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Abstract: 24 
Circulating immune cells are critical mediators of inflammation upon recruitment to tissues, yet how 25 
their gene expression state influences this recruitment is not well understood. Here, we report 26 
longitudinal single-cell transcriptome profiling of peripheral blood mononuclear cells in patients 27 
undergoing kidney transplantation rejection. We identify a novel gene expression module, termed 28 
ALARM (early activation transcription factor module), associated with transcriptional regulation, 29 
homing, and immune activation across multiple immune cell types. Circulating cells expressing this 30 
module are significantly reduced in patients experiencing graft rejection, a finding confirmed in a pig 31 
model of acute kidney transplantation rejection. Correspondingly, module expression is markedly 32 
increased in kidney grafts undergoing rejection, indicating preferential recruitment of ALARM-33 
expressing cells to the inflamed tissue. 34 
Within this module, we identify the receptor CXCR4 and its ligand CXCL12, expressed in the graft, as a 35 
likely mechanism for recruitment. In vitro transwell assays combined with scRNA-seq reveal that this 36 
CXCR4-CXCL12 interaction is critical for T cell migration and upregulation of CD69, an early activation 37 
marker, and is accompanied by a metabolic switch towards glycolysis. Further exploration of publicly 38 
available transcriptomic data demonstrates that this module is generally expressed in healthy 39 
individuals and is strongly associated with responses to infection, including SARS-CoV-2 infection. This 40 
finding is further supported by experiments in a pneumonia mouse model, which confirm the 41 
recruitment of CXCR4-expressing T cells during lung infection. Moreover, we find that module 42 
expression is predictive of immune-mediated diseases. 43 
In summary, we have identified a key gene expression module in circulating immune cells that 44 
orchestrates their preferential recruitment to inflamed tissues, metabolic reprogramming, promoting 45 
tissue residency and effector functions. These insights advance our understanding of immune cell 46 
recruitment and activation mechanisms in transplant rejection and infectious diseases, with potential 47 
implications for therapeutic interventions. 48 
 49 
 50 
Introduction:  51 
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Circulating immune cells are critical to be recruited to the site of inflammation, infection, and cancer. 52 
This compartment and particularly the peripheral blood mononuclear cells (PBMCs) thus offer an 53 
attractive resource for precision medicine as in a single experiment, diverse cell types, including the 54 
CD4+ T cells, CD8+ T cells, B cells, NK cells and monocytes are profiled. Especially since the introduction 55 
of single cell RNA-seq (scRNA-seq), profiling PBMCs has been highly successful in identifying gene 56 
expression signatures and cell-types associated with immune-related diseases1–4. For example, a 57 
monocyte signature associated with sepsis was discovered in circulating cells 1. Recently, a study on 58 
systemic lupus erythematosus revealed gene expression changes with disease state and genetic 59 
variation 2. In addition, distinct Covid-19 studies revealed signatures associated to infection and 60 
disease severity in blood 5,6.  61 
Transcriptomics profiling enables the characterization of genes groups (i.e., modules) which perform 62 
critical cellular functions such as maintaining a cell identity, homeostasis & metabolism and respond 63 
to external signals. Notably, in circulating immune cells we have previously shown that monocytes 64 
express a gene module associated with Herpes Simplex virus reactivation after traumatic brain injury 65 
7. While gene expression programs of circulating immune cells are likely to be distinct from the same 66 
cells which migrated into the tissue, identifying modules in circulating cells may reveal early immune 67 
activation programs or modules associated with homing and migration. For example, in a previous 68 
study we identified large gene regulatory and gene expression alterations in circulating monocytes 69 
during active Tuberculosis which improved pathogen clearance for these cells 8.    70 
Leveraging on scRNA-seq and the availability of recent module identification approaches tailored for 71 
single cell transcriptomics 9 we aimed to identify gene expression programs associated with kidney 72 
transplantation rejection. Currently, rejection status is monitored in clinical practice by analyzing 73 
metabolites in blood and urine, such as creatinine, to assess renal function. The diagnosis is then 74 
confirmed through pathologic examination of kidney biopsies10. However, metabolite monitoring is 75 
not specific to rejection and can be approximative. Pathologic analysis of kidney biopsies remains the 76 
primary diagnostic tool, offering reliable results. However, despite minimal risk to patients, it is an 77 
invasive procedure that cannot be performed regularly. Thus identifying gene expression signatures in 78 
circulating cells may improve precision medicine diagnostics of kidney rejection 11. In addition, acute 79 
and chronic rejection are characterized by the infiltration of immune cells into the graft, which then 80 
mediate an inflammatory response in the tissue ultimately leading to the rejection of the graft. Blood 81 
thus constitutes an easily accessible compartment to identify gene expression modules associated with 82 
homing and early activation. Two archetypes of rejection are prominent according to the Banff 83 
classification10, the antibody mediated rejection (ABMR) and T-cell mediated rejection (TCMR), which 84 
can also arise in a mixed form. In both cases, immune cell infiltration into the graft occurs via the 85 
bloodstream through either donor specific antibodies binding to the graft endothelium in ABMR, or 86 
cytokine and homing signals in TCMR12.  87 
In this study, our aim was to identify putative modules in circulating cells which may be associated to 88 
kidney transplantation rejection. We profiled a longitudinal patient cohort consisting of 3 stable 89 
patients, 3 TCMR and 3 ABMR patients at 0-month, 3 month and 12 months after transplantation or 90 
when rejection occurred. The PBMCs were collected at the same time of graft biopsy, allowing us to 91 
characterize relationship of graft rejection status with gene expression modules of peripheral immune 92 
cell-types. We identified a module associated with transcriptional regulation and early activation in 93 
the blood and used a pig-transplantation model to validate its association with rejection status. Further 94 
characterization of this module was carried out in transcriptomics data from over 1500 kidney biopsies 95 
revealing a cytokine-receptor interaction between the graft and circulating cells, respectively. Finally, 96 
we demonstrate that this module is not specific to graft rejection but is implicated and predictive of a 97 
variety of immuno-pathologies.   98 
 99 
 100 
 101 
 102 
 103 
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Results:  104 
Single cell transcriptome analysis of circulating immune cells in a longitudinal kidney 105 
transplantation cohort 106 
In order to identify gene expression changes in circulating immune cells during kidney transplantation 107 
rejection, we used scRNA-seq on PBMC isolated from 3 patients with stable allograft function (STA) for 108 
which no sign of rejection was observed clinically after more than a year of follow-up, 3 antibody 109 
mediated rejection (ABMR) patients and 3 T-cell mediated rejection (TCMR) patients (Figure 1A, Table 110 
1). The patients were selected based on their treatment, age, sex, and collection time. (See Table 1).   111 
 112 

 113 
 114 
 115 
 116 
For each patient, three time points were profiled; T0, at the kidney transplantation, T1 at 90-150 days 117 
after the transplantation and T2, which was sampled at the time of rejection for ABMR and TCMR or 118 
at 1 year for STA patients after transplantation (Figure 1A). In addition, PBMCs from 3 kidney 119 
transplantation patients who maintained allograft function in the absence of immunosuppression (i.e., 120 
operational tolerant (TOL)) were included in the cohort (Table 1).  121 
Rejection status was defined by clinical pathology assessment of kidney biopsies performed at T1 and 122 
T2 for all patients. ABMR and TCMR were defined by pathology biopsy assessment at time T2 whereas 123 
patients were determined as STA when they which no sign of rejection in biopsies at T1 and T2. To 124 
minimize scRNA-seq-related experimental variation, we performed CITE-seq (Cell Hashing)13 using 125 
hashtag oligo-conjugated antibodies (HTO) to label each patient and time point separately and then 126 
pooled 10 samples (1 ABMR, 1 TCMR and 1 STA patient across T0, T1 & T2 and 1 TOL patient) into a 127 
single experiment. We thus generated the complete transcriptomic data in three balanced batches 128 
(Figure 1B). After removing doublets, data cleaning, normalization, and batch correction, we obtained 129 
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50,507 cells across the three batches (see Methods). Cells were automatically annotated using 130 
Azimuth14,15 and manually validated for cell-type specific markers (Figure 1C and Supplemental Figure 131 
S1A). Cell-type proportions varied minimally between conditions when compared to PBMCs from two 132 
separate cohorts of healthy volunteers (HV) from publicly available scRNA-seq data 1,5 (Supplemental 133 
Figure S1B).  For example, NK cells were significantly decreased in the stable and rejection conditions 134 
as compared to HV. However, we note that there were also significant differences in the HV (e.g., CD14 135 
and CD16 monocytes) from the two distinct control cohorts indicating that this may be due to 136 
individual variation. We then inspected the distribution of cells across patients and by time points 137 
(Supplemental Figure S1C) and across disease states (Figure 1D). Neither of these variables formed 138 
unique clusters suggesting that the clusters were driven by cell-type specific expression rather than by 139 
condition or cellular states as was also observed in other PBMC studies in patient cohorts 1,2,5. We then 140 
explored whether the clusters were affected by merging the three experimental batches (Figure 1E). 141 
As no batch effects were apparent through visual inspection, we used the KBET metric to quantitatively 142 
assess potential batch effects. KBET evaluates whether cells from different batches are clustering 143 
together in shared neighborhoods (i.e., clusters) (Supplemental Figure S1D)16. The acceptance rate of 144 
the KBET for the complete data set was 0.969, indicating that batch integration was successful. In 145 
summary, the pooling strategy and subsequent bioinformatics analysis resulted in a robust dataset of 146 
50,507 cells to be analyzed for time and disease state specific gene expression.  147 
  148 
Gene co-expression analysis identifies a module associated to rejection state 149 
To identify modules, ie. co-expressed groups of genes, we used gene co-expression analysis across all 150 
three batches independently (Figure 2A). This approach was chosen to avoid potential signal 151 
alterations induced during the batch correction step. We applied consensus non-negative matrix 152 
factorization (cNMF)9 to identify gene expression programs which may either be associated to cell-153 
type specific gene expression programs or to cellular activity (see methods). Nine overlapping modules 154 
were identified which were evenly distributed across the three batches (Figure 2B, Supplemental 155 
Figure 2A). These modules mostly revealed cell-type specific expressions, notably three of these 156 
modules were associated to monocytes (Mod_1-Mod_3), and two modules were mostly expressed in 157 
a specific cell type such as B cells and pDC cells (Mod_4 and Mod_5 respectively) (Figure 2C). Three 158 
modules were enriched for the CD4 & CD8 T lymphocytes (Mod_6) and/or NK cells (Mod_7, Mod_8, 159 
Figure 2C). Interestingly, the Mod_9 was expressed in all cell types, but with notable higher expression 160 
in B cells, T cells, pDCs and NK cells as revealed by its module score (Figure 2C, Figure 2D).  161 
Next, we aimed to independently validate the co-expression of the 9 modules (Supplemental file 1). 162 

To achieve this, we quantified the gene co-expression using the pair-wise Pearson correlation 163 

coefficient R. As the module was identified using cNMF, Pearson correlation thus acts as an 164 

independent evaluation of gene co-expression. We note that this approach is inherent to weighted 165 

gene co-expression analysis (WGCNA), a prominent method to identify modules in bulk and single cell 166 

transcriptomics17. We compared the average Pearson correlation per cell for each module to the same 167 

number of randomly picked genes in the same cells. The eight cell type specific modules showed robust 168 

and significant correlation between module genes, and this correlation was strongest in the cell-types 169 

to which they were associated (Supplemental Figure S2B). The cell-activity module Mod_9 was also 170 

significantly correlated in all cell types (Supplemental Figure S2C). Of note, randomly chosen genes 171 

picked 1000 times revealed a Pearson correlation of 0 in all cell-types indicating that unrelated genes 172 

typically do not correlate with each other (Supplemental Figure S2B, S2C). Therefore, the modules 173 

identified above are robustly co-expressed, as inferred by the two most prominent module detection 174 

methods.    175 

To test whether this cell-activity module or any of the cell-specific modules were associated to disease 176 
state, (i.e., rejection or stable) and if it would vary throughout time, we estimated the module score 177 
for each cell type and calculated the trend of the module score longitudinally in each cell-type (Figure 178 
2E). A positive or negative slope thus indicates whether a module changes over time across the stable, 179 
humoral & cellular rejection. Indeed, Mod1 and Mod2 showed a significant positive trend in both 180 
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rejection conditions (ABMR and TCMR) but not in the STA condition. Interestingly, the activity module 181 

