

1
2
3
4
5
6
7
8

9 “Reassessing the origins of pathogenicity in *Candida auris* and relatives through phylogenomic
10 analysis”

11
12
13 Kyle S. Schutz^{1*}, Tina Melie¹, Stacey D. Smith¹, C. Alisha Quandt¹
14
15
16

17
18 *¹Department of Ecology and Evolutionary Biology, University of Colorado, Boulder USA*

19
20
21
22
23 *Corresponding Author
24 kyle.schutz@colorado.edu
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49 **ABSTRACT**

50

51 Emerging fungal pathogens commonly originate from benign or non-pathogenic strains
52 living in the natural environment. Assessing the evolutionary relationships between pathogenic
53 and non-pathogenic species is one approach for tracing the origins of pathogenicity across
54 species. The recently emerged human pathogen, *Candida auris* belongs to the
55 *Candida/Clavispora* clade, a diverse group of 45 yeast species including human pathogens and
56 environmental saprobes. *C. auris* is believed to have originated in the environment and recently
57 transitioned to a human pathogen. We present a phylogenomic analysis of this clade aimed at
58 testing for patterns implicated in the emergence of pathogenicity using an expanded sample of
59 non-pathogenic strains and species. To build a robust framework for investigating these
60 relationships, we developed a whole-genome sequence dataset of 108 isolates representing 18
61 species, including 4 newly sequenced species and 18 environmentally isolated strains. Our
62 phylogeny, based on 619 orthologous genes, shows environmentally isolated species and strains
63 interspersed with clinically isolated counterparts, rejecting the hypothesis of a single origin of
64 pathogenicity within the lineage containing *C. auris* and its closest relatives. Our findings
65 highlight the breadth of environments these yeasts inhabit, and imply, concerningly, that known
66 pathogens could just as easily live outside the human body in diverse natural environments.
67 Based on this result, we suggest that surveillance aimed at detecting emerging pathogens should
68 expand to related environmentally-derived fungi with pathogenic potential.

69

70 **AUTHOR SUMMARY**

71

72 The rapid rise in the number of fungal pathogens over the past few decades has been
73 linked to climate change, globalization, intensive farming practices, and an increase in
74 immunocompromised individuals. *Candida auris* is an example of a recently emerged fungal
75 pathogen capable of causing severe disease and large outbreaks in vulnerable patient
76 populations. The evolutionary origins of *C. auris* are poorly understood, however, they are
77 essential to understanding how and when this pathogen emerged. In this study, we investigated
78 relationships between a sample of pathogenic and non-pathogenic strains and species in the
79 *Candida/Clavispora* clade, a group of 45 yeast species including human pathogens (including *C.*
80 *auris*) and environmental saprobes. We used these relationships to test for patterns that might
81 support differing pathogen emergence hypotheses. We found that the relationships between
82 pathogens and non-pathogens suggest many transitions between humans and other environments,
83 rather than a single origin of pathogenicity. It seems plausible that these pathogens, often found
84 in harsh environmental conditions such as seawater, already possessed traits that make them
85 suitable human pathogens, which are perpetuated by increased at-risk patient populations. We
86 should, therefore, be vigilant in our surveillance for clinical isolation of yeasts belonging to this
87 clade from humans.

88

89

90

91

92

93

94

95 INTRODUCTION

96 The emergence of new fungal pathogens poses a significant threat to human and animal
97 health, as well as ecosystem health. Human fungal pathogens cause a range of diseases, from
98 minor skin infections to life-threatening systemic mycoses. Systemic mycoses often have limited
99 treatment options available and have the highest impact on individuals without access to health
100 services, often becoming progressively worse if left untreated [1]. Humans are increasingly
101 affected by fungal pathogens and opportunists, with an estimated 1.5 million deaths related to
102 fungal infections reported each year [2,3]. The rapid rise of fungal pathogens over the last 30
103 years has been linked to climate change, globalization, intensive farming practices, and the
104 increase in the number of immunocompromised individuals [4,5,6]. Emerging fungal pathogens
105 can originate in different ways but commonly have evolutionary histories in benign or non-
106 pathogenic species living in the natural environment [7]. It is often unclear how human infection
107 enhances their fitness and becomes part of their natural lifestyle [8]. Delineating the evolutionary
108 relationships between pathogenic and non-pathogenic species is a clear first step in assessing
109 how virulence emerges and evolves across species [9].

110 While earlier research relied on marker genes for estimating relationships among fungal
111 pathogens and their relatives [10], studies are increasingly moving to the use of whole genome
112 sequence data [11], resulting in greater clarity and confidence in phylogenetic estimates. These
113 phylogenetic advances have often revealed that traditional taxonomic designations, relied upon
114 for classifying and comparing fungi in clinical contexts, may not correspond to natural
115 (monophyletic) groups [10]. A prime example is the highly polyphyletic budding yeast genus
116 *Candida*, which is represented by at least 30 distinct lineages scattered across the subphylum
117 Saccharomycotina [10]. This genus includes 31 species known to cause disease in humans,
118 including *Candida albicans*, *Candida glabrata*, *Candida tropicalis*, *Candida parapsilosis*, and
119 *Candida krusei*, which together account for roughly 90% of *Candida* infections [12,13].
120 However, the most concerning and enigmatic yeast in this genus may be *C. auris*, a deadly,
121 multi-drug-resistant pathogen that has caused large outbreaks in hospital settings and high
122 mortality in vulnerable populations [14,15]. *Candida auris* belongs to the *Candida/Clavispora*
123 clade (*Metschnikowiaeae*), a group of 45 yeast species including human pathogens and
124 environmental saprobes [10,11,16,17,18,19,20]. Nevertheless, the exact placement of *C. auris*
125 within the clade (and thus the identity of its closest relatives) remains uncertain as previous
126 phylogenetic studies have recovered conflicting results. Moreover, while whole genome data has
127 been available for *C. auris* for several years [21], we lack such genomic data for related non-
128 pathogenic species, precluding more robust phylogenetic inference within the
129 *Candida/Clavispora* clade [22].

130 The wide range of environments from which members of the *Candida/Clavispora* clade
131 have been recovered suggests broad ecological niches, even for the pathogenic species [23]. The
132 non-pathogenic species have been isolated from diverse sources and locales, including flower
133 nectar from flowers of *Ruellia* spp. in India [24] and a cockroach's gut from Barro Colorado
134 Island, Panama [25]. Only six of the 45 described species have been isolated from human
135 sources consistently (*C. auris*, *C. haemulonii*, *C. pseudohaemulonii*, *C. duobushaemulonii*, *C.*
136 *vulturna*, and *Clavispora lusitaniae*) [21] and all of these (apart from *C. pseudohaemulonii*) have
137 been recovered from environments outside of clinical settings. For example, *C. haemulonii* was
138 first isolated in Florida in 1962 from the gut of a blue-striped grunt (*Haemulon sciurus*), and it
139 has since been isolated from seawater in Portugal and other marine sources [16,26,27]. Similarly,
140 *C. duobushaemulonii* was first isolated from insect frass in Germany [16] and *C. vulturna* from

141 flowers in the Philippines [20,28]. *C. auris*, by contrast, was first identified in clinical samples
142 and only recently isolated from salt marshes and beaches in the Andaman and Nicobar Islands in
143 Southeast Asia [29]. The diverse isolation sources of these pathogens, from seawater to blood,
144 raise questions about their metabolic versatility and whether it played a role in their success in
145 overcoming the barriers to surviving the human body.

146 Broadly, fungi must overcome many physiological challenges to living in the human
147 body, including growth at elevated temperatures and high saline concentrations, while
148 simultaneously evading the human immune response [30]. Specific virulence factors, such as
149 anti-fungal resistance profiles, physiological traits, and epidemiology vary among pathogens in
150 the *Candida/Clavispora* clade. *C. auris* is a unique pathogen known for its thermotolerance
151 (growth above 42°C), multi-drug resistant phenotype, persistence on abiotic surfaces, and ability
152 to transmit from patient to patient via asymptomatic skin carriage [27]. These traits vary across
153 *C. auris* strains, which form four genetically distinct sub-clades and vary in their propensity for
154 invasive and superficial infections [31]. Pathogens in the closely related *C. haemulonii* species
155 complex (which typically includes *C. duobushaemulonii*, *C. haemulonii*, *C. pseudohaemulonii*,
156 and *C. vulturea*) are less thermotolerant but share resistance profiles with *C. auris*, such as
157 resistance to amphotericin B and reduced susceptibility to azoles and echinocandins [16,21]. Due
158 to growth restrictions at higher temperatures, these species tend to cause superficial infections,
159 although invasive infections are increasingly reported [33]. Unlike *C. auris* and pathogens in the
160 *C. haemulonii* complex, *Clavispora lusitaniae* seldom causes infection in humans and is
161 typically described as an opportunistic pathogen, frequently in immunocompromised patients
162 with comorbidities [33].

