

1 **Using dynamic oral dosing of rifapentine and rifabutin to simulate exposure**
2 **profiles of long-acting formulations in a mouse model of tuberculosis preventive**
3 **therapy**

4

5 Yong S. Chang^{1,2*}, Si-Yang Li^{1*}, Henry Pertinez³, Fabrice Betoudji^{1,4}, Jin Lee¹, Steven
6 P. Rannard³, Andrew Owen³, Eric L. Nuermberger¹, Nicole C. Ammerman^{1,5}

7

8 ¹Center for Tuberculosis Research, Johns Hopkins University School of Medicine,
9 Baltimore, Maryland, USA; ²Touro College of Osteopathic Medicine-Middletown,
10 Middletown, New York, USA (current address); ³Centre of Excellence in Long-acting
11 Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of
12 Liverpool, Liverpool, UK; ⁴Veterinary Medicine Division, USAMRIID, Fort Detrick,
13 Frederick, Maryland, USA (current address); ⁵Department of Medical Microbiology and
14 Infectious Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam,
15 The Netherlands.

16 *These authors contributed equally to this work.

17

18 Running title: Rifapentine and rifabutin for latent tuberculosis

19

20 Keywords: *Mycobacterium tuberculosis*, latent tuberculosis, rifapentine, rifabutin, long-
21 acting injectable

22

23 Corresponding author: Nicole C. Ammerman, n.ammerman@erasmusmc.nl

24 **ABSTRACT**

25 Administration of tuberculosis preventive therapy (TPT) to individuals with latent
26 tuberculosis infection is an important facet of global tuberculosis control. The use of
27 long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this
28 indication. Rifapentine and rifabutin have anti-tuberculosis activity and physiochemical
29 properties suitable for LAI formulation, but there are limited data available for
30 determining the target exposure profiles required for efficacy in TPT regimens. The
31 objective of this study was to determine exposure-activity profiles of rifapentine and
32 rifabutin to inform development of LAI formulations for TPT. We utilized a validated
33 paucibacillary mouse model of TPT in combination with dynamic oral dosing of both
34 drugs to simulate and understand exposure-activity relationships to inform posology for
35 future LAI formulations. This work identified several LAI-like exposure profiles of
36 rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as
37 TPT regimens and thus can serve as experimentally-determined targets for novel LAI
38 formulations of these drugs. We present novel methodology to understand the
39 exposure-response relationship and inform the value proposition for investment in
40 development of LAI formulations that has utility beyond latent tuberculosis infection.

41 INTRODUCTION

42 Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. Control of TB
43 is complicated for many reasons, including that the causative agent, *Mycobacterium*
44 *tuberculosis*, can establish latency, referred to as latent TB infection (LTBI), which can
45 persist throughout a lifetime. Thus, people with LTBI are at risk for bacterial reactivation
46 and development of active TB disease, which is associated with individual morbidity and
47 mortality, but also facilitates community transmission of *M. tuberculosis*. Fortunately,
48 treatment for LTBI exists, termed TB preventive therapy (TPT) because it prevents the
49 transition from latent infection to active disease. Up to one quarter of the global
50 population are estimated to have LTBI, and appropriate administration of TPT is an
51 essential component of the World Health Organization (WHO) End TB Strategy (1, 2).

52

53 Currently, there are five WHO-recommended TPT regimens for treatment of LTBI: 6-9
54 months of daily isoniazid, 4 months of daily rifampin, 3 months of daily isoniazid plus
55 rifampin, 3 months of weekly isoniazid plus rifapentine, and one month of daily isoniazid
56 plus rifapentine (1HP) (3). Although highly efficacious when treatment is completed,
57 TPT is woefully underutilized. Among people with LTBI, it is estimated that only about
58 31% start TPT and 19% complete treatment (4). Unsurprisingly, treatment completion
59 rates are inversely correlated with the duration of the TPT regimen, with the shorter
60 regimens associated with the highest completion rates (3). Therefore, further shortening
61 of TPT regimens could improve treatment completion rates. If development can be
62 successfully accomplished, long-acting injectable (LAI) TPT offers the opportunity for a

63 single administration at the point of care, ensuring adherence and treatment completion
64 and simplifying programmatic roll-out.

65

66 Interest in the development of LAI formulations for treatment of LTBI has grown in
67 recent years. The suitability of drugs for formulation as an LAI depends on certain
68 physiochemical and pharmacokinetic (PK) properties, including low water solubility to
69 prevent rapid release of the drug, low systemic clearance to enable sufficient
70 concentrations to be achieved, and high potency to ensure target exposures are more
71 easily reached and can be maintained for a protracted period of time. Swindells *et al.*
72 recently summarized these properties among existing anti-TB drugs and found that for
73 drugs used in the currently recommended TPT regimens, isoniazid and rifampin do not
74 have properties amenable to LAI formulation while rifapentine is a promising
75 candidate (5). In addition, Rajoli *et al.* used physiologically-based PK (PBPK) modeling
76 to simulate potential LAI administration strategies for several anti-TB drugs, including
77 rifapentine (6). This work identified a rifapentine exposure profile predicted to be both
78 achievable with an LAI formulation and efficacious against LTBI. The efficacy prediction
79 was based on maintaining plasma rifapentine levels above a specified target
80 concentration of 0.18 µg/mL. This target concentration was defined as three times
81 higher than a previously published minimum inhibitory concentration (MIC) of rifapentine
82 for *M. tuberculosis*, but requires additional empirical validation (6, 7).

83

84 The physiochemical properties of another rifamycin antibiotic, rifabutin, appear even
85 more favorable than rifapentine for LAI formulation (5, 8). Although only currently

86 indicated for prevention and treatment of nontuberculous mycobacterial disease (9, 10),
87 rifabutin has demonstrated potent anti-TB activity in preclinical models, including
88 preclinical models of TPT (11-15), and has been used off-label for prevention and
89 treatment of TB (reviewed in (16)). The suitability of rifabutin as a long-acting
90 formulation is highlighted in a recent publication by Kim *et al.* describing the
91 development of long-acting biodegradable *in situ* forming implants of rifabutin (13).
92 Dosing of one such formulation maintained plasma rifabutin concentrations above a
93 target of 0.064 µg/mL for up to 18 weeks post-injection and exhibited robust activity in
94 preclinical mouse models of TB treatment and infection prevention (*i.e.*, pre-exposure
95 prophylaxis). This target concentration was the epidemiological cut-off (ECOFF) from a
96 previously reported MIC distribution of rifabutin against wild-type strains of
97 *M. tuberculosis* (17, 18). However, because there were no recoverable colony forming
98 units (CFU), the relationship between rifabutin plasma concentrations and activity could
99 not be more precisely defined.

100

101 During development and preclinical evaluation of LAI formulations, selection of
102 appropriate drug exposure profiles is critical for gauging therapeutic potential. However,
103 there is a paucity of data regarding drug exposures required for efficacy in TPT,
104 especially when considering the unique concentration-time profiles associated with a
105 highly intermittent or single-shot LAI-based therapy compared to repeated daily or even
106 weekly oral dosing. The objective of this project was to generate *in vivo* PK and
107 pharmacodynamic (PD) data for rifapentine and rifabutin to inform LAI formulation
108 development of these drugs for use in TPT. We designed orally-dosed regimens of

109 rifapentine and rifabutin to produce specific plasma exposure profiles in BALB/c mice,
110 and we evaluated the bactericidal activity of these regimens in a validated paucibacillary
111 mouse model of TPT, a model that successfully predicted the efficacy of the 1HP TPT
112 regimen in humans (19-21) and is the basis for translational PK/PD modeling of
113 rifapentine activity in TPT regimens (22). The series of PK and PK/PD experiments
114 described here provides a rich, experimentally-determined evidence base for selection
115 of target exposure profiles which can help guide the development of LAI formulations of
116 rifapentine and rifabutin for LTBI.

117

118 **RESULTS**

119 ***In vitro* activity of rifamycins against *M. tuberculosis* H37Rv.** We first determined
120 the MIC and minimum bactericidal concentration (MBC) of rifapentine and rifabutin for
121 our lab stock of *M. tuberculosis* H37Rv, with rifampin included as a comparator. As
122 expected, the MIC rank order was rifampin (0.125-0.25 µg/mL) > rifapentine
123 (0.0625 µg/mL) > rifabutin (0.0156 µg/mL). The observed MIC for rifapentine aligned
124 with the MIC used in the modeling work by Rajoli *et al.* (6). For each rifamycin, the
125 visual MIC and the MBC were the same concentration, and based on CFU counts, the
126 concentration that inhibited bacterial growth was at least one 2-fold dilution lower than
127 the visual MIC (**Table S1**).

128

129 **Plasma exposure profiles of low-dose oral rifapentine and rifabutin in uninfected**
130 **BALB/c mice.** Previous modeling work by Rajoli *et al.* utilized rifapentine at 0.18 µg/mL,
131 or 3 times the MIC (3xMIC), as a target trough plasma concentration against which to

132 measure predicted LAI rifapentine exposures (6). Thus, we were interested to evaluate
133 *in vivo* exposure-activity relationships at mouse plasma concentrations around 3xMIC
134 for both rifapentine and rifabutin. For both rifamycins, available oral PK data in mice was
135 based on doses that yielded much higher plasma drug concentrations (11, 20, 23-25).
136 In order to establish dose-exposure profiles within a relatively lower dosing range, we
137 conducted pilot PK studies with rifapentine and rifabutin in uninfected BALB/c mice. The
138 PK parameters of both drugs in female mice are presented in **Table 1** with PK profile
139 data for both drugs being adequately described with a 1-compartment PK disposition
140 model with 1st order absorption input. For rifapentine, the maximum observed plasma
141 concentration (C_{max}) and the area under the plasma concentration versus time curve
142 from 0-24 hours post-dose (AUC_{0-24}) exhibited approximate dose linearity (**Fig. S1A**),
143 with both parameters about 1.5-1.6 times higher on Day 10 compared to Day 0. While
144 apparent clearance and plasma half-life remained relatively constant across the dose
145 levels, the apparent volume of distribution and the absorption rate constant (Ka)
146 decreased with increasing rifapentine dose. For rifabutin, the C_{max} and AUC_{0-24} also
147 exhibited approximate dose linearity (**Fig. S1B**), and these parameters remained
148 relatively stable from Day 0 to Day 10 of dosing (**Table 1**). Compared to rifapentine,
149 rifabutin apparent clearance was much higher for all doses, and the plasma half-life was
150 much shorter; apparent volume of distribution and Ka were also much higher, with the
151 volume remaining relatively stable and Ka nominally decreasing with increasing dose
152 but indicating very rapid absorption at all dose levels. For both rifapentine and rifabutin,
153 no significant differences were observed for any of the PK parameters determined in
154 male mice (**Table S2**). All individual mouse PK data are provided in **Supplementary**

155 **Data File S1.** The available data from this study were used to generate a PK model to
156 guide regimen design in the subsequent PK/PD study.

