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Abstract:

Circulating immune cells are critical mediators of inflammation upon recruitment to tissues, yet how
their gene expression state influences this recruitment is not well understood. Here, we report
longitudinal single-cell transcriptome profiling of peripheral blood mononuclear cells in patients
undergoing kidney transplantation rejection. We identify a novel gene expression module, termed
ALARM (early activation transcription factor module), associated with transcriptional regulation,
homing, and immune activation across multiple immune cell types. Circulating cells expressing this
module are significantly reduced in patients experiencing graft rejection, a finding confirmed in a pig
model of acute kidney transplantation rejection. Correspondingly, module expression is markedly
increased in kidney grafts undergoing rejection, indicating preferential recruitment of ALARM-
expressing cells to the inflamed tissue.

Within this module, we identify the receptor CXCR4 and its ligand CXCL12, expressed in the graft, as a
likely mechanism for recruitment. In vitro transwell assays combined with scRNA-seq reveal that this
CXCR4-CXCL12 interaction is critical for T cell migration and upregulation of CD69, an early activation
marker, and is accompanied by a metabolic switch towards glycolysis. Further exploration of publicly
available transcriptomic data demonstrates that this module is generally expressed in healthy
individuals and is strongly associated with responses to infection, including SARS-CoV-2 infection. This
finding is further supported by experiments in a pneumonia mouse model, which confirm the
recruitment of CXCR4-expressing T cells during lung infection. Moreover, we find that module
expression is predictive of immune-mediated diseases.

In summary, we have identified a key gene expression module in circulating immune cells that
orchestrates their preferential recruitment to inflamed tissues, metabolic reprogramming, promoting
tissue residency and effector functions. These insights advance our understanding of immune cell
recruitment and activation mechanisms in transplant rejection and infectious diseases, with potential
implications for therapeutic interventions.

Introduction:
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52 Circulating immune cells are critical to be recruited to the site of inflammation, infection, and cancer.
53  This compartment and particularly the peripheral blood mononuclear cells (PBMCs) thus offer an
54  attractive resource for precision medicine as in a single experiment, diverse cell types, including the
55  CD4'Tcells, CD8* T cells, B cells, NK cells and monocytes are profiled. Especially since the introduction
56  of single cell RNA-seq (scRNA-seq), profiling PBMCs has been highly successful in identifying gene
57  expression sighatures and cell-types associated with immune-related diseases'™. For example, a
58  monocyte signature associated with sepsis was discovered in circulating cells 1. Recently, a study on
59  systemic lupus erythematosus revealed gene expression changes with disease state and genetic
60 variation 2. In addition, distinct Covid-19 studies revealed signatures associated to infection and
61  disease severity in blood >°.
62  Transcriptomics profiling enables the characterization of genes groups (i.e., modules) which perform
63  critical cellular functions such as maintaining a cell identity, homeostasis & metabolism and respond
64  to external signals. Notably, in circulating immune cells we have previously shown that monocytes
65 express a gene module associated with Herpes Simplex virus reactivation after traumatic brain injury
66 7. While gene expression programs of circulating immune cells are likely to be distinct from the same
67  cells which migrated into the tissue, identifying modules in circulating cells may reveal early immune
68 activation programs or modules associated with homing and migration. For example, in a previous
69 study we identified large gene regulatory and gene expression alterations in circulating monocytes
70  during active Tuberculosis which improved pathogen clearance for these cells &,
71 Leveraging on scRNA-seq and the availability of recent module identification approaches tailored for
72 single cell transcriptomics ° we aimed to identify gene expression programs associated with kidney
73  transplantation rejection. Currently, rejection status is monitored in clinical practice by analyzing
74 metabolites in blood and urine, such as creatinine, to assess renal function. The diagnosis is then
75  confirmed through pathologic examination of kidney biopsies!®. However, metabolite monitoring is
76  not specific to rejection and can be approximative. Pathologic analysis of kidney biopsies remains the
77  primary diagnostic tool, offering reliable results. However, despite minimal risk to patients, it is an
78 invasive procedure that cannot be performed regularly. Thus identifying gene expression signatures in
79  circulating cells may improve precision medicine diagnostics of kidney rejection 1. In addition, acute
80  and chronic rejection are characterized by the infiltration of immune cells into the graft, which then
81 mediate an inflammatory response in the tissue ultimately leading to the rejection of the graft. Blood
82  thus constitutes an easily accessible compartment to identify gene expression modules associated with
83 homing and early activation. Two archetypes of rejection are prominent according to the Banff
84  classification®, the antibody mediated rejection (ABMR) and T-cell mediated rejection (TCMR), which
85 can also arise in a mixed form. In both cases, immune cell infiltration into the graft occurs via the
86  bloodstream through either donor specific antibodies binding to the graft endothelium in ABMR, or
87  cytokine and homing signals in TCMR*?,
88 In this study, our aim was to identify putative modules in circulating cells which may be associated to
89  kidney transplantation rejection. We profiled a longitudinal patient cohort consisting of 3 stable
90 patients, 3 TCMR and 3 ABMR patients at 0-month, 3 month and 12 months after transplantation or
91  when rejection occurred. The PBMCs were collected at the same time of graft biopsy, allowing us to
92 characterize relationship of graft rejection status with gene expression modules of peripheral immune
93 cell-types. We identified a module associated with transcriptional regulation and early activation in
94  theblood and used a pig-transplantation model to validate its association with rejection status. Further
95 characterization of this module was carried out in transcriptomics data from over 1500 kidney biopsies
96 revealing a cytokine-receptor interaction between the graft and circulating cells, respectively. Finally,
97  we demonstrate that this module is not specific to graft rejection but is implicated and predictive of a
98  variety of immuno-pathologies.
99

100

101

102

103


https://doi.org/10.1101/2023.04.11.536347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.11.536347; this version posted November 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

104  Results:

105  Single cell transcriptome analysis of circulating immune cells in a longitudinal kidney

106  transplantation cohort

107 In order to identify gene expression changes in circulating immune cells during kidney transplantation
108  rejection, we used scRNA-seq on PBMC isolated from 3 patients with stable allograft function (STA) for
109  which no sign of rejection was observed clinically after more than a year of follow-up, 3 antibody
110  mediated rejection (ABMR) patients and 3 T-cell mediated rejection (TCMR) patients (Figure 1A, Table
111 1). The patients were selected based on their treatment, age, sex, and collection time. (See Table 1).
112

Table 1: Clinical summary of the cohort composition.

Patients characteristics

Name Age Sex Treatment * Rejection time  HLA ** Induction
(in days) mismatches Therapy
STA1 35 Male Tacrolimus, — 5 Depleting
- MMF, Corticoids
= TCMR1 70 Male Tacrolimus, 244 5 Depleting
é MPA, Corticoids
2 ABMR1 51 Female Tacrolimus, 374 2 Depleting
MMF, Corticoids
TOL1 75 Male — - 4 Depleting
STA2 69 Male Tacrolimus, - 5 Non — depleting
. MMF, Corticoids
= TCMR2 35 Male Tacrolimus, 369 3 Depleting
é MPA, Corticoids
® ABMR2 56 Male Taerolimus, 427 4 Depleting
MPA, Corticoids
TOL2 45 Male — — 4 NA
STA3 25 Female Tacrolimus, — 5 Depleting
- M PA, Corticoids
= TCMRS3 24 Male Tacrolimus, 213 3 Non — depleting
£ MMF, Corticoids
& ABMR3 61 Female Tacrolimus, 365 2 Depleting
MPA, Corticoids
TOL3 39 Female — — 0 NA

Mean Age Sex Ratio
48.75 0.66

: Antiproliferative treatments: MMF=Mycophenolate mofetil, MPA=Mycophenolic Acid
HLA mismatches: number of mismatches on the A, B and DR loci (0-6)

113
114

115

116

117 For each patient, three time points were profiled; TO, at the kidney transplantation, T1 at 90-150 days
118  after the transplantation and T2, which was sampled at the time of rejection for ABMR and TCMR or
119  at 1 year for STA patients after transplantation (Figure 1A). In addition, PBMCs from 3 kidney
120  transplantation patients who maintained allograft function in the absence of immunosuppression (i.e.,
121  operational tolerant (TOL)) were included in the cohort (Table 1).

122 Rejection status was defined by clinical pathology assessment of kidney biopsies performed at T1 and
123 T2 for all patients. ABMR and TCMR were defined by pathology biopsy assessment at time T2 whereas
124 patients were determined as STA when they which no sign of rejection in biopsies at T1 and T2. To
125 minimize scRNA-seqg-related experimental variation, we performed CITE-seq (Cell Hashing)®® using
126  hashtag oligo-conjugated antibodies (HTO) to label each patient and time point separately and then
127  pooled 10 samples (1 ABMR, 1 TCMR and 1 STA patient across TO, T1 & T2 and 1 TOL patient) into a
128  single experiment. We thus generated the complete transcriptomic data in three balanced batches
129 (Figure 1B). After removing doublets, data cleaning, normalization, and batch correction, we obtained
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130 50,507 cells across the three batches (see Methods). Cells were automatically annotated using
131  Azimuth'*?® and manually validated for cell-type specific markers (Figure 1C and Supplemental Figure
132 S1A). Cell-type proportions varied minimally between conditions when compared to PBMCs from two
133  separate cohorts of healthy volunteers (HV) from publicly available scRNA-seq data * (Supplemental
134  Figure S1B). For example, NK cells were significantly decreased in the stable and rejection conditions
135  ascompared to HV. However, we note that there were also significant differences in the HV (e.g., CD14
136 and CD16 monocytes) from the two distinct control cohorts indicating that this may be due to
137  individual variation. We then inspected the distribution of cells across patients and by time points
138  (Supplemental Figure S1C) and across disease states (Figure 1D). Neither of these variables formed
139 unique clusters suggesting that the clusters were driven by cell-type specific expression rather than by
140 condition or cellular states as was also observed in other PBMC studies in patient cohorts »*°, We then
141 explored whether the clusters were affected by merging the three experimental batches (Figure 1E).
142 As no batch effects were apparent through visual inspection, we used the KBET metric to quantitatively
143  assess potential batch effects. KBET evaluates whether cells from different batches are clustering
144  together in shared neighborhoods (i.e., clusters) (Supplemental Figure S1D)®. The acceptance rate of
145 the KBET for the complete data set was 0.969, indicating that batch integration was successful. In
146 summary, the pooling strategy and subsequent bioinformatics analysis resulted in a robust dataset of
147 50,507 cells to be analyzed for time and disease state specific gene expression.

148

149  Gene co-expression analysis identifies a module associated to rejection state

150 To identify modules, ie. co-expressed groups of genes, we used gene co-expression analysis across all
151  three batches independently (Figure 2A). This approach was chosen to avoid potential signal
152  alterations induced during the batch correction step. We applied consensus non-negative matrix
153  factorization (cNMF)® to identify gene expression programs which may either be associated to cell-
154  type specific gene expression programs or to cellular activity (see methods). Nine overlapping modules
155  were identified which were evenly distributed across the three batches (Figure 2B, Supplemental
156 Figure 2A). These modules mostly revealed cell-type specific expressions, notably three of these
157  modules were associated to monocytes (Mod_1-Mod_3), and two modules were mostly expressed in
158  a specific cell type such as B cells and pDC cells (Mod_4 and Mod_5 respectively) (Figure 2C). Three
159  modules were enriched for the CD4 & CD8 T lymphocytes (Mod_6) and/or NK cells (Mod_7, Mod_8,
160 Figure 2C). Interestingly, the Mod_9 was expressed in all cell types, but with notable higher expression
161 in B cells, T cells, pDCs and NK cells as revealed by its module score (Figure 2C, Figure 2D).