163 Given the sudden emergence of *C. auris* as a global pathogen and the diversity of
164 isolation sources for it and other members of the *Candida/Clavispora* clade, several hypotheses
165 have been put forward to explain the evolution of its pathogenicity. Many are rooted the endemic
166 pathogen hypothesis, namely that a yeast exists in the environment but undergoes certain genetic
167 changes that allow it to survive in the human body [7]. The Global Warming hypothesis
168 specifically posits that *C. auris* transitioned from an environmental saprobe to a human pathogen
169 due to adaptation to increasing ambient temperatures allowing for strains to overcome the
170 thermal restriction zone [17, 29]. Other hypotheses suggest that these yeasts long existed as
171 benign commensals of the human mycobiome but evolved pathogenicity due to changes in the
172 host and host environment [27]. This hypothesis is embedded in the HIV/AIDS pandemic, where
173 suddenly a large population of immunocompromised individuals was undergoing antifungal
174 treatment [4]. An alternative to the endemic pathogen hypothesis is the novel pathogen
175 hypothesis. This posits that yeasts which already possess traits that would make them suitable
176 pathogens are being provided with a new host as humans encroach upon more territories and
177 previously uninhabited environments [7].

178 In this study, we present a phylogenomic analysis of the *Candida/Clavispora* clade aimed
179 at testing for patterns implicated by these differing emergence hypotheses by expanding the
180 sampling of non-pathogenic strains and species. Specifically, we expect that if pathogens like *C.*
181 *auris* began as environmental saprobes, the strains isolated from clinical environments will form
182 a clade sister to or nested inside of non-pathogenic strains. To build a robust framework for
183 investigating these relationships, we developed a whole-genome sequence dataset of 108 isolates
184 representing 18 species, including 4 newly sequenced species and 18 environmentally isolated
185 strains. Our findings provide a new evolutionary context for the emergence of the deadly human

186 pathogen of global importance, *C. auris*, and other concerning human pathogens belonging to the
187 *Candida/Clavispora* clade.

188

189 RESULTS/DISCUSSION

190

191 Diversifying Taxon Sampling in the *Candida/Clavispora* Clade

192 Species belonging to the *Candida/Clavispora* clade were identified through a review of
193 existing phylogenetic estimates based on whole genome and marker gene sequence data, as well
194 as historical taxonomic data from publicly available databases [11,18,19,21,27]. From this
195 review, we estimated that 45 species comprise the *Candida/Clavispora* clade. Of those 45
196 species, however, 27 species did not have available raw whole genome sequence data or isolates.
197 We identified 4 species with raw whole genome sequence data from GenBank (*Candida blattae*,
198 *Candida intermedia*, *Candida oregonensis*, and *Candida thailandica*) and 5 species with isolates
199 available for sequencing (*Candida dosseyi*, *Candida hainanensis*, *Candida heveicola*, *Candida*
200 *mogii*, and *Candida ruelliae*) (Table 1). These 9 species were all isolated from environmental
201 substrates and have not been described as human pathogens. The remaining 9
202 *Candida/Clavispora* species in our dataset have abundant isolates or sequence data available,
203 although the majority of these have been isolated clinically. To diversify isolation source within
204 our dataset, we identified environmentally isolated strains from known pathogenic species to
205 include (Table 1). Although these isolation sources do not necessarily correspond to an
206 ecological niche, they do represent conditions in which viable yeast cells were cultured. In total,
207 our final dataset included 71 clinically isolated strains and 37 strains isolated from plants, non-
208 human animals, or other environments (S1 Appendix, Fig 1). Based on broader phylogenies, we
209 selected *Saccharomyces cerevisiae* and *Metschnikowia bicuspidata* as outgroups for our
210 phylogeny. We rooted all trees on *S. cerevisiae*.
211

Table 1: Description of isolates whole genome sequenced in this study.

Species	Strain	Collection Country	Substrate	Collect Date	CDS Region	Busco Score (%)	GC %	N50	Assembly Size (Mb)
<i>C. dosseyi</i> [58]	CBS 10313	USA	<i>Ululodes macleayanus</i>	2005	6430	99.3	53	308944	15.5
<i>C. duobushaemulonii</i> [16]	CBS 9754	Germany	<i>Pyrrhocoris apterus</i>	2012	5299	98.8	49.39	352276	15.2
<i>C. haemulonii</i> [16]	CBS 5150	Portugal	Seawater	2012	5265	98.8	47.62	268833	15.2
<i>C. hainanensis</i> [59]	CBS 10696	China	Flower - <i>Magnoliaceae</i>	2008	5195	99	52	393541	12.6
<i>C. heveicola</i> [59]	CBS 7249	China	Rubber Tree Sap	2008	8246	99.2	49.22	550567	15.6
<i>C. heveicola</i> [59]	CBS 10701	China	Rubber Tree Sap	2008	5292	99.1	47	268080	22.3
<i>C. mogii</i> [60]	CBS 2032	Japan	Fucho-Miso	1967	4737	98.8	46	112524	12.9
<i>C. ruelliae</i> [24]	CBS 10815	India	Flower - <i>Ruelliacae</i>	2012	5210	98.7	46	545101	14.2

212

213 Phylogeny estimation for the *Candida/Clavispora* clade based on orthologous genes

214

215 From our 108 genome assemblies (82 *de novo* and 26 reference), we recovered 619

single-copy orthologous genes, similar to the number of shared core genes to other studies

216 analyzing yeasts in this family [9]. Maximum likelihood (ML) phylogenetic inference based on
217 the concatenated dataset showed high bootstrap support for relationships among species and
218 clades (Fig 1). The branch lengths separating strains were orders of magnitude shorter than those
219 separating species, suggesting recent divergence and few genetic differences among the strains.
220 Given that such rapid speciation events can lead to discordant gene trees [34], we also estimated
221 a species tree using multispecies coalescent methods that account for incomplete lineage sorting
222 [35]. The species tree topology (Supplemental Fig 1) recovered the same relationships among the
223 species as in the ML phylogeny but differed in some of the shallow relationships among the
224 intraspecific strains (Supplemental Fig 1). Observing the same clades corresponding to species in
225 both analyses strongly supports the current species delimitation in the *Candida/Clavispora* clade.
226 Moreover, gene trees were generally concordant for these species-level clades (Supplemental Fig
227 2). While some intraspecific clades had strong agreement across genes (e.g., the clades within *C.*
228 *auris*, Supplemental Fig 2), most shallow relationships showed conflict and uncertainty across
229 gene trees (Supplemental Fig 2). This pattern is, again, consistent with the notion that the strains
230 within species are only recently diverged, with short internodes leading to incomplete lineage
231 sorting [36]. Many genes are also uninformative at the intraspecific level (gray portion of pies in
232 Supplemental Fig 2), implying that they have little phylogenetically informative variation at that
233 scale.

234

235 Relationships between *Candida/Clavispora* species

236 We recovered many previously supported relationships but also discovered new
237 relationships, particularly for the newly sampled taxa. The addition of *C. dosseyi*, *C. heveicola*,
238 *C. hainanensis*, *C. mogii*, and *C. ruelliae* to the phylogenetic analyses helped resolve the
239 uncertainty of their placement in the clade, as well as their relationships to known pathogenic
240 relatives. *C. dosseyi* (isolated from an insect) is part of the *Clavispora* sub-clade, sister to *C.*
241 *blattae* (also isolated from an insect) (Fig 1). These two species are nested within a larger clade
242 with two other environmentally isolated species *Cl. intermedia* strains from sewage and wheat-
243 straw hydrolysate, and a *C. thailandica* strain isolated from insect frass (Fig 1). These species are
244 sister to *Cl. lusitaniae* (Fig 1). This topology is similar to a recent phylogenetic estimation of
245 *Clavispora* species based on aligned proteins [18] but differs in the placement of *M. bicuspidata*,
246 which here is sister to the newly added *C. hainanensis* (bootstrap support of 100% from the
247 concatenated dataset; supported by 500/619 genes with 50% or higher bootstrap, Supplemental
248 Fig 1 and 2).

249 *C. ruelliae*, isolated from flowers in India, is a yeast that demonstrates thermotolerance
250 and the ability to form pseudohyphae, traits commonly associated with pathogenic potential [15].
251 *C. ruelliae* had been previously estimated to be part of the *C. haemulonii* complex species
252 [15,20]. Prior to this study, a whole genome sequence had not been produced for the only known
253 *C. ruelliae* isolate. In our topology, *C. ruelliae* is sister to both *C. auris* and the *C. haemulonii*
254 complex species with 100% bootstrap in the concatenated analysis and 125 gene trees
255 individually in support of this topology (Fig 1; Fig 2). *C. mogii*, isolated from Fuchō-Miso
256 soybean paste in 1962, appears to be sister to the *C. auris*, *C. haemulonii* complex species and *C.*
257 *ruelliae* clade (Fig 1; Fig 2). Although this isolate was previously estimated to be distant from
258 these yeasts based on marker gene sequencing data [20], the topology inferred here shows 88%
259 bootstrap support and 82 gene trees in agreement with its placement.