157

158 **First PK/PD study of rifapentine and rifabutin at steady, LAI-relevant plasma**
159 **concentrations in the paucibacillary mouse model of TPT.** To understand exposure-
160 activity relationships of rifapentine and rifabutin, we conducted a PK/PD study to
161 evaluate the *in vivo* bactericidal activity when drug exposures are maintained at steady,
162 LAI-relevant plasma concentrations. For rifapentine, we selected four target trough
163 plasma concentrations of interest for LAI formulations: 0.18 µg/mL (3xMIC); 0.6 µg/mL
164 (the trough plasma concentration predicted by Rajoli *et al.* four weeks after a single
165 750 mg intramuscular injection of a simulated rifapentine LAI with a nominal first order
166 release rate constant from the injection site of 0.0015 h⁻¹ (6)); 3.5 µg/mL (the reported
167 average plasma concentration of rifapentine in humans taking the 3-month, once-
168 weekly, oral high-dose isoniazid and rifapentine TPT regimen (26)); and 2 µg/mL (a
169 concentration selected to fill the exposure gap between 0.6 and 3.5 µg/mL). For
170 rifabutin, we selected two target trough plasma concentrations of interest, namely 0.045
171 µg/mL (3xMIC) and 0.15 µg/mL (the reported average plasma concentration in people
172 receiving an oral, once daily 150 mg dose (27, 28)).

173

174 After determining the target plasma concentrations of interest, we used our PK model to
175 design oral dosing schemes, based on twice daily dosing, that were predicted to
176 maintain relatively stable mouse plasma trough concentrations above each pre-defined
177 target concentration (**Fig. S2A-F**). Because the difference in predicted peak-to-trough

178 plasma concentrations between oral doses was relatively large for rifabutin, we
179 designed two additional dosing schemes to maintain average plasma concentrations at
180 the pre-defined targets of 0.045 and 0.15 $\mu\text{g}/\text{mL}$ (**Fig. S2G-H**). The dosing schemes
181 predicted to achieve each plasma target exposure are summarized in **Table 2**. The PK
182 and bactericidal activity of these eight regimens were then evaluated in the
183 paucibacillary mouse model of TPT, with once daily oral rifampin included as a rifamycin
184 positive control regimen (see experiment scheme in **Table S3**).

185
186 For rifapentine, the observed trough plasma concentrations and profiles in general,
187 agreed reasonably with PK model simulations based on the pilot PK in uninfected mice,
188 with the greatest discrepancy under the regimen with the lowest target concentration of
189 0.18 $\mu\text{g}/\text{mL}$ (**Table 3**; **Fig. S3**). Observed trough plasma concentrations under these
190 regimens aligned well with the target at the lower target trough concentrations of
191 0.18 and 0.6 $\mu\text{g}/\text{mL}$, (**Fig. S3A-B**), but exceeded the targets more at the higher targets
192 of 2 and 3.5 $\mu\text{g}/\text{mL}$ (**Figs S3C-D**). This was in part due to the unavailability (at the time
193 of regimen design) of the Day 10 pilot PK exposure data for inclusion in the PK model
194 fitting and parameter estimation. Had these data been available at the time of regimen
195 design, somewhat lower twice-daily maintenance doses for the higher targets of
196 2 and 3.5 $\mu\text{g}/\text{mL}$ would have been chosen. The rifapentine dosing schemes predicted to
197 achieve trough plasma concentrations of 0.18 and 0.6 $\mu\text{g}/\text{mL}$ (with data-fitted trough
198 plasma concentrations of 0.17 and 0.54 $\mu\text{g}/\text{mL}$, respectively) did not exhibit any
199 bactericidal activity during the three weeks of treatment (**Fig. 1**; **Table S4**). However,
200 the dosing schemes predicted to achieve the higher two plasma trough targets of

201 2 and 3.5 $\mu\text{g/mL}$ (with data-fitted trough plasma concentrations of 2.6 and 4.9 $\mu\text{g/mL}$,
202 respectively) were associated with significant bactericidal activity, with *M. tuberculosis*
203 killing equivalent to that of the rifampin positive control regimen. Rifapentine activity was
204 dose-dependent, and this relationship was also reflected in the modeled bacterial
205 elimination rate constant (k_{net}) (**Table 3**; **Fig. S4A**). The relationship between k_{net} and
206 observed drug exposures was similar (**Fig. S4B-C**).

207

208 For rifabutin, the observed plasma concentrations across all regimens were slightly
209 higher than concentrations predicted from the pilot PK model but otherwise generally in
210 good agreement (**Table 3**; **Fig. S5**). The dosing scheme predicted to achieve a trough
211 plasma target concentration of 0.045 $\mu\text{g/mL}$ (data-fitted trough concentration
212 0.07 $\mu\text{g/mL}$) had limited bactericidal activity (**Fig. 1**; **Table S4**). Other rifabutin dosing
213 schemes were associated with further dose-dependent bactericidal activity. The dosing
214 schemes predicted to achieve either a target average plasma concentration of
215 0.045 $\mu\text{g/mL}$ or a trough concentration of 0.15 $\mu\text{g/mL}$ (with data-fitted average and
216 trough plasma concentrations of 0.09 and 0.25 $\mu\text{g/mL}$, respectively) exhibited bacterial
217 killing equivalent to the rifampin control regimen, and the dosing scheme predicted to
218 achieve an average plasma target of 0.15 (data-fitted average concentration 0.24
219 $\mu\text{g/mL}$) was associated with significantly greater *M. tuberculosis* killing than the rifampin
220 control. Across the regimens, there were strong dose-dependent and exposure-
221 dependent effects on bactericidal activity (**Table 3**; **Fig. S4D-F**). For all regimens in this
222 study, the PD model estimated that the bacterial lung burden at the start of treatment

223 was 4.44-4.46 \log_{10} CFU/lung, which aligned with the observed Day 0 mean lung
224 burden of 4.47 \log_{10} CFU/lung.

225

226 **Second PK/PD study with dynamic oral dosing of rifapentine and rifabutin to**
227 **simulate possible LAI exposure profiles in the paucibacillary mouse model of**
228 **TPT.** Our hitherto collected PK/PD data, as well as predicted human PBPK parameters
229 from previous modeling work (6), were used to generate simulated LAI-like exposure
230 profiles of rifapentine and rifabutin expected to have bactericidal activity that could be
231 achieved using oral dosing with a dynamic, tapered dose regimen design. These
232 profiles simulated the initial increase and then relatively slow decline of plasma drug
233 concentrations that could occur following an intramuscular injection of an LAI
234 formulation. The profiles were designed to maintain trough plasma concentrations
235 above pre-defined target concentrations (0.6, 2, and 3.5 μ g/mL for rifapentine; and
236 0.045 and 0.15 μ g/mL for rifabutin) by 4 weeks after each simulated LAI dose. For the
237 rifapentine target trough concentrations of 0.6 and 2 μ g/mL, exposure profiles were also
238 generated to simulate two LAI doses given 4 weeks apart. To test the bactericidal
239 activity associated with each exposure profile in the paucibacillary mouse model, orally-
240 dosed regimens were designed to achieve each profile. To capture the dynamic nature
241 of the simulated LAI exposures over time, the oral rifamycin doses changed every
242 4 days. The desired rifapentine and rifabutin simulated LAI exposure profiles and the
243 simulated plasma concentrations associated with each oral regimen are shown in
244 **Fig. S6** (rifapentine) and **Fig. S7A-B** (rifabutin). The regimens are summarized in
245 **Table 4**, with detailed descriptions of the dosing provided in **Table S5**. The PK and

246 bactericidal activity associated with each simulated LAI regimen was then evaluated in
247 the paucibacillary mouse model (see the experimental scheme in **Table S6**).

248

249 For the simulated LAI regimens of rifapentine, the exposure profiles fitted from the
250 observed data aligned well with the predicted exposures (**Fig. 2; Table 5**), although
251 data-fitted exposures trended slightly lower than predicted exposures both with
252 increasing rifapentine dose and increasing duration of administration. This is in keeping
253 with known autoinduction of clearance by rifamycins on this timescale of administration
254 which was not captured in the shorter duration pilot PK data and model from which
255 these regimens were designed. In fitting PK models to the study 2 plasma PK exposure
256 profiles, the estimated “induction factor” for time dependent, % daily (cumulative)
257 increase in clearance was approximately +1% per dosing day for both rifapentine and
258 rifabutin under all regimens (**Table 5**) leading to ~1.7x higher clearance by day 52 of the
259 study compared to day 1. Our goal was to maintain trough plasma levels above the pre-
260 determined target concentrations for 4 weeks following each simulated LAI dose, and
261 this was achieved or nearly achieved for all regimens. All simulated rifapentine LAI
262 regimens exhibited bactericidal activity in the mouse lungs, with clear dose-dependent
263 killing effects (**Fig. 3A; Table S7**). A single simulated LAI dose for all target
264 concentrations was significantly bactericidal compared to the untreated mice at Week 4
265 ($p < 0.001$ for all regimens), and the regimen with a plasma trough concentration target
266 of 3.5 μ g/mL had equivalent killing as the 1HP control regimen at Weeks 2 and 4, and a
267 modest additional killing effect between Weeks 4 and 8. Additionally, two doses of the

268 regimen with a plasma trough concentration target of 2 μ g/mL achieved the same killing
269 effect at Week 8 as the 1HP control regimen did at Week 4.