(Mod_9) showed a significant negative trend (regression  value) in the rejection conditions but not in 182 
the stable condition in multiple cell types (B cells, CD4 and CD8 T cells and NK cells). Further inspection 183 
of this negative trend was carried out by displaying the module score of each patient separately in the 184 
form of a combined violin plot (Figure 2F). These module scores show that there was indeed a 185 
reduction in ABMR patients, while in TCMR patients the module score followed a U-shape, reduced 186 
more during T1 and increased again at T2. Interestingly, the 3 stable patient’s module scores remained 187 
consistent across time in NK, CD4 and CD8 and B cells. These results signify that Mod_9 expression is 188 
associated to rejection state in a time dependent manner.   189 
 190 
Discovery of the early activation, transcription factor module (ALARM)  191 
To explore the function of the 61 genes found in Mod_9 we first investigated whether it was enriched 192 
for ribosomal, proliferation or cell cycle genes using SEURAT-based list 18. We did not observe any 193 
genes involved in these cellular processes (data not shown). We thus explored the genes within this 194 
module by performing gene ontology analysis. Enrichment of the module genes was quantified for 195 
molecular function (MF) and biological processes (BP) compared to the combined set of 4000 most 196 
variable genes from the three batches (Figure 2G). MF could be associated to 24 genes and was 197 
significantly enriched (FDR <0.05) for helicase activity, ubiquitin-like protein binding, RNA catalytic 198 
activity, transcription activator activity and ribonucleoprotein binding. The BP (20 genes) was 199 
associated to NF-κB signaling, response to peptide and oxidative stress, regulation of RNA metabolic 200 
processes and viral gene expression. Of the 61 genes in the module, 56 were annotated in the GSEA 201 
database and 30 of these genes were linked to gene ontology enrichment. This indicates that Mod_9 202 
is likely to be involved in multiple molecular functions associated with transcription, mRNA process 203 
and ubiquitination. The BP suggested involvement in response to immune conditions (i.e., viral gene 204 
expression, NF-κB signaling, oxidative stress). This result was further supported by the 5-fold 205 
enrichment of Transcription factor genes in this module (OR: 4.9; Fisher-Test P-value 2.5e-5), such as 206 

the AP-1 complex (JUN, JUND, FOS), REL (NF-B subunit), MAFF and NR4A2 (see methods, 207 
Supplemental file 1). Further manual examination exposed the early activation marker CD69, a cell 208 
surface type II lectin. This receptor was described to be rapidly expressed at the membrane in T cells 209 
upon TCR activation19. In addition, CD69 has been described as a marker of tissue retention of T cells 210 
20–22. Interestingly, CD69 gene promoter is controlled by AP-1 TF complex and NF-κB, both of which are 211 
also members of this module23,24. We also found the cell surface marker CXCR4 in this module, a 212 
chemokine receptor known to play a role in recruiting CXCR4 positive cells to the kidney after an 213 
ischemic injury via the chemokine CXCL1225. The role of the CXCR4/CXCL12 axis in kidney rejection is 214 
still unclear26 but an elevated expression of CXCL12 has been described in chronic kidney rejection27 215 
suggesting it may act as a chemotactic signal to recruit immune cells in the inflamed tissues. In 216 
summary, the Mod_9 module comprises genes implicated in the response to stress, mRNA processing, 217 
early activation, and tissue-homing. For clarity, we named this module ALARM, which stands for for 218 
eArLy activation trAnscription factoR Module.  219 
 220 
Circulating ALARM cells are recruited to the graft during acute graft rejection in a pig kidney 221 
transplantation model  222 
We found that circulating cells expressing ALARM are altered in ABMR and TCMR in a timely fashion 223 
(Figure 2). To independently validate this observation, i.e., whether ALARM high expressing cells are 224 
depleted in the circulation during kidney transplantation rejection, we took advantage of an acute 225 
rejection pig kidney transplantation model (Figure 3A). We decided to use this pig kidney 226 
transplantation model as they share anatomical, physiological and genetic similarities to human and 227 
offer the advantage to have well defined swine leukocyte antigen (SLA) genotypes 28. Two SLA-228 
mismatched pigs were subjected to kidney transplantation, keeping one of their own kidneys (see 229 
methods). This model typically results in an acute TCMR within a few days after transplantation, as no 230 
immunosuppressive treatment is given (Figure 3A). Kidney biopsies and PBMCs were collected daily 231 
before and after the transplantation. Microscopical analysis of the biopsies at D2, D4 and D6 indicated 232 
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a time-dependent infiltration of immune cells, culminating at day 6 (Figure 3B). This infiltration was 233 
quantified in three areas (excluding glomeruli) of each biopsy time point (see methods, Supplemental 234 
Figure S3A). Cell counts drastically increased from day 2 to D6, indicating a continuous immune cell 235 
accumulation over time (Figure 3C). We noted that the second pig did not display any signs of rejection, 236 
possibly due to early arterial ischemia of the transplanted kidney and it was thus discarded from the 237 
subsequent analysis. PBMCs collected at D0, D2, D4 and D6, were pooled in a single scRNA-seq 238 
experiment (see methods), resulting in a total of 4,411 annotated cells across cell-types and time-239 
points (Figure 3D and Supplemental Figure S3B). We found that cellular proportions within the PBMC 240 
compartment drastically changed from D0 to D2, characterized by a drastic increase in monocyte 241 
proportions concomitant with a reduction of B, CD4+ and CD8+ T cells (Figure 3E). This suggests that 242 
the lymphocytes are rapidly recruited to the kidney graft and accumulate there, as demonstrated by 243 
the cellular invasion observed in the biopsies at the same time (Figure 3C). To test whether the decline 244 
of blood lymphocytes is accompanied by a reduction of ALARM high expressing cells, we quantified 245 
ALARM expression across the time-points in CD4+, CD8+, B cells and NK cells (Figure 3F). Interestingly, 246 
as soon as D2 the levels of ALARM expression drastically decreased and remained low in the blood 247 
until sacrifice of the animal (D6). Taken together, this controlled time-course experiment reveals a 248 
drastic immune cell infiltration in the graft associated with the depletion of ALARM high expressing 249 
cells in the circulation. This result mirrors the reduction of circulating ALARM cells observed during the 250 
kidney transplantation rejection in the human cohort (Figure 2). It is thus probable that ALARM high 251 
expressing cells are readily circulating in healthy condition. Upon the kidney graft transplantation 252 
ALARM high expressing cells are then preferentially recruited to the organ to mediate the immune 253 
response. 254 
 255 
ALARM gene expression increases in kidney grafts undergoing rejection 256 
To further support the hypothesis that ALARM high-expressing cells are recruited to the graft during 257 
rejection from the bloodstream, we evaluated the expression of ALARM genes in graft biopsies from 258 
kidney transplantation patients. For this, we used a previously published Canadian transcriptomics 259 
analysis of 569 transplant biopsies collected from 13 clinical sites and with a patient classification of 260 
STA, TCMR, ABMR and mixed rejection (TCMR and ABMR)29. In parallel, we exploited a second similar 261 
Belgian transcriptomics study performed on kidney biopsies in 224 patients who were either stable 262 
(168 patients) or undergoing ABMR30. After precleaning and QC controls of the available microarray 263 
data (Methods), we quantified the ALARM gene expression in each cohort separately (Figure 4A). The 264 
ALARM score was consistently and significantly elevated in all three rejection cases compared to stable 265 
biopsies. Similarly, in the second study, ABMR samples showed a significant increase in ALARM 266 
expression, regardless of the presence of donor-specific antibodies. Analysis of the ALARM genes 267 
ranked by expression, further revealed that this score is driven by the upregulation of a large fraction 268 
of the ALARM genes, including CD69, CXCR4, JUN and IRF1 in both cohorts (Figure 4B). Quantification 269 
of the ALARM module across rejection and stable revealed a significant upregulation of ALARM 270 
expression in both data sets (Figure 4C). These results indicate that ALARM genes are significantly 271 
increased during graft rejection across over 793 biopsies in two distinct studies. Given that graft 272 
rejection is defined by immune cell infiltration and that circulating ALARM high cells are depleted at 273 
the same time, it is possible that ALARM expressing cells are preferentially recruited to the graft to 274 
mediate the rejection. To investigate how circulating cells could be preferentially recruited to the graft, 275 
we explored the cytokine expression in the graft and receptor expression in the circulating cell subsets. 276 
We first identified all possible ligand-receptor pairs and then tested whether these pairs were 277 
differentially expressed between rejection and stable status. We found 10 differentially expressed 278 
cytokines in the graft pairing with 7 receptors upregulated in circulating immune cells in both cohorts 279 
independently (Figure 4D). The most prominent receptor was CXCR4, expressed in CD4, NK, CD8 and 280 
B cells. As mentioned above, CXCR4 is a member of ALARM genes, indicating a likely mechanism of 281 
signaling from the graft via CXCL12 and recruitment of ALARM cells expressing CXCR4. This cytokine 282 
receptor pair has been previously described as a homing mechanism in various distinct tissues, such as 283 
bone marrow31,32 and in cancer33. To test the relationship of this interaction, we quantified CXCL12 284 
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expression in the graft biopsies stratified by ALARM expression (low (<25%), mid (25-75%), high 285 
(>75%)) and found that there was a significant increase in CXCL12 expression in the ALARM high group 286 
in both cohorts (Figure 4E). In summary, these results show that ALARM is increased during rejection 287 
in the graft, which strengthens the notion that circulating cells with high ALARM expression are 288 
preferentially recruited to the kidney graft via the homing signaling axis of CXCL12 and CXCR4.  289 
 290 
Analysis of ALARM Module Expression in an In Vitro Transwell Assay 291 
To experimentally verify the observed CXCL12-mediated recruitment, we employed an in vitro 292 
transwell assay using a cytokine gradient of CXCL12. This assay consists of a membrane covered with 293 
primary microvascular endothelial cells (HDMEC), allowing for the comparison of unstimulated cells, 294 
cells in direct contact with CXCL12, and those migrating based on the CXCL12 gradient (Figure 5A). 295 
Flow cytometry quantifications of T cells indicate that CXCL12 significantly induces the recruitment and 296 
migration of T cells, observed 4 hours post-deposition (Figure 5A; p=0.0286). The composition of naïve, 297 
central memory (CM), effector memory expressing CD45RA (TEMRA), and effector memory (EM) T cells 298 
remained similar after migration and in response to CXCL12 alone (Figure 5B, Supplemental Figure 299 
S4A). This suggests that all T cell subsets are equally attracted and migrate in response to a CXCL12 300 
gradient. We further analyzed the expression of several T cell surface markers, focusing on CD69 as a 301 
component of the ALARM module, CD25 (an activation marker), CD49a (a tissue residency marker), 302 
and CD95 (an apoptosis marker) (Figure 5C). Interestingly, CD69 increased slightly with CXCL12 303 
addition but was even more highly upregulated in migrated cells, while CD25 expression did not 304 
change, decoupling the role of CD69 in early activation from its role in tissue residency34. CD49a and 305 
CD95 levels remained unchanged, indicating that CXCL12 in combination with migration specifically 306 
induced the extracellular display of CD69. It is noteworthy that CD69 expression depends on both 307 
CXCL12 and the direct contact with HDMEC cells (Supplemental Figure S4B).  308 
To assess whether CXCL12-induced migration altered the T cells' response to immune stimuli, CXCL12 309 
exposed or transmigrated cells were purified and restimulated polyclonally for an additional 24 hours 310 
(Figure 5D). Migrated cells showed a significantly increased expression of IFN-γ in both CD4+ and CD8+ 311 
T cells in contrast to TNF-α, granzyme B (GZMB) or granulysin (GNLY). The increased expression of IFN-312 
γ suggests that migration via the CXCL12 gradient may enhance the effector functions of T cells but 313 
that other signals are needed to induce cytotoxic mechanisms in this model. The observed increase in 314 
CD69 membrane display indicates a functional role for the ALARM module, which enables T cells to 315 
acquire “new functions” in the tissue i.e. to establish residency via CD69 expression and increased IFN-316 
γ expression. 317 
To further investigate the impact of CXCL12 signaling on T cell migration and the role of ALARM module 318 
expression, we performed scRNA-seq using the transwell assay under three distinct conditions (Figure 319 
6A). In the first condition (CXCL12-), T cells were placed below the transwell membrane without any 320 
exposure to CXCL12. In the second condition (CXCL12+), T cells were placed below the transwell 321 
membrane in direct contact with CXCL12. The third condition, (transmigrated), involved placing T cells 322 
above the membrane, which were then collected from below the membrane after migrating in the 323 
presence of CXCL12. This setup allowed us to assess the transcriptional changes associated with T cell 324 
migration in response to CXCL12 (Figure 6A). Notably, all T cell subtypes identified by gene expression 325 
were found in the three conditions (Supplemental Figure S4C).   326 
To more accurately quantify gene expression changes and minimize the impact of subtype differences, 327 
we focused on the most abundant subsets, namely naïve CD4 and CD8 T cells. These naïve T cells 328 
clustered into four distinct groups, primarily due to differences in ribosomal gene expression and the 329 
annotation of CD4 versus CD8 cells (Figure 6B). Additionally, there was a clear separation between 330 
CXCL12- T cells and those exposed to CXCL12 or that had transmigrated, indicating significant 331 
underlying gene expression differences. This separation was further evidenced by distinct changes in 332 
the expression of ALARM module genes, with the CXCL12- condition showing markedly lower 333 
expression patterns compared to the CXCL12+ and transmigrated groups (Figure 6B).  Next, we 334 
investigated specific gene expression alterations which would increase or decrease from CXCL12-, 335 
CXCL12+ to the transmigrated condition (see methods).  336 
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In addition to ALARM module genes (Supplemental Figure S4D), several others exhibited notable 337 