260

261 Assessing origins of pathogenicity *Candida/Clavispora* clade species

262

263 *C. haemulonii complex species are not exclusively pathogens*

264 The *C. haemulonii* complex species are often presented as a single clade of multi-drug
265 resistant, human-pathogenic fungi sister to *C. auris*, an informal taxonomic designation often
266 based on the inclusion of the following pathogenic species (*C. duobushaemulonii*, *C. haemulonii*,
267 *C. pseudohaemulonii*, and *C. vulturena*) [20,37,38]. In this evolutionary scenario, these
268 pathogenic species would all share a most recent common ancestor, pointing to a single origin of
269 pathogenicity among these yeasts nested within the larger *Candida/Clavispora* clade. To test this
270 hypothesis, we included genome-level data for environmentally isolated strains of species
271 hypothesized to be part of this species complex. We included two strains of *C. heveicola*,
272 isolated from rubber tree sap in China, as well as environmentally isolated strains of *C.*
273 *duobushaemulonii* and *C. haemulonii* [20,24,26].

274 Our phylogenetic reappraisal of this species complex estimated that environmentally
275 isolated *C. heveicola* is nested within the species complex and shares a most recent common
276 ancestor with *C. haemulonii* and is sister to other *C. haemulonii* complex pathogenic yeasts (*C.*
277 *vulturena*, *C. pseudohaemulonii* and *C. duobushaemulonii*) (Fig 1). There is high bootstrap
278 support (100%) and 98% of the individual gene trees support this placement (Fig 1;
279 Supplemental Fig 1). *C. heveicola* is the only species within this complex that has not been
280 isolated from a human source, suggesting a single origin of pathogenicity is unlikely in the *C.*
281 *haemulonii* complex and *C. auris* lineages. Additionally, we found that the environmentally
282 isolated *C. duobushaemulonii* and *C. haemulonii* strains are interspersed within clinical strains
283 (Fig 3a). A relatively old strain, *C. haemulonii* B10441 was isolated from the gut of a blue-
284 striped grunt (*Haemulon sciurus*) in 1962 [26]. This strain clusters with a clinical strain isolated
285 from blood in Panama in 2017. *C. haemulonii* CBS 5150 isolated from seawater in Portugal in
286 2017 is distantly related to strain B10441 but is sister to a clade of clinical isolates from Israel,
287 Panama, and Venezuela (Fig 3a). Similarly, environmentally isolated *C. duobushaemulonii* is
288 interspersed within the clinically isolated strains and is sister to strain B12988 isolated from a
289 fingernail in North America (Supplemental Fig 2). Given the high gene tree conflict in this clade
290 (Fig 2), we were interested to know if any of the 619 individual gene trees estimated a topology
291 consistent with a single origin of pathogenicity within *C. haemulonii* and *C. duobushaemulonii*.
292 We applied a topological filter in PAUP* v. 4.0a169 [39] to the 619 ML gene trees but did not
293 recover any ML topologies that support environmentally isolated strains to form a single clade in
294 both species.

295 In sum, *C. haemulonii* complex species do share a recent common ancestor with *C. auris*,
296 but it is not exclusively a pathogenic species complex (Fig 1; Fig 3a). Additionally, at the strain
297 level, there are no individual gene trees that support a topology in which environmentally
298 isolated strains form a single clade. Taken together, it seems unlikely that these yeasts evolved
299 from a most recent common ancestor that was strictly environmental and non-pathogenic. It is
300 possible that addition of newly identified environmentally isolated strains of these species could
301 clarify the topology by way of environmental sister groups or even a grade of environmental
302 samples, which could support a transition from the natural environment to human, but even so,
303 there would still be environmental strains nested within clinical isolates, consistent with escapes
304 from human habitats or multiple environmental spillovers into human populations. Although it
305 would be challenging to achieve sufficiently dense sampling to robustly estimate the number and
306 direction of transitions, the intermixing of clinical and environmental isolates in our analyses

307 highlights the breadth of environments these yeasts inhabit and suggests flexibility in their
308 growth conditions.

309
310 *ML phylogeny captures the versatility of lifestyles in C. auris*

311 With our whole genome data, we estimated relationships between the newly identified
312 environmental *C. auris* strains and clinical strains representing the four known sub-clades of *C.*
313 *auris*. The isolation of *C. auris* from salt marshes and sandy beaches in the Nicobar and
314 Andaman Islands marked the first time this species had been found in the natural environment,
315 suggesting a possible environmental niche for the deadly pathogen which bolstered previous
316 hypotheses about its ecological origins in hot, humid climates [17,29]. Similar to previous
317 analyses, we recovered four, highly supported sub-clades of *C. auris*, which together form a
318 clade sister to the *C. haemulonii* species complex [21, 31] (Fig 2a; S1Appendix). The branch
319 subtending *C. auris*, is relatively long with many substitutions over time (Fig 1), while branches
320 within the subclades have little agreement across gene trees (Fig 2) and are very short, consistent
321 with previous intraspecific analyses of *C. auris* [21,31].

322 Based on these data, we found no genetic basis for a single origin of pathogenicity in *C.*
323 *auris*, as the environmentally isolated strains from salt marshes were interspersed within the
324 clinically isolated *C. auris* strains (Fig 3b). Environmentally isolated strains from the Andaman
325 Islands do not form a genetically distinct clade from clinically isolated strains in Clade I. Given
326 the high proportion of conflicting or uninformative gene trees at the terminal nodes in Clade I,
327 we were also interested to know if any of the 619 individual gene trees presented a topology
328 where environmentally isolated strains for a single clade (Fig 2). We applied a topological filter
329 to the 619 ML gene trees but did not recover any gene trees that support environmentally isolated
330 strains forming a single clade in Clade I.

331 Our topology captures the versatility of lifestyles in *C. auris*, from invasive pathogen to
332 marine yeast. We did not find evidence that these environmentally isolated strains represent a
333 separate lineage from the natural environment; instead, the isolation sources suggest that these
334 yeasts may just as easily live in salt marshes as they could live on the human body. A recent
335 study scanning metagenomic databases recovered marker-gene traces of *C. auris* and relatives in
336 an even broader geographic range in samples from diverse environments, such as amphibian skin
337 and soil [40]. Taken together, this evidence suggests that it will be challenging to isolate all of
338 the ecological reservoirs of *C. auris* in natural environment, given that it can likely survive many
339 harsh conditions. It is also unclear from these data, how these yeasts are growing and surviving
340 outside the human body. Therefore, emphasis should be placed on studying their capability to
341 survive harsh conditions and how that relates to their rapid success in the human body [8].

342
343 **CONCLUSION**

344 The patterns of phylogenetic relationships recovered in our analyses suggest many
345 transitions between humans and other environments. Using isolation source as a proxy for
346 ecological breadth, we found that yeasts in the *Candida/Clavispora* clade likely have a high
347 capacity for transition between many different environments. Specifically, we found that
348 environmental isolates are commonly nested within clades of clinical isolates, as opposed to
349 forming distinct clades sister to clinical isolates, underscoring that there is not a single
350 divergence event that gave rise to a group comprised exclusively of human pathogens. This
351 parallels the origins of pathogenicity in other clades of *Saccharomycotina*, where transitions of
352 non-pathogens to the human pathogens have occurred independently at least five times [30]. In

353 these *Candida/Clavispora* yeasts as in other *Saccharomycotina*, colonization of a human host
354 could be a side effect of their physiological capability to survive in diverse, harsh conditions and
355 not necessarily the gain of specialized virulence traits, which likely evolve due to selection
356 pressure present during infection [8]. In addition to regulatory and coding sequence changes,
357 these traits may be tied to changes in gene content, such as gene gain and loss as is the case for
358 *C. albicans* [41], which we can now begin to explore with the growing body of genome
359 assemblies.

