

1 **PGSbuilder: An end-to-end platform for human genome association analysis**
2 **and polygenic risk score predictions**

3
4 Ko-Han Lee^{1,†}, Yi-Lun Lee^{1,†}, Tsung-Ting Hsieh^{1,†}, Yu-Chuan Chang^{1,†}, Su-Shia Wang¹, Geng-
5 Zhi Fann¹, Wei-Che Lin¹, Hung-Ching Chang¹, Ting-Fu Chen¹, Peng-Husan Li¹, Ya-Ling Kuo¹,
6 Pei-Lung Chen^{2,3,4,5}, Hsueh-Fen Juan^{1,6,7}, Huai-Kuang Tsai^{1,8}, Chien-Yu Chen^{1,7,9,*}, Jia-Hsin
7 Huang^{1,*}

8
9 ¹Taiwan AI Labs & Foundation, Taipei 10351, Taiwan
10 ²Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of
11 Medicine, Taipei 10617, Taiwan

12 ³Department of Medical Genetics, National Taiwan University Hospital, Taipei 10617, Taiwan
13 ⁴ Genome and Systems Biology Degree Program, National Taiwan University and Academia
14 Sinica, Taipei 11529, Taiwan

15 ⁵Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine,
16 Taipei 10051, Taiwan

17 ⁶Department of Life Science, National Taiwan University, Taipei 10617, Taiwan

18 ⁷Center for Computational and Systems Biology, National Taiwan University, Taipei 10617,
19 Taiwan

20 ⁸Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan

21 ⁹Department of Biomechatronics Engineering, National Taiwan University, Taipei 10617,
22 Taiwan

23
24 [†]Ko-Han Lee, Tsung-Ting Hsieh, Yi-Lun Lee, and Yu-Chuan Chang contributed equally to this
25 work.

26
27 ^{*}Correspondence: Chien-Yu Chen (chiencyuchen@ntu.edu.tw); Jia-Hsin Huang
28 (jiahsin.huang@ailabs.tw)

29
30

31 **Abstract**

32

33 Understanding the genetic basis of human complex diseases is increasingly important in the
34 development of precision medicine. Over the last decade, genome-wide association studies
35 (GWAS) have become a key technique for detecting associations between common diseases and
36 single nucleotide polymorphisms (SNPs) present in a cohort of individuals. Alternatively, the
37 polygenic risk score (PRS), which often applies results from GWAS summary statistics, is
38 calculated for the estimation of genetic propensity to a trait at the individual level. Despite many
39 GWAS and PRS tools being available to analyze a large volume of genotype data, most
40 clinicians and medical researchers are often not familiar with the bioinformatics tools and lack
41 access to a high-performance computing cluster resource. To fill this gap, we provide a publicly
42 available web server, PGSbuilder, for the GWAS and PRS analysis of human genomes with
43 variant annotations. The user-friendly and intuitive PGSbuilder web server is developed to
44 facilitate the discovery of the genetic variants associated with complex traits and diseases for
45 medical professionals with limited computational skills. For GWAS analysis, PGSbuilder
46 provides the most renowned analysis tool PLINK 2.0 package. For PRS, PGSbuilder provides six
47 different PRS methods including Clumping and Thresholding, Lassosum, LDpred2, GenEpi,
48 PRS-CS, and PRSice2. Furthermore, PGSbuilder provides an intuitive user interface to examine
49 the annotated functional effects of variants from known biomedical databases and relevant
50 literature using advanced natural language processing approaches. In conclusion, PGSbuilder
51 offers a reliable platform to aid researchers in advancing the public perception of genomic risk
52 and precision medicine for human disease genetics. PGSbuilder is freely accessible at
53 <http://pgsb.tw23.org>.

54

55

56 **Keywords**

57 GWAS; PRS; SNP; Genotyping; Genetic variant

58

59

60

61

62 **Introduction**

63 An ultimate goal of human genetics is to understand the genetic basis of human diseases,
64 diagnosis, and management. Results from a large amount of genome-wide association studies
65 (GWAS) have vastly demonstrated that many single nucleotide polymorphisms (SNP) genetic
66 variants are associated with various complex traits¹. In early 2023, more than 6,300 studies have
67 conducted to map over 496,000 associations between human SNPs and diseases/traits in the
68 GWAS catalog². In the past two decades, the successes of GWAS not only drive the discovery of
69 deleterious mutations linked to certain disease phenotypes but also imply a general pattern of
70 polygenicity of common diseases^{3,4}. Many common diseases that conform to polygenic
71 inheritance are underpinned by multiple genetic variants with small or moderate effects⁵. After
72 the realization of a large proportion of the variance in genetic liability to common diseases,
73 utilization of causative risk alleles based on the GWAS discoveries for disease risk prediction
74 has become the potential to stratify patients for precision prevention^{6,7}.

75

76 Polygenic risk score (also known as polygenic scores; PRS) is an important methodology to
77 leverage the genetic contribution of an individual's genotype to measure the genetic liability to
78 complex traits or diseases^{8,9}. Clumping and thresholding (C+T)¹⁰ is the primary PRS method
79 based on the summary statistics from GWAS by pruning SNPs through a process of Linkage
80 Disequilibrium (LD) clumping and selecting a *P*-value threshold. Still, it has limitations in the
81 predictive performance without considering other genetic factors. Currently, several PRS
82 methods based on the summary statistics apply a different selection of the prior distribution on
83 the effect sizes of the SNPs under the Bayesian framework. For example, LDpred¹¹ and
84 LDpred2¹² improve the prediction performance by enhancing LD modeling based on the
85 normality assumption. PRS-CS¹³ introduces a different concept to provide a continuous
86 shrinkage (CS) prior to accommodate diverse underlying genetic architectures. Alternatively,
87 SBayesR¹⁴ and SDPR¹⁵ assume a different mixture of normal distributions on the individual-
88 level data as input for adaptive modeling of SNP effect size. Lassosum¹⁶ implements a penalized
89 regression approach with a Lasso-type penalty. Empirical evidence from benchmark experiments
90 shows that not a single method clearly outperforms all other methods in the prediction accuracy
91 for all the simulated data and disease traits^{12-14,17}. Nevertheless, each different PRS method can

92 potentially improve the development of PRS construction with specific optimization procedures.
93 Recent studies have demonstrated that the comparison of many PRS methods could facilitate the
94 future implementation of PRS in clinical settings^{18,19}. Although a few practical guidelines have
95 introduced how best to perform PRS analyses²⁰⁻²², a steep learning curve of implementing those
96 PRS packages and the computing resources required by some tools are impractical for doctors
97 and clinical professionals.

98

99 As the popularity of PRS increases, over 400 publications report more than 3,200 polygenic
100 scores in the Polygenic Score Catalog (<https://www.PGSCatalog.org>)²³. However, those PRS
101 studies were predominantly conducted on individuals of European descent²⁴. Due to the poor
102 transferability of PRS across populations^{25,26}, one critical step toward effectiveness in PRS
103 accuracy is to conduct PRS development for the diversity of participants from different
104 ancestries. Along with the cost of a single genetic test per individual plummeting to less than
105 US\$50, it becomes feasible to acquire a sufficient cohort size for PRS from the population with
106 underrepresented ancestries by the medical institutes in different countries. In addition, the
107 current consensus about the refinement of PRS should include other informative clinical factors
108 based on their healthy records. To facilitate genetic analysis and PRS development, a
109 sophisticated analysis platform could enable the construction of PRS in clinical research
110 efficiently. For example, impute.me is a recently developed web tool to provide basic PRS
111 estimation using a single method of LDpred to predict individual polygenic risks²⁷. To increase
112 the clinical practice of PRS, a comprehensive comparison of different PRS methods could
113 leverage the extent of predictive values into a better understanding of the genetic liability for
114 disease traits.

115

116 In this study, we present PGSbuilder which is an integrated cloud-based platform to analyze
117 human genotype data. PGSbuilder provides a one-stop service to conduct both GWAS and PRS
118 analyses and interactively visualize the analysis results. In PGSbuilder, users can run six
119 different PRS methods as well as the PRS models with clinical factors to compare their
120 performances concurrently. To the best of our knowledge, no other existing web server offers the
121 possibility to compare multiple PRS models. Further, the interpretation of PRS is needed to
122 apply the scores into biological explanations and clinical use. Notably, PGSbuilder also

123 integrates the variant annotation automatically for the candidate SNPs from GWAS and PRS
124 analyses using Ensembl Variant Effect Predictor (VEP)²⁸ and biomedical literature mining from
125 pubmedKB²⁹. In addition, our web interface allows easy access to link all genetic analysis results
126 and candidate SNP information with interactive displays. Finally, users can download all the
127 analysis output files for further exploration.

