

1 **Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts**

2

3 Feyza Nur Arslan¹, Édouard Hannezo¹, Jack Merrin¹, Martin Loose¹, Carl-Philipp Heisenberg^{1,*}

4 ¹ Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.

5 *Correspondence: heisenberg@ist.ac.at.

6

7 **Abstract**

8 Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic
9 reorganization of adhesion receptors and the actomyosin cell cortex in space and time play a central role
10 in cell-cell contact formation and maturation. Yet, how this process is mechanistically achieved remains
11 unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid
12 bilayers functionalized with E-cadherin ectodomains, we show that cortical Actin flows, driven by the
13 depletion of Myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion
14 receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA
15 at the forming contact leads to both a depletion of Myosin-2 and a decrease of F-actin at the contact
16 center. This depletion of Myosin-2 causes centrifugal F-actin flows, leading to further accumulation of F-
17 actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the
18 rim. Eventually, this combination of actomyosin downregulation and flows at the contact determine the
19 characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where
20 they are needed to mechanically link the contractile cortices of the adhering cells.

21 **Main**

22 The spatial and temporal regulation of cell-cell adhesion plays a fundamental role in development,
23 growth, and homeostasis^{1,2}. Cadherin adhesion receptors are central components regulating mechanical
24 adhesion between cells and triggering signaling over the cell-cell contact^{3–6}. Malfunction of Cadherin-
25 mediated cell-cell adhesion leads to developmental defects, and is a marker of cancerous
26 transformations⁷.

27

28 The binding of Cadherins over the contact (*trans*-binding) and clustering of Cadherins at the contact (*cis*-
29 binding) are both thought to drive both cell-cell contact formation and maintenance^{8–14}. Moreover,
30 signaling from *trans*-bound Cadherins has been implicated in cell-cell contact expansion by remodeling
31 the actomyosin cell cortex^{15–22}. Cadherin-mediated modulation of the actomyosin cortex at the contact
32 has also been associated with an accumulation of Cadherins at the contact rim, where they are needed to
33 mechanically link the contractile cortices of the adhering cells^{4,18,20,21,23}. This rim accumulation of
34 Cadherins has further been shown to be mechanosensitive with tension-induced unfolding of Cadherin
35 adhesion complex components, such as alpha-Catenin and Vinculin, increasing mechanical coupling of the
36 adhesion complex to actomyosin cortex^{1,20,23–25}. Yet, how the cross-talk of Cadherins and the actomyosin
37 cortex dynamically structure cell-cell contacts remains unknown, mainly due to technical limitations in
38 live imaging of entire contacts with high resolution.

39

40 Supported lipid bilayers (SLBs) have been used as an effective assay system for visualizing and analyzing
41 the dynamic molecular rearrangements occurring at specific cell contacts, such as the immunological
42 synapse²⁶. Employing such SLB systems for mimicking E-cadherin-mediated cell-cell adhesion showed that
43 E-cadherin mobility constitutes a critical factor for E-cadherin recruitment and Actin architecture at the
44 contact^{11,27}. Still, elucidating how E-cadherin acquires its distinct distribution at the contact requires
45 supplementing these SLB systems with dynamic and high-resolution imaging of contact formation and
46 maintenance.

47

48 Here we have combined SLBs as a biomimetic system with high-resolution live imaging to analyze how the
49 dynamic interplay between Cadherins and the actomyosin cortex structures cell contacts. We found that
50 E-cadherin-dependent downregulation of RhoA signaling depletes Myosin-2 and decreases F-actin levels
51 at the forming contact. As a result of this localized downregulation of cortical actomyosin contractility at
52 the contact center, cortical F-actin flows towards the contact rim, taking along E-cadherin and thereby

53 leading to the characteristic molecular organization of the contact, with F-actin and E-cadherin
54 accumulating at the contact rim.

55

56 **Results**

57 *Adhesion signaling regulates cortical actomyosin at the contact by modulating RhoA activity*

58 In order to visualize cell contact formation dynamics with high spatiotemporal resolution, we established
59 a biomimetic assay where zebrafish ectoderm progenitor cells adhere to supported lipid bilayers (SLBs),
60 which carry mobile and correctly-oriented zebrafish E-cadherin (Ecad) ectodomains (EcadECD) (Fig.1a and
61 Supp. Fig.1a). Given the importance of Ecad mobility for the proper establishment of Ecad-dependent cell-
62 SLB adhesion¹¹, we modulated Ecad mobility in the mainly 1,2-dioleoyl-sn-glycero-3-phosphocholine
63 (DOPC)-composed fluid bilayers. We adjusted the amounts of 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-
64 carboxypentyl)iminodiacetic acid)succinyl] loaded with Ni²⁺ (Ni-NTA-DOGS) and cholesterol, to control
65 Ecad density²⁸ and bilayer fluidity²⁹, respectively (Supp. Fig.1b). At molar ratios of 4% Ni-NTA-DOGS and
66 40% cholesterol, we obtained partially-fluid bilayers where tethered EcadECD diffused at 0.34 ± 0.04
67 $\mu\text{m}^2/\text{s}$ and on which seeded ectoderm progenitors were able to form large ($> 15\mu\text{m}$ diameter) and stable
68 (> 10 min) contacts (Supp. Fig.1c). By contrast, contact formation was strongly reduced on SLBs which
69 lacked EcadECD or when using progenitor cells with reduced endogenous Ecad expression (*cdh1* morphant
70 cells)^{21,30} (Supp. Fig.1c), further supporting the notion that these bilayers constitute a specific biomimetic
71 assay system to analyze Ecad-mediated cell contact formation.

72

73 Using this assay system, we first investigated the initial steps of contact formation by recording time-lapse
74 movies of newly-forming contacts between ectoderm progenitors and EcadECD-decorated SLBs. We used
75 *Tg(cdh1-mlanYFP)* progenitor cells to monitor endogenous Ecad expression³¹, and imaged contact
76 formation using total internal reflection fluorescence (TIRF) microscopy. Consistent with previous findings
77 that Ecad *trans*-dimers accumulate at forming intercellular contacts^{11,32,33}, we found that the time
78 concentration of Ecad at the contact increased within the first 2-3 min post contact initiation, the time
79 which also constitutes the main period of contact expansion (Fig. 1b,c and Supp. Video 1). By contrast,
80 increased Ecad concentrations were not observed in cells seeded on SLBs lacking EcadECD (Supp. Fig.
81 2a,a'), suggesting that Ecad on both sides of the contact is required for Ecad accumulation at the forming
82 contact.

83

84 Next, we asked how this accumulation of Ecad at the contact relates to potential changes in the
85 organization of the actomyosin cortex at the contact, to which Ecad couples³. Myosin-2 has previously
86 been shown to be reduced at mature homotypic contacts^{16,17,19,21}. Using the *Tg(actb2:My12.1-eGFP)*
87 progenitor cells^{21,34} to visualize dynamic changes in Myosin-2 at the forming contact with Airyscan
88 microscopy³⁵, we found that cortical Myosin-2, initially decorating the entire contact as mini-filaments,
89 quickly diminished from the contacts during contact area expansion (Fig. 1b,c and Supp. Video 1). This fast
90 reduction in Myosin-2 at the contact led to a nearly complete absence of Myosin-2 at the contact 3 min
91 post contact initiation and depended on the presence of Ecad on both sides of the contact (Supp. Fig.
92 2a,a'). Despite this general downregulation of Myosin-2 at the contact, some sporadic and short-lived
93 accumulations were still detectable at the contact rim, where cell protrusions such as lamellipodia and
94 blebs retracted (Fig. 1b and Supp. Video 1).

95

96 F-actin, similar to Myosin-2, has previously been shown to be partially depleted from the center of mature
97 contacts in several different cell types, including zebrafish ectoderm progenitors^{18,20,21,23}. To determine
98 how depletion of Myosin-2 at the contact center during contact expansion is accompanied by dynamic
99 alterations of the Actin cytoskeleton, we analyzed changes in cortical F-actin network organization at the
100 contact of Ftractin-mNeonGreen-expressing cells. This analysis showed that the average F-actin intensity
101 decreased at the contact, when SLBs were decorated with EcadECDs (Fig. 1b,c; Supp. Fig. 2a,a' and and
102 Supp. Video 1). Notably, this decrease in F-actin intensity at the contact was less pronounced than the
103 observed depletion of Myosin-2 during contact expansion, with some clearly recognizable F-actin cortex
104 still detectable at the mature contact. Collectively, these observations suggest that Ecad contact
105 accumulation is tightly associated with the concomitant reductions in both F-actin and Myosin-2, pointing
106 to the possibility that these processes might be functionally linked.

107

108 To determine whether such a functional link exists, we analyzed changes in the activity of the small GTPase
109 RhoA, a critical regulator of both F-actin and Myosin-2³⁶, which has previously been suggested to be
110 modulated upon Cadherin binding^{18,19,37,38}. To this end, we visualized dynamic changes in RhoA activity
111 during contact formation using an Anillin-based biosensor detecting GTP-RhoA^{39,40}. Similar to Myosin-2
112 and F-actin, RhoA activity levels decreased at the contact during the first 2-3 min of contact expansion
113 (Fig. 1b,c and Supp. Video 1). By contrast, no such decrease was observed when SLBs were left without
114 EcadECD (Supp. Fig. 2a,a') or a negative control of the biosensor that does not bind to active RhoA was
115 used⁴⁰ (Supp. Fig. 2b,b'). This concomitant downregulation of RhoA activity with F-actin and Myosin-2

116 upon Ecad-mediated contact formation suggests that Ecad binding over the contact leads to F-actin and
117 Myosin-2 downregulation at the forming contact by repressing RhoA activity.

118

119 To further challenge this suggestion, we analyzed the colocalization of Ecad and GTP-RhoA at the contact.
120 This analysis revealed very little overlap and a negative correlation between Ecad clusters and RhoA
121 activity (Supp. Fig. 2c-c''), consistent with the notion of Ecad binding leading to local repression of RhoA
122 activity. To further test whether Ecad controls F-actin and Myosin-2 at the contact by modulating RhoA
123 activity, we asked whether the effect of Ecad-mediated contact formation on F-actin and Myosin-2
124 localization can be overridden by constitutively activating RhoA activity in the contacting cell. To this end,
125 we analyzed contact formation using progenitor cells expressing a constitutively active version of RhoA
126 (CA-RhoA)^{41,42}. We found that while CA-RhoA-expressing progenitors maintained high RhoA activity and
127 increased Ecad at the contact, there was no clearly recognizable reduction of the actomyosin cortex during
128 expansion (Supp. Fig. 2d,d'), supporting the notion that Ecad binding over the contact leads to actomyosin
129 reduction through modulation of RhoA activity.

130

131 *Myosin-2 asymmetry leads to centrifugal flows of F-actin and Ecad at the contact*

132 Previous studies have shown that both F-actin and different components of the Cadherin adhesion
133 complex, such as alpha-Catenin, beta-Catenin and Ecad, display a distinct accumulation at the cell contact
134 rim, and that this accumulation is required for mechanically coupling the contractile actomyosin cortices
135 of the adhering cells over the contact^{18,20,21,23}. To determine whether such distinct spatial localization can
136 also be observed in our biomimetic assay of contact formation, we first analyzed the average radial
137 distributions of Myosin-2, F-actin, Ecad and GTP-RhoA at mature contacts (> 10 min post contact
138 initiation), a stage where their total intensities remained largely unchanged (Supp. Fig. 2e). Myosin-2 and
139 GTP-RhoA were nearly completely depleted from the contact, except some accumulations at places of the
140 contact rim, where cellular protrusions extended and retracted (Fig. 2a). Averaging this distribution gave
141 rise to Myosin-2 and GTP-RhoA sharply peaking at the contact rim (Fig. 2a). By contrast, F-actin and Ecad
142 displayed a more graded distribution along the contact radius, with increasing levels from the midpoint
143 towards the rim of the contact (Fig. 2a).

144

145 In order to dissect the mechanisms by which the actomyosin cortex and adhesion apparatus remodel at
146 the contact, we first determined to what extent this remodeling depends on Ecad binding over the
147 contact. Imaging contacts of cells placed on SLBs lacking EcadECD showed that Ecad, Myosin-2, F-actin

148 and GTP-RhoA at the contact remained homogeneously distributed (Supp. Fig. 3a), suggesting that contact
149 remodeling occurs downstream to Ecad *trans*-binding and signaling. Next, we asked how the specific
150 distributions of Ecad, Myosin-2, F-actin and GTP-RhoA at mature contacts are established during contact
151 formation by monitoring changes in their rim-to-center distributions during Ecad-mediated contact
152 formation. While F-actin, Myosin-2 and Ecad became increasingly localized to the contact rim during the
153 entire contact expansion phase (~0-3 min post contact initiation), GTP-RhoA levels were sharply
154 downregulated at the contact center already 1 min after contact initiation, with only some active RhoA
155 remaining at the contact rim (Supp. Fig. 3b). This shows that the redistribution and rim accumulation of
156 F-actin, Myosin-2 and Ecad is preceded by a fast downregulation of RhoA activity at the contact center
157 upon contact initiation, pointing to the possibility that suppression of RhoA activity at the contact center
158 leads to the subsequent accumulation of F-actin, Myosin-2 and Ecad at the contact rim.

159

160 One possibility by which downregulation of RhoA activity at the contact center might trigger the
161 continuous relocalization of F-actin and Ecad to the contact rim is by building up an actomyosin
162 contractility gradient along the contact radius peaking at the contact rim. This contractility gradient might
163 again give rise to centrifugal F-actin network flows, which, by slowing down at the contact rim, could lead
164 to the rim accumulation of F-actin and Ecad. Consistent with this possibility, we noticed that, although
165 total F-actin intensity at the contact remained unchanged after the initial phase of contact expansion
166 (Fig. 1c), F-actin intensity at the contact center continued decreasing for another ~2 min (up to ~5 min post
167 contact initiation) (Supp. Fig. 3b,c,c'). This continuous decrease in intensity was accompanied by a
168 decrease in F-actin network density at the contact center and the emergence of an F-actin network density
169 gradient along the contact radius (Supp. Fig. 3c,c',d), an effect compatible with the possibility of
170 centrifugal F-actin network flows changing F-actin network density along the flow direction^{43,44}. To more
171 directly determine whether the F-actin network indeed displays centrifugal flows at the contact, we
172 performed a kymograph analysis of Actin filament movements at the contact. Strikingly, this analysis
173 revealed persistent centrifugal flows of F-actin at the contact (Fig. 2c,c'; Supp. Fig. 4a,e' and Supp. Video
174 2), slowing down at the contact rim (Supp. Fig. 3e). The outward direction of flows was apparent after the
175 initial phase of contact expansion and was also detectable in mature contacts (Supp. Fig. 3f-f'). Together,
176 this suggests that F-actin network dilution at the contact center and progressive accumulation at the
177 contact rim are achieved and maintained by centrifugal F-actin flows.

178

179 To understand how the downregulation of RhoA activity at the contact center might lead to the buildup
180 of an actomyosin contractility gradient and flow along the contact radius, we turned to Myosin-2,
181 previously shown to represent a main determinant of cortical Actin contractility^{45–48}. Specifically, we
182 hypothesized that downregulation of RhoA at the contact center might lead to the near complete
183 depletion of Myosin-2 in the center, thereby generating a sharp gradient of Myosin-2 activity along the
184 contact radius (Fig. 2a). To address this hypothesis, we reduced Myosin-2 activity in the contacting cells
185 by exposing cells to the Myosin-2 inhibitor para-nitroblebbistatin (pnBb)⁴⁹ or by expressing a constitutively
186 active form of Myosin Phosphatase (CA-Mypt)^{42,50} (Fig. 2b; treating cells with pnBb turned out to be not
187 suitable for analyzing GTP-RhoA and Ecad distributions, as the autofluorescence of pnBb strongly
188 decreased their signal-to-noise ratios). Cells exposed to pnBb showed strongly diminished centrifugal F-
189 actin flows (Fig. 2d, Supp. Fig. 4a and Supp. Video 2), and, as a result of this, reduced F-actin network
190 dilution and contact rim accumulation (Fig. 2b and Supp. Fig. 4b). By contrast, pnBb treatment/CA-Mypt
191 expression did not affect the initial signaling-dependent reduction in average F-actin intensity levels
192 during contact formation and concomitant restriction of GTP-RhoA activity to the contact margin (Fig. 2b,
193 Supp. Fig. 4c). This suggests that centrifugal flows of F-actin are predominantly needed for F-actin network
194 density gradient formation and maintenance.

195
196 To further explore whether and how the centrifugal flows of F-actin are related to the graded distribution
197 and accumulation of Ecad at the contact rim, we analyzed dynamic changes in Ecad distribution at the
198 contact. Given that Ecad clusters have previously been shown to be taken along by F-actin flows^{51–53}, we
199 hypothesized that the observed centrifugal F-actin flows at the contact center might trigger similar flows
200 of Ecad, leading to Ecad gradient formation and contact rim accumulation. Kymograph analysis revealed
201 Ecad clusters to flow centrifugally with an average net velocity similar to F-actin filaments (Fig. 2c,c', Supp.
202 Fig. 4a and Supp. Video 3), pointing to the possibility that centrifugal F-actin flows take along Ecad towards
203 the contact rim. Consistent with this, distinct Ecad clusters showed partial colocalization with F-actin
204 filaments at the contact (Supp. Fig. 3g-g''), suggesting that some, but not all Ecad clusters might be directly
205 linked to F-actin. To further challenge the functional link between F-actin and Ecad flows, we tested
206 whether Myosin-2 inhibition not only affects F-actin but also Ecad localization and flows. Blocking Myosin-
207 2 activity with pnBb, while leaving the average intensity of Ecad at the contact unchanged, eliminated
208 Ecad rim accumulation, leading to a homogenous distribution of Ecad across the contact (Supp. Fig. 4c,d),
209 similar to the observations made for F-actin in the presence of pnBb (Fig. 2b and Supp. Fig. 4c). To
210 determine whether the lack of Ecad rim accumulation upon inhibition of Myosin-2 activity is due to

211 reduced centrifugal flows of Ecad, we performed kymograph analysis of Ecad flows in cells with reduced
212 Myosin-2 activity. CA-Mypt-expressing cell contacts not only showed more homogenous Ecad and F-actin
213 intensities and higher F-actin network densities (Fig. 2b and Supp. Fig. 4b,e), similar to the observations
214 made when blocking Myosin-2 activity with pnBb (Fig. 2b and Supp. Fig. 4d) but also displayed strongly
215 reduced centrifugal flows of Ecad clusters (Fig. 2d, Supp. Fig. 4a and Supp. Video 3). This suggests that
216 Ecad clusters might be advected by the F-actin network flows towards the contact rim in a Myosin-2-
217 dependent manner.