360 This study provides a foundation for future hypothesis testing regarding the emergence of
361 novel human pathogens in the *Candida/Clavispora* clade. Even with limited available strains
362 outside of the human body, we find that these environmental strains are not closely related to
363 each other, nor are they geographically clustered with their most closely related clinical isolates,
364 pointing to the extreme versatility and wide distribution of these yeasts. From these data it is,
365 therefore, hard to determine if the niche shift in these yeasts moved from specialized saprophyte
366 to human pathogen as previously hypothesized [29]. A broad set of *Candida/Clavispora* samples
367 detected with marker-based sequencing from diverse environments across the globe reinforces
368 this notion [40]. Even though thermotolerance is a critical trait for fungi to survive in the human
369 body [42], the expansion in distribution of these yeasts outside tropical regions challenges the
370 hypothesis that global warming is a major evolutionary driver of pathogenicity in this clade [17,
371 29]. Additional evidence is needed to understand how selection on thermotolerant traits operates
372 in yeasts from areas where the effects of global warming are less pronounced (average ambient
373 temperature $<37^{\circ}\text{C}$) and areas where these effects raise average ambient temperatures above
374 37°C . Therefore, it seems more plausible that these pathogens, found in harsh conditions such as
375 seawater, already possessed traits that make them suitable human pathogens. The detection of
376 these yeasts in humans might correspond with increases in at-risk populations over the past 30
377 years, for example changes in cancer, transplant, and HIV patient populations, ultimately
378 representing a change in host environment [27]. This explanation is logically fits with what we
379 know about the transmission dynamics of these yeasts in hospital settings, specifically their
380 ability to exclusively cause severe disease or long-term asymptomatic carriage in heavily
381 medicated (antibiotics, antifungal, immunosuppressants) patient populations with indwelling
382 medical devices [31, 42].

383 As we continue to see an increase in vulnerable patient populations, evident by recent
384 increases in intensive-care hospitalization due to COVID-19, we should be vigilant in our
385 surveillance for yeasts belonging to this clade being isolated clinically from humans, and work to
386 better understand how human-fungal interactions transmit fungal pathogens to these populations.
387 Increased environmental sampling and obtaining isolates from these diverse sources will greatly
388 enhance the phylogenomic dataset generated in this study and help to form a better picture of the
389 evolutionary dynamics of the human pathogenic lifestyle in this clade.
390

391 MATERIALS AND METHODS

393 Taxon Sampling

394 A maximum of 20 isolates were randomly selected for species with more than one isolate
395 available. A total of 108 isolates representing 18 different species were sampled, including 4
396 species newly sequenced in this study. These isolates were mostly obtained from clinical
397 specimens (66.6%), followed by the environment (15.0%), plants (11.0%), animals (5.5%), and
398 insects (0.9%) (S1 Appendix). Eight *Candida* spp. isolates (*C. haemulonii* CBS 5150, *C.*

399 *heveicola* CBS 10701, *C. heveicola* CBS 7249, *C. dosseyi* CBS 10313, *C. duobushaemulonii*
400 CBS 9754, *C. ruelliae* CBS 10815, *C. mogii* CBS 2032 and *C. hainanensis* CBS 10696) were
401 obtained as lyophilized cultures from the Westerdijk Fungal Diversity Institute
402 (<https://wi.knaw.nl/>) for whole genome sequencing (Table 1). We selected *Saccharomyces*
403 *cerevisiae* and *Metschnikowia bicuspidata* as outgroups for our phylogeny. We rooted all trees
404 on *S. cerevisiae*

405

406 **DNA Extraction and Whole Genome Sequencing**

407 The eight lyophilized isolates were revived on Potato Dextrose Agar using aseptic
408 technique. From each plate, a colony was randomly selected and used to inoculate 10 mL of
409 Sabouraud Dextrose Broth in a 50 mL conical Falcon tube. The tubes were incubated at 25°C in a
410 shaking incubator at 4000 rpm for 72 hours. After incubation, the cultures were centrifuged, and
411 pellet was harvested. Cells were resuspended in a SDS buffer solution and vortexed. The
412 contents were added to Qiagen PowerBead tubes with 0.5mm glass beads and vortexed for 5
413 minutes. The tubes were then heat shocked at 60°C for 60 seconds. DNA was extracted using
414 Qiagen Blood and Tissue Extraction kit. The sample was eluted with warm sterile water rather
415 than the supplied elution buffer. The ITS region was amplified (ITS1-F and ITS4) from the
416 extracted DNA of each isolate and sequenced to confirm species identification and extraction
417 quality. Library preparation was conducted at the University of Colorado Anschutz UCDAMC
418 Genomics Core and sequenced on the Illumina NovaSeq 6000. Raw sequence read data are
419 available in NCBI under BioProject PRJNA945431.

420

421 **Genome Assembly and Annotation**

422 Workflows and scripts used to generate these data are publicly available on GitHub page:
423 https://github.com/kyleschutz/candida_clavispora_workflow. Raw sequence reads from 82
424 isolates were de novo assembled in this study. Reads from 74 isolates were downloaded from the
425 NCBI Sequence Read Archive using SRA Toolkit's fasterq-dump. Reads from the 8 purchased
426 isolates were also de novo assembled. Read quality was assessed with FastQC to inform read
427 trimming parameters [44]. Raw reads were trimmed using Trimmomatic [45] with a sliding
428 window cutoff of 4:10 and *de novo* assembled with SPAdes v. 3.15.2 [46]. Genome assemblies
429 for 26 isolates without raw sequence data available were retrieved from NCBI's GenBank.
430 Assembly statistics were evaluated for all assemblies using Assemblathon 2 [47]. Given that we
431 used a combination of *de novo* assemblies (n=82) and reference assemblies (n=26), we annotated
432 all assemblies to quality control and standardize for downstream analyses using Funannotate
433 version 1.8.9 [48]. Assembly data are available for download:
434 <https://doi.org/10.5281/zenodo.7742436>.

435

To assess the quality of the assemblies and their subsequent annotations, *Candida*
436 *haemulonii* B11899 was aligned against a high-quality reference genome of *Candida haemulonii*
437 using a custom database query with BLASTN [49]. This validation test showed 100% identity
438 between coding regions in the two assemblies. Assembly completeness was assessed using the
439 BUSCO version 3 using Saccharomycetes OrthoDB v. 10 [50] for all strains.

440

441 **Identifying Orthologous Gene Clusters**

442 From the 110 input genomes, nucleotide coding sequence data (CDS) were translated to
443 amino acid sequences using EMBOSS v. 6.6.0 [51]. In parallel, CDS regions from all isolates
444 were concatenated to serve as a reference for downstream translation back to nucleotide

445 sequences. 619 single-copy orthologous genes were detected from translated CDS regions using
446 Proteinortho6 and extracted using the grab_proteins.pl script [52]. Each gene cluster was
447 individually aligned with MAFFT v. 6.240 [53]. In order to maximize the information available
448 for phylogenetic analysis these closely related strains, the alignments were reverse-translated
449 back to nucleotide data referencing the original CDS file with RevTrans Version 2.0 before
450 trimming and gap removal [54]. The alignments were then trimmed using the “gappyout”
451 parameter in trimAl [55].
452

453 **Phylogenetic Analysis**

454 To prepare for the estimation of the maximum likelihood (ML) species tree, the trimmed
455 CDS alignments were concatenated using catfasta2phym.pl script
(<https://github.com/nylander/catfasta2phym>). The resulting alignment consisted of 1,152,540
456 alignment sites and 592,724 alignment patterns representing 110 input genomes. The ML tree
457 was estimated with RAxML-NG v. 8.0 with the following parameters: GTR + GAMMA model,
458 100 bootstrap replicates.
459

460 Gene trees were estimated with RAxML-NG version 8.0 with each of the 619 CDS
461 alignments using the General Time Reversible (GTR) + GAMMA model of nucleotide
462 substitution, to allow for rate heterogeneity across sites. Support was assessed with 100 bootstrap
463 replicates [56]. Individual ML gene trees are available at:

464 <https://doi.org/10.5281/zenodo.7742436>.

465 A coalescent species tree estimation was conducted using the resulting gene trees in ASTRAL
466 5.7.1 [35]. Gene conflict was assessed by a conflict analysis of the ASTRAL coalescent species
467 tree using PhyParts with a 50% bootstrap cutoff parameter [57]. Conflicting gene tree topologies
468 were visualized with the phypartspiecharts.py script
(https://github.com/mossmatters/MJPythonNotebooks/blob/master/PhyParts_PieCharts.ipynb).
469 We also examined topological hypotheses by filtering individual gene trees for predicted
470 relationships (e.g., clades of exclusively environmental samples). We carried out this filtering
471 with PAUP* v. 4.0a169 [39].
472

473 **DATA AVAILABILITY**

474 Workflows and scripts used to generate these data are publicly available on Kyle Schutz’s
475 GitHub https://github.com/kyleschutz/candida_clavispora_workflow.
476 Raw read sequence data were deposited in NCBI’s SRA Database under BioProject
477 PRJNA945431.
478 Genome assemblies and ML gene trees are available at: <https://doi.org/10.5281/zenodo.7742436>
479

480 **ACKNOWLEDGEMENTS**

481 We thank Dr. Lara Vimercati for sharing DNA extraction protocols and Eli Paul for help DNA
482 extraction. We also thank Dr. Ricardo Franco-Duarte for sharing DNA sequence data for
483 *Clavispora santaluciae* strains.
484 This work utilized the RMACC Summit supercomputer, which is supported by the National
485 Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado
486 Boulder, and Colorado State University. The Summit supercomputer is a joint effort of the
487 University of Colorado Boulder and Colorado State University.
488