162 Next, we aimed to independently validate the co-expression of the 9 modules (Supplemental file 1).
163  To achieve this, we quantified the gene co-expression using the pair-wise Pearson correlation
164 coefficient R. As the module was identified using cNMF, Pearson correlation thus acts as an
165 independent evaluation of gene co-expression. We note that this approach is inherent to weighted
166  gene co-expression analysis (WGCNA), a prominent method to identify modules in bulk and single cell
167  transcriptomics!’. We compared the average Pearson correlation per cell for each module to the same
168  number of randomly picked genes in the same cells. The eight cell type specific modules showed robust
169  and ssignificant correlation between module genes, and this correlation was strongest in the cell-types
170  to which they were associated (Supplemental Figure S2B). The cell-activity module Mod_9 was also
171 significantly correlated in all cell types (Supplemental Figure S2C). Of note, randomly chosen genes
172 picked 1000 times revealed a Pearson correlation of 0 in all cell-types indicating that unrelated genes
173  typically do not correlate with each other (Supplemental Figure S2B, S2C). Therefore, the modules
174 identified above are robustly co-expressed, as inferred by the two most prominent module detection
175 methods.

176  To test whether this cell-activity module or any of the cell-specific modules were associated to disease
177 state, (i.e., rejection or stable) and if it would vary throughout time, we estimated the module score
178  for each cell type and calculated the trend of the module score longitudinally in each cell-type (Figure
179  2E). A positive or negative slope thus indicates whether a module changes over time across the stable,
180  humoral & cellular rejection. Indeed, Mod1 and Mod2 showed a significant positive trend in both
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181 rejection conditions (ABMR and TCMR) but not in the STA condition. Interestingly, the activity module
182 (Mod_9) showed a significant negative trend (regression [3 value) in the rejection conditions but not in
183 the stable condition in multiple cell types (B cells, CD4 and CD8 T cells and NK cells). Further inspection
184 of this negative trend was carried out by displaying the module score of each patient separately in the
185 form of a combined violin plot (Figure 2F). These module scores show that there was indeed a
186 reduction in ABMR patients, while in TCMR patients the module score followed a U-shape, reduced
187 more during T1 and increased again at T2. Interestingly, the 3 stable patient’s module scores remained
188  consistent across time in NK, CD4 and CD8 and B cells. These results signify that Mod_9 expression is
189  associated to rejection state in a time dependent manner.

190

191 Discovery of the early activation, transcription factor module (ALARM)

192  To explore the function of the 61 genes found in Mod_9 we first investigated whether it was enriched
193  for ribosomal, proliferation or cell cycle genes using SEURAT-based list 8. We did not observe any
194  genes involved in these cellular processes (data not shown). We thus explored the genes within this
195 module by performing gene ontology analysis. Enrichment of the module genes was quantified for
196  molecular function (MF) and biological processes (BP) compared to the combined set of 4000 most
197  variable genes from the three batches (Figure 2G). MF could be associated to 24 genes and was
198 significantly enriched (FDR <0.05) for helicase activity, ubiquitin-like protein binding, RNA catalytic
199 activity, transcription activator activity and ribonucleoprotein binding. The BP (20 genes) was
200 associated to NF-kB signaling, response to peptide and oxidative stress, regulation of RNA metabolic
201 processes and viral gene expression. Of the 61 genes in the module, 56 were annotated in the GSEA
202 database and 30 of these genes were linked to gene ontology enrichment. This indicates that Mod_9
203 is likely to be involved in multiple molecular functions associated with transcription, mRNA process
204 and ubiquitination. The BP suggested involvement in response to immune conditions (i.e., viral gene
205 expression, NF-kB signaling, oxidative stress). This result was further supported by the 5-fold
206 enrichment of Transcription factor genes in this module (OR: 4.9; Fisher-Test P-value 2.5e®), such as
207 the AP-1 complex (JUN, JUND, FOS), REL (NF-xB subunit), MAFF and NR4A2 (see methods,
208  Supplemental file 1). Further manual examination exposed the early activation marker CD69, a cell
209  surface type Il lectin. This receptor was described to be rapidly expressed at the membrane in T cells
210 upon TCR activation®®. In addition, CD69 has been described as a marker of tissue retention of T cells
211 222 nterestingly, CD69 gene promoter is controlled by AP-1 TF complex and NF-kB, both of which are
212 also members of this module®2*, We also found the cell surface marker CXCR4 in this module, a
213 chemokine receptor known to play a role in recruiting CXCR4 positive cells to the kidney after an
214 ischemic injury via the chemokine CXCL12%. The role of the CXCR4/CXCL12 axis in kidney rejection is
215  still unclear®® but an elevated expression of CXCL12 has been described in chronic kidney rejection?’
216  suggesting it may act as a chemotactic signal to recruit immune cells in the inflamed tissues. In
217 summary, the Mod_9 module comprises genes implicated in the response to stress, mRNA processing,
218 early activation, and tissue-homing. For clarity, we named this module ALARM, which stands for for
219  eArly activation trAnscription factoR Module.

220

221 Circulating ALARM cells are recruited to the graft during acute graft rejection in a pig kidney
222 transplantation model

223 We found that circulating cells expressing ALARM are altered in ABMR and TCMR in a timely fashion
224 (Figure 2). To independently validate this observation, i.e., whether ALARM high expressing cells are
225 depleted in the circulation during kidney transplantation rejection, we took advantage of an acute
226  rejection pig kidney transplantation model (Figure 3A). We decided to use this pig kidney
227  transplantation model as they share anatomical, physiological and genetic similarities to human and
228  offer the advantage to have well defined swine leukocyte antigen (SLA) genotypes %. Two SLA-
229  mismatched pigs were subjected to kidney transplantation, keeping one of their own kidneys (see
230  methods). This model typically results in an acute TCMR within a few days after transplantation, as no
231 immunosuppressive treatment is given (Figure 3A). Kidney biopsies and PBMCs were collected daily
232 before and after the transplantation. Microscopical analysis of the biopsies at D2, D4 and D6 indicated
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233  a time-dependent infiltration of immune cells, culminating at day 6 (Figure 3B). This infiltration was
234  quantified in three areas (excluding glomeruli) of each biopsy time point (see methods, Supplemental
235 Figure S3A). Cell counts drastically increased from day 2 to D6, indicating a continuous immune cell
236  accumulation over time (Figure 3C). We noted that the second pig did not display any signs of rejection,
237  possibly due to early arterial ischemia of the transplanted kidney and it was thus discarded from the
238  subsequent analysis. PBMCs collected at DO, D2, D4 and D6, were pooled in a single scRNA-seq
239  experiment (see methods), resulting in a total of 4,411 annotated cells across cell-types and time-
240  points (Figure 3D and Supplemental Figure S3B). We found that cellular proportions within the PBMC
241  compartment drastically changed from DO to D2, characterized by a drastic increase in monocyte
242 proportions concomitant with a reduction of B, CD4+ and CD8+ T cells (Figure 3E). This suggests that
243 the lymphocytes are rapidly recruited to the kidney graft and accumulate there, as demonstrated by
244  the cellular invasion observed in the biopsies at the same time (Figure 3C). To test whether the decline
245 of blood lymphocytes is accompanied by a reduction of ALARM high expressing cells, we quantified
246  ALARM expression across the time-points in CD4+, CD8+, B cells and NK cells (Figure 3F). Interestingly,
247 as soon as D2 the levels of ALARM expression drastically decreased and remained low in the blood
248 until sacrifice of the animal (D6). Taken together, this controlled time-course experiment reveals a
249 drastic immune cell infiltration in the graft associated with the depletion of ALARM high expressing
250 cells in the circulation. This result mirrors the reduction of circulating ALARM cells observed during the
251 kidney transplantation rejection in the human cohort (Figure 2). It is thus probable that ALARM high
252  expressing cells are readily circulating in healthy condition. Upon the kidney graft transplantation
253  ALARM high expressing cells are then preferentially recruited to the organ to mediate the immune
254 response.

255

256  ALARM gene expression increases in kidney grafts undergoing rejection

257  To further support the hypothesis that ALARM high-expressing cells are recruited to the graft during
258  rejection from the bloodstream, we evaluated the expression of ALARM genes in graft biopsies from
259  kidney transplantation patients. For this, we used a previously published Canadian transcriptomics
260  analysis of 569 transplant biopsies collected from 13 clinical sites and with a patient classification of
261  STA, TCMR, ABMR and mixed rejection (TCMR and ABMR)?. In parallel, we exploited a second similar
262  Belgian transcriptomics study performed on kidney biopsies in 224 patients who were either stable
263 (168 patients) or undergoing ABMR*. After precleaning and QC controls of the available microarray
264  data (Methods), we quantified the ALARM gene expression in each cohort separately (Figure 4A). The
265  ALARM score was consistently and significantly elevated in all three rejection cases compared to stable
266 biopsies. Similarly, in the second study, ABMR samples showed a significant increase in ALARM
267  expression, regardless of the presence of donor-specific antibodies. Analysis of the ALARM genes
268  ranked by expression, further revealed that this score is driven by the upregulation of a large fraction
269  of the ALARM genes, including CD69, CXCR4, JUN and IRF1 in both cohorts (Figure 4B). Quantification
270  of the ALARM module across rejection and stable revealed a significant upregulation of ALARM
271  expression in both data sets (Figure 4C). These results indicate that ALARM genes are significantly
272 increased during graft rejection across over 793 biopsies in two distinct studies. Given that graft
273 rejection is defined by immune cell infiltration and that circulating ALARM high cells are depleted at
274  the same time, it is possible that ALARM expressing cells are preferentially recruited to the graft to
275 mediate the rejection. To investigate how circulating cells could be preferentially recruited to the graft,
276  we explored the cytokine expression in the graft and receptor expression in the circulating cell subsets.
277  We first identified all possible ligand-receptor pairs and then tested whether these pairs were
278  differentially expressed between rejection and stable status. We found 10 differentially expressed
279 cytokines in the graft pairing with 7 receptors upregulated in circulating immune cells in both cohorts
280 independently (Figure 4D). The most prominent receptor was CXCR4, expressed in CD4, NK, CD8 and
281 B cells. As mentioned above, CXCR4 is a member of ALARM genes, indicating a likely mechanism of
282  signaling from the graft via CXCL12 and recruitment of ALARM cells expressing CXCR4. This cytokine
283 receptor pair has been previously described as a homing mechanism in various distinct tissues, such as
284  bone marrow"32 and in cancer®. To test the relationship of this interaction, we quantified CXCL12
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285  expression in the graft biopsies stratified by ALARM expression (low (<25%), mid (25-75%), high
286  (>75%)) and found that there was a significant increase in CXCL12 expression in the ALARM high group
287  in both cohorts (Figure 4E). In summary, these results show that ALARM is increased during rejection
288  in the graft, which strengthens the notion that circulating cells with high ALARM expression are
289  preferentially recruited to the kidney graft via the homing signaling axis of CXCL12 and CXCR4.

290

291  Analysis of ALARM Module Expression in an In Vitro Transwell Assay

292  To experimentally verify the observed CXCL12-mediated recruitment, we employed an in vitro
293  transwell assay using a cytokine gradient of CXCL12. This assay consists of a membrane covered with
294  primary microvascular endothelial cells (HDMEC), allowing for the comparison of unstimulated cells,
295 cells in direct contact with CXCL12, and those migrating based on the CXCL12 gradient (Figure 5A).
296 Flow cytometry quantifications of T cells indicate that CXCL12 significantly induces the recruitment and
297 migration of T cells, observed 4 hours post-deposition (Figure 5A; p=0.0286). The composition of naive,
298  central memory (CM), effector memory expressing CD45RA (TEMRA), and effector memory (EM) T cells
299 remained similar after migration and in response to CXCL12 alone (Figure 5B, Supplemental Figure
300 S4A). This suggests that all T cell subsets are equally attracted and migrate in response to a CXCL12
301  gradient. We further analyzed the expression of several T cell surface markers, focusing on CD69 as a
302 component of the ALARM module, CD25 (an activation marker), CD49a (a tissue residency marker),
303 and CD95 (an apoptosis marker) (Figure 5C). Interestingly, CD69 increased slightly with CXCL12
304  addition but was even more highly upregulated in migrated cells, while CD25 expression did not
305 change, decoupling the role of CD69 in early activation from its role in tissue residency*. CD49a and
306  CD95 levels remained unchanged, indicating that CXCL12 in combination with migration specifically
307 induced the extracellular display of CD69. It is noteworthy that CD69 expression depends on both
308 CXCL12 and the direct contact with HDMEC cells (Supplemental Figure S4B).