218

219 To further challenge this hypothesis, we asked whether upregulating Myosin-2-dependent actin network
220 contractility is also sufficient for driving F-actin and Ecad centrifugal flows. To this end, we treated cells
221 with lysophosphatidic acid (LPA), which has previously been shown to strongly enhance actomyosin
222 contractility in germ layer progenitor cells^{23,44}. Upon exposure to LPA, F-actin, and to a smaller extent also
223 Ecad, showed an enhanced accumulation at the contact rim, giving rise to steeper gradients of F-actin and Ecad
224 along the radial axis of the contact (Supp. Fig. 4f). Notably, the average intensities of F-actin and Ecad
225 at the contact did not change upon LPA treatment (Supp. Fig. 4c), suggesting that LPA treatment affects
226 the distribution but not the general amount of these proteins at the contact. Unexpectedly, however,
227 radial flow velocities of F-actin and Ecad, and the network density of F-actin at the contact center
228 remained unchanged in LPA-treated contacts compared to untreated controls (Supp. Fig. 4a,b,f', Supp.
229 Video 2 and Supp. Video 3). Instead, we frequently observed ectopic foci of actomyosin within the contact
230 center (Fig. 2e and Supp. Fig. 4h,i), presumably as a result of high actomyosin network contractility leading
231 to the emergence of local network instabilities and thus the formation of ectopic actomyosin foci, driving
232 local flows of F-actin and Ecad directed towards them⁴⁴ (Fig. 2e' and Supp. Fig. 4a). Collectively, these
233 findings suggest that polarized distribution of Myosin-2 triggers flows of both F-actin and Ecad, thereby
234 establishing their graded distribution along the radial contact axis and accumulation at the contact rim.

235

236 *Cortical flows at the contact determine the contact architecture*

237 To determine whether and how the observed changes in F-actin and Ecad rim accumulations in the
238 different experimental conditions can be explained by centrifugal F-actin flows at the contact, we sought
239 to quantitatively link F-actin flows to F-actin and Ecad rim accumulation. From a theoretical perspective,
240 the strength of this accumulation not only depends on centrifugal flow velocity v , but also on contact size
241 L and protein turnover/lifetime τ at the contact. A simple conservation equation taking into account these
242 features predicts that at first order, the magnitude of the rim-to-center accumulation A should scale as

243 $A = 1 + \nu \frac{2\pi^2 \tau}{L}$. In order to test this quantitatively, we measured contact size and Actin/Ecad lifetimes
244 under different conditions. For contact size, we found that LPA-treated contacts were smaller than
245 untreated controls, consistent with previous observations from germ layer progenitor cell-cell doublets²³
246 (Fig. 3a). By contrast pnBb-treated/CA-Mypt-expressing contact sizes, although expected to decrease²³,
247 remained largely unchanged, likely due to a global decrease in cortical tension leading to cell flattening
248 on the SLB substrate. To measure Actin turnover, we tracked TRITC-Actin protein injected at low amounts
249 using single-molecule imaging at the contact (Fig. 3b,b'). We found a lifetime of ~25 s for Actin monomers
250 at contacts, which was increased on average by both increasing or decreasing contractility by LPA and
251 pnBb, respectively, in line with previous reports^{20,54} (Fig. 3c). For Ecad lifetime at the contact, we turned
252 to fluorescence recovery after photobleaching (FRAP) experiments (Fig. 3d,d',e). Similar to previous
253 observations on alpha-Catenin turnover at Ecad-mediated ectoderm cell-cell contacts²³, we found an Ecad
254 recovery time of ~12 s and a small immobile fraction of ~10%, which were both increased when
255 upregulating actomyosin contractility upon LPA treatment (Fig. 3f,f'). By contrast, decreasing contractility
256 through expression of CA-Mypt had no recognizable effect on Ecad dynamics (Fig. 3f,f').

257
258 Having measured contact size, Ecad/F-actin turnover and flow velocities (Supp. Table 1), we then tested
259 whether the predicted analytical relationship between Ecad/F-actin centrifugal flows and rim
260 accumulation would hold across different contractility conditions and found that the two displayed a
261 robust positive scaling as expected in the analytical expression (Fig. 4a). Explicitly integrating the
262 conservation equation in space (1D along the rim-center axis) and time, starting from a homogenous
263 distribution, showed that contacts reached a steady-state distribution profile in a few min (Supp. Fig. 6a),
264 which closely matched the measured F-actin and Ecad distributions for most experimental conditions (Fig.
265 4b). Notably, predicted F-actin distributions underestimated the accumulation seen at LPA-treated
266 contacts, suggesting that there might be other factors, in addition to flow velocity, contact size and protein
267 turnover, that also influence F-actin rim accumulations in the presence of LPA. Collectively, this
268 comparison between simulations and experimental observations shows that the progressive
269 accumulation of F-actin and Ecad at the contact rim can, to a large extent, be explained by the centrifugal
270 flows of these proteins at the contact.

271

272 **Discussion**

273 Our study identifies a new mechanism by which cell contacts acquire their specific molecular organization
274 required for contact formation and maintenance (Fig. 4c). In particular, we show that centrifugal F-actin
275 flows, triggered by the downregulation of Myosin-2 activity at the contact center, take along Ecad by
276 advection, leading to F-actin and Ecad accumulation at the contact rim, where they are needed for
277 coupling the cortices of the contacting cells. We further show that F-actin and Ecad centrifugal flows
278 depend on the polarized distribution of Myosin-2, which is depleted at the contact center and displays
279 distinct accumulations at places at the contact rim where cellular protrusions retract. Such centrifugal
280 flows could, in principle, be an emergent property of the actomyosin network at the contact, a possibility
281 we tested using an active gel model⁵⁵ (Supp. Fig. 6b). Assuming higher actomyosin contractility at the
282 contact rim as a starting configuration in this model led to long-range Actin network centrifugal flows,
283 similar to those observed experimentally (Supp. Fig. 6b and Methods), which were reinforced and
284 maintained by the resulting accumulation of F-actin at the contact rim. This suggests that the self-
285 organizing properties of the actomyosin network at the contact play an important role in determining the
286 molecular organization of the contact.

287

288 Ecad has been previously shown to be transported by F-actin flows, such as at lateral junctions of epithelial
289 cells or during contact initiation between migrating cells^{51,56-58}. F-actin flows, again, are thought to be
290 triggered by the asymmetric distribution of F-actin and/or Myosin-2. Our data suggests that centrifugal F-
291 actin flows at the contact are triggered by the downregulation of RhoA, and as a result of it, Myosin-2 at
292 the contact center. Likely, signaling from *trans*-bound Ecad leads to this downregulation of RhoA activity
293 at the forming contact^{37,38}. Yet, why such Ecad signaling inhibits RhoA and Myosin 2 activity at the contact
294 center but not its rim is unclear. One possibility is that blebs retracting at the contact rim in a Myosin-2-
295 dependent manner^{59,60} lead to transient accumulations of Myosin-2, thereby establishing the rim-to-
296 center asymmetry of Myosin-2, which is needed for driving centrifugal F-actin flows. Such a mechanism
297 could also explain the observed increased accumulation of actomyosin in LPA-treated cells showing
298 increased blebbing at the contact rim due to their higher contractility^{44,61} (Supp. Fig. 4f,g). Interestingly,
299 increased accumulation of Myosin-2 at the contact rim of LPA-treated contacts did not lead to faster
300 centrifugal flows (Supp. Fig. 4a, f'). Increased viscosity of the F-actin cortex, for instance, due to decreased
301 turnover and smaller contact sizes^{62,63}, and/or increased friction, for instance, due to more coupling
302 between Ecad and the F-actin cortex²³⁻²⁵, might account for F-actin flows not becoming faster despite
303 higher contractility, which we explored in the active gel model (Supp. Fig. 6b and Methods). Additionally,

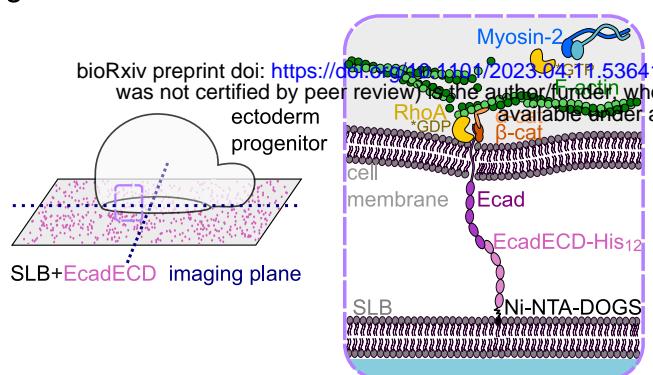
304 the lower-than-expected velocities might be due to ectopic actomyosin foci forming at the center of
305 contacts (Fig. 2e,e') and thus interfering with the global centrifugal flow pattern of F-actin. Interestingly,
306 such self-maintained F-actin foci can be recapitulated in active gel models with high contractility⁶⁴.

307

308 Another reason why Myosin-2 is specifically downregulated at the contact center and not its rim could be
309 due to Ecad and RhoA/Actin/Myosin-2 accumulation spatially segregating at the rim of mature contacts
310 (Supp. Fig. 3g,h). While RhoA/Actin/Myosin-2 intensities peak at the periphery of the contact, Ecad
311 intensity peaks slightly away from the periphery in a domain directly adjacent to the RhoA/Actin/Myosin-
312 2 accumulations (Supp. Fig. 3h). Such segregation is also apparent at the ectopic foci observed in LPA-
313 treated contacts with Ecad accumulating around the RhoA/Actin/Myosin-2 accumulation in the center of
314 such foci (Fig. 2e and Supp. Fig. 4h,i). Previous studies noted similar spatial segregations of Ecad and F-
315 actin or Ecad and active RhoA^{18,20,65,66}, yet the mechanism underlying this segregation remains unclear. It
316 is conceivable that such segregation arises, for instance, by increasing Ecad clustering at the rim altering
317 its binding affinity to the Actin network and thus its transfer range, changes in the actomyosin network
318 architecture making the rim network less susceptible to RhoA/Myosin-2 downregulation by Ecad, and/or
319 membrane height differences between the contact rim and center, due to protrusions or other membrane
320 receptors, spatially restricting Ecad to the contact center⁶⁶⁻⁷⁰. Investigating these possible segregation
321 mechanisms will be an interesting subject for future studies.

322

323 Mechanosensitivity of Ecad has previously been proposed to also promote Ecad accumulation at the
324 contact rim^{20,23}. Likely, F-actin and Ecad centrifugal flows and Ecad mechanosensation engage in a positive
325 feedback loop, where F-actin centrifugal flows lead to enhanced binding of Ecad to the adjacent Actin
326 network by increasing Actin network density towards the contact rim, allowing the actomyosin network
327 to more efficiently pull on the Ecad adhesion complex. These pulling forces, in turn, might elicit tension-
328 induced conformational changes of the Ecad adhesion complex components alpha-Catenin and/or
329 Vinculin, facilitating coupling of the adhesion complex to the adjacent Actin cortex^{24,25,71,72} and reducing
330 Ecad turnover^{20,23}, thus enhancing Ecad and F-actin accumulation at the rim. Such Ecad and F-actin rim
331 accumulation might then again increase centrifugal F-actin flows, thereby closing a positive feedback loop
332 where flows trigger rim accumulation, and rim accumulation promotes flows⁷³⁻⁷⁵.


333

334 Centrifugal movements of Ecad clusters during contact maturation have previously been noted^{20,32}, but
335 their association with the F-actin cortex remained unclear. Our study, by mechanistically linking the

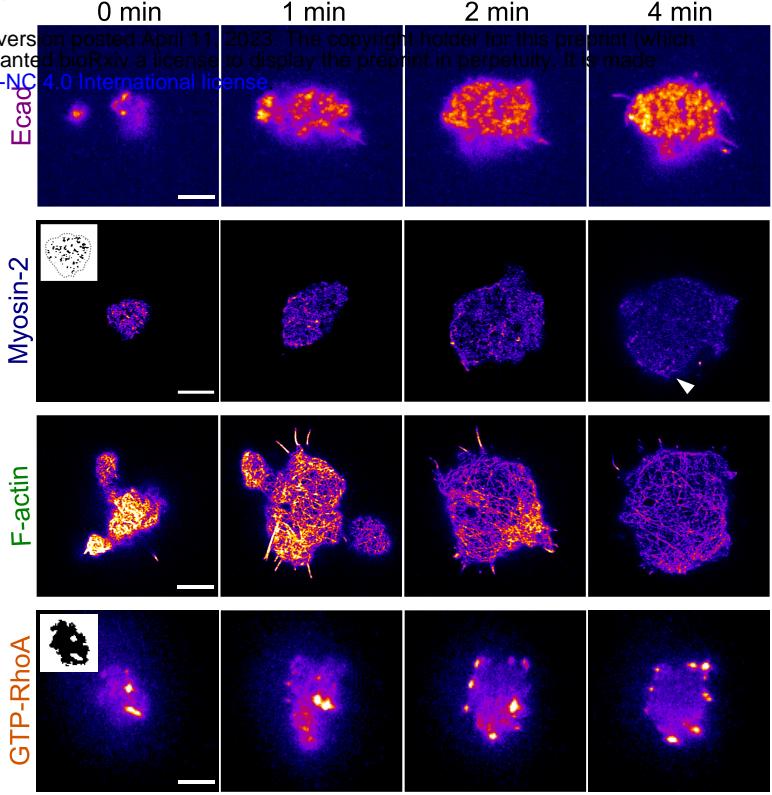
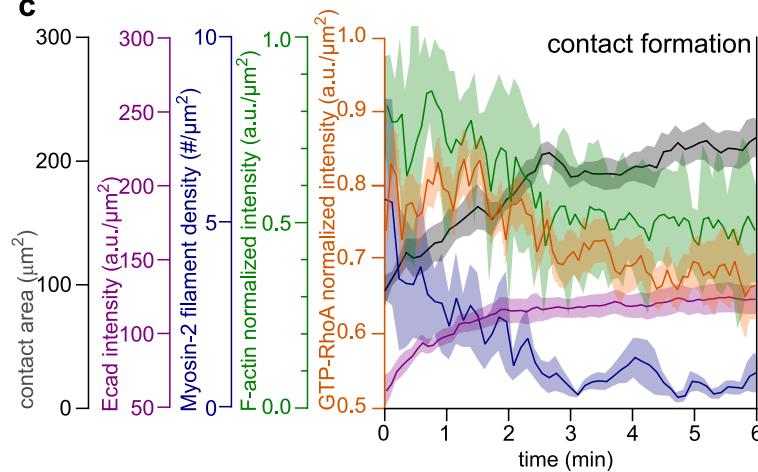
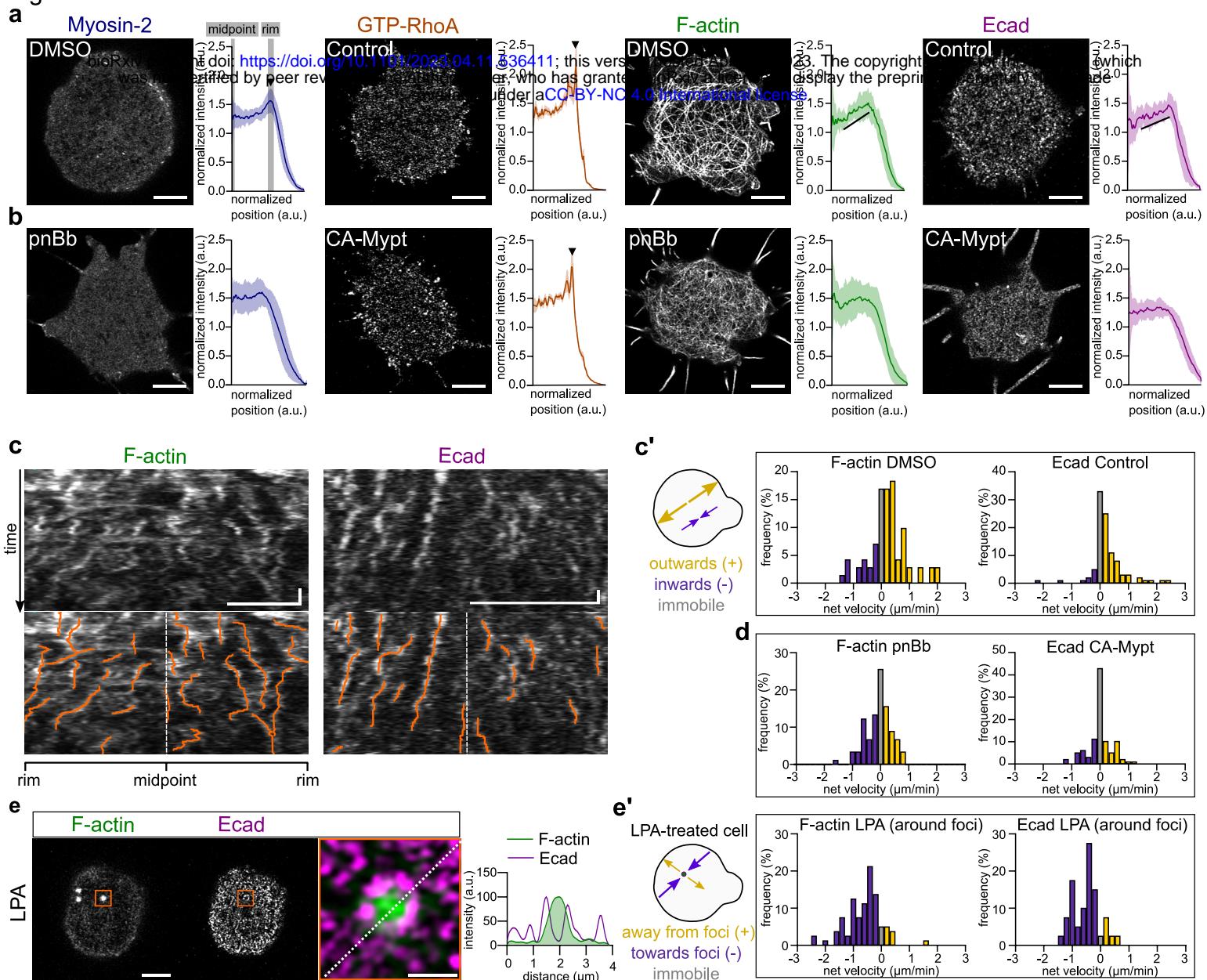

336 dynamic changes in the F-actin cortex to the redistribution of the Ecad adhesion complex at the contact,
337 provides a generic mechanism by which the maturing contact achieves its specific molecular organization
338 required for contact expansion and maintenance. More generally, it might also explain how cells acquire
339 stable polarity during contact formation by locally remodeling their actomyosin cortex, thereby
340 mechanically linking cell-cell contact formation to cell polarization in the developing organism.

