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Abstract 31 

 32 

Understanding the genetic basis of human complex diseases is increasingly important in the 33 

development of precision medicine. Over the last decade, genome-wide association studies 34 

(GWAS) have become a key technique for detecting associations between common diseases and 35 

single nucleotide polymorphisms (SNPs) present in a cohort of individuals. Alternatively, the 36 

polygenic risk score (PRS), which often applies results from GWAS summary statistics, is 37 

calculated for the estimation of genetic propensity to a trait at the individual level. Despite many 38 

GWAS and PRS tools being available to analyze a large volume of genotype data, most 39 

clinicians and medical researchers are often not familiar with the bioinformatics tools and lack 40 

access to a high-performance computing cluster resource. To fill this gap, we provide a publicly 41 

available web server, PGSbuilder, for the GWAS and PRS analysis of human genomes with 42 

variant annotations. The user-friendly and intuitive PGSbuilder web server is developed to 43 

facilitate the discovery of the genetic variants associated with complex traits and diseases for 44 

medical professionals with limited computational skills. For GWAS analysis, PGSbuilder 45 

provides the most renowned analysis tool PLINK 2.0 package. For PRS, PGSbuilder provides six 46 

different PRS methods including Clumping and Thresholding, Lassosum, LDPred2, GenEpi, 47 

PRS-CS, and PRSice2. Furthermore, PGSbuilder provides an intuitive user interface to examine 48 

the annotated functional effects of variants from known biomedical databases and relevant 49 

literature using advanced natural language processing approaches. In conclusion, PGSbuilder 50 

offers a reliable platform to aid researchers in advancing the public perception of genomic risk 51 

and precision medicine for human disease genetics. PGSbuilder is freely accessible at 52 

http://pgsb.tw23.org. 53 

 54 
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 61 

Introduction 62 

An ultimate goal of human genetics is to understand the genetic basis of human diseases, 63 

diagnosis, and management. Results from a large amount of genome-wide association studies 64 

(GWAS) have vastly demonstrated that many single nucleotide polymorphisms (SNP) genetic 65 

variants are associated with various complex traits1.  In early 2023, more than 6,300 studies have 66 

conducted to map over 496,000 associations between human SNPs and diseases/traits in the 67 

GWAS catalog2. In the past two decades, the successes of GWAS not only drive the discovery of 68 

deleterious mutations linked to certain disease phenotypes but also imply a general pattern of 69 

polygenicity of common diseases3,4. Many common diseases that conform to polygenic 70 

inheritance are underpinned by multiple genetic variants with small or moderate effects5. After 71 

the realization of a large proportion of the variance in genetic liability to common diseases, 72 

utilization of causative risk alleles based on the GWAS discoveries for disease risk prediction 73 

has become the potential to stratify patients for precision prevention6,7. 74 

 75 

Polygenic risk score (also known as polygenic scores; PRS) is an important methodology to 76 

leverage the genetic contribution of an individual’s genotype to measure the genetic liability to 77 

complex traits or diseases8,9. Clumping and thresholding (C+T)10 is the primary PRS method 78 

based on the summary statistics from GWAS by pruning SNPs through a process of Linkage 79 

Disequilibrium (LD) clumping and selecting a P-value threshold. Still, it has limitations in the 80 

predictive performance without considering other genetic factors. Currently, several PRS 81 

methods based on the summary statistics apply a different selection of the prior distribution on 82 

the effect sizes of the SNPs under the Bayesian framework. For example, LDpred11 and 83 

LDpred212 improve the prediction performance by enhancing LD modeling based on the 84 

normality assumption. PRS-CS13 introduces a different concept to provide a continuous 85 

shrinkage (CS) prior to accommodate diverse underlying genetic architectures. Alternatively, 86 

SBayesR14 and SDPR15 assume a different mixture of normal distributions on the individual-87 

level data as input for adaptive modeling of SNP effect size. Lassosum16 implements a penalized 88 

regression approach with a Lasso-type penalty. Empirical evidence from benchmark experiments 89 

shows that not a single method clearly outperforms all other methods in the prediction accuracy 90 

for all the simulated data and disease traits12–14,17. Nevertheless, each different PRS method can 91 
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potentially improve the development of PRS construction with specific optimization procedures. 92 

Recent studies have demonstrated that the comparison of many PRS methods could facilitate the 93 

future implementation of PRS in clinical settings18,19. Although a few practical guidelines have 94 

introduced how best to perform PRS analyses20–22, a steep learning curve of implementing those 95 

PRS packages and the computing resources required by some tools are impractical for doctors 96 

and clinical professionals. 97 

 98 

As the popularity of PRS increases, over 400 publications report more than 3,200 polygenic 99 

scores in the Polygenic Score Catalog (https://www.PGSCatalog.org)23. However, those PRS 100 

studies were predominantly conducted on individuals of European descent24. Due to the poor 101 

transferability of PRS across populations25,26, one critical step toward effectiveness in PRS 102 

accuracy is to conduct PRS development for the diversity of participants from different 103 

ancestries. Along with the cost of a single genetic test per individual plummeting to less than 104 

