A. Lopatina, G. Ofir, D. Hochhauser, A. Stokar-Avihail, N. Tal, S. Sharir, M. Voichek,
46. Z. Erez, J. L. M. Ferrer, D. Dar, A. Kacen, G. Amitai, R. Sorek, An expanded arsenal of
47. immune systems that protect bacteria from phages. *Cell Host Microbe.* **30**, 1556–1569.e5
48. (2022).
49. 17. W. Kot, N. S. Olsen, T. K. Nielsen, G. Hutinet, V. De Crécy-Lagard, L. Cui, P. C. Dedon, A. B.
50. Carstens, S. Moineau, M. A. Swarjo, L. H. Hansen, Detection of preQ₀ deazaguanine
51. modifications in bacteriophage CAjan DNA using Nanopore sequencing reveals same
52. hypermodification at two distinct DNA motifs. *Nucleic Acids Res.* **48**, 10383–10396 (2020).
53. 18. K. Moeller, G. S. Nguyen, F. Hollmann, U. Hanefeld, Expression and characterization of the
54. nitrile reductase queF from *E. coli*. *Enzyme Microb. Technol.* **52**, 129–133 (2013).
55. 19. S. G. Van Lanen, J. S. Reader, M. A. Swarjo, V. de Crécy-Lagard, B. Lee, D. Iwata-Reuyl,
56. From cyclohydrolase to oxidoreductase: Discovery of nitrile reductase activity in a common
57. fold. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 4264–4269 (2005).
58. 20. B. Stengl, K. Reuter, G. Klebe, Mechanism and substrate specificity of tRNA-guanine
59. transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life
60. share a common catalytic mechanism. *ChemBioChem.* **6**, 1926–1939 (2005).

1 21. G. Phillips, V. M. Chikwana, A. Maxwell, B. El-Yacoubi, M. A. Swairjo, D. Iwata-Reuyl, V. De
2 Crécy-Lagard, Discovery and characterization of an amidinotransferase involved in the
3 modification of archaeal tRNA. *J. Biol. Chem.* **285**, 12706–12713 (2010).

4 22. G. Phillips, M. a. Swairjo, K. W. Gaston, M. Bailly, P. a. Limbach, D. Iwata-Reuyl, V. De Crécy-
5 Lagard, Diversity of archaeosine synthesis in crenarchaeota. *ACS Chem. Biol.* **7**, 300–305
6 (2012).

7 23. A. Bon Ramos, L. Bao, B. Turner, V. de Crécy-Lagard, D. Iwata-Reuyl, QueF-Like, a Non-
8 Homologous Archaeosine Synthase from the Crenarchaeota. *Biomolecules* **7**, 1–14 (2017).

9 24. L. Zimmermann, A. Stephens, S. Z. Nam, D. Rau, J. Kübler, M. Lozajic, F. Gabler, J. Söding,
10 A. N. Lupas, V. Alva, A Completely Reimplemented MPI Bioinformatics Toolkit with a New
11 HHpred Server at its Core. *J. Mol. Biol.* **430**, 2237–2243 (2018).

12 25. A. Hildebrand, M. Remmert, A. Biegert, J. Söding, Fast and accurate automatic structure
13 prediction with HHpred. *Proteins Struct. Funct. Bioinforma.* **77**, 128–132 (2009).

14 26. J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. L. Sonnhammer, S. C.
15 E. Tosatto, L. Paladin, S. Raj, L. J. Richardson, R. D. Finn, A. Bateman, Pfam: The protein
16 families database in 2021. *Nucleic Acids Res.* **49** (2021), doi:10.1093/nar/gkaa913.

17 27. S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman,
18 Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.
19 *Nucleic Acids Res.* **25**, 3389–3402 (1997).

20 28. C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T. L. Madden,
21 BLAST+: Architecture and applications. *BMC Bioinformatics* **10**, 1–9 (2009).

22 29. K. Katoh, J. Rozewicki, K. D. Yamada, MAFFT online service: Multiple sequence alignment,
23 interactive sequence choice and visualization. *Brief. Bioinform.* **20**, 1160–1166 (2018).