128

129

130 **Materials and Methods**

131 **Data privacy and security**

132 Because genetic data will be uploaded to our server, a wide array of security measures are in
133 force to ensure data privacy and security. Our local server has ISO 27001 certification for
134 implementing an information security management system (ISMS). In addition, our server is
135 designed based on the express MVC (Model-View-Controller) framework that encapsulates our
136 features surrounded by powerful security layers. All interactions with the server are protected
137 and secured with HTTPS. Any input data is deleted from our server once the analysis is
138 completed. With the encryption by a firm one-time password, all analyzed results can only be
139 accessed by the data uploader via an encrypted connection, within a 14 days timeframe.

140

141 **GWAS**

142 To conduct quality control (QC) procedures and following genome-wide association studies
143 (GWAS), we utilize PLINK 2.0, a comprehensive genome association analysis tool for
144 population genetics³⁰. There are three major steps for QC and two for GWAS. QC consists of
145 variant filtering, individual filtering, and population stratification while GWAS analysis consists
146 of principal component analysis (PCA) and association test.

147

148 First, unqualified SNPs are filtered out according to the minor allele frequency, Hardy-Weinberg
149 equilibrium, and missingness. Secondly, individuals with the high missing rate of SNPs, large
150 deviation of heterozygosity rate, and high kinship coefficient³¹ are also removed. Finally, to
151 exclude individuals with different populations, population stratification is conducted against the
152 population in HapMap 3³². Most of the QC criteria and recommended thresholds are referred to
153 Marees et al³³.

154

155 For the GWAS analysis, the top 10 principal components extracted from PCA are used to correct
156 the genetic difference between in-group individuals³⁴. Of note, the population stratification
157 during the QC analysis is also conducted via PCA to remove outliers at the level of population,
158 such as Asians, Africans, or Europeans. Next, the principal components and other provided
159 covariates are included to correct the genetic effect during association tests. Only the effect size
160 of autosomal SNPs is calculated using the “glm” function of PLINK 2.0^{30,35}.

161

162 PRS methods

163 In PGSbuilder, the input dataset is separated into the base, target, and test sets, respectively.
164 First, QC is applied on both base and target sets, and then GWAS is only performed on the base
165 set to get the summary statistics. Combining the summary statistics with the target set which is
166 used for the calculation of linkage disequilibrium (LD) and the selection of hyperparameters,
167 PGSbuilder performs PRS analysis to build models based on different methods. This pipeline of
168 PRS analysis is referred to Choi et al²¹. There are six PRS methods provided in PGSbuilder,
169 including clumping and thresholding, PRSice2, LDpred2, Lassosum, PRS-CS, and GenEpi. Five
170 methods, except GenEpi, are selected to produce PRS prediction from the external summary
171 statistics without individual genetic data. On the other hand, GenEpi method is included due to
172 its consideration of gene-based epistasis, which is a distinct machine learning-based algorithm to
173 estimate PRS, for comparison.

174

175 *Clumping and Thresholding:* Clumping and thresholding (C+T) is the classical algorithm that
176 adjusts the LD using clumping and selects SNPs with *P*-value less than a specified threshold to
177 calculate the PRS for each individual¹⁰. In PGSbuilder, SNPs within 250 kb away from the index
178 SNP and have the R-squared over 0.1 with it are assigned to the clump of the index SNP. Nine
179 thresholds, including 10^{-8} , 10^{-7} , 10^{-6} , 10^{-5} , 10^{-4} , 10^{-3} , 10^{-2} , 10^{-1} , and 1, are applied to the clumped
180 SNPs to build PRS models. Beta scores derived from the summary statistics are set as the effect
181 size estimates directly. The model with the best performance on the target set is selected as the
182 final PRS model.

183

184 *PRSice2*: PRSice2 is also a clumping and thresholding-based PRS algorithm with a higher
185 resolution of thresholds¹⁷. SNPs with a minor allele frequency lower than 0.01 are filtered out.
186 Like C+T, beta scores are set as the effect size estimates directly.

187

188 *Lassosum*: Lassosum uses penalized regression to adjust the effect size of SNPs for a PRS
189 model¹⁶. The summary statistics provide the SNP-wise correlation with the phenotype and the
190 initial effect size of SNPs. LD blocks are defined from the subpopulation of the 1000 Genome
191 database, and the LD matrix is calculated from the target set. Additionally, the target set is used
192 for the selection of hyperparameters to get the best PRS model.

193

194 *LDpred2*: LDpred2 is a Bayesian PRS predictor by adjusting the effect size of SNPs from the
195 summary statistics¹². The target set provides the correlation between SNPs for LD estimation
196 within 3 centimorgan. In PGSbuilder, for summary statistics having more than 10 SNPs with *P*-
197 value<10⁻⁸, we implement the “LDpred2-grid” mode to select the best hyperparameters,
198 including the proportion of causal variants and the heritability. On the other hand, for those with
199 less significant SNPs, we implement the “LDpred2-inf” mode, an infinitesimal model.

200

201 *PRS-CS*: PRS-CS is a Bayesian polygenic prediction method that infers the posterior effect size
202 of SNPs from the summary statistics using continuous shrinkage priors¹³. In PGSbuilder, we use
203 the 1000 Genome dataset as the reference panel for LD estimation. The global shrinkage
204 parameter is fixed at 0.2 and other parameters are left as defaults.

205

206 *GenEpi*: GenEpi, a machine learning approach, takes both additive effect and SNP-SNP
207 interactions into consideration to build a PRS model from the raw genomic data³⁶. GenEpi uses
208 two-stage feature selection to select a single SNP, intragenic interaction, and intergenic
209 interaction and then applies a regression model to fit the selected features. In PGSbuilder, we
210 only train the GenEpi model on the base set.

211

212 Covariates

213 In GWAS analysis, covariates are used to adjust the genetic effect on the target phenotype.
214 PGSbuilder performs PCA before GWAS, and the top ten principal components (PCs) are served

215 as covariates. In addition, users can provide a covariate file, and covariates with the variance
216 inflation factor (VIF) less than 50 or a missing rate over 20% are removed. Finally, the effect
217 size of each SNP is corrected with PCs and provided covariates during the association test.

218

219 On the other hand, to provide a comprehensive risk assessment for individuals, features other
220 than genetic factors should be taken into consideration. After building a PRS model, PGSbuilder
221 combines the PRS score as a genetic factor and user-provided covariates as clinical factors to
222 build a regression model trained on the target set. Then, PGSbuilder predicts each individual
223 using this regression model to stratify the risk of the target phenotype.

224

225 Variant annotation tools

226 The annotation of significant SNP from GWAS or other genomic analysis is of great importance.
227 Annotation of variants is vital for the translation of genomic results to the functional level for
228 further analysis. The Ensembl Variant Effect Predictor (VEP) is an open-source, powerful, and
229 versatile toolset for the annotation and prioritization of genomic variants for a transcript or even
230 non-coding region²⁸. We select VEP (version 106) because of its broad collection of databases,
231 scalability, and free open license. In order to display the important variant information to show
232 first on the web page, PGSbuilder sorts the VEP results by several criteria, including transcript
233 consensus, mutation consequence, mutation severity, and feature biotype. The complete VEP result
234 is provided in the downloaded file. In addition, allele frequencies from Taiwan Biobank³⁷ and
235 1000 Genome Project are provided in the VEP annotation.

236

237 Moreover, we integrate our literature mining engines, variant2literature³⁸ and pubmedKB²⁹, by
238 retrieving entity mentions and odds ratio statistics to create a report of textual evidence for each
239 variant-phenotype pair. The literature report contains an overall summary and single paper
240 snippets. For the overall summary, we first collect sentences and clinical case sentences where
241 the target variant and phenotype are both mentioned. We then present the most important
242 sentences and clinical cases identified by page rank³⁹. For single paper snippets, we present the
243 paragraph describing odds ratio statistics of the target variant and phenotype.

244

245 Example Data

246 *Taiwan Biobank*: Taiwan Biobank (TWB) is a prospective cohort study with genomic data and a
247 variety of phenotypes collected from Taiwanese population³⁷. The TWB cohort contains 27,500
248 individuals genotyped for 653,288 SNPs on the TWB v1.0 array as well as 68,978 individuals
249 genotyped for 748,344 SNPs on the TWB v2.0 array.