Fig. 1


a

b

c

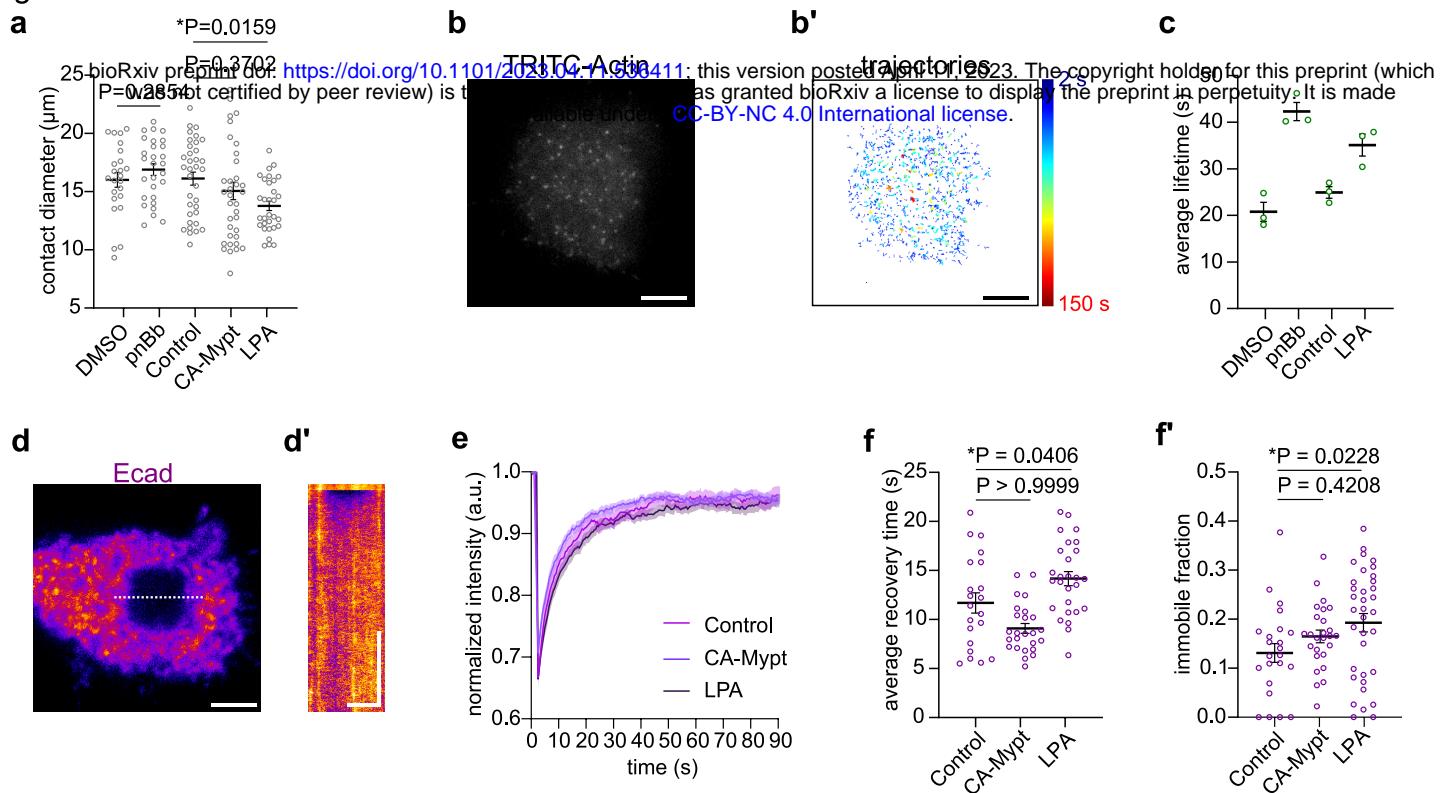


341 **Figure Legends**

342 **Figure 1. Downregulation of actomyosin and GTP-RhoA coincides with contact area expansion.**

343 **(a)** Schematic representations of the biomimetic cell adhesion assay. Left schematic shows the contact
344 interface between the cell and the EcadECD-functionalized SLB, constituting the imaging plane. Right
345 schematic is a close-up of the region marked by the dashed rectangle in the left schematic showing the
346 relevant molecular composition of the contact interface. **(b)** Representative TIRF (for Ecad and GTP-RhoA),
347 or Airyscan (for Myosin-2 and F-actin) contact images of Ecad in a cell obtained from *Tg(cdh1:mlanYFP)*,
348 Myosin-2 in a cell obtained from *Tg(actb2:Myl12.1-eGFP)*, F-actin in a cell obtained from Ftractin-
349 mNeonGreen-expressing and GTP-RhoA in a cell obtained from GFP-AHPH-expressing embryos at
350 consecutive steps of contact formation (0, 1, 2 and 4 min post contact initiation). Insets in Myosin-2 and
351 GTP-RhoA images at 0 min are exemplary masks used for mini-filament density (Myosin-2) and average
352 intensity (GTP-RhoA) calculations shown in (c). White arrowhead at Myosin-2 image at 4 min points to a
353 bleb at the contact interface. Scale bars, 5 μ m. **(c)** Plots of contact area (N=4, n=8), Ecad average intensity
354 (N=4, n=10), Myosin-2 mini-filament density (N=4, n=4), F-actin average intensity normalized to maximum
355 intensity (N=6, n=6) and GTP-RhoA average intensity normalized to maximum intensity (N=3, n=11) at the
356 contact as a function of time during contact formation (0-6 min post contact initiation). Data are mean \pm
357 s.e.m.

Fig. 2

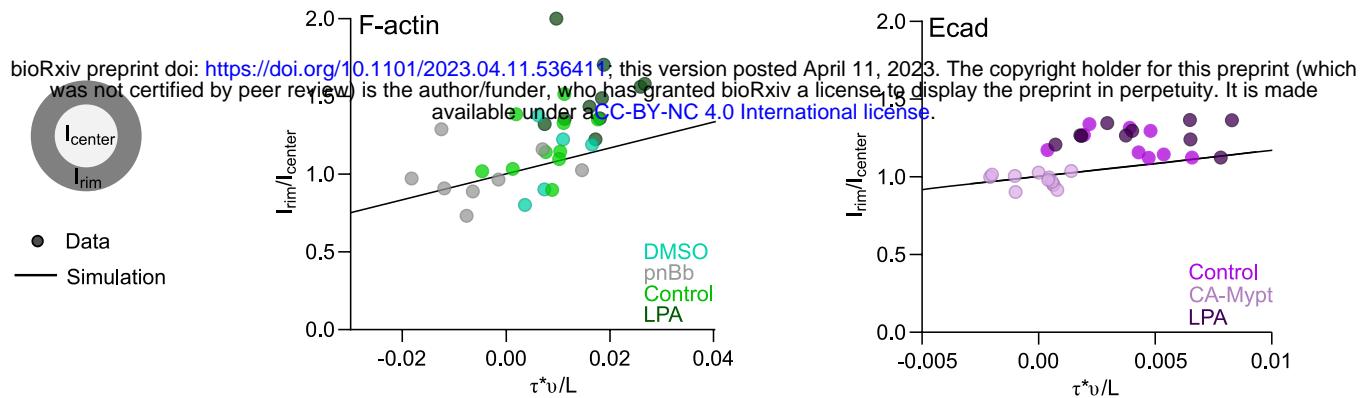


358 **Figure 2. F-actin and Ecad flow towards the contact rim and accumulate there.**

359 **(a)** Representative Airyscan images at mature contacts (> 10 min post contact initiation) of Myosin-2 in a
360 cell obtained from *Tg(actb2:Myl12.1-eGFP)*, GTP-RhoA in a cell obtained from GFP-AHPH-expressing, F-
361 actin in a cell obtained from Ftractin-mNeonGreen-expressing and Ecad in a cell obtained from
362 *Tg(cdh1:mланYFP)* embryos, along with radial intensity plots, normalized to contact length and average
363 intensity, of Myosin-2 (N=3, n=22), GTP-RhoA (N=4, n=20), F-actin (N=3, n=20) and Ecad (N=4, n=20). Black
364 arrowheads in Myosin-2 and GTP-RhoA radial plots point to the intensity peak at the contact rim, black
365 lines in F-actin and Ecad radial plots point to the gradual increase in intensities. For Myosin-2 and F-actin,
366 0.1% DMSO was added to the medium to control the experimental conditions in (b). Scale bars, 5 μ m.
367 Data are mean \pm s.e.m. **(b)** Representative Airyscan images at mature contacts of Myosin-2 in a cell
368 obtained from *Tg(actb2:Myl12.1-eGFP)* and F-actin in a cell obtained from Ftractin-mNeonGreen-
369 expressing embryos treated with 10 μ M para-nitroBlebbistatin (pnBb), and of Ecad in a cell obtained from
370 *Tg(cdh1:mланYFP)* and GTP-RhoA in a cell obtained from GFP-AHPH-expressing embryos expressing
371 constitutively active Myosin Phosphatase (CA-Mypt, 70 pg mRNA/embryo), along with radial intensity
372 plots of Myosin-2 (N=3, n=20) and F-actin (N=3, n=24) at contacts of pnBb-treated cells; Ecad (N=3, n=25)
373 and GTP-RhoA (N=3, n=23) in CA-Mypt overexpressing cells. Scale bars, 5 μ m. Data are mean \pm s.e.m. **(c)**
374 Representative kymographs of F-actin and Ecad flows along the mature contact diameter (top row) in cells
375 obtained from Ftractin-mNeonGreen-expressing or *Tg(cdh1:mланYFP)* embryos. Detected flow tracks
376 (orange) are superimposed on the raw data (bottom row). Horizontal scale bar, 5 μ m; vertical scale bar, 1
377 min. **(c')** Histograms of F-actin (N=5, n=7, 70 tracks; mean \pm s.d. = 0.22 \pm 0.09 μ m/min) and Ecad (N=4,
378 n=10, 100 tracks; mean \pm s.d. = 0.25 \pm 0.17 μ m/min) flow velocities at contacts (>3 min post contact
379 initiation), color-coded with yellow for centrifugal/outward-directed tracks, purple for
380 centripetal/inward-directed tracks and gray for immobile tracks (see also schematic on the left). **(d)**
381 Histograms of F-actin and Ecad flow velocities, color-coded as described in (c'), in mature contacts of
382 pnBb-treated (10 μ M) (N=7, n=11, 110 tracks; mean \pm s.d. = -0.07 \pm 0.15 μ m/min) or CA-Mypt-expressing
383 cells (70 pg mRNA/embryo) (N=3, n=10, 100 tracks; mean \pm s.d. = -0.01 \pm 0.13 μ m/min) obtained from
384 Ftractin-mNeonGreen-expressing or *Tg(cdh1:mланYFP)* embryos. **(e)** Representative images of F-actin (left
385 panel) and Ecad (middle panel) at the mature contact of a cell treated with lysophosphatidic acid (LPA, 20
386 nM) obtained from Ftractin-mKO2-expressing *Tg(cdh1:mланYFP)* embryos. Higher-magnification dual-
387 color image (right panel) with F-actin in green and Ecad in magenta at a region of the contact (marked by
388 the orange rectangle in left and middle panels), where an ectopic F-actin foci had formed upon LPA
389 treatment. Plot on the right side shows the intensity profiles of F-actin and Ecad along the dashed line

390 shown in the right panel. Scale bars, 5 μm (left and middle panels), 1 μm (right panel). **(e')** Histograms of
391 F-actin (N=3, n=5, 7 foci, 50 tracks; mean \pm s.d. = $-0.66 \pm 0.79 \mu\text{m}/\text{min}$) and Ecad (N=3, n=4, 4 foci, 40
392 tracks; mean \pm s.d. = $-0.5 \pm 0.47 \mu\text{m}/\text{min}$) flow velocities, color-coded with yellow for tracks directed away
393 from the foci, purple for tracks directed towards the foci and gray for immobile tracks (see also schematic
394 on the left), at regions of the contact in LPA-treated cells where ectopic F-actin foci had formed in cells
395 obtained from Ftractin-mNeongreen-expressing WT or Ftractin-mKO-expressing *Tg(cdh1:mlanYFP)*
396 embryos.

Fig. 3



397 **Figure 3. Actomyosin contractility affects contact size and F-actin/Ecad molecular turnover.**

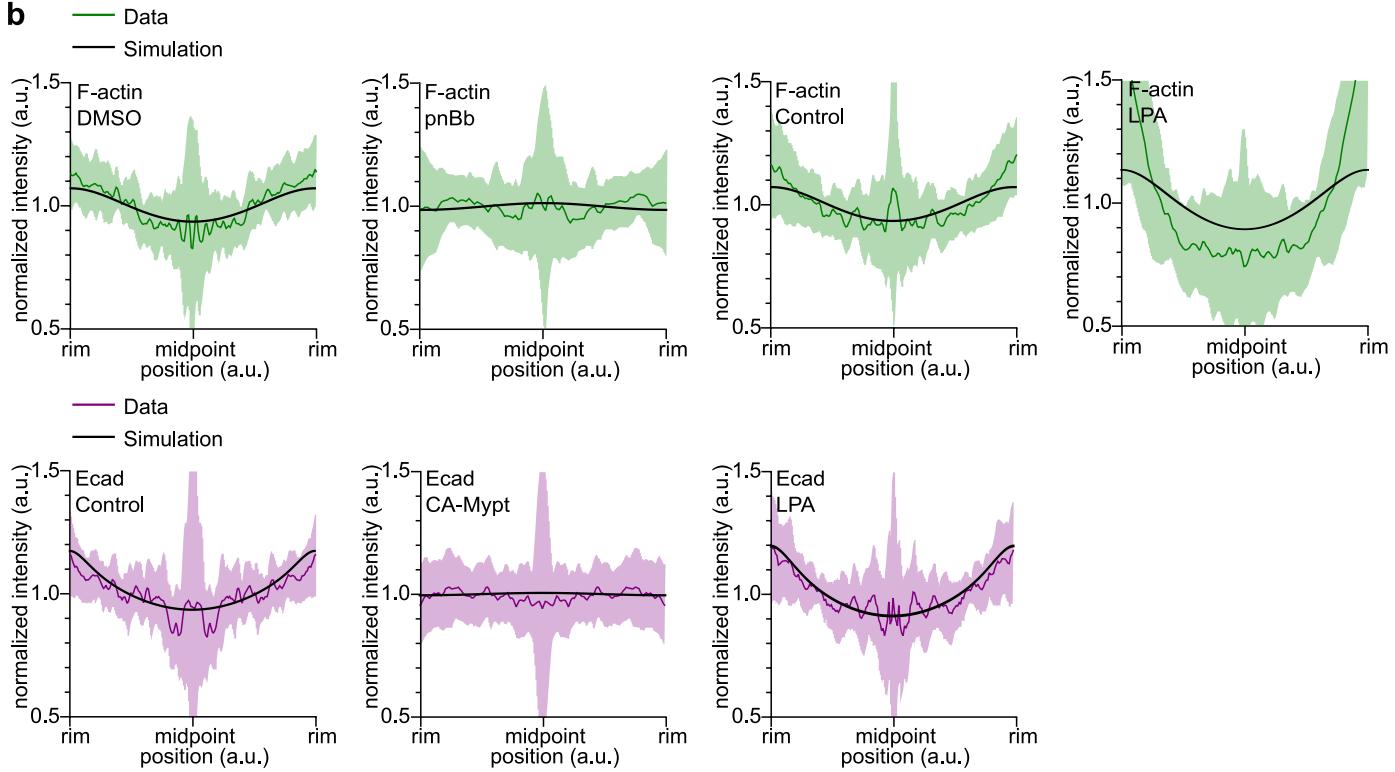
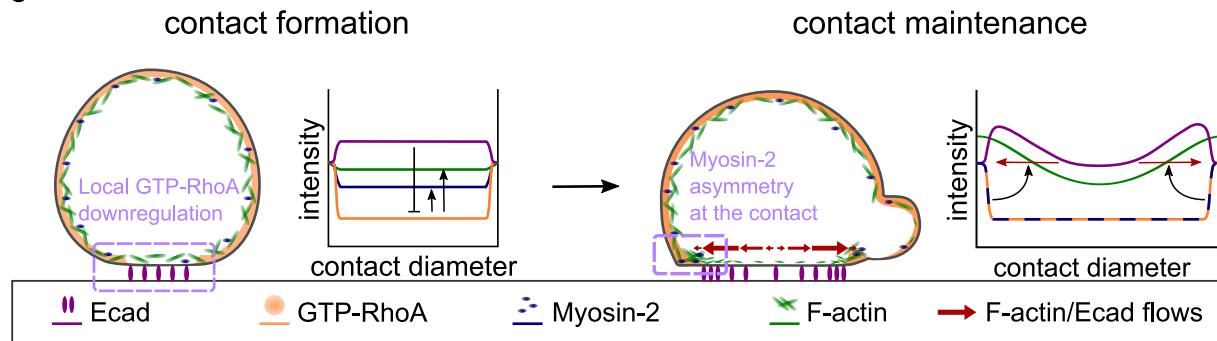
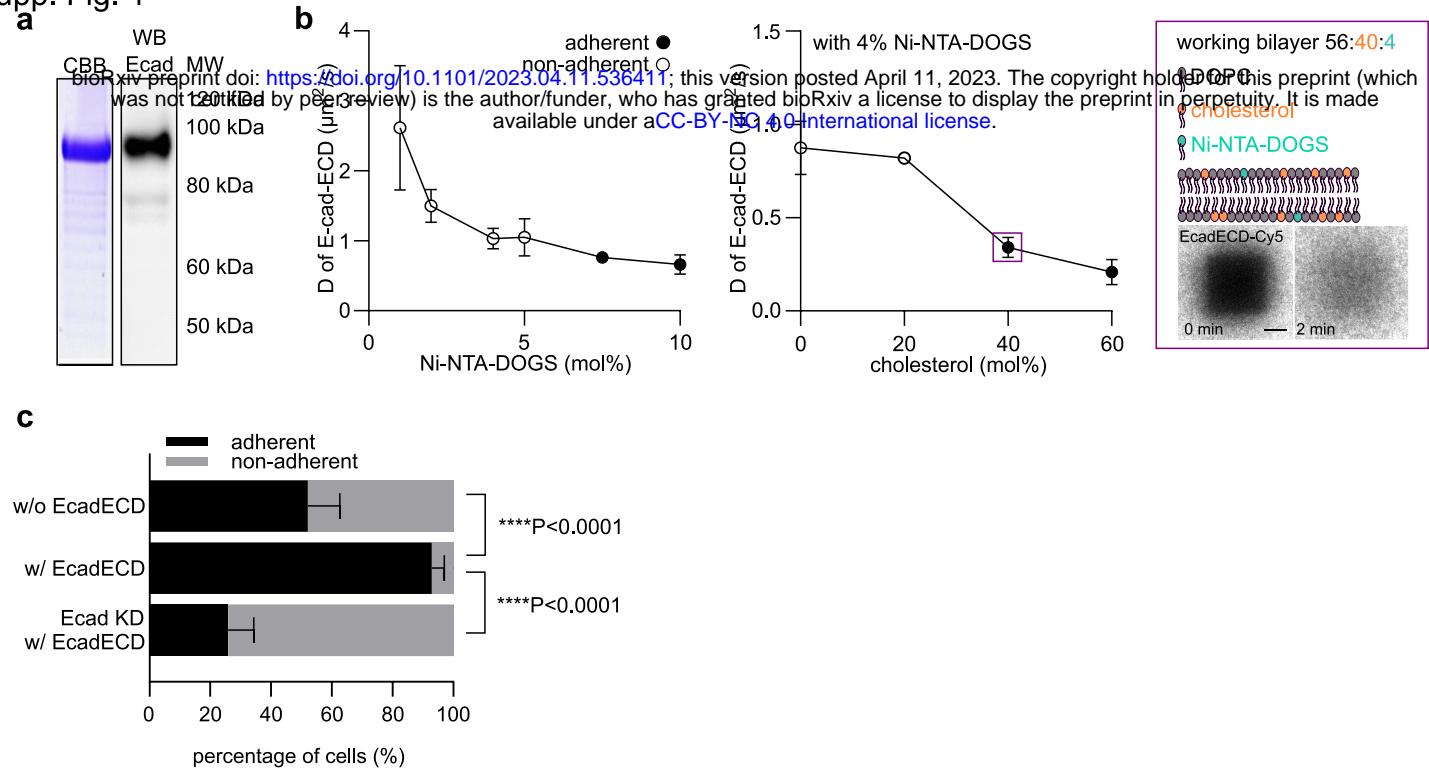

