

2 **Title: DNA Repair Function Scores for 2172 Variants in the BRCA1 Amino-Terminus**

3

4 Short title: Multiplex functional analysis of 2172 BRCA1 variants

5

6 Authors: Mariame Diabate¹, Muhtadi M. Islam¹, Gregory Nagy¹, Tapahsama Banerjee¹, Shruti

7 Dhar¹, Nahum Smith^{2,3}, Aleksandra I. Adamovich¹, Lea M. Starita^{2,3}, and Jeffrey D. Parvin¹

8 Affiliations:

9 ¹The Ohio State University, Department of Biomedical Informatics, and The Ohio State

10 University Comprehensive Center, Columbus, OH 43210

11 ²The University of Washington, Department of Genome Sciences, Seattle, WA 98195

12 ³Brotman Baty Institute for Precision Medicine, Seattle WA, 98195

13 key words: breast and ovarian cancer, BRCA1, VUS, RING domain, functional classifications,

14 multiplexed assay for variant effect, Homology Directed Repair

15

16 Address correspondence to: Jeffrey.Parvin@osumc.edu

17

18

19 ABSTRACT

20 Single nucleotide variants are the most frequent type of sequence changes detected in the
21 genome and these are frequently variants of uncertain significance (VUS). VUS are changes in
22 DNA for which disease risk association is unknown. Thus, methods that classify the functional
23 impact of a VUS can be used as evidence for variant interpretation. In the case of the breast
24 and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants
25 frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA
26 double-strand breaks. We previously published functional results using a multiplexed assay for
27 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we
28 have re-assessed the data from this multiplexed assay using an improved analysis pipeline.
29 These new analysis methods yield functional scores for more variants in the first 192 amino
30 acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now
31 present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the
32 multiplexed HDR assay. Comparison of the functional determinations of the missense variants
33 with clinically known benign or pathogenic variants indicated 93% sensitivity and 100%
34 specificity for this assay. The results from *BRCA1* variants tested in this assay are a resource
35 for clinical geneticists for evidence to evaluate VUS in *BRCA1*.

36 AUTHOR SUMMARY

37 Most missense substitutions in *BRCA1* are variants of unknown significance (VUS), and
38 individuals with a VUS in *BRCA1* cannot know from genetic information alone whether this
39 variant predisposes to breast or ovarian cancer. We apply a multiplexed functional assay for
40 homology directed repair of DNA double strand breaks to assess variant impact on this
41 important *BRCA1* protein function. We analyzed 2172 variants in the amino-terminus of *BRCA1*
42 and demonstrate that variants that are known as pathogenic have a loss of function in the DNA
43 repair assay. Conversely, variants that are known to be benign are functionally normal in the

44 multiplexed assay. We suggest that these functional determinations of *BRCA1* variants can be
45 used to augment the information that clinical cancer geneticists provide to patients who have a
46 VUS in *BRCA1*.

47 **INTRODUCTION**

48 Women with a family history of breast or ovarian cancer are encouraged to undergo genetic
49 screening for a panel of genes including *BRCA1* (MIM: 113705)(1,2). Germline mutations in
50 *BRCA1* can lead to aggressive forms of advanced breast cancer, and carriers have up to a 72%
51 lifetime risk of cancer onset (1–4). When a variant in *BRCA1*, or any gene, is detected, it can be
52 classified as: pathogenic, benign, or variant of uncertain significance (VUS)(5). Due to the rarity
53 of most variants in the general population, the majority of the variants detected are VUS. For
54 example, in the ClinVar database(6), which records variant clinical significance, 77% of the
55 single nucleotide variant (SNV) missense changes currently reported for *BRCA1* are VUS. The
56 American College of Medical Genetics and Genomics advises clinicians to not give clinical
57 recommendations for VUS(5,7).

58 A potential solution to this VUS information gap is found through the development and use of
59 functional assays to measure the impact of a specific missense change on *BRCA1* function. A
60 strength of these assays is they are not reliant on aggregation of data points solely from
61 different populations. In the case of *BRCA1*, previous studies have suggested that its function in
62 homology directed repair of DNA double-strand breaks is key to its tumor suppressor activity
63 (3,8–11). The use of multiplexed approaches to analyze many hundreds to thousands of
64 variants at once (3,8,9,12,13) enable the analysis of many variants that are rare in the
65 population.

66 We previously published a multiplexed homology-directed DNA repair (HDR) assay to assess
67 function of *BRCA1* missense variants on protein function(14). Specifically, we assessed function

68 for 1056 variants in the amino terminus of BRCA1, including the RING domain, which is known
69 to be important in the BRCA1-mediated DNA repair activity(15–18). After publication of that
70 study, new standards for multiplexed functional analyses of genetic variants were
71 published(19,20), and the approach needed to be changed to fit the new framework. We have
72 thus modified the data analysis(12) to improve the accuracy and the number of variants for
73 which functional interpretations can be made when using the same primary data. In this study,
74 we re-analyze multiplexed results for the function of *BRCA1* variants in codons 2-192, and we
75 analyze the functional effects of variants in codons 193-302, thus adding to the BRCA1 protein
76 residues evaluated for function. These new results more than double the number of variants in
77 the BRCA1 amino terminus for which we have functional results in DNA repair and are
78 consistent with the results of other functional assays and with variants with known impacts in
79 clinical predisposition to breast and ovarian cancer. Further, these new results give added
80 insights into the biological function of amino acid residues of the BRCA1 protein in DNA repair.

81

82 **RESULTS**

83 **Generation of updated functional scores for BRCA1 amino-terminal variants**

84 We assessed variants of codons 2-302 in the 1863 residue BRCA1 protein for function in
85 multiplexed DNA repair assay. These codons were analyzed in three pools of approximately
86 100 codons, as indicated in Figure 1A. The first two pools (codons 2-192) had previously been
87 analyzed(14). Since the time of that finding, the analysis method has been modified(12) and the
88 data from BRCA1 codons 2-192, along with previously unpublished results from codons 193-
89 302, have been reanalyzed using the new analysis pipeline.

90 A multiplexed plasmid library containing variants of BRCA1 amino-terminal residues were
91 generated using established methods(8,12,21,22) and previously described(14). The plasmids

92 in the library for the expression of missense variants were each labeled with a unique barcode,
93 and barcodes were linked to the missense variant by long read sequencing. The plasmid library
94 was integrated into a modified HeLa-DR-FRT cell line that contained a single Flp-In
95 Recombination Target (FRT) sequence; each cell therefore had a single BRCA1 missense
96 variant in its genome. For cells that were transfected with the control siRNA and analyzed for
97 HDR function, the endogenous wild-type BRCA1 protein was present, and all cells should be
98 functional for HDR function. For cells transfected with the BRCA1-3'UTR siRNA, the
99 endogenous BRCA1 would not be expressed, and the cells would be dependent in the assay on
100 the BRCA1 variant integrated in the FRT site. Cells competent for HDR convert to GFP-positive
101 and could be separated from the GFP-negative cells by flow cytometry. Barcode sequences
102 were amplified from the genomic DNAs in the GFP-positive and GFP-negative pools, and based
103 on the abundance of a variant in each pool a functional score was determined (Figure 1B). The
104 functional score for wild-type BRCA1 was set at a value of 1, and variants would be expected to
105 have a score between 0 and 1. Since the scores were \log_2 transformed, wild-type function would
106 have a final value of 0 and loss of function variants would have a negative value.

107 For both, the previously published(14) and the current analytic approaches, the same
108 sequenced library files and Enrich2 protocol were used. The major differences between analysis
109 protocols was in the methods used to filter the data. As shown in Figure S1, data were analyzed
110 in two steps: first we removed the variants for which the abundance of variants in the
111 sequenced library was too low to yield reliable results. The second step is to then determine the
112 threshold for functionally normal versus loss of function (LOF). The differences in the analytic
113 approaches for these two steps of the analysis are outlined in Figure S1. The top portion of
114 Figure S1 compares the differences in how variants with low numbers of reads were filtered,
115 and the bottom portion of Figure S1 compares how the functional impact of the variant was
116 determined.

117 In the previous analysis, low abundance variants that would potentially yield spurious results
118 were filtered out by setting a read count threshold using false discovery rate (FDR) and adjusted
119 q values to determine if a variant was depleted from the functional pool (GFP-positive) in the
120 control reaction. There were four replicates of each experiment, and variants that did not pass
121 the read count threshold in three or more of the replicates were discarded. The functional
122 interpretation was then based on the sum of the replicates in which the q-value for a variant in
123 the BRCA1 siRNA experiment indicated it was depleted. If a variant was scored as depleted in
124 three or four replicates then it was scored as LOF, if a variant was depleted in no replicates,
125 then it was interpreted as functional, and depletion in one or two replicates were not functionally
126 interpreted (Figure S1, *bottom left*).

