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Abstract

Understanding the genetic basis of human complex diseases is increasingly important in the
development of precision medicine. Over the last decade, genome-wide association studies
(GWAS) have become a key technique for detecting associations between common diseases and
single nucleotide polymorphisms (SNPs) present in a cohort of individuals. Alternatively, the
polygenic risk score (PRS), which often applies results from GWAS summary statistics, is
calculated for the estimation of genetic propensity to a trait at the individual level. Despite many
GWAS and PRS tools being available to analyze a large volume of genotype data, most
clinicians and medical researchers are often not familiar with the bioinformatics tools and lack
access to a high-performance computing cluster resource. To fill this gap, we provide a publicly
available web server, PGSbuilder, for the GWAS and PRS analysis of human genomes with
variant annotations. The user-friendly and intuitive PGSbuilder web server is developed to
facilitate the discovery of the genetic variants associated with complex traits and diseases for
medical professionals with limited computational skills. For GWAS analysis, PGSbuilder
provides the most renowned analysis tool PLINK 2.0 package. For PRS, PGSbuilder provides six
different PRS methods including Clumping and Thresholding, Lassosum, LDPred2, GenEpi,
PRS-CS, and PRSice2. Furthermore, PGSbuilder provides an intuitive user interface to examine
the annotated functional effects of variants from known biomedical databases and relevant
literature using advanced natural language processing approaches. In conclusion, PGSbuilder
offers a reliable platform to aid researchers in advancing the public perception of genomic risk
and precision medicine for human disease genetics. PGSbuilder is freely accessible at
http://pgsb.tw23.0rg.
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Introduction

An ultimate goal of human genetics is to understand the genetic basis of human diseases,
diagnosis, and management. Results from a large amount of genome-wide association studies
(GWAS) have vastly demonstrated that many single nucleotide polymorphisms (SNP) genetic
variants are associated with various complex traits’. In early 2023, more than 6,300 studies have
conducted to map over 496,000 associations between human SNPs and diseases/traits in the
GWAS catalog?. In the past two decades, the successes of GWAS not only drive the discovery of
deleterious mutations linked to certain disease phenotypes but also imply a general pattern of
polygenicity of common diseases®**. Many common diseases that conform to polygenic
inheritance are underpinned by multiple genetic variants with small or moderate effects®. After
the realization of a large proportion of the variance in genetic liability to common diseases,
utilization of causative risk alleles based on the GWAS discoveries for disease risk prediction

has become the potential to stratify patients for precision prevention®’.

Polygenic risk score (also known as polygenic scores; PRS) is an important methodology to
leverage the genetic contribution of an individual’s genotype to measure the genetic liability to
complex traits or diseases®®. Clumping and thresholding (C+T)™ is the primary PRS method
based on the summary statistics from GWAS by pruning SNPs through a process of Linkage
Disequilibrium (LD) clumping and selecting a P-value threshold. Still, it has limitations in the
predictive performance without considering other genetic factors. Currently, several PRS
methods based on the summary statistics apply a different selection of the prior distribution on
the effect sizes of the SNPs under the Bayesian framework. For example, LDpred™ and
LDpred2"” improve the prediction performance by enhancing LD modeling based on the
normality assumption. PRS-CS™ introduces a different concept to provide a continuous
shrinkage (CS) prior to accommodate diverse underlying genetic architectures. Alternatively,
SBayesR™ and SDPR™ assume a different mixture of normal distributions on the individual-
level data as input for adaptive modeling of SNP effect size. Lassosum'® implements a penalized
regression approach with a Lasso-type penalty. Empirical evidence from benchmark experiments
shows that not a single method clearly outperforms all other methods in the prediction accuracy

12-

for all the simulated data and disease traits*?>**". Nevertheless, each different PRS method can
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92  potentially improve the development of PRS construction with specific optimization procedures.
93  Recent studies have demonstrated that the comparison of many PRS methods could facilitate the
94  future implementation of PRS in clinical settings'®*®. Although a few practical guidelines have

95 introduced how best to perform PRS analyses”® %

, a steep learning curve of implementing those
96 PRS packages and the computing resources required by some tools are impractical for doctors
97 and clinical professionals.

98

99  As the popularity of PRS increases, over 400 publications report more than 3,200 polygenic

)23

100 scores in the Polygenic Score Catalog (https://www.PGSCatalog.org)“”. However, those PRS

101  studies were predominantly conducted on individuals of European descent®. Due to the poor

102 transferability of PRS across populations®?°

, one critical step toward effectiveness in PRS
103  accuracy is to conduct PRS development for the diversity of participants from different
104  ancestries. Along with the cost of a single genetic test per individual plummeting to less than
105  US$50, it becomes feasible to acquire a sufficient cohort size for PRS from the population with
106  underrepresented ancestries by the medical institutes in different countries. In addition, the
107  current consensus about the refinement of PRS should include other informative clinical factors
108 based on their healthy records. To facilitate genetic analysis and PRS development, a
109  sophisticated analysis platform could enable the construction of PRS in clinical research
110 efficiently. For example, impute.me is a recently developed web tool to provide basic PRS
111  estimation using a single method of LDpred to predict individual polygenic risks?’. To increase
112 the clinical practice of PRS, a comprehensive comparison of different PRS methods could
113  leverage the extent of predictive values into a better understanding of the genetic liability for
114  disease traits.