24 30. M. Matsui, W. Iwasaki, Graph Splitting : A Graph-Based Approach for Superfamily-Scale
25 Phylogenetic Tree Reconstruction. *Syst. Biol.* **69**, 265–279 (2020).

26 31. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
27 R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A.
28 Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E.
29 Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver,
30 O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein
31 structure prediction with AlphaFold. *Nature* **596**, 583–589 (2021).

32 32. E. F. Pettersen, T. D. Goddard, C. C. Huang, E. C. Meng, G. S. Couch, T. I. Croll, J. H. Morris,
33 T. E. Ferrin, C. E. Thomas Ferrin, UCSF ChimeraX: Structure visualization for researchers,
34 educators, and developers. *Protein Sci.* **30**, 70–82 (2021).

35 33. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P.
36 E. Bourne, The Protein Data Bank. *Nucleic Acids Res.* **28**, 235–242 (2000).

37 34. K. Holmfeldt, N. Solonenko, M. Shah, K. Corrier, L. Riemann, N. C. VerBerkmoes, M. B.
38 Sullivan, Twelve previously unknown phage genera are ubiquitous in global oceans. *Proc.
39 Natl. Acad. Sci. U. S. A.* **110**, 12798–12803 (2013).

40 35. B. W. K. Lee, S. G. Van Lanen, D. Iwata-Reuyl, Mechanistic studies of *Bacillus subtilis* QueF,
41 the nitrile oxidoreductase involved in queuosine biosynthesis. *Biochemistry* **46**, 12844–12854
42 (2007).

43 36. X. Mei, J. Alvarez, A. Bon Ramos, U. Samanta, D. Iwata-Reuyl, M. A. Swairjo, Crystal
44 Structure of the Archaeosine Synthase QueF-Like– Insights into Amidino Transfer and tRNA
45 Recognition by the Tunnel Fold. *Proteins* **165**, 255–269 (2016).