changes in expression across the different conditions (Figure 6C, Supplemental file 1). HSP90AB1, a 338 

member of the HSP90 family of chaperone proteins, which is crucial for stabilizing proteins involved in 339 

cell survival and esponses35 was significantly upregulated in both CD4 and CD8 T cells. This suggests 340 

that HSP90AB1 may play an important role in enhancing the functional stability of proteins required 341 

for T cell migration and adaptation during CXCL12 stimulation. Interestingly, two genes with roles in 342 

cell migration, VIM36 and STK3837 (serine/threonine kinase 38), also showed differential expressions in 343 

both cell types. VIM, a key regulator of cytoskeletal organization that promotes cell motility36, was 344 

upregulated in migrated cells, aligning with its role in facilitating the cytoskeletal rearrangements 345 

necessary for migration. On the other hand, STK38 was upregulated predominantly in the CXCL12- 346 

condition. To better understand the roles of all differentially expressed genes, we grouped them by 347 

function (Supplemental file S1, Figure 6D). We found gene sets involved in immune response, 348 

migration, cytoskeleton, adhesion, stress response and metabolism were gradually upregulated in the 349 

CXCL12+ and migrated conditions in both CD4 and CD8 T cells. Conversely, gene sets associated with 350 

structural organization, gene regulation, and membrane transport were downregulated. These 351 

findings suggest that CXCL12 signaling, and migration induce profound metabolic and functional 352 

changes in T cells, preparing them for new roles that require increased energy and biosynthetic 353 

demands. Given the prominent upregulation of metabolic pathways, we further investigated the 354 

metabolic reprogramming that accompanies T cell migration and activation in response to CXCL12. To 355 

achieve this, we performed a comprehensive metabolic pathway analysis on T cells using Compass, an 356 

algorithm designed to characterize the metabolic state of cells by integrating single-cell RNA-Seq data 357 

with flux balance analysis38. This in silico approach allows us to infer the metabolic status of individual 358 

cells based solely on transcriptomic data, providing insights at single-cell resolution. The analysis 359 

revealed significant upregulation in several metabolic pathways, notably glycolysis/gluconeogenesis, 360 

phosphatidylinositol signaling, and amino acid metabolism in response to CXCL12 and migration 361 

(Figure 7A). To visualize the overall metabolic differences between the conditions, we performed PCA 362 

on the Compass score matrix, which quantifies the metabolic state in each cell (see methods)38. The 363 

PCA results showed clear clustering of samples according to their condition, with non-migrated T cells 364 

forming a distinct cluster separate from CXCL12+ and migrated groups (Figure 7B). This separation 365 

underscores the significant impact of CXCL12-induced migration on the metabolic state of T cells. 366 

Because the metabolic shift towards glycolysis is an essential hallmark of T cell activation39 we focused 367 

on the glycolysis and gluconeogenesis pathways to investigate the gene expression changes involved 368 

in these processes (Figure 7C). Key glycolytic enzymes, such as glucose-6-phosphate isomerase and 369 

pyruvate dehydrogenase, were significantly upregulated in migrated T cells compared to controls. To 370 

validate the transcriptomic findings experimentally, we performed flow cytometry analyses to assess 371 

glucose uptake and the expression of glycolytic enzymes. We measured protein levels of glucose 372 

transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA), a key glycolytic enzyme that converts 373 

pyruvate to lactate for rapid ATP production under anaerobic conditions. Although the increase in 374 

GLUT1-positive cells post-transmigration was not statistically significant (p = 0.68) (Figure 7D), LDHA 375 

expression showed a significant increase in migrated T cells compared to controls (p = 0.019) (Figure 376 

7D). Additionally, uptake of the fluorescent glucose analog 2-NBDG was significantly elevated in 377 

migrated cells (p = 0.031) (Figure 7D), indicating enhanced glucose metabolism. These results confirm 378 

an increased glycolytic activity observed in migrated T cells, consistent with the metabolic 379 

reprogramming identified in our pathway analysis. In summary, our results demonstrate that T cells 380 

migrating in response to CXCL12 undergo functional reorganization, enabling their transition from 381 

circulating cells to active immune responders at sites of inflammation or tissue injury. 382 

 383 
ALARM is expressed in healthy individuals and variation is associated with infectious disease  384 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2024. ; https://doi.org/10.1101/2023.04.11.536347doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.11.536347
http://creativecommons.org/licenses/by-nc-nd/4.0/


Up to this point, we have examined the role of ALARM cells primarily in the context of kidney rejection 385 

and stable kidney transplantation patients. However, the findings from the Transwell assay, using 386 

healthy donor cells in an in vitro model, suggest that ALARM cells may play a broader role beyond 387 

kidney-specific contexts. Therefore, we investigated whether the ALARM module is expressed across 388 

a healthy population to assess its broader function. For this, we explored a publicly available scRNA-389 

seq data set of ~25,000 PBMC from 45 healthy volunteers (HV) for ALARM expression 40. The data was 390 

generated from the LifeLines DEEP cohort in Netherland, ranges in age from 20 to 79 and contained 391 

46,6% female individuals and was described to be healthy time of collection as estimated by two 392 

general practitioner visits 41. The ALARM gene expression was prominent in all cell types as shown by 393 

its module score suggesting that ALARM is generally expressed in HV (Supplemental Figure S5A). We 394 

note that age and sex did not result a significantly different expression of the ALARM (Supplemental 395 

Figure S5B). Since this module was generally expressed in HV, we next asked whether it may be 396 

involved in other disease conditions than transplantation rejection, but which implicate the 397 

recruitment of circulating immune cells to specific tissues. To test this hypothesis, we exploited a 398 

publicly available scRNA-seq data on PBMCs in which healthy individuals were intravenously injected 399 

with the endotoxin lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria 5. 400 

LPS in the bloodstream causes an immediate systemic release of a variety of inflammatory mediators, 401 

a fever and a rapid but transient leukopenia 42,43. This experiment is thought to mimic an acute systemic 402 

inflammatory response (SIRS) 5, and thus provides an ideal proxy of how ALARM expressing cells are 403 

responding to LPS-induced SIRS. We used the preprocessed available scRNA-seq data which contained 404 

the 0-time point (10 HV), 90 minutes (6 HV) and 10h after the LPS injection (6 HV) and first evaluated 405 

how the cellular proportions changed over time. We measured the ALARM score in the three 406 

conditions across the CD4, CD8, NK and B cells (Figure 8A). There was rapid and significant reduction 407 

of ALARM high expressing cells as soon as 90 minutes and which further decreased until 10h after the 408 

LPS injection (Figure 8A). This decrease was continuous within three individuals for which both 409 

timepoints were available, indicating that ALARM cells are reduced in a time dependent manner 410 

(Figure 8B). This drastic change of ALARM expression in such a short time frame suggests that cells 411 

which highly express this module rapidly egress from circulation, directly contributing to the transient 412 

leukopenia observed upon LPS injection. This is also consistent with the transient leukopenia 413 

associated with LPS i.v. injection.  Furthermore, this response to LPS which is thought to be initiated 414 

via TLR4 receptor signaling expressed on circulating monocytes 44,45 signifies that ALARM is not solely 415 

implicated in transplantation rejection or kidney immune cell invasion but appears to also be involved 416 