115

116  In this study, we present PGSbuilder which is an integrated cloud-based platform to analyze
117  human genotype data. PGSbuilder provides a one-stop service to conduct both GWAS and PRS
118 analyses and interactively visualize the analysis results. In PGSbuilder, users can run six
119 different PRS methods as well as the PRS models with clinical factors to compare their
120  performances concurrently. To the best of our knowledge, no other existing web server offers the
121 possibility to compare multiple PRS models. Further, the interpretation of PRS is needed to

122 apply the scores into biological explanations and clinical use. Notably, PGShbuilder also
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123  integrates the variant annotation automatically for the candidate SNPs from GWAS and PRS
124  analyses using Ensembl Variant Effect Predictor (VEP)® and biomedical literature mining from
125 pubmedKB?. In addition, our web interface allows easy access to link all genetic analysis results
126  and candidate SNP information with interactive displays. Finally, users can download all the
127  analysis output files for further exploration.

128

129

130 Materialsand Methods

131 Data privacy and security

132 Because genetic data will be uploaded to our server, a wide array of security measures are in
133  force to ensure data privacy and security. Our local server has ISO 27001 certification for
134  implementing an information security management system (ISMS). In addition, our server is
135  designed based on the express MVC (Model-View-Controller) framework that encapsulates our
136  features surrounded by powerful security layers. All interactions with the server are protected
137 and secured with HTTPS. Any input data is deleted from our server once the analysis is
138 completed. With the encryption by a firm one-time password, all analyzed results can only be
139  accessed by the data uploader via an encrypted connection, within a 14 days timeframe.

140

141 GWAS

142  To conduct quality control (QC) procedures and following genome-wide association studies
143 (GWAS), we utilize PLINK 2.0, a comprehensive genome association analysis tool for
144  population genetics®. There are three major steps for QC and two for GWAS. QC consists of
145  variant filtering, individual filtering, and population stratification while GWAS analysis consists
146  of principal component analysis (PCA) and association test.

147

148  First, unqualified SNPs are filtered out according to the minor allele frequency, Hardy-Weinberg
149  equilibrium, and missingness. Secondly, individuals with the high missing rate of SNPs, large
150  deviation of heterozygosity rate, and high kinship coefficient® are also removed. Finally, to
151  exclude individuals with different populations, population stratification is conducted against the
152  population in HapMap 3*. Most of the QC criteria and recommended thresholds are referred to
153 Marees et al®,
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154

155  For the GWAS analysis, the top 10 principal components extracted from PCA are used to correct
156  the genetic difference between in-group individuals®*. Of note, the population stratification
157  during the QC analysis is also conducted via PCA to remove outliers at the level of population,
158 such as Asians, Africans, or Europeans. Next, the principal components and other provided
159  covariates are included to correct the genetic effect during association tests. Only the effect size
160  of autosomal SNPs is calculated using the “glm” function of PLINK 2.0%%%,

161

162 PRS methods

163  In PGSbuilder, the input dataset is separated into the base, target, and test sets, respectively.
164  First, QC is applied on both base and target sets, and then GWAS is only performed on the base
165  set to get the summary statistics. Combining the summary statistics with the target set which is
166 used for the calculation of linkage disequilibrium (LD) and the selection of hyperparameters,
167  PGSbuilder performs PRS analysis to build models based on different methods. This pipeline of
168  PRS analysis is referred to Choi et al*:. There are six PRS methods provided in PGSbuilder,
169 including clumping and thresholding, PRSice2, LDpred2, Lassosum, PRS-CS, and GenEpi. Five
170  methods, except GenEpi, are selected to produce PRS prediction from the external summary
171  statistics without individual genetic data. On the other hand, GenEpi method is included due to
172  its consideration of gene-based epistasis, which is a distinct machine learning-based algorithm to
173  estimate PRS, for comparison.

174

175  Clumping and Thresholding: Clumping and thresholding (C+T) is the classical algorithm that
176  adjusts the LD using clumping and selects SNPs with P-value less than a specified threshold to
177  calculate the PRS for each individual™. In PGSbuilder, SNPs within 250 kb away from the index
178  SNP and have the R-squared over 0.1 with it are assigned to the clump of the index SNP. Nine
179  thresholds, including 10, 107, 10, 10, 10 103 107 10™, and 1, are applied to the clumped
180  SNPs to build PRS models. Beta scores derived from the summary statistics are set as the effect
181  size estimates directly. The model with the best performance on the target set is selected as the
182  final PRS model.

183
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184 PRSce2: PRSice2 is also a clumping and thresholding-based PRS algorithm with a higher
185  resolution of thresholds™’. SNPs with a minor allele frequency lower than 0.01 are filtered out.
186  Like C+T, beta scores are set as the effect size estimates directly.