250

251 *NIA ADC Cohort*: The NIA ADC Cohort consists of individuals evaluated clinically from
252 National Institute on Aging (NIA)-funded Alzheimer Disease Centers (ADC)⁴⁰. Inclusion criteria
253 of late-onset Alzheimer's disease are autopsied subjects with age >60 or cases diagnosed with
254 DSM-IV or Clinical Dementia Rating >1⁴⁰. All the seven ADC datasets downloaded from
255 NIAGADS (<https://www.niagads.org/datasets>) were merged directly as a joint analysis. In total,
256 there are 10,256 samples, including 5,334 cases, 3,973 controls, and 949 unknowns, genotyped
257 for 914,402 SNPs.

258

259

260 **Results**

261 PGSbuilder analysis workflow

262 PGSbuilder is a web-based server to provide end-to-end analysis for genetic cohort data
263 including GWAS, PRS, and variant annotation. The GWAS analysis aims to figure out the
264 significant SNPs associated with a specific phenotype while the PRS analysis aims to build a
265 model for the estimation of the individual risk. After the analysis, SNP-level annotation and
266 literature exploration using pubmedKB²⁹ are performed to provide useful insights into causal
267 variants.

268

269 The GWAS pipeline (Figure 1), which is applied to the whole input dataset, consists of quality
270 control (QC) and association tests. As for the PRS pipeline (Figure 1), the input dataset is firstly
271 separated into training and test sets. The training set is undergone QC steps and split into base
272 and target subsets. The base subset is used to obtain the summary statistics of GWAS, while the
273 target subset is used to build the PRS models. On the other hand, the option of an external
274 summary statistics file is available in PGSbuilder. When the external summary statistics file is

275 provided, it replaces the base subset to provide GWAS results and the entire training set serves
276 as the target subset alternatively. To build a PRS model, most PRS methods combine the
277 summary statistics providing the initial SNP effect sizes with the linkage disequilibrium (LD)
278 estimation derived from the target subset. Of note, GenEpi is unavailable for building a PRS
279 model from the external summary statistics. Finally, to validate the model performance, the
280 estimated risks of individuals in the test set are independently calculated by the adjusted effect
281 size.

282

283 System implementation

284 We used Kubernetes and docker technology to group our applications including web interfaces,
285 data processing, GWAS and PRS pipelines, and variant annotation into a service platform. For
286 the web interface, we adopted React architecture and Node.js for the frontend and backend
287 respectively. For the analysis, after users upload genotype data, PGSbuilder will create pods for
288 GWAS and PRS pipelines dynamically and instantly. Significant variants derived from GWAS
289 and PRS pipelines will be annotated through the VEP and pubmedKB to determine the effect of
290 variants in the public database and academic literature.

291

292 For the security of private genomic data, users have to sign up via email activation. After login,
293 two studies including a binary trait (classification model) and a quantitative trait (regression
294 model) are demonstrated on the analysis page. To create a new study, users have to upload
295 genotype data in PLINK format and fill in relevant information such as population, genome
296 build, and prediction method (classification or regression). PGSbuilder provides flexibility for
297 users to modify some quality control parameters and select multiple PRS methods (Figure 2A). If
298 the data is successfully uploaded to the PGSbuilder server, the job is added to the analysis queue
299 and will be processed as soon as possible. Users will receive an email notice to check the state of
300 jobs on the running page. Once the job is completed, users can download a comprehensive report
301 for GWAS and PRS results. PGSbuilder also provides an interactive interface to view the result
302 in detail.

303

304 On the GWAS result page, PCA plot, quantile-quantile plot (Q-Q plot), Manhattan plot, and the
305 variant table are demonstrated (Figure 2B). PCA is used for the correction of population

306 stratification, and the top 10 principal components (PCs) are selected as covariates for GWAS.
307 The paired distributions of the top 3 PCs are shown interactively, and users can arbitrarily switch
308 between three figures through arrow buttons. In addition, each dot represents a sample whose ID
309 will be displayed via a mouseover event, which can help users discriminate outliers. The Q-Q
310 plot is provided to evaluate the deviation of observed *P*-values from expected *P*-values under a
311 uniform distribution. For the Manhattan plot and variant table, we set a suggestive *P*-value
312 threshold of 1×10^{-5} and a strict *P*-value threshold of 5×10^{-8} . SNPs with a *P*-value smaller than
313 the threshold are colored in orange and listed in the variant table. The SNPs in the Manhattan
314 plot and the variant table are interactive. Clicking on an orange point on the Manhattan plot
315 navigates the variant table to the corresponding SNP with its information, and vice versa.
316 Besides, users can search for a specific SNP through the search bar. More detailed information of
317 all SNPs including their *P*-values and annotated information are compressed as a zip file to be
318 downloaded.

319

320 On the PRS result page, we compare the performance of selected PRS methods. The quantile
321 plot shows the risk stratification (Figure 2C). For each method, samples in the test set are divided
322 into 10 quantiles of increasing PRS. Then, in each quantile, the odds ratio is calculated for binary
323 phenotypes while the mean of values is calculated for quantitative phenotypes. A great difference
324 between the first and the last group represents a good risk stratification. Of note, all individuals
325 in the test set serve as the baseline for odds ratio calculation for binary tracts. In the classification
326 analysis for a binary tract, the receiver operating characteristic (ROC) curve and distribution plot
327 for each method are demonstrated (Figure 2C). The area under the ROC curve illustrates the
328 performance and the distribution plots illustrate the prediction distribution for cases against
329 controls. In the regression analysis for a quantitative tract, Spearman correlations and scatter
330 plots are shown (Figure 2C). The Spearman correlation is performed to evaluate the performance
331 and the scatter plot with a regression line illustrates the relationship between phenotypes and
332 prediction rankings for each method. The tabs of method lists allow users to switch results
333 between different methods. Users can click one of them to view the corresponding performance
334 and variant table.

335

336 Furthermore, analysis beyond genetic factors is also available in PGSbuilder. If the covariate file
337 is provided, covariates will be used to correct the effect size of SNPs during GWAS, and then
338 serve as clinical factors combined with PRSs to build a regression model for risk prediction. The
339 performance with or without clinical factors is also demonstrated in the figures for comparison.
340 The weight of each clinical factor is shown in a table for users to figure out important factors.

341

342 Variant annotation panel

343 In order to help interpret GWAS and PRS results, PGSbuilder provides a comprehensive variant
344 annotation panel for users to explore biological significance. There are often a large number of
345 SNPs associated with a phenotype. PGSbuilder will automatically sort the important SNPs at the
346 top of the panel according to several annotation information including transcript consensus,
347 mutation consequence, mutation severity, and feature biotype. Figure 3 displays an example of the
348 significant SNP information from the GWAS results. Accordingly, three key features are present
349 including variant effect prediction information, external links about the variant, and the related
350 literature. PGSbuilder uses ClinVar⁴¹ and VEP²⁸ for variant interpretation (Fig. 3B). Several
351 external links are provided to easily navigate the further variant information (Fig. 3C). Lastly,
352 PGSbuilder integrates the literature mining results from the pubmedKB²⁹ to assist researchers
353 and clinical professionals in obtaining the related literature.

354

355 System performance

356 For benchmarking, we recorded execution time, average memory, and CPU usage for QC,
357 GWAS, and PRS methods with 680k SNPs given 20k, 50k, and 110k samples (Table 1). The
358 resource for each execution was limited to 20 GB and 10 CPUs. Obviously, more resources were
359 needed as the sample size increased. Table 1 shows the comparison between six PRS methods.
360 PRSice2, PRS-CS, and GenEpi took much more execution time than the others, but PRSice2 and
361 GenEpi used the least CPU and memory respectively. In conclusion, it takes about three days to
362 complete a comprehensive PRS analysis for a dataset with 110k samples and 680k SNP.

363

364

365 **Table 1.** The system performance, including execution time, average CPU, and memory of PGSbuilder.
366 We performed QC, GWAS, and six PRS methods (classification for a binary trait) on a dataset with the
367 same number of SNPs but different sample sizes.