309 To assess whether CXCL12-induced migration altered the T cells' response to immune stimuli, CXCL12
310 exposed or transmigrated cells were purified and restimulated polyclonally for an additional 24 hours
311 (Figure 5D). Migrated cells showed a significantly increased expression of IFN-y in both CD4+ and CD8+
312  Tcellsin contrast to TNF-a, granzyme B (GZMB) or granulysin (GNLY). The increased expression of IFN-
313  y suggests that migration via the CXCL12 gradient may enhance the effector functions of T cells but
314  that other signals are needed to induce cytotoxic mechanisms in this model. The observed increase in
315 CD69 membrane display indicates a functional role for the ALARM module, which enables T cells to
316  acquire “new functions” in the tissue i.e. to establish residency via CD69 expression and increased IFN-
317 vy expression.

318  Tofurtherinvestigate the impact of CXCL12 signaling on T cell migration and the role of ALARM module
319  expression, we performed scRNA-seq using the transwell assay under three distinct conditions (Figure
320 6A). In the first condition (CXCL12-), T cells were placed below the transwell membrane without any
321 exposure to CXCL12. In the second condition (CXCL12+), T cells were placed below the transwell
322 membrane in direct contact with CXCL12. The third condition, (transmigrated), involved placing T cells
323  above the membrane, which were then collected from below the membrane after migrating in the
324  presence of CXCL12. This setup allowed us to assess the transcriptional changes associated with T cell
325 migration in response to CXCL12 (Figure 6A). Notably, all T cell subtypes identified by gene expression
326  were found in the three conditions (Supplemental Figure S4C).

327  To more accurately quantify gene expression changes and minimize the impact of subtype differences,
328 we focused on the most abundant subsets, namely naive CD4 and CD8 T cells. These naive T cells
329 clustered into four distinct groups, primarily due to differences in ribosomal gene expression and the
330 annotation of CD4 versus CD8 cells (Figure 6B). Additionally, there was a clear separation between
331 CXCL12- T cells and those exposed to CXCL12 or that had transmigrated, indicating significant
332 underlying gene expression differences. This separation was further evidenced by distinct changes in
333  the expression of ALARM module genes, with the CXCL12- condition showing markedly lower
334  expression patterns compared to the CXCL12+ and transmigrated groups (Figure 6B). Next, we
335 investigated specific gene expression alterations which would increase or decrease from CXCL12-,
336  CXCL12+ to the transmigrated condition (see methods).


https://doi.org/10.1101/2023.04.11.536347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.11.536347; this version posted November 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

337 In addition to ALARM module genes (Supplemental Figure S4D), several others exhibited notable
338 changes in expression across the different conditions (Figure 6C, Supplemental file 1). HSP90AB1, a
339  member of the HSP90 family of chaperone proteins, which is crucial for stabilizing proteins involved in
340 cell survival and esponses® was significantly upregulated in both CD4 and CD8 T cells. This suggests
341 that HSP90OAB1 may play an important role in enhancing the functional stability of proteins required
342  for T cell migration and adaptation during CXCL12 stimulation. Interestingly, two genes with roles in
343  cell migration, VIM3® and STK38% (serine/threonine kinase 38), also showed differential expressions in
344  both cell types. VIM, a key regulator of cytoskeletal organization that promotes cell motility®, was
345 upregulated in migrated cells, aligning with its role in facilitating the cytoskeletal rearrangements
346  necessary for migration. On the other hand, STK38 was upregulated predominantly in the CXCL12-
347  condition. To better understand the roles of all differentially expressed genes, we grouped them by
348 function (Supplemental file S1, Figure 6D). We found gene sets involved in immune response,
349  migration, cytoskeleton, adhesion, stress response and metabolism were gradually upregulated in the
350 CXCL12+ and migrated conditions in both CD4 and CD8 T cells. Conversely, gene sets associated with
351 structural organization, gene regulation, and membrane transport were downregulated. These
352  findings suggest that CXCL12 signaling, and migration induce profound metabolic and functional
353 changes in T cells, preparing them for new roles that require increased energy and biosynthetic
354 demands. Given the prominent upregulation of metabolic pathways, we further investigated the
355 metabolic reprogramming that accompanies T cell migration and activation in response to CXCL12. To
356 achieve this, we performed a comprehensive metabolic pathway analysis on T cells using Compass, an
357  algorithm designed to characterize the metabolic state of cells by integrating single-cell RNA-Seq data
358  with flux balance analysis3. This in silico approach allows us to infer the metabolic status of individual
359 cells based solely on transcriptomic data, providing insights at single-cell resolution. The analysis
360 revealed significant upregulation in several metabolic pathways, notably glycolysis/gluconeogenesis,
361 phosphatidylinositol signaling, and amino acid metabolism in response to CXCL12 and migration
362 (Figure 7A). To visualize the overall metabolic differences between the conditions, we performed PCA
363  on the Compass score matrix, which quantifies the metabolic state in each cell (see methods)®®. The
364 PCA results showed clear clustering of samples according to their condition, with non-migrated T cells
365 forming a distinct cluster separate from CXCL12+ and migrated groups (Figure 7B). This separation
366  underscores the significant impact of CXCL12-induced migration on the metabolic state of T cells.
367 Because the metabolic shift towards glycolysis is an essential hallmark of T cell activation® we focused
368  on the glycolysis and gluconeogenesis pathways to investigate the gene expression changes involved
369 in these processes (Figure 7C). Key glycolytic enzymes, such as glucose-6-phosphate isomerase and
370  pyruvate dehydrogenase, were significantly upregulated in migrated T cells compared to controls. To
371  validate the transcriptomic findings experimentally, we performed flow cytometry analyses to assess
372  glucose uptake and the expression of glycolytic enzymes. We measured protein levels of glucose
373  transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA), a key glycolytic enzyme that converts
374  pyruvate to lactate for rapid ATP production under anaerobic conditions. Although the increase in
375  GLUT1-positive cells post-transmigration was not statistically significant (p = 0.68) (Figure 7D), LDHA
376 expression showed a significant increase in migrated T cells compared to controls (p = 0.019) (Figure
377  7D). Additionally, uptake of the fluorescent glucose analog 2-NBDG was significantly elevated in
378  migrated cells (p = 0.031) (Figure 7D), indicating enhanced glucose metabolism. These results confirm
379 an increased glycolytic activity observed in migrated T cells, consistent with the metabolic
380 reprogramming identified in our pathway analysis. In summary, our results demonstrate that T cells
381 migrating in response to CXCL12 undergo functional reorganization, enabling their transition from
382 circulating cells to active immune responders at sites of inflammation or tissue injury.

383

384  ALARM is expressed in healthy individuals and variation is associated with infectious disease
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385 Up to this point, we have examined the role of ALARM cells primarily in the context of kidney rejection
386 and stable kidney transplantation patients. However, the findings from the Transwell assay, using
387  healthy donor cells in an in vitro model, suggest that ALARM cells may play a broader role beyond
388 kidney-specific contexts. Therefore, we investigated whether the ALARM module is expressed across
389  a healthy population to assess its broader function. For this, we explored a publicly available scRNA-
390  seqdata set of ~25,000 PBMC from 45 healthy volunteers (HV) for ALARM expression °. The data was
391 generated from the LifeLines DEEP cohort in Netherland, ranges in age from 20 to 79 and contained
392  46,6% female individuals and was described to be healthy time of collection as estimated by two
393  general practitioner visits #*. The ALARM gene expression was prominent in all cell types as shown by
394 its module score suggesting that ALARM is generally expressed in HV (Supplemental Figure S5A). We
395 note that age and sex did not result a significantly different expression of the ALARM (Supplemental
396 Figure S5B). Since this module was generally expressed in HV, we next asked whether it may be
397 involved in other disease conditions than transplantation rejection, but which implicate the
398 recruitment of circulating immune cells to specific tissues. To test this hypothesis, we exploited a
399 publicly available scRNA-seq data on PBMCs in which healthy individuals were intravenously injected
400  with the endotoxin lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria °.
401 LPS in the bloodstream causes an immediate systemic release of a variety of inflammatory mediators,
402  afeverandarapid but transient leukopenia ***. This experiment is thought to mimic an acute systemic
403 inflammatory response (SIRS) °, and thus provides an ideal proxy of how ALARM expressing cells are
404 responding to LPS-induced SIRS. We used the preprocessed available scRNA-seq data which contained
405  the O-time point (10 HV), 90 minutes (6 HV) and 10h after the LPS injection (6 HV) and first evaluated
406  how the cellular proportions changed over time. We measured the ALARM score in the three
407 conditions across the CD4, CD8, NK and B cells (Figure 8A). There was rapid and significant reduction
408  of ALARM high expressing cells as soon as 90 minutes and which further decreased until 10h after the
409 LPS injection (Figure 8A). This decrease was continuous within three individuals for which both
410 timepoints were available, indicating that ALARM cells are reduced in a time dependent manner
411 (Figure 8B). This drastic change of ALARM expression in such a short time frame suggests that cells
412  which highly express this module rapidly egress from circulation, directly contributing to the transient
413 leukopenia observed upon LPS injection. This is also consistent with the transient leukopenia
414  associated with LPS i.v. injection. Furthermore, this response to LPS which is thought to be initiated
415  via TLR4 receptor signaling expressed on circulating monocytes *#° signifies that ALARM is not solely
416  implicated in transplantation rejection or kidney immune cell invasion but appears to also be involved
417 in the inflammatory response to endotoxin.

418  Next, we investigated how ALARM may regulate when the site of inflammation is localized to a single
419  organ as in urinary tract infection. For this we explored a publicly available PBMC scRNA-seq dataset
420  which contained patients with leukocyte infiltrating urinary tract infection (UTI). We chose this
421  condition as the data was generated on patients which presented a localized infection with infiltrating
422 leukocytes. The study also provided results of HV and sepsis patients, notably patients with
423 bacteremia, i.e. bacterial presence in the blood. ! (Figure 8C). The bacteremia patients were thus also
424  used for comparison since this condition reflects a generalized or systemic infection which is distinct
425  from alocalized infection such as UTI (Figure 8C). Interestingly, we found that ALARM expression was
426 reduced in circulating cells in UTI patients (except B cells), consistent with the recruitment of
427 leukocytes to the tissue. In contrast, in patients with bacteremia, the ALARM cells accumulated in the
428 circulation, indicating that under this condition ALARM expressing cells may not be recruited to a
429 specific tissue. This contrasted with the response to LPS iv which is also thought to engender a systemic
430 response (see discussion).

431  To further explore the role of ALARM in response to localized infection, we analyzed two scRNA-seq
432 datasets generated from Covid-19 patients >, The aim was to explore the dynamics of ALARM cells in
433 the circulation in comparison to the lung. For this, we compared ALARM expression in PBMCs with
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434  ALARM expression in broncho-alveolar lavage fluid (BALF). The two separate original studies stratified
435  the patients by healthy, moderate, and severe Covid-19 disease and we used this stratification to
436  compare the ALARM module expression in the blood (PBMC) and in the lung (BALF) (upper panel figure
437 8D). The ALARM cells diminished according to disease severity (T, B, Mono, but not NK) in the blood
438  stream. This reduction was concomitant with an increase of ALARM high cells in the lung suggesting
439  that ALARM cells are migrating to the site of infection. Interestingly, these changes were cell-type
440  specific, notably while CD4+ T cells increased it was not the case for CD8+T cells. We note that the cell-
441  type specific modules did not change between disease state and between blood and lung (lower panel,
442  figure 8D) indicating that the similar cell types were analyzed and that the cell-type specific modules
443  were not related to disease state.

444 Collectively these results show that ALARM displays a normal distribution of expression across healthy
445 individuals and changes in response to distinct disease states (bacterial, viral, kidney rejection). It is
446  noteworthy that expression alterations of this module are apparent in distinct cell types depending on
447  the disease conditions.