in the inflammatory response to endotoxin.  417 

Next, we investigated how ALARM may regulate when the site of inflammation is localized to a single 418 
organ as in urinary tract infection. For this we explored a publicly available PBMC scRNA-seq dataset 419 
which contained patients with leukocyte infiltrating urinary tract infection (UTI). We chose this 420 
condition as the data was generated on patients which presented a localized infection with infiltrating 421 
leukocytes. The study also provided results of HV and sepsis patients, notably patients with 422 
bacteremia, i.e. bacterial presence in the blood. 1 (Figure 8C). The bacteremia patients were thus also 423 
used for comparison since this condition reflects a generalized or systemic infection which is distinct 424 
from a localized infection such as UTI (Figure 8C). Interestingly, we found that ALARM expression was 425 
reduced in circulating cells in UTI patients (except B cells), consistent with the recruitment of 426 
leukocytes to the tissue. In contrast, in patients with bacteremia, the ALARM cells accumulated in the 427 
circulation, indicating that under this condition ALARM expressing cells may not be recruited to a 428 
specific tissue. This contrasted with the response to LPS iv which is also thought to engender a systemic 429 
response (see discussion).   430 
To further explore the role of ALARM in response to localized infection, we analyzed two scRNA-seq 431 
datasets generated from Covid-19 patients 5,46. The aim was to explore the dynamics of ALARM cells in 432 
the circulation in comparison to the lung. For this, we compared ALARM expression in PBMCs with 433 
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ALARM expression in broncho-alveolar lavage fluid (BALF). The two separate original studies stratified 434 
the patients by healthy, moderate, and severe Covid-19 disease and we used this stratification to 435 
compare the ALARM module expression in the blood (PBMC) and in the lung (BALF) (upper panel figure 436 
8D). The ALARM cells diminished according to disease severity (T, B, Mono, but not NK) in the blood 437 
stream. This reduction was concomitant with an increase of ALARM high cells in the lung suggesting 438 
that ALARM cells are migrating to the site of infection. Interestingly, these changes were cell-type 439 
specific, notably while CD4+ T cells increased it was not the case for CD8+T cells. We note that the cell-440 
type specific modules did not change between disease state and between blood and lung (lower panel, 441 
figure 8D) indicating that the similar cell types were analyzed and that the cell-type specific modules 442 
were not related to disease state.  443 
Collectively these results show that ALARM displays a normal distribution of expression across healthy 444 
individuals and changes in response to distinct disease states (bacterial, viral, kidney rejection). It is 445 
noteworthy that expression alterations of this module are apparent in distinct cell types depending on 446 
the disease conditions.  447 
 448 
Recruitment of CXCR4+ T Cells During Lung Infection In Vivo 449 
To independently validate the rapid recruitment of immune cells during lung infection, as exemplified 450 
in the COVID-19 results above, we used a well-established pneumonia mouse model47,48 to study T cell 451 
recruitment. The infection was induced with E. coli and resolved after 7 days, with the peak of infection 452 
occurring between day 1 and day 3. To specifically evaluate the recruitment of T cells from the blood, 453 
we employed CD45-PE mediated immune staining of blood immune cells before and during infection48 454 
(Figure 9A). This method allowed us to precisely quantify the recruitment of cells from the blood during 455 
the infection. We observed that T cells were recruited from the blood as early as day 1, with a 456 
significant peak at day 3, indicating a rapid response to the lung infection (Figure 9B). Upon analyzing 457 
the membrane expression of CXCR4 on these cells, we found that 15% to 20% were CXCR4+ T cells, a 458 
key component of the ALARM module, suggesting that a diverse set of T cells is recruited to the lung 459 
(Figure 9B, Pie Charts). Next, we investigated the membrane display of CD69 and found that most 460 
CXCR4+ CD69+ T cells were predominantly CD45+ cells (60-80% at day 1 and day 3), indicating their 461 
blood-derived origin (Figure 9C). This phenomenon was particularly evident at day 1 and day 3, 462 
corresponding with the peak of infection. Additionally, stratification of the CXCR4+ T cells by CD4+ and 463 
CD8+ subsets showed that CD4+ T cell recruitment was much more abundant than CD8+ T cells, 464 
mirroring observations from COVID-19 lung infection studies (Figure 9D). 465 
These findings demonstrate that CXCR4+ T cells, particularly CD4+ T cells, are rapidly recruited from 466 
the blood to the lung in response to infection, with peak recruitment occurring between day 1 and day 467 
3. The presence of CD69+ cells among the recruited CXCR4+ T cells suggests that these cells are not 468 
only migrating but are also likely being activated or display a residency program34. The observation of 469 
the concomitant protein expression and membrane display of CXCR4 and CD69 is characteristic of the 470 
ALARM module, which is defined by the gene expression of both CXCR4 and CD69. The results 471 
underscore the crucial role of the ALARM module in orchestrating an effective immune response 472 
during the peak of lung infection, highlighting its broader relevance beyond kidney-specific contexts. 473 
 474 
 475 
Disease classification of ALARM in immune mediated diseases 476 
 477 
The above results suggest that ALARM expression changes are associated to immune diseases, likely 478 
via the recruitment of circulating immune cells to the site of inflammation. It may thus be possible that 479 
the ALARM genes could be used as predictors for immune disease classification. The rationale is that 480 
if ALARM genes are relevant for a precise disease state, they would be strong predictors to classify 481 
healthy from disease 49. To investigate this hypothesis, we analyzed 10 immune-mediated diseases 482 
with distinct tissue tropisms (Supplemental Figure S8A). Out of these 10 diseases, systemic lupus 483 
erythematosus (SLE), Sjogren syndrome and Anti-neutrophil cytoplasmic antibody-associated 484 
vasculitis (ANCA) are known to favor the kidney among other organs. In contrast, mixed connective 485 
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tissue disease and systemic sclerosis rather favor the connective tissues and rheumatoid arthritis 486 
targets the joints. Thus, we aimed to test whether ALARM genes are good classifiers of disease vs 487 
healthy condition and whether the classification of disease state varies depending on the tissue 488 
tropism. This was possible thanks to a large bulk RNA-seq dataset comprising 28 circulating immune 489 
cell-types which included 337 patients across 10 immune mediated diseases and 79 healthy controls 490 
50 (Supplemental Figure S8A). We evaluated total gene expression using UMAP of this data set (Figure 491 
10A) and found that ALARM module expression was present in all major cell types (Figure 10B). To test 492 
the discriminative ability of the ALARM module, we then devised a classification pipeline comparing 493 
disease state (all 10 immune diseases) vs healthy using logistic regression (Figure 10C). As in the data 494 
set there were transcriptomics data from 28 cell types available, we focused on B cells, T cells, NK and 495 
Monocytes by regrouping their respective sub cell types together (see Figure 10A). 496 
We then generated an ALARM gene classification model compared it to two other models. The first 497 
one using the most variable genes (coefficient of variation (CV2), see methods) and the second model 498 
was based on genes in cell type identity modules (see figure 2). The rationale for using CV2 gene 499 
selection was to use an independent gene selection process which is more predictive than random 500 
gene selection. We compared the prediction performance of the three models using the F-1 score as 501 
it gives equal weight to precision and recall (Figure 10D, F1 score). Interestingly, the ALARM genes 502 
were the best predictors for CD8, Monocytes and NK cells and were similar in performance to the cell 503 
type specific modules of CD4 and B cells. To account for possible imbalances in the numbers of disease 504 
and control samples we also computed the Cohen’s Kappa score (Supplemental Figure S8B). The results 505 
were consistent with the F-scores. Of note, the CV2 gene selection approach was less predictive in all 506 
cell types (Figure 8D and Supplemental S8B).  507 
To evaluate whether the ALARM module was prominent for any specific cell sub types within the major 508 
cell types (e.g., CD4 T helper cells vs CD4 naïve cells) we estimated disease classification performance 509 
of the ALARM module separately for each sub type. Predictability as estimated by F1 score remained 510 
robust when each subtype was analyzed separately in comparison to the CV2 method (Figure 10E). We 511 
note that in certain subtypes there were too few samples to compute an accurate Kappa score 512 
(Supplemental Figure S8C). Nevertheless, this result indicates that ALARM was found to be relevant in 513 
all the subtypes analyzed.  514 
Next, we evaluated whether each of the 10 immune mediated diseases could be individually classified 515 
from healthy (Figure 10F). The best classification ability of ALARM was found for Mixed connective 516 
tissue disease, rheumatoid arthritis, Sjogren’s syndrome, SLE and Takayasu’s Arteritis. This indicates 517 
that ALARM genes are not specifically predictive for tissue tropism but appear to be relevant 518 
independently of the targeted tissue. In most cases ALARM outperformed the CV2 feature selection 519 
suggesting that ALARM genes are likely to be implicated in their disease etiology. In summary, this 520 
comprehensive classification analysis indicates that ALARM genes are strong predictors of disease 521 
state across the majority of circulating immune cells and within the 10 immune related diseases.   522 
 523 
ALARM is enriched for genetic disease associations 524 
Since the ALARM genes are strong predictors of immune mediated disease and its general role within 525 
multiple cell-types and across multiple infections, immune related and autoimmune diseases, it is likely 526 
that ALARM is enriched for genes known to be associated to diseases. To test this, we exploited the 527 
DisGeNET database51 which provides a comprehensive compilation of published and curated human 528 
gene disease associations (GDAs) from repositories including Mendelian, complex and environmental 529 
diseases and enables enrichment analysis of such GDAs. Notably, we found that 24 out of the 61 530 
ALARM genes (39%) were associated with a disease. To estimate the probability of this occurring by 531 
chance, we compared this to random sampling of 61 genes and their quantification of GDAs 532 
(Supplemental Figure S8D permutation). The probability of reaching 40 % of genes or more was below 533 
> 0.001, indicating that ALARM genes are highly enriched for GDAs.  534 
Next, we tested whether the ALARM genes were enriched for diseases associations (Figure 10G). The 535 
top three disease categories enriched for GDAs were Juvenile arthritis, Hodgkin disease and 536 
polyarthritis comprising by themselves distinct 13 genes. This enrichment analysis indicates that 537 
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ALARM is also genetically connected to disease state. In summary, ALARM is a strong classifier and 538 
genetically linked to immune disease and thus is likely to play a general role in multiple immune 539 
mediated diseases.  540 
 541 
Discussion: 542 
In this study, we gathered a cohort of matching ABMR, TCMR and stable patients and generated a 543 
comprehensive scRNA-seq atlas of circulating immune cells across time and conditions. We then 544 
identified multiple gene co-expression modules. Five out of nine modules were related to a single cell-545 
type while three were expressed in closely related cells (CD4+, CD8+ and NK cells) and only the ALARM 546 
module was prominent in multiple cell-types. The observation that single cell transcriptomes mostly 547 
reveal cell-type specific modules was also described by Kotliar et al., 9 in which they distinguish 548 
between identity (i.e., cell-type specific) gene expression programs (GEP) and activity GEPs. It is 549 
possible that cell-type specific co-expressed genes are better detected as they show a greater 550 
coherence within a well-defined group of cells. This is also notable in the presented data as the gene 551 
expression scores of cell-type specific modules show less variance than the ALARM module. 552 
Nevertheless, cell-type specific gene expression may not necessarily imply that it remains constant 553 
across conditions. For example, we noted that some cell type specific modules were associated to 554 
disease state (Figure 2E), notably the NK cell and monocyte specific modules were increased during 555 
rejection. It is also possible that because of the relatively low number of genes per cell detected when 556 
compared to bulk transcriptomics, cell identity programs are preferentially detected, and more subtle 557 
condition specific modules are not robustly detected. Indeed, while cNMF revealed additional modules 558 
in the separate batches, only the ALARM module was consistently identified across the three batches.  559 
The ALARM genes were found to be highly enriched for transcription factors and gene ontology 560 
pathways associated with the gene expression machinery including transcription, mRNA processing 561 
and ubiquitination. Prominent transcription factors included the AP-1 complex and the NFKB subunit 562 
REL which are both associated with stress responses and inflammation. The membership of CD69 in 563 
the ALARM module also suggests a role of stress response. CD69 is a classical early activation marker 564 
of lymphocytes, as demonstrated by its rapid display on the surface of T cells after TCR stimulation34. 565 
In addition, CD69 is also known to be a tissue retention marker as it is expressed on resident memory 566 
T cells in distinct tissues. In blood, this gene has been associated with chronic inflammation in various 567 
diseases including rheumatoid arthritis 52 and systemic lupus erythematosus 53. Concomitant with this, 568 
CD69 protein expression is increased on infiltrated immune cells at the site of inflammation in immune 569 
mediated diseases including systemic sclerosis, rheumatoid arthritis, systemic lupus erythematosus34. 570 
The membership of CD69 in this module thus indicates that this module role could be to prepare 571 
circulating cells T cells for TCR stimulation and for tissue retention once moved into a tissue, i.e., to 572 
become T resident effector cells. This notion is also consistent with the increased expression of the 573 
ALARM module in the kidney biopsy transcriptomics data (Figure 4). 574 
The cytokine receptor CXCR4 was also identified in this module. CXCR4 is predominantly expressed by 575 
lymphocytes as well as monocytes and through which the CXCL12 ligand promotes chemotaxis to 576 
tissues via a concentration gradient 54. CXCL12 is expressed in multiple tissues including the kidney and 577 
is altered during pathophysiological responses including immune diseases. Indeed, an alteration of 578 
CXCL12 expression was observed in the kidney transplantation biopsies and this increase was 579 
associated to elevated ALARM gene expression in the tissue (Figure 4E). It is possible that the CXCR4-580 
CXCL12 axis contributes to the recruitment of ALARM expressing cells in the case of kidney 581 
transplantation rejection and other immune diseases. This is also consistent with the observation that 582 
cells expressing the ALARM module decrease in the circulation during kidney graft rejection. This 583 
observation was confirmed by both transcriptomics and histological studies of pigs as well as 584 
transcriptomics in human kidney biopsies, thus, via CXCR4-CXCL12 leading ALARM cells to infiltrate the 585 
tissues during rejection. This mechanism was further supported by an in vitro trans well assay, where 586 
CXCL12 was shown to induce T cell migration. More importantly, it was found that both CXCL12 587 
presence and migration significantly increased CD69 protein expression at the cell membrane. 588 
Specifically, the combination of HMEC contact and CXCL12 presence was necessary for the highest 589 
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expression of CD69, similar to that observed during transmigration. Single cell transcriptomic analysis 590 
of migrated and non-migrated cells further revealed that certain gene groups, particularly those 591 
involved in cytoskeleton organization, migration, and immune response, were upregulated, while 592 
others were downregulated, indicating a shift in cellular state to adapt to new functions after 593 
migration. Furthermore,we found that migration of T cells in response to CXCL12 is accompanied by 594 
significant metabolic reprogramming. We observed upregulation of glycolytic pathways, increased 595 
expression of LDHA at protein levels, and enhanced glucose uptake in migrated T cells. Metabolic 596 