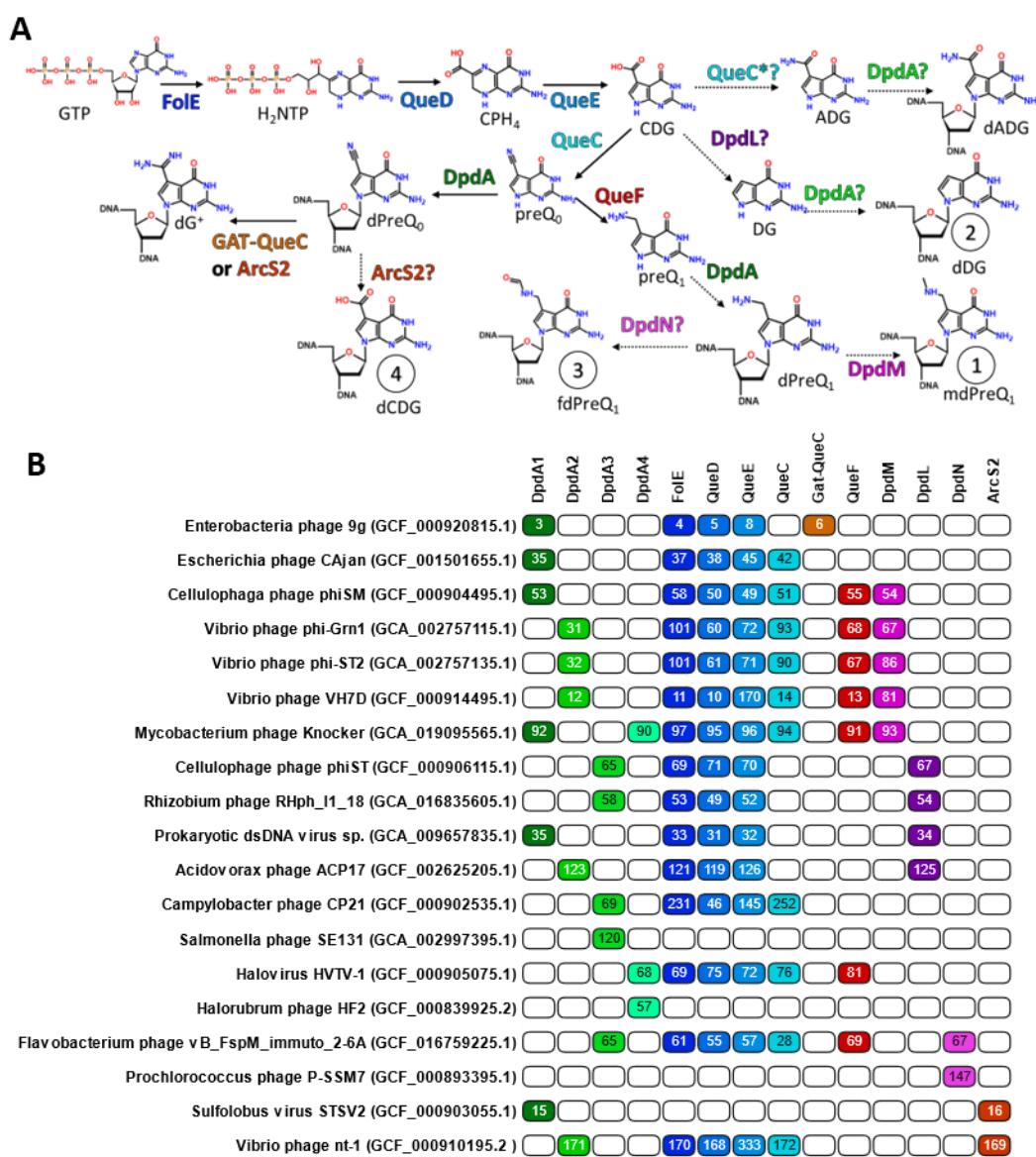
46 37. T.-Q. Nguyen, Y. Nicolet, Structure and Catalytic Mechanism of Radical SAM Methylases. *Life*
47 **12**, 1732 (2022).

48 38. B. Rihtman, S. Bowman-Grahl, A. Millard, R. M. Corrigan, M. R. J. Clokie, D. J. Scanlan,
49 Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot
50 nucleotides. *Environ. Microbiol. Rep.* **11**, 448–455 (2019).

51 39. N. Colloc'h, A. Poupon, J. P. Mornon, Sequence and structural features of the T-fold, an
52 original tunnelling building unit. *Proteins Struct. Funct. Genet.* **39**, 142–154 (2000).

53 40. G. Phillips, L. L. Grochowski, S. Bonnett, H. Xu, M. Bailly, C. Blaby-Haas, B. El Yacoubi, D.
54 Iwata-Reuyl, R. H. White, V. De Crécy-Lagard, Functional promiscuity of the COG0720 family.
55 *ACS Chem. Biol.* **7**, 197–209 (2012).

56 41. Z. D. Miles, S. A. Roberts, R. M. McCarty, V. Bandarian, Biochemical and structural studies of
57 6-carboxy-5,6,7,8-tetrahydropterin synthase reveal the molecular basis of catalytic promiscuity
58 within the tunnel-fold superfamily. *J. Biol. Chem.* **289**, 23641–23652 (2014).