448

449 Recruitment of CXCR4+ T Cells During Lung Infection In Vivo

450 To independently validate the rapid recruitment of immune cells during lung infection, as exemplified
451  inthe COVID-19 results above, we used a well-established pneumonia mouse model*”*8 to study T cell
452 recruitment. The infection was induced with E. coli and resolved after 7 days, with the peak of infection
453  occurring between day 1 and day 3. To specifically evaluate the recruitment of T cells from the blood,
454  we employed CD45-PE mediated immune staining of blood immune cells before and during infection®
455 (Figure 9A). This method allowed us to precisely quantify the recruitment of cells from the blood during
456  the infection. We observed that T cells were recruited from the blood as early as day 1, with a
457  significant peak at day 3, indicating a rapid response to the lung infection (Figure 9B). Upon analyzing
458 the membrane expression of CXCR4 on these cells, we found that 15% to 20% were CXCR4+ T cells, a
459  key component of the ALARM module, suggesting that a diverse set of T cells is recruited to the lung
460  (Figure 9B, Pie Charts). Next, we investigated the membrane display of CD69 and found that most
461  CXCR4+ CD69+ T cells were predominantly CD45+ cells (60-80% at day 1 and day 3), indicating their
462 blood-derived origin (Figure 9C). This phenomenon was particularly evident at day 1 and day 3,
463  corresponding with the peak of infection. Additionally, stratification of the CXCR4+ T cells by CD4+ and
464 CD8+ subsets showed that CD4+ T cell recruitment was much more abundant than CD8+ T cells,
465  mirroring observations from COVID-19 lung infection studies (Figure 9D).

466  These findings demonstrate that CXCR4+ T cells, particularly CD4+ T cells, are rapidly recruited from
467  the blood to the lung in response to infection, with peak recruitment occurring between day 1 and day
468 3. The presence of CD69+ cells among the recruited CXCR4+ T cells suggests that these cells are not
469  only migrating but are also likely being activated or display a residency program3:. The observation of
470  the concomitant protein expression and membrane display of CXCR4 and CD69 is characteristic of the
471  ALARM module, which is defined by the gene expression of both CXCR4 and CD69. The results
472 underscore the crucial role of the ALARM module in orchestrating an effective immune response
473  during the peak of lung infection, highlighting its broader relevance beyond kidney-specific contexts.
474

475

476 Disease classification of ALARM in immune mediated diseases

477

478  The above results suggest that ALARM expression changes are associated to immune diseases, likely
479  viathe recruitment of circulating immune cells to the site of inflammation. It may thus be possible that
480 the ALARM genes could be used as predictors for immune disease classification. The rationale is that
481 if ALARM genes are relevant for a precise disease state, they would be strong predictors to classify
482 healthy from disease *. To investigate this hypothesis, we analyzed 10 immune-mediated diseases
483  with distinct tissue tropisms (Supplemental Figure S8A). Out of these 10 diseases, systemic lupus
484  erythematosus (SLE), Sjogren syndrome and Anti-neutrophil cytoplasmic antibody-associated
485  vasculitis (ANCA) are known to favor the kidney among other organs. In contrast, mixed connective
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486  tissue disease and systemic sclerosis rather favor the connective tissues and rheumatoid arthritis
487  targets the joints. Thus, we aimed to test whether ALARM genes are good classifiers of disease vs
488  healthy condition and whether the classification of disease state varies depending on the tissue
489  tropism. This was possible thanks to a large bulk RNA-seq dataset comprising 28 circulating immune
490 cell-types which included 337 patients across 10 immune mediated diseases and 79 healthy controls
491 5% (Supplemental Figure S8A). We evaluated total gene expression using UMAP of this data set (Figure
492 10A) and found that ALARM module expression was present in all major cell types (Figure 10B). To test
493  the discriminative ability of the ALARM module, we then devised a classification pipeline comparing
494 disease state (all 10 immune diseases) vs healthy using logistic regression (Figure 10C). As in the data
495 set there were transcriptomics data from 28 cell types available, we focused on B cells, T cells, NK and
496 Monocytes by regrouping their respective sub cell types together (see Figure 10A).

497  We then generated an ALARM gene classification model compared it to two other models. The first
498  one using the most variable genes (coefficient of variation (CV?), see methods) and the second model
499  was based on genes in cell type identity modules (see figure 2). The rationale for using CV? gene
500 selection was to use an independent gene selection process which is more predictive than random
501 gene selection. We compared the prediction performance of the three models using the F-1 score as
502 it gives equal weight to precision and recall (Figure 10D, F1 score). Interestingly, the ALARM genes
503 were the best predictors for CD8, Monocytes and NK cells and were similar in performance to the cell
504  type specific modules of CD4 and B cells. To account for possible imbalances in the numbers of disease
505  and control samples we also computed the Cohen’s Kappa score (Supplemental Figure S8B). The results
506  were consistent with the F-scores. Of note, the CV2 gene selection approach was less predictive in all
507  cell types (Figure 8D and Supplemental S8B).

508 To evaluate whether the ALARM module was prominent for any specific cell sub types within the major
509 cell types (e.g., CD4 T helper cells vs CD4 naive cells) we estimated disease classification performance
510 of the ALARM module separately for each sub type. Predictability as estimated by F1 score remained
511 robust when each subtype was analyzed separately in comparison to the CV2 method (Figure 10E). We
512 note that in certain subtypes there were too few samples to compute an accurate Kappa score
513 (Supplemental Figure S8C). Nevertheless, this result indicates that ALARM was found to be relevant in
514  all the subtypes analyzed.

515  Next, we evaluated whether each of the 10 immune mediated diseases could be individually classified
516  from healthy (Figure 10F). The best classification ability of ALARM was found for Mixed connective
517  tissue disease, rheumatoid arthritis, Sjogren’s syndrome, SLE and Takayasu’s Arteritis. This indicates
518 that ALARM genes are not specifically predictive for tissue tropism but appear to be relevant
519  independently of the targeted tissue. In most cases ALARM outperformed the CV?feature selection
520  suggesting that ALARM genes are likely to be implicated in their disease etiology. In summary, this
521  comprehensive classification analysis indicates that ALARM genes are strong predictors of disease
522  state across the majority of circulating immune cells and within the 10 immune related diseases.

523

524  ALARM is enriched for genetic disease associations

525  Since the ALARM genes are strong predictors of immune mediated disease and its general role within
526 multiple cell-types and across multiple infections, immune related and autoimmune diseases, it is likely
527  that ALARM is enriched for genes known to be associated to diseases. To test this, we exploited the
528 DisGeNET database®! which provides a comprehensive compilation of published and curated human
529  gene disease associations (GDAs) from repositories including Mendelian, complex and environmental
530 diseases and enables enrichment analysis of such GDAs. Notably, we found that 24 out of the 61
531 ALARM genes (39%) were associated with a disease. To estimate the probability of this occurring by
532 chance, we compared this to random sampling of 61 genes and their quantification of GDAs
533 (Supplemental Figure S8D permutation). The probability of reaching 40 % of genes or more was below
534  >0.001, indicating that ALARM genes are highly enriched for GDAs.

535 Next, we tested whether the ALARM genes were enriched for diseases associations (Figure 10G). The
536 top three disease categories enriched for GDAs were Juvenile arthritis, Hodgkin disease and
537  polyarthritis comprising by themselves distinct 13 genes. This enrichment analysis indicates that
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538 ALARM is also genetically connected to disease state. In summary, ALARM is a strong classifier and
539  genetically linked to immune disease and thus is likely to play a general role in multiple immune
540 mediated diseases.

541

542 Discussion:

543 In this study, we gathered a cohort of matching ABMR, TCMR and stable patients and generated a
544  comprehensive scRNA-seq atlas of circulating immune cells across time and conditions. We then
545 identified multiple gene co-expression modules. Five out of nine modules were related to a single cell-
546  type while three were expressed in closely related cells (CD4+, CD8+ and NK cells) and only the ALARM
547 module was prominent in multiple cell-types. The observation that single cell transcriptomes mostly
548 reveal cell-type specific modules was also described by Kotliar et al., ° in which they distinguish
549 between identity (i.e., cell-type specific) gene expression programs (GEP) and activity GEPs. It is
550 possible that cell-type specific co-expressed genes are better detected as they show a greater
551 coherence within a well-defined group of cells. This is also notable in the presented data as the gene
552 expression scores of cell-type specific modules show less variance than the ALARM module.
553 Nevertheless, cell-type specific gene expression may not necessarily imply that it remains constant
554 across conditions. For example, we noted that some cell type specific modules were associated to
555 disease state (Figure 2E), notably the NK cell and monocyte specific modules were increased during
556  rejection. It is also possible that because of the relatively low number of genes per cell detected when
557  compared to bulk transcriptomics, cell identity programs are preferentially detected, and more subtle
558  condition specific modules are not robustly detected. Indeed, while cNMF revealed additional modules
559 inthe separate batches, only the ALARM module was consistently identified across the three batches.
560 The ALARM genes were found to be highly enriched for transcription factors and gene ontology
561 pathways associated with the gene expression machinery including transcription, mRNA processing
562  and ubiquitination. Prominent transcription factors included the AP-1 complex and the NFKB subunit
563 REL which are both associated with stress responses and inflammation. The membership of CD69 in
564  the ALARM module also suggests a role of stress response. CD69 is a classical early activation marker
565  of lymphocytes, as demonstrated by its rapid display on the surface of T cells after TCR stimulation3®.
566 In addition, CD69 is also known to be a tissue retention marker as it is expressed on resident memory
567 T cells in distinct tissues. In blood, this gene has been associated with chronic inflammation in various
568  diseases including rheumatoid arthritis > and systemic lupus erythematosus >3. Concomitant with this,
569  CD69 protein expression is increased on infiltrated immune cells at the site of inflammation inimmune
570  mediated diseases including systemic sclerosis, rheumatoid arthritis, systemic lupus erythematosus3.
571  The membership of CD69 in this module thus indicates that this module role could be to prepare
572 circulating cells T cells for TCR stimulation and for tissue retention once moved into a tissue, i.e., to
573 become T resident effector cells. This notion is also consistent with the increased expression of the
574  ALARM module in the kidney biopsy transcriptomics data (Figure 4).

575  The cytokine receptor CXCR4 was also identified in this module. CXCR4 is predominantly expressed by
576  lymphocytes as well as monocytes and through which the CXCL12 ligand promotes chemotaxis to
577  tissues via a concentration gradient >*. CXCL12 is expressed in multiple tissues including the kidney and
578 is altered during pathophysiological responses including immune diseases. Indeed, an alteration of
579 CXCL12 expression was observed in the kidney transplantation biopsies and this increase was
580 associated to elevated ALARM gene expression in the tissue (Figure 4E). It is possible that the CXCR4-
581 CXCL12 axis contributes to the recruitment of ALARM expressing cells in the case of kidney
582 transplantation rejection and other immune diseases. This is also consistent with the observation that
583 cells expressing the ALARM module decrease in the circulation during kidney graft rejection. This
584  observation was confirmed by both transcriptomics and histological studies of pigs as well as
585 transcriptomics in human kidney biopsies, thus, via CXCR4-CXCL12 leading ALARM cells to infiltrate the
586  tissues during rejection. This mechanism was further supported by an in vitro trans well assay, where
587  CXCL12 was shown to induce T cell migration. More importantly, it was found that both CXCL12
588  presence and migration significantly increased CD69 protein expression at the cell membrane.
589  Specifically, the combination of HMEC contact and CXCL12 presence was necessary for the highest
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590 expression of CD69, similar to that observed during transmigration. Single cell transcriptomic analysis
591  of migrated and non-migrated cells further revealed that certain gene groups, particularly those
592 involved in cytoskeleton organization, migration, and immune response, were upregulated, while
593  others were downregulated, indicating a shift in cellular state to adapt to new functions after
594  migration. Furthermore,we found that migration of T cells in response to CXCL12 is accompanied by
595  significant metabolic reprogramming. We observed upregulation of glycolytic pathways, increased
596  expression of LDHA at protein levels, and enhanced glucose uptake in migrated T cells. Metabolic
597  reprogramming towards increased glycolysis is a hallmark of activated T cells and is essential for their
598  effector functions during immune responses *°. These findings suggest that ALARM module expression
599 not only primes T cells for migration and tissue retention but also prepares them metabolically for the
600  demands of their new functional roles at sites of inflammation.