270

271 For the simulated LAI regimens of rifabutin, modeling of the drug exposures based on
272 the observed data was limited because rifabutin was undetectable in many of the 9 h
273 and 24 h plasma samples (**Fig. S7C-D**). However, the available observed data indicate
274 that rifabutin plasma exposures aligned well with the predicted exposures for each
275 regimen (**Table 5**). Both rifabutin LAI regimens were associated with significant
276 bactericidal activity in the mouse model of TPT (**Fig. 3B; Table S7**). At Week 4, the
277 simulated LAI regimen based on the Week 4 plasma trough concentration target of
278 0.15 μ g/mL was as bactericidal as the 1HP control regimen at Weeks 2 and 4. This
279 rifabutin regimen continued to exert bactericidal activity up to Week 8, resulting in a
280 mean lung CFU count lower than that observed at the completion of the 1HP regimen.
281 Despite having no significant bactericidal activity during the first 2 weeks of treatment,
282 the simulated rifabutin LAI regimen based on the Week 4 plasma trough concentration
283 target of 0.045 μ g/mL exhibited potent bactericidal activity between Week 2 and Week 8
284 of treatment.

285

286 Due to the relatively low bacterial burden at the start of treatment, selection of rifamycin-
287 resistant isolates was not expected in this study, and this expectation was confirmed. At
288 Week 8, all samples were evaluated for rifamycin resistance by directly plating a portion
289 of the lung homogenates on agar containing 1 μ g/mL rifampin. No rifamycin resistance
290 was detected in any sample (**Data File S3**).

291

292 **DISCUSSION**

293 In this project, we used oral dosing of rifapentine and rifabutin in a validated
294 paucibacillary mouse model of LTBI treatment to better understand the PK/PD
295 relationships driving their activity and to gain insights into efficacious exposure profiles
296 to help guide the development of LAI formulations of these drugs for TPT. For both
297 rifamycins, we identified 4- and 8-week exposure profiles that had equivalent
298 bactericidal activity to that of the 1HP control regimen in the mouse model. These data
299 define exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations,
300 could be as efficacious as existing TPT regimens. Thus, the presented data can serve
301 as experimentally-determined targets for novel LAI formulations of these drugs.

302

303 A paucity of data exists to describe dose- or exposure-response relationships for TPT
304 regimens against which to benchmark the desired PK profiles of novel LAI formulations.
305 Furthermore, in the absence of an efficient, quantitative biomarker of clinical response
306 to TPT, it is currently exceedingly challenging to define meaningful PK/PD relationships
307 using clinical data. When Rajoli and colleagues used PBPK models to simulate LAI
308 administration strategies of anti-TB drugs, they necessarily relied on *in vitro*
309 characteristics to define target concentrations, such as 3xMIC for rifapentine, as is
310 customary in early medicine development (6). Model-based simulations indicated that a
311 250 mg LAI dose of rifapentine would generate peak plasma concentrations around
312 0.5 μ g/mL and would maintain rifapentine concentrations above the 3xMIC target
313 concentration for at least 4 weeks post-injection. However, our data from the first PK/PD

314 study indicate that maintaining rifapentine trough plasma concentrations *in vivo* between
315 a trough of 0.17 µg/mL (around 3xMIC) and a peak of 0.22 µg/mL (**Fig. S3A**) or even
316 between a trough of 0.54 µg/mL and a peak of 0.75 µg/mL (**Fig. S3B**) was not
317 bactericidal in the paucibacillary mouse model of TPT (**Fig. 1; Table 3**). In contrast,
318 dosing regimens maintaining rifapentine plasma concentrations of approximately
319 2.6-3.75 µg/mL (**Fig. S3C**) and 4.9-7 µg/mL (**Fig. S3D**) exerted increasing bactericidal
320 activity. These findings are in line with prior evidence of a linear concentration-response
321 between 2 and 10 µg/mL and little effect of concentrations below 1 µg/mL (16x MIC) in
322 this model (22). Based on these data, an LAI target concentration of 3xMIC is not
323 appropriate for rifapentine, and little bactericidal effect can be expected from
324 concentrations below 16x MIC. However, in the case of rifabutin, maintaining a plasma
325 concentration at between 0.07 µg/mL (4x MIC) and 0.25 µg/mL (16x MIC) was
326 associated with significant bactericidal activity equivalent to that of the rifampin
327 10 mg/kg positive control regimen (**Fig. 1; Table 3**). Thus, despite both being
328 rifamycins, basing the plasma target concentration on the same multiple of the MIC
329 (which was also the MBC) did not accurately predict *in vivo* bactericidal activity. For
330 rifapentine, our data suggest that cumulative AUC may align better with the observed
331 bactericidal activity in mice (**Table 5**); we did not have sufficient data from the second
332 PK/PD study to assess any relationship between rifabutin cumulative AUC and
333 bactericidal activity. The possibility of an AUC target should therefore be investigated in
334 future studies.

335

336 Our exposure-activity data for rifabutin align with that reported by Kim *et al.*, who found
337 that a long-acting biodegradable *in situ* forming implant of rifabutin that maintained
338 plasma concentrations above 0.064 µg/mL, a reported ECOFF concentration (17, 18)
339 selected as a target for up to 18 weeks post-injection, exhibited potent anti-TB activity in
340 mouse models (13). The formulation developed by Kim *et al.* is therefore especially
341 promising given that our data suggest that far lower target concentrations of rifabutin
342 may be sufficient for efficacy in TPT regimens. Interestingly, Rajoli *et al.* also used a
343 reported ECOFF concentration of 1.6 µg/mL for bedaquiline as the desired target
344 concentration against which to benchmark activity of simulated bedaquiline LAI doses
345 based on PBPK modeling (6, 29). In this case, the maximum predicted exposure profile
346 could not reach the target concentration, thus raising questions about the utility of an
347 LAI formulation of bedaquiline for TPT. The *in vivo* evaluation of an actual bedaquiline
348 LAI, an aqueous microsuspension developed by Janssen, demonstrated that a single
349 160 mg/kg injection in mice resulted in a plasma exposure profile that remained above
350 the bedaquiline MIC (0.03 µg/mL) for up to 12 weeks post-injection but was indeed well
351 below the ECOFF concentration of 1.6 µg/mL (30). However, this exposure profile was
352 associated with good bactericidal activity, similar to that of rifampin monotherapy in the
353 paucibacillary mouse model of TPT. Thus, taking together our findings along with those
354 of previously published studies, it is clear that a standard, set target concentration such
355 as 3xMIC or ECOFF, cannot be used across the board as exposure targets for LAI
356 formulations, but rather target exposure profiles need to experimentally determined
357 individually for each drug.

358

359 This raises the key question: how should target concentrations or exposure profiles of
360 LAI formulations be determined for TPT? The development of LAI formulations is a long,
361 difficult, and resource-intensive process. Therefore, knowledge of the necessary
362 exposure profiles required for efficacy is invaluable to guide LAI development efforts. In
363 this project, we present a novel approach to utilize oral dosing to simulate LAI exposure
364 and determine *in vivo* exposure-activity relationships. However, the PK associated with
365 oral dosing, even when dosed in a manner to try to maintain stable plasma
366 concentrations or to mimic the extended rise and fall of a simulated LAI exposure
367 profile, may not be directly comparable. The peaks and troughs associated with oral
368 dosing may affect drug activity in a way that steady drug release from an LAI depot may
369 not (and vice versa). Drug exposure may also be different in that the up- or down-
370 regulation of gut and liver transporters can significantly impact the plasma concentration
371 of orally-dosed drugs via both absorption/bioavailability and clearance mechanisms. For
372 example, in this study, rifapentine levels decreased in a dose- and time-dependent
373 manner compared to the simulated exposures (**Fig. 2**), consistent with this drug's well-
374 documented autoinduction of clearance in humans and in mice (22). Some of the PK
375 issues specific to oral dosing could be mitigated by parenteral administration, but this
376 would not eliminate the peaks and troughs associated with daily or twice daily dosing
377 and would cause considerably more discomfort in the mice. Ultimately, only when an
378 LAI formulation is available will an understanding of how well these oral dosing
379 schemes align with exposure/activity relationships observed with actual LAI formulations
380 emerge. Thus, the data from this current study are not providing definitive targets but

381 rather can be used to guide LAI formulation development for rifapentine and rifabutin.
382 Future studies with LAI formulations will be needed to confirm their validity.

383

384 Keeping in mind that oral dosing was used in this study, there are several interesting
385 observations worth noting. First, the observed bactericidal activity of rifabutin in the
386 second PK/PD study was strongest between Week 4 and Week 8 (**Fig. 3B**), when
387 rifabutin plasma concentrations fell below the target concentrations and were even
388 undetectable at many of the PK time points (**Fig. S7**). It is possible that plasma rifabutin
389 concentrations remained above the MIC (0.0156 μ g/mL), as this was below the lower
390 limit of quantification (0.05 μ g/mL). However, as only one simulated LAI dose was
391 tested in the rifabutin regimens, the dosing steadily decreased over the 8 weeks of the
392 study (**Table 4**), and therefore it is surprising that the most potent bactericidal activity
393 occurred during the latter phase of rifabutin dosing. It should be noted that the lung
394 tissue, *i.e.*, effect compartment, PK was not evaluated within our study and could
395 provide a rational basis for these findings. Thus, these data add to the promise of
396 rifabutin in the context of TPT, but also highlight the need for further PK/PD studies to
397 better understand how this drug exerts its activity *in vivo*.

398

399 A second interesting observation was the nature of the bactericidal activity of rifapentine
400 in the second PK/PD study (**Fig. 2A**). We tested three oral rifapentine regimens that
401 simulated one LAI dose administered at Day 0. For each of these regimens, dose-
402 dependent bactericidal activity was observed during the first 4 weeks, but between
403 Week 4 and Week 8, bactericidal activity seemed to stall or end for all doses.

404 Incorporation of a second simulated-LAI dose at Week 4 maintained bactericidal
405 activity, also in a dose-dependent manner. However, when examining plasma
406 rifapentine concentrations, the PK/PD relationships become less clear between Week 4
407 and Week 8. For example, in mice that received one simulated LAI dose designed to
408 reach a trough of 2 µg/mL at Week 4, plasma rifapentine concentrations fell from around
409 2 µg/mL to around 0.5 µg/mL between Weeks 4 and 8 (**Fig. 2C**), and this was
410 associated with stalled bactericidal activity (**Fig. 3A**). This same plasma exposure range
411 was achieved in mice receiving one simulated LAI dose designed to reach a trough of
412 0.6 µg/mL at Week 4 (**Fig. 2A**), but in this case was associated with significant
413 bactericidal activity. Thus, an important question is whether this pattern of bactericidal
414 activity is inherent to the overall exposure profile and could be expected when dosing a
415 real LAI formulation.