489 **FIGURE CAPTIONS**

490

491
492 **Fig 1: Multiple origins of pathogenic lifestyle in sampled *Candida/Clavispora* yeasts.**
493 A collapsed maximum likelihood tree rooted on *S. cerevisiae* (pruned) based on 619 orthologous
494 genes from 108 isolates using a GTR+GAMMA model and 100 bootstrap replicates. Triangles
495 represent a collapsed node. Bolded species were newly whole genome sequenced as part of this
496 study. Bar graph represents the sampling diversity of isolation sources by category used in this
497 dataset. An expanded version of this phylogeny can be found in Supplemental Fig 1.
498
499 **Fig 2: Recent divergences of *C. auris* and *C. haemulonii* show conflict among orthologous**
500 **ML genes trees**
501 A coalescent species tree estimation based on 619 ML gene trees in ASTRAL. Gene conflict was
502 assessed by a conflict analysis using PhyParts. Green portion of the pie charts show the
503 proportion of 619 ML gene trees that support on the presented topology with 50% or higher
504 bootstrap. Red portion of the pie charts show ML gene trees that support an alternate topology
505 with 50% or higher bootstrap, while the grey portion of the pie charts depict genes that are
506 uninformative (< 50% bootstrap support).
507
508 **Fig 3: Strains isolated from non-clinical sources are not separate environmental lineages of**
509 ***C. haemulonii* and *C. auris*.**
510 Maximum likelihood tree rooted on *S. cerevisiae* based on 619 orthologous genes using a
511 GTR+GAMMA model and 100 bootstrap replicates. Three letters represent the country where
512 the sample was collected.
513 **A**) Zoomed in phylogeny showing sampled *C. haemulonii* strains. Green circles represent
514 environmentally isolated strains. CBS 5150 was isolated from seawater in Portugal in 1972 and
515 B10441 was isolated from blue-striped grunt in 1962. **B**) Zoomed in phylogeny showing
516 sampled *C. auris* strains. Corresponding clade number was assigned based in NCBI designation.
517 Environmentally isolated strains (green circles) represent isolates collected by Arora et al. 2021
518 in the South Andaman Islands. VPCI-E-AN-180 was pruned from the tree due to poor sequence
519 quality. The red star denotes an antifungal susceptible, environmentally isolated *C. auris* strain
520 (fluconazole MIC, 8 mg/liter; amphotericin B MIC, 1 mg/liter) [29].
521
522 **SUPPLEMENTAL Fig 1: Expanded ML Phylogeny for *Candida/Clavispora***
523 A expanded maximum likelihood tree rooted on *S. cerevisiae* (pruned) based on 619 orthologous
524 genes from 108 isolates using a GTR+GAMMA model and 100 bootstrap replicates. Bolded
525 species had not been whole genome sequenced prior to this study. Green colored species indicate
526 non-clinically isolated strains. The asterisk next to denotes an antifungal susceptible,
527 environmentally isolated *C. auris* strain (fluconazole MIC, 8 mg/liter; amphotericin B MIC,
528 1 mg/liter) [29].
529
530 **SUPPLEMENTAL Fig 2: Gene conflict in *Candida/Clavispora* yeasts**
531 A coalescent species tree estimation based on 619 ML gene trees in ASTRAL. Gene conflict was
532 assessed by a conflict analysis using PhyParts. Green portion of the pie charts show the
533 proportion of 619 ML gene trees that support on the presented topology with 50% or higher
534 bootstrap. Red portion of the pie charts show ML gene trees that support an alternate topology
535 with 50% or higher bootstrap, while the grey portion of the pie charts depict genes that are
536 uninformative (< 50% bootstrap support).

537

538 **S1 Appendix: Taxa metadata, including NCBI and SRA accession numbers.**

539

540 **TABLES**

541

542 **Table 1: Description of isolates whole genome sequenced in this study.**

543

544 **REFERENCES**

545

1. Rodrigues ML, Nosanchuk JD. Fungal diseases as neglected pathogens: A wake-up call to public health officials. *PLoS Negl Trop Dis.* 2020;14(2):e0007964.
2. Bongomin F, Gago S, Oladele RO, Denning DW. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. *J Fungi.* 2017;3(4).
3. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. *Sci Transl Med.* 2012;4(165):165rv13.
4. Casadevall A. Fungal Diseases in the 21st Century: The Near and Far Horizons. *Pathog Immun.* 2018;3(2):183-96.
5. Robbins N, Caplan T, Cowen LE. Molecular Evolution of Antifungal Drug Resistance. *Annu Rev Microbiol.* 2017;71:753-75.
6. van Rhijn N, Bromley M. The Consequences of Our Changing Environment on Life Threatening and Debilitating Fungal Diseases in Humans. *J Fungi (Basel).* 2021;7(5).
7. Rachowicz LJ, Hero JM, Alford RA, Taylor JW, Morgan JAT, Vredenburg VT, et al. The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife. *Conserv Biol.* 2005;19(5):1441-8.
8. Gostinčar C, Zajc J, Lenassi M, Plemenitas A, de Hoog S, Al-Hatmi AMS, et al. Fungi between extremotolerance and opportunistic pathogenicity on humans. *Fungal Divers.* 2018;93(1):195-213.
9. Gabaldon T, Naranjo-Ortiz MA, Marcet-Houben M. Evolutionary genomics of yeast pathogens in the Saccharomycotina. *FEMS Yeast Res.* 2016;16(6).
10. Daniel HM, Lachance MA, Kurtzman CP. On the reclassification of species assigned to *Candida* and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. *Antonie Van Leeuwenhoek.* 2014;106(1):67-84.
11. Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, et al. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. *Cell.* 2018;175(6):1533-45 e20.
12. Turner SA, Butler G. The *Candida* Pathogenic Species Complex. *Csh Perspect Med.* 2014;4(9).
13. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. *Clin Microbiol Rev.* 2007;20(1):133-+.
14. Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B, Chiller T, et al. *Candida auris*: The recent emergence of a multidrug-resistant fungal pathogen. *Med Mycol.* 2019;57(1):1-12.
15. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. *Candida auris* sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. *Microbiol Immunol.* 2009;53(1):41-4.

582 16. Cendejas-Bueno E, Kolecka A, Alastrauey-Izquierdo A, Theelen B, Groenewald M,
583 Kostrzewska M, et al. Reclassification of the *Candida haemulonii* complex as *Candida*
584 *haemulonii* (*C. haemulonii* group I), *C. duobushaemulonii* sp. nov. (*C. haemulonii* group
585 II), and *C. haemulonii* var. *vulnera* var. nov.: three multiresistant human pathogenic
586 yeasts. *J Clin Microbiol.* 2012;50(11):3641-51.

587 17. Casadevall A, Kontoyiannis DP, Robert V. On the Emergence of *Candida auris*: Climate
588 Change, Azoles, Swamps, and Birds. *mBio.* 2019;10(4).

589 18. Franco-Duarte R, Cadez N, Rito T, Drumonde-Neves J, Dominguez YR, Pais C, et al.
590 Whole-Genome Sequencing and Annotation of the Yeast *Clavispora santaluciae* Reveals
591 Important Insights about Its Adaptation to the Vineyard Environment. *J Fungi (Basel).*
592 2022;8(1).

593 19. Kurtzman CP, Robnett CJ, Basehoar E, Ward TJ. Four new species of *Metschnikowia*
594 and the transfer of seven *Candida* species to *Metschnikowia* and *Clavispora* as new
595 combinations. *Antonie Van Leeuwenhoek.* 2018;111(11):2017-35.

596 20. Sipiczki M, Tap RM. *Candida vulturina pro tempore* sp. nov., a dimorphic yeast species
597 related to the *Candida haemulonis* species complex isolated from flowers and clinical
598 sample. *Int J Syst Evol Microbiol.* 2016;66(10):4009-15.

599 21. Munoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, et al. Genomic
600 insights into multidrug-resistance, mating and virulence in *Candida auris* and related
601 emerging species. *Nat Commun.* 2018;9(1):5346.

602 22. Chybowska AD, Childers DS, Farrer RA. Nine Things Genomics Can Tell Us About
603 *Candida auris*. *Front Genet.* 2020;11:351.

604 23. Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts
605 (*Saccharomycotina*). *Genetics.* 2017;206(2):717-50.

606 24. Saluja P, Prasad GS. *Candida ruelliae* sp. nov., a novel yeast species isolated from
607 flowers of *Ruellia* sp. (Acanthaceae). *FEMS Yeast Res.* 2008;8(4):660-6.

608 25. Nguyen NH, Suh SO, Blackwell M. Five novel *Candida* species in insect-associated yeast
609 clades isolated from Neuroptera and other insects. *Mycologia.* 2007;99(6):842-58.