US$50, it becomes feasible to acquire a sufficient cohort size for PRS from the population with 105 

underrepresented ancestries by the medical institutes in different countries. In addition, the 106 

current consensus about the refinement of PRS should include other informative clinical factors 107 

based on their healthy records. To facilitate genetic analysis and PRS development, a 108 

sophisticated analysis platform could enable the construction of PRS in clinical research 109 

efficiently. For example, impute.me is a recently developed web tool to provide basic PRS 110 

estimation using a single method of LDpred to predict individual polygenic risks27. To increase 111 

the clinical practice of PRS, a comprehensive comparison of different PRS methods could 112 

leverage the extent of predictive values into a better understanding of the genetic liability for 113 

disease traits.  114 

 115 

In this study, we present PGSbuilder which is an integrated cloud-based platform to analyze 116 

human genotype data. PGSbuilder provides a one-stop service to conduct both GWAS and PRS 117 

analyses and interactively visualize the analysis results. In PGSbuilder, users can run six 118 

different PRS methods as well as the PRS models with clinical factors to compare their 119 

performances concurrently. To the best of our knowledge, no other existing web server offers the 120 

possibility to compare multiple PRS models. Further, the interpretation of PRS is needed to 121 

apply the scores into biological explanations and clinical use. Notably, PGSbuilder also 122 
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integrates the variant annotation automatically for the candidate SNPs from GWAS and PRS 123 

analyses using Ensembl Variant Effect Predictor (VEP)28 and biomedical literature mining from 124 

pubmedKB29. In addition, our web interface allows easy access to link all genetic analysis results 125 

and candidate SNP information with interactive displays. Finally, users can download all the 126 

analysis output files for further exploration. 127 

 128 

 129 

Materials and Methods 130 

Data privacy and security 131 

Because genetic data will be uploaded to our server, a wide array of security measures are in 132 

force to ensure data privacy and security. Our local server has ISO 27001 certification for 133 

implementing an information security management system (ISMS). In addition, our server is 134 

designed based on the express MVC (Model-View-Controller) framework that encapsulates our 135 

features surrounded by powerful security layers. All interactions with the server are protected 136 

and secured with HTTPS. Any input data is deleted from our server once the analysis is 137 

completed. With the encryption by a firm one-time password, all analyzed results can only be 138 

accessed by the data uploader via an encrypted connection, within a 14 days timeframe.  139 

 140 

GWAS  141 

To conduct quality control (QC) procedures and following genome-wide association studies 142 

(GWAS), we utilize PLINK 2.0, a comprehensive genome association analysis tool for 143 

population genetics30. There are three major steps for QC and two for GWAS. QC consists of 144 

variant filtering, individual filtering, and population stratification while GWAS analysis consists 145 

of principal component analysis (PCA) and association test. 146 

 147 

First, unqualified SNPs are filtered out according to the minor allele frequency, Hardy-Weinberg 148 

equilibrium, and missingness. Secondly, individuals with the high missing rate of SNPs, large 149 

deviation of heterozygosity rate, and high kinship coefficient31 are also removed. Finally, to 150 

exclude individuals with different populations, population stratification is conducted against the 151 

population in HapMap 332. Most of the QC criteria and recommended thresholds are referred to 152 

Marees et al33. 153 
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 154 

For the GWAS analysis, the top 10 principal components extracted from PCA are used to correct 155 

the genetic difference between in-group individuals34. Of note, the population stratification 156 

during the QC analysis is also conducted via PCA to remove outliers at the level of population, 157 

such as Asians, Africans, or Europeans. Next, the principal components and other provided 158 

covariates are included to correct the genetic effect during association tests. Only the effect size 159 

of autosomal SNPs is calculated using the “glm” function of PLINK 2.030,35. 160 

 161 

PRS methods 162 

In PGSbuilder, the input dataset is separated into the base, target, and test sets, respectively. 163 

First, QC is applied on both base and target sets, and then GWAS is only performed on the base 164 

set to get the summary statistics. Combining the summary statistics with the target set which is 165 

used for the calculation of linkage disequilibrium (LD) and the selection of hyperparameters, 166 

PGSbuilder performs PRS analysis to build models based on different methods. This pipeline of 167 