398 **(a)** Mature (>10 min post contact initiation) contact diameters of control (DMSO-treated (0.1%) (N=3,
399 n=24) or untreated (N=3, n=35)), para-nitroBlebbistatin-treated (pnBb, 10 μ M) (N=2, n=28), constitutively
400 active Myosin Phosphatase-expressing (CA-Mypt, 70 pg mRNA/embryo) (N=3, n=36) and lysophosphatidic
401 acid-treated (LPA, 20 nM) (N=3, n=31) cells. Data are mean \pm s.e.m. Student's t-test for DMSO control and
402 pnBb treatment; Kruskal-Wallis test for untreated control, CA-Mypt expression and LPA treatment. **(b)**
403 Representative TIRF image of TRITC-Actin (0.125 ng/embryo) localization at single-molecule resolution at
404 a mature contact. Scale bar, 5 μ m. **(b')** Time trajectories of detected single TRITC-Actin molecules, as
405 shown in (a), tracked over a period of 6 min. Color map indicates the duration of each trajectory. **(c)** TRITC-
406 Actin average lifetimes at mature contacts for control cells (either treated with 0.1% DMSO (N=3) or
407 untreated (N=3)), and cells treated with either 10 μ M pnBb (N=3) or 20 nM LPA (N=3). Each open circle
408 represents a value calculated from 3 different time-lapses obtained on the same day. Data are mean \pm
409 s.e.m. **(d)** Representative TIRF image of Ecad at the mature contact of a cell obtained from
410 *Tg(cdh1:mlanYFP)* embryos, at the first post-bleach frame during FRAP measurements. Scale bar, 5 μ m.
411 **(d')** Kymograph of Ecad recovery at the contact, obtained from intensity profiles along the dashed line
412 shown in (d). Horizontal scale bar, 5 μ m; vertical scale bar, 1 min. **(e)** Exemplary recovery curves of Ecad
413 intensity within bleached regions normalized to pre-bleach intensity (bleach at 2.5 s) at the mature
414 contacts of cells obtained from *Tg(cdh1:mlanYFP)* embryos for untreated control (N=1, n=11), CA-Mypt-
415 overexpression (70 pg mRNA/embryo) (N=1, n=9) and LPA treatment (20 nM) (N=1, n=9). Data are mean
416 \pm s.d. **(f)** Ecad recovery times after photobleaching at mature contacts of untreated control (N=3, n=35),
417 CA-Mypt-expressing (N=3, n=24) and LPA-treated (N=4, n=28) cells obtained from *Tg(cdh1:mlanYFP)*
418 embryos. Data are mean \pm s.e.m. Kruskal-Wallis test. **(f')** Immobile fractions of Ecad at mature contacts,
419 obtained for the data described in (f). Data are mean \pm s.e.m. Kruskal-Wallis test.

Fig. 4

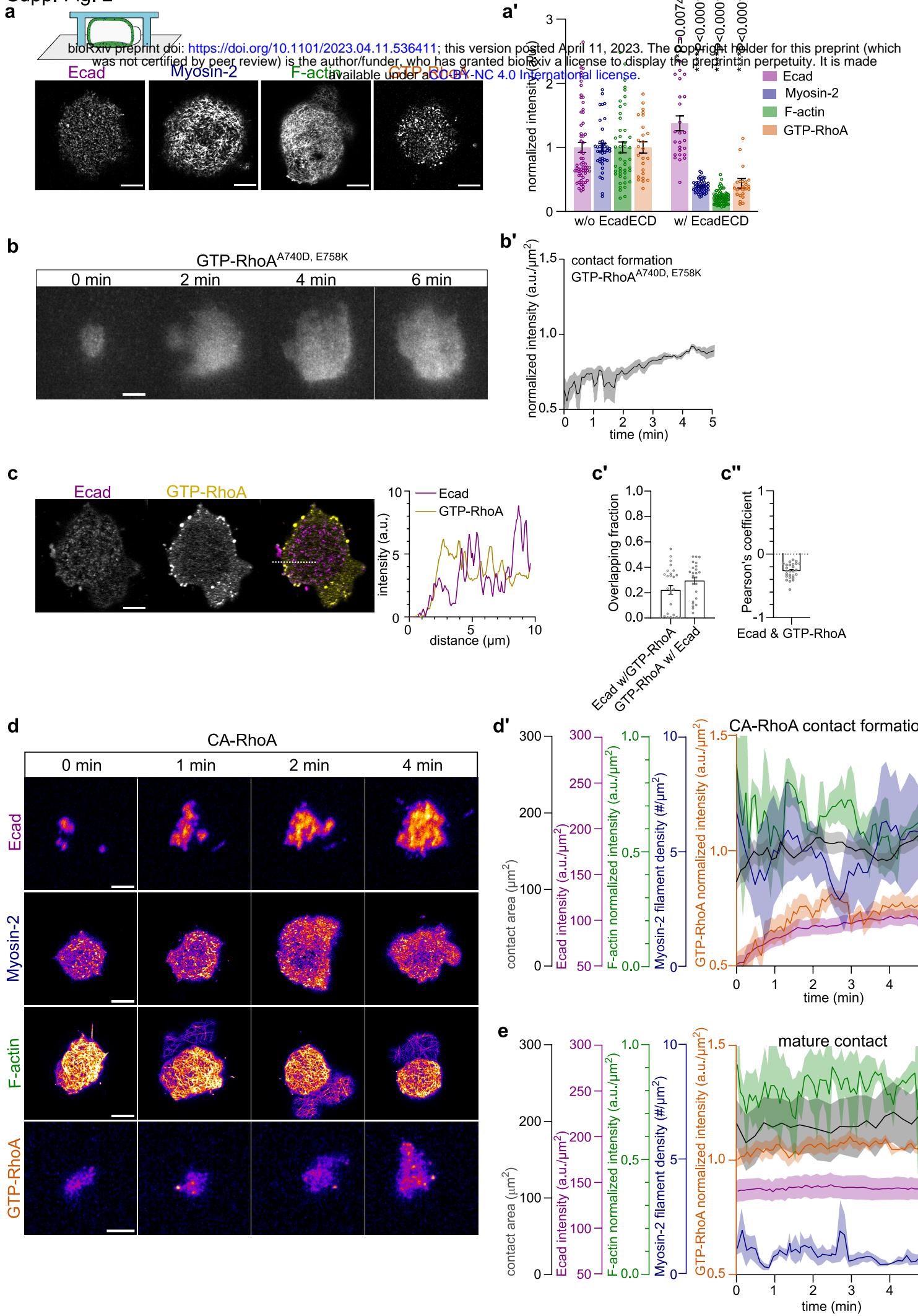

a

b


c

420 **Figure 4. Contractility-dependent flow velocity and molecular turnover determine spatial distribution**
421 **of F-actin and E-cadherin at the mature contact.**

422 **(a)** Plots of rim-to-center intensity ratios for F-actin or Ecad vs parameters predicting rim enrichment
423 (molecular lifetime (τ) * flow velocity (v) / contact diameter (L)) across different contractility conditions.
424 Dots represent individual mature (>10 min post initiation) contacts for which rim-to-center intensity ratios
425 (as shown in schematic on the left), flow velocities and contact diameters were measured, and molecular
426 lifetimes were taken from (Supp. Table 1). Lines indicate the predicted values of rim enrichment based on
427 the equation $A = 1 + v \frac{2\pi^2 \tau}{L}$ (see Methods). F-actin was imaged in cells obtained from Ftractin-
428 mNeonGreen-expressing embryos (0.1% DMSO (N=4, n=6) as control for 10 μ M para-nitroBlebbistatin
429 (pnBb) treatment (N=5, n=8) and untreated control (N=8, n=12) for 20 nM lysophosphatidic acid (LPA)
430 treatment (N=7, n=10)). Ecad was imaged in cells obtained from *Tg(cdh1:mlanYFP)* embryos (untreated
431 control (N=3, n=9) for CA-Mypt-overexpression (70 pg mRNA/embryo) (N=3, n=11) and LPA treatment
432 (N=5, n=10)). **(b)** Theoretically predicted steady-state F-actin and Ecad intensity profiles based on the
433 equation given in (a) with experimentally measured parameters (Supp. Table 1). For Ecad, an immobile
434 fraction was added to the equation (see Methods). In the same plots, radial F-actin and Ecad intensity
435 plots, normalized to rim-to-rim distance and average intensity, taken from the experiments interfering
436 with cell contractility shown in Fig. 2a,b and Supp. Fig. 4e',f' are shown. **(c)** Schematic of the mechanism
437 defining the molecular patterning of the cell contact. Upon contact initiation *trans*-bound Ecad-dependent
438 adhesion signaling locally downregulates active RhoA, leading to reduction of Myosin-2 and F-actin at the
439 contact center. Consequently, asymmetric distribution of Myosin-2 at the contact drives centrifugal flows
440 of F-actin, along with Ecad, thereby resulting in the accumulation of these proteins at the contact rim.


Supp. Fig. 1

441 **Supplementary Figure 1. SLB optimization procedures.**

442 **(a)** Representative Coomassie Brilliant Blue (CBB) stained SDS-PAGE image (left) and Western blot analysis
443 (right) of eluted zebrafish EcadECD, using anti-zebrafish EcadECD antibody for the western blot. **(b)** Ecad-
444 ECD-Cy5 diffusion constants for different bilayer compositions. Empty circles denote non-adherent (no
445 cell contacts), and full circles adherent (cell contacts) SLBs. Left plot shows the Ecad-ECD-Cy5 diffusion
446 constant as a function of Ni-NTA-DOGS molar concentrations for DOPC-composed SLBs. Middle plot shows
447 Ecad-ECD-Cy5 diffusion constant as a function of cholesterol molar concentrations for DOPC + 4 molar %
448 Ni-NTA-DOGS SLBs. Right schematic shows the bilayer chosen for the experimental work used in the
449 remainder of the study (denoted with a purple rectangle in the middle plot). Below are representative
450 images of a FRAP experiment for Ecad-ECD-Cy5 under this condition (0 and 2 min after bleaching). Scale
451 bar, 5 μ m. N=3 independent experiments were performed for each SLB composition. Data are mean \pm s.d.
452 **(c)** Percentage of adherent and non-adherent cells on SLBs coated with and without EcadECD (w/o
453 EcadECD N=3, n=48; w/ EcadECD; N=3, n=50) and using Ecad knockdown cells (2 ng *cdh1*
454 morpholino/embryo) (Ecad KD w/ EcadECD; N=3, n=50). Data are mean \pm s.e.m. Kruskal-Wallis test.

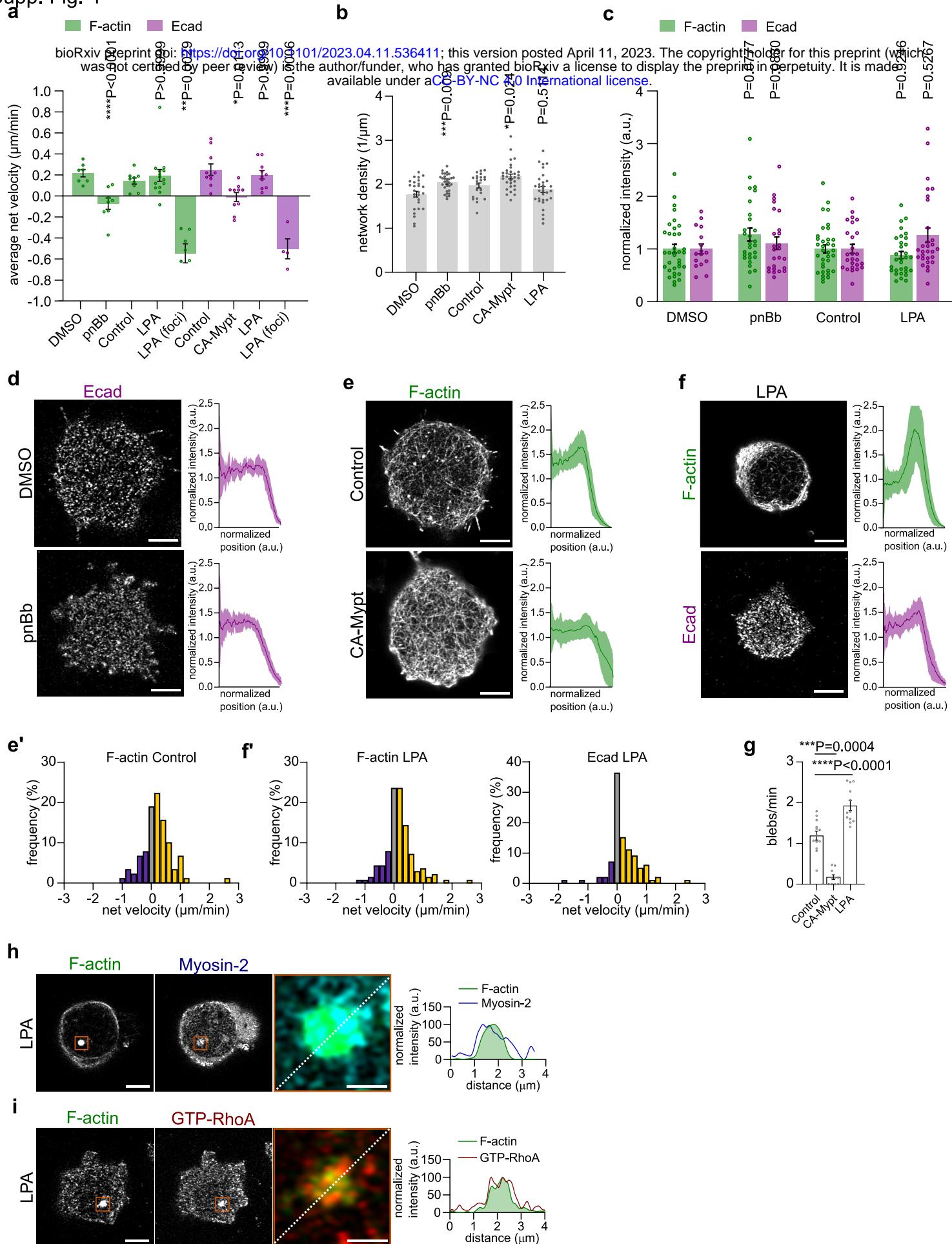
Supp. Fig. 2

455 **Supplementary Figure 2. RhoA GTPase and actomyosin activity at cell contacts.**