601  This CXCR4-CXCL12 axis also highlights the notion that the ALARM module is not necessarily specific to
602 transplantation rejection or the kidney. Indeed, reanalysis of circulating immune cells from publicly
603  available scRNA-seq data showed that the ALARM module was expressed in 45 unrelated healthy
604 individuals *° and showed significant alteration between distinct pathological conditions (Figure 5).
605 First, the ALARM response to LPS iv injection in healthy individuals revealed that it is time-dependent,
606 illustrated by a gradual decrease of ALARM cells within the same individuals over time. Second, there
607  was a significant difference between ALARM cells depending on the location of the pathological
608  condition. ALARM cells were shown to be decreased in response to kidney rejection, in response to
609 leukocyte infiltrating UTI and Covid-19 infection of the lung highlighting the role of ALARM in the
610 recruitment of cells to the site of inflammation and infection. This was further supported by
611 bacteremia sepsis, a state of systemic inflammation in which ALARM cells were increased in the blood.
612  While LPS iv injection and bacteremia induce both a systemic immune response, the former is
613  associated is essentially an endotoxemia response associated to a transient leukopenia*** while the
614  latter is a complex and heterogeneous condition that involves multiple factors beyond LPS, such as
615 pathogen virulence, host susceptibility, and coexisting medical conditions. It thus makes sense that
616  leukopenia is associated to the decrease of ALARM, while in bacteremia ALARM expression is
617  increased. Third, ALARM cells showed a gradually measurable response to disease severity. This notion
618  was observed by combining two distinct and complementary Covid-19 datasets one of which was
619  collected on BALF, and which had stratified their patients according to disease severity. ALARM cells
620  decreased in response to severity in the blood with a corresponding increase in the lung.

621 Fourth, we collected several lines of evidence suggesting that ALARM cells are indeed recruited to the
622  site of inflammation and/or infection. During acute rejection induced in the pig model there was a
623  rapid infiltration of leukocytes concomitant with the reduction of ALARM cells in the blood. The
624  analysis of kidney biopsies revealed an increase of ALARM gene expression during kidney transplant
625  rejection. Similarly, the recruitment of ALARM cells to the lung was observed during Covid-19 lung
626 infection. Finally, an in vivo mouse model of E. coli pneumonia demonstrated that CXCR4+ and CD69+
627 T cells are rapidly recruited from the blood to the lung during the peak of infection further supporting
628  the role of the ALARM module in mediating immune cell recruitment to sites of inflammation.

629  We thus propose a model in which ALARM expression priorities the infiltration capacity of each
630 circulating cell (see figure 11 model). This model has wide ranging consequences in precision medicine
631  as blocking of ALARM cells to the site of inflammation in the case of kidney rejection may prevent
632 further organ damage or attenuate the immune response in the case of Covid-19 lung infection. It may
633 also be useful to predict disease state as we have shown in figure 8. ALARM was a strong classifier of
634 immune disease when compared to healthy individuals. The importance of ALARM was independently
635 demonstrated by its enrichment for genes mutated in notably juvenile and poly- arthritis. Further
636 investigation is however required to test the specificity of disease detection or whether ALARM is
637 merely a response to inflammatory state in the circulation.

638  There are several limitations of this study, first it is based on gene transcription and thus remains to
639  be explored for protein expression, however this is difficult to achieve at single cell resolution and we
640  are not aware of any gene co-expression modules estimated at the protein level. Nevertheless, the
641  transwell assay and in vivo mouse model experiments indicate a connection between the CXCL12-
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642  CXCR4 axis and CD69 and their display during and after migration. While direct evidence of the
643 recruitment of these cells to the tissue has been experimentally confirmed the module expression was
644  shown to be low in the blood and high in the kidney tissue during rejection which may also be caused
645 be lack of the source of these cells, or a slowing in cellular maturation before expressing ALARM genes
646  an avenue that should be explored in subsequent studies. A further limitation is that as of now we do
647  not have a protein surface marker panel that could be associated to cells with high or low ALARM
648  expression. Such markers would enable the purification of ALARM cells enabling further molecular and
649  cellular characterization. Markers would also allow the targeted modulation of the recruitment of
650  ALARM cells to the graft or during Covid19 as well as other immune mediated diseases may thus impact
651 disease severity. Nevertheless, our study remains important in terms of precision medicine,
652 highlighting the discovery of ALARM, which expression enables cells to be preferentially recruited to
653 the inflamed tissue. This notion is likely to open novel strategies of disease monitoring and disease
654 intervention.

655

656

657

658

659  Methods:

660

661

662  Study of kidney transplant patients

663 Kidney transplantation patients

664  The PBMC samples used in this study (see table 1) were obtained from the DIVAT biocollection (CNIL
665  agreement n°891735, Réseau DIVAT: 10.16.618). Every patient included in the study was enrolled in
666  the DIVAT biocollection following their informed consent. The PBMC from patients were isolated from
667  kidney transplantation biopsies, frozen with DMSO 10% and stored in liquid nitrogen at the Centre de
668 Ressources Biologiques (CRB, CHU Nantes, France).

669  Cell preparation

670 Frozen PBMC samples were rapidly thawed and resuspended in complete Roswell Park Memorial
671 Institute (RPMI) 1640 media (Invitrogen, Carlsbad, CA) with 5% FBS, pre-heated at 37°C.

672 Following washing steps in PBS+0.04%BSA, cell pellets were resuspended in 200uL FACS buffer (1X PBS
673  supplemented with 2mM EDTA, 2% FBS) in which dead cells were labelled by adding 0.1 pug/mL DAPI
674  (Invitrogen, Carlsbad, CA). Cells were filtered on 70 um cell strainer and living cells were then sorted
675 using a Fluorescence-activated cell sorting (FACS) Aria Il cell sorter (BD Biosciences, Mountain View,
676  CA).We used the same method as previously described for single cell RNAseq>>°¢. One million cells
677  were kept for each sample and resuspended in 100uL of staining buffer (PBS,2%BSA,0.01% Tween)
678  according to the cell hashing protocol®® recommendations. Cells were incubated for 10 min with 10uL
679  of human Fc blocking reagent. Each sample was then mixed with 1ul of a specific TotalSeq-A hashtag
680  antibody (BioLegend, San Diego, CA) and incubated on ice for 30 min. Following 3 washing steps with
681  the staining buffer, cells were counted and their viability measured using an ADAM-MC automatic cell
682 counter (NanoEntek, Seoul,South Korea) to ensure a viability above the recommended 70%. All the
683 samples were pooled at an equal cell concentration in a single vial, centrifugated and resuspended in
684 PBS to obtain a concentration of 700 cells/uL, to match the targeted cell recovery of 32,000 cells.
685 Encapsulation of single cells was performed on a 10XChromium (10X Genomics, San Francisco, CA)
686  with the Chromium Single Cell 3’ Library and Next GEM reagent kit v3. The libraries were sequenced
687  twice for each of the three experiments on the NovaSeq 6000 (lllumina, San Diego, CA) with S1 flow
688 cells. The sequenced libraries were aligned to the GRCh38-2020-A reference genome with CellRanger
689  v5.0.0 (10X Genomics, San Francisco, CA). The scRNA-seq was performed in 3 different experiments
690 following the same protocol. Each experiment included longitudinal samples from three patients (one
691  stable patient, one humoral rejection and one cellular rejection) as well as one late sample of a tolerant
692 patient.

693 Method demultiplexing and Seurat analysis
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694  The count matrices were analyzed in R 4.0.3 using the Seurat R package (v4.0.2, Satija Lab*). Each
695  experiment was first processed separately, with the same workflow. First, following the standard
696  workflow recommendations, cells with less than 200 unique feature counts were removed (potential
697  empty droplets). Cells with a percentage of mitochondrial genes greater than 15% were excluded as it
698  results from mitochondria degradation from dead or dying cells. The hashing antibody sequences were
699  then collected to demultiplex and assign each cell to its sample using the MULTIseqDemux function.
700  Cells with too little labels information were called “Negative” while cells with a high count of two or
701 more different oligo-conjugated antibody sequences were called “Doublets”. Only cells with a unique
702 HTO were kept for downstream analysis. Singlet cells were annotated automatically with the Azimuth
703 workflow within Seurat, by mapping the query cells on an annotated reference of 162,000 PBMC
704  measured with 228 antibodies®®.

705 All the runs were then merged in a single Seurat object. Doublets and contaminant cells to exclude
706  were selected by identifying cells co-expressing marker genes from distinct cell types. After
707 normalization of the global object, the 2,000 most variable genes in the data were selected to compute
708  the correction using the reciprocal principal component analysis (RPCA). The final annotated and
709 corrected object gathering the 12 patients was composed of 50,507 cells.

710  Gene Module Identification

711 Consensus Non-Negative Matrix Factorization (cNMF)® was used to decompose the cell vs gene
712 expression matrix into cell vs module and usage vs gene low-rank matrices. Non-Negative Matrix
713 Factorization is a stochastic method and therefore it was run with 200 NMF replicates to find a
714  consensus robust factorization. For each batch, the top 2000 over dispersed genes were selected as
715 input to the ctNMF run. Different K values (7 to 14) were explored to determine the optimal number of
716 modules. For each K, the stability and error metrics were examined. The best K was chosen such that
717  the error was minimum, and the stability was maximum. Each batch was independently processed to
718  mitigate batch effects from the three different runs. For the three batches, the optimal number of
719  modules (K) were 14, 11 and 13.

720 Module filtering: All modules from the three batches were collated and hierarchical clustering was
721 performed to identify matching modules. Jaccard similarity score was used to define the similarity
722 between two modules. Finally, only those clusters were retained that could represent all three
723 batches. In this way, nine consistent modules were identified. A unique geneset was determined for
724  each consistent cluster by intersecting the top-ranking 200 genes from the modules. The threshold
725  was achieved by observing a scree plot of input number of genes vs the number of genes after
726 intersection.

727  Module association: The genes in the module were examined for a module to be associated with a
728  known cell type. The modules containing marker genes were associated with their respective cell type;
729  for example, the module with MS4A1 and CD79A genes was associated with B cells. However, one of
730  the modules (Module 9, later named as the ALARM module) could not be associated with a known cell
731  type as it did not contain cell type specific markers and was well expressed in multiple cell types.

732 UCell module score

733  The enrichment of a particular set of genes in an individual cell was measured with the UCell*® module
734  score. The score is calculated using the Mann-Whitney U statistic, which compares the expression
735 levels of the module genes relative to the total gene expression of the cell. The U-statistic outcome is
736  then normalized between 0 to 1 to produce the UCell score.

737 Regression analysis

738  Change in the module score (u) along time (t) for each condition was modelled with linear regression
739  method. The ‘Im()’ function from R stats package was used to fit a distinct model u ~ 1, per celltype
740  within the group of Stable, ABMR and TCMR individuals. A positive slope indicated that the module
741 score increased with time.

742  Gene Ontology analysis

743  The gene ontology (GO) functional enrichment of the ALARM module gene list was performed using
744  the R package WebGestaltR (v0.4.4) for Biological Process (BP) and Molecular function (MF)
745  annotation. P-value are obtained with the hypergeometric test for ORA (Over-Representation
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746  Analysis). As background dataset for enrichment the top 2000 variable genes from each run were
747  merged and used.

748  Transcription factor enrichment analysis

749  To test for enrichment of transcription factors in the ALARM module, GSEA molecular signature
750  database was used to count the transcription factors gene family in the module and in the background
751  dataset used for gene ontology analysis. Fisher exact test was used to calculate the P-value and
752  enrichment of transcription factors in the ALARM module.