Sample	STATS	QC	GWAS	C+T	Lassosum	LDpred2	PRSice2	PRS-CS	GenEpi	Total
20k	Time (min)	8.0	8.0	15.5	18.8	27.3	79.2	171.8	450.9	779.5
20k	Avg. CPU	2.9	6.9	5.6	4.7	6.3	3.3	7.5	7.7	
20k	Memory (GB)	5.1	2.0	10.9	10.5	10.9	10.7	8.4	3.8	
50k	Time (min)	43.5	20.0	33.4	41.6	73.9	180.8	268.6	715.0	1376.8
50k	Avg. CPU	4.7	6.8	7.9	7.6	7.6	5.6	8.0	7.4	
50k	Memory (GB)	16.0	1.7	16.2	16.1	15.8	14.8	12.9	3.8	
110k	Time (min)	139.5	77.0	200.3	220.3	251.3	510.6	967.3	2086.9	4453.1
110k	Avg. CPU	4.8	8.6	7.4	7.3	7.6	5.5	8.0	7.2	
110k	Memory (GB)	19.4	13.8	17.0	17.0	16.7	13.9	12.0	10.6	

368
369 **Case Study**
370 To demonstrate the capability of PGSbuilder, we performed two case studies using the cohorts
371 with a large number of individuals and corresponding phenotypes. Firstly, in the Taiwan
372 Biobank (TWB)³⁷, a Taiwanese cohort composed of healthy adults, we previously defined nine
373 quantitative traits and five binary traits related to some common chronic diseases, such as type 2
374 diabetes or dyslipidemia, according to their phenotypic measures (see
375 <https://github.com/chienyuchen/TWB-PRS> for more information). The presented GWAS and
376 PRS models across fourteen traits in the TWB were built by using PGSbuilder. Among them,
377 low-density lipoprotein (LDL), a quantitative trait, was selected here to demonstrate the usage of

378 adding covariates and the leverage of external summary statistics to run PGSbuilder. Secondly,
379 for the cohort with a specific disease, we performed GWAS and PRS analysis on the National
380 Institute on Aging (NIA)-funded Alzheimer Disease Centers (ADC) Cohort⁴⁰ to demonstrate the
381 result of a binary trait.

382

383 *Low-density lipoprotein:* Low-density lipoprotein (LDL), which is a kind of lipoprotein to
384 transport fat molecules around the body, acts as the primary driver of atherogenesis resulting in
385 cardiovascular diseases⁴². Several genes, such as LDLR, PCSK9, and APOB, affecting the
386 quantity of LDL in circulation have been reported⁴³. Recognizing people with a genetic tendency
387 for high LDL could help them by providing early intervention to avoid the progression of severe
388 cardiovascular diseases. Therefore, in this study, we applied GWAS and PRS analysis using
389 PGSbuilder on the TWB data. The covariates, including age, sex, and body mass index (BMI),
390 were added to correct GWAS for genetic factors and then serve as clinical factors to build
391 regression models for risk prediction.

392

393 With the default QC settings of PGSbuilder, 55,412 samples and 276,068 SNPs were passed the
394 quality control (Table S1-2). To control the population stratification, PGSbuilder always
395 performs PCA analysis and applies the top ten principal components (PCs) as covariates during
396 GWAS. Figure 4A demonstrates the distribution of PC1 and PC2 to confirm SNPs without
397 unusual differentiation between quantiles in the TWB data. The interactive Manhattan plot is
398 shown in Figure 4B and the significant SNPs with a *P*-value $< 10^{-5}$ are highlighted in orange for
399 clicking to navigate variant information. Notably, in comparison with the previous study using
400 the same TWB data⁴⁴, highly similar results were observed in PGSbuilder as shown that more
401 than 80% (89/111) of significant SNPs in the TWB arrays were identically found to associate
402 with the LDL trait. That is, the pipeline in PGSbuilder is indeed reproducible.

403

404 In addition, PGSbuilder allows users to provide external summary statistics to build PRS models.
405 Herein, the external summary statistics from the BioBank Japan⁴⁵ to identify significant variants
406 and stratify people by the risk of high LDL were applied to estimate PRS in the TWB data.
407 Figure 4C shows the performance on the test set of each PRS method with and without clinical
408 factors. Overall, PRS combined with clinical factors performs better than PRS-only and clinical

409 factors-only models. These results indicate that the genetic factor combined with clinical factors
410 provide a better prediction effect. Figure 4D depicts the risk stratification of models using
411 clinical factors. “PRS + clinical factors” models stratified the test set better than the “clinical
412 factors-only” model. In the “PRS + clinical factors” models, the difference in average LDL
413 between the first and last groups is up to forty. Furthermore, the weight of each feature in the
414 “PRS-clinical factors” model is listed in Table 2, where PRS has the largest contribution in all
415 the models.

416

417 **Table 2.** The weight of PRS and clinical factors for “PRS + clinical factors” models of LDL.

	C+T	PRSiце2	Lassosum	LDpred2	PRS-CS
PRS	7.96	7.93	8.70	5.29	5.87
Sex	2.57	2.57	2.64	2.55	2.53
Age	4.29	4.29	4.26	4.31	4.29
BMI	4.41	4.41	4.45	4.33	4.34

418

419 *Alzheimer’s disease:* Alzheimer’s disease (AD), the major cause of dementia, is a complex
420 disorder associated with genetic factors and environmental factors⁴⁶. Several genetic loci, such as
421 APOE, have been identified at the level of association study^{47,48}. Combining the effects of these
422 genetic loci to build a PRS model could provide individuals with the disease risk for further
423 preventive strategies⁴⁹. In this study, to build PRS models based on different methods and
424 compare the performance of them, we analyzed the National Institute on Aging (NIA)-funded
425 Alzheimer Disease Centers (ADC) cohort using PGsbuilder.

426

427 Figure 5 shows the performance of PRS analysis from PGsbuilder. There are two obvious
428 groups with different performances. C+T, PRSiце2, Lassosum, and GenEpi have better auROC
429 than LDpred2 and PRS-CS (Figure 5A). Figure 5B depicts the prediction distribution of cases
430 and controls; the more distance between the distributions the better performance of the model.
431 For further comparison of different methods, an UpSet plot depicts the intersection of top-100
432 valuable SNPs from each method (Figure 5C). Notably, LDpred2 and PRS-CS have some

433 distinct SNPs than others, which might cause noise for the PRS prediction and decrease the
434 model performance.

435

436 To investigate the information of SNPs, PGSbuilder annotates SNPs using VEP²⁸ and
437 pubmedKB²⁹. For example, Figure 5D shows the annotation of rs157580, which is an intron
438 variant of gene TOMM40 with average allele frequency across different populations. A previous
439 study (PMID: 21867541) also reported that rs157580 was significantly associated with AD⁵⁰.
440 The literature mining of PubMed abstracts by pubmedKB facilitates users to interpret the
441 variants more readily.

442

443

444 **Discussion**

445 PGSbuilder is a cloud-based platform that offers comprehensive genotyping analyses, including
446 GWAS and PRS, all in one place. Our goal for GWAS is to help identify significant SNPs
447 associated with the target phenotype, while for PRS, we aim to assist evaluation of the prediction
448 performance of polygenic models. Customized settings are available for users to adjust the
449 analytic process, such as quality control, population stratification, and the selection of PRS
450 methods. With PGSbuilder's interactive interfaces, users can easily interpret their results. For
451 instance, users can select specific SNPs on the Manhattan plot and view the corresponding
452 annotations in the table. Additionally, PGSbuilder integrates pubmedKB for variant
453 interpretation by providing literature support. With these features, PGSbuilder is a
454 comprehensive and user-friendly platform for GWAS and PRS.

455

456 In addition to the analytic pipeline, PGSbuilder offers various visualization plots to compare the
457 performance of different PRS methods. To evaluate risk stratification, the quantile plot is a key
458 interpretation tool. The UpSet plot enables users to observe the intersection of important SNPs
459 selected from each method. Additionally, PGSbuilder incorporates our original GenEpi
460 software³⁶, which provides a unique method to uncover the genetic epistasis associated with
461 phenotypes, as demonstrated in other recent studies^{51,52}. Finally, as clinical factors are provided,
462 PGSbuilder will rank the weights of them and PRS to highlight the most predictive feature,
463 which helps users investigate the risk factor precisely.

464

465 While PGSbuilder provides a range of useful features, there are some limitations to its
466 functionality. First, it is important to consider the limitations of hardware resources when dealing
467 with large datasets. For example, some imputed files containing 10 million SNPs and 50K
468 samples may not be immediately accessible due to these restrictions. However, computationally
469 efficient methods such as C+T, Lassosum, and PRSice2 can be effectively applied to such
470 datasets, based on our internal experiments. It is worth noting that building a predictive model
471 using some PRS methods may require a significant amount of time. On the other hand, GenEpi,
472 which discovers the gene-based epistasis, is not practical for imputed data due to its
473 computational complexity. Secondly, some known PRS methods, such as those based on a
474 mixture model for SNP effective size (e.g. SBayesR¹⁴, DPR⁵³, DBSLMM⁵⁴), are currently not
475 included in PGSbuilder. Lastly, PRS models can only be downloaded from PGSbuilder output
476 directly. Going forward, we are planning to implement a prediction module that allows users to
477 upload other datasets and then automatically obtain predictions of available PRS models .