456 **(a)** Representative Airyscan contact images of Ecad in a cell obtained from *Tg(cdh1:mланYFP)*, Myosin-2
457 in a cell obtained from *Tg(actb2:My12.1-eGFP)*, F-actin in a cell obtained from Ftractin-mNeonGreen-
458 expressing and GTP-RhoA in a cell obtained from GFP-AHPH-expressing embryos, on bilayers lacking
459 EcadECD and spatially confined under a layer of PDMS as shown in the schematic above. Scale bars, 5 μ m.
460 **(a')** Average intensities of Ecad, Myosin-2, F-actin and GTP-RhoA at EcadECD-mediated mature (>10 min
461 post contact initiation) contacts, normalized to average intensities on bilayers lacking EcadECD (imaged
462 as indicated in (a)). Ecad (w/o EcadECD N=3, n=33; w/ EcadECD N=6, n=26), Myosin-2 (w/out EcadECD
463 N=3, n=20; w/ EcadECD N=7, n=50), F-actin (w/out EcadECD N=4, n=23; w/ EcadECD N=3, n=35) and GTP-
464 RhoA (w/out EcadECD N=2, n=25; w/ EcadECD N=4, n=27). Data are mean \pm s.e.m. Mann-Whitney *U*-test.
465 **(b)** Representative TIRF images of GTP-RhoA^{A740D,E758K} at contact of a cell obtained from GFP-AHPH-DM-
466 expressing embryos at consecutive steps of contact formation (0, 2, 4 and 6 min post contact initiation).
467 Scale bar, 5 μ m. **(b')** Plot of GTP-RhoA^{A740D,E758K} average intensity normalized to maximum intensity at the
468 contact as a function of time during contact formation (0-5 min post contact initiation). N=4, n=7. Data
469 are mean \pm s.e.m. **(c)** Representative images of Ecad (left panel) and GTP-RhoA (middle panel) at the
470 mature contact of a cell obtained from GFP-AHPH-expressing *Tg(cdh1:tdTomato)* embryos. Dual-color
471 image (right panel) shows Ecad in magenta and GTP-RhoA in yellow. Plot on the right side shows the
472 intensity profiles of Ecad and GTP-RhoA along the dashed line shown in the right panel. Scale bar, 5 μ m.
473 **(c')** Manders' coefficients M1 (for fraction of Ecad overlapping with GTP-RhoA), M2 (for fraction of GTP-
474 RhoA overlapping with Ecad), and **(c'')** Pearson's coefficient (ranging from -1 to 1 indicating the
475 relationship between signal intensities) for colocalization quantification of Ecad and GTP-RhoA. N=2, n=30.
476 Data are mean \pm s.e.m. **(d)** Representative TIRF (for Ecad and GTP-RhoA) or Airyscan (for Myosin-2 and F-
477 actin) contact images of Ecad in a cell obtained from *Tg(cdh1:mланYFP)*, Myosin-2 in a cell obtained from
478 *Tg(actb2:My12.1-eGFP)*, F-actin in a cell obtained from Ftractin-mNeonGreen-expressing and GTP-RhoA
479 in a cell obtained from GFP-AHPH-expressing embryos expressing constitutively active RhoA (CA-RhoA, 3
480 pg mRNA/embryo) at consecutive steps of contact formation (0, 1, 2 and 4 min post contact initiation).
481 Scale bars, 5 μ m. **(d')** Plots of contact area (N=3, n=5), Ecad average intensity (N=2, n=13), Myosin-2 mini-
482 filament density (N=3, n=5), F-actin average intensity normalized to maximum intensity (N=3, n=3) and
483 GTP-RhoA average intensity normalized to maximum intensity (N=3, n=9) at the contacts of CA-RhoA-
484 overexpressing cells as a function of time during contact formation (0-5 min post contact initiation). Data
485 are mean \pm s.e.m. **(e)** Plots at mature contacts (>10 min post contact initiation) of contact area (N=3, n=4),
486 Ecad average intensity (N=3, n=20) in cells obtained from *Tg(cdh1:mланYFP)*, Myosin-2 mini-filament

487 density (N=3, n=4) in cells obtained from *Tg(actb2:Myl12.1-eGFP)*, F-actin average intensity normalized to
488 maximum intensity (N=5, n=7) in cells obtained from Ftractin-mNeonGreen-expressing and GTP-RhoA
489 average intensity normalized to maximum intensity (N=4, n=7) in cells obtained from GFP-AHPP-
490 expressing embryos, quantified over 5 min. Data are mean \pm s.e.m.

Supp. Fig. 3

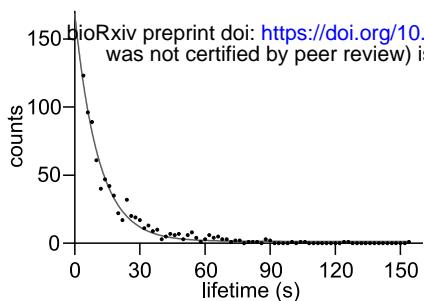


491 **Supplementary Figure 3. Spatial distribution of adhesion complex/actomyosin proteins and flows**
492 **during contact formation.**

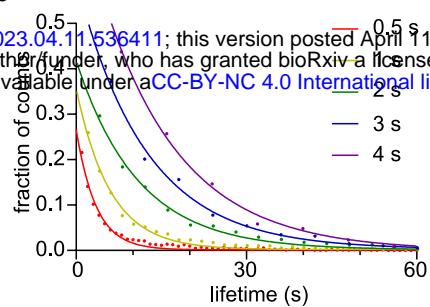
493 **(a)** Radial intensity plots, normalized to contact length and average intensity, at cell contacts on bilayers
494 lacking EcadECD and spatially confined under a layer of PDMS of Ecad (N=3, n=29) in cells obtained from
495 *Tg(cdh1:mlanYFP)*, Myosin-2 (N=3, n=18) in cells obtained from *Tg(actb2:Myl12.1-eGFP)*, F-actin (N=3,
496 n=19) in cells obtained from Ftractin-mNeonGreen-expressing and GTP-RhoA (N=2, n=21) in cells obtained
497 from GFP-AHPH-expressing embryos. Data are mean \pm s.e.m. **(b)** Plots of average contact rim intensity,
498 average contact center intensity, and rim-to-center intensity ratios of Ecad (N=3, n=5) in cells obtained
499 from *Tg(cdh1:mlanYFP)*, Myosin-2 (N=3, n=6) in cells obtained from *Tg(actb2:Myl12.1-eGFP)*, F-actin (N=5,
500 n=5) in cells obtained from Ftractin-mNeonGreen-expressing and GTP-RhoA (N=3, n=3) in cells obtained
501 from GFP-AHPH-expressing embryos as a function of time during contact formation (0-5 min post contact
502 initiation). Data are mean \pm s.e.m. **(c)** Representative Airyscan images of F-actin at the contact of a cell
503 obtained from Ftractin-mNeonGreen-expressing embryos during consecutive steps of contact formation
504 (0, 2, 4 and 6 min post contact initiation) (top row) and corresponding images of the skeletonized F-actin
505 networks at contact centers (bottom row). Scale bar, 5 μ m. **(c')** Plots of F-actin average intensity
506 normalized to maximum intensity and corresponding F-actin network density at the contact center as a
507 function of time during contact formation (0-6 min post contact initiation) (N=6, n=6). Purple background
508 marks period of contact expansion. Data are mean \pm s.e.m. **(d)** Radial density plot, normalized to contact
509 length, of the F-actin network at mature (>10 min post contact initiation) contacts of cells obtained from
510 Ftractin-mNeonGreen-expressing embryos. N=5, n=23. Data are mean \pm s.e.m. **(e)** Radial average flow
511 velocity of F-actin, normalized to contact length, measured along mature contacts of cells obtained from
512 Ftractin-mNeonGreen-expressing embryos. Positive values indicate centrifugal/outward-directed
513 velocities, and negative values indicate centripetal/inward-directed velocities. N=3, n=4. Data are mean \pm
514 s.e.m. **(f)** Representative kymograph of F-actin flows during contact formation along the contact diameter
515 of a cell obtained from Ftractin-mNeonGreen-expressing embryos. Scale bar, 5 μ m. **(f')** Histograms of F-
516 actin flow velocities, measured at 0-3 min post contact initiation vs 3-10 min post contact initiation at
517 contacts of cells obtained from Ftractin-mNeonGreen-expressing embryos. N=3, n=5, 50 tracks per time
518 period. **(f'')** F-actin flow velocities per cell at 0-3, 3-10 and >10 min post contact initiation. **(g)**
519 Representative images of Ecad (left panel) and F-actin (middle panel) at the mature contact of a cell
520 obtained from Ftractin-mKO2-expressing *Tg(cdh1:mlanYFP)* embryos. Dual-color image (right panel)
521 shows Ecad in magenta and F-actin in green. Plot on the right side shows the intensity profiles of Ecad and
522 F-actin along the dashed line shown in the right panel, with green background marking the outermost F-

523 actin peak at the contact rim. Scale bar, 5 μ m. **(g')** Manders' coefficients M1 (for fraction of Ecad
524 overlapping with F-actin), M2 (for fraction of F-actin overlapping with Ecad) and **(g'')** Pearson's coefficient
525 (ranging from -1 to 1 indicating the relationship between signal intensities) for colocalization
526 quantification of Ecad and F-actin. N=2, n=28. Data are mean \pm s.e.m. **(h)** Localization of Ecad (N=3, n=24),
527 Myosin-2 (N=3, n=14) and GTP-RhoA (N=2, n=24) intensity peaks in reference to F-actin peaks at contact
528 rims, measured in dual-color contact images of cells obtained from Ftractin-mKO-expressing
529 *Tg(cdh1:mlanYFP)*, *Tg(actb2:Myl12.1-eGFP;actb2:Utrophin-mCherry)* or GFP-AHPH and Ftractin-mKO-
530 expressing WT embryos. Positive values indicate the direction of the contact center, and negative values
531 indicate the direction of the contact rim.

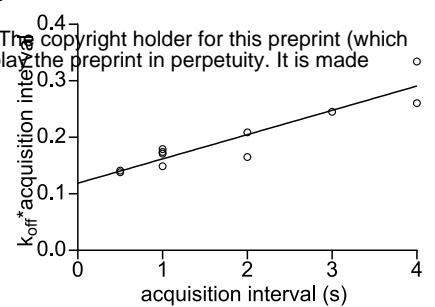
Supp. Fig. 4


532 **Supplementary Figure 4. F-actin and Ecad localization and flows at differently contractile cell contacts.**

533 **(a)** F-actin and Ecad average flow velocities per cell of F-actin imaged in cells obtained from Ftractin-
534 mNeonGreen-expressing embryos (0.1% DMSO (N=5, n=7) as control for 10 μ M paranitroBlebbistatin
535 (pnBb) treatment (N=7, n=11), untreated control (N=6, n=9) for 20 nM lysophosphatidic acid (LPA)
536 treatment (N=7, n=14) and locally around LPA-induced foci (N=3, n=5), and of Ecad imaged in cells
537 obtained from *Tg(cdh1:mланYFP)* embryos untreated control (N=4, n=10) for 70 pg/embryo constitutively-
538 active Myosin Phosphatase-expressing (CA-Mypt, 70 pg mRNA/embryo) (N=3, n=10), LPA-treated (N=6,
539 n=10) and locally around LPA-induced foci (N=3, n=4). Obtained tracks were also used in construction of
540 histograms displayed in Fig. 2c',d,e',(e') and (f'). Mann-Whitney *U*-test for DMSO control and pnBb.
541 Kruskal-Wallis test for untreated control, LPA and LPA foci. Data are mean \pm s.e.m. **(b)** F-actin network
542 density calculated at the mature (>10 min post contact initiation) contact centers of 0.1% DMSO control
543 (N=3, n=27), 10 μ M pnBb-treated (N=3, n=25), untreated control (N=3, n=22), CA-Mypt-expressing (70 pg
544 mRNA/embryo) (N=4, n=34) and 20 nM LPA-treated (N=3, n=31) cells obtained from Ftractin-
545 mNeonGreen-expressing embryos. Data are mean \pm s.e.m. cells obtained from Ftractin-mNeonGreen-
546 expressing embryos. Data are mean \pm s.e.m. Student's *t*-test for DMSO control and pnBb. ANOVA test for
547 untreated control, CA-Mypt and LPA. **(c)** Average intensities at mature contacts of F-actin in cells obtained
548 from Ftractin-mNeonGreen-expressing embryos and Ecad in cells obtained from *Tg(cdh1:tdTomato)*
549 (DMSO and pnBb) or *Tg(cdh1:mланYFP)* (untreated control and LPA) embryos, treated with 0.1% DMSO
550 (F-actin N=3, n=39; Ecad N=2, n=16) as control for 10 μ M pnBb treatment (F-actin N=3, n=28; N=2, n=25),
551 or untreated (F-actin N=3, n=35; Ecad N=6, n=26, data is re-used from Supp. Fig. 2a') as control for 20 nM
552 LPA treatment (F-actin N=3, n=30; Ecad N=4, n=29). Data are mean \pm s.e.m. Mann-Whitney *U*-test. **(d)**
553 Representative Airyscan images at mature contacts, of Ecad in cells obtained from *Tg(cdh1:tdTomato)*
554 embryos, along with radial intensity plots, normalized to contact length and average intensity, for
555 0.1%DMSO (N=2, n=15) and 10 μ M pnBb (N=2, n=24) treatments. Scale bars, 5 μ m. Data are mean \pm s.e.m.
556 **(e)** Representative Airyscan images at mature contacts, of F-actin in cells obtained from Ftractin-
557 mNeonGreen-expressing embryos, along with radial intensity plots, normalized to contact length and
558 average intensity, for untreated control (N=3, n=31) and CA-Mypt-expressing cells (70 pg mRNA/embryo)
559 (N=2, n=25). Scale bars, 5 μ m. **(e')** Histogram of F-actin (N=6, n=9, 90 tracks) flow velocities at mature
560 contacts, color-coded with yellow for centrifugal/outward-directed tracks, purple for centripetal/inward-
561 directed tracks and gray for immobile tracks (see also schematic in Fig. 2e'). Data are mean \pm s.e.m. **(f)**
562 Representative Airyscan images at 20 nM LPA-treated mature contacts, of F-actin in cells obtained from
563 Ftractin-mNeonGreen-expressing and of Ecad cells obtained from *Tg(cdh1:mланYFP)* embryos, along with


564 radial intensity plots, normalized to contact length and average intensity. F-actin N=3, n=34 and Ecad N=3,
565 n=16. Scale bars, 5 μ m. Data are mean \pm s.e.m. **(f')** Histograms of F-actin (N=7, n=14, 140 tracks) and Ecad
566 (N=6, n=10, 100 tracks) flow velocities at 20 nM LPA-treated mature contacts, color-coded as described
567 in (e'). **(g)** Frequency of blebs in untreated control (N=3, n=13), CA-Mypt-expressing (75 pg/embryo) (N=3,
568 n=10) and 20 nm LPA-treated (N=4, n=12) mature contacts. Data are mean \pm s.e.m. ANOVA test. **(h)**
569 Representative images of F-actin (left panel) and Myosin-2 (middle panel) at the mature contacts of a cell
570 treated with 20 nM LPA, obtained from *Tg(actb2:Myl12.1-eGFP;actb2:Utrophin-mCherry)* embryos.
571 Higher-magnification dual-color image (right panel) with F-actin in green and Myosin-2 in dark blue at a
572 region of the contact (marked by the orange rectangle in left and middle panels), where an ectopic F-actin
573 foci had formed upon LPA treatment. Plot on the right side shows the intensity profiles of F-actin and
574 Myosin-2 along the dashed line shown in the right panel. Scale bars, 5 μ m (left and middle panels), 1 μ m
575 (right panel). **(i)** Representative images of F-actin (left panel) and GTP-RhoA (middle panel) at the mature
576 contacts of a cell treated with 20 nM LPA, obtained from GFP-AHPH and Ftractin-mKO-expressing
577 embryos. Higher-magnification dual-color image (right panel) with F-actin in green and GTP-RhoA in red
578 at a region of the contact (marked by the orange rectangle in left and middle panels), where an ectopic F-
579 actin foci had formed upon LPA treatment. Plot on the right side shows the intensity profiles of F-actin
580 and GTP-RhoA along the dashed line shown in the right panel. Scale bars, 5 μ m (left and middle panels),
581 1 μ m (right panel).