753

754  Allogeneic kidney rejection model in pig

755 Animal model

756  The study protocol was approved by the French Ministry of Higher Education, Research and Innovation
757 (APAFiS #30136). The experiment was performed on 60 to 80kg male pigs (Sus scrofa). Test card with
758 pre-applied antibodies from Serafol (Berlin, Germany) were used to identify the pigs’ ABO blood
759  groups. The alloreactivity was performed by mixed lymphocyte reaction assay between donor and
760 recipient. The donor pig was selected from a different breed as inbred pigs might escape rejection.
761 Donor and recipients blood groups were ensured to be compatible to avoid hyper-acute rejection, and
762 mixed lymphocyte reaction assays were positive thus proving their alloreactivity.

763  Allogeneic transplantation

764  Unilateral nephrectomies were performed on two recipient pigs under general anesthesia with a
765 premedication by Zolazepam/Tiletamine (Zoletil ® Virbac, Carros, France) 15 mg/kg IM, before
766  intubation and a maintained ventilation with a mixture of 49% oxygen, 49% nitrous oxide and 2%
767  isoflurane. The two kidneys from a third donor pig were harvested in the same operating time. The
768  two recipient pigs received one collected kidney each for an orthotopic transplantation. During
769  surgery, a central venous catheter (CVC) was inserted into the internal jugular vein for hydration and
770  medication. Post-operative analgesia was performed every day with intravenous injections of
771 Nalbuphine (Nubain ®, Mylan, Canonsburg, Pennsylvania) and Paracetamol at a dose of 25 mg/kg.
772 Prophylactic antimicrobial therapy was conducted with Cefazolin 1 g (Cefovet ®, Dopharma, Ancenis,
773 France).

774 PBMC collection in Pig model

775 Blood samples were collected daily through the CVC and frozen in a CoolCell® container (Corning ®,
776 Corning, NY, USA) at -80°C following the PBMC isolation. Kidney transplant biopsies were collected
777  daily using automated biopsy needles of 16 gauges under ultrasound guidance while pigs were sedated
778 by Zolazepam/Tiletamine and locally anesthetized with Lidocaine. Kidney samples were then placed in
779  cryovials with 1mL fetal bovine serum (FBS) and 10% dimethylsulfoxyde (DMSO) for gradual cooling in
780  a CoolCell chamber.

781  Single cell preparation for pig model

782 Blood samples were processed as described previously (see Methods 1.2). After filtering, cells were
783  centrifugated at 300g for 10 minutes at 4°C and resuspended in staining buffer for the HTO antibody
784  labeling (see Methods 1.3). The sequenced libraries were aligned to the Sscrofa 11.1 (February 2017
785 release) reference genome with CellRanger v5.0.0.

786

787 Pig biopsy immunostaining analysis

788 Kidney biopsies fixed Carnoy's solution for 30 minutes followed by a fixation in formaldehyde for 24h
789  for optical microscopy purpose. A second batch of kidney biopsies was prepared for immunostaining
790 purpose: biopsies were placed in cryomold, covered with optimal cutting temperature (OCT)
791 compound and immersed in cold isopentane. Following their solidification, cryomolds were stored in
792 liquid nitrogen. Cryosectioning was performed and the resulting slides of kidney biopsies were stained
793  with periodic acid-Schiff (PAS) and Masson’s trichrome stains (TM).

794  The cellular infiltration was counted using ImageJ®® software on the PAS-stained kidney biopsies. Areas
795  of interest were selected to exclude areas with glomeruli. Pictures were first converted to 8-bit
796  grayscale, and the threshold of detection was set to capture only the stained cells.
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797

798  Transmigration Model

799 HDMECs (10 x 10* cells) activated with TNF-a (100 U/ml) for 24 hours were seeded O/N onto 1%
800  gelatin-coated Transwell membrane inserts (24-well, 3-um-pore polycarbonate membrane; Corning
801 Life Science) in endothelial cell growth medium at 37°C. On the day of the assay, purified CD3 T-cell
802  subsets (4x10°) were added to the upper transwell migration chamber, and the chemokine CXCL12 (50
803 ng/ml) was added to the lower transwell migration chamber. Migration was assessed after 4 hours by
804  quantifying the number and phenotype of migrated cells in the lower chamber using 123count eBeads
805 counting beads and a Cytek AURORA flow cytometer (5 lasers). Migrated CD3 were surface stained
806  with specific antibodies to characterize phenotype CD3, CD8, CD4, CD45RA, CCR7 and activation
807 molecules CD69, CD25, CD127, CD95, CD103 and CD49. The antibodies used for the cytometric
808  analyses are listed belowExpression of Cytotoxic Molecules by Human transmigrated CD3 T Cell
809  Subsets

810 To define the expression of cytotoxic molecules, transmigrated CD3 were restimulated with PMA
811 (50ng/mL), ionomycin (500ng/mL) and BFA (5ug/mL). Transmigrated CD3 were surface stained with
812 specific antibodies for phenotypic characterization of CD3, CD8, CD4, CD45RA, CCR7, and after fixation
813  and permeabilization (BD Cytofix/Cytoperm), intracellular staining was performed using antibodies
814 against granzyme B (GZMB) and perforin-1 (PERF-1), granulysin, and TNFa. The antibodies used for
815 cytometric analyses are listed below.

816 Metabolic characterization of Human transmigrated CD3 T Cell Subsets

817  Transmigrated T cells were stimulated over-night with plate bound anti-CD3 (1ug/mL) and anti-CD28
818  (2ug/mL) mAb. Cells were washed, surface stained with anti-CD3, CD4 and CD8 mAbs and cultured for
819 30’ at 37°C 5% CO2 in glucose-free medium containing 50 uM 2-NBDG. Alternatively, cells were surface
820 stained with anti-CD3, CD4, CD8 and GLUT1 mAbs and after fixation and permeabilization (BD
821  Cytofix/Cytoperm), intracellular stained with anti-LDHA mAb. Data were acquired using a 5 lasers Cytek
822  AURORA flow cytometer and analyzed using OMIQ.

823  Antibodies used:

Target Clone Fluorochrome Provider

CD3 OKT3 Purified In house production
CD28 CD28.2 Purified In house production
CD3 SK7 PE Cy7 BD

CDh4 SK3 R7 CF568 Cytek

CD8 SK1 Sparkblue 550 Biolegend

CD69 FN50 APC Cy7 Biolegend

GLUT1 202915 FITC R&D Systems

LDHA APC ab310866 Abcam

CD3 UCHT1 PE-Cy7 Biolegend

CD8 SK1 Spark Blue 550 Biolegend

CD4 SK3 cL-Fluor YG584 Cytek

CD45RA HI100 BUV496, BV786 BD

CCR7 GO043H7 APC Fire810 Biolegend

CD69 FN50 APC-Cy7 Biolegend

CD25 M-A251 PE-Fire700 Biolegend

CD127 HIL-7R-M21 APC R700 BD Biosciences
CD95 DX2 PE-Cy5 BD Biosciences

CD103 Ber-Act8 BV605 BD Biosciences
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CDA49a SR84 BUV661 BD Biosciences
GZMb QA16A02 PE-Cy5 Biolegend
IFNg B27 APC BD Biosciences
GNLY RB1 AF488 BD Biosciences
TNFa Mab11 BUV737 ThermoFisher

824

825 scRNA-seq of Transmigration model

826 T cells were collected as indicated in figure 5A and then processed for chromium loading. The three
827 conditions were processed at the same time using CITE-seq approach (see above).

828 Primary Analysis: Fastq files were generated from Illumina bcl files using Bcl2fastq version 2.2.
829 Cellranger v7.2 was employed to create a filtered scRNA gene expression matrix from the fastq files,
830 utilizing default parameters and the human genome reference version GRCh38-2020.

831  Seurat version 5.1 was used for subsequent quality control and preprocessing. HTODemux, with a
832 positive quality threshold of 0.95, was applied to demultiplex cells, identifying singlets and associating
833  each singlet with the corresponding condition. Cells with an RNA count exceeding 30,000 or exhibiting
834  mitochondrial gene expression above 20% were excluded. Cell type annotation was performed using
835  Celltypist annotation tool®.

836  Secondary Analysis: For each CD8 and CD4 cell type, genes exhibiting significant gradients across the
837  three conditions were identified using a linear model. The dependent variable in the model
838  represented the condition, with control CXCL12-, control CXCL12+, and migrated groups assigned
839  values of 0, 1, and 2, respectively. To simulate multiple individuals, cells were randomly grouped into
840 10 groups. These groups served as pseudo-individuals, each containing at least 50 cells, created using
841 the createfolds function from the caret package. The final linear model was formulated as ~
842  condition + (1 | individual). Top genes were identified based on significant p-values (< 0.05), and the
843 direction of their gradients across the conditions was noted.

844  Among the top gene modules, several were found to participate in known pathways. The average gene
845  expression for these modules was calculated using the AddModuleScore function of Seurat.

846 Metabolome Pathway Analysis: The Compass algorithm3® was used to characterize the metabolic
847  states of CD4+ T cells across three different conditions: Migrated, CXCL12-positive (CXCL12+), and
848  CXCL12-negative (CXCL12-). The algorithm designed to infer the metabolic state of cells from scRNA-
849  Seq data through flux balance analysis. It addresses the limitations of traditional metabolic assays in
850  assessing metabolic states at the single-cell level, leveraging transcriptome data to predict metabolic
851  activities. For reference to metabolic reactions and pathways, the RECON2 database was utilized for
852  this analysis. The scRNA data were first micropooled, resulting in 20 pseudobulk samples for each
853  condition in order to compare the same number of samples between conditions. The reaction
854  penalties were estimated for various metabolic pathways based on gene expression levels in each
855 pseudobulk sample. Reaction penalties were then converted to negative log scores, with higher values
856 indicating greater predicted activity. Significant active reactions were identified using the Wilcoxon
857 rank-sum test, comparing the Migrated samples to the CXCL12- samples. Reactions with an adjusted
858 p-value of less than 0.1 were considered significant.

859

860  Analysis of the ALARM module in kidney biopsies

861  Two separate studies were analyzed here. The Reeve et al. Affymetrix Microarray data in RAW CEL
862 format was downloaded from Gene Expression Omnibus (GEO) website with accession number
863  GSE98320. The samples were pre-processed using robust multi-chip averaging (RMA) implemented in
864 Bioconductor. The patient condition was obtained from the ‘d96’ metadata column as designated in
865  the corresponding Series Matrix file. The patients strictly defined as either TCMR (n=76), ABMR
866  (n=197), Mixed (n=39) or no major abnormality (STA, n=257) as a stable condition, were retained for
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867  downstream analysis. The Callemeyn et al. dataset was downloaded from GEO with accession number
868  GSE147089. The CEL files were similarly pre-processed using the RMA method. The labels for each
869  sample were obtained from the Series Matrix file and the phenotypes are defined as biopsies without
870  ABMR (n=168), DSA negative ABMR (n=26) and DSA positive ABMR (n=30).

871  The score used to stratify patients was computed by averaging the z-scores of the ALARM module
872 genes.

873  ALARM mean z-score distribution across conditions

874  The Kolmogorov-Smirnov (KS) test was then used to compare the distribution of the ALARM module
875 score between stable and rejection conditions. This non-parametric statistical test compares the
876  cumulative distribution functions of the mean ALARM z-scores in both groups. The KS test statistic (D)
877 is the maximum vertical distance between the two distributions. The p-value of the test is the
878 probability of obtaining a test statistic as extreme as D or more extreme, assuming that the null
879  hypothesis is true. The null hypothesis is that the two samples are drawn from the same distribution.

880 Receptor-Ligand analysis

881  The ‘iTalk’ R package was used for the receptor-ligand (RL) analysis. The receptors were gene
882 candidates in single-cell kidney transplant stable and rejection patients. The rawParse() function with
883 stats='mean’ was used to identify the candidate genes. For each celltype, the genes were ordered
884 by their average count expression. Only the top 50 percent of these genes were selected for the
885  subsequent RL analysis. The same criteria were adopted for selecting the ligand candidates from the
886  bulk RNAseq biopsy data. The significant interaction pairs were discovered from the iTalk database
887  restricted on the cytokine interactions only.