416
417 Overall, the use of dynamic oral dosing to mimic possible LAI exposures has revealed
418 remarkable PK/PD relationships and promising exposure profiles for both rifapentine
419 and rifabutin for treatment of LTBI. The data from this study support the development of
420 LAI formulations of each of these rifamycins for use in TPT regimens, and if validated,
421 this approach may help accelerate development of LAIs by providing evidence-based
422 targets for preclinical studies in advance of or in parallel to initial formulation
423 development.

424 **MATERIALS AND METHODS**

425 All *in vitro* and *in vivo* experiments were conducted at the Johns Hopkins University
426 School of Medicine. PK/PD analyses and modeling work were performed at the
427 University of Liverpool.

428

429 **Mycobacterial strains.** *M. bovis* rBCG30 (originally provided by Marcus A. Horwitz
430 from the University of California – Los Angeles School of Medicine) (31) and
431 *M. tuberculosis* H37Rv (originally purchased from American Type Culture Collection,
432 strain ATCC 27294) were each mouse-passaged and frozen in aliquots.

433

434 **Media.** The standard liquid growth medium for both mycobacterial strains was
435 Middlebrook 7H9 broth supplemented with 10% (v/v) oleic acid-albumin-dextrose-
436 catalase (OADC) enrichment, 0.5% (v/v) glycerol, and 0.1% (v/v) Tween 80. MIC/MBC
437 assay medium was Middlebrook 7H9 broth supplemented with 10% (v/v) OADC and
438 0.5% (v/v) glycerol, without Tween 80. 7H11 agar supplemented with 10% (v/v) OADC
439 and 0.5% (v/v) glycerol was the solid medium base for all samples. Lung homogenates
440 and their cognate dilutions were cultured on 7H11 agar rendered selective for
441 mycobacteria by the addition of 50 µg/mL carbenicillin, 10 µg/mL polymyxin B, 20 µg/mL
442 trimethoprim, and 50 µg/mL cyclohexamide (32). Selective 7H11 agar was also
443 supplemented with 0.4% (w/v) activated charcoal to detect and limit the effects of drug
444 carryover in lung homogenates (33, 34). To differentiate *M. bovis* rBCG30 and *M.*
445 *tuberculosis* H37Rv CFUs, selective 7H11 agar was further supplemented with either
446 40 µg/mL hygromycin B (selective for *M. bovis* rBCG30 but not *M. tuberculosis*) or

447 4 µg/mL 2-thiophenecarboxylic acid hydrazide (TCH, selective for *M. tuberculosis* but
448 not *M. bovis*). Because TCH is adsorbed and rendered less active by activated charcoal
449 (30), only hygromycin B (at 40 µg/mL) was added to charcoal-containing selective 7H11
450 agar. Difco Middlebrook 7H9 broth powder, Difco Mycobacteria 7H11 agar powder, and
451 BBL Middlebrook OADC enrichment were obtained from Becton, Dickinson and
452 Company. Glycerol and Tween 80 were obtained from Fisher Scientific, and activated
453 charcoal was obtained from J. T. Baker. All selective drugs were obtained from Sigma-
454 Aldrich/Millipore-Sigma.

455

456 **Drug sourcing, formulations, and administration.** Rifampin and isoniazid powders
457 were purchased from Millipore-Sigma. Rifapentine tablets (brand name Priftin®,
458 manufactured by Sanofi) were purchased from the Johns Hopkins Hospital Pharmacy.
459 Rifapentine and rifabutin powders were purchased from Biosynth. For MIC/MBC
460 assays, rifampin, rifapentine (powder), and rifabutin were dissolved in dimethyl sulfoxide
461 (DMSO). Rifampin was also dissolved in DMSO when added to agar for direct
462 susceptibility testing of mouse lung homogenates. For administration to mice, rifampin,
463 rifapentine (tablets), and rifabutin were formulated in 0.05% (w/v) agarose in distilled
464 water; isoniazid was dissolved in distilled water. All drugs were formulated to deliver the
465 indicated oral dose in a total volume of 0.2 mL, administered by gavage. Dosing by
466 mg/kg was based on an average mouse body mass of 20 g.

467

468 **MIC/MBC assays.** The MIC/MBC of rifampin, rifapentine, and rifabutin for *M.*
469 *tuberculosis* H37Rv was determined by the broth macrodilution method. Frozen

470 bacterial stocks were thawed and cultured in liquid growth medium until an optical
471 density at 600 nm (OD_{600}) of 0.8-1 was achieved. Cultures were then diluted 10-fold in
472 assay media such that the desired assay inoculum (around $5 \log_{10}$ CFU/mL) would be
473 achieved by adding 100 μ L of this bacterial suspension to each assay tube. Drug-
474 containing assay media (2.4 mL) was dispensed into 14-mL round-bottom polystyrene
475 tubes. Two-fold concentrations of each drug were evaluated at the following
476 concentration ranges: rifampin, 0.0625-4 μ g/mL; rifapentine, 0.01563-1 μ g/mL; rifabutin,
477 0.00098-0.5 μ g/mL. The final DMSO concentration was 4% (v/v) in all samples
478 (including the no drug control). After addition of the bacterial inoculum (100 μ L),
479 samples were vortexed and then incubated without agitation at 37°C for 14 days. Ten-
480 fold dilutions of the bacterial inoculum were prepared in phosphate-buffered saline
481 (PBS) and cultured on non-selective 7H11 agar (500 μ L per agar plate). On Day 14, the
482 visual MIC was defined as the lowest drug concentration that prevented visible growth
483 as assessed by the unaided eye. For all samples in which no visible growth was evident
484 on Day 14 (*i.e.*, samples at concentrations \geq MIC), as well as for the sample at the
485 concentration just lower than the visual MIC, ten-fold dilutions were prepared in PBS
486 and cultured on non-selective 7H11 agar (500 μ L per agar plate). CFUs were counted
487 after agar plates were incubated for 3-4 weeks at 37°C. The MBC was defined as the
488 lowest drug concentration that decreased bacterial counts $\geq 2 \log_{10}$ CFU/mL (*i.e.*, 99%)
489 relative to the starting inoculum.

490
491 **Mice.** All procedures were approved by the Johns Hopkins University Animal Care and
492 Use Committee. Female or male adult BALB/c mice were purchased from Charles River

493 Laboratories. Uninfected mice used for PK studies were maintained in animal biosafety
494 level (ABSL) -2 facilities, and infected mice used for PK/PD studies were maintained in
495 ABSL-3 facilities. All mice were housed in individually ventilated cages (up to five mice
496 per cage) with access to food and water *ad libitum* and with sterile shredded paper for
497 bedding. Room temperature was maintained at 22-24°C, and a 12-h light/dark cycle
498 was used. All mice were sacrificed by intentional isoflurane overdose by inhalation (drop
499 method) followed by cervical dislocation.

500

501 **PK studies.** Uninfected 8-10 week old female (n = 84) and male (n = 48) BALB/c mice
502 were used for PK studies. Rifapentine was dosed at 3, 1, 0.3, and 0.1 mg/kg in female
503 mice and at 3 and 0.3 mg/kg in male mice. Rifabutin was dosed at 3, 1, and 0.3 mg/kg
504 in female mice and at 3 and 0.3 mg/kg in male mice. Rifabutin was not dosed at
505 0.1 mg/kg as we expected plasma exposures would be below the lower limit of
506 quantification. Drugs were administered once daily with nine total doses administered
507 (dosing Monday-Friday during the first week and Monday-Thursday during the second
508 week). Each dosing group included 12 mice. After the first dose (Day 0) and the ninth
509 dose (Day 10), blood sampling was done by in-life mandibular bleeding at 0 h (just prior
510 to the daily dose, mice 1-3) and at the following time points after the daily dose: 0.5 h
511 (mice 4-6), 1 h (mice 7-9), 2 h (mice 10-12), 4 h (mice 1-3), 6 h (mice 4-6), 9 h (mice
512 7-9), and 24 h (just prior to the next day's dose, mice 10-12). Blood was collected into
513 BD vacutainer plasma separation tubes with lithium heparin, and plasma was separated
514 by spinning at 15,000 rcf for 10 minutes at room temperature. Plasma was transferred
515 to 1.5 mL O-ring screw-cap tubes and stored at -80°C until analysis. Frozen samples

516 were shipped to the Infectious Disease Pharmacokinetics Laboratory at the University of
517 Florida College of Pharmacy, where drug concentrations were measured by liquid
518 chromatography-tandem mass spectrometry. The lower limit of quantification for
519 rifapentine and rifabutin was 0.10 and 0.05 µg/mL, respectively.

520

521 **PK/PD studies.** Two PK/PD studies were conducted using the paucibacillary mouse
522 model of TPT, which has been previously described (19, 20, 30, 35). In this model,
523 female BALB/c mice (6-8 weeks old) are immunized by aerosol infection with *M. bovis*
524 rBCG30. Six weeks later, mice are challenged with a low-dose aerosol infection of
525 *M. tuberculosis* H37Rv, and treatment is started six weeks after the challenge infection.
526 All aerosol infections were performed using a Glas-Col Full Size Inhalation Exposure
527 system. The bacterial suspensions used for each infection were prepared as described
528 in **Table S8**. For each infection run, 10 mL of the appropriate bacterial suspension was
529 added to the nebulizer per the manufacturer's instructions. For the first PK/PD study,
530 the aerosol infections were performed as follows: immunization, one infection run with
531 120 mice; first *M. tuberculosis* challenge infection, one infection run with 115 mice;
532 second *M. tuberculosis* challenge infection, one infection run with 120 mice (see study
533 scheme in **Table S3**). For the second PK/PD study, the aerosol infections were
534 performed as follows: immunization, two infection runs with 70 and 69 mice;
535 *M. tuberculosis* challenge infection, two infection runs with 70 and 69 mice (see study
536 scheme in **Table S6**).