PRS analysis is referred to Choi et al21. There are six PRS methods provided in PGSbuilder, 168 

including clumping and thresholding, PRSice2, LDpred2, Lassosum, PRS-CS, and GenEpi. Five 169 

methods, except GenEpi, are selected to produce PRS prediction from the external summary 170 

statistics without individual genetic data. On the other hand, GenEpi method is included due to 171 

its consideration of gene-based epistasis, which is a distinct machine learning-based algorithm to 172 

estimate PRS, for comparison.  173 

 174 

Clumping and Thresholding: Clumping and thresholding (C+T) is the classical algorithm that 175 

adjusts the LD using clumping and selects SNPs with P-value less than a specified threshold to 176 

calculate the PRS for each individual10. In PGSbuilder, SNPs within 250 kb away from the index 177 

SNP and have the R-squared over 0.1 with it are assigned to the clump of the index SNP. Nine 178 

thresholds, including 10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1, and 1, are applied to the clumped 179 

SNPs to build PRS models. Beta scores derived from the summary statistics are set as the effect 180 

size estimates directly. The model with the best performance on the target set is selected as the 181 

final PRS model. 182 

 183 
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PRSice2: PRSice2 is also a clumping and thresholding-based PRS algorithm with a higher 184 

resolution of thresholds17. SNPs with a minor allele frequency lower than 0.01 are filtered out. 185 

Like C+T, beta scores are set as the effect size estimates directly. 186 

 187 

Lassosum: Lassosum uses penalized regression to adjust the effect size of SNPs for a PRS 188 

model16. The summary statistics provide the SNP-wise correlation with the phenotype and the 189 

initial effect size of SNPs. LD blocks are defined from the subpopulation of the 1000 Genome 190 

database, and the LD matrix is calculated from the target set. Additionally, the target set is used 191 

for the selection of hyperparameters to get the best PRS model. 192 

 193 

LDpred2: LDpred2 is a Bayesian PRS predictor by adjusting the effect size of SNPs from the 194 

summary statistics12. The target set provides the correlation between SNPs for LD estimation 195 

within 3 centimorgan. In PGSbuilder, for summary statistics having more than 10 SNPs with P-196 

value<10-8, we implement the “LDpred2-grid” mode to select the best hyperparameters, 197 

including the proportion of causal variants and the heritability. On the other hand, for those with 198 

less significant SNPs, we implement the “LDpred2-inf” mode, an infinitesimal model. 199 

 200 

PRS-CS: PRS-CS is a Bayesian polygenic prediction method that infers the posterior effect size 201 

of SNPs from the summary statistics using continuous shrinkage priors13. In PGSbuilder, we use 202 

the 1000 Genome dataset as the reference panel for LD estimation. The global shrinkage 203 

parameter is fixed at 0.2 and other parameters are left as defaults. 204 

 205 

GenEpi: GenEpi, a machine learning approach, takes both additive effect and SNP-SNP 206 

interactions into consideration to build a PRS model from the raw genomic data36. GenEpi uses 207 

two-stage feature selection to select a single SNP, intragenic interaction, and intergenic 208 

interaction and then applies a regression model to fit the selected features. In PGSbuilder, we 209 

only train the GenEpi model on the base set. 210 

 211 

Covariates 212 

In GWAS analysis, covariates are used to adjust the genetic effect on the target phenotype. 213 

PGSbuilder performs PCA before GWAS, and the top ten principal components (PCs) are served 214 
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as covariates. In addition, users can provide a covariate file, and covariates with the variance 215 

inflation factor (VIF) less than 50 or a missing rate over 20% are removed. Finally, the effect 216 

size of each SNP is corrected with PCs and provided covariates during the association test. 217 

 218 

On the other hand, to provide a comprehensive risk assessment for individuals, features other 219 

than genetic factors should be taken into consideration. After building a PRS model, PGSbuilder 220 

combines the PRS score as a genetic factor and user-provided covariates as clinical factors to 221 

build a regression model trained on the target set. Then, PGSbuilder predicts each individual 222 

using this regression model to stratify the risk of the target phenotype. 223 

 224 

Variant annotation tools 225 

The annotation of significant SNP from GWAS or other genomic analysis is of great importance. 226 

Annotation of variants is vital for the translation of genomic results to the functional level for 227 

further analysis. The Ensembl Variant Effect Predictor (VEP) is an open-source, powerful, and 228 

versatile toolset for the annotation and prioritization of genomic variants for a transcript or even 229 

non-coding region28. We select VEP (version 106) because of its broad collection of databases, 230 

scalability, and free open license. In order to display the important variant information to show 231 

first on the web page, PGSbuilder sorts the VEP results by several criteria, including transcript 232 

consensus, mutation consequence, mutation severity, and feature biotype. The complete VEP result 233 

is provided in the downloaded file. In addition, allele frequencies from Taiwan Biobank37 and 234 