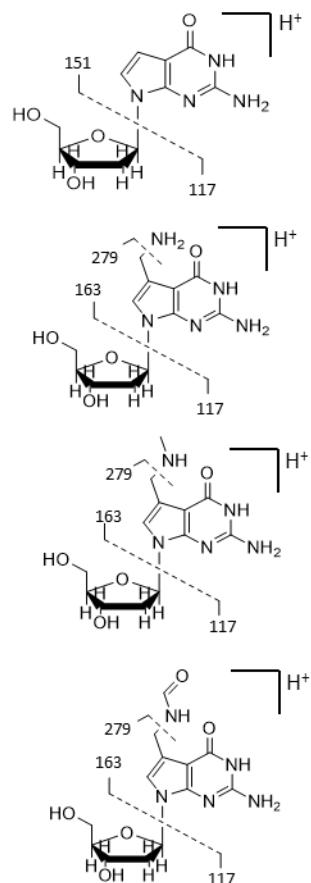
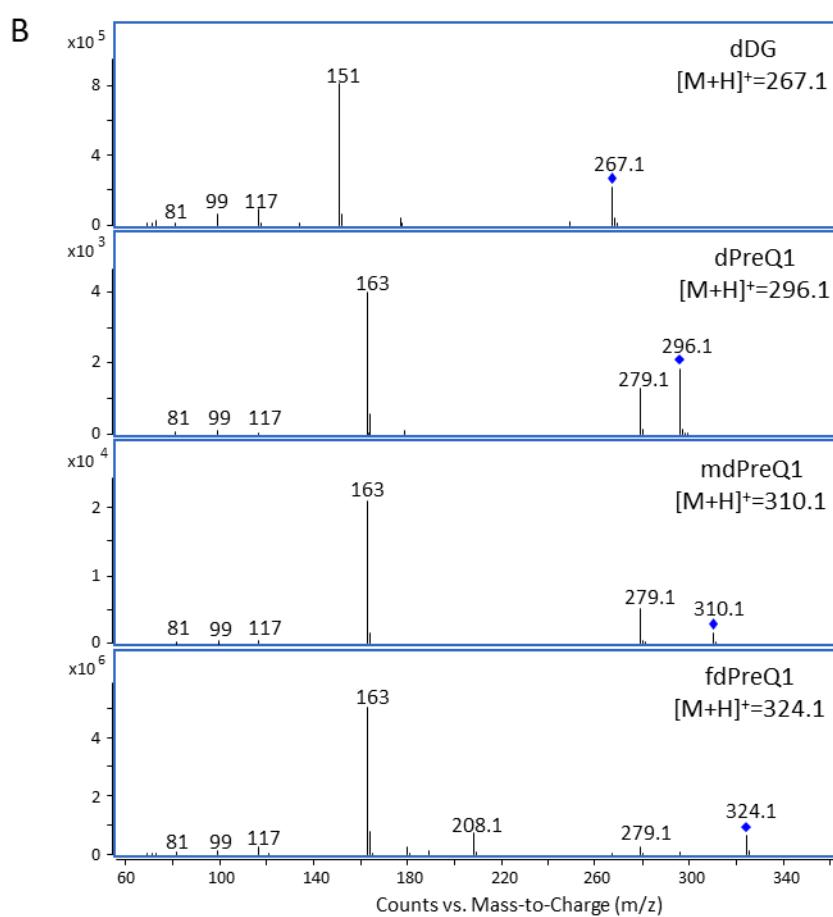