478

479 The field of PRS development is growing rapidly, with mounting evidence using the wealth of
480 data collected in biobanks⁵⁵⁻⁵⁸. As the proof of concept is solidly demonstrated, an effective and
481 comprehensive platform is necessary to perform GWAS and PRS analysis for diseases that are
482 not covered by biobanks. PGSbuilder provides researchers with the ability to identify significant
483 loci with annotations and investigate the polygenicity of a target phenotype across a specific
484 population effectively. By leveraging genotypes, a PRS model has the clinical potential to offer
485 risk evaluations to individuals. This, in turn, can facilitate early surveillance for severe diseases.

486

487

488 Conclusion

489 PGSbuilder is an end-to-end platform that seamlessly integrates QC of genotype data, GWAS,
490 PRS, SNP annotation, and visualizations. This platform is versatile, allowing the incorporation of
491 external GWAS summary statistics to run PRS using various methods, thereby enabling the
492 estimation of genetic risk in smaller cohort samples. In addition, PGSbuilder's user-friendly
493 interface is designed to be accessible to users without programming experiences. In the future,

494 we plan to further augment and broaden PGSbuilder by introducing a prediction module that
495 allows users to directly run their PRS models for specific disease phenotypes.

496

497

498 **Acknowledgements**

499 We thank Tzu-Hung Hsiao and Chien-Lin Mao for valuable early discussion and pipeline testing.

500

501

502 **Funding**

503 This work was supported by the Ministry of Science and Technology, Taiwan (MOST 109-2221-
504 E-002-161-MY3 and MOST 109-2221-E-002 -162 -MY3).

505

506

507 **Data and software availability**

508 All genetic and phenotype data in TWB described in this paper are publicly available via the
509 Taiwan Biobank data access protocol. Fourteen PRS models using TWB data, including five
510 binary phenotypes and nine quantitative traits, are freely available on the GitHub project
511 repository (<https://github.com/chienyuchen/TWB-PRS>). The AD data is publicly available to
512 registered researchers by request from the National Institute on Aging Genetics of Alzheimer's
513 Disease Data Storage Site (NIAGADS). The source codes for GWAS and PRS analyses were
514 deposited to Github and is available at <https://github.com/ailabstw/PGSbuilder>.

515

516 **Ethics approval and consent to participate**

517 The application number of TWB data is TWBR10411-03. This application of NIA ADC Cohort
518 dataset has been filed with the IRB (202106049RINA) in order to get approval from NIAGADS.

519

520

521 **Competing interests**

522 The authors declare that they have no competing interests.

523

524

525 **Authors' contributions**

526 KHL, YLL, TTH, YCC, and HCC conceived and implemented the pipeline development. YCC
527 inspired team members to unite as a product manager, and designed all the frameworks of this
528 web service, including wireframe, prototype, and database schema. SSW, WCL, and GZF
529 implemented the web design and interface. TFC and PHL implemented the literature mining.
530 YLK served as liaisons to user communities. YCC and JHH helped project development and
531 management. PLC led the application of TWB data. HFJ, HKT, CYC, and JHH supervised the
532 project. KHL and JHH led the writing of the manuscript. All authors discussed the results and
533 implications and commented on the manuscript. All authors read and approved the final
534 manuscript.

535

536

537 **References**

- 538 1. Mills, M. C. & Rahal, C. A scientometric review of genome-wide association studies. *Commun Biol*
539 **2**, 9 (2019).
- 540 2. Buniello, A. *et al.* The NHGRI-EBI GWAS Catalog of published genome-wide association studies,
541 targeted arrays and summary statistics 2019. *Nucleic Acids Research* vol. 47 D1005–D1012 Preprint
542 at <https://doi.org/10.1093/nar/gky1120> (2019).
- 543 3. Visscher, P. M. *et al.* 10 Years of GWAS Discovery: Biology, Function, and Translation. *Am. J.*
544 *Hum. Genet.* **101**, 5–22 (2017).
- 545 4. Stranger, B. E., Stahl, E. A. & Raj, T. Progress and promise of genome-wide association studies for
546 human complex trait genetics. *Genetics* **187**, 367–383 (2011).
- 547 5. Watanabe, K. *et al.* A global overview of pleiotropy and genetic architecture in complex traits. *Nat.*
548 *Genet.* **51**, 1339–1348 (2019).
- 549 6. Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic risk prediction
550 models for stratified disease prevention. *Nat. Rev. Genet.* **17**, 392–406 (2016).
- 551 7. Wray, N. R. *et al.* From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer.

552 *JAMA Psychiatry* **78**, 101–109 (2021).

553 8. Ma, Y. & Zhou, X. Genetic prediction of complex traits with polygenic scores: a statistical review.

554 *Trends Genet.* **37**, 995–1011 (2021).

555 9. Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk to disease from

556 genome-wide association studies. *Genome Res.* **17**, 1520–1528 (2007).

557 10. International Schizophrenia Consortium *et al.* Common polygenic variation contributes to risk of

558 schizophrenia and bipolar disorder. *Nature* **460**, 748–752 (2009).

559 11. Vilhjálmsson, B. J. *et al.* Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk

560 Scores. *Am. J. Hum. Genet.* **97**, 576–592 (2015).

561 12. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. *Bioinformatics* (2020)

562 doi:10.1093/bioinformatics/btaa1029.

563 13. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian

564 regression and continuous shrinkage priors. *Nat. Commun.* **10**, 1776 (2019).

565 14. Lloyd-Jones, L. R. *et al.* Improved polygenic prediction by Bayesian multiple regression on

566 summary statistics. *Nat. Commun.* **10**, 5086 (2019).

567 15. Zhou, G. & Zhao, H. A fast and robust Bayesian nonparametric method for prediction of complex

568 traits using summary statistics. *PLoS Genet.* **17**, e1009697 (2021).

569 16. Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via penalized

570 regression on summary statistics. *Genet. Epidemiol.* **41**, 469–480 (2017).

571 17. Choi, S. W. & O'Reilly, P. F. PRSice-2: Polygenic Risk Score software for biobank-scale data.

572 *Gigascience* **8**, (2019).

573 18. Ni, G. *et al.* A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied

574 Across Multiple Cohorts. *Biol. Psychiatry* **90**, 611–620 (2021).

575 19. Pain, O. *et al.* Evaluation of polygenic prediction methodology within a reference-standardized

576 framework. *PLoS Genet.* **17**, e1009021 (2021).

577 20. Collister, J. A., Liu, X. & Clifton, L. Calculating Polygenic Risk Scores (PRS) in UK Biobank: A

578 Practical Guide for Epidemiologists. *Front. Genet.* **13**, 818574 (2022).

579 21. Choi, S. W., Mak, T. S.-H. & O'Reilly, P. F. Tutorial: a guide to performing polygenic risk score
580 analyses. *Nat. Protoc.* **15**, 2759–2772 (2020).

581 22. Wray, N. R. *et al.* Research review: Polygenic methods and their application to psychiatric traits. *J.*
582 *Child Psychol. Psychiatry* **55**, 1068–1087 (2014).

583 23. Lambert, S. A. *et al.* The Polygenic Score Catalog as an open database for reproducibility and
584 systematic evaluation. *Nat. Genet.* **53**, 420–425 (2021).

585 24. Martin, A. R. *et al.* Clinical use of current polygenic risk scores may exacerbate health disparities.
586 *Nat. Genet.* **51**, 584–591 (2019).

587 25. Scutari, M., Mackay, I. & Balding, D. Using Genetic Distance to Infer the Accuracy of Genomic
588 Prediction. *PLoS Genet.* **12**, e1006288 (2016).

589 26. Wang, Y. *et al.* Theoretical and empirical quantification of the accuracy of polygenic scores in
590 ancestry divergent populations. *Nat. Commun.* **11**, 3865 (2020).

591 27. Folkersen, L. *et al.* Impute.me: An Open-Source, Non-profit Tool for Using Data From Direct-to-
592 Consumer Genetic Testing to Calculate and Interpret Polygenic Risk Scores. *Front. Genet.* **11**, 578
593 (2020).

594 28. McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biol.* **17**, 122 (2016).

595 29. Li, P.-H. *et al.* pubmedKB: an interactive web server for exploring biomedical entity relations in the
596 biomedical literature. *Nucleic Acids Res.* (2022) doi:10.1093/nar/gkac310.

597 30. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets.
598 *Gigascience* **4**, 7 (2015).

599 31. Manichaikul, A. *et al.* Robust relationship inference in genome-wide association studies.
600 *Bioinformatics* **26**, 2867–2873 (2010).

601 32. Consortium, T. I. H. 3. & The International HapMap 3 Consortium. Integrating common and rare
602 genetic variation in diverse human populations. *Nature* vol. 467 52–58 Preprint at
603 <https://doi.org/10.1038/nature09298> (2010).