1000 Genome Project are provided in the VEP annotation. 235 

 236 

Moreover, we integrate our literature mining engines, variant2literature38 and pubmedKB29, by 237 

retrieving entity mentions and odds ratio statistics to create a report of textual evidence for each 238 

variant-phenotype pair. The literature report contains an overall summary and single paper 239 

snippets. For the overall summary, we first collect sentences and clinical case sentences where 240 

the target variant and phenotype are both mentioned. We then present the most important 241 

sentences and clinical cases identified by page rank39. For single paper snippets, we present the 242 

paragraph describing odds ratio statistics of the target variant and phenotype.  243 

 244 
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Example Data 245 

Taiwan Biobank: Taiwan Biobank (TWB) is a prospective cohort study with genomic data and a 246 

variety of phenotypes collected from Taiwanese population37. The TWB cohort contains 27,500 247 

individuals genotyped for 653,288 SNPs on the TWB v1.0 array as well as 68,978 individuals 248 

genotyped for 748,344 SNPs on the TWB v2.0 array.  249 

 250 

NIA ADC Cohort: The NIA ADC Cohort consists of individuals evaluated clinically from 251 

National Institute on Aging (NIA)-funded Alzheimer Disease Centers (ADC)40. Inclusion criteria 252 

of late-onset Alzheimer’s disease are autopsied subjects with age >60 or cases diagnosed with 253 

DSM-IV or Clinical Dementia Rating >140. All the seven ADC datasets downloaded from 254 

NIAGADS (https://www.niagads.org/datasets) were merged directly as a joint analysis. In total, 255 

there are 10,256 samples, including 5,334 cases, 3,973 controls, and 949 unknowns, genotyped 256 

for 914,402 SNPs.  257 

 258 

 259 

Results 260 

PGSbuilder analysis workflow 261 

PGSbuilder is a web-based server to provide end-to-end analysis for genetic cohort data 262 

including GWAS, PRS, and variant annotation. The GWAS analysis aims to figure out the 263 

significant SNPs associated with a specific phenotype while the PRS analysis aims to build a 264 

model for the estimation of the individual risk. After the analysis, SNP-level annotation and 265 

literature exploration using pubmedKB29 are performed to provide useful insights into causal 266 

variants. 267 

 268 

The GWAS pipeline (Figure 1), which is applied to the whole input dataset, consists of quality 269 

control (QC) and association tests. As for the PRS pipeline (Figure 1), the input dataset is firstly 270 

separated into training and test sets. The training set is undergone QC steps and split into base 271 

and target subsets. The base subset is used to obtain the summary statistics of GWAS, while the 272 

target subset is used to build the PRS models. On the other hand, the option of an external 273 

summary statistics file is available in PGSbuilder. When the external summary statistics file is 274 
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provided, it replaces the base subset to provide GWAS results and the entire training set serves 275 

as the target subset alternatively. To build a PRS model, most PRS methods combine the 276 

summary statistics providing the initial SNP effect sizes with the linkage disequilibrium (LD) 277 

estimation derived from the target subset. Of note, GenEpi is unavailable for building a PRS 278 

model from the external summary statistics. Finally, to validate the model performance, the 279 

estimated risks of individuals in the test set are independently calculated by the adjusted effect 280 

size. 281 

 282 

System implementation 283 

We used Kubernetes and docker technology to group our applications including web interfaces, 284 

data processing, GWAS and PRS pipelines, and variant annotation into a service platform. For 285 

the web interface, we adopted React architecture and Node.js for the frontend and backend 286 

respectively. For the analysis, after users upload genotype data, PGSbuilder will create pods for 287 

GWAS and PRS pipelines dynamically and instantly. Significant variants derived from GWAS 288 

and PRS pipelines will be annotated through the VEP and pubmedKB to determine the effect of 289 

variants in the public database and academic literature. 290 

 291 

For the security of private genomic data, users have to sign up via email activation. After login, 292 

two studies including a binary trait (classification model) and a quantitative trait (regression 293 

model) are demonstrated on the analysis page. To create a new study, users have to upload 294 

genotype data in PLINK format and fill in relevant information such as population, genome 295 

build, and prediction method (classification or regression). PGSbuilder provides flexibility for 296 

users to modify some quality control parameters and select multiple PRS methods (Figure 2A). If 297 

the data is successfully uploaded to the PGSbuilder server, the job is added to the analysis queue 298 

and will be processed as soon as possible. Users will receive an email notice to check the state of 299 

jobs on the running page. Once the job is completed, users can download a comprehensive report 300 

for GWAS and PRS results. PGSbuilder also provides an interactive interface to view the result 301 

in detail. 302 

 303 

On the GWAS result page, PCA plot, quantile-quantile plot (Q-Q plot), Manhattan plot, and the 304 

variant table are demonstrated (Figure 2B). PCA is used for the correction of population 305 
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stratification, and the top 10 principal components (PCs) are selected as covariates for GWAS. 306 