127 In the new analysis approach, after removing variants with read-counts below the threshold
128 ([Methods](#)), and by using the nonsense variants as internal controls for LOF, the functional score
129 calculated by Enrich2, which represents the log2 ratio of the abundance of the variant in
130 GFP+/GFP- populations, was directly used to interpret functionally normal versus LOF.
131 Functionally normal (wild-type) was set at a value of 0, and functionally abnormal (complete loss
132 of function) were less than 0.

133 To set the threshold for LOF we separately evaluated three populations: missense, nonsense,
134 and synonymous variants (simulated dataset in Figure S1, *bottom right*). The x-axis indicates
135 the variant functional scores and the y-axis indicates the variant counts. Under the ideal control
136 siRNA conditions, all three populations should have a normal distribution centered on a
137 functional score of 0, representing normal DNA repair function. Under the conditions of
138 depletion of the endogenous BRCA1, it is anticipated that the missense variants separate into
139 two populations, the larger population centered around 0 (functional) and a smaller peak shifted
140 to the left on the x-axis and were LOF. The entire population of nonsense variants would be
141 expected to be LOF and shift to the left. The synonymous variants would be expected to remain

142 centered around the functional score of 0 (Figure 2, *bottom right*). The threshold for LOF was
143 set as the lowest one percentile of the missense variants under control conditions, and similarly,
144 the threshold for normal function was set as the highest one percentile of the nonsense variants
145 in the cells depleted of endogenous BRCA1 ([Methods](#)).

146 **HDR functional assessments of BRCA1 variants in codons 2-302**

147 For the current analysis, 2172 variants were captured (Table S1, Figure 2). The results indicate
148 that in cells transfected with the control siRNA (wild-type BRCA1 present), all variants had a
149 functional score centering on a value of 0, indicating maintenance of normal HDR function, as
150 expected. By contrast, in the experiment in which the endogenously expressed BRCA1 protein
151 was depleted by transfection of the siRNA specific to the BRCA1 3'UTR, the cell was dependent
152 for the DNA repair function on the variant BRCA1 integrated in the FRT site. As expected,
153 synonymous variants remained centered on a score of 0, nonsense variants shifted to the left,
154 indicating LOF, and the missense variants were present across both distributions. The threshold
155 cutoff scores were less than -0.50 for loss of function and greater than -0.47 for maintenance of
156 normal function. Functional scores in the narrow range from -0.50 to -0.47 were scored as
157 intermediate. The larger subpopulation of missense variants (1964/2154; 91%) remained
158 centered on a functional score of 0, and a small subset of the missense variants (190/2154; 9%)
159 shifted to the left, indicating LOF (Figure 2). The functional scores for each variant are available
160 in Table S1.

161 We compared the functional interpretation for codons 2-192 from the prior analysis and the
162 current re-analysis. With the change in analytic approaches, we were able to make functional
163 calls for 808 more BRCA1 variants than previously analyzed in codons 2-192 (Figure 3A). In the
164 prior work, we assessed function for 269 and 790 variants in Pools 1 and 2 respectively,
165 however we only made functional interpretations for 222 and 718. Currently, we were able to
166 provide functional interpretations for 880 and 868 variants for Pools 1 and 2 respectively. The

167 observed increase in variant coverage in Pools 1 and 2 may be attributed to the more flexible
168 approach in determining the read-counts threshold, which allows for greater inclusion of reads in
169 variant calling and improves overall coverage.

170 We directly compared the functional interpretations from both analytic approaches by plotting
171 the replicates depleted in the prior analysis (x-axis) (14) to the functional scores for each variant
172 in the new analysis (y-axis; Figure 3B). There was a high concordance between the analysis
173 approaches, with a calculated Pearson r value of -0.86 for the 1044 variants evaluated in both
174 studies (Table S2). Of the variants that were seen in both analyses, all of the variants with 0
175 replicates depleted were scored as functional using the current methods. There were four
176 variants for which the functional interpretation was changed: in the previous analysis three were
177 depleted in three replicates and one variant was depleted in four replicates, and in the current
178 method three of these; p.BRCA1-I26G, p.BRCA1-I89G, p.BRCA1-L95G have scores consistent
179 with intermediate function, and one; p.BRCA1-T97G was functional. The results for the two
180 analysis approaches were highly concordant, but the new approach enabled twice as many
181 variants to have functional interpretations.

182 **Correlation of functional interpretations to BRCA1 variants with known clinical impact**

183 We compared the functional interpretations based on the multiplexed DNA repair assay to the
184 variant classifications reported in ClinVar(6). For the 19 variants in the dataset classified as
185 either benign or likely benign (Table S3), the functional score centered on 0 under control
186 conditions as well as when endogenous BRCA1 was depleted (Figure 4). Thus, these known
187 benign variants were functionally normal in DNA repair. The 33 pathogenic or likely pathogenic
188 variants were analyzed in the multiplexed DNA repair assay. Under the control siRNA the
189 variants center around 0. For the BRCA1 3'UTR siRNA condition, 29 of the 33 variants shifted
190 to the left to functional scores less than -0.5, consistent with LOF. Four of the pathogenic
191 variants were scored as functionally normal. Three of these variants p.BRCA1-R71G, p.BRCA1-

192 R71K and p.BRCA1-R71W are known to affect splicing(23,24), and these would be missed in
193 the HDR assay since it uses cDNA to express BRCA1 variants. The fourth pathogenic variant
194 misclassified in these results was p.BRCA1-P34R, which had a functional score of -0.410, and
195 this score was in the range assigned to functionally normal (>-0.47). Of the 240 variants in
196 ClinVar classified as VUS or with conflicting interpretation, the functional scores (Figure 4,
197 *bottom*) suggested two subpopulations: a larger subset with normal function and a smaller
198 subset with functional scores that shifted to less than -0.5, indicating LOF. We calculated the
199 strength of evidence at which this functional data be applied to clinical variant interpretation
200 workflows using the ‘odds of pathogenicity’(5,7) formula provided by the ACMG in Table S6.
201 Based on the 52 variants with clinical classifications tested in the multiplexed HDR assay
202 (Figure S3), variants classified as LOF can be used as PS3 moderate and variants classified as
203 functionally normal can be applied as BS3 strong (Table S6).
204 The previously published analysis approach recovered fewer variants with known phenotype
205 listed in ClinVar. The current analysis approach increases the sensitivity and specificity of
206 functional classifications with reference to ClinVar (Figure S3).

207 **Comparison of the multiplexed DNA repair assay to existing functional data for the**
208 **BRCA1 RING domain**

209 An orthogonal multiplexed assay for BRCA1 function, called Saturated Genome Editing (SGE),
210 was used to evaluate the function of missense variants in 13 exons of BRCA1, including the
211 RING domain(13). There are differences in the approaches used for the SGE assay and the
212 multiplexed HDR assay evaluated in the current study. The SGE assay analyzed all single
213 nucleotide variants in amino acid positions 1-100, contrasted with all possible codons
214 substitutions in positions 2-302 in the current study. In addition, SGE depended on CRISPR
215 editing of the genomic locus of *BRCA1* in a haploid cell line, and this enabled effects on splicing
216 to be included in functional analysis. Lastly, the SGE assay is a proliferation assay, whereas the

217 multiplexed HDR assay measures DNA repair. We compared the functional scores from the
218 multiplexed DNA repair assay (x-axis) to the functional scores published from the SGE
219 proliferation assay (y-axis), and we observed a strong correlation between the functional assays
220 as indicated with a Pearson r value of 0.87 (Figure 5, Table S4). The variants aggregated in two
221 groups, a major group of functionally normal variants in both assays centering on 0 on each
222 axis, and a second smaller group representing LOF in both assays. Interestingly, many of the
223 intermediate scores for both assays were also consistent. Of 312 overlapping variants, only 33
224 (11%) were discordant when comparing the two assays, and seven of these were due to
225 variants that affect the abundance of the RNA in the SGE assay (indicated in red).

226 The effects of missense variants on BRCA1 have been tested in a number of studies by
227 analyzing one variant at a time in the HDR assay – the singleton assay (8,25–29). For the
228 current study, we have analyzed 18 different variants in the singleton assay (Figure 6A) in
229 addition to variants in the BRCA1 amino-terminus that have been previously
230 published(8,12,14,30). For comparing the current results to available singleton HDR results, we
231 transformed the functional score in the singleton assay to \log_2 , as is done for the multiplexed
232 assay and compared them on a scatterplot (Figure 6B). Loss of function for the singleton assays
233 was less than 0.4 relative to the wild-type control (-1.322 \log_2 transformed) and functionally
234 normal was greater than 0.7 relative to the wild-type (-0.515 \log_2 transformed). The results of
235 the two assays were highly correlated (Pearson r = 0.87), indicating confidence in the current
236 results. Of the 44 variants tested in both the multiplexed and singleton HDR assays, there were
237 four (9%) with results that were discordant: p.BRCA1-I15L, p.BRCA1-F93A, p.BRCA1-T176K,
238 and p.BRCA1-C226T (Figure 6B).