604 33. Marees, A. T. *et al.* A tutorial on conducting genome-wide association studies: Quality control and
605 statistical analysis. *International Journal of Methods in Psychiatric Research* **27**, e1608 (2018).

606 34. Price, A. L. *et al.* Principal components analysis corrects for stratification in genome-wide
607 association studies. *Nat. Genet.* **38**, 904–909 (2006).

608 35. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage
609 analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

610 36. Chang, Y.-C. *et al.* GenEpi: gene-based epistasis discovery using machine learning. *BMC*
611 *Bioinformatics* **21**, 68 (2020).

612 37. Feng, Y.-C. A. *et al.* Taiwan Biobank: a rich biomedical research database of the Taiwanese
613 population. Preprint at <https://doi.org/10.1101/2021.12.21.21268159>.

614 38. Lin, Y.-H. *et al.* variant2literature: full text literature search for genetic variants. *bioRxiv* 583450
615 (2019) doi:10.1101/583450.

616 39. Page, L., Brin, S., Motwani, R. & Winograd, T. The PageRank Citation Ranking: Bringing Order to
617 the Web. (1999).

618 40. Naj, A. C. *et al.* Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated
619 with late-onset Alzheimer's disease. *Nat. Genet.* **43**, 436–441 (2011).

620 41. Landrum, M. J. *et al.* ClinVar: improving access to variant interpretations and supporting evidence.
621 *Nucleic Acids Res.* **46**, D1062–D1067 (2018).

622 42. Borén, J. *et al.* Low-density lipoproteins cause atherosclerotic cardiovascular disease:
623 pathophysiological, genetic, and therapeutic insights: a consensus statement from the European
624 Atherosclerosis Society Consensus Panel. *Eur. Heart J.* **41**, 2313–2330 (2020).

625 43. Borén, J. *et al.* Low-density lipoproteins cause atherosclerotic cardiovascular disease:
626 pathophysiological, genetic, and therapeutic insights: a consensus statement from the European
627 Atherosclerosis Society Consensus Panel. *Eur. Heart J.* **41**, 2313–2330 (2020).

628 44. Chen, C.-Y. *et al.* Analysis across Taiwan Biobank, Biobank Japan and UK Biobank identifies
629 hundreds of novel loci for 36 quantitative traits. Preprint at

630 https://doi.org/10.1101/2021.04.12.21255236.

631 45. Sakaue, S. *et al.* A cross-population atlas of genetic associations for 220 human phenotypes. *Nat. Genet.* **53**, 1415–1424 (2021).

632 46. Breijyeh, Z. & Karaman, R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. *Molecules* **25**, (2020).

633 47. Wightman, D. P. *et al.* A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease. *Nat. Genet.* **53**, 1276–1282 (2021).

634 48. Bellenguez, C. *et al.* New insights into the genetic etiology of Alzheimer's disease and related dementias. *Nat. Genet.* **54**, 412–436 (2022).

635 49. de Rojas, I. *et al.* Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. *Nat. Commun.* **12**, 3417 (2021).

636 50. Simmons, C. R., Zou, F., Younkin, S. G. & Estus, S. Evaluation of the global association between cholesterol-associated polymorphisms and Alzheimer's disease suggests a role for rs3846662 and HMGCR splicing in disease risk. *Mol. Neurodegener.* **6**, 62 (2011).

637 51. Yashin, A. I. *et al.* Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans. *J Transl Genet Genom* **5**, 357–379 (2021).

638 52. Rodrigo, L. M. & Nyholt, D. R. Imputation and Reanalysis of ExomeChip Data Identifies Novel, Conditional and Joint Genetic Effects on Parkinson's Disease Risk. *Genes* **12**, (2021).

639 53. Zeng, P. & Zhou, X. Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models. *Nat. Commun.* **8**, 456 (2017).

640 54. Yang, S. & Zhou, X. Accurate and Scalable Construction of Polygenic Scores in Large Biobank Data Sets. *Am. J. Hum. Genet.* **106**, 679–693 (2020).

641 55. Zhang, R. *et al.* Novel disease associations with schizophrenia genetic risk revealed in ~400,000 UK Biobank participants. *Mol. Psychiatry* **27**, 1448–1454 (2022).

642 56. Richardson, T. G., Harrison, S., Hemani, G. & Davey Smith, G. An atlas of polygenic risk score associations to highlight putative causal relationships across the human genome. *Elife* **8**, (2019).

656 57. Sakaue, S. *et al.* Trans-biobank analysis with 676,000 individuals elucidates the association of
657 polygenic risk scores of complex traits with human lifespan. *Nat. Med.* **26**, 542–548 (2020).

658 58. Shen, X. *et al.* A genome-wide association and Mendelian Randomisation study of polygenic risk
659 for depression in UK Biobank. *Nat. Commun.* **11**, 2301 (2020).

660 59. Sherry, S. T. dbSNP: the NCBI database of genetic variation. *Nucleic Acids Research* vol. 29 308–
661 311 Preprint at <https://doi.org/10.1093/nar/29.1.308> (2001).

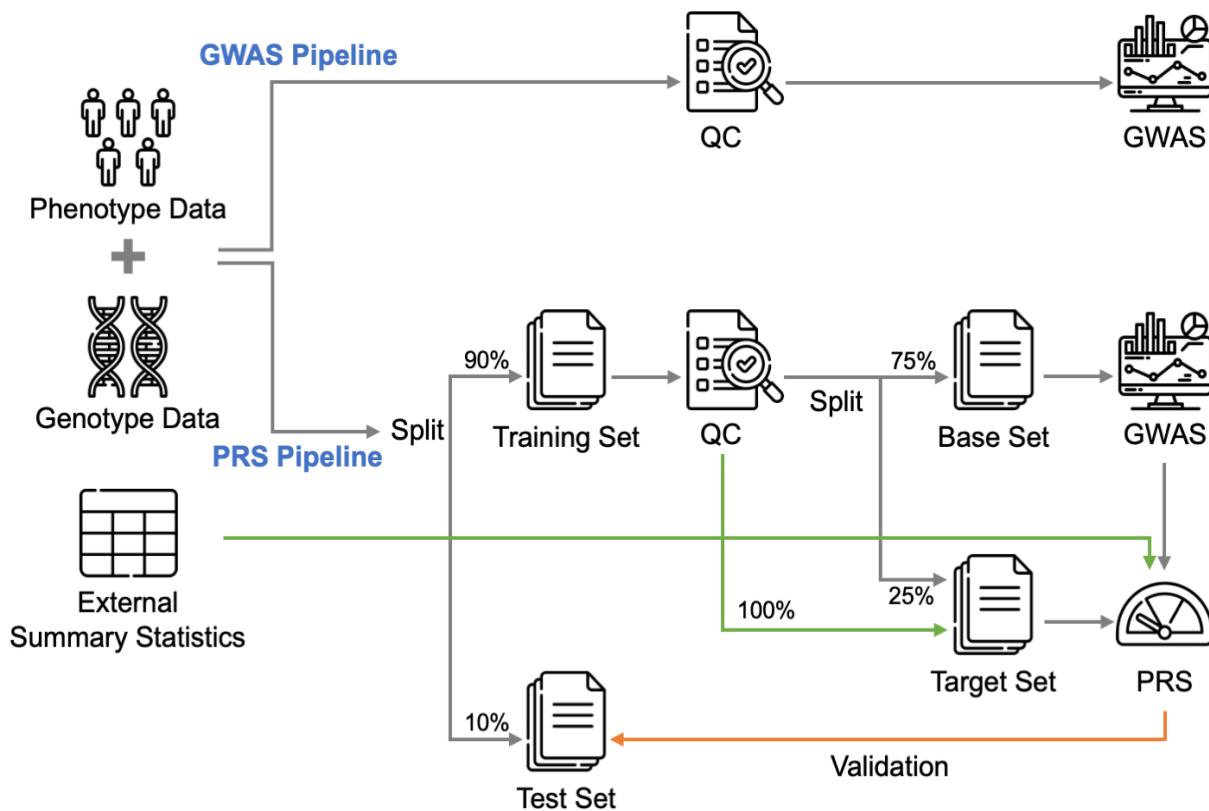
662 60. Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in 141,456
663 humans. *Nature* **581**, 434–443 (2020).

664 61. Safran, M. *et al.* The GeneCards Suite. in *Practical Guide to Life Science Databases* (eds.
665 Abugessaisa, I. & Kasukawa, T.) 27–56 (Springer Nature Singapore, 2021).

666 62. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: Visualization of
667 Intersecting Sets. *IEEE Trans. Vis. Comput. Graph.* **20**, 1983–1992 (2014).