The paired distributions of the top 3 PCs are shown interactively, and users can arbitrarily switch 307 

between three figures through arrow buttons. In addition, each dot represents a sample whose ID 308 

will be displayed via a mouseover event, which can help users discriminate outliers. The Q-Q 309 

plot is provided to evaluate the deviation of observed P-values from expected P-values under a 310 

uniform distribution. For the Manhattan plot and variant table, we set a suggestive P-value 311 

threshold of 1×10-5 and a strict P-value threshold of 5×10-8. SNPs with a P-value smaller than 312 

the threshold are colored in orange and listed in the variant table. The SNPs in the Manhattan 313 

plot and the variant table are interactive. Clicking on an orange point on the Manhattan plot 314 

navigates the variant table to the corresponding SNP with its information, and vice versa. 315 

Besides, users can search for a specific SNP through the search bar. More detailed information of 316 

all SNPs including their P-values and annotated information are compressed as a zip file to be 317 

downloaded. 318 

 319 

On the PRS result page, we compare the performance of selected PRS methods. The quantile 320 

plot shows the risk stratification (Figure 2C). For each method, samples in the test set are divided 321 

into 10 quantiles of increasing PRS. Then, in each quantile, the odds ratio is calculated for binary 322 

phenotypes while the mean of values is calculated for quantitative phenotypes. A great difference 323 

between the first and the last group represents a good risk stratification. Of note, all individuals 324 

in the test set serve as the baseline for odds ratio calculation for binary tracts. In the classification 325 

analysis for a binary tract, the receiver operating characteristic (ROC) curve and distribution plot 326 

for each method are demonstrated (Figure 2C). The area under the ROC curve illustrates the 327 

performance and the distribution plots illustrate the prediction distribution for cases against 328 

controls. In the regression analysis for a quantitative tract, Spearman correlations and scatter 329 

plots are shown (Figure 2C). The Spearman correlation is performed to evaluate the performance 330 

and the scatter plot with a regression line illustrates the relationship between phenotypes and 331 

prediction rankings for each method. The tabs of method lists allow users to switch results 332 

between different methods. Users can click one of them to view the corresponding performance 333 

and variant table.  334 

 335 
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Furthermore, analysis beyond genetic factors is also available in PGSbuilder. If the covariate file 336 

is provided, covariates will be used to correct the effect size of SNPs during GWAS, and then 337 

serve as clinical factors combined with PRSs to build a regression model for risk prediction. The 338 

performance with or without clinical factors is also demonstrated in the figures for comparison. 339 

The weight of each clinical factor is shown in a table for users to figure out important factors. 340 

 341 

Variant annotation panel 342 

In order to help interpret GWAS and PRS results, PGSbuilder provides a comprehensive variant 343 

annotation panel for users to explore biological significance. There are often a large number of 344 

SNPs associated with a phenotype. PGSbuilder will automatically sort the important SNPs at the 345 

top of the panel according to several annotation information including transcript consensus, 346 

mutation consequence, mutation severity, and feature biotype. Figure 3 displays an example of the 347 

significant SNP information from the GWAS results. Accordingly, three key features are present 348 

including variant effect prediction information, external links about the variant, and the related 349 

literature. PGSbuilder uses ClinVar41 and VEP28 for variant interpretation (Fig. 3B).  Several 350 

external links are provided to easily navigate the further variant information (Fig. 3C). Lastly, 351 

PGSbuilder integrates the literature mining results from the pubmedKB29 to assist researchers 352 

and clinical professionals in obtaining the related literature.  353 

 354 

System performance   355 

For benchmarking, we recorded execution time, average memory, and CPU usage for QC, 356 

GWAS, and PRS methods with 680k SNPs given 20k, 50k, and 110k samples (Table 1). The 357 

resource for each execution was limited to 20 GB and 10 CPUs. Obviously, more resources were 358 

needed as the sample size increased. Table 1 shows the comparison between six PRS methods. 359 

PRSice2, PRS-CS, and GenEpi took much more execution time than the others, but PRSice2 and 360 

GenEpi used the least CPU and memory respectively. In conclusion, it takes about three days to 361 

complete a comprehensive PRS analysis for a dataset with 110k samples and 680k SNP. 362 

 363 

  364 
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Table 1. The system performance, including execution time, average CPU, and memory of PGSbuilder. 365 