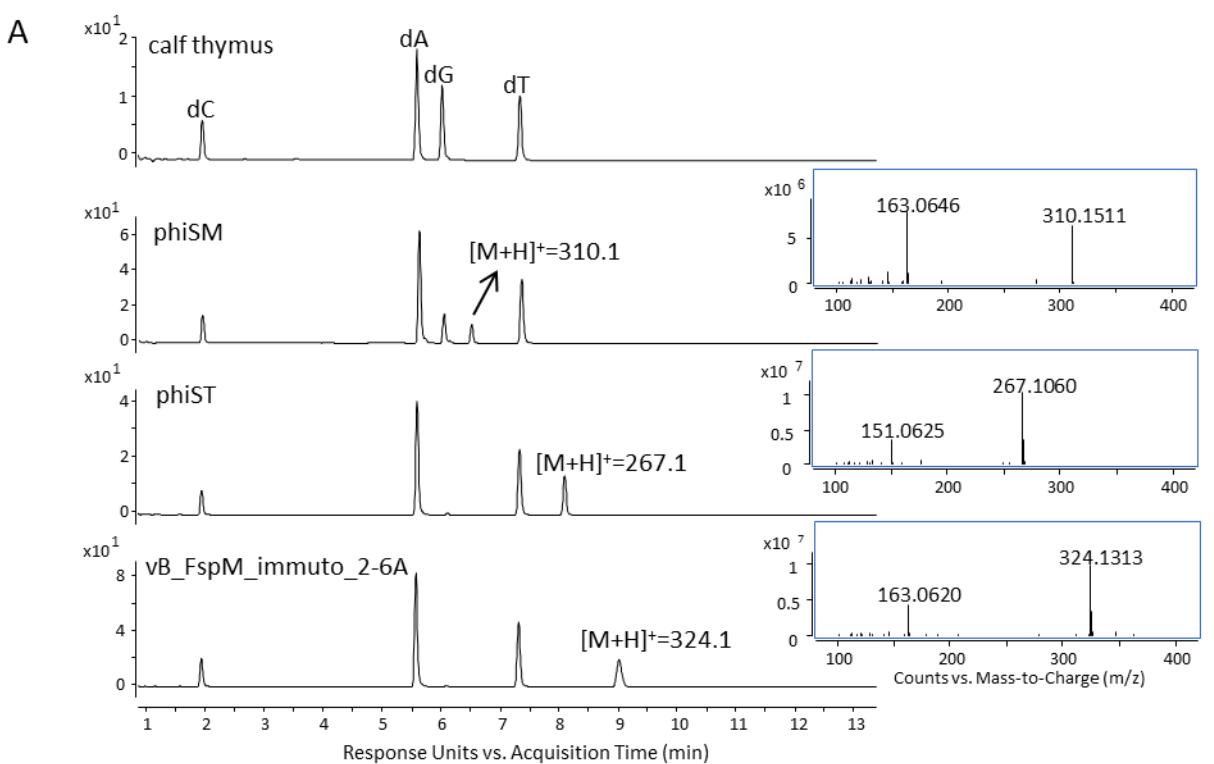