610 26. van Uden, Kolipinski MC. *Torulopsis haemulonii* nov. spec., a yeast from the Atlantic
611 Ocean. *Antonie Van Leeuwenhoek.* 1962;28:78-80.

612 27. Jackson BR, Chow N, Forsberg K, Litvintseva AP, Lockhart SR, Welsh R, et al. On the
613 Origins of a Species: What Might Explain the Rise of *Candida auris*? *J Fungi (Basel).*
614 2019;5(3).

615 28. Muthusamy A, Rao MH, Chakrabarti A, Velayuthan RD. Case report: Catheter related
616 blood stream infection caused by *Candida vulturina*. *Medical Mycology Case Reports.*
617 2022;36:27-30.

618 29. Arora P, Singh P, Wang Y, Yadav A, Pawar K, Singh A, et al. Environmental Isolation of
619 *Candida auris* from the Coastal Wetlands of Andaman Islands, India. *mBio.* 2021;12(2).

620 30. Rokas A. Evolution of the human pathogenic lifestyle in fungi. *Nat Microbiol.*
621 2022;7(5):607-19.

622 31. Chow NA, Munoz JF, Gade L, Berkow EL, Li X, Welsh RM, et al. Tracing the
623 Evolutionary History and Global Expansion of *Candida auris* Using Population Genomic
624 Analyses. *mBio.* 2020;11(2).

625 32. Coles M, Cox K, Chao A. *Candida haemulonii*: An emerging opportunistic pathogen in
626 the United States? *IDCases.* 2020;21:e00900.

627 33. Mendoza-Reyes DF, Gomez-Gaviria M, Mora-Montes HM. *Candida lusitaniae*: Biology,
628 Pathogenicity, Virulence Factors, Diagnosis, and Treatment. *Infect Drug Resist.*
629 2022;15:5121-35.

630 34. Szöllösi GJ, Tannier E, Daubin V, Boussau B. The Inference of Gene Trees with Species
631 Trees. *Syst Biol.* 2015;64(1):E42-E62.

632 35. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. ASTRAL:
633 genome-scale coalescent-based species tree estimation. *Bioinformatics.*
634 2014;30(17):i541-8.

635 36. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Worheide G, et al.
636 Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough. *Plos
637 Biol.* 2011;9(3).

638 37. Rabaan AA, Eljaaly K, Alfouzan WA, Al Mutair A, Alhumaid S, Alfaraj AH, et al.
639 Psychogenetic, genetic and epigenetic mechanisms in *Candida auris*: Role in drug
640 resistance. *J Infect Public Heal.* 2023;16(2):257-63.

641 38. Ramos LS, Figueiredo-Carvalho MHG, Silva LN, Siqueira NLM, Lima JC, Oliveira SS,
642 et al. The Threat Called *Candida haemulonii* Species Complex in Rio de Janeiro State,
643 Brazil: Focus on Antifungal Resistance and Virulence Attributes. *J Fungi.* 2022;8(6).

644 39. Wilgenbusch JC, Swofford D. Inferring evolutionary trees with PAUP*. *Curr Protoc
645 Bioinformatics.* 2003;Chapter 6:Unit 6 4.

646 40. Irinyi L, Roper M, Malik R, Meyer W. In silico environmental sampling of emerging
647 fungal pathogens via big data analysis. *Fungal Ecology.* 2023;62:101212.

648 41. Ene IV, Bennett RJ, Anderson MZ. Mechanisms of genome evolution in *Candida
649 albicans*. *Curr Opin Microbiol.* 2019;52:47-54. Epub 2019/06/09. doi:
650 10.1016/j.mib.2019.05.001. PubMed PMID: 31176092.

651 42. Robert VA, Casadevall A. Vertebrate endothermy restricts most fungi as potential
652 pathogens. *J Infect Dis.* 2009;200(10):1623-6.

653 43. Ruiz-Gaitan A, Martinez H, Moret AM, Calabuig E, Tasias M, Alastruey-Izquierdo A, et
654 al. Detection and treatment of *Candida auris* in an outbreak situation: risk factors for
655 developing colonization and candidemia by this new species in critically ill patients.
656 *Expert Rev Anti Infect Ther.* 2019;17(4):295-305. Epub 2019/03/30. doi:
657 10.1080/14787210.2019.1592675.

658 44. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010
659 Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom.

660 45. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
661 data. 2014 *Bioinformatics* 30(15):2114-2120.

662 46. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De
663 Novo Assembler. *Curr Protoc Bioinformatics.* 2020;70(1):e102.

664 47. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, et al.
665 Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate
666 species. *Gigascience.* 2013;2(1):10.

667 48. Palmer J, Stajich J. Funannotate: eukaryotic genome annotation pipeline. 2017. Zenodo.

668 49. Madden T. 2013. The BLAST sequence analysis tool. The NCBI Handbook [Internet].
669 2nd edition. National Center for Biotechnology Information (US).

670 50. Manni M, Berkeley MR, Seppey M, Zdobnov EM. BUSCO: Assessing Genomic Data
671 Quality and Beyond. *Curr Protoc.* 2021;1(12):e323.

672 51. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, et al. Search and
673 sequence analysis tools services from EMBL-EBI in 2022. *Nucleic Acids Res.*
674 2022;50(W1):W276-9.

675 52. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho:
676 detection of (co-)orthologs in large-scale analysis. *BMC Bioinformatics.* 2011;12:124.

677 53. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence
678 alignment, interactive sequence choice and visualization. *Brief Bioinform.*
679 2019;20(4):1160-6.

680 54. Wernersson R, Pedersen AG. RevTrans: Multiple alignment of coding DNA from aligned
681 amino acid sequences. *Nucleic Acids Res.* 2003;31(13):3537-9.

682 55. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated
683 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics.*
684 2009;25(15):1972-3.

685 56. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable
686 and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics.*
687 2019;35(21):4453-5.

688 57. Smith SA, Moore MJ, Brown JW, Yang Y. Analysis of phylogenomic datasets reveals
689 conflict, concordance, and gene duplications with examples from animals and plants.
690 *BMC Evol Biol.* 2015;15:150.

691 58. Nguyen NH, Suh SO, Blackwell M. Five novel *Candida* species in insect-associated yeast
692 clades isolated from Neuroptera and other insects. *Mycologia.* 2007;99(6):842-58. Epub
693 2008/03/13. doi: 10.3852/mycologia.99.6.842. PubMed PMID: 18333508.

694 59. Wang SA, Jia JH, Bai FY. *Candida alocasiicola* sp. nov., *Candida hainanensis* sp. nov.,
695 *Candida heveicola* sp. nov. and *Candida musiphila* sp. nov., novel anamorphic,
696 ascomycetous yeast species isolated from plants. *Antonie Van Leeuwenhoek.*
697 2008;94(2):257-65. Epub 2008/03/18. doi: 10.1007/s10482-008-9238-y. PubMed PMID:
698 18344072.

699 60. Vidal-Leiria M. *Candida mogii* sp. n., a halotolerant yeast associated with miso
700 fermentation. *Antonie Van Leeuwenhoek.* 1967;33(3):341-4. Epub 1967/01/01. doi:
701 10.1007/BF02045579. PubMed PMID: 5299914.