We performed QC, GWAS, and six PRS methods (classification for a binary trait) on a dataset with the 366 

same number of SNPs but different sample sizes. 367 

Sample STATS QC GWAS C+T Lassosum LDpred2 PRSice2 PRS-CS GenEpi Total 

20k 
Time 

(min) 
8.0 8.0 15.5 18.8 27.3 79.2 171.8 450.9 779.5  

20k Avg. CPU 2.9 6.9 5.6 4.7 6.3 3.3 7.5 7.7  

20k 
Memory 

(GB) 
5.1 2.0 10.9 10.5 10.9 10.7 8.4 3.8   

50k 
Time 

(min) 
43.5 20.0 33.4 41.6 73.9 180.8 268.6 715.0 1376.8  

50k Avg. CPU 4.7 6.8 7.9 7.6 7.6 5.6 8.0 7.4  

50k 
Memory 

(GB) 
16.0 1.7 16.2 16.1 15.8 14.8 12.9 3.8   

110k 
Time 

(min) 
139.5 77.0 200.3 220.3 251.3 510.6 967.3 2086.9 4453.1  

110k Avg. CPU 4.8 8.6 7.4 7.3 7.6 5.5 8.0 7.2  

110k 
Memory 

(GB) 
19.4 13.8 17.0 17.0 16.7 13.9 12.0 10.6   

 368 

Case Study 369 

To demonstrate the capability of PGSbuilder, we performed two case studies using the cohorts 370 

with a large number of individuals and corresponding phenotypes. Firstly, in the Taiwan 371 

Biobank (TWB)37, a Taiwanese cohort composed of healthy adults, we previously defined nine 372 

quantitative traits and five binary traits related to some common chronic diseases, such as type 2 373 

diabetes or dyslipidemia, according to their phenotypic measures (see 374 

https://github.com/chienyuchen/TWB-PRS for more information). The presented GWAS and 375 

PRS models across fourteen traits in the TWB were built by using PGSbuilder. Among them, 376 

low-density lipoprotein (LDL), a quantitative trait, was selected here to demonstrate the usage of 377 
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adding covariates and the leverage of external summary statistics to run PGSbuilder. Secondly, 378 

for the cohort with a specific disease, we performed GWAS and PRS analysis on the National 379 

Institute on Aging (NIA)-funded Alzheimer Disease Centers (ADC) Cohort40 to demonstrate the 380 

result of a binary trait. 381 

 382 

Low-density lipoprotein: Low-density lipoprotein (LDL), which is a kind of lipoprotein to 383 

transport fat molecules around the body, acts as the primary driver of atherogenesis resulting in 384 

cardiovascular diseases42. Several genes, such as LDLR, PCSK9, and APOB, affecting the 385 

quantity of LDL in circulation have been reported43. Recognizing people with a genetic tendency 386 

for high LDL could help them by providing early intervention to avoid the progression of severe 387 

cardiovascular diseases. Therefore, in this study, we applied GWAS and PRS analysis using 388 

PGSbuilder on the TWB data. The covariates, including age, sex, and body mass index (BMI), 389 

were added to correct GWAS for genetic factors and then serve as clinical factors to build 390 

regression models for risk prediction.  391 

 392 

With the default QC settings of PGSbuilder, 55,412 samples and 276,068 SNPs were passed the 393 

quality control (Table S1-2). To control the population stratification, PGSbuilder always 394 

performs PCA analysis and applies the top ten principal components (PCs) as covariates during 395 

GWAS. Figure 4A demonstrates the distribution of PC1 and PC2 to confirm SNPs without 396 

unusual differentiation between quantiles in the TWB data. The interactive Manhattan plot is 397 

shown in Figure 4B and the significant SNPs with a P-value < 10-5 are highlighted in orange for 398 

clicking to navigate variant information. Notably, in comparison with the previous study using 399 

the same TWB data44, highly similar results were observed in PGSbuilder as shown that more 400 

than 80% (89/111) of significant SNPs in the TWB arrays were identically found to associate 401 

with the LDL trait. That is, the pipeline in PGSbuilder is indeed reproducible. 402 

 403 

In addition, PGSbuilder allows users to provide external summary statistics to build PRS models. 404 

Herein, the external summary statistics from the BioBank Japan45 to identify significant variants 405 

and stratify people by the risk of high LDL were applied to estimate PRS in the TWB data. 406 

Figure 4C shows the performance on the test set of each PRS method with and without clinical 407 

factors. Overall, PRS combined with clinical factors performs better than PRS-only and clinical 408 
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factors-only models. These results indicate that the genetic factor combined with clinical factors 409 

provide a better prediction effect. Figure 4D depicts the risk stratification of models using 410 

clinical factors. “PRS + clinical factors” models stratified the test set better than the “clinical 411 

factors-only” model. In the “PRS + clinical factors” models, the difference in average LDL 412 

between the first and last groups is up to forty. Furthermore, the weight of each feature in the 413 

“PRS-clinical factors” model is listed in Table 2, where PRS has the largest contribution in all 414 

the models. 415 

 416 

Table 2. The weight of PRS and clinical factors for “PRS + clinical factors” models of LDL. 417 

 C+T PRSice2 Lassosum LDpred2 PRS-CS 

PRS 7.96 7.93 8.70 5.29 5.87 

Sex 2.57 2.57 2.64 2.55 2.53 

Age 4.29 4.29 4.26 4.31 4.29 

BMI 4.41 4.41 4.45 4.33 4.34 

 418 

Alzheimer’s disease: Alzheimer’s disease (AD), the major cause of dementia, is a complex 419 

disorder associated with genetic factors and environmental factors46. Several genetic loci, such as 420 