59 42. Z. Zhang, T. T. Caradoc-Davies, J. M. Dickson, E. N. Baker, C. J. Squire, Structures of
60 Glycinamide Ribonucleotide Transformylase (PurN) from *Mycobacterium tuberculosis* Reveal

1 a Novel Dimer with Relevance to Drug Discovery. *J. Mol. Biol.* **389**, 722–733 (2009).

2

3 **TABLE AND FIGURES LEGENDS**

4

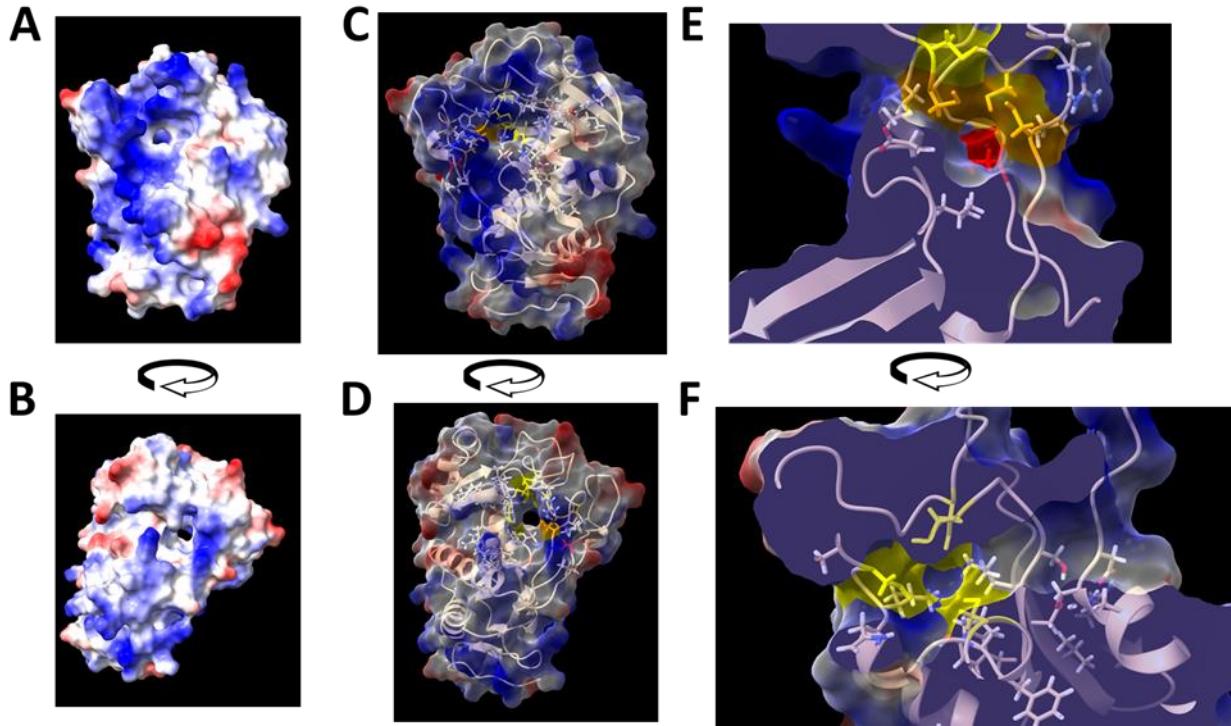




1

Fig. 1. Proteins involved in the 7-deazaguanine DNA modifications proteins. (A) proposed pathway for the biosynthesis of all eight 7-deazaguanine derivatives in DNA and (B) detection of the gene encoding for these proteins in phage genomes (full table in sup. table). Numbering in the table correspond to the gene numbering in each phage. Coloring match with the proteins. In shades of green are the DpdA1 to 4 (7-deazaguanine derivative DNA transglycosidase). In shade of blues, the enzyme leading to preQ₀: FolE (GTP cyclohydrolase I, EC 3.5.4.16), QueD (CPH₄ synthase, EC 4.1.2.50), QueE (CDG synthase, EC 4.3.99.3), QueC (preQ₀ synthase, EC 6.3.4.20), QueC* (proposed ADG synthase, homologue of QueC). In shades of orange, protein modifying preQ₀ further: QueF (NADPH-dependent 7-cyano-7-deazaguanine reductase, EC 1.7.1.13), ArcS2 (core domain of the archaeosine synthase, PF5591), Gat-QueC, (glutamine amido-transferase class-II domain fused to QueC). In shades of purple, protein discovered and described in this study: DpdL (proposed CDG decarboxylase), DpdM (proposed preQ₁ or dPreQ₁ methylase), DpdN (proposed preQ₁ or dPreQ₁ formylase). Question marks are proposed reactions that have not be proven. Dashed arrows are previously unpublished reactions. Molecule abbreviations: guanosine tri-phosphate (GTP), dihydroneopterin triphosphate (H₂NTP), 6-carboxy-5,6,7,8-tetrahydropterin (CPH₄), 7-carboxy-7-deazaguanine

1 (CDG), 7-amido-7-deazaguanine (ADG), 7-deazaguanine (DG), 7-cyano-7-deazaguanine
2 (preQ₀), 7-aminomethyl-7-deazaguanine (preQ₁), 2'-deoxy-7-carboxy-7-deazaguanine
3 (dCDG), 2'-deoxy-7-amido-7-deazaguanine (dADG), 2'-deoxy-7-deazaguanine (dDG), 2'-
4 deoxy-7-cyano-7-deazaguanine (dPreQ₀), 2'-deoxy-7-aminomethyl-7-deazaguanine (dPreQ₁),
5 2'-deoxy-7-(aminomethyl)methyl-7-deazaguanine (mdPreQ₁), 2'-deoxy-7-
6 (aminoformyl)methyl-7-deazaguanine (fdPreQ₁). Molecules 1 through 4 (circled numbers)
7 were discovered in this study.