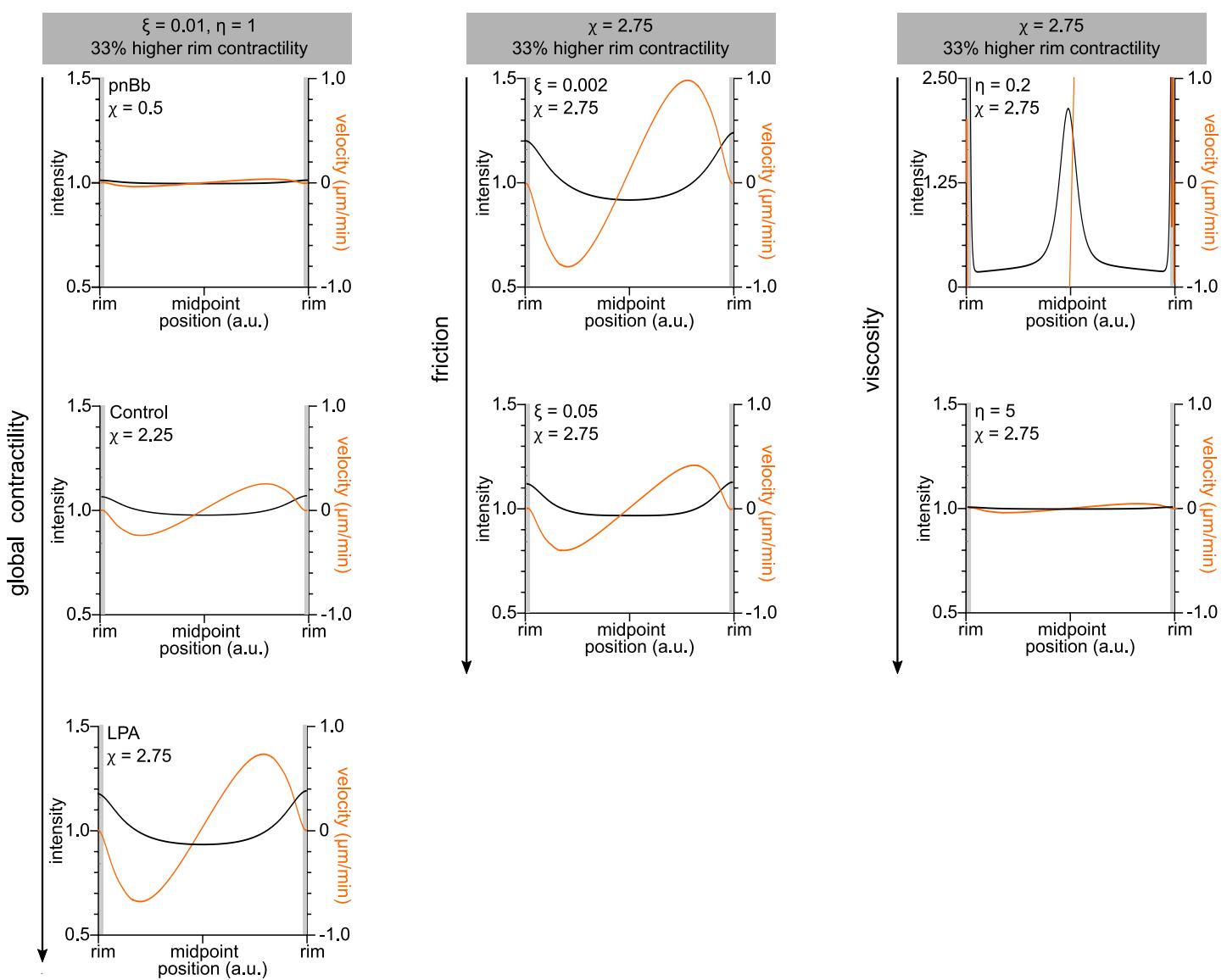
Supp. Fig. 5


a

b

c

582 **Supplementary Figure 5. Single-molecule measurement of Actin lifetime.**


583 **(a)** Exemplary decay curve of TRITC-Actin single-molecule lifetime distributions from a single cell contact
584 (dots), imaged with 1 s acquisition intervals, overlaid with the best-fit monoexponential decay function
585 (line). n=795 tracks. **(b)** Decay curves of TRITC-Actin single-molecule lifetime at cell contacts imaged with
586 different acquisition intervals (0.5, 1, 2, 3 and 4 s). Dots represent the measurements and lines indicate
587 the monoexponential best fits. (0.5 s N=1, n=2; 1 s N=2, n=4; 2 s N=2, n=2; 3 s N=1, n=1; 4 s N=1, n=2). **(c)**
588 Plot of effective dissociation rates multiplied with acquisition intervals as a function of acquisition interval,
589 corresponding to the data shown in (b). Open circles represent the measurements and the line indicates
590 the best linear fit used for calculating the bleach-corrected dissociation rate.

Supp. Fig. 6

a

b

591 **Supplementary Figure 6. Modeling flows at the contact.**

592 **(a)** Theoretically predicted intensity profiles at 0, 0.5, 1 and 5 min for an exemplary condition with protein
593 lifetime of 0.5 min and average flow velocity of 0.2 $\mu\text{m}/\text{min}$ at a contact of 20 μm diameter, based on first-
594 order kinetics and the equation given in Fig. 4a. **(b)** Theoretically predicted steady-state intensity and
595 velocity profiles along contacts, based on active gel equations (see Methods). For an increased value of
596 local contractility at the contact rim, increased values of global actomyosin contractility of the gel χ (left
597 panel) represent differing contractility conditions in experimental data. Increased values of friction ξ
598 (middle panel) and viscosity η (right panel) are explored for the high global contractility condition.

	Contact diameter (μm)	Actin average flow velocity (μm/min)	Actin average lifetime (s)	Ecad average flow velocity (μm/min)	Ecad average recovery time (s)	Ecad immobile fraction
DMSO control	16.01 ± 3.11	0.25 ± 0.69	20.77 ± 2.92			
pnBb	16.89 ± 2.64	-0.07 ± 0.44	42.3 ± 2.76			
Untreated control	16.12 ± 3.28	0.21 ± 0.49	24.9 ± 1.8	0.25 ± 0.17	11.69 ± 4.71	0.13 ± 0.09
CA-Mypt	15.06 ± 4.49			-0.01 ± 0.13	9.10 ± 2.51	0.16 ± 0.07
LPA	13.77 ± 2.24	0.22 ± 0.57	35.1 ± 3.3	0.20 ± 0.13	14.17 ± 3.73	0.19 ± 0.11

599

600 **Supplementary Table 1. Experimentally obtained simulation parameters.**

601 Average contact diameters (Fig. 3a), flow velocities (Fig. 2 c', d, e', Supp. Fig. 4e', f') and molecular turnover
602 times (Fig. 3c, f, f') for differing contractility conditions.

603 **Video Legends**

604 **Supplementary Video 1. Contact formation.**

605 Part 1: Time-lapse TIRF movie of Ecad at the forming contact (0-6 min post contact initiation) of a cell
606 obtained from a *Tg(cdh1:mlanYFP)* embryo. Part 2: Time-lapse Airyscan movie of Myosin-2 at the forming
607 contact of a cell obtained from a *Tg(actb2:myl12.1-eGFP)* transgenic embryo. Part 3: Time-lapse Airyscan
608 movie of F-actin at the forming contact of a cell obtained from an embryo expressing Ftractin-
609 mNeonGreen. Part 4: Time-lapse TIRF movie of GTP-RhoA at the forming contact of a cell obtained from
610 an embryo expressing GFP-AHPH. Left panel: raw movie. Right panel: the raw movie masked to remove
611 bright GFP-AHPH foci. Scale bars, 5 μ m.

612

613 **Supplementary Video 2. F-actin centrifugal flows at the contact.**

614 Time-lapse Airyscan movies of F-actin at the mature contacts (>10 min after contact initiation) for the
615 different contractility conditions, with cells obtained from embryos expressing Ftractin-mNeonGreen. Part
616 1: Contact of an untreated control cell. Part 2: Contact of a cell treated with 10 μ M para-nitroBlebbistatin
617 (pnBb). Part 3: Contact of a cell treated with 20 nM lysophosphatidic acid (LPA). The yellow rectangles
618 demarcate ROIs shown with temporal-color coding at the end of the movie. Scale bars, 5 μ m for movies
619 and 1 μ m for ROIs.

620

621 **Supplementary Video 3. E-cadherin centrifugal flows at the contact.**

622 Time-lapse Airyscan movie of Ecad at the mature contacts (>10 min after contact initiation) for the
623 different contractility conditions, with cells obtained from *Tg(cdh1:mlanYFP)* embryos. Purple circles mark
624 Ecad clusters in randomly selected trajectories of minimum 1 min. Part 1: Contact of an untreated control
625 cell. Part 2: Contact of a cell obtained from an embryo expressing constitutively active Myosin
626 phosphatase (CA-Mypt, 70 pg mRNA/embryo). Part 3: Contact of a cell treated with 20 nM
627 lysophosphatidic acid (LPA). Scale bars, 5 μ m.

628 **Materials and Methods**

629 *Expression and purification of EcadECD*

630 cDNA encoding the zebrafish E-cadherin ectodomain (Q90Z37_DANRE, EC1 to EC5, residues G141 to
631 D672), with an N-terminal human CD33 signaling peptide and C-terminal 12xHis purification tag was
632 codon optimized and ordered as a gBlocks Gene Fragment (IDT) with overhangs for Gibson assembly
633 (NEB). The sequence was engineered to have a single Cys in the EC5 domain for site-specific labeling as
634 previously described¹¹. The product was inserted between EcoRI and XbaI sites of pcDNA3.1(-) mammalian
635 expression vector (Invitrogen). EcadECD was expressed in suspension FreeStyle 293-F cells (Thermo Fisher
636 Scientific) in Freestyle 293 Expression Medium at 37°C with 8% CO₂. FreeStyle 293-F cells were transiently
637 transfected using polyethyleneimine (Polysciences, #23966) in Opti-MEM Reduced Serum Medium
638 (Thermo Fisher Scientific). Cultures were supplemented with 5 mM CaCl₂ 2 days after transfection⁷⁶, and
639 culture media containing secreted EcadECD was collected 5 days later. Filtered and conditioned media
640 was loaded to HisTrap Fast Flow Crude Column (Cytiva) for affinity chromatography on an ÄKTA Pure Fast
641 Protein Liquid Chromatography system (Cytiva) and eluted with an imidazole gradient at 4°C. Clean
642 fractions, determined by SDS-PAGE stained with Coomassie Brilliant Blue, were pooled together and
643 dialyzed overnight in storage solution (100 mM NaCl, 20 mM Tris-Cl pH 8, 3 mM CaCl₂). Alternatively, the
644 buffer was exchanged using PD-10 desalting columns (Cytiva). The identity of the protein was verified with
645 N-terminal sequencing. Clean protein was aliquoted at a final 50 µg/ml concentration and snap-frozen for
646 long-term storage at -80°C with 5% glycerol.

647

648 *Fluorescent labeling of EcadECD*

649 To perform FRAP experiments for determining the protein diffusion constant, EcadECD was labeled at the
650 Cys residue using Sulfo-C5-maleimide (Lumiprobe). First, the sample was incubated for 20 min with TCEP
651 (100 molar fold excess of protein) at room temperature. Then, maleimide dye (10 molar fold excess of
652 protein) was added to the sample and incubated at room temperature for 1 h. Excess dye was removed
653 using a 7K MWCO Zeba™ Spin Desalting Column (Thermo Fisher Scientific).

654

655 *Western blot*

656 Eluted protein fraction was incubated at 70°C in NuPAGE LDS Sample Buffer and NuPAGE Sample Reducing
657 Agent (Invitrogen) for 10 min before getting loaded to a 4-12% NuPAGE Bis-Tris protein gel. After SDS-
658 PAGE, proteins were transferred to a membrane using the iBlot Western Blotting System (Invitrogen)
659 according to the manufacturer's protocol. For the immunodetection of EcadECD, membrane was blocked

660 with blocking buffer (3% BSA, 0.2% Tween-20 in PBS) for 1 h at room temperature and incubated overnight
661 with rabbit anti-zebrafish Ecad antibody²¹ (1:5000) in blocking solution. After 3x10 min washes with PBT
662 (PBS with 0.2% Tween), membrane was incubated with Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L)
663 (1:20000) (Jackson ImmunoResearch Laboratories, Inc.) for 45 min at room temperature and washed 4x5
664 min with PBT, then 2x5 min with PBS. The membrane was developed with Clarity Western ECL Substrate
665 (Bio-Rad) before imaging.

666

667 *Preparation of SLBs and functionalization with EcadECD*

668 To make small unilamellar vesicles, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (Avanti Polar Lipids),
669 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt, Ni-NTA-
670 DOGS) (Avanti Polar Lipids), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene
671 glycol)-2000] (DSPE-PEG2000) (Avanti Polar Lipids), and freshly dissolved cholesterol (Sigma Aldrich) lipid
672 mixtures in chloroform with a molar ratio of 55.9:4:0.1:40 (unless otherwise stated) were prepared in
673 glass vials and evaporated under N₂ stream to get a homogenous thin film. Lipids were further vacuumed
674 for 1 h to remove the remaining solvent and frozen at -20°C unless freshly used. Lipid films were
675 resuspended in vesicle buffer (75 mM NaCl, 20 mM Hepes) at 37°C by vortexing to a final concentration
676 of 1.5mM and freeze-thawed in liquid nitrogen 5x before aliquoting. Aliquots were kept at -20°C and used
677 within 2 weeks. For experiments, solutions were diluted to 0.2 mM with vesicle buffer and bath sonicated
678 for 15 min.

679 To form the lipid bilayers on coverslips, 24×50 mm high-precision coverslips (no. 1.5H; Marienfeld) were
680 cleaned in Piranha solution (3:1, 98% H₂SO₄ (Merck):30% H₂O₂ (Sigma-Aldrich)) for 1 h. The coverslips
681 were further washed with deionized water and kept in water to be used within 2 weeks. Before use,
682 coverslips were dried, PCR tubes, with their conical ends removed, were attached to the coverslips as
683 reaction chambers, using ultraviolet curing glue (Norland optical adhesive 63) under UV light for 5 min.
684 The coverslips were then treated in a Zepto B (Diener Electronic) plasma oven for 12 min at 30 W under 1
685 L/h airflow. Immediately after, vesicle mixtures were added to reaction chambers, and after letting the
686 vesicles settle for 4 min, 3 mM CaCl₂ was added to enhance vesicle fusion on the activated surface.
687 Chambers were incubated for 1 h at 37°C, washed with PBS through serial washes by vigorous pipetting
688 and incubated with 0.1% fatty acid free BSA (Sigma-Aldrich) in protein storage buffer for 30 min. EcadECD
689 was added to a 2 µg/ml final concentration to these chambers and incubated for 45 min at room
690 temperature before changing to pre-warmed imaging medium with serial washes.

691

692 *Zebrafish lines and handling*

693 Zebrafish (*Danio rerio*) were handled under a 14 h light/10 h dark cycle⁷⁷. Embryos were raised at 28.5–
694 31°C in E3 medium and staged as previously described⁷⁸. The following lines were used: WT ABxTL,
695 *Tg(cdh1-tdTomato)xt18*³¹, *Tg(cdh1-mlanYFP)xt17*³¹ and *Tg(actb2:Myl12.1-eGFP;actb2:Utrophin-mCherry)*
696 generated by crossing the preexisting lines *Tg(actb2:Myl12.1-eGFP)* and *Tg(actb2:Utrophin-mCherry)*^{21,34}.
697 Fish were bred in the aquatics facility of IST Austria according to local regulations, and all procedures were
698 approved by the Ethics Committee of IST Austria regulating animal care and usage.

699

700 *Cloning of expression constructs*

701 PCR products from plasmids GFP-AHPH-WT (a gift from Michael Glotzer, Addgene plasmid # 68026) and
702 GFP-AHPH-DM (a gift from Alpha Yap, Addgene plasmid # 71368) were subcloned using following primers
703 to create Gateway attB PCR products: GFP-AHPH-WT (5'-
704 GCAGGATCCCATCGATTATGGTGAGCAAGGGCGAG-3' and 5'-
705 CGTAATACGACTCACTATAGTTCAAGGCTTCCAATAGGTTTAGCAA-3'), GFP-AHPH-DM (5'-
706 AATACAAGCTACTTGTCTTTGCAGGATCCCATCGATTATGGTGAGCAAGGGCGAG-3' and 5'-
707 TCTGGATCTACGTAATACGACTCACTATAGTTCTAGAGGGCTAAGGCTTCCAATAGGTTTAGC-3'). cDNA
708 sequence coding for Ftractin (IP3KA_RAT, residues M10 to G52) was codon-optimized and ordered as a
709 gBlocks Gene Fragment (IDT) with attB arms. All products were recombined with pDONR (P1-
710 P2)(Lawson#208) to create entry clones, and further recombined with p3E mNeonGreen (Allelebiotech),
711 p3E mKO2⁷⁹ or p3E polyA (Chien#302), and pCS2-Dest (Lawson #444) to create expression plasmids.

712

713 *Embryo microinjections*

714 All embryos were microinjected with 100 pg *lefty1* mRNA at 1-cell stage to induce ectoderm fate. To
715 visualize F-actin and RhoA activities, or to modulate contractility, following mRNAs were additionally
716 injected into 1-cell stage embryos: 60pg *Ftractin-mNeonGreen*, 60 pg of *Ftractin-mKO2*, 80 pg of *GFP-*
717 *AHPH-WT*³⁹, 80 pg of *GFP-AHPH-DM*⁴⁰, 70 pg *constitutively active Myosin Phosphatase (CA-Mypt)*⁵⁰ and 3
718 pg *constitutively active RhoA (CA-RhoA)*⁴¹. To decrease endogenous Ecad amounts, 4 ng *cdh1* morpholino
719 (5'-TAAATCGCAGCTTCCCTAACG-3', GeneTools)³⁰ was injected at 1-cell stage. Additionally, to
720 visualize F-actin, 0.125 ng Actin protein from rabbit skeletal muscle labeled with TRITC (Cytoskeletal, Inc.)
721 was injected to 1-cell stage embryos. Synthetic mRNAs were produced using the SP6 mMessage
722 mMachine kit (Ambion) and Actin protein was handled according to the manufacturer's protocol.

723

724 *Preparation of embryo cell cultures*

725 30 min before live imaging, embryos were transferred to pre-warmed (28.5-31°C) 0.9x DMEM/F12
726 medium²³ (Sigma-Aldrich) supplemented with GlutaMAX (Gibco) and Penicillin-Streptavidin. The
727 blastoderm caps were dissected from the yolk cells at sphere stage with forceps and transferred to 1.5 ml
728 eppendorf tubes using glass pipettes. In the case of inhibitor use, media in the eppendorfs was exchanged
729 to inhibitor-containing media 10 min before cell seeding. All explants were dissociated by gentle tapping
730 and seeded on bilayers covered with control or inhibitor-supplemented media at 29°C.

731

732 *Inhibitor treatments*

733 The following inhibitor concentrations in DMEM/F12 media were used: 10 µM for para-nitrolebbitatin
734 (10 mM stock dissolved in DMSO) (Optopharma Ltd.) and 20 nM for 1-Oleoyl lysophosphatidic acid sodium
735 salt (LPA) (5 mM stock dissolved in water) (Tocris). As controls, DMEM/F12 media with or without DMSO
736 (0.1%) were used depending on the solvent of the pharmacological inhibitors.

737

738 *Cell confinement by polydimethylsiloxane (PDMS) confiners*

739 In the case of bilayers without EcadECD (except for adherence assay, see below), cells were put under
740 slight PDMS confinement to increase the imaged contact area. Cells were seeded onto bilayers formed on
741 coverslips glued to the bottom of plastic dishes containing a 17 mm round hole, on which a chamber was
742 created by gluing a ring cut from a 15 ml falcon tube. 1:10 PDMS mixtures (Sylgard 184, Ellsworth
743 Adhesives) were prepared as previously described⁸⁰, degassed for 2 min at 2,000 rpm (mix) and for 2 min
744 at 2,200 rpm (defoam) in a mixer/defoamer (ARE-250, Thinky). PDMS was poured onto a wafer and 10
745 mm round coverslips that were activated by plasma cleaning were pressed onto this mix. The wafer was
746 baked at 95 °C for 15 min and the 16 µm high micropillar-coated coverslips were gently removed from the
747 wafer to be used as confiners. Before use, a confiner was incubated for 5 min with FBS, washed with PBS
748 and kept in culture medium. For imaging, the confiner was placed on a soft pillar attached to a magnetic
749 glass lid, closed on the cells, and kept in place using a magnetic ring underneath the dish during imaging.