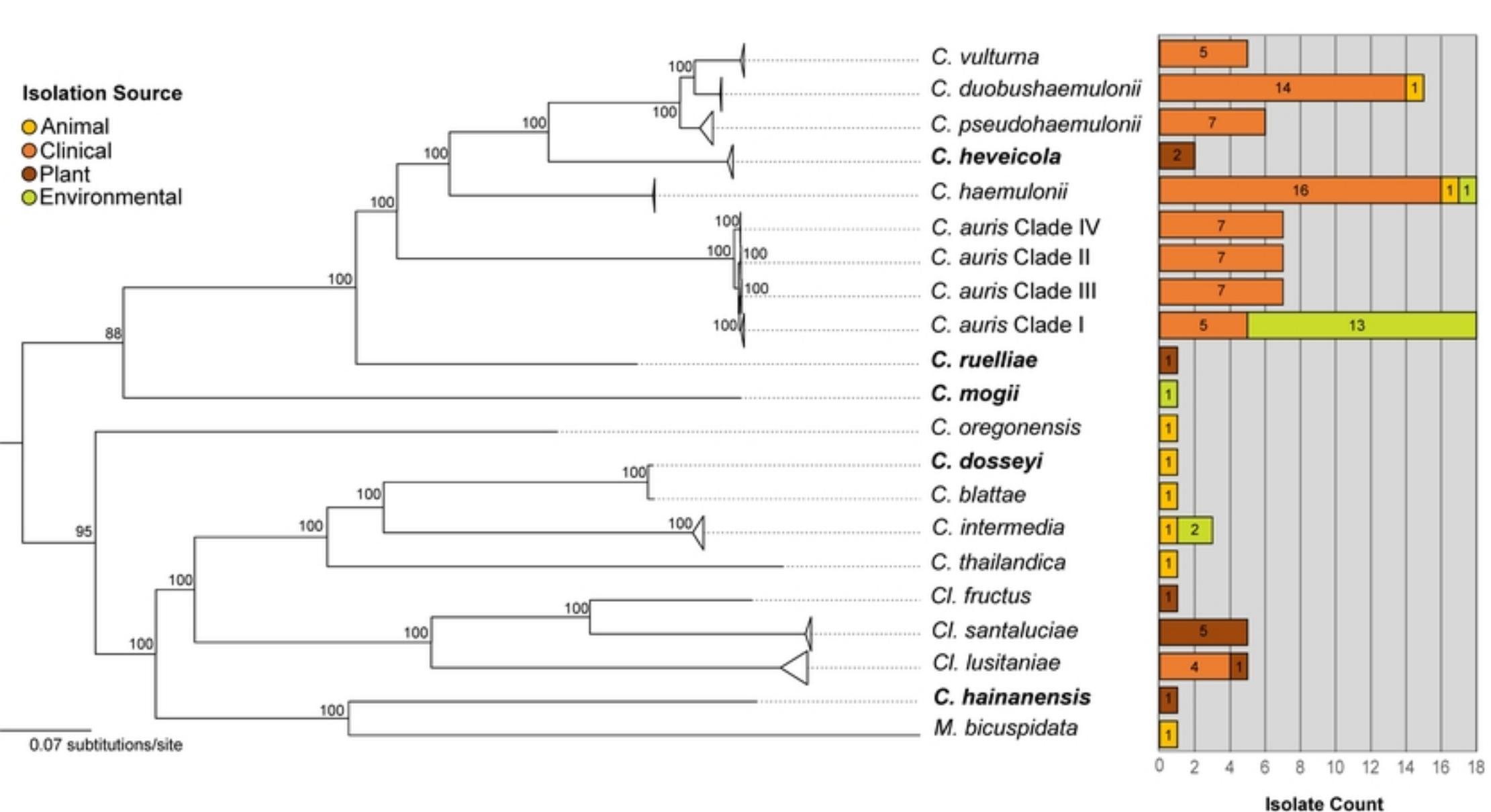


Figure 1

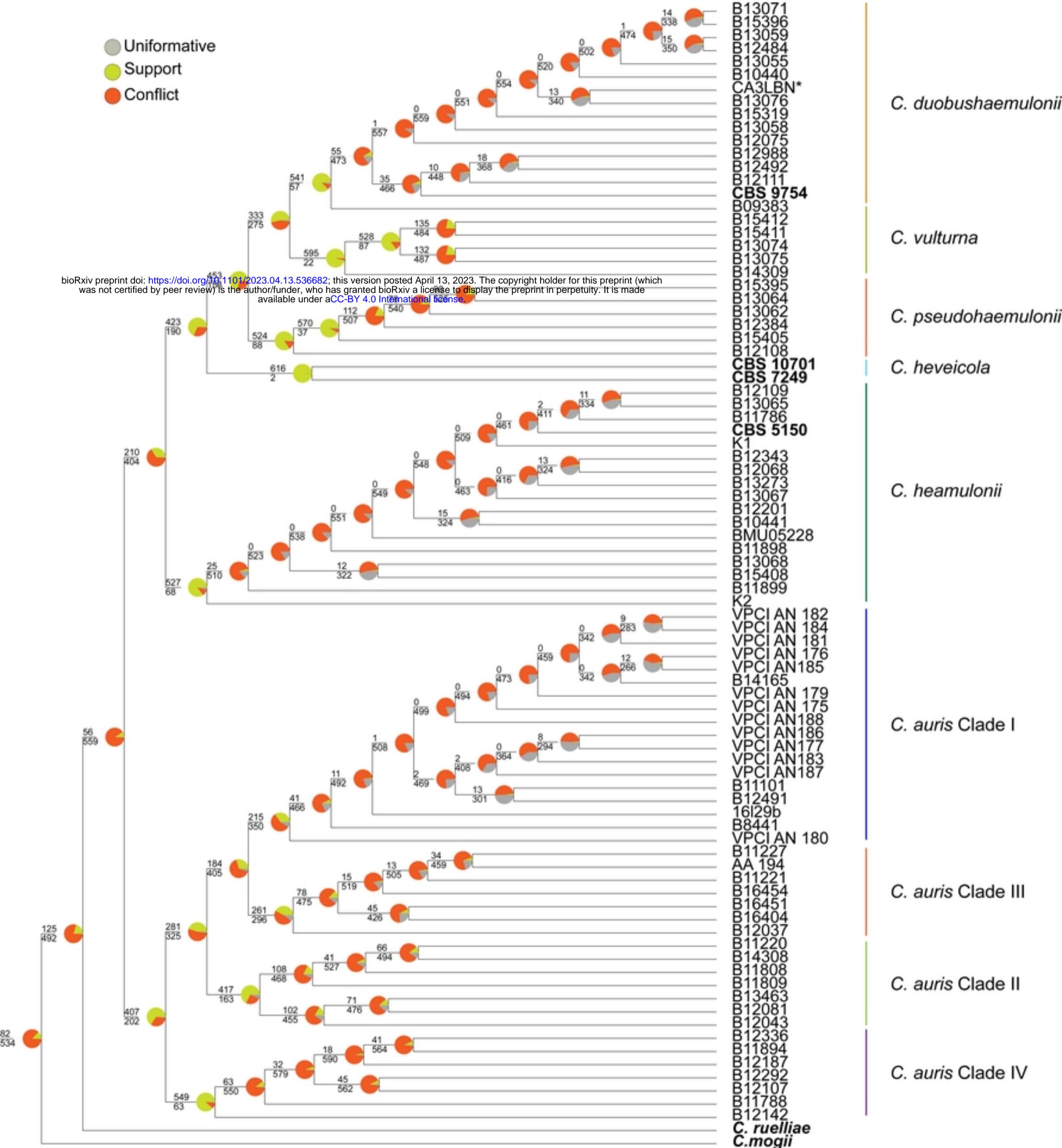
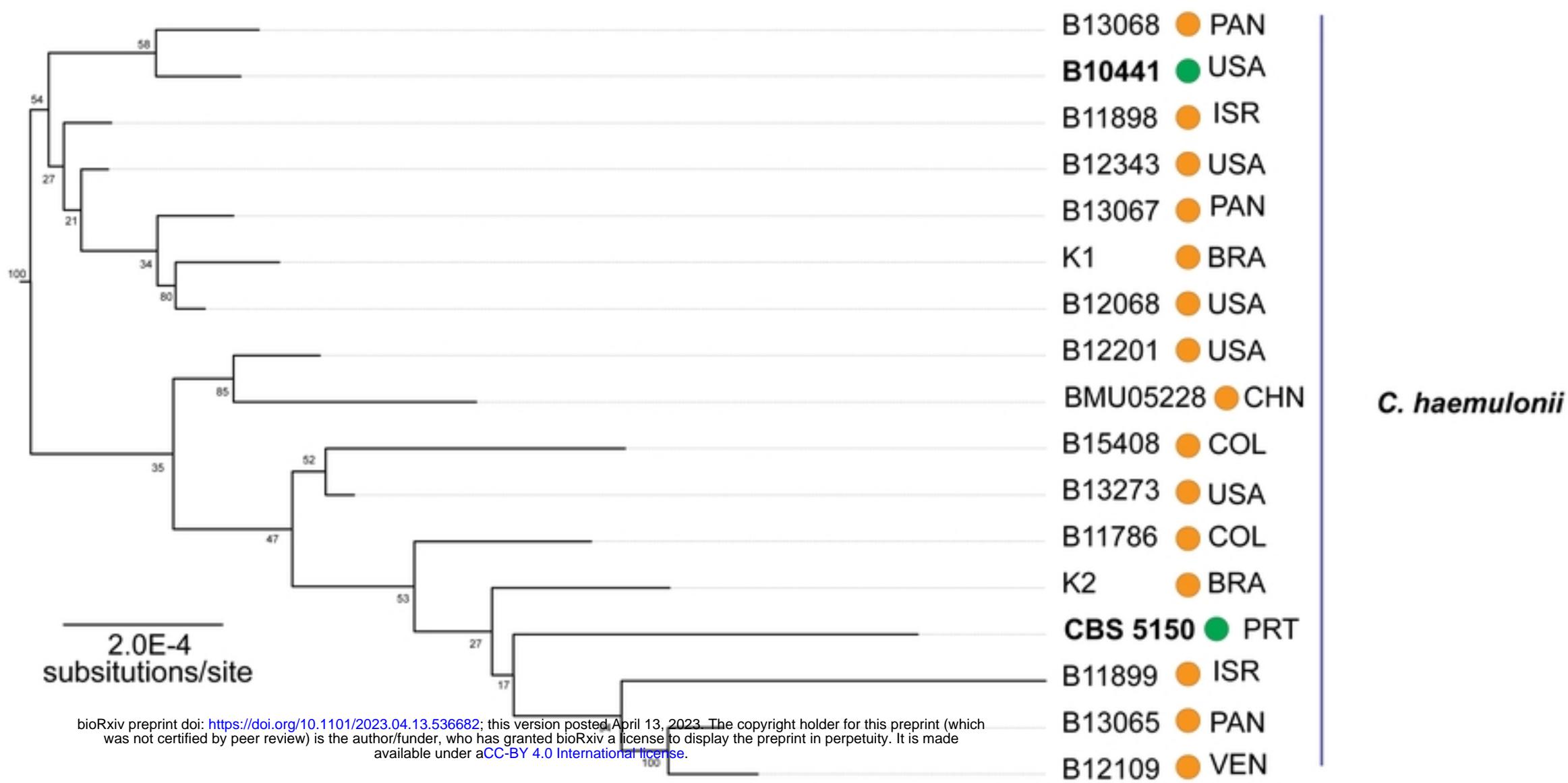