537

538 In the first PK/PD study, the *M. tuberculosis* challenge infection implanted lower lung
539 CFU counts than anticipated, and one mouse sacrificed the day after infection had no
540 detectable *M. tuberculosis*. Thus, to ensure that all mice were infected with
541 *M. tuberculosis*, the mice were subjected to a second *M. tuberculosis* challenge
542 infection. For logistical reasons, treatment was initiated 7 weeks after the second
543 challenge infection. Prior to the start of treatment, mice were randomized into one of the
544 10 regimens described in **Table 2**. Data from the PK studies in uninfected mice were
545 used to design rifapentine and rifabutin regimens that maintained plasma exposures
546 around pre-determined target concentrations. In all groups, treatment was administered
547 7 days per week, and for BID regimens, the two daily doses were given 12 ± 2 hours
548 apart. Treatment was originally planned to be administered for 6 weeks, with CFU and
549 PK time points after 3 and 6 weeks of treatment. However, the COVID-19-related shut-
550 down of Johns Hopkins University necessitated ending the study 1.5 days after the
551 Week 3 time point. The original and final schemes for this study, which ended up
552 including 125 mice, are presented in **Table S3**. On Day 0 and at Week 3, PK sampling
553 time points for rifapentine-treated mice were 2, 9, and 24 hours after the first daily dose;
554 and the sampling time points for rifabutin-treated mice were 1, 9, and 24 hours after the
555 first dose. The PK sampling for week 3 was conducted 4 days before the sacrifice time
556 point. Blood sampling, processing, and drug measurements were performed as
557 described above for the PK studies. Lung CFU data were determined as previously
558 described (30, 35), and the plating strategy and the dilutions used to determine the
559 \log_{10} CFU/lung for each mouse are provided with the individual mouse data. All
560 CFU/lung (x) data were log-transformed as $\log_{10}(x + 1)$ prior to analysis. Differences in

561 lung CFU counts relative to the positive control regimen were determined using two-way
562 ANOVA with Dunnett's multiple comparisons test using GraphPad Prism software
563 version 9.3.0. The lung CFU counts for rBCG30 are summarized in **Table S9**. All
564 individual mouse CFU and PK data and the statistical analysis of CFUs are available in
565 **Data File S2**.

566

567 The second PK/PD study followed the originally designed study scheme and included a
568 total of 147 mice (**Table S6**). In this study, oral rifapentine and rifabutin regimens were
569 designed to simulate the sharp rise and slow decline of drug exposures following an LAI
570 dose. The regimens were designed to maintain trough plasma concentrations above
571 pre-determined target concentrations for 4 weeks following each simulated LAI dose. To
572 achieve these dynamic exposure profiles, the oral dose was changed every 4 days of
573 treatment, as detailed in **Table S5**. These regimens were designed based on the
574 cumulative PK data generated in this project and on the previously published modeling
575 work for rifapentine (6). 1HP was used as the positive control regimen, with isoniazid
576 (10 mg/kg) administered 1 hour after rifapentine (10 mg/kg). Mice were randomly
577 assigned to a regimen prior to the start of treatment. In all groups, treatment was
578 administered 7 days per week, and for BID regimens, the two daily doses were given 12
579 ± 2 hours apart. Mice were sacrificed to determine lung CFU counts after 2, 4, and 8
580 weeks of treatment. CFUs were determined as described for the first PK/PD study, and
581 at Week 8, lung homogenates were also plated on selective 7H11 agar containing
582 1 µg/mL rifampin to assess rifamycin susceptibility at the end of treatment. The plating
583 strategy and the dilutions used to determine the \log_{10} CFU/lung for each mouse are

584 provided with the individual mouse data. Differences in lung CFU counts across
585 regimens at each time point were determined using two-way ANOVA, full model with
586 interaction term and Tukey's multiple comparison test using GraphPad Prism software
587 version 9.3.0. In mice that received a simulated LAI regimen, PK sampling was
588 performed at Weeks 2, 4, 6, and 8 of dosing. Sampling was done 4 days before the
589 sacrifice time point. In mice that received regimens with two simulated LAI doses, there
590 was an additional sampling time point at Week 4 + 1 day, to capture the increased
591 exposures associated with the simulated second LAI dose. Blood was collected,
592 processed, and analyzed as described for the first PK/PD study. The lung CFU counts
593 for rBCG30 are summarized in **Table S10**. All individual mouse CFU and PK data and
594 the statistical analysis of CFUs are available in **Data File S3**.

595
596 **PK and PK/PD analyses.** PK and PK/PD data analyses and simulations were carried
597 out in the R programming environment (v 4.0.3) (36). Fitting of models to observed data
598 made use of the Pracma library (37), with parameter estimation by nonlinear regression
599 using the “lsqnonlin” function for nonlinear least squares optimization, with an objective
600 function weighted by $1/(\text{predicted value})^2$. Data from all individual mice in any given
601 dataset were treated as a naïve pool (38) rather than using an average value at a given
602 time point. Both rifapentine and rifabutin plasma PK exposure data were adequately
603 described with one-compartment PK disposition models with 1st order absorption input,
604 parameterized with apparent clearance (CL/F), apparent volume of distribution (V/F)
605 and 1st order absorption rate constant (Ka). For study 2, simulated-LAI-like PK profiles
606 achieved via oral dosing over 8 weeks, the apparent time dependent effect of an

607 increase in CL/F over the timecourse was accounted for in the model by a factor for
608 fractional (reported as %) cumulative increase in CL/F per dosing day. This method has
609 been used previously (39), with the factor parameter named here as “Ind_factor” due to
610 autoinduction being the likely cause, and was implemented by the following equation in
611 the structural PK model:

612
$$CL/F_{day,n} = (CL/F)_{day,1} \times (1 + "Ind_Factor")^{(n-1)}$$

613 For timecourse profiles of bacterial load assessed by CFU count, the summary “net
614 bacterial elimination” parameter “ k_{net} ” (40) was estimated as the slope parameter of the
615 modelled linear fitting through the \log_{10} transform of the CFU profile. R code scripts used
616 for analyses are available upon request.

617

618 **ACKNOWLEDGEMENTS**

619 This research was funded by the National Institutes of Health (NIH) grant R61AI161809,
620 and by a 2019 developmental grant from the Johns Hopkins University Center for AIDS
621 Research, an NIH funded program (1P30AI094189), which is supported by the following
622 NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI,
623 NIDA, NIA, NIGMS, NIDDK, NIMHD. Pharmacokinetic modeling for rifapentine was
624 supported by Unitaid project LONGEVITY (2020-38-LONGEVITY). The content is solely
625 the responsibility of the authors and does not necessarily represent the official views of
626 the funders.

627 **REFERENCES**

628 1. World Health Organization. 2021. Global tuberculosis report 2021. World Health
629 Organization, Geneva.

630 2. World Health Organization. 2015. The End TB Strategy. World Health
631 Organization, Geneva.

632 3. World Health Organization. 2020. WHO operational handbook on tuberculosis.
633 Module 1: prevention - tuberculosis preventive treatment. World Health
634 Organization, Geneva.

635 4. Alsdurf H, Hill PC, Matteelli A, Getahun H, Menzies D. 2016. The cascade of
636 care in diagnosis and treatment of latent tuberculosis infection: a systematic
637 review and meta-analysis. *Lancet Infect Dis* 16:1269-1278.

638 5. Swindells S, Siccardi M, Barrett SE, Olsen DB, Grobler JA, Podany AT,
639 Nuermberger E, Kim P, Barry CE, Owen A, Hazuda D, Flexner C. 2018. Long-
640 acting formulations for the treatment of latent tuberculous infection: opportunities
641 and challenges. *Int J Tuberc Lung Dis* 22:125-132.

642 6. Rajoli RKR, Podany AT, Moss DM, Swindells S, Flexner C, Owen A, Siccardi M.
643 2018. Modelling the long-acting administration of anti-tuberculosis agents using
644 PBPK: a proof of concept study. *Int J Tuberc Lung Dis* 22:937-944.

645 7. Dickinson JM, Mitchison DA. 1987. In vitro properties of rifapentine (MDL473)
646 relevant to its use in intermittent chemotherapy of tuberculosis. *Tubercle* 68:113-
647 8.

648 8. Ammerman NC, Nuermberger EL, Owen A, Rannard SP, Meyers CF, Swindells
649 S. 2022. Potential impact of long-acting products on the control of tuberculosis:

673 15. Jabes D, Della Bruna C, Rossi R, Olliari P. 1994. Effectiveness of rifabutin alone
674 or in combination with isoniazid in preventive therapy of mouse tuberculosis.
675 *Antimicrob Agents Chemother* 38:2346-50.

676 16. Crabol Y, Catherinot E, Veziris N, Jullien V, Lortholary O. 2016. Rifabutin: where
677 do we stand in 2016? *J Antimicrob Chemother* 71:1759-71.

678 17. Ängeby K, Juréen P, Kahlmeter G, Hoffner SE, Schön T. 2012. Challenging a
679 dogma: antimicrobial susceptibility testing breakpoints for *Mycobacterium*
680 *tuberculosis*. *Bull World Health Organ* 90:693-8.

681 18. Schön T, Juréen P, Chryssanthou E, Giske CG, Sturegård E, Kahlmeter G,
682 Hoffner S, Ängeby KA. 2011. Wild-type distributions of seven oral second-line
683 drugs against *Mycobacterium tuberculosis*. *Int J Tuberc Lung Dis* 15:502-9.

684 19. Zhang T, Li SY, Williams KN, Andries K, Nuermberger EL. 2011. Short-course
685 chemotherapy with TMC207 and rifapentine in a murine model of latent
686 tuberculosis infection. *Am J Respir Crit Care Med* 184:732-7.

687 20. Zhang T, Zhang M, Rosenthal IM, Grosset JH, Nuermberger EL. 2009. Short-
688 course therapy with daily rifapentine in a murine model of latent tuberculosis
689 infection. *Am J Respir Crit Care Med* 180:1151-7.

690 21. Swindells S, Ramchandani R, Gupta A, Benson CA, Leon-Cruz J, Mwelase N,
691 Jean Juste MA, Lama JR, Valencia J, Omoz-Oarhe A, Supparatpinyo K, Masheto
692 G, Mohapi L, da Silva Escada RO, Mawlana S, Banda P, Severe P, Hakim J,
693 Kanyama C, Langat D, Moran L, Andersen J, Fletcher CV, Nuermberger E,
694 Chaisson RE, Brief TB/A5279 Study Team. 2019. One month of rifapentine plus
695 isoniazid to prevent HIV-related tuberculosis. *N Engl J Med* 380:1001-1011.