reprogramming towards increased glycolysis is a hallmark of activated T cells and is essential for their 597 
effector functions during immune responses 39. These findings suggest that ALARM module expression 598 
not only primes T cells for migration and tissue retention but also prepares them metabolically for the 599 
demands of their new functional roles at sites of inflammation.  600 
This CXCR4-CXCL12 axis also highlights the notion that the ALARM module is not necessarily specific to 601 
transplantation rejection or the kidney. Indeed, reanalysis of circulating immune cells from publicly 602 
available scRNA-seq data showed that the ALARM module was expressed in 45 unrelated healthy 603 
individuals 40 and showed significant alteration between distinct pathological conditions (Figure 5). 604 
First, the ALARM response to LPS iv injection in healthy individuals revealed that it is time-dependent, 605 
illustrated by a gradual decrease of ALARM cells within the same individuals over time. Second, there 606 
was a significant difference between ALARM cells depending on the location of the pathological 607 
condition. ALARM cells were shown to be decreased in response to kidney rejection, in response to 608 
leukocyte infiltrating UTI and Covid-19 infection of the lung highlighting the role of ALARM in the 609 
recruitment of cells to the site of inflammation and infection. This was further supported by 610 
bacteremia sepsis, a state of systemic inflammation in which ALARM cells were increased in the blood. 611 
While LPS iv injection and bacteremia induce both a systemic immune response, the former is 612 
associated is essentially an endotoxemia response associated to a transient leukopenia42,43 while the 613 
latter is a complex and heterogeneous condition that involves multiple factors beyond LPS, such as 614 
pathogen virulence, host susceptibility, and coexisting medical conditions. It thus makes sense that 615 
leukopenia is associated to the decrease of ALARM, while in bacteremia ALARM expression is 616 
increased. Third, ALARM cells showed a gradually measurable response to disease severity. This notion 617 
was observed by combining two distinct and complementary Covid-19 datasets one of which was 618 
collected on BALF, and which had stratified their patients according to disease severity. ALARM cells 619 
decreased in response to severity in the blood with a corresponding increase in the lung.  620 
Fourth, we collected several lines of evidence suggesting that ALARM cells are indeed recruited to the 621 
site of inflammation and/or infection. During acute rejection induced in the pig model there was a 622 
rapid infiltration of leukocytes concomitant with the reduction of ALARM cells in the blood. The 623 
analysis of kidney biopsies revealed an increase of ALARM gene expression during kidney transplant 624 
rejection. Similarly, the recruitment of ALARM cells to the lung was observed during Covid-19 lung 625 
infection. Finally, an in vivo mouse model of E. coli pneumonia demonstrated that CXCR4+ and CD69+ 626 
T cells are rapidly recruited from the blood to the lung during the peak of infection further supporting 627 
the role of the ALARM module in mediating immune cell recruitment to sites of inflammation. 628 
We thus propose a model in which ALARM expression priorities the infiltration capacity of each 629 
circulating cell (see figure 11 model). This model has wide ranging consequences in precision medicine 630 
as blocking of ALARM cells to the site of inflammation in the case of kidney rejection may prevent 631 
further organ damage or attenuate the immune response in the case of Covid-19 lung infection. It may 632 
also be useful to predict disease state as we have shown in figure 8. ALARM was a strong classifier of 633 
immune disease when compared to healthy individuals. The importance of ALARM was independently 634 
demonstrated by its enrichment for genes mutated in notably juvenile and poly- arthritis. Further 635 
investigation is however required to test the specificity of disease detection or whether ALARM is 636 
merely a response to inflammatory state in the circulation.  637 
There are several limitations of this study, first it is based on gene transcription and thus remains to 638 
be explored for protein expression, however this is difficult to achieve at single cell resolution and we 639 
are not aware of any gene co-expression modules estimated at the protein level. Nevertheless, the 640 
transwell assay and in vivo mouse model experiments indicate a connection between the CXCL12-641 
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CXCR4 axis and CD69 and their display during and after migration. While direct evidence of the 642 
recruitment of these cells to the tissue has been experimentally confirmed the module expression was 643 
shown to be low in the blood and high in the kidney tissue during rejection which may also be caused 644 
be lack of the source of these cells, or a slowing in cellular maturation before expressing ALARM genes 645 
an avenue that should be explored in subsequent studies. A further limitation is that as of now we do 646 
not have a protein surface marker panel that could be associated to cells with high or low ALARM 647 
expression. Such markers would enable the purification of ALARM cells enabling further molecular and 648 
cellular characterization. Markers would also allow the targeted modulation of the recruitment of 649 
ALARM cells to the graft or during Covid19 as well as other immune mediated diseases may thus impact 650 
disease severity. Nevertheless, our study remains important in terms of precision medicine, 651 
highlighting the discovery of ALARM, which expression enables cells to be preferentially recruited to 652 
the inflamed tissue. This notion is likely to open novel strategies of disease monitoring and disease 653 
intervention.  654 
 655 
 656 
 657 
 658 
Methods:  659 
 660 
 661 
Study of kidney transplant patients  662 
Kidney transplantation patients   663 
The PBMC samples used in this study (see table 1) were obtained from the DIVAT biocollection (CNIL 664 
agreement n°891735, Réseau DIVAT: 10.16.618). Every patient included in the study was enrolled in 665 
the DIVAT biocollection following their informed consent. The PBMC from patients were isolated from 666 
kidney transplantation biopsies, frozen with DMSO 10% and stored in liquid nitrogen at the Centre de 667 
Ressources Biologiques (CRB, CHU Nantes, France).   668 
Cell preparation  669 
Frozen PBMC samples were rapidly thawed and resuspended in complete Roswell Park Memorial 670 
Institute (RPMI) 1640 media (Invitrogen, Carlsbad, CA) with 5% FBS, pre-heated at 37°C.  671 
Following washing steps in PBS+0.04%BSA, cell pellets were resuspended in 200µL FACS buffer (1X PBS 672 
supplemented with 2mM EDTA, 2% FBS) in which dead cells were labelled by adding 0.1 μg/mL DAPI 673 
(Invitrogen, Carlsbad, CA). Cells were filtered on 70 μm cell strainer and living cells were then sorted 674 
using a Fluorescence-activated cell sorting (FACS) Aria II cell sorter (BD Biosciences, Mountain View, 675 
CA).We used the same method as previously described for single cell RNAseq55,56. One million cells 676 
were kept for each sample and resuspended in 100µL of staining buffer (PBS,2%BSA,0.01% Tween) 677 
according to the cell hashing protocol13 recommendations. Cells were incubated for 10 min with 10µL 678 
of human Fc blocking reagent. Each sample was then mixed with 1uL of a specific TotalSeq-A hashtag 679 
antibody (BioLegend, San Diego, CA) and incubated on ice for 30 min. Following 3 washing steps with 680 
the staining buffer, cells were counted and their viability measured using an ADAM-MC automatic cell 681 
counter (NanoEntek, Seoul,South Korea) to ensure a viability above the recommended 70%. All the 682 
samples were pooled at an equal cell concentration in a single vial, centrifugated and resuspended in 683 
PBS to obtain a concentration of 700 cells/µL, to match the targeted cell recovery of 32,000 cells. 684 
Encapsulation of single cells was performed on a 10XChromium (10X Genomics, San Francisco, CA) 685 
with the Chromium Single Cell 3′ Library and Next GEM reagent kit v3. The libraries were sequenced 686 
twice for each of the three experiments on the NovaSeq 6000 (Illumina, San Diego, CA) with S1 flow 687 
cells. The sequenced libraries were aligned to the GRCh38-2020-A reference genome with CellRanger 688 
v5.0.0 (10X Genomics, San Francisco, CA). The scRNA-seq was performed in 3 different experiments 689 
following the same protocol. Each experiment included longitudinal samples from three patients (one 690 
stable patient, one humoral rejection and one cellular rejection) as well as one late sample of a tolerant 691 
patient. 692 
Method demultiplexing and Seurat analysis 693 
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The count matrices were analyzed in R 4.0.3 using the Seurat R package (v4.0.2, Satija Lab14). Each 694 
experiment was first processed separately, with the same workflow. First, following the standard 695 
workflow recommendations, cells with less than 200 unique feature counts were removed (potential 696 
empty droplets). Cells with a percentage of mitochondrial genes greater than 15% were excluded as it 697 
results from mitochondria degradation from dead or dying cells. The hashing antibody sequences were 698 
then collected to demultiplex and assign each cell to its sample using the MULTIseqDemux function. 699 
Cells with too little labels information were called “Negative” while cells with a high count of two or 700 
more different oligo-conjugated antibody sequences were called “Doublets”. Only cells with a unique 701 
HTO were kept for downstream analysis. Singlet cells were annotated automatically with the Azimuth 702 
workflow within Seurat, by mapping the query cells on an annotated reference of 162,000 PBMC 703 
measured with 228 antibodies15. 704 
All the runs were then merged in a single Seurat object. Doublets and contaminant cells to exclude 705 
were selected by identifying cells co-expressing marker genes from distinct cell types. After 706 
normalization of the global object, the 2,000 most variable genes in the data were selected to compute 707 
the correction using the reciprocal principal component analysis (RPCA). The final annotated and 708 
corrected object gathering the 12 patients was composed of 50,507 cells. 709 
Gene Module Identification 710 
Consensus Non-Negative Matrix Factorization (cNMF)9 was used to decompose the cell vs gene 711 
expression matrix into cell vs module and usage vs gene low-rank matrices. Non-Negative Matrix 712 
Factorization is a stochastic method and therefore it was run with 200 NMF replicates to find a 713 
consensus robust factorization. For each batch, the top 2000 over dispersed genes were selected as 714 
input to the cNMF run. Different K values (7 to 14) were explored to determine the optimal number of 715 
modules. For each K, the stability and error metrics were examined. The best K was chosen such that 716 
the error was minimum, and the stability was maximum. Each batch was independently processed to 717 
mitigate batch effects from the three different runs. For the three batches, the optimal number of 718 
modules (K) were 14, 11 and 13. 719 
Module filtering: All modules from the three batches were collated and hierarchical clustering was 720 
performed to identify matching modules. Jaccard similarity score was used to define the similarity 721 
between two modules. Finally, only those clusters were retained that could represent all three 722 
batches. In this way, nine consistent modules were identified.  A unique geneset was determined for 723 
each consistent cluster by intersecting the top-ranking 200 genes from the modules. The threshold 724 
was achieved by observing a scree plot of input number of genes vs the number of genes after 725 
intersection. 726 
Module association: The genes in the module were examined for a module to be associated with a 727 
known cell type. The modules containing marker genes were associated with their respective cell type; 728 
for example, the module with MS4A1 and CD79A genes was associated with B cells. However, one of 729 
the modules (Module 9, later named as the ALARM module) could not be associated with a known cell 730 
type as it did not contain cell type specific markers and was well expressed in multiple cell types.  731 
UCell module score 732 
The enrichment of a particular set of genes in an individual cell was measured with the UCell58 module 733 
score. The score is calculated using the Mann-Whitney U statistic, which compares the expression 734 
levels of the module genes relative to the total gene expression of the cell. The U-statistic outcome is 735 
then normalized between 0 to 1 to produce the UCell score. 736 
Regression analysis  737 
Change in the module score (µ) along time (τ) for each condition was modelled with linear regression 738 
method. The ‘lm()’ function from R stats package was used to fit a distinct model µ ~ τ,  per celltype 739 
within the group of Stable, ABMR and TCMR individuals. A positive slope indicated that the module 740 
score increased with time. 741 
Gene Ontology analysis 742 
The gene ontology (GO) functional enrichment of the ALARM module gene list was performed using 743 
the R package WebGestaltR (v0.4.4) for Biological Process (BP) and Molecular function (MF) 744 
annotation. P-value are obtained with the hypergeometric test for ORA (Over-Representation 745 
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Analysis). As background dataset for enrichment the top 2000 variable genes from each run were 746 
merged and used.  747 
Transcription factor enrichment analysis  748 
To test for enrichment of transcription factors in the ALARM module, GSEA molecular signature 749 
database was used to count the transcription factors gene family in the module and in the background 750 
dataset used for gene ontology analysis. Fisher exact test was used to calculate the P-value and 751 
enrichment of transcription factors in the ALARM module.   752 
 753 
Allogeneic kidney rejection model in pig 754 
Animal model 755 
The study protocol was approved by the French Ministry of Higher Education, Research and Innovation 756 
(APAFiS #30136). The experiment was performed on 60 to 80kg male pigs (Sus scrofa). Test card with 757 
pre-applied antibodies from Serafol (Berlin, Germany) were used to identify the pigs’ ABO blood 758 
groups. The alloreactivity was performed by mixed lymphocyte reaction assay between donor and 759 
recipient. The donor pig was selected from a different breed as inbred pigs might escape rejection. 760 
Donor and recipients blood groups were ensured to be compatible to avoid hyper-acute rejection, and 761 
mixed lymphocyte reaction assays were positive thus proving their alloreactivity. 762 
Allogeneic transplantation 763 
Unilateral nephrectomies were performed on two recipient pigs under general anesthesia with a 764 
premedication by Zolazepam/Tiletamine (Zoletil ® Virbac, Carros, France) 15 mg/kg IM, before 765 
intubation and a maintained ventilation with a mixture of 49% oxygen, 49% nitrous oxide and 2% 766 
isoflurane. The two kidneys from a third donor pig were harvested in the same operating time. The 767 
two recipient pigs received one collected kidney each for an orthotopic transplantation. During 768 
surgery, a central venous catheter (CVC) was inserted into the internal jugular vein for hydration and 769 
medication. Post-operative analgesia was performed every day with intravenous injections of 770 
Nalbuphine (Nubain ®, Mylan, Canonsburg, Pennsylvania) and Paracetamol at a dose of 25 mg/kg. 771 
Prophylactic antimicrobial therapy was conducted with Cefazolin 1 g (Cefovet ®, Dopharma, Ancenis, 772 
France). 773 
PBMC collection in Pig model 774 
Blood samples were collected daily through the CVC and frozen in a CoolCell® container (Corning ®, 775 
Corning, NY, USA) at -80°C following the PBMC isolation. Kidney transplant biopsies were collected 776 
daily using automated biopsy needles of 16 gauges under ultrasound guidance while pigs were sedated 777 
by Zolazepam/Tiletamine and locally anesthetized with Lidocaine. Kidney samples were then placed in 778 
cryovials with 1mL fetal bovine serum (FBS) and 10% dimethylsulfoxyde (DMSO) for gradual cooling in 779 
a CoolCell chamber. 780 
Single cell preparation for pig model 781 
Blood samples were processed as described previously (see Methods 1.2). After filtering, cells were 782 
centrifugated at 300g for 10 minutes at 4°C and resuspended in staining buffer for the HTO antibody 783 
labeling (see Methods 1.3). The sequenced libraries were aligned to the Sscrofa 11.1 (February 2017 784 
release) reference genome with CellRanger v5.0.0. 785 
 786 
Pig biopsy immunostaining analysis 787 
Kidney biopsies fixed Carnoy's solution for 30 minutes followed by a fixation in formaldehyde for 24h 788 
for optical microscopy purpose. A second batch of kidney biopsies was prepared for immunostaining 789 
purpose: biopsies were placed in cryomold, covered with optimal cutting temperature (OCT) 790 
compound and immersed in cold isopentane. Following their solidification, cryomolds were stored in 791 
liquid nitrogen. Cryosectioning was performed and the resulting slides of kidney biopsies were stained 792 
with periodic acid-Schiff (PAS) and Masson’s trichrome stains (TM). 793 
The cellular infiltration was counted using ImageJ59 software on the PAS-stained kidney biopsies. Areas 794 