187

188  Lassosum: Lassosum uses penalized regression to adjust the effect size of SNPs for a PRS
189  model®®. The summary statistics provide the SNP-wise correlation with the phenotype and the
190 initial effect size of SNPs. LD blocks are defined from the subpopulation of the 1000 Genome
191 database, and the LD matrix is calculated from the target set. Additionally, the target set is used
192  for the selection of hyperparameters to get the best PRS model.

193

194 LDpred2: LDpred2 is a Bayesian PRS predictor by adjusting the effect size of SNPs from the
195  summary statistics'®. The target set provides the correlation between SNPs for LD estimation
196  within 3 centimorgan. In PGSbuilder, for summary statistics having more than 10 SNPs with P-
197  value<10® we implement the “LDpred2-grid” mode to select the best hyperparameters,
198 including the proportion of causal variants and the heritability. On the other hand, for those with

199 less significant SNPs, we implement the “LDpred2-inf” mode, an infinitesimal model.

200

201 PRSCS PRS-CS is a Bayesian polygenic prediction method that infers the posterior effect size
202 of SNPs from the summary statistics using continuous shrinkage priors*®. In PGSbuilder, we use
203 the 1000 Genome dataset as the reference panel for LD estimation. The global shrinkage
204  parameter is fixed at 0.2 and other parameters are left as defaults.

205

206  GenEpi: GenEpi, a machine learning approach, takes both additive effect and SNP-SNP
207 interactions into consideration to build a PRS model from the raw genomic data®. GenEpi uses
208 two-stage feature selection to select a single SNP, intragenic interaction, and intergenic
209 interaction and then applies a regression model to fit the selected features. In PGSbuilder, we
210  only train the GenEpi model on the base set.

211

212 Covariates

213  In GWAS analysis, covariates are used to adjust the genetic effect on the target phenotype.

214  PGSbuilder performs PCA before GWAS, and the top ten principal components (PCs) are served

7
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215  as covariates. In addition, users can provide a covariate file, and covariates with the variance
216 inflation factor (VIF) less than 50 or a missing rate over 20% are removed. Finally, the effect
217  size of each SNP is corrected with PCs and provided covariates during the association test.

218

219  On the other hand, to provide a comprehensive risk assessment for individuals, features other
220  than genetic factors should be taken into consideration. After building a PRS model, PGSbuilder
221 combines the PRS score as a genetic factor and user-provided covariates as clinical factors to
222  build a regression model trained on the target set. Then, PGSbuilder predicts each individual

223 using this regression model to stratify the risk of the target phenotype.

224

225 Variant annotation tools

226 The annotation of significant SNP from GWAS or other genomic analysis is of great importance.
227  Annotation of variants is vital for the translation of genomic results to the functional level for
228  further analysis. The Ensembl Variant Effect Predictor (VEP) is an open-source, powerful, and
229  versatile toolset for the annotation and prioritization of genomic variants for a transcript or even
230  non-coding region®. We select VEP (version 106) because of its broad collection of databases,
231  scalability, and free open license. In order to display the important variant information to show
232 first on the web page, PGSbuilder sorts the VEP results by several criteria, including transcript
233 consensus, mutation consequence, mutation severity, and feature biotype. The complete VEP result
234 s provided in the downloaded file. In addition, allele frequencies from Taiwan Biobank® and
235 1000 Genome Project are provided in the VEP annotation.

236

237 Moreover, we integrate our literature mining engines, variant2literature®® and pubmedkB?, by
238  retrieving entity mentions and odds ratio statistics to create a report of textual evidence for each
239  variant-phenotype pair. The literature report contains an overall summary and single paper
240  snippets. For the overall summary, we first collect sentences and clinical case sentences where
241  the target variant and phenotype are both mentioned. We then present the most important
242  sentences and clinical cases identified by page rank®. For single paper snippets, we present the
243  paragraph describing odds ratio statistics of the target variant and phenotype.

244
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245  Example Data

246  Taiwan Biobank: Taiwan Biobank (TWB) is a prospective cohort study with genomic data and a
247  variety of phenotypes collected from Taiwanese population®’. The TWB cohort contains 27,500
248 individuals genotyped for 653,288 SNPs on the TWB v1.0 array as well as 68,978 individuals
249  genotyped for 748,344 SNPs on the TWB v2.0 array.

250

251  NIA ADC Cohort: The NIA ADC Cohort consists of individuals evaluated clinically from
252  National Institute on Aging (NIA)-funded Alzheimer Disease Centers (ADC)®. Inclusion criteria
253  of late-onset Alzheimer’s disease are autopsied subjects with age >60 or cases diagnosed with
254 DSM-IV or Clinical Dementia Rating >1%°. All the seven ADC datasets downloaded from
255  NIAGADS (https://www.niagads.org/datasets) were merged directly as a joint analysis. In total,

256  there are 10,256 samples, including 5,334 cases, 3,973 controls, and 949 unknowns, genotyped
257  for 914,402 SNPs.