696 22. Radtke KK, Ernest JP, Zhang N, Ammerman NC, Nuermberger E, Belknap R,
697 Boyd R, Sterling TR, Savic RM. 2021. Comparative efficacy of rifapentine alone
698 and in combination with isoniazid for latent tuberculosis infection: a translational
699 pharmacokinetic-pharmacodynamic modeling study. *Antimicrob Agents
700 Chemother* 65:e0170521.

701 23. Strolin Benedetti M, Pianezzola E, Brianceschi G, Jubes D, Della Bruna C,
702 Rocchetti M, Poggesi I. 1995. An investigation of the pharmacokinetics and
703 autoinduction of rifabutin metabolism in mice treated with 10 mg/kg/day six times
704 a week for 8 weeks. *J Antimicrob Chemother* 36:247-51.

705 24. Rosenthal IM, Williams K, Tyagi S, Vernon AA, Peloquin CA, Bishai WR, Grosset
706 JH, Nuermberger EL. 2005. Weekly moxifloxacin and rifapentine is more active
707 than the denver regimen in murine tuberculosis. *Am J Respir Crit Care Med*
708 172:1457-62.

709 25. Rosenthal IM, Tasneem R, Peloquin CA, Zhang M, Almeida D, Mdluli KE,
710 Karakousis PC, Grosset JH, Nuermberger EL. 2012. Dose-ranging comparison
711 of rifampin and rifapentine in two pathologically distinct murine models of
712 tuberculosis. *Antimicrob Agents Chemother* 56:4331-40.

713 26. Weiner M, Savic RM, Kenzie WR, Wing D, Peloquin CA, Engle M, Bliven E,
714 Prihoda TJ, Gelfond JA, Scott NA, Abdel-Rahman SM, Kearns GL, Burman WJ,
715 Sterling TR, Villarino ME, Tuberculosis Trials Consortium PTBPG. 2014.
716 Rifapentine Pharmacokinetics and Tolerability in Children and Adults Treated
717 Once Weekly With Rifapentine and Isoniazid for Latent Tuberculosis Infection. *J
718 Pediatric Infect Dis Soc* 3:132-45.

719 27. Blaschke TF, Skinner MH. 1996. The clinical pharmacokinetics of rifabutin. Clin
720 Infect Dis 22 Suppl 1:S15-21; discussion S21-2.

721 28. Phillips MC, Wald-Dickler N, Loomis K, Luna BM, Spellberg B. 2020.
722 Pharmacology, dosing, and side effects of rifabutin as a possible therapy for
723 antibiotic-resistant *Acinetobacter* infections. Open Forum Infect Dis 7:ofaa460.

724 29. Keller PM, Hömke R, Ritter C, Valsesia G, Bloemberg GV, Böttger EC. 2015.
725 Determination of MIC distribution and epidemiological cutoff values for
726 bedaquiline and delamanid in *Mycobacterium tuberculosis* using the MGIT 960
727 system equipped with TB eXiST. Antimicrob Agents Chemother 59:4352-5.

728 30. Kaushik A, Ammerman NC, Tyagi S, Saini V, Vervoort I, Lachau-Durand S,
729 Nuermberger E, Andries K. 2019. Activity of a long-acting injectable bedaquiline
730 formulation in a paucibacillary mouse model of latent tuberculosis infection.
731 Antimicrob Agents Chemother 63:e00007-19.

732 31. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. 2000. Recombinant bacillus
733 calmette-guerin (BCG) vaccines expressing the *Mycobacterium tuberculosis* 30-
734 kDa major secretory protein induce greater protective immunity against
735 tuberculosis than conventional BCG vaccines in a highly susceptible animal
736 model. Proc Natl Acad Sci U S A 97:13853-8.

737 32. Mitchison DA, Allen BW, Carroll L, Dickinson JM, Aber VR. 1972. A selective
738 oleic acid albumin agar medium for tubercle bacilli. J Med Microbiol 5:165-75.

739 33. Tasneen R, Li SY, Peloquin CA, Taylor D, Williams KN, Andries K, Mdluli KE,
740 Nuermberger EL. 2011. Sterilizing activity of novel TMC207- and PA-824-

741 containing regimens in a murine model of tuberculosis. *Antimicrob Agents*
742 *Chemother* 55:5485-92.

743 34. Saini V, Ammerman NC, Chang YS, Tasneen R, Chaisson RE, Jain S,
744 Nuermberger E, Grossel JH. 2019. Treatment-shortening effect of a novel
745 regimen combining clofazimine and high-dose rifapentine in pathologically
746 distinct mouse models of tuberculosis. *Antimicrob Agents Chemother* 63:e00388-
747 19.

748 35. Kaushik A, Ammerman NC, Tasneen R, Lachau-Durand S, Andries K,
749 Nuermberger E. 2022. Efficacy of long-acting bedaquiline regimens in a mouse
750 model of tuberculosis preventive therapy. *Am J Respir Crit Care Med* 205:570-
751 579.

752 36. R Foundation for Statistical Computing. 2020. R: A Language and Environment
753 for Statistical Computing, <https://www.R-project.org/>.

754 37. Borchers HW. 2019. pracma: Practical Numerical Math Functions. R Package
755 Version 2.2.9, <https://CRAN.R-project.org/package=pracma>.

756 38. Ette EI, Williams PJ. 2004. Population pharmacokinetics II: estimation methods.
757 *Ann Pharmacother* 38:1907-15.

758 39. Wang Y, Zhong W, Salam A, Tarning J, Zhan Q, Huang JA, Weng H, Bai C, Ren
759 Y, Yamada K, Wang D, Guo Q, Fang Q, Tsutomu S, Zou X, Li H, Gillesen A,
760 Castle L, Chen C, Li H, Zhen J, Lu B, Duan J, Guo L, Jiang J, Cao R, Fan G, Li
761 J, Hayden FG, Wang C, Horby P, Cao B. 2020. Phase 2a, open-label, dose-
762 escalating, multi-center pharmacokinetic study of favipiravir (T-705) in

763 combination with oseltamivir in patients with severe influenza. *EBioMedicine*
764 62:103125.

765 40. Hu Y, Pertinez H, Ortega-Muro F, Alameda-Martin L, Liu Y, Schipani A, Davies
766 G, Coates A. 2016. Investigation of elimination rate, persistent subpopulation
767 removal, and relapse rates of *Mycobacterium tuberculosis* by using combinations
768 of first-line drugs in a modified Cornell mouse model. *Antimicrob Agents
769 Chemother* 60:4778-85.

770

771 **Table 1. PK parameters^a associated with oral dosing of rifapentine and rifabutin in uninfected female BALB/c**
 772 **mice.** All individual mouse PK data are provided in **Data File S1.**

Drug	Dose ^b (mg/kg)	Sampling day ^c	T _{max} (h post dose)	C _{max} (μ g/mL)	AUC _{0-24h} (μ g.h/mL)	CL/F (L/h/kg) [% RSE]	V/F (L/kg) [% RSE]	Ka (h ⁻¹) [% RSE]	t _{1/2} (h)
Rifapentine	0.1	0	2	0.130	2.5	0.024 [3.9]	0.743 [5.3]	2.57 [21.0]	21.5
		10	1	0.199	3.6				
	0.3	0	2	0.386	6.4	0.029 [3.0]	0.736 [4.7]	1.75 [13.5]	17.6
		10	2	0.644	9.6				
	1	0	2	1.58	23.9	0.021 [4.7]	0.643 [6.9]	1.64 [19.4]	21.2
		10	1	2.37	38.7				
	3	0	2	6.69	105.7	0.016 [4.4]	0.418 [7.0]	1.33 [17.4]	18.1
		10	2	11.9	166.6				
Rifabutin	0.3	0	0.5	0.053	0.4	0.674 [5.6]	7.36 [7.9]	49.10 [0.0]	7.6
		10	1	0.041	0.3				
	1	0	1	0.140	1.0	1.04 [4.7]	7.49 [6.3]	16.40 [0.0]	5.0
		10	0.5	0.105	0.8				
	3	0	1	0.325	2.7	1.17 [4.7]	8.67 [6.1]	8.48 [212.9]	5.1
		10	0.5	0.348	2.4				

773 ^aT_{max}, time point of maximum observed plasma concentration; C_{max}, maximum observed plasma concentration; AUC_{0-24h}, area under the plasma
 774 concentration versus time curve from 0-24 hours post-dose; CL/F, apparent clearance; V/F, apparent volume of distribution; Ka, absorption rate
 775 constant; t_{1/2}, plasma half-life; % RSE, percent relative standard error.

776 ^bDrugs were administered once daily, five days per week (Monday-Friday).

777 ^cDay 0 indicates the first day of drug administration (i.e., the first dose).

778 **Table 2. Regimens for the first PK/PD study.** The full experiment scheme is
779 presented in **Table S3.**

Regimen description ^a	Oral dosing scheme ^b
Control regimens	
Negative control	Untreated
Positive control	Rifampin 10 mg/kg QD
Rifapentine (RPT) test regimens	
RPT target: C_{trough} 0.18 μ g/mL	RPT 0.075 mg/kg BID with 0.2 mg/kg loading dose
RPT target: C_{trough} 0.6 μ g/mL	RPT 0.25 mg/kg BID with 0.625 mg/kg loading dose
RPT target: C_{trough} 2 μ g/mL	RPT 0.75 mg/kg BID with 1.875 mg/kg loading dose
RPT target: C_{trough} 3.5 μ g/mL	RPT 1.25 mg/kg BID with 3.125 mg/kg loading dose
Rifabutin (RFB) test regimens	
RFB target: C_{ave} 0.045 μ g/mL	RFB 0.75 mg/kg BID
RFB target: C_{trough} 0.045 μ g/mL	RFB 1.5 mg/kg BID
RFB target: C_{ave} 0.15 μ g/mL	RFB 2.5 mg/kg BID
RFB target: C_{trough} 0.15 μ g/mL	RFB 5.5 mg/kg BID

780 ^a C_{trough} indicates that the regimen was designed to maintain trough plasma concentrations at this target.
781 ^a C_{ave} indicates that the regimen was designed to maintain average plasma concentrations at this target.
782 ^bQD indicates once daily dosing; BID indicates twice daily dosing. All rifapentine regimens included a
783 single loading dose administered as the first dose on Day 0 (the first day of treatment). All regimens were
784 administered 7 days per week.