APOE, have been identified at the level of association study47,48. Combining the effects of these 421 

genetic loci to build a PRS model could provide individuals with the disease risk for further 422 

preventive strategies49. In this study, to build PRS models based on different methods and 423 

compare the performance of them, we analyzed the National Institute on Aging (NIA)-funded 424 

Alzheimer Disease Centers (ADC) cohort using PGSbuilder. 425 

 426 

Figure 5 shows the performance of PRS analysis from PGSbuilder. There are two obvious 427 

groups with different performances. C+T, PRSice2, Lassosum, and GenEpi have better auROC 428 

than LDpred2 and PRS-CS (Figure 5A). Figure 5B depicts the prediction distribution of cases 429 

and controls; the more distance between the distributions the better performance of the model. 430 

For further comparison of different methods, an UpSet plot depicts the intersection of top-100 431 

valuable SNPs from each method (Figure 5C). Notably, LDpred2 and PRS-CS have some 432 
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distinct SNPs than others, which might cause noise for the PRS prediction and decrease the 433 

model performance. 434 

 435 

To investigate the information of SNPs, PGSbuilder annotates SNPs using VEP28 and 436 

pubmedKB29. For example, Figure 5D shows the annotation of rs157580, which is an intron 437 

variant of gene TOMM40 with average allele frequency across different populations. A previous 438 

study (PMID: 21867541) also reported that rs157580 was significantly associated with AD50. 439 

The literature mining of PubMed abstracts by pubmedKB facilitates users to interpret the 440 

variants more readily. 441 

 442 

 443 

Discussion 444 

PGSbuilder is a cloud-based platform that offers comprehensive genotyping analyses, including 445 

GWAS and PRS, all in one place. Our goal for GWAS is to help identify significant SNPs 446 

associated with the target phenotype, while for PRS, we aim to assist evaluation of the prediction 447 

performance of polygenic models. Customized settings are available for users to adjust the 448 

analytic process, such as quality control, population stratification, and the selection of PRS 449 

methods. With PGSbuilder’s interactive interfaces, users can easily interpret their results. For 450 

instance, users can select specific SNPs on the Manhattan plot and view the corresponding 451 

annotations in the table. Additionally, PGSbuilder integrates pubmedKB for variant 452 

interpretation by providing literature support. With these features, PGSbuilder is a 453 

comprehensive and user-friendly platform for GWAS and PRS. 454 

 455 

In addition to the analytic pipeline, PGSbuilder offers various visualization plots to compare the 456 

performance of different PRS methods. To evaluate risk stratification, the quantile plot is a key 457 

interpretation tool. The UpSet plot enables users to observe the intersection of important SNPs 458 

selected from each method. Additionally, PGSbuilder incorporates our original GenEpi 459 

software36, which provides a unique method to uncover the genetic epistasis associated with 460 

phenotypes, as demonstrated in other recent studies51,52. Finally, as clinical factors are provided, 461 

PGSbuilder will rank the weights of them and PRS to highlight the most predictive feature, 462 

which helps users investigate the risk factor precisely. 463 
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 464 

While PGSbuilder provides a range of useful features, there are some limitations to its 465 

functionality. First, it is important to consider the limitations of hardware resources when dealing 466 

with large datasets. For example, some imputed files containing 10 million SNPs and 50K 467 

samples may not be immediately accessible due to these restrictions. However, computationally 468 

efficient methods such as C+T, Lassosum, and PRSice2 can eb effectively applied to such 469 

datasets, based on our internal experiments.  It is worth noting that building a predictive model 470 

using some PRS methods may require a significant amount of time. On the other hand, GenEpi, 471 

which discovers the gene-based epistasis, is not practical for imputed data due to its 472 

computational complexity. Secondly, some known PRS methods, such as those based on a 473 

mixture model for SNP effective size (e.g. SBayesR14, DPR53, DBSLMM54), are currently not 474 

included in PGSbuilder. Lastly, PRS models can only be downloaded from PGSbuilder output 475 

directly. Going forward, we are planning to implement a prediction module that allows users to 476 

upload other datasets and then automatically obtain predictions of available PRS models . 477 

 478 

The field of PRS development is growing rapidly, with mounting evidence using the wealth of 479 

data collected in biobanks55–58. As the proof of concept is solidly demonstrated, an effective and 480 

comprehensive platform is necessary to perform GWAS and PRS analysis for diseases that are 481 

not covered by biobanks. PGSbuilder provides researchers with the ability to identify significant 482 

loci with annotations and investigate the polygenicity of a target phenotype across a specific 483 

population effectively. By leveraging genotypes, a PRS model has the clinical potential to offer 484 

risk evaluations to individuals. This, in turn, can facilitate early surveillance for severe diseases. 485 