258
259
260 Results

261  PGSbuilder analysis workflow

262  PGSbuilder is a web-based server to provide end-to-end analysis for genetic cohort data
263 including GWAS, PRS, and variant annotation. The GWAS analysis aims to figure out the
264  significant SNPs associated with a specific phenotype while the PRS analysis aims to build a
265 model for the estimation of the individual risk. After the analysis, SNP-level annotation and
266 literature exploration using pubmedKB?® are performed to provide useful insights into causal
267  variants.

268

269  The GWAS pipeline (Figure 1), which is applied to the whole input dataset, consists of quality
270  control (QC) and association tests. As for the PRS pipeline (Figure 1), the input dataset is firstly
271  separated into training and test sets. The training set is undergone QC steps and split into base
272  and target subsets. The base subset is used to obtain the summary statistics of GWAS, while the
273  target subset is used to build the PRS models. On the other hand, the option of an external
274  summary statistics file is available in PGSbuilder. When the external summary statistics file is
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275  provided, it replaces the base subset to provide GWAS results and the entire training set serves
276  as the target subset alternatively. To build a PRS model, most PRS methods combine the
277  summary statistics providing the initial SNP effect sizes with the linkage disequilibrium (LD)
278  estimation derived from the target subset. Of note, GenEpi is unavailable for building a PRS
279  model from the external summary statistics. Finally, to validate the model performance, the
280  estimated risks of individuals in the test set are independently calculated by the adjusted effect
281  size.

282

283  System implementation

284  We used Kubernetes and docker technology to group our applications including web interfaces,
285  data processing, GWAS and PRS pipelines, and variant annotation into a service platform. For
286 the web interface, we adopted React architecture and Node.js for the frontend and backend
287  respectively. For the analysis, after users upload genotype data, PGSbuilder will create pods for
288 GWAS and PRS pipelines dynamically and instantly. Significant variants derived from GWAS
289 and PRS pipelines will be annotated through the VEP and pubmedKB to determine the effect of
290 variants in the public database and academic literature.

291

292  For the security of private genomic data, users have to sign up via email activation. After login,
293  two studies including a binary trait (classification model) and a quantitative trait (regression
294  model) are demonstrated on the analysis page. To create a new study, users have to upload
295  genotype data in PLINK format and fill in relevant information such as population, genome
296  build, and prediction method (classification or regression). PGSbuilder provides flexibility for
297  users to modify some quality control parameters and select multiple PRS methods (Figure 2A). If
298 the data is successfully uploaded to the PGSbuilder server, the job is added to the analysis queue
299  and will be processed as soon as possible. Users will receive an email notice to check the state of
300 jobs on the running page. Once the job is completed, users can download a comprehensive report
301 for GWAS and PRS results. PGSbuilder also provides an interactive interface to view the result
302  indetalil.

303

304 On the GWAS result page, PCA plot, quantile-quantile plot (Q-Q plot), Manhattan plot, and the

305 variant table are demonstrated (Figure 2B). PCA is used for the correction of population

10
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306 stratification, and the top 10 principal components (PCs) are selected as covariates for GWAS.
307  The paired distributions of the top 3 PCs are shown interactively, and users can arbitrarily switch
308  between three figures through arrow buttons. In addition, each dot represents a sample whose 1D
309  will be displayed via a mouseover event, which can help users discriminate outliers. The Q-Q
310 plot is provided to evaluate the deviation of observed P-values from expected P-values under a
311  uniform distribution. For the Manhattan plot and variant table, we set a suggestive P-value
312  threshold of 1x10™ and a strict P-value threshold of 5x10®. SNPs with a P-value smaller than
313  the threshold are colored in orange and listed in the variant table. The SNPs in the Manhattan
314  plot and the variant table are interactive. Clicking on an orange point on the Manhattan plot
315 navigates the variant table to the corresponding SNP with its information, and vice versa.
316  Besides, users can search for a specific SNP through the search bar. More detailed information of
317  all SNPs including their P-values and annotated information are compressed as a zip file to be
318 downloaded.

319

320 On the PRS result page, we compare the performance of selected PRS methods. The quantile
321  plot shows the risk stratification (Figure 2C). For each method, samples in the test set are divided
322  into 10 quantiles of increasing PRS. Then, in each quantile, the odds ratio is calculated for binary
323  phenotypes while the mean of values is calculated for quantitative phenotypes. A great difference
324  between the first and the last group represents a good risk stratification. Of note, all individuals
325 inthe test set serve as the baseline for odds ratio calculation for binary tracts. In the classification
326  analysis for a binary tract, the receiver operating characteristic (ROC) curve and distribution plot
327  for each method are demonstrated (Figure 2C). The area under the ROC curve illustrates the
328 performance and the distribution plots illustrate the prediction distribution for cases against
329 controls. In the regression analysis for a quantitative tract, Spearman correlations and scatter
330 plots are shown (Figure 2C). The Spearman correlation is performed to evaluate the performance
331 and the scatter plot with a regression line illustrates the relationship between phenotypes and
332  prediction rankings for each method. The tabs of method lists allow users to switch results
333  between different methods. Users can click one of them to view the corresponding performance
334  and variant table.