750

751 *Microscopy*

752 Imaging was performed using microscopes with heating chambers at 29°C. For imaging contact formation,
753 acquisition was started as soon as cells were seeded. For imaging steady contacts, cells were imaged 10-
754 30 min post seeding. Cultures were imaged for ~ 1 h maximum, and dividing or apoptotic cells were
755 excluded from the subsequent analysis. Most contacts were imaged using an LSM800 equipped with an

756 Airyscan detector and a Plan-APOCHROMAT 63x/1.4 oil objective (Zeiss). For time lapse imaging of Ecad
757 and RhoA biosensors, which showed weaker signal and/or higher photobleaching, Andor Dragonfly 505
758 equipped with 1x Andor Zyla sCMOS detector and a CFI Apochromat TIRF 60x/NA 1.49/WD 0.13 mm oil
759 objective (Nikon) was used when quantifying intensity changes over time. For all markers, imaging
760 parameters that minimized photobleaching were used for time-lapse analysis (Supp. Fig. 2e). For imaging
761 bilayers, single molecules and FRAP experiments, A TILL Photonics iMic TIRF System equipped with Andor
762 TuCam detection and a 100x/1.49 (Olympus) oil objective was used.

763

764 *Data Visualization and Analysis*

765 All micrographs for figures were adjusted for contrast using Fiji⁸¹. Data for the rest of the analysis were
766 processed raw. Data were plotted using Prism 6 (Graphpad). For sketches and final formatting of figures,
767 Inkscape (Inkscape Project, 2020) was used.

768 In Supp. Videos 2 and 3, frame averages were made over 2 subsequent frames for better visualization.
769 Temporal visualization in Supp. Video 2 was performed with the Temporal-Color Code plugin in Fiji.
770 Temporal trajectory construction in Supp. Video 3 was performed with the TrackMate plugin⁸² in Fiji,
771 based on a Gaussian fit with an estimated diameter of 0.5 μm . Linking distance of maximum 0.3 μm and
772 gaps of maximum 3 frames were allowed to account for failures to detect Ecad clusters. Randomly-picked
773 trajectories longer than 1 min were shown in the movie.

774

775 *FRAP experiments and analysis*

776 To measure the diffusion constant of EcadECD-Cy5 on different bilayer compositions, photobleaching
777 experiments were performed with a frame rate of 2 s per frame. 5 pre-bleach frames were acquired,
778 followed by photobleaching of an area of about 10 $\mu\text{m} \times 10 \mu\text{m}$. Recovery of the signal was analyzed using
779 the frap_analysis program⁸³ implemented in MATLAB (The MathWorks, Natick, MA).

780 FRAP experiments for cellular Ecad were performed using cells obtained from *Tg(cdh1:mlanYFP)* embryos,
781 with a frame rate of 0.5 s per frame. 5 pre-bleach frames were acquired, followed by photobleaching of
782 an area of about 5 $\mu\text{m} \times 5 \mu\text{m}$ at the cell contact. A photobleach correction due to the imaging process
783 was performed using an unbleached area of the contact, and the photobleach curve was normalized to
784 the first pre-bleach data point. To obtain the recovery times and immobile fractions, monoexponential
785 functions were fitted to the recovery curves⁸⁴.

786

787

788 *Analysis of Ecad, GTP-RhoA and F-actin average intensities and Myosin-2 mini-filament density*
789 Contact intensity was measured using a custom Python script, by taking ratios of background intensity-
790 subtracted total intensity to total area determined by local thresholding. For rim-to-center ratios, the
791 outer 20% of the contact radius was defined as the contact rim and the rest as the contact center. For
792 measurements over time, GFP-AHPH and Ftractin-mNeonGreen intensity values were first normalized to
793 the maximum intensity for removing injection-based variations between samples.
794 AHPH expression was detected both diffusely throughout the contact and as cortical foci. These foci were
795 homogeneously distributed at the contact-free interface (Supp. Fig. 2), and once the contact area
796 stabilized, preferentially localized to the contact rim (Fig.1b). Given that such foci were not found using
797 other RhoA biosensors⁸⁵, they were excluded from the average intensity analysis.
798 To detect Myosin-2 mini-filaments ILASTIK was used⁸⁶. Percentages of total area positive for Myosin-2
799 signal in the segmented images were determined using a custom Python script. Contact diameters were
800 also estimated from the segmented contact areas, assuming that contacts were generally symmetrical.

801
802 *Quantification of adherence*
803 To check for the specificity of cell-bilayer adhesions, either bilayers were prepared without EcadECD or
804 Ecad was knocked down in cells using *cdh1* morpholino. Cells were considered non-adherent when the
805 contact size was below 177 μm^2 area ($\sim 15\mu\text{m}$ diameter).

806
807 *Analysis of colocalization and rim peak distances*
808 Dual-color images were acquired with the confocal mode of LSM800 and used for colocalization analysis.
809 Images were analyzed using Coloc2 plugin in Fiji. Manders' coefficients M1 and M2 (0 to 1), which give a
810 fraction of overlap between positive pixels, and Pearson's correlation coefficient (-1 to 1), which gives a
811 value based on the correlation of intensities at two channels, were calculated⁸⁷.
812 In order to visualize the colocalization, intensity profiles over a 0.3 μm -thick line perpendicular to the rim
813 were plotted together for both channels. Distances to the F-actin rim peaks from GTP-RhoA, Myosin-2
814 and Ecad peaks were calculated from such profiles.

815
816 *Plotting radial intensity profiles*
817 Radial averages of intensity profiles in roughly symmetrical contacts were generated using the transform
818 function in Fiji to rotate an image around its center of mass. The resulting rotations were averaged and

819 radial intensity was plotted by making a line profile along the contact diameter. For plotting radial profiles
820 from multiple cells, profiles were first normalized to contact length, and then to average intensity.

821

822 *Analysis of F-actin and Ecad flows*

823 Time-lapse images of Ftractin-mNeonGreen- or Ecad-mlanYFP-expressing cells were used for flow
824 analysis. Unless specified, mature (>10 min post contact initiation) contacts were used for analysis to rule
825 out contact expansion effects and retracting protrusions at the contact rim were excluded from analysis.
826 The built-in Fiji function Multi Kymograph was used to get kymographs along each cell's diameter. The
827 motion of fluorescent particles within those kymographs was detected using KymoButler, a deep learning
828 automated kymograph analysis software⁸⁸ in Mathematica 12.1 (Wolfram Research, Inc.). BiKymoButler
829 function was used to detect bidirectional tracks with a particle size of 0.3 μ m and a minimum duration of
830 10 s. From these tracks, location and net velocity of particle movements with respect to the center of
831 mass and track durations were calculated. For radial velocities along the contact, multiple kymographs
832 were made with 10° rotations around the center of mass, and net velocities were plotted against their
833 distance from the center of mass. For histograms, 10 tracks from each analyzed cell were pooled together.
834 For analysis of flows around LPA-induced ectopic foci, kymographs of ~6 μ m in length, were constructed
835 around the foci. The net velocity of particle movements were calculated with respect to foci position.

836

837 *Analysis of F-actin network density at the contact center*

838 Ftractin-mNeonGreen-labeled F-actin networks, excluding the contact rim, were extracted using SOAX, a
839 software for quantification of biopolymers networks⁸⁹. For time-lapse images, parameters were adjusted
840 for each movie based on inspection of some frames and the corresponding extracted networks; the saved
841 parameters were later on used to batch process the movies. Using a custom Python script, total network
842 lengths were measured with Skan library functions and divided by contact areas to get network density
843 values⁹⁰. Radial network density profile was calculated with the 1 pixel-thick network map as described
844 above.

845

846 *Single particle tracking and analysis of Actin lifetime*

847 TRITC-Actin-injected cells were imaged on the Imic TIRF microscope with ~100 nm pixel size, using a 561-
848 nm laser line with 100 ms exposure. Acquisition intervals of 1 s, 2 s and 3 s were used to capture time
849 lapses of at least 200 frames. Particle detection and tracking were performed using the TrackMate plugin
850 in Fiji, based on a Gaussian fit with an estimated diameter of 0.3 μ m. Linking distance of maximum 0.2 μ m

851 and gaps of maximum 2 frames were allowed to account for failures to detect particles. Thresholds were
852 adjusted manually for each experiment and tracks were verified by overlaying with the raw data. Average
853 lifetime of Actin at contacts were calculated using a previously described method^{91,92}. Briefly, effective
854 lifetime was obtained by fitting a monoexponential decay function to the lifetime distribution of
855 trajectories obtained from each cell (Supp. Fig. 5a). This value was corrected for photobleaching by using
856 the varying acquisition intervals to obtain a photobleaching constant, on the basis of which a corrected
857 dissociation rate could be calculated (Supp. Fig. 5b,c).

858

859 *Quantification of bleb frequency*

860 Standard deviation projections of time-lapse movies of the contact were made using Fiji to define a stable
861 contact zone. Blebs that extended and retracted back to this stable zone were manually counted for
862 different contractility conditions.

863

864 *Theoretical modeling of flow-mediated rim accumulation*

865 For any species with concentration profile $c(x, t)$ at position x along the contact (in the center-rim axis)
866 and time t , conservation law dictates that $\partial_t c = -\partial_x c v + R(c)$ where $v(x, t)$ is the local velocity and
867 $R(c)$ local turnover/reaction rates. This simply indicates that local density changes can occur only from
868 velocity gradients or local reactions. The simplest expression for $R(c)$ is first-order kinetics $R(c) = \frac{c_0 - c}{\tau}$,
869 which simply assumes that the species c turns over with a well-defined time scale τ to a target density
870 c_0 (note that both τ and c_0 could in principle depend on time and/or other species, which we neglect here
871 to check whether the simplest model of flow and constant turnover fits the data). The assumption of first-
872 order kinetics was further tested by the fact that it predicts a simple exponential recovery upon FRAP,
873 which fitted well with the data (Fig. 3d',e). The first of our modeling approaches is to take the velocity
874 field as a given and calculate the resulting profile of species $c(x, t)$. Based on the data, the simplest
875 expression for velocity is $v(x, t) = \frac{\pi v_0}{2} \sin(2\pi x/L)$, which is zero both at $x = 0$ (center) and $x = L/2$
876 (rim), and has average velocity of v_0 (the experimentally measured parameter, alongside the contact
877 diameter L). This leads - to first order - to a sinusoidal density profile $c(x, t) = \frac{\pi^2 v_0}{L} \cos(2\pi x/L)$, from
878 which we can predict the normalized rim accumulation as $A = \frac{c(0,t)}{c(L/2,t)}$ as discussed in the main text. Note
879 that we can also easily incorporate in this model the possibility of immobile fractions, for instance, in Ecad.
880 This can be done by writing two different equations for mobile and immobile Ecad (resp. c_m and c_i) $\partial_t c_i =$
881 $-\partial_x c_i v + R(c_i)$. For truly immobile Ecad, we would have $R(c_i) = 0$, however this is pathological for long-

882 time scales as all Ecad would rapidly concentrate at the very rim and so as we assume are looking at
883 contacts on the 1-10 min time scale, we assume simply a much second fraction from much slower turnover
884 than the mobile fraction $R(c_i) = \frac{c_{i0} - c_i}{\tau_i}$, with $\tau_i = 3 \text{ min}$. This only causes mild increases in rim
885 accumulations of Ecad.

886 The second step of the modeling is then to ask how the velocity field $v(x, t)$ is determined in the first
887 place. For this, we use the classical isotropic active gel theory, which has been shown to be a minimal
888 description for actomyosin mechanics, and has as input parameters the contractility of actomyosin χ , the
889 viscosity of the gel η and the friction to the substrate ξ . The force-balance equation combined with
890 constitutive active gel equation then reads: $-\xi v = \eta \partial_{xx} v - \chi \partial_x \rho$ (where ρ is the local actomyosin
891 concentration, also following the conservation equation described above, which has to be complemented
892 with a small diffusion coefficient for stability $\partial_t \rho = -\partial_x \rho v + D \partial_{xx} \rho - \frac{\rho - \rho_0}{\tau_\rho}$). This minimal model has
893 been shown to give rise to spontaneous instabilities, where local accumulations of actomyosin create
894 flows that sustain them despite turnover. Theoretically, this occurs when contractility is above a threshold
895 $\chi_c = (\sqrt{D\xi} + \sqrt{\eta/\tau})^2$. Below the contractility threshold, although spontaneous accumulations are not
896 formed, introducing spatial heterogeneities in the model can lead to strongly self-reinforcing flows. For
897 instance, if we assume that the rim is characterized by slightly larger actomyosin contractility $\chi(1 + \delta\chi)$
898 than the center of the contact, this will create flows towards the rim, creating density gradients in ρ which
899 will self-reinforce flows. Interestingly, applied to our data, this suggests that the WT contacts might not
900 be above this threshold (as the patterning is not spontaneous, but instead always strongly guided from
901 the start towards the contact rim) (Supp. Fig. 3e), while the LPA contacts characterized by hyper-activation
902 contractility show the hallmarks of such local and self-organized accumulations (Fig. 2e,e'). Based on our
903 findings that RhoA remains more active at the rim of the contact compared to the center (Fig. 2a), even
904 in the first minutes of contact formation (i.e. prior to flow establishment) (Supp. Fig. 3b), we input in our
905 simulation a higher contractility at the rim, which we take $\delta=33\%$ under the simple assumption that
906 contractility is proportional to local RhoA activity. Note that in this model, the observed flux of F-actin
907 filaments comprises both diffusion and advection, so we plot in the model the total velocity $v_{tot} = v -$
908 $D \frac{\partial_x \rho}{\rho}$. We take the turnover time τ_ρ and contact diameter as previously measured. The viscosity η can be
909 used to rescale force balance so we set it to 1 without loss of generality, while the ratio of friction to
910 viscosity ξ/η is taken as $\xi/\eta = 1/100 \mu\text{m}^{-2}$ based on measurements in other systems⁴⁶, and in order to
911 have flows propagate on the length scale of the entire contact as observed experimentally (Supp. Fig. 3e).
912 The diffusion coefficient - which does not play a key role apart from smoothing the velocity field is taken

913 to be small $D = 0.1\mu\text{m}^2/\text{s}$ ⁶⁴. Taking a rescaled contractility $\chi/\eta = 2.25$ could reproduce well the average
914 velocity observed in WT contact, as well as the observed velocity and density profile of F-actin as a
915 function of position (Supp. Fig. 6b, also see Fig. 2a and Supp. Fig. 3e). Modeling LPA as moderately larger
916 values for contractility of $\chi/\eta = 2.75$ would result in increased rim to center accumulation, but also in a
917 doubled velocity due to the self-reinforcing loop operating via actomyosin flows, where initial biases in
918 contractility create flows which reinforce the contractility differences between rim and center (Supp. Fig.
919 6b). Interestingly, in experiments, flows in LPA are comparable in amplitude to the ones measured in WT
920 despite the increased contractility, which can occur if either the friction or viscosity of the actomyosin gel
921 is increased by LPA treatment (e.g. respectively due to stronger link to the substrate or higher cross-linking
922 from Myosin of the active gel - see Supp. Fig. 6b for exploration of the effects of friction or viscosity).
923 Although this value is still below the threshold for purely self-generated instabilities in the absence of any
924 guiding cues, considering local and stochastic increases in contractility can lead to local flows and
925 actomyosin accumulation⁶⁴, reminiscent of the local foci that we sometimes observe under LPA treatment
926 (Fig. 2e). Interestingly, localized accumulations have been recently predicted in similar models of active
927 cytoskeleton additionally considering the dynamics of activators⁹³, which would be an interesting avenue
928 of investigation for the future.

929

930 *Statistics and Reproducibility*

931 Statistical tests were performed in Prism 6. Details for each experiment are described in figure legends. In
932 brief, a D'Agostino-Pearson normality test was first performed, and, based on the results, a two-tailed
933 Student's t-test for parametric distributions and a Mann-Whitney *U*-test for non-parametric distributions
934 were used to compare two groups. To compare more than two groups, an ANOVA test for parametric
935 distributions and a Kruskal-Wallis test for non-parametric distributions were used. Independent
936 experiment N, when involving cells, denotes a single embryo, where controls and experiments were
937 performed on the same day and within the same egg-lay. n denotes the number of cells analyzed.

938

939 **Data and Code Availability**

940 All data and code supporting the current study are available from the corresponding author upon request.

941

942 **Acknowledgements**

943 We thank members of the Heisenberg and Loose Labs for their help and feedback on the manuscript, and
944 the Aquatics and Imaging & Optics facilities of ISTA for their continuous support. This work was supported
945 by an ERC Advanced Grant (MECSPEC) to C.-P.H.

946

947 **Author Contributions**

948 F.N.A. and C.-P.H. designed the research. F.N.A. performed the experiments and analyzed the
949 experimental data. E.H. performed numerical simulations and modeling. J.M. designed and produced the
950 wafers for PDMS confinners. M.L. provided reagents, conceptual input and support with analysis. F.N.A and
951 C.-P.H. wrote the manuscript. All authors edited the manuscript.