 486 

 487 

Conclusion 488 

PGSbuilder is an end-to-end platform that seamlessly integrates QC of genotype data, GWAS, 489 

PRS, SNP annotation, and visualizations. This platform is versatile, allowing the incorporation of 490 

external GWAS summary statistics to run PRS using various methods, thereby enabling the 491 

estimation of genetic risk in smaller cohort samples. In addition, PGSbuilder's user-friendly 492 

interface is designed to be accessible to users without programming experiences. In the future, 493 
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we plan to further augment and broaden PGSbuilder by introducing a prediction module that 494 

allows users to directly run their PRS models for specific disease phenotypes. 495 

 496 
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Figures and Figure legends 668 

 669 

 670 

Figure 1. Analysis pipelines of PGSbuilder. PGSbuilder performs GWAS and PRS analysis671 

respectively on the input dataset. For the GWAS pipeline, PGSbuilder applies QC followed by672 

GWAS on the whole input dataset. For the PRS pipeline, PGSbuilder splits the input dataset into673 

training and test sets with the default ratio of 9:1 and applies QC on the training set. The training674 

set is later split into base and target subsets with a ratio of 3:1, and the GWAS result is obtained675 

from the base set. Combining the target set with the summary statistics derived from the base set,676 

PGSbuilder builds PRS models based on different PRS methods. Alternatively, users could677 

provide external summary statistics and the entire training set will be used to build the PRS678 

model. Finally, the independent test set is used to evaluate the performance of the PRS model. 679 
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681 

Figure 2. PGSbuilder interface and visualizations. (A) First of all, users can create a new682 

study with customization, including general, QC, and PRS settings. (B) After analysis, GWAS683 

results are composed of verification, including the PCA and Q-Q plots, and significant SNPs,684 

including the Manhattan plot and variant table. (C) On the other hand, PRS results show a685 

quantile plot for risk stratification and performance comparison for quantitative or binary traits. 686 
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 688 

Figure 3. Example annotation result of SNP “rs440446” on PGSbuilder. （A) There is the689 

basic information and statistics (e.g. GWAS P-value) of the variant. (B) We apply different690 

colors on consequence (the red one) and ClinVar significance (the green one) according to tables691 
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provided by Ensembl and ClinVar, respectively,for a better presentation of SNP importance 692 

level.  The following block is the transcript ID, ClinVar significance, and allele frequency from 693 

VEP. (C) We also provided links to external websites with more variant or gene information, 694 

such as dbSNP59, gnomAD60,  GWAS Catalog2, and GeneCards61. (D) The block at the bottom is 695 

the results from pubmedKB. The summary presents the sentence where the SNP and the 696 

phenotype co-occur, and we show the paper snippet of odds ratio statistics.  697 

  698 
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699 

Figure 4. Results of LDL GWAS and PRS analyses. (A) PCA plot of the first and second PCs.700 

To view any deviation of PCs among the samples, values of the quantitative phenotype are701 

separated into four quantiles. (B) Manhattan plot of −log10(P-value). GWAS is performed on702 

autosomal SNPs, and SNPs with P-value <10-5 are colored in orange. (Source data in Table S3)703 

(C) Bar plot of Spearman’s correlation of each PRS model. Models derived from different704 

methods with or without covariates (Cov) are demonstrated simultaneously. (Source data in705 

Table S4)  (D) Quantile plot for risk stratification. The “covariate-only (Cov)” model and “PRS706 

+ covariate” models are plotted to compare the usage of genetic factors. (Source data in Table707 

S5). 708 
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 710 

Figure 5. Results of AD across different PRS methods. (A) ROC curve of each PRS model on711 

the test set. (Source data in Table S6) (B) Prediction distributions of the Lassosum PRS model712 

for cases (yellow) and controls (blue). The dashed line represents the mean of each group. (C)713 

UpSet plot62 for the intersection of important SNPs derived from different PRS methods. The714 

intersection, or the combination, of methods are presented as the matrix layout while the variant715 

counts of each intersection are shown as the histogram. Different colors represent the number of716 

on 

el 

C) 

he 

nt 

 of 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536584doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536584
http://creativecommons.org/licenses/by-nd/4.0/


 

 

31

PRS methods. (corresponding output data in Table S7) (D) Annotations for SNP “rs157580”. On 717 

the top is the basic information and statistics of the variant. The following block is the transcript 718 

ID, ClinVar significance and allele frequency from VEP28. In addition, we also provided links to 719 

external websites with more variant information, such as dbSNP59 and gnomAD60. The block in 720 

the bottom is the results from pubmedKB29 which highlights the odds ratio of AD in the presence 721 

of this variant. 722 
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