335

11
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336  Furthermore, analysis beyond genetic factors is also available in PGSbuilder. If the covariate file
337 is provided, covariates will be used to correct the effect size of SNPs during GWAS, and then
338  serve as clinical factors combined with PRSs to build a regression model for risk prediction. The
339  performance with or without clinical factors is also demonstrated in the figures for comparison.
340 The weight of each clinical factor is shown in a table for users to figure out important factors.
341

342 Variant annotation panel

343  In order to help interpret GWAS and PRS results, PGSbuilder provides a comprehensive variant
344  annotation panel for users to explore biological significance. There are often a large number of
345  SNPs associated with a phenotype. PGSbuilder will automatically sort the important SNPs at the
346 top of the panel according to several annotation information including transcript consensus,
347  mutation consequence, mutation severity, and feature biotype. Figure 3 displays an example of the
348 significant SNP information from the GWAS results. Accordingly, three key features are present
349 including variant effect prediction information, external links about the variant, and the related
350 literature. PGSbuilder uses ClinVar* and VEP? for variant interpretation (Fig. 3B). Several
351  external links are provided to easily navigate the further variant information (Fig. 3C). Lastly,
352 PGSbuilder integrates the literature mining results from the pubmedKB?® to assist researchers
353 and clinical professionals in obtaining the related literature.

354

355  System performance

356  For benchmarking, we recorded execution time, average memory, and CPU usage for QC,
357 GWAS, and PRS methods with 680k SNPs given 20k, 50k, and 110k samples (Table 1). The
358  resource for each execution was limited to 20 GB and 10 CPUs. Obviously, more resources were
359 needed as the sample size increased. Table 1 shows the comparison between six PRS methods.
360 PRSice2, PRS-CS, and GenEpi took much more execution time than the others, but PRSice2 and
361  GenEpi used the least CPU and memory respectively. In conclusion, it takes about three days to
362 complete a comprehensive PRS analysis for a dataset with 110k samples and 680k SNP.

363

364
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365 Table 1. The system performance, including execution time, average CPU, and memory of PGSbuilder.
366  We performed QC, GWAS, and six PRS methods (classification for a binary trait) on a dataset with the

367  same number of SNPs but different sample sizes.

Sample STATS QC GWAS C+T Lassosum LDpred2 PRSice2 PRS-CS GenEpi Total

Time
20k . 8.0 8.0 155 18.8 27.3 79.2 171.8 450.9 779.5
(min)
20k Avg. CPU 2.9 6.9 5.6 4.7 6.3 3.3 7.5 7.7
Memory
20k 5.1 2.0 10.9 10.5 10.9 10.7 8.4 3.8
(GB)
Time
50k . 435  20.0 334 41.6 73.9 180.8 268.6 715.0 1376.8
(min)
50k Avg. CPU 4.7 6.8 7.9 7.6 7.6 5.6 8.0 7.4
Memory
50k 16.0 1.7 16.2 16.1 15.8 14.8 12.9 3.8
(GB)
Time
110k (min) 1395 77.0 200.3 220.3 251.3 510.6 967.3 2086.9 4453.1
min
110k Avg. CPU 4.8 8.6 7.4 7.3 7.6 55 8.0 7.2
Memory
110k (©B) 194 138 17.0 17.0 16.7 13.9 12.0 10.6

368

369 Case Study

370  To demonstrate the capability of PGSbuilder, we performed two case studies using the cohorts
371  with a large number of individuals and corresponding phenotypes. Firstly, in the Taiwan
372 Biobank (TWB)*, a Taiwanese cohort composed of healthy adults, we previously defined nine
373  quantitative traits and five binary traits related to some common chronic diseases, such as type 2
374 diabetes or  dyslipidemia, according to their  phenotypic  measures  (See
375  https://github.com/chienyuchen/TWB-PRS for more information). The presented GWAS and
376  PRS models across fourteen traits in the TWB were built by using PGSbuilder. Among them,

377  low-density lipoprotein (LDL), a quantitative trait, was selected here to demonstrate the usage of
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378 adding covariates and the leverage of external summary statistics to run PGShbuilder. Secondly,
379  for the cohort with a specific disease, we performed GWAS and PRS analysis on the National
380 Institute on Aging (NIA)-funded Alzheimer Disease Centers (ADC) Cohort*® to demonstrate the
381  result of a binary trait.

382

383  Low-dengsity lipoprotein: Low-density lipoprotein (LDL), which is a kind of lipoprotein to
384  transport fat molecules around the body, acts as the primary driver of atherogenesis resulting in
385 cardiovascular diseases*’. Several genes, such as LDLR, PCSK9, and APOB, affecting the
386  quantity of LDL in circulation have been reported®. Recognizing people with a genetic tendency
387  for high LDL could help them by providing early intervention to avoid the progression of severe
388 cardiovascular diseases. Therefore, in this study, we applied GWAS and PRS analysis using
389  PGShbuilder on the TWB data. The covariates, including age, sex, and body mass index (BMI),
390 were added to correct GWAS for genetic factors and then serve as clinical factors to build
391  regression models for risk prediction.