of interest were selected to exclude areas with glomeruli. Pictures were first converted to 8-bit 795 

grayscale, and the threshold of detection was set to capture only the stained cells. 796 
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 797 

Transmigration Model 798 

HDMECs (10 × 104 cells) activated with TNF-α (100 U/ml) for 24 hours were seeded O/N onto 1% 799 

gelatin-coated Transwell membrane inserts (24-well, 3-μm-pore polycarbonate membrane; Corning 800 

Life Science) in endothelial cell growth medium at 37°C. On the day of the assay, purified CD3 T-cell 801 

subsets (4×105) were added to the upper transwell migration chamber, and the chemokine CXCL12 (50 802 

ng/ml) was added to the lower transwell migration chamber. Migration was assessed after 4 hours by 803 

quantifying the number and phenotype of migrated cells in the lower chamber using 123count eBeads 804 

counting beads and a Cytek AURORA flow cytometer (5 lasers). Migrated CD3 were surface stained 805 

with specific antibodies to characterize phenotype CD3, CD8, CD4, CD45RA, CCR7 and activation 806 

molecules CD69, CD25, CD127, CD95, CD103 and CD49. The antibodies used for the cytometric 807 

analyses are listed belowExpression of Cytotoxic Molecules by Human transmigrated CD3 T Cell 808 

Subsets 809 

To define the expression of cytotoxic molecules, transmigrated CD3 were restimulated with PMA 810 

(50ng/mL), ionomycin (500ng/mL) and BFA (5ug/mL). Transmigrated CD3 were surface stained with 811 

specific antibodies for phenotypic characterization of CD3, CD8, CD4, CD45RA, CCR7, and after fixation 812 

and permeabilization (BD Cytofix/Cytoperm), intracellular staining was performed using antibodies 813 

against granzyme B (GZMB) and perforin-1 (PERF-1), granulysin, and TNFa. The antibodies used for 814 

cytometric analyses are listed below. 815 

Metabolic characterization of Human transmigrated CD3 T Cell Subsets 816 

Transmigrated T cells were stimulated over-night with plate bound anti-CD3 (1ug/mL) and anti-CD28 817 
(2ug/mL) mAb. Cells were washed, surface stained with anti-CD3, CD4 and CD8 mAbs and cultured for 818 
30’ at 37°C 5% CO2 in glucose-free medium containing 50 μM 2-NBDG. Alternatively, cells were surface 819 
stained with anti-CD3, CD4, CD8 and GLUT1 mAbs and after fixation and permeabilization (BD 820 
Cytofix/Cytoperm), intracellular stained with anti-LDHA mAb. Data were acquired using a 5 lasers Cytek 821 
AURORA flow cytometer and analyzed using OMIQ. 822 
Antibodies used: 823 

Target Clone Fluorochrome Provider 

CD3 OKT3 Purified In house production 

CD28 CD28.2 Purified In house production 

CD3 SK7 PE Cy7 BD 

CD4 SK3 R7 CF568 Cytek  

CD8 SK1 Sparkblue 550 Biolegend 

CD69 FN50 APC Cy7 Biolegend  

GLUT1 202915 FITC R&D Systems 

LDHA APC ab310866 Abcam 

CD3 UCHT1 PE-Cy7 Biolegend 

CD8 SK1 Spark Blue 550 Biolegend 

CD4 SK3 cL-Fluor YG584 Cytek 

CD45RA HI100 BUV496, BV786 BD 

CCR7 G043H7 APC Fire810 Biolegend 

CD69 FN50  APC-Cy7 Biolegend 

CD25 M-A251  PE-Fire700 Biolegend 

CD127 HIL-7R-M21 APC R700 BD Biosciences 

CD95 DX2 PE-Cy5 BD Biosciences 

CD103 Ber-Act8 BV605 BD Biosciences 
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CD49a SR84 BUV661 BD Biosciences 

GZMb QA16A02 PE-Cy5 Biolegend 

IFNg B27 APC BD Biosciences 

GNLY RB1 AF488 BD Biosciences 

TNFa Mab11 BUV737 ThermoFisher 

 824 

scRNA-seq of Transmigration model  825 

T cells were collected as indicated in figure 5A and then processed for chromium loading. The three 826 

conditions were processed at the same time using CITE-seq approach (see above).  827 

Primary Analysis: Fastq files were generated from Illumina bcl files using Bcl2fastq version 2.2. 828 

Cellranger v7.2 was employed to create a filtered scRNA gene expression matrix from the fastq files, 829 

utilizing default parameters and the human genome reference version GRCh38-2020. 830 

Seurat version 5.1 was used for subsequent quality control and preprocessing. HTODemux, with a 831 

positive quality threshold of 0.95, was applied to demultiplex cells, identifying singlets and associating 832 

each singlet with the corresponding condition. Cells with an RNA count exceeding 30,000 or exhibiting 833 

mitochondrial gene expression above 20% were excluded. Cell type annotation was performed using 834 

Celltypist annotation tool60. 835 

Secondary Analysis: For each CD8 and CD4 cell type, genes exhibiting significant gradients across the 836 

three conditions were identified using a linear model. The dependent variable in the model 837 

represented the condition, with control CXCL12-, control CXCL12+, and migrated groups assigned 838 

values of 0, 1, and 2, respectively. To simulate multiple individuals, cells were randomly grouped into 839 

10 groups. These groups served as pseudo-individuals, each containing at least 50 cells, created using 840 

the createfolds function from the caret package. The final linear model was formulated as ~ 841 

condition + (1 | individual). Top genes were identified based on significant p-values (< 0.05), and the 842 

direction of their gradients across the conditions was noted. 843 

Among the top gene modules, several were found to participate in known pathways. The average gene 844 

expression for these modules was calculated using the AddModuleScore function of Seurat. 845 

Metabolome Pathway Analysis: The Compass algorithm38 was used to characterize the metabolic 846 
states of CD4+ T cells across three different conditions: Migrated, CXCL12-positive (CXCL12+), and 847 
CXCL12-negative (CXCL12-). The algorithm designed to infer the metabolic state of cells from scRNA-848 
Seq data through flux balance analysis. It addresses the limitations of traditional metabolic assays in 849 
assessing metabolic states at the single-cell level, leveraging transcriptome data to predict metabolic 850 
activities. For reference to metabolic reactions and pathways, the RECON2 database was utilized for 851 
this analysis. The scRNA data were first micropooled, resulting in 20 pseudobulk samples for each 852 
condition in order to compare the same number of samples between conditions. The reaction 853 
penalties were estimated for various metabolic pathways based on gene expression levels in each 854 
pseudobulk sample. Reaction penalties were then converted to negative log scores, with higher values 855 
indicating greater predicted activity. Significant active reactions were identified using the Wilcoxon 856 
rank-sum test, comparing the Migrated samples to the CXCL12- samples. Reactions with an adjusted 857 
p-value of less than 0.1 were considered significant. 858 
 859 

Analysis of the ALARM module in kidney biopsies 860 

Two separate studies were analyzed here. The Reeve et al. Affymetrix Microarray data in RAW CEL 861 

format was downloaded from Gene Expression Omnibus (GEO) website with accession number 862 

GSE98320. The samples were pre-processed using robust multi-chip averaging (RMA) implemented in 863 

Bioconductor. The patient condition was obtained from the ‘d96’ metadata column as designated in 864 

the corresponding Series Matrix file. The patients strictly defined as either TCMR (n=76), ABMR 865 

(n=197), Mixed (n=39) or no major abnormality (STA, n=257) as a stable condition, were retained for 866 
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downstream analysis. The Callemeyn et al.  dataset was downloaded from GEO with accession number 867 

GSE147089. The CEL files were similarly pre-processed using the RMA method. The labels for each 868 

sample were obtained from the Series Matrix file and the phenotypes are defined as biopsies without 869 

ABMR (n=168), DSA negative ABMR (n=26) and DSA positive ABMR (n=30). 870 

The score used to stratify patients was computed by averaging the z-scores of the ALARM module 871 

genes. 872 

ALARM mean z-score distribution across conditions 873 

The Kolmogorov-Smirnov (KS) test was then used to compare the distribution of the ALARM module 874 

score between stable and rejection conditions. This non-parametric statistical test compares the 875 

cumulative distribution functions of the mean ALARM z-scores in both groups. The KS test statistic (D) 876 

is the maximum vertical distance between the two distributions. The p-value of the test is the 877 

probability of obtaining a test statistic as extreme as D or more extreme, assuming that the null 878 

hypothesis is true. The null hypothesis is that the two samples are drawn from the same distribution. 879 

Receptor-Ligand analysis  880 
The ‘iTalk’ R package was used for the receptor-ligand (RL) analysis. The receptors were gene 881 
candidates in single-cell kidney transplant stable and rejection patients. The rawParse() function with 882 
stats=’mean’ was used to identify the candidate genes. For each celltype, the genes were ordered 883 

by their average count expression. Only the top 50 percent of these genes were selected for the 884 
subsequent RL analysis. The same criteria were adopted for selecting the ligand candidates from the 885 
bulk RNAseq biopsy data. The significant interaction pairs were discovered from the iTalk database 886 
restricted on the cytokine interactions only. 887 
 888 

Analysis of publicly available scRNA-seq datasets 889 

PBMCs of 45 healthy Volunteers (Van Der Wijst MG et al.): 890 

Processed (de-anonymized) single-cell RNA-seq data and its relevant meta data was obtained from the 891 