239 **BRCA1 residues required for HDR function**

240 The sequence function map for BRCA1 2-302 (Figure 7) shows that 181/183 of the loss of
241 function variants we classified were found in the RING domain (AA 1-109). The two LOF

242 variants found outside of the RING domain (p.BRCA1-T176K, p.BRCA1-C226T) were functional
243 in the singleton DNA repair assay (Figure 6), and one of these two LOF variants (p.BRCA1-
244 T176K) has been predicted as benign in silico (31,32). Since these two multiplexed assay
245 results were likely spurious, we conclude that BRCA1 residues required for HDR function, and
246 which are therefore inflexible to substitution, reside solely within the RING domain. The
247 sequence function map of just the RING domain is shown (Figure S4A) to facilitate evaluating
248 individual codons.

249 Previously published assays that depend on replication fork stability (38) or single-strand
250 annealing repair of DNA double strand breaks (28) had found residues of functional importance
251 in the BRCA1 residues between 100 to 300. Residues that were loss of function in the
252 replication fork stability assay (p.BRCA1-S114A, p.BRCA1-R133C, p.BRCA1-Y179C, and
253 p.BRCA1-S265Y) were scored as functionally normal in the multiplexed HDR assay in this
254 study. BRCA1 variants, p.BRCA1-I124V and p.BRCA1-V191D, were both LOF in the SSA-
255 based assay and were found to be functionally normal in the multiplexed HDR assay.

256 To investigate the zinc finger RING domain residues inflexible to substitution, we examined the
257 3D structure for the BRCA1 in complex with BARD1 (PYMOL:1JM7) (33). As expected, residues
258 that coordinate the zinc atoms were inflexible to substitution (Figure S4B). Similarly, many of the
259 BRCA1 residues in the BARD1-binding interface were inflexible to substitution, as indicated by
260 the red and pink colored residues. Of interest, not all residues that were intolerant to substitution
261 could be explained by binding to BARD1 or to zinc atoms. The results of the analysis showed
262 that the residues partially intolerant to substitution, including p.BRCA1-Met-48, p.BRCA1-Gln-
263 54, p.BRCA1-Gln-60, p.BRCA1-Ile-68, and p.BRCA1-Leu-73, are not directly involved in the
264 formation of the BRCA1-BARD1 complex or stabilizing zinc atoms. It is likely that other protein-
265 protein interactions involving these residues impact BRCA1 DNA repair function.

266 Multiplexed functional assays yield a high density of functional results for substitutions at each
267 amino acid residue, and these substitutions may be useful in interpreting whether a defined
268 protein motif is important in the process being tested. As an example, the nuclear export
269 sequence, NES2, overlaps significantly with the BARD1 interaction domain of BRCA1. The
270 NES2 motif [⁸¹QLVEELLLKIICAFQLDTGL⁹⁹](34–42), had many residues tested in the DNA repair
271 assay (Figure S4B). Six of nine substitutions tested for p.BRCA1-Phe-93 were LOF, but this
272 residue is also part of the BARD1 binding interface. By contrast, the p.BRCA1-Leu-95 residue is
273 essential to the NES2 motif but all eight substitutions of this Leu were functional in DNA repair.
274 Similarly, Ile-90 is an important residue in the NES2 motif, and we found that 11 of the detected
275 substitutions at this residue were functional in DNA repair. Some substitutions of residues of
276 NES1 [²²LECPICICLEL³⁰](34–42) also resulted in LOF, and these could not be explained by
277 BARD1 binding or zinc atom binding. The first leucine residue in NES1 is key to its nuclear
278 export function(42) and substitutions resulting in loss of function. This sighting is consistent with
279 the results in our assay for p.BRCA1-Leu-22, nine out of seventeen substitutions resulted in loss
280 of function. However, other residues previously identified as critical for NES1 activity were
281 functional when substituted. As an example, we assayed nine missense substitutions of
282 p.BRCA1-Leu-28, and eight were functional and only the substitution to proline resulted in loss
283 of function. Similarly, p.BRCA1-Leu-30 is important for NES1 activity, and we assayed 15
284 missense substitutions at this residue, and all but one substitution resulted in functional BRCA1
285 proteins. Previous studies(34,37–42) suggested that the BRCA1 NES plays an important role in
286 regulating HDR function of DSBs in the cell nucleus, but the mechanism was unknown. The
287 results from this study suggest that the NES does not significantly regulate HDR function, but
288 there are many residues in the BRCA1 amino-terminus that do affect HDR in an as yet
289 undefined way.

290

291 **DISCUSSION**

292 In this study, we applied a new analysis approach to previously published results from a
293 multiplexed analysis of the function in DNA repair for BRCA1 variants in the amino terminus of
294 the protein. Using this new approach for BRCA1 residues 2-192, we determined functional
295 scores for 808 additional variants. Plus, we analyzed 413 variants in BRCA1 residues 193-302
296 that had not been previously evaluated. The new approach differed from the previously
297 published analytic pipeline in two key steps: first, in judging whether the data for a specific
298 variant was abundant enough in the population to be included in the results without spurious
299 classifications (the read count threshold), and second, in interpreting LOF versus functionally
300 normal for a given variant. In the prior study, we had evaluated the results using a binary
301 depleted versus not depleted in the functional pool. This method was stringent but excluded the
302 interpretation of the results from many variants that would be interpreted as functional with the
303 current methods. In the current study, we instead calculated a functional score from the
304 abundance of a variant in the GFP-positive pool of cells under test conditions, compared to the
305 abundance of the variant in the GFP-positive pool of cells under the control conditions. By using
306 synonymous variants and nonsense variants present in the dataset, we were able to treat the
307 variants as a population distribution and identify those variants for which the functional score
308 shifted to low values when comparing control (endogenous BRCA1 present) to test
309 (endogenous BRCA1 depleted) conditions. This new analytic approach enabled the
310 interpretation of the functional impact of amino acid changes for more variants than had been
311 possible with the previous approach, and the new approach yielded results that had higher
312 sensitivity and specificity when compared to variants with known clinical interpretation.
313 One of the biggest obstacles for the previous approach was minimizing noise in our results. For
314 multiplexed studies, it is important to separate between a true signal and stochastic noise. This
315 problem primarily impacts the data at low read counts or replicate experiments with high

316 variability. In the new analysis approach, we utilized empirical data from the synonymous and
317 nonsense variants that improved the identification of the read-count threshold. In addition, we
318 removed variants that had a mean variance greater than 1 across the four replicates. With the
319 improved thresholding, the results we obtained for the multiplexed HDR assay were very similar
320 to the results from the variants tested in the singleton assay. Comparing our results to variants
321 with known clinical impact, as indicated in ClinVar, our accuracy for sensitivity and specificity
322 was 93% and 100%, respectively. The increased number of variants tested in the functional
323 assay that also had known clinical impact in ClinVar, from 12 variants (in the prior analysis) to
324 52 variants (using the current approach), to assess sensitivity and specificity of the new analytic
325 approach allowed for more confidence in the functional interpretation of the impact of variants
326 being seen in the clinical population or reported in ClinVar. In the multiplexed DNA repair
327 function dataset, there were 240 variants classified as conflicting interpretations or VUS in
328 ClinVar, for which the experiments now give functional evidence for re-interpretation. Of the 240
329 VUS, 226 were functionally normal and 14 of them were LOF.

330 The inflexibility to substitution of key residues in the RING domain is supported with the results
331 of our DNA repair assay. The high resolution of the multiplexed functional assay can be used to
332 finely dissect whether a known domain of the protein is important for a defined activity of the
333 protein. Not only do the functional analysis of BRCA1 variants yield functional calls that can
334 provide interpretation of VUS, but also the high-resolution nature of the assay yields insights
335 into the biological activities that are important in the DNA repair in the cell.

336

337 **MATERIALS AND METHODS**

338 **Preparation and generation of multiplexed variant library**

339 The variant libraries representing variants in pool 1 (BRCA1 residues 2-96) and pool 2 (BRCA1
340 residues 97-192) were the same as previously published(14). The same methods were applied
341 to generate the multiplexed pool 3 (BRCA1 residues 193-302). The methods of integration of
342 the plasmid library into HeLa-DR-FRT cells, HDR assay, sorting of cells, gDNA preparation,
343 barcode amplification and sequencing were as previously described(14).