392

393  With the default QC settings of PGShuilder, 55,412 samples and 276,068 SNPs were passed the
394 quality control (Table S1-2). To control the population stratification, PGSbuilder always
395 performs PCA analysis and applies the top ten principal components (PCs) as covariates during
396 GWAS. Figure 4A demonstrates the distribution of PC1 and PC2 to confirm SNPs without
397 unusual differentiation between quantiles in the TWB data. The interactive Manhattan plot is
398  shown in Figure 4B and the significant SNPs with a P-value < 10” are highlighted in orange for
399 clicking to navigate variant information. Notably, in comparison with the previous study using
400 the same TWB data*, highly similar results were observed in PGSbuilder as shown that more
401 than 80% (89/111) of significant SNPs in the TWB arrays were identically found to associate
402  with the LDL trait. That is, the pipeline in PGSbuilder is indeed reproducible.

403

404  In addition, PGSbuilder allows users to provide external summary statistics to build PRS models.
405  Herein, the external summary statistics from the BioBank Japan® to identify significant variants
406  and stratify people by the risk of high LDL were applied to estimate PRS in the TWB data.
407  Figure 4C shows the performance on the test set of each PRS method with and without clinical

408 factors. Overall, PRS combined with clinical factors performs better than PRS-only and clinical
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409 factors-only models. These results indicate that the genetic factor combined with clinical factors
410 provide a better prediction effect. Figure 4D depicts the risk stratification of models using
411  clinical factors. “PRS + clinical factors” models stratified the test set better than the “clinical
412  factors-only” model. In the “PRS + clinical factors” models, the difference in average LDL
413  between the first and last groups is up to forty. Furthermore, the weight of each feature in the
414  “PRS-clinical factors” model is listed in Table 2, where PRS has the largest contribution in all
415  the models.

416

417  Table2. The weight of PRS and clinical factors for “PRS + clinical factors” models of LDL.

C+T PRSice2 Lassosum LDpred2 PRSCS
PRS 7.96 7.93 8.70 5.29 5.87
Sex 2.57 2.57 2.64 2.55 2.53
Age 4.29 4.29 4.26 4.31 4.29
BMI 441 441 4.45 4.33 4.34

418

419 Alzheimer’s disease: Alzheimer’s disease (AD), the major cause of dementia, is a complex
420  disorder associated with genetic factors and environmental factors®®. Several genetic loci, such as
421  APOE, have been identified at the level of association study*’**®. Combining the effects of these
422  genetic loci to build a PRS model could provide individuals with the disease risk for further
423  preventive strategies®. In this study, to build PRS models based on different methods and
424  compare the performance of them, we analyzed the National Institute on Aging (NIA)-funded
425  Alzheimer Disease Centers (ADC) cohort using PGSbuilder.

426

427  Figure 5 shows the performance of PRS analysis from PGSbuilder. There are two obvious
428  groups with different performances. C+T, PRSice2, Lassosum, and GenEpi have better auROC
429 than LDpred2 and PRS-CS (Figure 5A). Figure 5B depicts the prediction distribution of cases
430 and controls; the more distance between the distributions the better performance of the model.
431  For further comparison of different methods, an UpSet plot depicts the intersection of top-100
432  valuable SNPs from each method (Figure 5C). Notably, LDpred2 and PRS-CS have some
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433  distinct SNPs than others, which might cause noise for the PRS prediction and decrease the
434  model performance.

435

436  To investigate the information of SNPs, PGSbuilder annotates SNPs using VEP?® and
437  pubmedKB?. For example, Figure 5D shows the annotation of rs157580, which is an intron
438  variant of gene TOMMA40 with average allele frequency across different populations. A previous
439  study (PMID: 21867541) also reported that rs157580 was significantly associated with AD*.
440  The literature mining of PubMed abstracts by pubmedKB facilitates users to interpret the
441  variants more readily.

442

443

444 Discussion

445  PGSbuilder is a cloud-based platform that offers comprehensive genotyping analyses, including
446 GWAS and PRS, all in one place. Our goal for GWAS is to help identify significant SNPs
447  associated with the target phenotype, while for PRS, we aim to assist evaluation of the prediction
448  performance of polygenic models. Customized settings are available for users to adjust the
449  analytic process, such as quality control, population stratification, and the selection of PRS
450 methods. With PGSbuilder’s interactive interfaces, users can easily interpret their results. For
451  instance, users can select specific SNPs on the Manhattan plot and view the corresponding
452  annotations in the table. Additionally, PGSbuilder integrates pubmedKB for variant
453  interpretation by providing literature support. With these features, PGSbuilder is a
454  comprehensive and user-friendly platform for GWAS and PRS.