European Genome-phenome Archive (EGA) accession number EGAS00001002560. The available data 892 

was merged to build a single Seurat object for downstream analysis. Azimuth reference for PBMCs was 893 

used to annotate the cells. 894 

LPS and Covid PBMC dataset (Stephenson et al.): 895 

The processed data was downloaded from Array Express under accession number E-MTAB-10026. Only 896 

individuals from the same batch containing the LPS-treated volunteers were selected to mitigate batch 897 

effects. Fig 5B shows only those individuals where the major cell types were available. The Covid 898 

patients originally annotated as Mild/Moderate was included as ‘Moderate’ in Fig 5D. 899 

Sepsis-PBMC Dataset (Reyes et al.): 900 

The pre-processed scRNA-seq data was downloaded through the Broad Institute Single Cell Portal 901 

(SCP548). The data was further analyzed with Seurat to obtain the Module score based on UCell. 902 

Covid – BALF Dataset (Liao et al.): 903 

The data was accessed from GSE145926. The filtered cell matrix was processed with Seurat with the 904 

code as provided by the authors of the original article. 905 

In vivo Mouse model experiments 906 

For induction of pneumonia, E. coli (DH5α strain), OVA-coated E. coli, grown for 18 h in Luria broth 907 

medium at 37 °C, were washed twice (1,000g, 10 min, 37 °C), diluted in sterile isotonic saline and 908 

calibrated by nephelometry. Bacteria (75 μl, OD600 = 0.6–0.7) were injected i.t. in anesthetized mice 909 

to induce nonlethal acute pneumonia. Infected mice were intravenously (i.v.) injected with 10 μg of 910 
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CD45-PE on days 0, 1, 3 and 5 to evaluate T cell trafficking towards the lung. Five minutes before sample 911 

collection on each of these days, 10 μg of CD45-BV480 was i.v. injected to evaluate blood 912 

contamination during lung excision. To specifically assess the expression of membrane markers CD3, 913 

CD4, CD8 CXCR4 and CD69 conjugated monoclonal antibodies were used on cell suspensions: CD3-914 

bv711 (145-2C11, 7311597, BD Biosciences, 1:200 dilution); CD4-buv395 (GK1.5, 1097734, BD 915 

Biosciences, 1:200 dilution); CD8-AlexaFluor700 (RPA-T8, 9025745, BD Biosciences, 1:200 dilution); 916 

anti-CD69-APC (H1.2F3, 9204727, BD Biosciences). Two independent experiments with each 3-4 mice 917 

were carried out. Anova test were used to evaluate for statistical significance across time points.   918 

 919 

Analysis of publicly available data set of 10 immune mediated diseases 920 

Bulk RNAseq of 28 pure immune cell types from 339 individuals divided into 10 immune-mediated 921 

diseases and 92 healthy controls was obtained from the National Bioscience Database Center (NBDC) 922 

Human Database with the accession number E-GEAD-397. The dataset was assembled as a large matrix 923 

with genes listed in rows and columns are individuals with homogeneous cell types. Functions from 924 

the Seurat pipeline were used to compute the module scores and generate the population's UMAP 925 

embedding. 926 

Disease Classification 927 

Combined diseases vs healthy approach was deployed for each major cell type and by cell subtype at 928 

the primary level. The Logistic Regression classifier from the R package ‘caret’ and the repeated cross-929 

validation strategy for model evaluation were used. 930 

In the next phase, for each major cell type, classification was evaluated for Healthy vs One Disease. An 931 

identical classification model was built in this phase as well. The coefficient of variation (CV2)61 method 932 

produced an unsupervised set of highly variable genes as a control for the ALARM module genes. The 933 

mean vs (variance/means2) was modelled with glmgam.fit from the statmod R package for the variance 934 

estimate of every gene. The genes were ranked by the significance of deviation from the fit. The same 935 

number of variable genes was then used in the modules.   936 

Gene association to disease terms 937 

The association between the ALARM genes and immune disease terms was performed using the 938 

disgenet2r (v0.99.2) R package 51. The ratio of genes associated with immune diseases to the total 939 

number of genes within the modules was compared to the corresponding ratio obtained from 1000 940 