344 **BRCA1 variant library construction and HDR analysis**

345 Inverse PCR reactions of the plasmid encoding the BRCA1 cDNA generate full length product,
346 but one of the codons in the PCR oligonucleotide contains NNK (where N = A, C, G, T and K =
347 G, T) in place of the terminal codon encoded by the oligonucleotide. For the 301 codons
348 analyzed in this study, 301 different inverted oligonucleotide pairs were separately prepared and
349 subjected to PCR. The PCR reactions were then pooled and circularized by the action of DNA
350 ligase. An oligonucleotide containing a 16 bp degenerate oligonucleotide barcode was inserted
351 upstream of the BRCA1 coding sequence, and long-read sequencing using a PacBio Sequel
352 paired each barcode with a different BRCA1 variant. The plasmid libraries for pools 1, 2, and 3
353 were each transfected along with the FLP-In recombinase into a HeLa derived cell line that
354 contained in its genome a single FLP-In Recombinase Target (FRT) sequence (43,44) and a
355 single DNA sequence for measuring homology directed repair (HDR) of DNA double-strand
356 breaks (45,46)

357 The HDR assay is initiated by transfecting a plasmid encoding the I-SceI endonuclease, which
358 generates a DNA cut in one of the defective GFP sequences, and if the cell is competent for
359 HDR, recombination repairs the defective GFP coding sequence, and the cell becomes GFP-
360 positive (Figure 1B). We performed this HDR assay under two conditions. In the first condition,

361 we have transfected a control siRNA, and the cells contain endogenously expressed wild-type
362 BRCA1. In the second condition, we have transfected an siRNA targeting the 3'-UTR of the
363 endogenously expressed BRCA1 mRNA, and the cell is then dependent on the BRCA1 variant
364 expressed from the FRT site. GFP-positive cells were separated from GFP-negative cells using
365 flow sorting, and the barcode in the genome of the cells was isolated by PCR and analyzed by
366 short read sequencing. The frequency of the barcode in the GFP-positive cells (functional for
367 HDR) is compared under the conditions of depletion of the endogenous BRCA1 protein using
368 the siRNA targeting the BRCA1 3'-UTR to the condition of the control siRNA. From the
369 abundances of the barcodes in the various samples, we calculated a functional score using the
370 program Enrich2 (47).

371 **Variant scoring, classifications and depletion score**

372 The original output files (14) in .h5 format generated by Enrich2 (47) were utilized for pools 1
373 and 2. For pool 3, the FASTQ files containing barcode variants and a barcode map were
374 processed using Enrich2 software. Enrich2 calculates the functional score for each variant from
375 its abundance in the GFP-positive and GFP-negative pools. The functional score is obtained by
376 normalizing the slope of the line connecting the control and experimental conditions for each
377 pool by the wild-type adjusted by log ratio. The functional score was reported in \log_2 for each
378 variant tested with a value of 0 representing normal wild-type function(47).

379 The process of interpreting variant scores involved two steps. First, two subpopulations of
380 variants containing synonymous and nonsense changes were identified and analyzed in a
381 scatter plot to display the relationship between the variant read count and their functional scores
382 for each subpopulation (Figure S1, *top right*). Under control conditions, the endogenous BRCA1
383 present in every cell functioned normally and was used as a baseline for the DNA damage
384 repair assay. Thus, it was anticipated that all variant scores in this condition would cluster
385 around 0 on the scatter plot (Figure S1, *top right*). The minimum-read count threshold was

386 determined to be the highest point where the results for any variant deviated from this
387 functionally normal value. To confirm this threshold, using the scatter plot from the conditions in
388 which the endogenous BRCA1 was depleted by transfecting siBRCA1-3'UTR, nonsense
389 variants were expected to exhibit negative functional scores indicative of loss of function, and
390 the read-count threshold would be higher than any nonsense mutants that scored as
391 functionally normal (Figure S1, *top right*). If the read count values from the conditions were
392 different, we selected the higher threshold. Data with lower read counts than this empirically
393 defined value were discarded. To further refine the data, the mean variance across four
394 replicates was calculated, and variants with variance greater than 1 were removed from the
395 analysis (Figure S2). These two filters removed variants with low frequency of read counts and
396 high variability of results. The remaining variants have high frequency of datapoints that were
397 relatively consistent in score, and we used these to evaluate functional effects of the amino acid
398 change for each variant.

399 After applying the minimum reads-count threshold, a histogram was generated to visualize the
400 distribution of the variant library (Figure S1, *bottom right*). Three subpopulations, missense,
401 nonsense, and synonymous, were analyzed separately for each condition. To determine the
402 functional score thresholds, the population of missense variants in the control siRNA
403 experimental condition was modeled as a Gaussian distribution, and the lowest 1% of values
404 were selected as the threshold for loss of function. Similarly, using the distribution plot for the
405 BRCA1 siRNA condition, the population of nonsense variants were modeled as a Gaussian
406 distribution and the highest 1% was defined as functionally normal. Only variants that were
407 observed in at least three replicates were included in the analysis. The scripts utilized in this
408 analysis, which were developed using Python and R Studio, are available as Data S1.

409

410 **ACKNOWLEDGMENTS**

411 This work was supported by NIH R01 CA228083 to J.D.P. and L.M.S. M.D. was supported by
412 R01 CA228083-01A1S1, and G.N. was supported by a Pelotonia Training Award.

413 **DECLARATION OF INTERESTS**

414 The authors declare no competing interests.

415 **REFERENCES**

- 416 1. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, et al. Risk
417 Assessment, Genetic Counseling, and Genetic Testing for *BRCA* -Related Cancer.
418 *JAMA*. 2019 Aug 20;322(7):652.
- 419 2. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al.
420 Risks of Breast, Ovarian, and Contralateral Breast Cancer for *BRCA1* and *BRCA2*
421 Mutation Carriers. *JAMA*. 2017 Jun 20;317(23):2402.
- 422 3. Chen S, Parmigiani G. Meta-Analysis of *BRCA1* and *BRCA2* Penetrance. *Journal of*
423 *Clinical Oncology*. 2007 Apr 10;25(11):1329–33.
- 424 4. Antoniou A, Pharoah PDP, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average
425 Risks of Breast and Ovarian Cancer Associated with *BRCA1* or *BRCA2* Mutations
426 Detected in Case Series Unselected for Family History: A Combined Analysis of 22
427 Studies. *The American Journal of Human Genetics*. 2003 May;72(5):1117–30.
- 428 5. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and
429 guidelines for the interpretation of sequence variants: a joint consensus recommendation
430 of the American College of Medical Genetics and Genomics and the Association for
431 Molecular Pathology. *Genetics in Medicine*. 2015 May;17(5):405–24.

432 6. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: 433 improving access to variant interpretations and supporting evidence. *Nucleic Acids Res.* 434 2018 Jan 4;46(D1):D1062–7.

435 7. Tavtigian S v., Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, Boucher KM, et 436 al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification 437 framework. *Genetics in Medicine.* 2018 Sep;20(9):1054–60.

438 8. Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J, Hause RJ, et al. Massively 439 Parallel Functional Analysis of BRCA1 RING Domain Variants. *Genetics.* 2015 Jun 440 1;200(2):413–22.

441 9. Qian D, Li S, Tian Y, Clifford JW, Sarver BAJ, Pesaran T, et al. A Bayesian framework for 442 efficient and accurate variant prediction. *PLoS One.* 2018 Sep 13;13(9):e0203553.

443 10. Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability 444 and suppresses tumorigenesis. *Nat Rev Mol Cell Biol.* 2010 Mar;11(3):196–207.

445 11. Moynahan ME, Cui TY, Jasin M. Homology-directed dna repair, mitomycin-c resistance, 446 and chromosome stability is restored with correction of a Brca1 mutation. *Cancer Res.* 447 2001 Jun 15;61(12):4842–50.

448 12. Adamovich AI, Diabate M, Banerjee T, Nagy G, Smith N, Duncan K, et al. The functional 449 impact of BRCA1 BRCT domain variants using multiplexed DNA double-strand break 450 repair assays. *The American Journal of Human Genetics.* 2022 Apr;109(4):618–30.

451 13. Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, et al. Accurate 452 classification of BRCA1 variants with saturation genome editing. *Nature.* 2018 Oct 453 12;562(7726):217–22.

454 14. Starita LM, Islam MM, Banerjee T, Adamovich AI, Gullingsrud J, Fields S, et al. A 455 Multiplex Homology-Directed DNA Repair Assay Reveals the Impact of More Than 1,000

456 BRCA1 Missense Substitution Variants on Protein Function. *The American Journal of*
457 *Human Genetics*. 2018 Oct;103(4):498–508.