888

889 Analysis of publicly available scRNA-seq datasets

890 PBMCs of 45 healthy Volunteers (Van Der Wijst MG et al.):

891 Processed (de-anonymized) single-cell RNA-seq data and its relevant meta data was obtained from the
892 European Genome-phenome Archive (EGA) accession number EGAS00001002560. The available data
893  was merged to build a single Seurat object for downstream analysis. Azimuth reference for PBMCs was
894  used to annotate the cells.

895 LPS and Covid PBMC dataset (Stephenson et al.):

896  The processed data was downloaded from Array Express under accession number E-MTAB-10026. Only
897  individuals from the same batch containing the LPS-treated volunteers were selected to mitigate batch
898  effects. Fig 5B shows only those individuals where the major cell types were available. The Covid
899  patients originally annotated as Mild/Moderate was included as ‘Moderate’ in Fig 5D.

900  Sepsis-PBMC Dataset (Reyes et al.):
901 The pre-processed scRNA-seq data was downloaded through the Broad Institute Single Cell Portal
902 (SCP548). The data was further analyzed with Seurat to obtain the Module score based on UCell.

903  Covid — BALF Dataset (Liao et al.):
904  The data was accessed from GSE145926. The filtered cell matrix was processed with Seurat with the
905 code as provided by the authors of the original article.

906 In vivo Mouse model experiments

907 For induction of pneumonia, E. coli (DH5a strain), OVA-coated E. coli, grown for 18 h in Luria broth
908 medium at 37 °C, were washed twice (1,000g, 10 min, 37 °C), diluted in sterile isotonic saline and
909 calibrated by nephelometry. Bacteria (75 pl, OD600 = 0.6—0.7) were injected i.t. in anesthetized mice
910  to induce nonlethal acute pneumonia. Infected mice were intravenously (i.v.) injected with 10 pg of
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911  CD45-PEondaysO0, 1,3 and 5 to evaluate T cell trafficking towards the lung. Five minutes before sample
912 collection on each of these days, 10 ug of CD45-BV480 was i.v. injected to evaluate blood
913  contamination during lung excision. To specifically assess the expression of membrane markers CD3,
914  CD4, CD8 CXCR4 and CD69 conjugated monoclonal antibodies were used on cell suspensions: CD3-
915 bv711 (145-2C11, 7311597, BD Biosciences, 1:200 dilution); CD4-buv395 (GK1.5, 1097734, BD
916 Biosciences, 1:200 dilution); CD8-AlexaFluor700 (RPA-T8, 9025745, BD Biosciences, 1:200 dilution);
917 anti-CD69-APC (H1.2F3, 9204727, BD Biosciences). Two independent experiments with each 3-4 mice
918  were carried out. Anova test were used to evaluate for statistical significance across time points.

919

920  Analysis of publicly available data set of 10 immune mediated diseases

921 Bulk RNAseq of 28 pure immune cell types from 339 individuals divided into 10 immune-mediated
922  diseases and 92 healthy controls was obtained from the National Bioscience Database Center (NBDC)
923 Human Database with the accession number E-GEAD-397. The dataset was assembled as a large matrix
924  with genes listed in rows and columns are individuals with homogeneous cell types. Functions from
925 the Seurat pipeline were used to compute the module scores and generate the population's UMAP
926  embedding.

927 Disease Classification

928 Combined diseases vs healthy approach was deployed for each major cell type and by cell subtype at
929  the primary level. The Logistic Regression classifier from the R package ‘caret’ and the repeated cross-
930 validation strategy for model evaluation were used.

931 In the next phase, for each major cell type, classification was evaluated for Healthy vs One Disease. An
932 identical classification model was built in this phase as well. The coefficient of variation (CV2)®! method
933 produced an unsupervised set of highly variable genes as a control for the ALARM module genes. The
934 mean vs (variance/means?) was modelled with gimgam.fit from the statmod R package for the variance
935  estimate of every gene. The genes were ranked by the significance of deviation from the fit. The same
936  number of variable genes was then used in the modules.

937 Gene association to disease terms

938 The association between the ALARM genes and immune disease terms was performed using the
939  disgenet2r (v0.99.2) R package °!. The ratio of genes associated with immune diseases to the total
940  number of genes within the modules was compared to the corresponding ratio obtained from 1000
941 randomly selected sets of 61 genes.

942 Methodological Clarifications and Editing

943 Parts of this manuscript were edited and refined with the assistance of ChatGPT, the Al language model
944  developed by OpenAl. This tool was used to improve the clarity and coherence of the text without
945  altering the scientific content.
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975
976 Figure legends:
977
978
979  Figure 1. Comprehensive longitudinal single-cell RNA-sequencing of circulating immune cells in a
980  cohort of kidney allograft recipient.
981  A)Timeline of the blood sampling points post-transplantation for the patients followed longitudinally.
982  STA=Stable patient (n=3), TCMR=T cell mediated rejection (n=3), ABMR=Antibody-mediated rejection
983 (n=3). Tolerant patients are not shown.
984  B) Schematic diagram of the scRNA-seq preparation workflow using cell hashing. Peripheral blood
985 mononuclear cells (PBMCs) were collected from stable, ABMR and TCMR patients and then stained
986  with one different oligo-conjugated antibody before being pooled and processed using microfluidic
987 encapsulation.
988 C) UMAP dimensional-reduction embedding of the integrated samples (n=30). Each colour represents
989  adifferent cell subpopulation, adapted and manually curated from the automatic Azimuth annotation.
990 D) UMAP projection showing the disease state distribution, TOL=Tolerant patients.
991 E) UMAP projection coloured according to experimental batch of origin
992
993 Figure 2. ALARM Module identification
994  A) Schematic workflow of the gene co-expression analysis using consensus nonnegative matrix
995 factorisation (cNMF) module detection separate in each batch. The module selection was then refined
996  based on overlapping genes between the three batches.
997 B) Clustering of 9 modules across the 3 batches, using the Jaccard distance.
998 C) Heatmap showing the combined gene expression of each module, i.e. module scores of the 9
999 modules summarized for each distinct cell-type.
1000 D) UMAP projection of the expression of Module 9 across all cells.
1001 E) Regression analysis of the 9 modules by cell types. The outcome variable (y) was time (TO, T1 and
1002  T2) and the independent variable (x) was the module score. Heatmap shows the beta values (trend)
1003 for each cell-type and disease state. Negative values correspond to a decrease of the module score
1004  across the three time points, positive values to an increase.
1005 F) Super violin plots®? showing the longitudinal trend of ALARM module in NK, CD4 T cells (top), CDS8 T
1006 cells and B cells (bottom), stratified by individuals from each batch.
1007 G) Gene Ontology analysis of biological process (BP) and molecular function (MF) identified by
1008 comparing the ALARM gene enrichment using the 4000 most variable genes as background (See
1009  Supplemental file 1).
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1010

1011 Figure 3. Pig model scRNA-seq analysis

1012  A) Schematic diagram of the acute kidney allograft rejection in pig model. Recipient pig with a
1013 unilateral nephrectomy received a kidney graft from a second healthy pig. Kidney biopsies and PBMCs
1014  were collected daily and observed in immunohistochemistry. PBMCs were prepared for a scRNA-seq
1015  analysis.

1016 B) Immunohistochemistry of pig biopsies stained with Periodic Aid Schiff (PAS), to stain
1017  polysaccharides, glycoproteins and glycolipids at day 0, day 2, day 4 and day 6

1018 () Quantification of cell populations in the kidney graft at given days using Image J cell counting
1019 software (See supplemental figure 3 for details)

1020 D) UMAP dimensional-reduction projection of the circulating immune cell types (PBMCs) scRNA-seq
1021 after PBMC isolation at DO, D2, D4 and D6.

1022 E) Proportions of circulating immune cells (PBMC) across the different time points (D0-D6) in the
1023 recipient transplanted pig.

1024 F) Violin plot of the ALARM module score in B cells, monocytes, CD4 T cells, CD8 T cells and NK cells
1025  throughout acute rejection in the kidney tissues (Day 0, Day2, Day 4 Day6). *P < 0.05, **P < 0.01, ***pP
1026 <0.001, ****p < 0.0001.

1027

1028 Figure 4. ALARM gene expression increases in kidney tissues during rejection

1029 Left panels from Reeve et al., 2017 and right panels from Callemeyn et al 2020. STA =Stable patient,
1030 ABMR=Antibody-mediated rejection, TCMR=T cell mediated rejection, Mixed=Graft undergoing ABMR
1031 and TCMR, DSA- = Donor specific antibody negative and DSA+= Donor specific antibodies positive.
1032  A) Violin plot of the sum of z-scores of ALARM genes across conditions. Wilcoxon P-values are shown
1033 in panel comparing Stable (STA) to rejection status (ABMR, Mixed or TCMR and DSA- and DSA+ ABMR).
1034  The mean comparison p-values were computed using the Wilcoxon rank-sum test. B) Heatmap
1035  showing z-scores of ALARM genes (one gene per row) in all graft biopsies. Phenotype denotes the
1036  disease states. Patients are sorted on the mean of the module gene z-scores.

1037  C) Cumulative distribution of the mean of z-scores of ALARM genes comparing stable vs the combined
1038  rejection conditions. K-S = Kolmogorov -Smirnov P-values and distance.

1039 D) Ligand-Receptor analysis between receptors genes identified in circulating immune cells and
1040  cytokines genes expressed in the allograft kidney tissue under no rejection and rejection condition.
1041  Width of the arrow line is proportional to the expression of the ligands and the width of the arrowhead
1042 is proportional to the receptor. Only the top 5 associations from each cell type of differentially
1043  expressed receptors (PBMC scRNA-seq) and cytokines (Biopsy microarray) are shown.

1044 E) Boxplots showing CXCL12 expression in biopsies from patients with high ALARM module expression
1045 (>75%), medium (25-75%) and low (<25%). Wilcoxon rank-sum test was used to calculate P-values
1046  shown above.

1047

1048  Figure 5: Analysis of ALARM Module Expression and T Cell Behavior in an In Vitro Transwell Assay
1049  A)Schematic representation of the in vitro transwell assay used to study CXCL12-mediated recruitment
1050 of T cells. The assay involved a membrane covered with human dermal microvascular endothelial cells
1051 (HDMEC), allowing for the comparison between unstimulated cells, cells in direct contact with CXCL12,
1052 and those migrating across the membrane in response to a CXCL12 gradient.

1053 B) Quantification of T cell subsets following migration. The composition of naive, central memory (CM),
1054  effector memory RA (TEMRA), and effector memory (EM) T cells remained similar post-migration and
1055 in response to CXCL12 alone, indicating that all T cell subsets are attracted to and migrate in response
1056  tothe CXCL12 gradient.

1057  C) Analysis of T cell surface marker expression. CD69, a component of the ALARM module, showed a
1058  slight increase in response to CXCL12, with a more significant upregulation in migrated cells. CD25,
1059 CD49A, and CD95 levels remained unchanged.

1060 D) Functional analysis of migrated T cells. CXCL12-exposed and transmigrated cells were stimulated
1061  with PMA/ionomycin after 24 hours. Migrated cells showed significantly increased expression of IFN-
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1062 vy in both CD4+ and CD8+ T cells, while TNF-a, granzyme B (GZMB), and granulysin (GNLY) expression
1063 remained constant.

1064  Statistical significance was determined using one-way ANOVA, followed by post-hoc tests where
1065  appropriate. Significance levels are indicated as follows: *< 0.05, ** <0.01, and *** <0.001.

1066

1067  Figure 6: Single Cell Characterization of T Cell Behavior in an In Vitro Transwell Assay

1068  A) Schematic representation of the transwell assay used to investigate CXCL12-mediated signaling and
1069 its effect on T cell migration. Three distinct conditions were assessed: (1) CXCL12-: T cells were placed
1070 below the transwell membrane without exposure to CXCL12, (2) CXCL12+: T cells were placed below
1071  the transwell membrane in direct contact with CXCL12, and (3) Migrated: T cells were placed above
1072  the membrane and collected from below after migrating in the presence of CXCL12.