455

456 In addition to the analytic pipeline, PGSbuilder offers various visualization plots to compare the
457  performance of different PRS methods. To evaluate risk stratification, the quantile plot is a key
458 interpretation tool. The UpSet plot enables users to observe the intersection of important SNPs
459  selected from each method. Additionally, PGSbuilder incorporates our original GenEpi
460  software®, which provides a unique method to uncover the genetic epistasis associated with
461  phenotypes, as demonstrated in other recent studies®**2. Finally, as clinical factors are provided,
462  PGSbuilder will rank the weights of them and PRS to highlight the most predictive feature,

463  which helps users investigate the risk factor precisely.
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464

465  While PGSbuilder provides a range of useful features, there are some limitations to its
466  functionality. First, it is important to consider the limitations of hardware resources when dealing
467  with large datasets. For example, some imputed files containing 10 million SNPs and 50K
468 samples may not be immediately accessible due to these restrictions. However, computationally
469  efficient methods such as C+T, Lassosum, and PRSice2 can eb effectively applied to such
470 datasets, based on our internal experiments. It is worth noting that building a predictive model
471  using some PRS methods may require a significant amount of time. On the other hand, GenEpi,
472  which discovers the gene-based epistasis, is not practical for imputed data due to its
473  computational complexity. Secondly, some known PRS methods, such as those based on a
474  mixture model for SNP effective size (e.g. SBayesR', DPR>, DBSLMM®>*), are currently not
475 included in PGSbuilder. Lastly, PRS models can only be downloaded from PGShuilder output
476  directly. Going forward, we are planning to implement a prediction module that allows users to
477  upload other datasets and then automatically obtain predictions of available PRS models .

478

479  The field of PRS development is growing rapidly, with mounting evidence using the wealth of
480 data collected in biobanks®™ ™. As the proof of concept is solidly demonstrated, an effective and
481  comprehensive platform is necessary to perform GWAS and PRS analysis for diseases that are
482  not covered by biobanks. PGSbuilder provides researchers with the ability to identify significant
483  loci with annotations and investigate the polygenicity of a target phenotype across a specific
484  population effectively. By leveraging genotypes, a PRS model has the clinical potential to offer
485  risk evaluations to individuals. This, in turn, can facilitate early surveillance for severe diseases.
486

487

488 Conclusion

489  PGSbuilder is an end-to-end platform that seamlessly integrates QC of genotype data, GWAS,
490 PRS, SNP annotation, and visualizations. This platform is versatile, allowing the incorporation of
491 external GWAS summary statistics to run PRS using various methods, thereby enabling the
492  estimation of genetic risk in smaller cohort samples. In addition, PGSbuilder's user-friendly

493 interface is designed to be accessible to users without programming experiences. In the future,
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494  we plan to further augment and broaden PGSbuilder by introducing a prediction module that
495  allows users to directly run their PRS models for specific disease phenotypes.

496
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671 Figure 1. Analysis pipeines of PGSbuilder. PGSbuilder performs GWAS and PRS analysis
672  respectively on the input dataset. For the GWAS pipeline, PGShbuilder applies QC followed by
673  GWAS on the whole input dataset. For the PRS pipeline, PGSbuilder splits the input dataset into
674  training and test sets with the default ratio of 9:1 and applies QC on the training set. The training
675  set is later split into base and target subsets with a ratio of 3:1, and the GWAS result is obtained
676  from the base set. Combining the target set with the summary statistics derived from the base set,
677  PGSbuilder builds PRS models based on different PRS methods. Alternatively, users could
678  provide external summary statistics and the entire training set will be used to build the PRS
679  model. Finally, the independent test set is used to evaluate the performance of the PRS model.
680
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681
682  Figure 2. PGSbuilder interface and visualizations. (A) First of all, users can create a new

683  study with customization, including general, QC, and PRS settings. (B) After analysis, GWAS
684  results are composed of verification, including the PCA and Q-Q plots, and significant SNPs,
685 including the Manhattan plot and variant table. (C) On the other hand, PRS results show a
686  quantile plot for risk stratification and performance comparison for quantitative or binary traits.
687
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(A) SNP Information

ID Chromosome Position Reference Alternative
rs440446 19 44905910 C G

(B) VEP Annotation (C) External Websites
Gene APOE dbSNP @
Transcript ENST00000434152

Biotype protein coding gnomAD 2
Ensembl c

onsequence
GWAS Catalog (/)

CLNSIG
ClinVar

CLNREVSTAT no assertion NCBI Gene @
Al Taiwan Biobank 39% "l l

ele Frequency
1000 Genome  64.4% |||J)] A | | CeneCards @
(D) pubmedKB

Summary
PubmedKB Summary
There is only one paper mentions rs440446 and . The paper title is Phenotypic severity in a family with MEND syndrome is directly associated with the

accumulation of potentially functional variants of cholesterol homeostasis genes..

It indicates that "The SNPs rs440446 and rs429358 were associated with leprosy when we compared the patients with leprosy with the healthy con- trols, but
the significance did not survive Bonferroni correc- tion (Table 3).".

Literatures
1.A pleiotropic effect of the APOE gene: association of APOE polymorphisms with multibacillary leprosy in Han Chinese from Southwest China.