458 15. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, et al. Identification of a RING
459 protein that can interact in vivo with the BRCA1 gene product. *Nat Genet*. 1996
460 Dec;14(4):430–40.

461 16. Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription,
462 and cell cycle in response to DNA damage. *Cancer Sci*. 2004 Nov;95(11):866–71.

463 17. Wu J, Lu LY, Yu X. The role of BRCA1 in DNA damage response. *Protein Cell*. 2010
464 Feb;1(2):117–23.

465 18. Tarsounas M, Sung P. The antitumorigenic roles of BRCA1–BARD1 in DNA repair and
466 replication. *Nat Rev Mol Cell Biol*. 2020 May 24;21(5):284–99.

467 19. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, et al.
468 Recommendations for application of the functional evidence PS3/BS3 criterion using the
469 ACMG/AMP sequence variant interpretation framework. *Genome Med*. 2019 Dec
470 31;12(1):3.

471 20. Gelman H, Dines JN, Berg J, Berger AH, Brnich S, Hisama FM, et al. Recommendations
472 for the collection and use of multiplexed functional data for clinical variant interpretation.
473 *Genome Med*. 2019 Dec 20;11(1):85.

474 21. Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D, et al. High-
475 resolution mapping of protein sequence-function relationships. *Nat Methods*. 2010 Sep
476 15;7(9):741–6.

477 22. Jain PC, Varadarajan R. A rapid, efficient, and economical inverse polymerase chain
478 reaction-based method for generating a site saturation mutant library. *Anal Biochem*.
479 2014 Mar 15;449:90–8.

480 23. Evers B, Jonkers J. Mouse models of BRCA1 and BRCA2 deficiency: past lessons,
481 current understanding and future prospects. *Oncogene*. 2006 Sep 25;25(43):5885–97.

482 24. Domchek SM, Tang J, Stopfer J, Lilli DR, Hamel N, Tischkowitz M, et al. Biallelic
483 Deleterious *BRCA1* Mutations in a Woman with Early-Onset Ovarian Cancer. *Cancer*
484 *Discov*. 2013 Apr 1;3(4):399–405.

485 25. Wu-Baer F, Lagazon K, Yuan W, Baer R. The BRCA1/BARD1 Heterodimer Assembles
486 Polyubiquitin Chains through an Unconventional Linkage Involving Lysine Residue K6 of
487 Ubiquitin. *Journal of Biological Chemistry*. 2003 Sep;278(37):34743–6.

488 26. Billing D, Horiguchi M, Wu-Baer F, Taglialatela A, Leuzzi G, Nanez SA, et al. The BRCT
489 Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate
490 Homology-Directed Repair and Stalled Fork Protection. *Mol Cell*. 2018 Oct;72(1):127–
491 139.e8.

492 27. Park D, Bergin SM, Jones D, Ru P, Koivisto CS, Jeon YJ, et al. Ablation of the Brca1–
493 Palb2 Interaction Phenocopies Fanconi Anemia in Mice. *Cancer Res*. 2020 Oct
494 1;80(19):4172–84.

495 28. Towler WI, Zhang J, Ransburgh DJR, Toland AE, Ishioka C, Chiba N, et al. Analysis of
496 BRCA1 Variants in Double-Strand Break Repair by Homologous Recombination and
497 Single-Strand Annealing. *Hum Mutat*. 2013 Mar;34(3):439–45.

498 29. Ransburgh DJR, Chiba N, Ishioka C, Toland AE, Parvin JD. Identification of Breast
499 Tumor Mutations in *BRCA1* That Abolish Its Function in Homologous DNA
500 Recombination. *Cancer Res*. 2010 Feb 1;70(3):988–95.

501 30. Reid LJ, Shakya R, Modi AP, Lokshin M, Cheng JT, Jasin M, et al. E3 ligase activity of
502 BRCA1 is not essential for mammalian cell viability or homology-directed repair of
503 double-strand DNA breaks. *Proc Natl Acad Sci U S A*. 2008 Dec 30;105(52):20876–81.

504 31. Vallée MP, Francy TC, Judkins MK, Babikyan D, Lesueur F, Gammon A, et al.
505 Classification of missense substitutions in the BRCA genes: A database dedicated to Ex-
506 UVs. *Hum Mutat.* 2012 Jan;33(1):22–8.

507 32. Hart SN, Hoskin T, Shimelis H, Moore RM, Feng B, Thomas A, et al. Comprehensive
508 annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-
509 based computational prediction models. *Genetics in Medicine.* 2019 Jan;21(1):71–80.

510 33. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D, Fukuda M, et al. Binding and
511 recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex.
512 *Proceedings of the National Academy of Sciences.* 2003 May 13;100(10):5646–51.

513 34. Henderson BR. The BRCA1 Breast Cancer Suppressor: Regulation of Transport,
514 Dynamics, and Function at Multiple Subcellular Locations. *Scientifica* (Cairo).
515 2012;2012:1–15.

516 35. Tarsounas M, Sung P. The antitumorigenic roles of BRCA1–BARD1 in DNA repair and
517 replication. *Nat Rev Mol Cell Biol.* 2020 May 24;21(5):284–99.

518 36. Korlimarla A, Bhandary L, Prabhu J, Shankar H, Sankaranarayanan H, Kumar P, et al.
519 Identification of a non-canonical nuclear localization signal (NLS) in BRCA1 that could
520 mediate nuclear localization of splice variants lacking the classical NLS. *Cell Mol Biol*
521 *Lett.* 2013 Jan 1;18(2).

522 37. Henderson BR, Eleftheriou A. A Comparison of the Activity, Sequence Specificity, and
523 CRM1-Dependence of Different Nuclear Export Signals. *Exp Cell Res.* 2000
524 Apr;256(1):213–24.

525 38. Gerace L. Nuclear export signals and the fast track to the cytoplasm. *Cell.* 1995
526 Aug;82(3):341–4.

527 39. Thakur S, Zhang HB, Peng Y, Le H, Carroll B, Ward T, et al. Localization of BRCA1 and
528 a splice variant identifies the nuclear localization signal. *Mol Cell Biol*. 1997
529 Jan;17(1):444–52.

530 40. Henderson BR. The BRCA1 Breast Cancer Suppressor: Regulation of Transport,
531 Dynamics, and Function at Multiple Subcellular Locations. *Scientifica* (Cairo).
532 2012;2012:1–15.

533 41. Rodríguez JA, Henderson BR. Identification of a Functional Nuclear Export Sequence in
534 BRCA1. *Journal of Biological Chemistry*. 2000 Dec;275(49):38589–96.

535 42. Thompson ME, Robinson-Benion CL, Holt JT. An Amino-terminal Motif Functions as a
536 Second Nuclear Export Sequence in BRCA1. *Journal of Biological Chemistry*. 2005
537 Jun;280(23):21854–7.

538 43. O'Gorman S, Fox DT, Wahl GM. Recombinase-mediated gene activation and site-
539 specific integration in mammalian cells. *Science*. 1991 Mar 15;251(4999):1351–5.

540 44. Sauer B. Site-specific recombination: developments and applications. *Curr Opin
541 Biotechnol*. 1994 Oct;5(5):521–7.

542 45. Chen CC, Feng W, Lim PX, Kass EM, Jasin M. Homology-Directed Repair and the Role
543 of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. *Annu Rev
544 Cancer Biol*. 2018 Mar 4;2(1):313–36.

545 46. Pierce AJ, Hu P, Han M, Ellis N, Jasin M. Ku DNA end-binding protein modulates
546 homologous repair of double-strand breaks in mammalian cells. *Genes Dev*. 2001 Dec
547 15;15(24):3237–42.

548 47. Rubin AF, Gelman H, Lucas N, Bajjalieh SM, Papenfuss AT, Speed TP, et al. A statistical
549 framework for analyzing deep mutational scanning data. *Genome Biol*. 2017 Dec
550 7;18(1):150.

551

552

553 **FIGURE LEGENDS**

554 **Figure 1. BRCA1 protein and the outline of the multiplexed assay for DNA repair function**
555 **of missense substitutions.**

556 **A.** The 1863 amino acid BRCA1 protein was evaluated for function using a multiplexed assay
557 for homology directed repair of DNA double-strand breaks. The amino terminus of BRCA1,
558 containing the RING domain, was divided into three pools of approximately 96 amino acid
559 residues each, and each pool was assayed in four separate replicates of the HDR assay.