1073 B) UMAP visualizations displaying the clustering of naive CD4 and CD8 T cells based on gene expression.
1074  Clusters were identified based on differences in ribosomal gene expression and CD4 versus CD8
1075  annotation (top left & right). Annotation according to condition (bottom left) shows a notable
1076 separation between CXCL12- T cells and those exposed to CXCL12 or that had transmigrated. The
1077  ALARM module shows lower expression in the CXCL12- condition compared to the CXCL12+ and
1078 Migrated groups (bottom right).

1079 C) Dot plot showing the expression levels of specific genes across the different conditions (Migrated,
1080  CXCL12+, CXCL12-).

1081 D) Violin plots depicting the expression distribution of gene groups in pooled CD4 and CD8 T cells across
1082  the three conditions. The plots demonstrate changes in gene expression associated with immune
1083 response, migration, cytoskeleton organization, and stress response, as well as the downregulation of
1084  genes related to structural organization and gene regulation.

1085

1086  Figure 7. ALARM Module associates with a shift of immune cells metabolic fonctions

1087  A) Metabolome pathway analysis of CD4+ T cells, using 20 pseudobulk sample for each experimental
1088  condition (Migrated, CXCL12-positive, and CXCL12-negative). The differential activity of metabolic
1089  reactions was evaluated by comparing the mean of Migrated samples and CXCL12- samples

1090 B) PCA visualization of the pseudobulk samples by condition based on the metabolome pathway
1091  analysis scores

1092 () Volcano plot illustrating glycolytic enzyme changes in migrated T cells compared to controls. The x-
1093  axis shows Cohen's d effect sizes, and the y-axis indicates the statistical significance (-log10 p-values).
1094 Key enzymes in the glycolysis/gluconeogenesis pathway are labeled.

1095 D) Flow cytometry analysis and quantification of GLUT1 and 2-NBDG uptake in T cells before and after
1096  transmigration. Left panels show representative flow cytometry plots, and right panels show paired
1097  comparisons for each parameter. LDHA expression levels (measured by MFI) are also shown before
1098 and after transmigration. Statistical significance is indicated, with p-values provided for each
1099 comparison.

1100

1101 Figure 8. ALARM gene expression is altered in distinct immune conditions

1102  A) Outline of study on Lipopolysaccharide (LPS) intravenous injection (iv) scRNAseq experiment
1103 performed on healthy volunteers obtained from Stephenson et al. The annotated expression data was
1104 used to compute the ALARM module score across time points after LPS injection in healthy volunteers.
1105 Violin plots show the module score across cell types and condition. Total number of cells are
1106 mentioned below the plot. P-values are shown above the violin plots and were calculated using
1107  Wilcoxon rank sum test comparing each cell type between healthy and LPS conditions.

1108 B) Violin plots of ALARM module score for three individuals which had matching timepoints across all
1109 cell types in the condition LPS 90 min and LPS 10h. Lines connect the median ALARM module score
1110  across time points for each individual separately. P-values are shown above the violin plots and were
1111  calculated using Wilcoxon rank sum test comparing the two distinct time points.

1112  C) Outline of patients with sepsis and urinary tract infection obtained from Reyes et al,. Annotated
1113  data was used to compute ALARM module score across the different cell-types in urinary tract infection


https://doi.org/10.1101/2023.04.11.536347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.11.536347; this version posted November 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1114  (UTI) patients and bacteraemia sepsis patients. Number of cells and individuals used are shown below
1115  the violin plots. P-values are shown above the violin plots and were calculated using Wilcoxon rank
1116  sum test comparing each cell type between healthy and LPS conditions.

1117 D) Outline of PBMC scRNA-seq generated on healthy individuals, moderate covid-19 and severe covid-
1118 19 patients (Stephenson et al.,) and Bronchoalveolar lavage fluid (BALF) from a distinct cohort (Liao et
1119  al.). Upper panel shows median ALARM module score for each cell-type for PBMC (blue) and BALF
1120  (red). Lower panel shows for each cell-type the module score for each corresponding cell-type specific
1121 module.

1122

1123 Figure 9 Recruitment and Characterization of CXCR4+ T Cells During Lung Infection in Vivo

1124  A) Schematic representation of the experimental setup used to study T cell recruitment during E. coli
1125 pneumonia in a mouse model. The infection was induced on day 0, with peak infection occurring
1126  between days 1 and 3, and resolution by day 7. CD45-PE was intravenously injected at different time
1127 points (days 0, 1, 3, and 5) to stain and track blood-derived immune cells migrating into the lungs
1128 during infection.

1129 B) Quantification of CD45+ T cells in the lungs at various time points post-infection. The left plot shows
1130  the number of CD45+ T cells at each time point. The accompanying pie charts depict the proportion of
1131  CXCR4+ and CXCR4- T cells over the course of the infection.

1132 C) Percentage of CD45+ cells within the CXCR4+ CD69+ T cell population over time.

1133 D) Comparative analysis of CD45+ CXCR4+ CD4+ and CD8+ T cell counts at different time points.

1134  Independent experiments with 3-4 mice per condition were carried out, and statistical significance was
1135  determined using one-way ANOVA, followed by post-hoc tests where appropriate. Significance levels
1136 are indicated as follows: *< 0.05, ** < 0.01, and *** < 0.001.

1137

1138  Figure 10 ALARM genes are implicated in and predictive of immune mediated diseases

1139  A) UMAP of bulk transcriptomic study (Ota et al., 2020). Colours represent major cell types and each
1140  single point represents a bulk transcriptomic dataset. Cell sub types are annotated in the plot.

1141 B) The same UMAP showing expression of ALARM module expression across samples.

1142  C) Outline of classification approach used to test disease prediction

1143 D) Barchart showing the F-1 score of disease classification for ALARM, cell-type specific modules and
1144  coefficient of variation (CV?) selected genes in each major cell type separately.

1145 E) Barchart of F1-scores computed for disease classification in each sub cell type separately for ALARM
1146  and CV2genes

1147 F) Radar chart showing the Fl-score in each cell type for classification between each disease and
1148  healthy separately using ALARM genes in each major cell type.

1149  G) Barchart showing the top three enriched diseases in the ALARM genes using the DisGeNET curated
1150  database.

1151

1152 Figure S1 ScCRNA-seq integration of a cohort of kidney allograft recipients

1153  A) Expression profiles of cell-specific markers distinguish the PBMC populations. Average expression is
1154  the log-normalized expression average of the cells by cell type, size of the dots is associated to the
1155  fraction of cells of the cluster in which the gene is detected.

1156 B) Cell type proportion by cluster in the overall PBMC population. Comparison include Stable patients,
1157 Rejection (ABMR+TCMR) and two public datasets: healthy volunteers from Stephenson et al, 2021, and
1158 healthy volunteers from Reyes et al, 2020. One-way ANOVA with Tukey's multiple comparisons post
1159 hoc test was performed, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

1160 C) UMAP projection showing the sample distribution, ABMR=Humoral rejection, TCMR=Cellular
1161 rejection, STA=Stable, TOL=Tolerant. Second UMAP shows the timepoint distribution, TO=Time point
1162 0 (Graft), T1=Time point 1, T2=Time point 2.

1163 D) K-bet acceptance rate by cell types following the CCA batch integration. Complete k-bet acceptance
1164  rate was computed on the overall PBMC population.

1165
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1166  Figure S2 Assessing module distribution

1167  A) Alluvial plot showing the shared origin of each module across batches. Each cell is assigned to the
1168  most enriched module they express.

1169 B) Boxplots showing the distribution of Pearson correlation coefficient R of pairwise gene expression
1170  correlation by cell type across modules. A module of random genes was generated to compare with
1171  the nine other modules. Multiple gene pairs from each module are selected to compute the rho values
1172 using a subset of common cells within the cell type. 1000 repetitions of 50 pairs each yielded 50000 R
1173  values, as represented in every box. The subset of common cells changes with every repetition.

1174 C) Boxplots showing the distribution of Pearson correlation coefficient R of pairwise gene expression
1175 correlation by cell type for Module 9.

1176

1177 Figure S3 Cellular characterization of pig PBMC by scRNA-seq analysis

1178  A)ImageJ analysis of immuno-stained slices to quantify cell infiltration. Red boxes show counting areas
1179  which excludes glomeruli. Right panel shows the cells which were then counted using Image J software.
1180 B) Pig data were annotated using the Sscrofa reference genome and associated to their human
1181 homologue. The expression profiles of cell type-specific markers is shown in the dotplot of relative
1182 expression by cell type. Size of the dots are associated to the fraction of cells of the cluster in which
1183 the gene is detected. The UMAP embeds the 4 samples (DO, D2, D4, D6) with their corresponding cell
1184 type annotation.

1185

1186  Fig S4 Transwell assay experiments

1187  A) Gating strategy used in the transwell assay for cell type annotation. Lymphocytes were gated based
1188  on forward scatter (FSC) and side scatter (SSC), followed by singlet selection and the identification of
1189  CD3+T cells. CD4+ and CD8+ T cells were further delineated based on CD45RA and CCR7 expression to
1190  distinguish between naive (Tn), central memory (Tcm), and effector memory RA (TemRA) subsets.
1191  Additionally, CD4 T regulatory (Treg) cells were identified by CD25 and CD127 expression to
1192  differentiate between activated (aTreg) and non-Treg populations.

1193 B) Percentage of CD4+ and CD8+ T cells expressing CD69 under five different experimental conditions:
1194 before the transwell assay (baseline), CXCL12 only, HDMEC alone, CXCL12 with HDMEC, and after
1195 migration through HDMEC with CXCL12.

1196  C) UMAP visualization of scRNA-seq data from the transwell experiment showing all cell populations.
1197  The top plot displays T cell subtypes identified by their transcriptional profiles, including CD4+ and
1198  CD8+ T naive cells, CD8+ T effector memory RA (TEMRA) cells, mucosal-associated invariant T (MAIT)
1199  cells, and CD4+ and CD8+ T effector memory (TEM) cells annotated using Celltypist. The bottom plot
1200 shows the distribution of cells based on their experimental condition: control which is CXCL12-,
1201  CXCL12+ and transmigrated. The clustering of cells in the UMAP space indicates differences in
1202  transcriptional states based on both cell type and condition.

1203 D) ALARM gene expression by condition. Dot plot showing the relative expression levels of ALARM-
1204  associated genes in CD4+ and CD8+ T cells across the different conditions of the transwell assay
1205 (Migrated, CXCL12+, and CXCL12-). The size of the dots represents the percentage of cells expressing
1206  the gene, and the color intensity represents the level of expression, with darker shades indicating
1207 higher expression.

1208

1209 Fig 5S. Overview of the cohort distribution

1210  A) ALARM module score distribution by cell type based on scRNA-seq analysis of PBMC from 45

1211  unrelated healthy individuals.

1212 B) Left: ALARM module score distribution across sex. No significance was found for the sex parameter
1213 with a t-test. Right: ALARM module score distribution across age categories. No significance was found
1214  for the age parameter with a one-way ANOVA test.

1215

1216  Fig 6S. ALARM genes can classify immune-mediated diseases


https://doi.org/10.1101/2023.04.11.536347
http://creativecommons.org/licenses/by-nc-nd/4.0/

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

1247

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.11.536347; this version posted November 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A) Distribution of the bulk RNA-seq samples across the 28 circulating immune cell types for the 337
patients distributed across 10 immune mediated diseases and the 79 healthy controls.

B) Area Under Curve (AUC) and Cohen’s Kappa score across cell types in disease and healthy patients.
C) AUC and Cohen’s Kappa score across cell subtypes in disease and healthy patients

D) Distribution of the ratio of genes associated to Gene-Disease Association (GDA) terms in 1000
modules of 61 randomly selected genes. The ALARM module has a ratio of 0.39 genes associated to
GDA terms (red line).
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