952 **Declaration of Interests**

953 The authors declare no competing interests.

954 **References**

- 955 1. Pannekoek, W.-J., de Rooij, J. & Gloerich, M. Force transduction by cadherin adhesions in
956 morphogenesis. *F1000Research* **8**, F1000 Faculty Rev-1044 (2019).
- 957 2. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. *Nat. Rev. Mol. Cell
958 Biol.* **6**, 622–634 (2005).
- 959 3. Maître, J.-L. & Heisenberg, C.-P. Three Functions of Cadherins in Cell Adhesion. *Curr. Biol.* **23**, R626–
960 R633 (2013).
- 961 4. Winklbauer, R. Cell adhesion strength from cortical tension - an integration of concepts. *J. Cell Sci.*
962 **128**, 3687–3693 (2015).
- 963 5. Niessen, C. M., Leckband, D. & Yap, A. S. Tissue organization by cadherin adhesion molecules:
964 dynamic molecular and cellular mechanisms of morphogenetic regulation. *Physiol. Rev.* **91**, 691–731
965 (2011).
- 966 6. Arslan, F. N., Eckert, J., Schmidt, T. & Heisenberg, C.-P. Holding it together: when cadherin meets
967 cadherin. *Biophys. J.* **120**, 4182–4192 (2021).
- 968 7. Berx, G. & van Roy, F. Involvement of Members of the Cadherin Superfamily in Cancer. *Cold Spring
969 Harb. Perspect. Biol.* **1**, a003129 (2009).
- 970 8. Yap, A. S., Gomez, G. A. & Parton, R. G. Adherens Junctions Revisualized: Organizing Cadherins as
971 Nanoassemblies. *Dev. Cell* **35**, 12–20 (2015).
- 972 9. Brasch, J., Harrison, O. J., Honig, B. & Shapiro, L. Thinking outside the cell: How cadherins drive
973 adhesion. *Trends Cell Biol.* **22**, 299–310 (2012).
- 974 10. Strale, P.-O. *et al.* The formation of ordered nanoclusters controls cadherin anchoring to actin
975 and cell–cell contact fluidity. *J. Cell Biol.* **210**, 333–346 (2015).
- 976 11. Biswas, K. H. *et al.* E-cadherin junction formation involves an active kinetic nucleation process.
977 *Proc. Natl. Acad. Sci. U. S. A.* **112**, 10932–10937 (2015).
- 978 12. Cavey, M., Rauzi, M., Lenne, P.-F. & Lecuit, T. A two-tiered mechanism for stabilization and
979 immobilization of E-cadherin. *Nature* **453**, 751–756 (2008).
- 980 13. Chandran, R., Kale, G., Philippe, J.-M., Lecuit, T. & Mayor, S. Distinct actin-dependent nanoscale
981 assemblies underlie the dynamic and hierarchical organization of E-cadherin. *Curr. Biol. CB* **31**, 1726–
982 1736.e4 (2021).
- 983 14. Wu, Y., Kanchanawong, P. & Zaidel-Bar, R. Actin-Delimited Adhesion-Independent Clustering of
984 E-Cadherin Forms the Nanoscale Building Blocks of Adherens Junctions. *Dev. Cell* **32**, 139–154 (2015).
- 985 15. Stevens, A. J. *et al.* Programming Multicellular Assembly with Synthetic Cell Adhesion Molecules.

986 16. Maître, J.-L., Niwayama, R., Turlier, H., Nédélec, F. & Hiragi, T. Pulsatile cell-autonomous
987 contractility drives compaction in the mouse embryo. *Nat. Cell Biol.* **17**, 849–855 (2015).

988 17. Chan, E. H., Chavadi, M. S., Shivakumar, P., Clément, R., Laugier, E. & Lenne, P.-F. Patterned
989 cortical tension mediated by N-cadherin controls cell geometric order in the *Drosophila* eye. *eLife* **6**,
990 e22796 (2017).

991 18. Yamada, S. & Nelson, W. J. Localized Zones of Rho and Rac Activities Drive Initiation and
992 Expansion of Epithelial Cell-Cell Adhesion. *J. Cell Biol.* **178**, 517–527 (2007).

993 19. Hashimoto, H. & Munro, E. Differential Expression of a Classic Cadherin Directs Tissue-Level
994 Contractile Asymmetry during Neural Tube Closure. *Dev. Cell* **51**, 158–172.e4 (2019).

995 20. Engl, W., Arasi, B., Yap, L. L., Thiery, J. P. & Viasnoff, V. Actin dynamics modulate
996 mechanosensitive immobilization of E-cadherin at adherens junctions. *Nat. Cell Biol.* **16**, 587–94
997 (2014).

998 21. Maitre, J.-L. *et al.* Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of
999 Adhering Cells. *Science* **338**, 253–256 (2012).

1000 22. Chu, Y.-S. *et al.* Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion
1001 strengthened by actin cytoskeleton remodeling through Rac and Cdc42. *J. Cell Biol.* **167**, 1183–1194
1002 (2004).

1003 23. Slováková, J. *et al.* Tension-dependent stabilization of E-cadherin limits cell-cell contact
1004 expansion in zebrafish germ-layer progenitor cells. *Proc. Natl. Acad. Sci. U. S. A.* **119**, e2122030119
1005 (2022).

1006 24. Huvaneers, S. *et al.* Vinculin associates with endothelial VE-cadherin junctions to control force-
1007 dependent remodeling. *J. Cell Biol.* **196**, 641–652 (2012).

1008 25. Buckley, C. D. *et al.* The minimal cadherin-catenin complex binds to actin filaments under force.
1009 *Science* **346**, (2014).

1010 26. Dustin, M. L. Supported bilayers at the vanguard of immune cell activation studies. *J. Struct. Biol.*
1011 **168**, 152–160 (2009).

1012 27. Andreasson-Ochsner, M. *et al.* Single cell 3-D platform to study ligand mobility in cell–cell
1013 contact. *Lab. Chip* **11**, 2876–2883 (2011).

1014 28. Thompson, C. J., Vu, V. H., Leckband, D. E. & Schwartz, D. K. Cadherin Extracellular Domain
1015 Clustering in the Absence of Trans-Interactions. *J. Phys. Chem. Lett.* **10**, 4528–4534 (2019).

1016 29. Glazier, R. & Salaita, K. Supported lipid bilayer platforms to probe cell mechanobiology. *Biochim.*
1017

1018 *Biophys. Acta BBA - Biomembr.* **1859**, 1465–1482 (2017).

1019 30. Babb, S. G. & Marrs, J. A. E-cadherin regulates cell movements and tissue formation in early
1020 zebrafish embryos. *Dev. Dyn.* **230**, 263–277 (2004).

1021 31. Cronan, M. R. & Tobin, D. M. Endogenous Tagging at the *cdh1* Locus for Live Visualization of E-
1022 Cadherin Dynamics. *Zebrafish* **16**, 324–325 (2019).

1023 32. Adams, C. L., Chen, Y.-T., Smith, S. J. & James Nelson, W. Mechanisms of Epithelial Cell–Cell
1024 Adhesion and Cell Compaction Revealed by High-resolution Tracking of E-Cadherin–Green
1025 Fluorescent Protein. *J. Cell Biol.* **142**, 1105–1119 (1998).

1026 33. Wu, Y. *et al.* Cooperativity between trans and cis interactions in cadherin-mediated junction
1027 formation. *Proc. Natl. Acad. Sci.* **107**, 17592–17597 (2010).

1028 34. Behrndt, M. *et al.* Forces Driving Epithelial Spreading in Zebrafish Gastrulation. *Science* **338**,
1029 257–260 (2012).

1030 35. Huff, J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio
1031 and super-resolution. *Nat. Methods* **12**, i–ii (2015).

1032 36. Sit, S.-T. & Manser, E. Rho GTPases and their role in organizing the actin cytoskeleton. *J. Cell Sci.*
1033 **124**, 679–683 (2011).

1034 37. Anastasiadis, P. Z. *et al.* Inhibition of RhoA by p120 catenin. *Nat. Cell Biol.* **2**, 637–644 (2000).

1035 38. Wildenberg, G. A. *et al.* p120-Catenin and p190RhoGAP Regulate Cell-Cell Adhesion by
1036 Coordinating Antagonism between Rac and Rho. *Cell* **127**, 1027–1039 (2006).

1037 39. Piekny, A. J. & Glotzer, M. Anillin is a scaffold protein that links RhoA, actin, and myosin during
1038 cytokinesis. *Curr. Biol. CB* **18**, 30–36 (2008).

1039 40. Priya, R. *et al.* Feedback regulation through myosin II confers robustness on RhoA signalling at E-
1040 cadherin junctions. *Nat. Cell Biol.* **17**, 1282–1293 (2015).

1041 41. Takesono, A. *et al.* Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL)
1042 formation by regulating microtubule networks in the zebrafish embryo. *Proc. Natl. Acad. Sci.* **109**,
1043 3371–3376 (2012).

1044 42. Schwayer, C. *et al.* Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and
1045 Flow. *Cell* **179**, 937-952.e18 (2019).

1046 43. Liu, Y.-J. *et al.* Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow
1047 Mesenchymal Cells. *Cell* **160**, 659–672 (2015).

1048 44. Ruprecht, V. *et al.* Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell
1049 Motility. *Cell* **160**, 673–685 (2015).

1050 45. Munro, E., Nance, J. & Priess, J. R. Cortical Flows Powered by Asymmetrical Contraction
1051 Transport PAR Proteins to Establish and Maintain Anterior-Posterior Polarity in the Early *C. elegans*
1052 Embryo. *Dev. Cell* **7**, 413–424 (2004).

1053 46. Mayer, M., Depken, M., Bois, J. S., Jülicher, F. & Grill, S. W. Anisotropies in cortical tension reveal
1054 the physical basis of polarizing cortical flows. *Nature* **467**, 617–621 (2010).

1055 47. Hannezo, E. & Heisenberg, C.-P. Mechanochemical Feedback Loops in Development and
1056 Disease. *Cell* **178**, 12–25 (2019).

1057 48. Levayer, R. & Lecuit, T. Biomechanical regulation of contractility: spatial control and dynamics.
1058 *Trends Cell Biol.* **22**, 61–81 (2012).

1059 49. Képíró, M. *et al.* para-Nitroblebbistatin, the non-cytotoxic and photostable myosin II inhibitor.
1060 *Angew. Chem. Int. Ed Engl.* **53**, 8211–8215 (2014).

1061 50. Jayashankar, V. *et al.* Protein Phosphatase 1 β Paralogs Encode the Zebrafish Myosin
1062 Phosphatase Catalytic Subunit. *PLOS ONE* **8**, e75766 (2013).

1063 51. Kametani, Y. & Takeichi, M. Basal-to-apical cadherin flow at cell junctions. *Nat. Cell Biol.* **9**, 92–
1064 98 (2007).

1065 52. Peglion, F., Llense, F. & Etienne-Manneville, S. Adherens junction treadmilling during collective
1066 migration. *Nat. Cell Biol.* **16**, 639–651 (2014).

1067 53. Hong, S., Troyanovsky, R. B. & Troyanovsky, S. M. Binding to F-actin guides cadherin cluster
1068 assembly, stability, and movement. *J. Cell Biol.* **201**, 131–143 (2013).

1069 54. Sonal *et al.* Myosin-II activity generates a dynamic steady state with continuous actin turnover in
1070 a minimal actin cortex. *J. Cell Sci.* **132**, jcs219899 (2018).

1071 55. Bois, J. S. Pattern Formation in Active Fluids. *Phys. Rev. Lett.* **106**, (2011).

1072 56. Wu, S. K. *et al.* Cortical F-actin stabilization generates apical–lateral patterns of junctional
1073 contractility that integrate cells into epithelia. *Nat. Cell Biol.* **16**, 167–178 (2014).

1074 57. Hong, S., Troyanovsky, R. B. & Troyanovsky, S. M. Spontaneous assembly and active disassembly
1075 balance adherens junction homeostasis. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 3528–3533 (2010).

1076 58. Noordstra, I. *et al.* An E-cadherin-actin clutch translates the mechanical force of cortical flow for
1077 cell-cell contact to inhibit epithelial cell locomotion. 2021.07.28.454239 Preprint at
1078 <https://doi.org/10.1101/2021.07.28.454239> (2022).

1079 59. Charras, G. T., Hu, C.-K., Coughlin, M. & Mitchison, T. J. Reassembly of contractile actin cortex in
1080 cell blebs. *J. Cell Biol.* **175**, 477–490 (2006).

1081 60. Grimaldi, C. *et al.* E-cadherin focuses protrusion formation at the front of migrating cells by

1082 1082 impeding actin flow. *Nat. Commun.* **11**, 5397 (2020).

1083 61. Diz-Muñoz, A. *et al.* Control of Directed Cell Migration In Vivo by Membrane-to-Cortex
1084 Attachment. *PLOS Biol.* **8**, e1000544 (2010).

1085 62. Kim, T., Gardel, M. L. & Munro, E. Determinants of Fluidlike Behavior and Effective Viscosity in
1086 Cross-Linked Actin Networks. *Biophys. J.* **106**, 526–534 (2014).

1087 63. McFadden, W. M., McCall, P. M., Gardel, M. L. & Munro, E. M. Filament turnover tunes both
1088 force generation and dissipation to control long-range flows in a model actomyosin cortex. *PLoS
1089 Comput. Biol.* **13**, e1005811 (2017).

1090 64. Hannezo, E., Dong, B., Recho, P., Joanny, J.-F. & Hayashi, S. Cortical instability drives periodic
1091 supracellular actin pattern formation in epithelial tubes. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 8620–8625
1092 (2015).

1093 65. Mangeol, P., Massey-Harroche, D., Bivic, A. L. & Lenne, P.-F. *Nectins rather than E-cadherin
1094 anchor the actin belts at cell-cell junctions of epithelia.* <http://biorxiv.org/lookup/doi/10.1101/809343>
1095 (2019) doi:10.1101/809343.

1096 66. Terry, S. J. *et al.* Spatially restricted activation of RhoA signalling at epithelial junctions by
1097 p114RhoGEF drives junction formation and morphogenesis. *Nat. Cell Biol.* **13**, 159–166 (2011).

1098 67. Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T
1099 cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. *Proc.
1100 Natl. Acad. Sci.* **104**, 20296–20301 (2007).

1101 68. Hartman, N. C., Nye, J. A. & Groves, J. T. Cluster size regulates protein sorting in the
1102 immunological synapse. *Proc. Natl. Acad. Sci.* **106**, 12729–12734 (2009).

1103 69. Pal, D. *et al.* Rac and Arp2/3-Nucleated Actin Networks Antagonize Rho During Mitotic and
1104 Meiotic Cleavages. *Front. Cell Dev. Biol.* **8**, 591141 (2020).

1105 70. Belardi, B., Son, S., Felce, J. H., Dustin, M. L. & Fletcher, D. A. Cell–cell interfaces as specialized
1106 compartments directing cell function. *Nat. Rev. Mol. Cell Biol.* **21**, 750–764 (2020).

1107 71. Yao, M. *et al.* Force-dependent conformational switch of α -catenin controls vinculin binding.
1108 *Nat. Commun.* **5**, 4525 (2014).

1109 72. le Duc, Q. *et al.* Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-
1110 anchored sites within adherens junctions in a myosin II–dependent manner. *J. Cell Biol.* **189**, 1107–
1111 1115 (2010).

1112 73. Levayer, R. & Lecuit, T. Oscillation and polarity of E-cadherin asymmetries control actomyosin
1113 flow patterns during morphogenesis. *Dev. Cell* **26**, 162–175 (2013).

1114 74. Bergert, M. *et al.* Force transmission during adhesion-independent migration. *Nat. Cell Biol.* **17**,
1115 524–529 (2015).

1116 75. Pinheiro, D. *et al.* Transmission of cytokinesis forces via E-cadherin dilution and actomyosin
1117 flows. *Nature* **545**, 103–107 (2017).

1118 76. Harrison, O. J. *et al.* Family-wide Structural and Biophysical Analysis of Binding Interactions
1119 among Non-clustered δ -Protocadherins. *Cell Rep.* **30**, 2655–2671.e7 (2020).

1120 77. WESTERFIELD, M. The Zebrafish Book : A Guide for the Laboratory Use of Zebrafish.
1121 http://zfin.org/zf_info/zfbook/zfbk.html (2000).

1122 78. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic
1123 development of the zebrafish. *Dev. Dyn.* **203**, 253–310 (1995).

1124 79. Sakaue-Sawano, A. *et al.* Visualizing spatiotemporal dynamics of multicellular cell-cycle
1125 progression. *Cell* **132**, 487–498 (2008).

1126 80. Reversat, A. *et al.* Cellular locomotion using environmental topography. *Nature* **582**, 582–585
1127 (2020).

1128 81. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat. Methods* **9**,
1129 676–682 (2012).

1130 82. Tinevez, J.-Y. *et al.* TrackMate: An open and extensible platform for single-particle tracking.
1131 *Methods San Diego Calif* **115**, 80–90 (2017).

1132 83. Jönsson, P., Jonsson, M. P., Tegenfeldt, J. O. & Höök, F. A Method Improving the Accuracy of
1133 Fluorescence Recovery after Photobleaching Analysis. *Biophys. J.* **95**, 5334–5348 (2008).

1134 84. *Live Cell Imaging: A Laboratory Manual, Second Edition.*

1135 85. Mahlandt, E. K. *et al.* Visualizing endogenous Rho activity with an improved localization-based,
1136 genetically encoded biosensor. *J. Cell Sci.* **134**, jcs258823 (2021).

1137 86. Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and
1138 segmentation toolkit. in *2011 IEEE International Symposium on Biomedical Imaging: From Nano to*
1139 *Macro* 230–233 (2011). doi:10.1109/ISBI.2011.5872394.

1140 87. Manders, E. M. M., Verbeek, F. J. & Aten, J. A. Measurement of co-localization of objects in dual-
1141 colour confocal images. *J. Microsc.* **169**, 375–382 (1993).

1142 88. Jakobs, M. A., Dimitracopoulos, A. & Franz, K. KymoButler, a deep learning software for
1143 automated kymograph analysis. *eLife* **8**, e42288 (2019).

1144 89. Xu, T. *et al.* SOAX: A software for quantification of 3D biopolymer networks. *Sci. Rep.* **5**, 9081
1145 (2015).

1146 90. Nunez-Iglesias, J., Blanch, A. J., Looker, O., Dixon, M. W. & Tilley, L. A new Python library to
1147 analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane
1148 skeleton. *PeerJ* **6**, e4312 (2018).

1149 91. Baranova, N. & Loose, M. Chapter 21 - Single-molecule measurements to study polymerization
1150 dynamics of FtsZ-FtsA copolymers. in *Methods in Cell Biology* (ed. Echard, A.) vol. 137 355–370
1151 (Academic Press, 2017).

1152 92. Gebhardt, J. C. M. *et al.* Single-molecule imaging of transcription factor binding to DNA in live
1153 mammalian cells. *Nat. Methods* **10**, 421–426 (2013).

1154 93. Barberi, L. & Kruse, K. Localized states in active fluids. Preprint at
1155 <https://doi.org/10.48550/arXiv.2209.02581> (2022).