560 **B.** Experimental workflow for the multiplexed HDR assay. A HeLa-derived cell line (HeLa-DR-
561 FRT) was transfected with a library of plasmids expressing BRCA1 variants. In each cell a
562 single variant of BRCA1 is integrated into the single FIP-In recombination target sequence in the
563 genome of each HeLa-DR-FRT cell. Each dish of HeLa cells contains hundreds of BRCA1
564 variants present in each pool. The cells are then depleted of the endogenous BRCA1 by siRNA
565 transfection and then subjected to the HDR assay. Cells with a variant of BRCA1 that maintains
566 function will become GFP-positive in the assay, and LOF variants remain GFP-negative. By the
567 use of flow cytometry, cells are sorted into GFP-positive and GFP-negative, and the barcode
568 adjacent to the integrated BRCA1 variant is PCR amplified. These barcodes are then
569 sequenced, and the abundance of each variant in each pool is determined by the abundance of
570 the variant-associated barcode in the sequence reads. The abundance of a barcode
571 representing a variant is compared to the abundance of the barcode representing the wild-type
572 BRCA1, and analyzed using the Enrich2 software to generate a functional score.

573 **Figure 2. Comparative population distribution of BRCA1 variants under control and**
574 **experimental conditions.**

575 The distribution of functional scores for each subpopulation of variants (missense, nonsense,
576 synonymous) was analyzed on a plot of functional score (x-axis) vs count (y-axis). Control

577 siRNA treatment is on the left, and *BRCA1* 3'UTR siRNA treatment (depletion of endogenous
578 *BRCA1*) is on the right. The functional score scale is log2, and a score of 0 indicates wild-type
579 function. The dotted line on the missense variant plot in the control experiment represents the
580 bottom 1% of the normal distribution modeled on the data. The dotted line nonsense variant plot
581 in the transfected *BRCA1* 3'UTR siRNA experiment is the top 1% of the normal distribution
582 modeled from the data. These lines were used as thresholds for the functional interpretation of
583 LOF.

584 **Figure 3. Comparison of *BRCA1* variant functional determinations**

585 **A.** The number of variants in each pool of *BRCA1* codons that were above the read count
586 threshold and the number of variants for which a functional interpretation was made are
587 indicated for the previously published analysis (2018) and the current analysis (2023). In 2018,
588 functional determinations were only published for pools 1 and 2. Only depletion scores of 0, 3 or
589 4 were considered for functional determination in that analysis. In the new analysis, functional
590 determinations are made for all variants, grouped into either functionally normal, loss of function
591 or intermediate. For this table, intermediate is not included in the total for functional calls.

592 **B.** This scatterplot compares the functional scores for each variant from the previously
593 published analysis (replicates depleted; x-axis) to the new analysis (y-axis). The x-axis
594 represents the number of replicates a variant was depleted in the 2018 analysis(14). The y-axis
595 displays the re-analysis functional score for the same population of variants. The dotted line
596 signifies the threshold for function, with values above it indicating functional *BRCA1* and below
597 indicating loss of function. Colors indicate the color scheme used in the 2018 description. The
598 comparison showed a strong negative correlation, with a Pearson R value of -0.86.

599 **Figure 4. Comparison of functional scores for BRCA1 variants with ClinVar**

600 **classifications.**

601 Under the conditions of endogenous, wild-type BRCA1 (control siRNA, left) or of variant BRCA1
602 (BRCA1 3'UTR siRNA, right), the variants present in the ClinVar database and classified as
603 benign/likely benign (top), pathogenic/likely pathogenic (middle), or VUS/conflicting (bottom) are
604 shown. These populations are depicted on a plot of functional score (log2, x-axis) versus
605 number of variants (y-axis).

606 **Figure 5. Comparison of functional scores for BRCA1 variants in the HDR assay versus**

607 **the Saturated Genome Editing (SGE) assay.**

608 The functional scores from the current multiplexed HDR analysis (x-axis) were compared to the
609 multiplexed scores from the SGE dataset (y-axis) on a scatterplot. Variants colored red indicate
610 low RNA levels as recorded in the SGE dataset. Both datasets use a logarithmic functional
611 score scale with base 2, and a score of 0 is the functional score of wild-type.

612 **Figure 6. Comparison of functional scores for BRCA1 variants assessed in multiplexed**

613 **and singleton HDR.**

614 **A.** Eighteen amino-terminal BRCA1 variants were tested in the singleton HDR assay for DNA
615 repair function.

616 **B.** The functional assessments of 44 BRCA1 variants (18 from panel A and 26 published) was
617 compared in both the HDR multiplexed assay (x-axis) and the HDR singleton assay (y-axis).
618 The dotted lines indicate the functional cutoffs for the singleton assay, with function defined as a
619 score of > -0.51 and non-function defined as < -1.32 . The comparison showed a strong positive
620 correlation, with a Pearson R value of 0.87. Both datasets were log2 transformed.

621 **Figure 7. Sequence-Function map of 2172 BRCA1 variants.**

622 The functional scores of 2172 variants (positions 1-302 of BRCA1) were color-coded based on
623 the functional scores for each variant. The x-axis has wild-type BRCA1 amino acid residues
624 from 1 to 302, and the y-axis has the amino acid substitution indicated. Substitutions that
625 resulted in the wild-type amino acid being generated were indicated by a grey box containing an
626 oval dot. Grey indicates variants for which the read counts were below the threshold for
627 inclusion or where a functional score was not reported. Variants with a functional score less
628 than -0.5 were colored red, indicating loss of function (LOF). Variants with a functional score
629 greater than -0.47 were colored white, indicating maintenance of function. Intermediate function
630 variants with scores in between were colored peach. Nonsense variants were marked with an
631 asterisk (*) on the bottom row of the y-axis.

632

633 **SUPPLEMENTAL FIGURES DESCRIPTIONS:**

634 **Figure S1. Comparison of analysis approaches for evaluating BRCA1 variants in the**
635 **RING domain.**

636 The left side of the figure shows the original analysis steps used in the paper published in 2018
637 (14), and the right side of the figure summarizes the steps changed in the current approach. The
638 analytic pipeline previously described used a binary classifier based on the false-discovery rate
639 (q-value) as a quantifier. The binary classifier was created by designating variants with a q value
640 <0.055 as 'depleted' and variants with a q value > 0.055 as 'not depleted.' The overall depletion
641 score was calculated by counting the number of times a variant was depleted across the four
642 replicates. In the current study, performance was optimized using internal controls (synonymous
643 and nonsense variants) in cells containing endogenous BRCA1 (control siRNA) and in cells with
644 the endogenous gene silenced (BRCA1 siRNA). We evaluated the read counts (horizontal axis)

645 and at low read counts the datapoints deviated from normal function (0 on the vertical axis) in
646 control cells and in the BRCA1 siRNA transfected cells, synonymous variants deviated from
647 normal function at low read counts. This analysis set the minimum number of reads required for
648 a variant to be included in the analysis.

649 After establishing the read-count threshold, the threshold for functional versus LOF was
650 determined. In the previously published analysis, if the q-value for a variant indicated depleted
651 in three or four replicate experiments, then the variant was considered LOF. If the q-value
652 indicated zero replicates depleted, then it was interpreted as functional. If a variant was
653 depleted in one or two replicates, then no functional determination was made. In the current
654 analysis, the population distributions of missense, nonsense, and synonymous, shown here as
655 expected distributions, were used to determine the threshold for functional interpretation. The
656 cut-off values were established based on the top 1% for nonsense variants and the bottom 1%
657 for synonymous variants.

658 **Figure S2. Mean variance of BRCA1 across four replicates.**

659 The DNA repair functional score variability of BRCA1 variants was evaluated by plotting the
660 standard variance across four replicates (y-axis) against the mean functional score (x-axis).
661 Variants with a standard deviation greater than 1 were removed from further analysis.