8



1

2 **Fig. 2. HPLC-UV-MS analysis of digested genomic DNA samples from bacteriaophage**
3 **phiSM, phiST and vB_FspM_immuto_2-6A. (A) The HPLC-UV chromatogram on top was**

1 obtained from calf thymus DNA to show the retention of the canonical nucleosides. PhiSM
2 shows a fifth peak with a mass of 310 Da. The dG peak disappeared, and a new peak was
3 detected in phiST and vB_FspM_immuto_2-6A with a mass of 267 Da and 324 Da,
4 respectively. (B) The MS/MS spectra and proposed CID fragmentation of dDG
5 ($[M+H]^+=267.1$), dpreQ1 ($[M+H]^+=296.1$), mpreQ1 ($[M+H]^+=310.1$), fdpreQ1
6 ($[M+H]^+=324.1$). Molecule abbreviations: dC, 2'-deoxycytidine; dA, 2'-deoxyadenosine; dG,
7 2'-deoxyguanosine; dT, 2'-deoxythymidine.

8

1

2 **Fig. 3. Analysis of Cellulophaga phage phiSM predicted structure.** Electromagnetic surface
3 charges of both proteins were visualized on two opposite faces of the proteins (A and B), blue
4 are positive charges and red negative charges. Conserved residues were added to the structures
5 with a 60 % transparency on the electromagnetic surface (C and D). Conserved cysteines
6 predicted to bind metal are colored in yellow, orange, and red as described in the text.
7 Visualization of these cysteines were zoomed in to view both metal pockets (E and F).

8

virus	dCDG	dADG	dDG	dPreQ ₀	dPreQ ₁	mdPreQ ₁	fdPreQ ₁	dG ⁺
Cellulophaga phage phiSM	0	0	0	0	3790	212	0	0
Vibrio phage phi-Grn1	0	0	0	0	816	35	0	0
Vibrio phage phi-ST2	0	0	0	0	668	44	0	0
Cellulophaga phage phiST	0	0	302,000	0	0	0	0	0
Flavobacterium phage vB_FspM_immuто_2-6A	0	0	0	0	0	0	345,000	0
Sulpholobus virus SVST-2	149	0	0	0	0	0	0	0

1

2 **Table 1. Quantification of 7-deazaguanine derivate DNA modifications per 10⁶**
3 **nucleotides in viruses.**

4

background	pBAD24	pBAD33	dCDG	dPreQ ₀	dPreQ ₁	mdPreQ ₁
WT	empty	empty	0	0	0	0
	DpdA2	empty	0	7	2765	0
	empty	DpdM	0	0	0	0
	DpdA2	DpdM	0	0	0	9
	DpdM	empty	0	0	0	0
	empty	DpdA2	0	9	3666	0
$\Delta queF$	DpdM	DpdA2	0	7	97	40
	DpdA2	empty	0	630	0	0
	DpdA2	DpdM	0	696	0	0
	empty	DpdA2	0	616	0	0
$\Delta queC$	DpdM	DpdA2	0	672	0	0
	DpdA2	empty	82	0	0	0
	DpdA2	DpdM	52	0	0	0
	empty	DpdA2	95	0	0	0
	DpdM	DpdA2	54	0	0	0

1 **Table 2. Quantification of 7-deazaguanine derivate DNA modifications per 10⁶**
2 **nucleotides in plasmids encoding for Vibrio phage VH7D system expressed in *E. coli***
3 **strains.**

4

background	pBAD24	pBAD33	dPreQ ₀	dG ⁺
WT	empty	empty	0	0
	DpdA2	empty	926	0
	empty	ArcS	0	0
	DpdA2	ArcS	0	4
	ArcS	empty	0	0
	empty	DpdA2	1607	0
$\Delta queD$	ArcS	DpdA2	11	7
	empty	empty	0	0
	DpdA2	empty	0	0
	empty	ArcS	0	0
	DpdA2	ArcS	0	0
	ArcS	empty	0	0
	empty	DpdA2	0	0
	ArcS	DpdA2	0	0

1 **Table 3. Quantification of 7-deazaguanine derivate DNA modifications per 10⁶**
2 **nucleotides in plasmids encoding for Vibrio phage nt-1 system expressed in *E. coli* strains.**

3