Figure 2

A

B

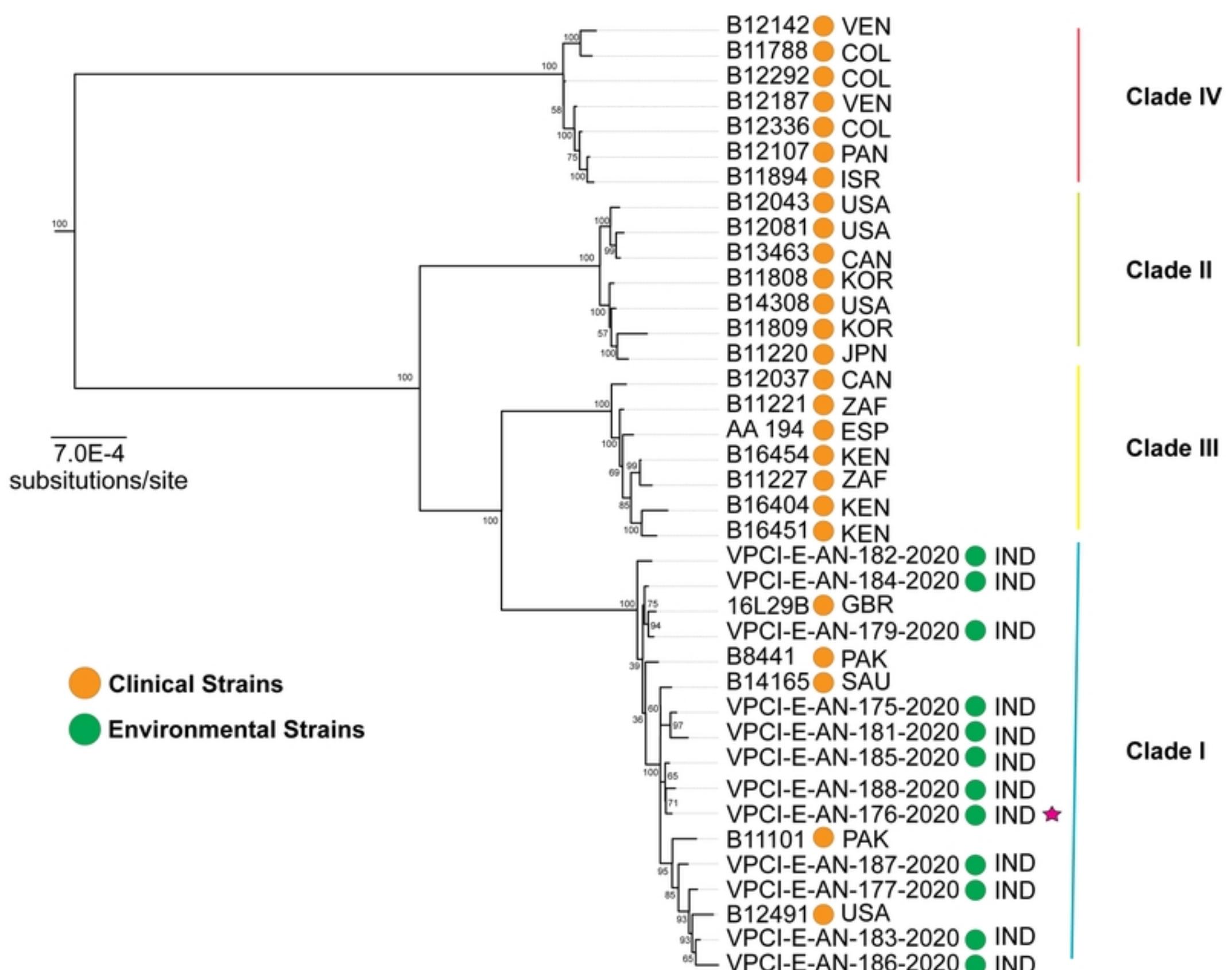
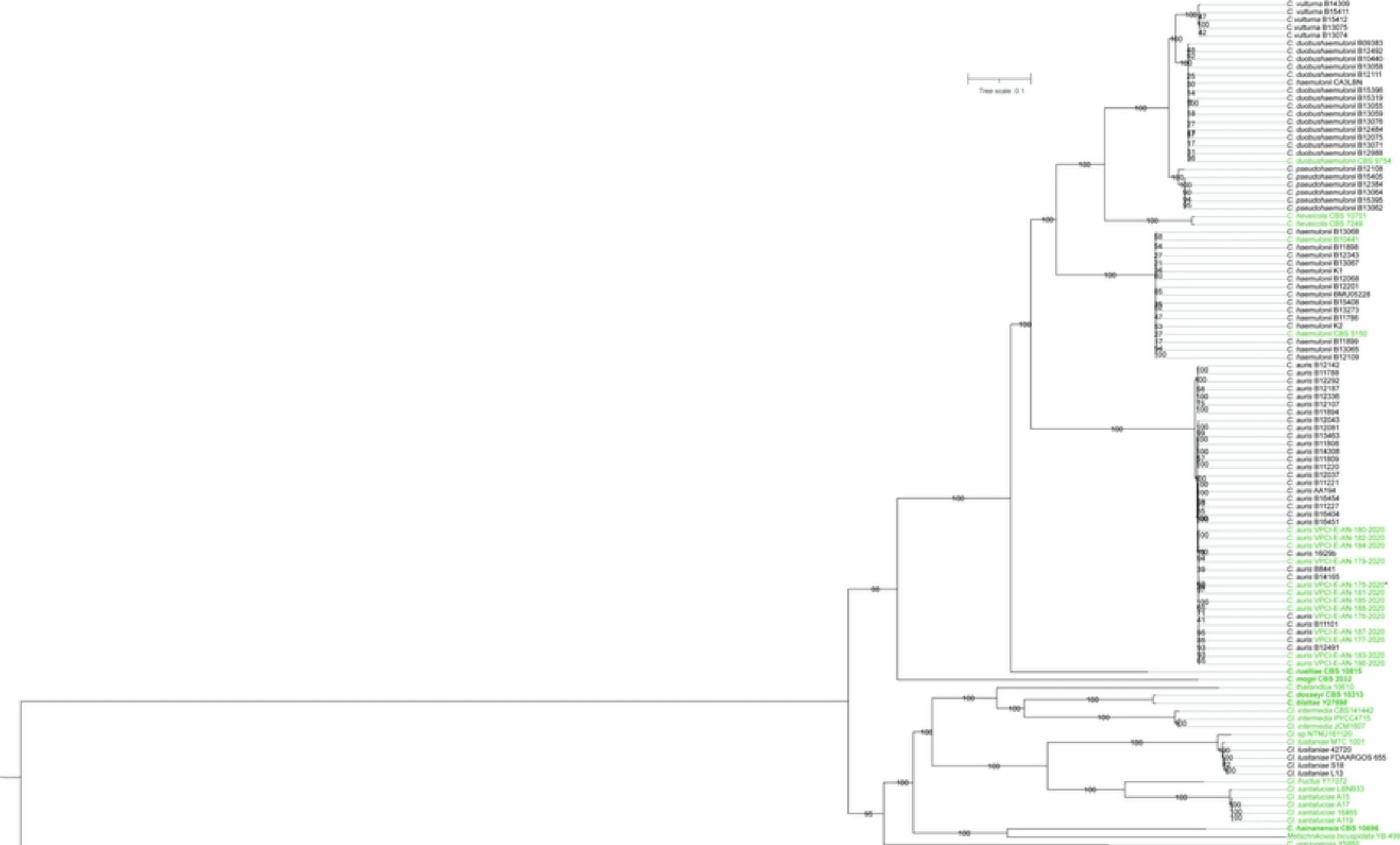



Figure 3

Supplemental Figure 1