668 **Figures and Figure legends**

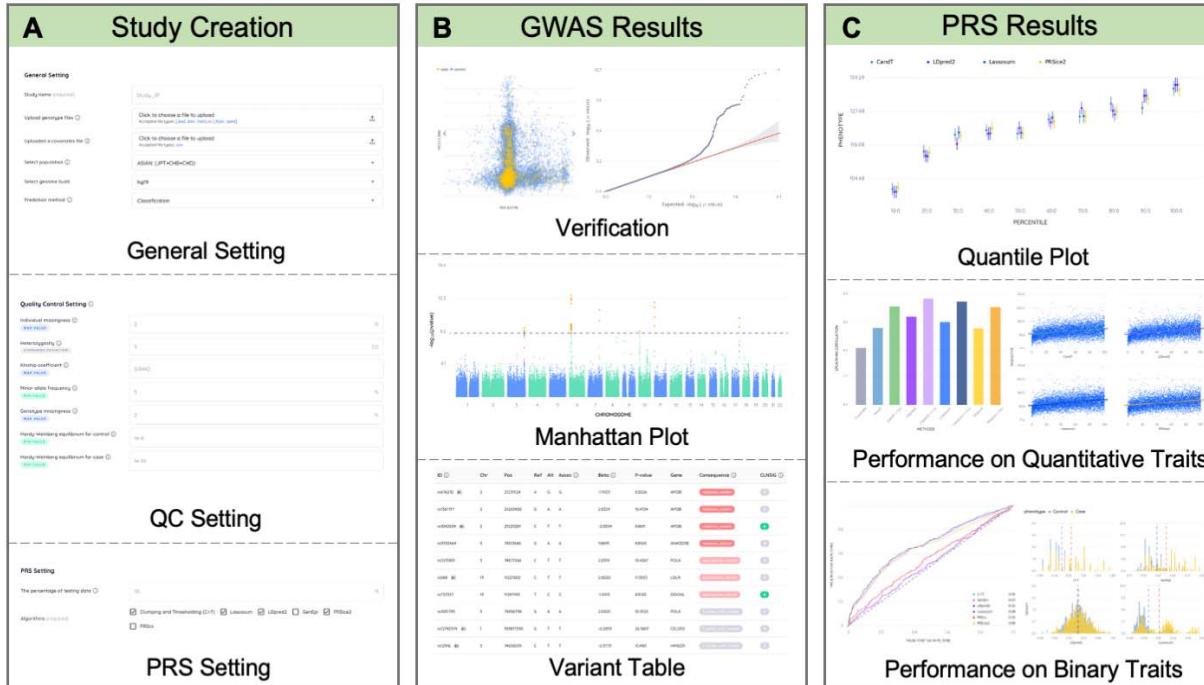
669



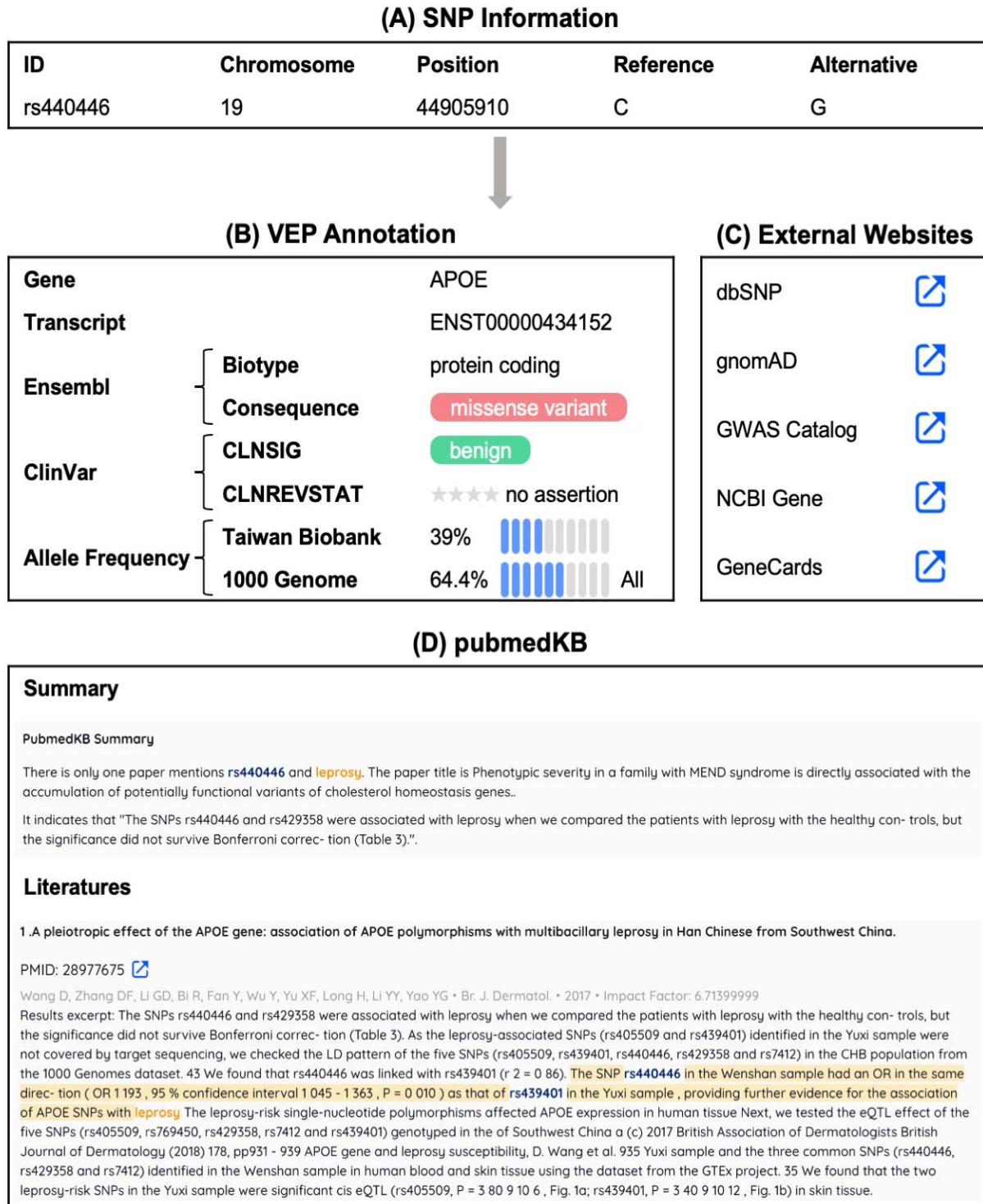
670

671 **Figure 1. Analysis pipelines of PGSbuilder.** PGSbuilder performs GWAS and PRS analysis
672 respectively on the input dataset. For the GWAS pipeline, PGSbuilder applies QC followed by
673 GWAS on the whole input dataset. For the PRS pipeline, PGSbuilder splits the input dataset into
674 training and test sets with the default ratio of 9:1 and applies QC on the training set. The training
675 set is later split into base and target subsets with a ratio of 3:1, and the GWAS result is obtained
676 from the base set. Combining the target set with the summary statistics derived from the base set,
677 PGSbuilder builds PRS models based on different PRS methods. Alternatively, users could
678 provide external summary statistics and the entire training set will be used to build the PRS
679 model. Finally, the independent test set is used to evaluate the performance of the PRS model.

680



681
682 **Figure 2. PGsbuilder interface and visualizations.** (A) First of all, users can create a new
683 study with customization, including general, QC, and PRS settings. (B) After analysis, GWAS
684 results are composed of verification, including the PCA and Q-Q plots, and significant SNPs,
685 including the Manhattan plot and variant table. (C) On the other hand, PRS results show a
686 quantile plot for risk stratification and performance comparison for quantitative or binary traits.