785 **Table 3. PK/PD parameters for rifapentine and rifabutin in the first PK/PD study.** All individual mouse CFU and PK
 786 data are presented in **Data File S2.**

Treatment regimen ^a	Pilot PK data/model used for regimen design/prediction	Target plasma concentration	Fitted plasma concentration ^b (µg/mL)		Modeled PD parameters ^c [% RSE]	
			C _{ave}	C _{trough}	k _{net} (wk ⁻¹)	Initial log ₁₀ CFU/lung
Control regimens						
Untreated	N/A	N/A	N/A	N/A	0.05 [124]	4.45 [3.30]
Rifampin 10 mg/kg QD	N/A	N/A	N/A	N/A	-0.21 [32.88]	4.45 [3.90]
Rifapentine (RPT) regimens						
RPT 0.075 mg/kg BID	RPT 0.1 mg/kg	C _{trough} 0.18 µg/mL	0.20	0.17	0.12 [56.71]	4.46 [3.81]
RPT 0.25 mg/kg BID	RPT 0.3 mg/kg	C _{trough} 0.6 µg/mL	0.63	0.54	0.07 [98.28]	4.44 [3.67]
RPT 0.75 mg/kg BID	RPT 1 mg/kg	C _{trough} 2 µg/mL	2.98	2.60	-0.22 [29.30]	4.44 [3.63]
RPT 1.25 mg/kg BID	RPT 1 mg/kg	C _{trough} 3.5 µg/mL	5.60	4.90	-0.28 [23.20]	4.45 [3.65]
Rifabutin (RFB) regimens						
RFB 0.75 mg/kg BID	RFB 1 mg/kg	C _{ave} 0.045 µg/mL	0.09	0.04	-0.09 [90.11]	4.46 [4.63]
RFB 1.5 mg/kg BID	RFB 1 mg/kg	C _{trough} 0.045 µg/mL	0.16	0.07	-0.20 [39.48]	4.46 [4.34]
RFB 2.5 mg/kg BID	RFB 3 mg/kg	C _{ave} 0.15 µg/mL	0.24	0.12	-0.30 [25.41]	4.45 [4.28]
RFB 5.5 mg/kg BID	RFB 3 mg/kg	C _{trough} 0.15 µg/mL	0.60	0.25	-0.48 [15.86]	4.45 [4.30]

787 ^aRegimen descriptions provided in **Table 2.**

788 ^bThe average and trough plasma concentrations fitted to the observed data.

789 ^ck_{net} indicates the bacterial elimination rate constant. Initial log₁₀ CFU/lung indicates the estimated Day 0 lung CFU counts determined by the PD
 790 model; % RSE, percent relative standard error.

791 N/A, not applicable.

792 **Table 4. Regimens for the second PK/PD study.** The full experiment scheme is presented in **Table S6.**

Simulated LAI treatment regimen ^a	Oral dosing regimen ^b for LAI simulation during the indicated treatment period:	
	Weeks 1-4	Weeks 5-8
Negative control	Untreated	Untreated
Positive control: 1HP	INH 10 mg/kg QD + RPT 10 mg/kg QD	
RPT LAI target 0.6 µg/mL, 1 dose	RPT 0.75 mg/kg BID to 0.275 mg/kg BID	RPT 0.24 mg/kg BID to 0.1 mg/kg BID
RPT LAI target 0.6 µg/mL, 2 doses	RPT 0.75 mg/kg BID to 0.275 mg/kg BID	RPT 1 mg/kg BID to 0.375 mg/kg BID
RPT LAI target 2 µg/mL, 1 dose	RPT 1.6 mg/kg BID to 0.6 mg/kg BID	RPT 0.5 mg/kg BID to 0.2 mg/kg BID
RPT LAI target 2 µg/mL, 2 doses	RPT 1.6 mg/kg BID to 0.6 mg/kg BID	RPT 2.1 mg/kg BID to 0.8 mg/kg BID
RPT LAI target 3.5 µg/mL, 1 dose	RPT 2.4 mg/kg BID to 0.875 mg/kg BID	RPT 0.8 mg/kg BID to 0.325 mg/kg BID
RFB LAI target 0.045 µg/mL, 1 dose	RFB 1.5 mg/kg BID to 0.6 mg/kg BID	RFB 0.5 mg/kg BID to 0.2 mg/kg BID
RFB LAI target 0.15 µg/mL, 1 dose	RFB 5 mg/kg BID to 2.2 mg/kg BID	RFB 2 mg/kg BID to 0.8 mg/kg BID

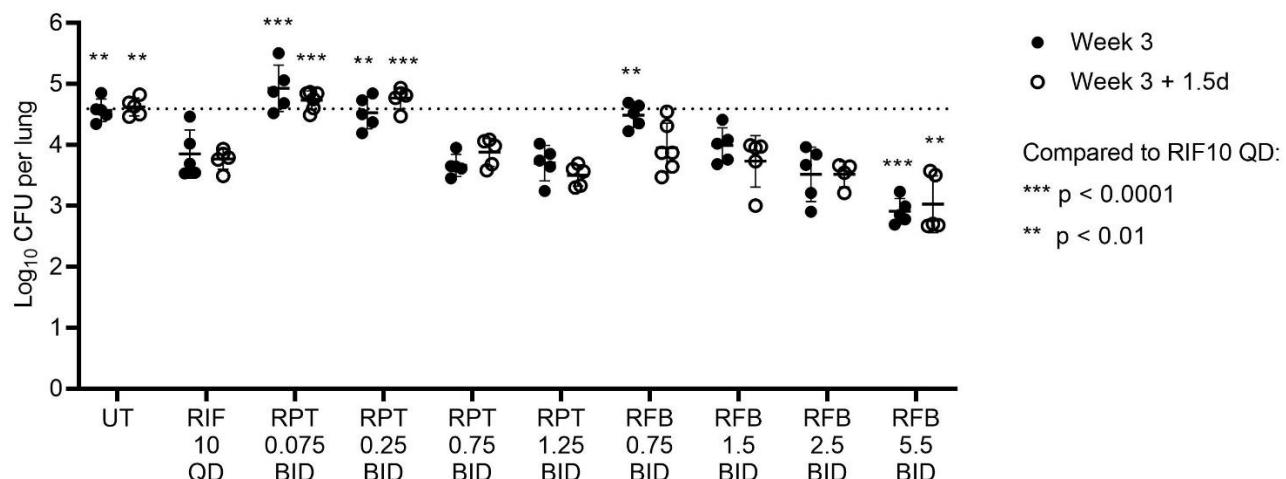
793 ^aThe positive control, 1HP, indicates 1 month (4 weeks) of isoniazid (INH) and rifapentine (RPT); RFB, rifabutin. Simulated long-acting injectable
794 (LAI) regimens were designed to maintain trough plasma concentrations above the indicated target for 4 weeks per simulated LAI dose.
795796 ^bQD indicates once daily dosing; BID indicates twice daily dosing; all regimens were administered 7 days per week. For simulated LAI regimens,
797 the dosing changed every 4 days. For regimens simulating one LAI dose, the dosing decreased continuously during all 8 weeks of treatment. For
798 regimens simulating two LAI doses, the dosing decreased during weeks 1-4, but then increased again at week 5, following by a continuous
799 decrease through week 8. The dosing range provided in the table represents the starting and ending doses for weeks 1-4 and 5-8 of treatment.
See **Table S5** for a full description of the dosing changes for each simulated LAI regimen.

800 **Table 5. PK and dosing information for second PK/PD study, with simulated rifapentine and rifabutin LAI**
 801 **regimens.**

Simulated LAI treatment regimen ^a	PK data/model used for regimen design/prediction ^b	Total dose (mg/kg)	Trough plasma concentration ^c (µg/mL)		Cumulative AUC (µg·h/mL) ^d		CL/F (L/h/kg) [% RSE]	V/F (L/kg) [% RSE]	Ka (h ⁻¹) [% RSE]	Ind_Factor (%) [%RSE]
			Day 28	Day 52	Predicted	Fitted				
RPT LAI target 0.6 µg/mL, 1 dose	RPT 0.25 mg/kg	35.4	0.60	0.15	1078	1320	0.02 [9.6]	0.37 [122.0]	0.23 [128.9]	1.1 [17.8]
RPT LAI target 0.6 µg/mL, 2 doses	RPT 0.25 mg/kg	61.8	0.52	0.45	1866	2093	0.02 [4.7]	0.35 [16.8]	0.42 [23.3]	1.1 [11.9]
RPT LAI target 2 µg/mL, 1 dose	RPT 0.75 mg/kg	74.0	1.58	0.38	3558	3251	0.02 [9.4]	0.64 [29.9]	5.09 [0.004]	1.1 [23.4]
RPT LAI target 2 µg/mL, 2 doses	RPT 0.75 mg/kg	129.2	1.52	1.37	6143	5074	0.02 [7.8]	0.48 [25.5]	0.62 [46.3]	1.2 [19.5]
RPT LAI target 3.5 µg/mL, 1 dose	RPT 1.25 mg/kg	113.8	2.32	0.59	6182	5217	0.02 [12.6]	0.45 [70.4]	0.57 [101.4]	1.1 [24.7]
RFB LAI target 0.045 µg/mL, 1 dose	RFB 2.5 mg/kg	70.4	0.03	0.01	91	Not calculated ^e	Not fitted ^e	Not fitted ^e	Not fitted ^e	Not fitted ^e
RFB LAI target 0.15 µg/mL, 1 dose	RFB 2.5 mg/kg	254.8	0.06	0.02	274	200	1.06 [15.6]	13.23 [19.8]	10.03 [0.5]	0.9 [46.4]