PMID: 28977675 (£

Results excerpt: The SNPs rs440446 and rs429358 were associated with leprosy when we compared the patients with leprosy with the healthy con- trols, but
the significance did not survive Bonferroni correc- tion (Table 3). As the leprosy-associated SNPs (rs405509 and rs439401) identified in the Yuxi sample were
not covered by target sequencing, we checked the LD pattern of the five SNPs (rs405509, rs439401, rs440446, rs429358 and rs7412) in the CHB population from
the 1000 Genomes dataset. 43 We found that rs440446 was linked with rs439401 (r 2 = 0 86). The SNP rs440446 in the Wenshan sample had an OR in the same
direc- tion ( OR 1193, 95 % confidence interval 1045 - 1363 , P = 0 010 ) as that of rs439401 in the Yuxi sample , providing further evidence for the association
of APOE SNPs with le; The leprosy-risk single-nucleotide polymorphisms affected APOE expression in human tissue Next, we tested the eQTL effect of the
five SNPs (rs405509, rs769450, rs429358, rs7412 and rs439401) genotyped in the of Southwest China a (c) 2017 British Association of Dermatologists British
Journal of Dermatology (2018) 178, pp931 - 939 APOE gene and leprosy susceptibility, D. Wang et al. 935 Yuxi sample and the three common SNPs (rs440446,
rs429358 and rs7412) identified in the Wenshan sample in human blood and skin tissue using the dataset from the GTEx project. 35 We found that the two
leprosy-risk SNPs in the Yuxi sample were significant cis eQTL (rs405509, P =380 910 6, Fig. 1a; rs439407, P = 3 40 910 12, Fig. 1b) in skin tissue.

688
689  Figure 3. Example annotation result of SNP “rs440446" on PGSbuilder. (A) There is the

690  basic information and statistics (e.g. GWAS P-value) of the variant. (B) We apply different

691  colors on consequence (the red one) and ClinVar significance (the green one) according to tables
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692  provided by Ensembl and ClinVar, respectively,for a better presentation of SNP importance
693  level. The following block is the transcript ID, ClinVar significance, and allele frequency from
694 VEP. (C) We also provided links to external websites with more variant or gene information,
695  such as dbSNP>°, gnomAD®, GWAS Catalog?, and GeneCards®. (D) The block at the bottom is
696 the results from pubmedKB. The summary presents the sentence where the SNP and the
697  phenotype co-occur, and we show the paper snippet of odds ratio statistics.

698
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Figure4. Resultsof LDL GWAS and PRS analyses. (A) PCA plot of the first and second PCs.
To view any deviation of PCs among the samples, values of the quantitative phenotype are
separated into four quantiles. (B) Manhattan plot of —log10(P-value). GWAS is performed on
autosomal SNPs, and SNPs with P-value <10-5 are colored in orange. (Source data in Table S3)
(C) Bar plot of Spearman’s correlation of each PRS model. Models derived from different
methods with or without covariates (Cov) are demonstrated simultaneously. (Source data in
Table S4) (D) Quantile plot for risk stratification. The “covariate-only (Cov)” model and “PRS
+ covariate” models are plotted to compare the usage of genetic factors. (Source data in Table
S5).
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PubmedKB Summary

No summary available.

1 .Evaluation of the global association between cholesterol-associated polymorphisms and Alzheimer's disease suggests a role for rs3846662 and HMGCR
splicing in disease risk.

PMID: 21867541 [/}

Results excerpt: Phase 1 association testing between these eighteen cholesterol-associated SNPs and AD was performed by using 843 AD and 1,264 non-AD
samples. PLINK was used to test for SNP-AD associations per additive models for the eighteen cholesterol-associated SNPs. Of the eighteen SNPs, rs157580 is
in linkage with APOE and served as a positive control for AD association. In our Phase | study population , rs157580 and was significantly associated with AD in
an additive model ( p=3.0 x10 -22, OR = 0.51) Henceforth only seventeen cholesterol-associated SNPs were considered for the purpose of multiple testing.
Global analysis of all seventeen cholesterol-associated SNPs revealed that, as a group, these SNPs are significantly associated with AD (p = 0.017, Table 1).
Furthermore, two of these SNPs exhibited nominally significant associations with AD (p <= 0.05, Table 1).

Figure 5. Results of AD acrossdifferent PRS methods. (A) ROC curve of each PRS model on
the test set. (Source data in Table S6) (B) Prediction distributions of the Lassosum PRS model
for cases (yellow) and controls (blue). The dashed line represents the mean of each group. (C)
UpSet plot® for the intersection of important SNPs derived from different PRS methods. The
intersection, or the combination, of methods are presented as the matrix layout while the variant

counts of each intersection are shown as the histogram. Different colors represent the number of
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717  PRS methods. (corresponding output data in Table S7) (D) Annotations for SNP “rs157580”. On
718  the top is the basic information and statistics of the variant. The following block is the transcript
719  ID, ClinVar significance and allele frequency from VEP?, In addition, we also provided links to
720  external websites with more variant information, such as dbSNP* and gnomAD®. The block in
721 the bottom is the results from pubmedKB?® which highlights the odds ratio of AD in the presence
722 of this variant.
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