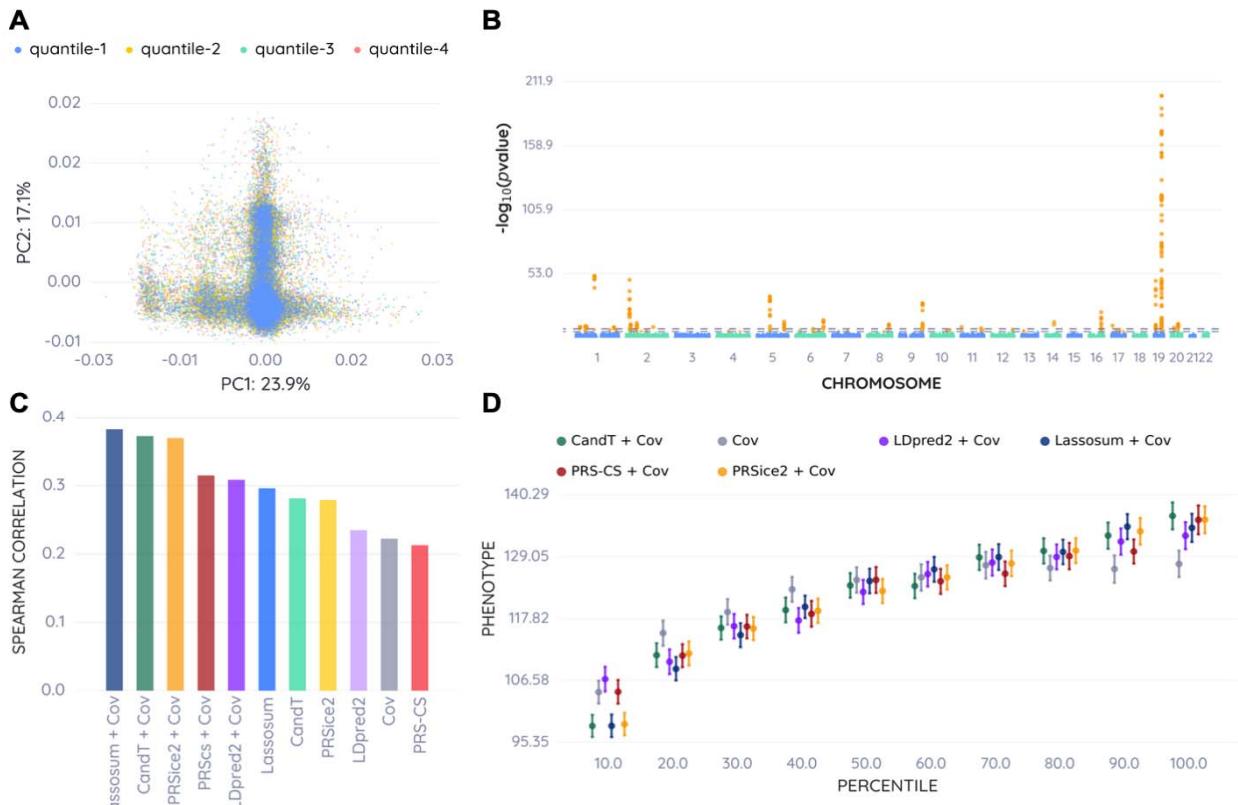


688

689 **Figure 3. Example annotation result of SNP “rs440446” on PGStbuilder.** (A) There is the
 690 basic information and statistics (e.g. GWAS P -value) of the variant. (B) We apply different
 691 colors on consequence (the red one) and ClinVar significance (the green one) according to tables

692 provided by Ensembl and ClinVar, respectively, for a better presentation of SNP importance
693 level. The following block is the transcript ID, ClinVar significance, and allele frequency from
694 VEP. (C) We also provided links to external websites with more variant or gene information,
695 such as dbSNP⁵⁹, gnomAD⁶⁰, GWAS Catalog², and GeneCards⁶¹. (D) The block at the bottom is
696 the results from pubmedKB. The summary presents the sentence where the SNP and the
697 phenotype co-occur, and we show the paper snippet of odds ratio statistics.

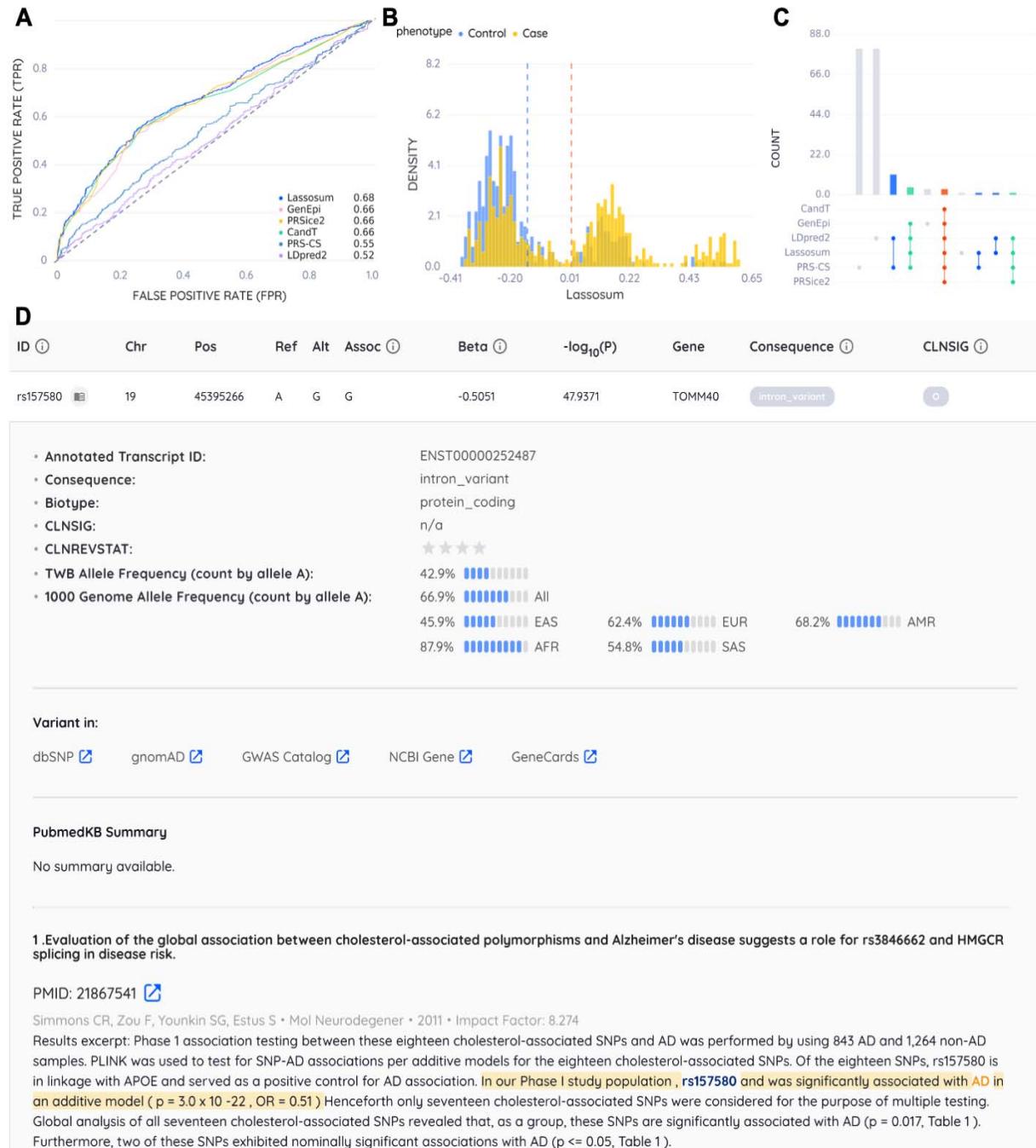
698



699

700 **Figure 4. Results of LDL GWAS and PRS analyses.** (A) PCA plot of the first and second PCs.
701 To view any deviation of PCs among the samples, values of the quantitative phenotype are
702 separated into four quantiles. (B) Manhattan plot of $-\log_{10}(P\text{-value})$. GWAS is performed on
703 autosomal SNPs, and SNPs with $P\text{-value} < 10^{-5}$ are colored in orange. (Source data in Table S3)
704 (C) Bar plot of Spearman's correlation of each PRS model. Models derived from different
705 methods with or without covariates (Cov) are demonstrated simultaneously. (Source data in
706 Table S4) (D) Quantile plot for risk stratification. The “covariate-only (Cov)” model and “PRS
707 + covariate” models are plotted to compare the usage of genetic factors. (Source data in Table
708 S5).

709



710

711 **Figure 5. Results of AD across different PRS methods.** (A) ROC curve of each PRS model on
712 the test set. (Source data in Table S6) (B) Prediction distributions of the Lassosum PRS model
713 for cases (yellow) and controls (blue). The dashed line represents the mean of each group. (C)
714 UpSet plot⁶² for the intersection of important SNPs derived from different PRS methods. The
715 intersection, or the combination, of methods are presented as the matrix layout while the variant
716 counts of each intersection are shown as the histogram. Different colors represent the number of

717 PRS methods. (corresponding output data in Table S7) (D) Annotations for SNP “rs157580”. On
718 the top is the basic information and statistics of the variant. The following block is the transcript
719 ID, ClinVar significance and allele frequency from VEP²⁸. In addition, we also provided links to
720 external websites with more variant information, such as dbSNP⁵⁹ and gnomAD⁶⁰. The block in
721 the bottom is the results from pubmedKB²⁹ which highlights the odds ratio of AD in the presence
722 of this variant.