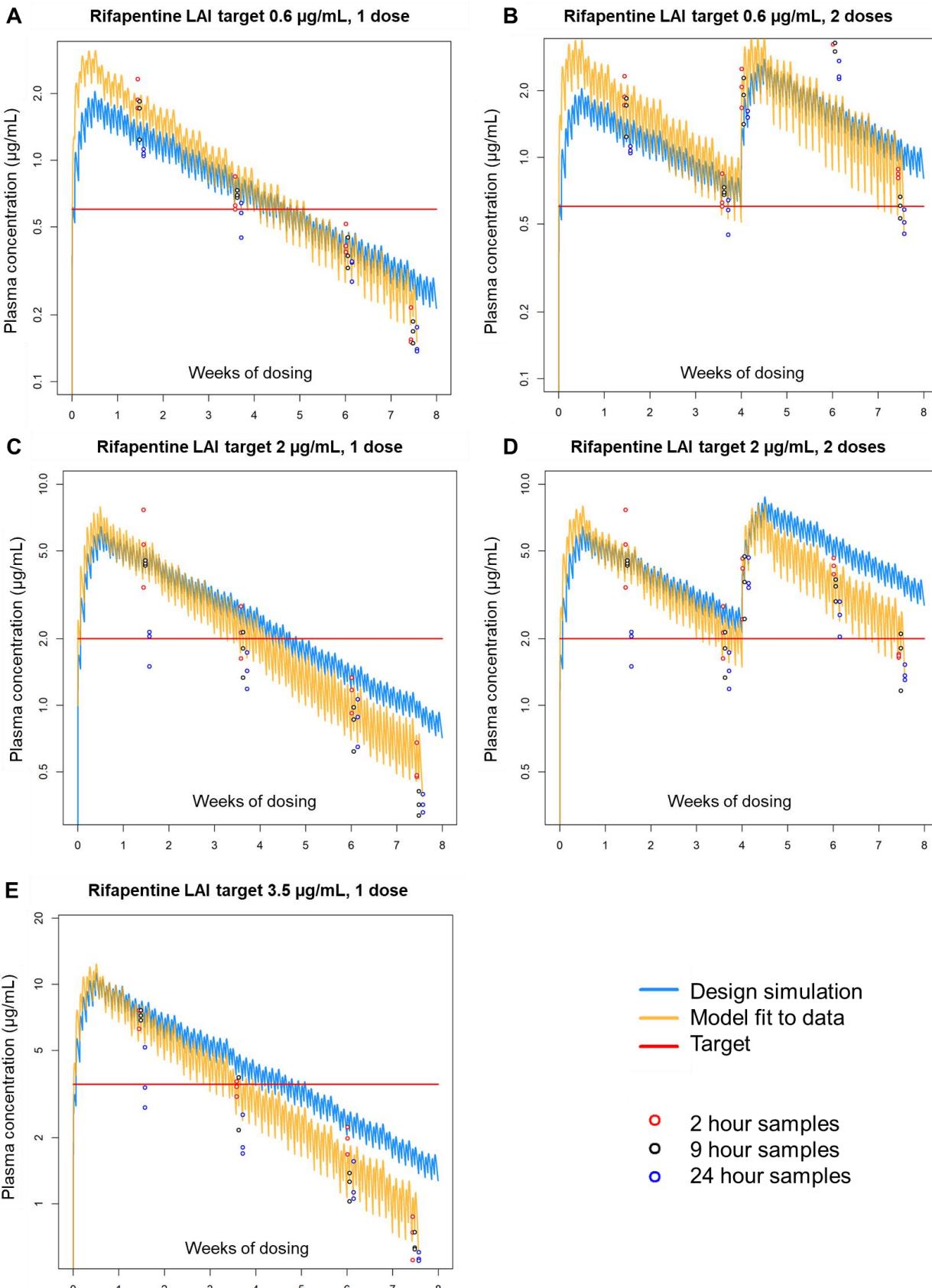
802 ^aRPT, rifapentine; RFB, rifabutin. Simulated long-acting injectable (LAI) regimens were designed to maintain trough plasma concentrations above
 803 the indicated target for 4 weeks (28 days) per simulated LAI dose. See **Table 4** for a description of the regimens.

804 ^bTwice daily (BID) dosing regimen from PK/PD Study 1

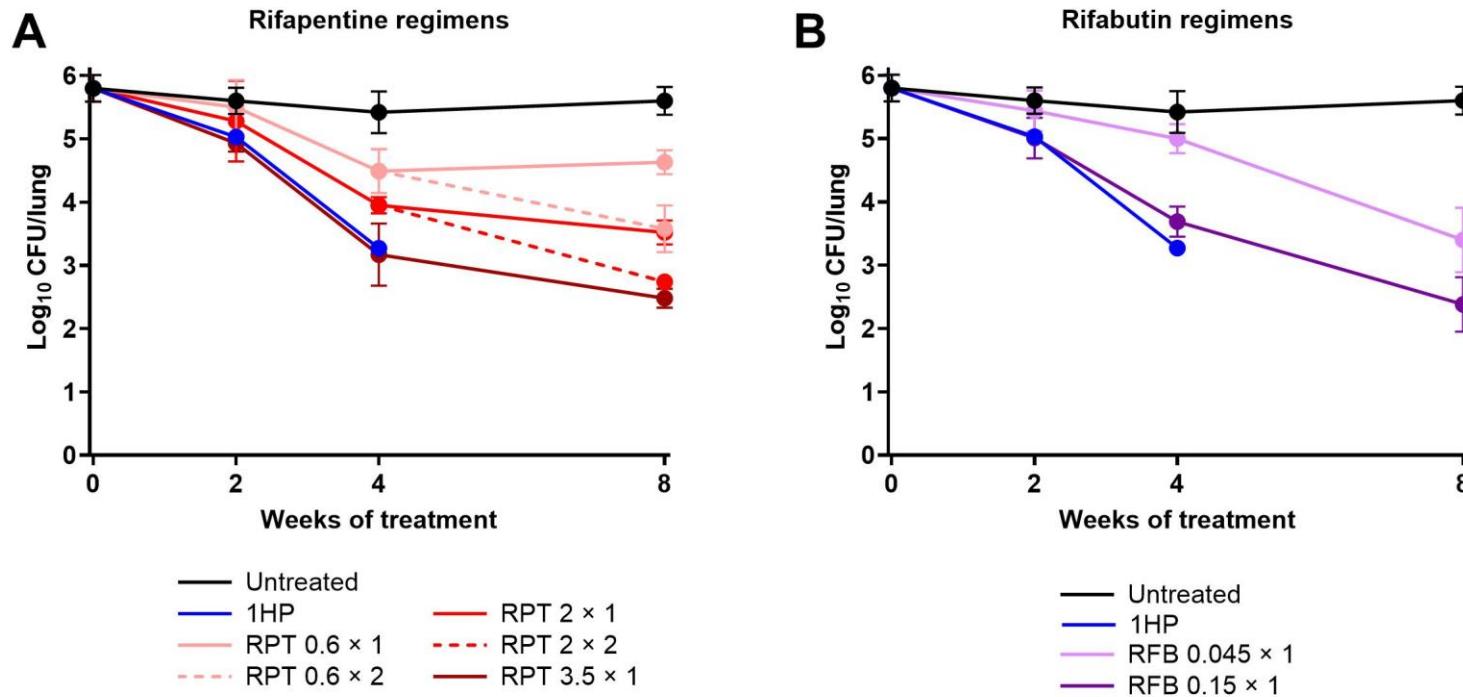

805 ^cThe trough plasma concentration (modeled from fitting to the data) achieved at the stated time into the simulated LAI dose profile (for comparison
 806 against the stated target concentration). For RFB LAI target 0.045 µg/mL 1 dose regimen, predicted values reported (see note e).

807 ^dArea under the concentration-time curve (AUC) that was simulated prior to the experiment (see blue lines in **Fig. 2** and **Fig. S7**) and fitted from
 808 the observed data (see yellow lines in **Fig. 2** and **Fig. S7**).

809 ^eCumulative AUC was not calculated, and model fitting parameter estimates are not reported due to poor model fit due to truncated PK data profile
 810 (see **Fig. S7**).


811 CL/F, apparent clearance on Day 1; V/F, apparent volume of distribution; Ka, absorption rate constant; Ind_Factor, factor for percent cumulative
 812 increase in CL/F per dosing day; % RSE, percent relative standard error.

813



814

815 **Fig. 1. Bactericidal activity in the first PK/PD study.** The original study scheme
816 included 6 weeks of treatment, with bactericidal activity assessed at Week 3 and Week
817 6. However, the COVID-19-related university shut-down necessitated ending this study
818 1.5 days after the Week 3 time point. UT, untreated; RIF, rifampin; RPT, rifapentine;
819 RFB, rifabutin; QD, once daily; BID, twice daily. Drug dose in mg/kg and frequency of
820 administration are given below each drug abbreviation; see regimen descriptions in
821 **Table 2.** Each data point represents an individual mouse, and lines/error bars
822 represent the mean and standard deviation. The dotted horizontal line indicates the
823 average lung CFU count at the start of treatment (Day 0). At each time point, lung CFU
824 counts for all treatment groups were compared against lung CFU counts in the RIF 10
825 QD positive control group using 2-way ANOVA with Dunnett's multiple comparisons
826 test. Individual mouse CFU data and statistical analysis are provided in **Data File S2**.

828 **Fig. 2. Simulated, observed, and modeled rifapentine PK data from the second**
829 **PK/PD study.** PK data for simulated LAI regimens with targets of 0.6, 2, and 3.5 μ g/mL
830 are shown in panels A-B, C-D, and E, respectively. In each graph, the simulated
831 exposure profile based on the regimen design is shown in blue, the target plasma
832 concentrations are shown by the red line, the observed data points are indicated by the
833 open circles, and the modeled exposure profiles fitted to the observed data are shown
834 in yellow. For the regimen with a rifapentine LAI target of 0.6 μ g/mL with two simulated
835 doses (panel B), the 9-hour PK data were omitted from the model fitting. Individual
836 mouse PK data are provided in **Data File S3**.

837

838 **Fig. 3. Bactericidal activity of simulated LAI regimens with rifapentine (A) and rifabutin (B) in the second PK/PD**
 839 **study.** 1HP, control regimen (once daily isoniazid and rifapentine); RPT, rifapentine; RFB, rifabutin. For rifapentine and
 840 rifabutin simulated LAI regimens, the target plasma concentration in $\mu\text{g}/\text{mL}$ and the number of simulated doses ($\times 1$ or \times
 841 2) are given after each drug abbreviation; see regimen descriptions in **Table 4**. Data points represent the mean, and error
 842 bars represent the standard deviation. Individual mouse CFU data and statistical analysis are provided in **Data File S3**.