randomly selected sets of 61 genes. 941 

Methodological Clarifications and Editing 942 
Parts of this manuscript were edited and refined with the assistance of ChatGPT, the AI language model 943 
developed by OpenAI. This tool was used to improve the clarity and coherence of the text without 944 
altering the scientific content. 945 
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Data availability  971 
The data underlying Figures 1 and 2 will be openly available in GEO and embargo will be lifted upon 972 
acceptance. 973 
 974 
 975 
Figure legends: 976 
 977 
 978 
Figure 1. Comprehensive longitudinal single-cell RNA-sequencing of circulating immune cells in a 979 
cohort of kidney allograft recipient. 980 
A) Timeline of the blood sampling points post-transplantation for the patients followed longitudinally. 981 
STA=Stable patient (n=3), TCMR=T cell mediated rejection (n=3), ABMR=Antibody-mediated rejection 982 
(n=3). Tolerant patients are not shown.  983 
B) Schematic diagram of the scRNA-seq preparation workflow using cell hashing.  Peripheral blood 984 
mononuclear cells (PBMCs) were collected from stable, ABMR and TCMR patients and then stained 985 
with one different oligo-conjugated antibody before being pooled and processed using microfluidic 986 
encapsulation. 987 
C) UMAP dimensional-reduction embedding of the integrated samples (n=30). Each colour represents 988 
a different cell subpopulation, adapted and manually curated from the automatic Azimuth annotation. 989 
D) UMAP projection showing the disease state distribution, TOL=Tolerant patients. 990 
E) UMAP projection coloured according to experimental batch of origin  991 
 992 
Figure 2.  ALARM Module identification 993 
A) Schematic workflow of the gene co-expression analysis using consensus nonnegative matrix 994 
factorisation (cNMF) module detection separate in each batch. The module selection was then refined 995 
based on overlapping genes between the three batches. 996 
B) Clustering of 9 modules across the 3 batches, using the Jaccard distance. 997 
C) Heatmap showing the combined gene expression of each module, i.e. module scores of the 9 998 
modules summarized for each distinct cell-type.  999 
D) UMAP projection of the expression of Module 9 across all cells. 1000 
E) Regression analysis of the 9 modules by cell types. The outcome variable (y) was time (T0, T1 and 1001 
T2) and the independent variable (x) was the module score. Heatmap shows the beta values (trend) 1002 
for each cell-type and disease state.  Negative values correspond to a decrease of the module score 1003 
across the three time points, positive values to an increase. 1004 
F) Super violin plots62 showing the longitudinal trend of ALARM module in NK, CD4 T cells (top), CD8 T 1005 
cells and B cells (bottom), stratified by individuals from each batch. 1006 
G) Gene Ontology analysis of biological process (BP) and molecular function (MF) identified by 1007 
comparing the ALARM gene enrichment using the 4000 most variable genes as background (See 1008 
Supplemental file 1). 1009 
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 1010 
Figure 3.  Pig model scRNA-seq analysis 1011 
A) Schematic diagram of the acute kidney allograft rejection in pig model. Recipient pig with a 1012 
unilateral nephrectomy received a kidney graft from a second healthy pig. Kidney biopsies and PBMCs 1013 
were collected daily and observed in immunohistochemistry. PBMCs were prepared for a scRNA-seq 1014 
analysis.  1015 
B) Immunohistochemistry of pig biopsies stained with Periodic Aid Schiff (PAS), to stain 1016 
polysaccharides, glycoproteins and glycolipids at day 0, day 2, day 4 and day 6 1017 
C) Quantification of cell populations in the kidney graft at given days using Image J cell counting 1018 
software (See supplemental figure 3 for details) 1019 
D) UMAP dimensional-reduction projection of the circulating immune cell types (PBMCs) scRNA-seq 1020 
after PBMC isolation at D0, D2, D4 and D6.  1021 
E) Proportions of circulating immune cells (PBMC) across the different time points (D0-D6) in the 1022 
recipient transplanted pig.  1023 
F) Violin plot of the ALARM module score in B cells, monocytes, CD4 T cells, CD8 T cells and NK cells 1024 
throughout acute rejection in the kidney tissues (Day 0, Day2, Day 4 Day6). *P < 0.05, **P < 0.01, ***P 1025 
< 0.001, ****P < 0.0001. 1026 
 1027 
Figure 4. ALARM gene expression increases in kidney tissues during rejection 1028 
Left panels from Reeve et al., 2017 and right panels from Callemeyn et al 2020.  STA =Stable patient, 1029 
ABMR=Antibody-mediated rejection, TCMR=T cell mediated rejection, Mixed=Graft undergoing ABMR 1030 
and TCMR, DSA- = Donor specific antibody negative and DSA+= Donor specific antibodies positive.  1031 
A) Violin plot of the sum of z-scores of ALARM genes across conditions. Wilcoxon P-values are shown 1032 
in panel comparing Stable (STA) to rejection status (ABMR, Mixed or TCMR and DSA- and DSA+ ABMR). 1033 
The mean comparison p-values were computed using the Wilcoxon rank-sum test. B) Heatmap 1034 
showing z-scores of ALARM genes (one gene per row) in all graft biopsies. Phenotype denotes the 1035 
disease states. Patients are sorted on the mean of the module gene z-scores. 1036 
C) Cumulative distribution of the mean of z-scores of ALARM genes comparing stable vs the combined 1037 
rejection conditions. K-S = Kolmogorov -Smirnov P-values and distance.  1038 
D) Ligand-Receptor analysis between receptors genes identified in circulating immune cells and 1039 
cytokines genes expressed in the allograft kidney tissue under no rejection and rejection condition. 1040 
Width of the arrow line is proportional to the expression of the ligands and the width of the arrowhead 1041 
is proportional to the receptor. Only the top 5 associations from each cell type of differentially 1042 
expressed receptors (PBMC scRNA-seq) and cytokines (Biopsy microarray) are shown.  1043 
E) Boxplots showing CXCL12 expression in biopsies from patients with high ALARM module expression 1044 
(>75%), medium (25-75%) and low (<25%). Wilcoxon rank-sum test was used to calculate P-values 1045 
shown above.  1046 
 1047 
Figure 5: Analysis of ALARM Module Expression and T Cell Behavior in an In Vitro Transwell Assay 1048 
A) Schematic representation of the in vitro transwell assay used to study CXCL12-mediated recruitment 1049 
of T cells. The assay involved a membrane covered with human dermal microvascular endothelial cells 1050 
(HDMEC), allowing for the comparison between unstimulated cells, cells in direct contact with CXCL12, 1051 
and those migrating across the membrane in response to a CXCL12 gradient. 1052 
B) Quantification of T cell subsets following migration. The composition of naïve, central memory (CM), 1053 
effector memory RA (TEMRA), and effector memory (EM) T cells remained similar post-migration and 1054 
in response to CXCL12 alone, indicating that all T cell subsets are attracted to and migrate in response 1055 
to the CXCL12 gradient. 1056 
C) Analysis of T cell surface marker expression. CD69, a component of the ALARM module, showed a 1057 
slight increase in response to CXCL12, with a more significant upregulation in migrated cells. CD25, 1058 
CD49A, and CD95 levels remained unchanged. 1059 
D) Functional analysis of migrated T cells. CXCL12-exposed and transmigrated cells were stimulated 1060 
with PMA/ionomycin after 24 hours. Migrated cells showed significantly increased expression of IFN-1061 
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γ in both CD4+ and CD8+ T cells, while TNF-α, granzyme B (GZMB), and granulysin (GNLY) expression 1062 
remained constant. 1063 
Statistical significance was determined using one-way ANOVA, followed by post-hoc tests where 1064 
appropriate. Significance levels are indicated as follows: *< 0.05, ** < 0.01, and *** < 0.001. 1065 
 1066 
Figure 6: Single Cell Characterization of T Cell Behavior in an In Vitro Transwell Assay 1067 
A) Schematic representation of the transwell assay used to investigate CXCL12-mediated signaling and 1068 
its effect on T cell migration. Three distinct conditions were assessed: (1) CXCL12-: T cells were placed 1069 
below the transwell membrane without exposure to CXCL12, (2) CXCL12+: T cells were placed below 1070 
the transwell membrane in direct contact with CXCL12, and (3) Migrated: T cells were placed above 1071 
the membrane and collected from below after migrating in the presence of CXCL12. 1072 
B) UMAP visualizations displaying the clustering of naïve CD4 and CD8 T cells based on gene expression. 1073 
Clusters were identified based on differences in ribosomal gene expression and CD4 versus CD8 1074 
annotation (top left & right). Annotation according to condition (bottom left) shows a notable 1075 
separation between CXCL12- T cells and those exposed to CXCL12 or that had transmigrated. The 1076 
ALARM module shows lower expression in the CXCL12- condition compared to the CXCL12+ and 1077 
Migrated groups (bottom right). 1078 
C) Dot plot showing the expression levels of specific genes across the different conditions (Migrated, 1079 
CXCL12+, CXCL12-).   1080 
D) Violin plots depicting the expression distribution of gene groups in pooled CD4 and CD8 T cells across 1081 
the three conditions. The plots demonstrate changes in gene expression associated with immune 1082 
response, migration, cytoskeleton organization, and stress response, as well as the downregulation of 1083 
genes related to structural organization and gene regulation. 1084 
 1085 
Figure 7. ALARM Module associates with a shift of immune cells metabolic fonctions  1086 
A) Metabolome pathway analysis of CD4+ T cells, using 20 pseudobulk sample for each experimental 1087 
condition (Migrated, CXCL12-positive, and CXCL12-negative). The differential activity of metabolic 1088 
reactions was evaluated by comparing the mean of Migrated samples and CXCL12- samples 1089 
B) PCA visualization of the pseudobulk samples by condition based on the metabolome pathway 1090 
analysis scores 1091 
C) Volcano plot illustrating glycolytic enzyme changes in migrated T cells compared to controls. The x-1092 
axis shows Cohen's d effect sizes, and the y-axis indicates the statistical significance (−log10 p-values). 1093 
Key enzymes in the glycolysis/gluconeogenesis pathway are labeled. 1094 
D) Flow cytometry analysis and quantification of GLUT1 and 2-NBDG uptake in T cells before and after 1095 
transmigration. Left panels show representative flow cytometry plots, and right panels show paired 1096 
comparisons for each parameter. LDHA expression levels (measured by MFI) are also shown before 1097 
and after transmigration. Statistical significance is indicated, with p-values provided for each 1098 
comparison. 1099 
 1100 
Figure 8. ALARM gene expression is altered in distinct immune conditions 1101 
A) Outline of study on Lipopolysaccharide (LPS) intravenous injection (iv) scRNAseq experiment 1102 
performed on healthy volunteers obtained from Stephenson et al. The annotated expression data was 1103 
used to compute the ALARM module score across time points after LPS injection in healthy volunteers. 1104 
Violin plots show the module score across cell types and condition. Total number of cells are 1105 
mentioned below the plot. P-values are shown above the violin plots and were calculated using 1106 
Wilcoxon rank sum test comparing each cell type between healthy and LPS conditions.  1107 
B) Violin plots of ALARM module score for three individuals which had matching timepoints across all 1108 
cell types in the condition LPS 90 min and LPS 10h. Lines connect the median ALARM module score 1109 
across time points for each individual separately. P-values are shown above the violin plots and were 1110 
calculated using Wilcoxon rank sum test comparing the two distinct time points.  1111 
C) Outline of patients with sepsis and urinary tract infection obtained from Reyes et al,. Annotated 1112 
data was used to compute ALARM module score across the different cell-types in urinary tract infection 1113 
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(UTI) patients and bacteraemia sepsis patients. Number of cells and individuals used are shown below 1114 
the violin plots. P-values are shown above the violin plots and were calculated using Wilcoxon rank 1115 
sum test comparing each cell type between healthy and LPS conditions.  1116 
D) Outline of PBMC scRNA-seq generated on healthy individuals, moderate covid-19 and severe covid-1117 
19 patients (Stephenson et al.,) and Bronchoalveolar lavage fluid (BALF) from a distinct cohort (Liao et 1118 
al.). Upper panel shows median ALARM module score for each cell-type for PBMC (blue) and BALF 1119 
(red). Lower panel shows for each cell-type the module score for each corresponding cell-type specific 1120 
module.  1121 
 1122 
Figure 9 Recruitment and Characterization of CXCR4+ T Cells During Lung Infection in Vivo 1123 
A) Schematic representation of the experimental setup used to study T cell recruitment during E. coli 1124 
pneumonia in a mouse model. The infection was induced on day 0, with peak infection occurring 1125 
between days 1 and 3, and resolution by day 7. CD45-PE was intravenously injected at different time 1126 
points (days 0, 1, 3, and 5) to stain and track blood-derived immune cells migrating into the lungs 1127 
during infection. 1128 
B) Quantification of CD45+ T cells in the lungs at various time points post-infection. The left plot shows 1129 
the number of CD45+ T cells at each time point. The accompanying pie charts depict the proportion of 1130 
CXCR4+ and CXCR4- T cells over the course of the infection. 1131 
C) Percentage of CD45+ cells within the CXCR4+ CD69+ T cell population over time. 1132 
D) Comparative analysis of CD45+ CXCR4+ CD4+ and CD8+ T cell counts at different time points. 1133 
Independent experiments with 3-4 mice per condition were carried out, and statistical significance was 1134 
determined using one-way ANOVA, followed by post-hoc tests where appropriate. Significance levels 1135 
are indicated as follows: *< 0.05, ** < 0.01, and *** < 0.001. 1136 
 1137 
Figure 10 ALARM genes are implicated in and predictive of immune mediated diseases 1138 
A) UMAP of bulk transcriptomic study (Ota et al., 2020). Colours represent major cell types and each 1139 
single point represents a bulk transcriptomic dataset. Cell sub types are annotated in the plot. 1140 
B) The same UMAP showing expression of ALARM module expression across samples.  1141 
C) Outline of classification approach used to test disease prediction 1142 
D) Barchart showing the F-1 score of disease classification for ALARM, cell-type specific modules and 1143 
coefficient of variation (CV2) selected genes in each major cell type separately.  1144 
E) Barchart of F1-scores computed for disease classification in each sub cell type separately for ALARM 1145 
and CV2 genes 1146 
F) Radar chart showing the F1-score in each cell type for classification between each disease and 1147 
healthy separately using ALARM genes in each major cell type. 1148 
G) Barchart showing the top three enriched diseases in the ALARM genes using the DisGeNET curated 1149 
database.  1150 
 1151 
Figure S1 ScRNA-seq integration of a cohort of kidney allograft recipients 1152 
A) Expression profiles of cell-specific markers distinguish the PBMC populations. Average expression is 1153 
the log-normalized expression average of the cells by cell type, size of the dots is associated to the 1154 
fraction of cells of the cluster in which the gene is detected. 1155 
B) Cell type proportion by cluster in the overall PBMC population. Comparison include Stable patients, 1156 
Rejection (ABMR+TCMR) and two public datasets: healthy volunteers from Stephenson et al, 2021, and 1157 
healthy volunteers from Reyes et al, 2020. One-way ANOVA with Tukey's multiple comparisons post 1158 
hoc test was performed, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  1159 
C) UMAP projection showing the sample distribution, ABMR=Humoral rejection, TCMR=Cellular 1160 
rejection, STA=Stable, TOL=Tolerant. Second UMAP shows the timepoint distribution, T0=Time point 1161 
0 (Graft), T1=Time point 1, T2=Time point 2. 1162 
D) K-bet acceptance rate by cell types following the CCA batch integration.  Complete k-bet acceptance 1163 
rate was computed on the overall PBMC population. 1164 
  1165 
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Figure S2 Assessing module distribution 1166 
A) Alluvial plot showing the shared origin of each module across batches. Each cell is assigned to the 1167 
most enriched module they express. 1168 
B)  Boxplots showing the distribution of Pearson correlation coefficient R of pairwise gene expression 1169 
correlation by cell type across modules. A module of random genes was generated to compare with 1170 
the nine other modules. Multiple gene pairs from each module are selected to compute the rho values 1171 
using a subset of common cells within the cell type. 1000 repetitions of 50 pairs each yielded 50000 R 1172 
values, as represented in every box. The subset of common cells changes with every repetition. 1173 
C) Boxplots showing the distribution of Pearson correlation coefficient R of pairwise gene expression 1174 
correlation by cell type for Module 9.  1175 
 1176 
Figure S3 Cellular characterization of pig PBMC by scRNA-seq analysis 1177 
A) Image J analysis of immuno-stained slices to quantify cell infiltration. Red boxes show counting areas 1178 
which excludes glomeruli. Right panel shows the cells which were then counted using Image J software. 1179 
B) Pig data were annotated using the Sscrofa reference genome and associated to their human 1180 
homologue. The expression profiles of cell type-specific markers is shown in the dotplot of relative 1181 
expression by cell type. Size of the dots are associated to the fraction of cells of the cluster in which 1182 
the gene is detected. The UMAP embeds the 4 samples (D0, D2, D4, D6) with their corresponding cell 1183 
type annotation.  1184 
 1185 
Fig S4 Transwell assay experiments 1186 
A) Gating strategy used in the transwell assay for cell type annotation. Lymphocytes were gated based 1187 
on forward scatter (FSC) and side scatter (SSC), followed by singlet selection and the identification of 1188 
CD3+ T cells. CD4+ and CD8+ T cells were further delineated based on CD45RA and CCR7 expression to 1189 
distinguish between naïve (Tn), central memory (Tcm), and effector memory RA (TemRA) subsets. 1190 
Additionally, CD4 T regulatory (Treg) cells were identified by CD25 and CD127 expression to 1191 
differentiate between activated (aTreg) and non-Treg populations. 1192 
B) Percentage of CD4+ and CD8+ T cells expressing CD69 under five different experimental conditions: 1193 
before the transwell assay (baseline), CXCL12 only, HDMEC alone, CXCL12 with HDMEC, and after 1194 
migration through HDMEC with CXCL12.  1195 
C) UMAP visualization of scRNA-seq data from the transwell experiment showing all cell populations. 1196 
The top plot displays T cell subtypes identified by their transcriptional profiles, including CD4+ and 1197 
CD8+ T naïve cells, CD8+ T effector memory RA (TEMRA) cells, mucosal-associated invariant T (MAIT) 1198 
cells, and CD4+ and CD8+ T effector memory (TEM) cells annotated using Celltypist. The bottom plot 1199 
shows the distribution of cells based on their experimental condition: control which is CXCL12-, 1200 
CXCL12+ and transmigrated. The clustering of cells in the UMAP space indicates differences in 1201 
transcriptional states based on both cell type and condition. 1202 
D) ALARM gene expression by condition. Dot plot showing the relative expression levels of ALARM-1203 
associated genes in CD4+ and CD8+ T cells across the different conditions of the transwell assay 1204 
(Migrated, CXCL12+, and CXCL12-). The size of the dots represents the percentage of cells expressing 1205 
the gene, and the color intensity represents the level of expression, with darker shades indicating 1206 
higher expression. 1207 
 1208 
Fig 5S. Overview of the cohort distribution 1209 
A) ALARM module score distribution by cell type based on scRNA-seq analysis of PBMC from 45 1210 
unrelated healthy individuals40. 1211 
B) Left: ALARM module score distribution across sex. No significance was found for the sex parameter 1212 
with a t-test. Right: ALARM module score distribution across age categories. No significance was found 1213 
for the age parameter with a one-way ANOVA test. 1214 
 1215 
Fig 6S. ALARM genes can classify immune-mediated diseases 1216 
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A) Distribution of the bulk RNA-seq samples across the 28 circulating immune cell types for the 337 1217 
patients distributed across 10 immune mediated diseases and the 79 healthy controls.  1218 
B) Area Under Curve (AUC) and Cohen’s Kappa score across cell types in disease and healthy patients. 1219 
C) AUC and Cohen’s Kappa score across cell subtypes in disease and healthy patients 1220 
D) Distribution of the ratio of genes associated to Gene-Disease Association (GDA) terms in 1000 1221 
modules of 61 randomly selected genes. The ALARM module has a ratio of 0.39 genes associated to 1222 
GDA terms (red line). 1223 
 1224 
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