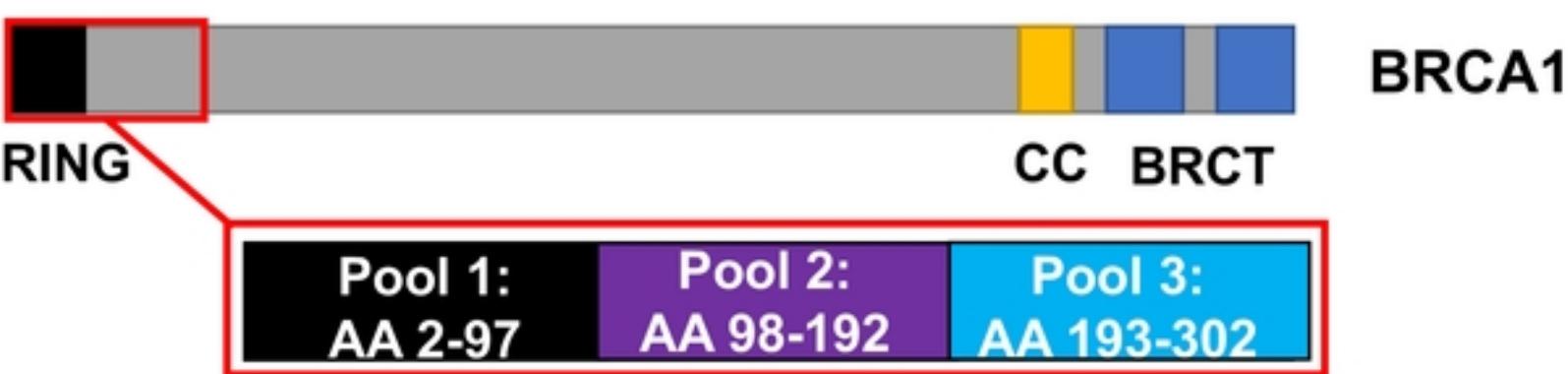
662 **Figure S3. Calculation of sensitivity and specificity for BRCA1 variant functional scores.**

663 **A.** The current analysis of the multiplexed HDR assay was compared with variants with known
664 clinical impact listed in ClinVar.

665 **B.** The functional determinations using the previously published analysis was compared with
666 variants with known clinical impact listed in ClinVar. Due to updates in the ClinVar database, the
667 number of variants shown in this table is different from originally published.

668 **Figure S4. Sequence-function map in the BRCA1 RING domain.**

669 **A.** The close-up view of the sequence-function map from Figure 7 shows the relationship
670 between the sequence of the RING domain (positions 1-110 of BRCA1) and the functional
671 impacts of each variant tested. The color coding of the variants represents the functional
672 performance of the RING domain: red for loss of function, white for functionally normal, peach
673 for intermediate function, and gray for variants with no determinations (read-counts below the
674 threshold for inclusion or variant not detected). The x-axis represents the wild-type amino acid
675 one-letter code, and the y-axis represents the mutated amino acid one-letter code.


676 **B.** This visualization shows the interaction between BRCA1 and BARD1 proteins
677 (PYMOL:1JM7), with BRCA1 residues colored based on their performance in the functional
678 assay. Red represented loss of function in all substitutions, magenta represented more than half
679 of substitutions resulting in loss of function, peach for less than half of substitutions resulting in
680 loss of function, and white for maintenance of function in all tested substitutions. The zinc atoms
681 in the RING zinc-finger are colored grey. BARD1 peptide was colored green. In the close-up
682 view of the alpha-helices of BRCA1, the nuclear export sequences are indicated with brackets
683 and arrows, and the helices have been rotated to show the face of BRCA1 that interacts directly
684 with BARD1.

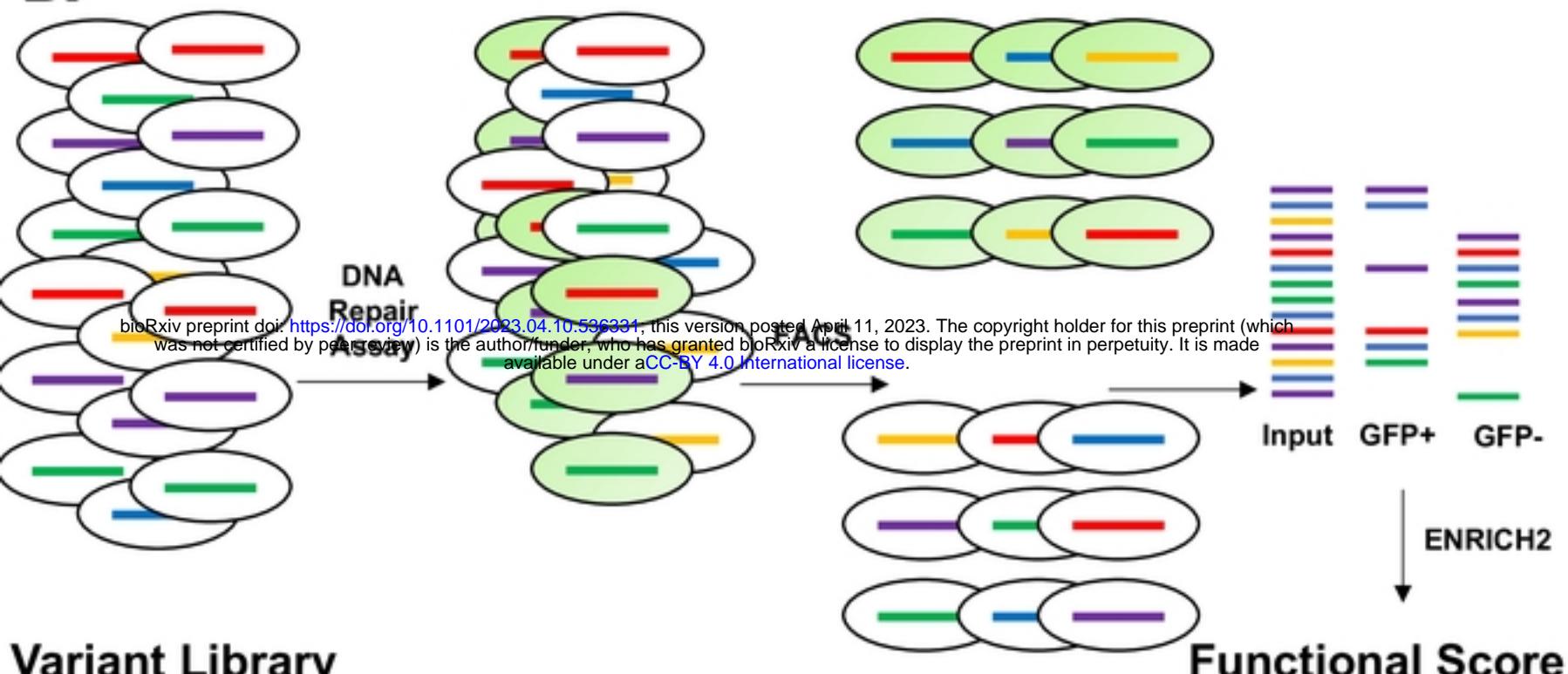
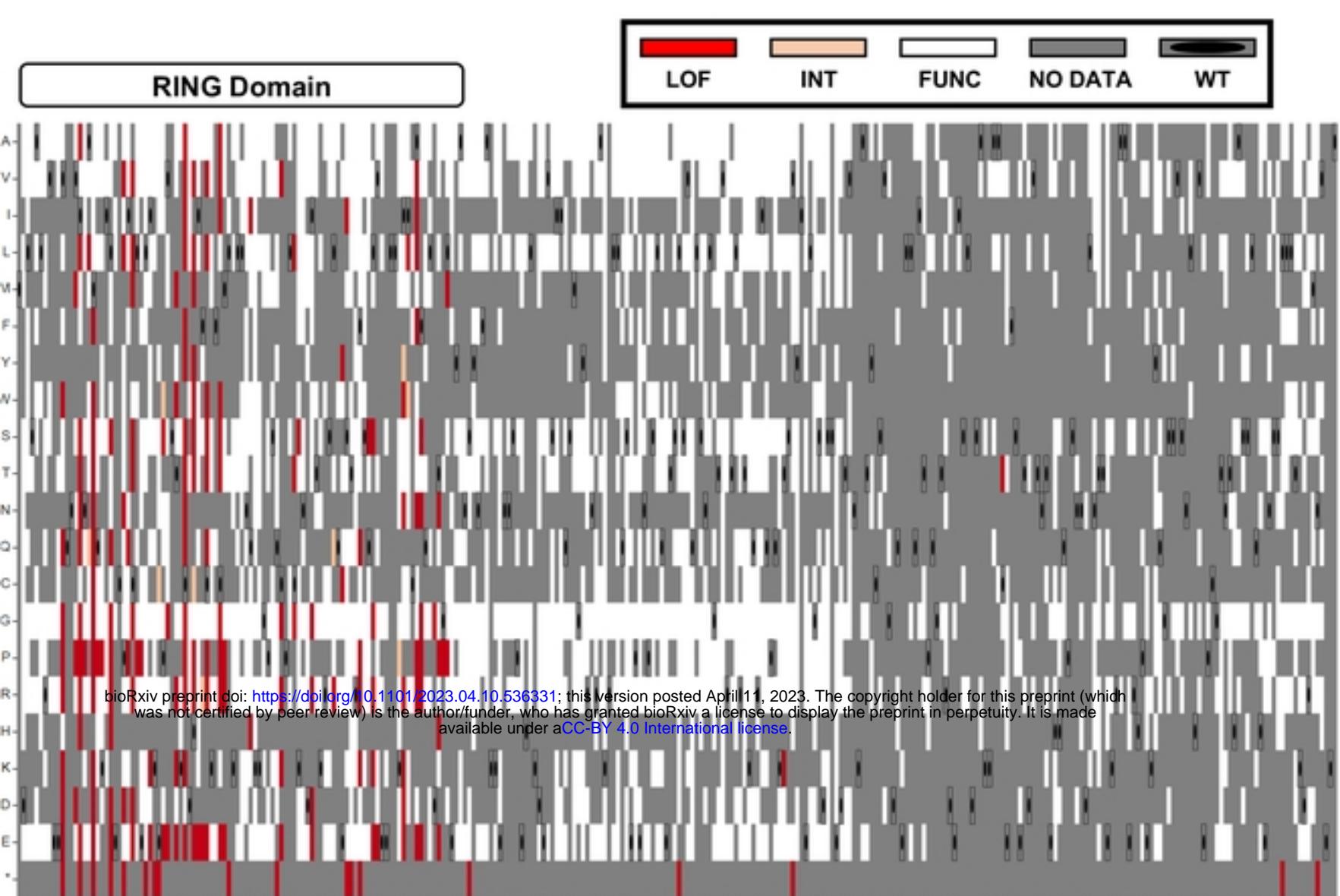
685

686

Figure 1

A.

B.

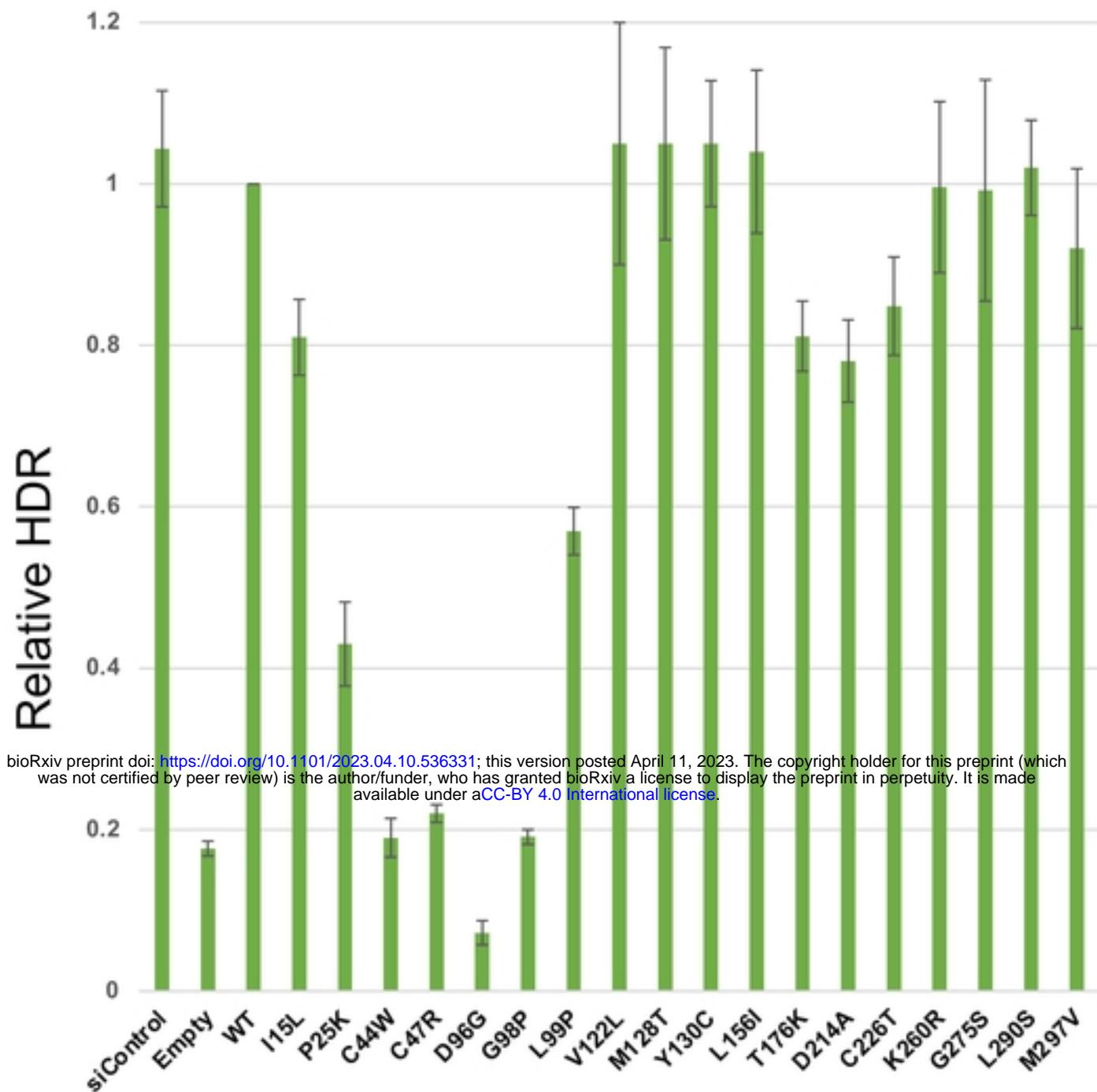

Fig 1

Figure 7

Figure 6

A.

B.

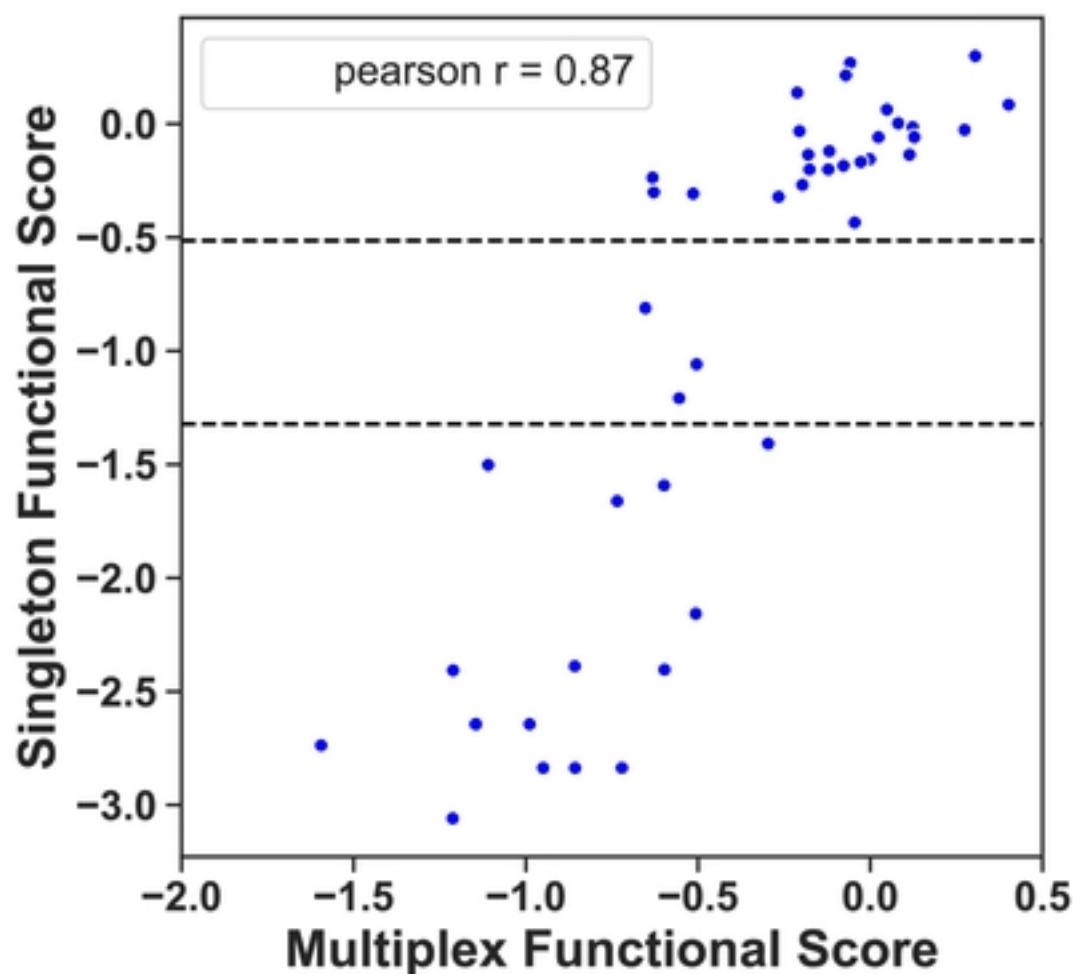
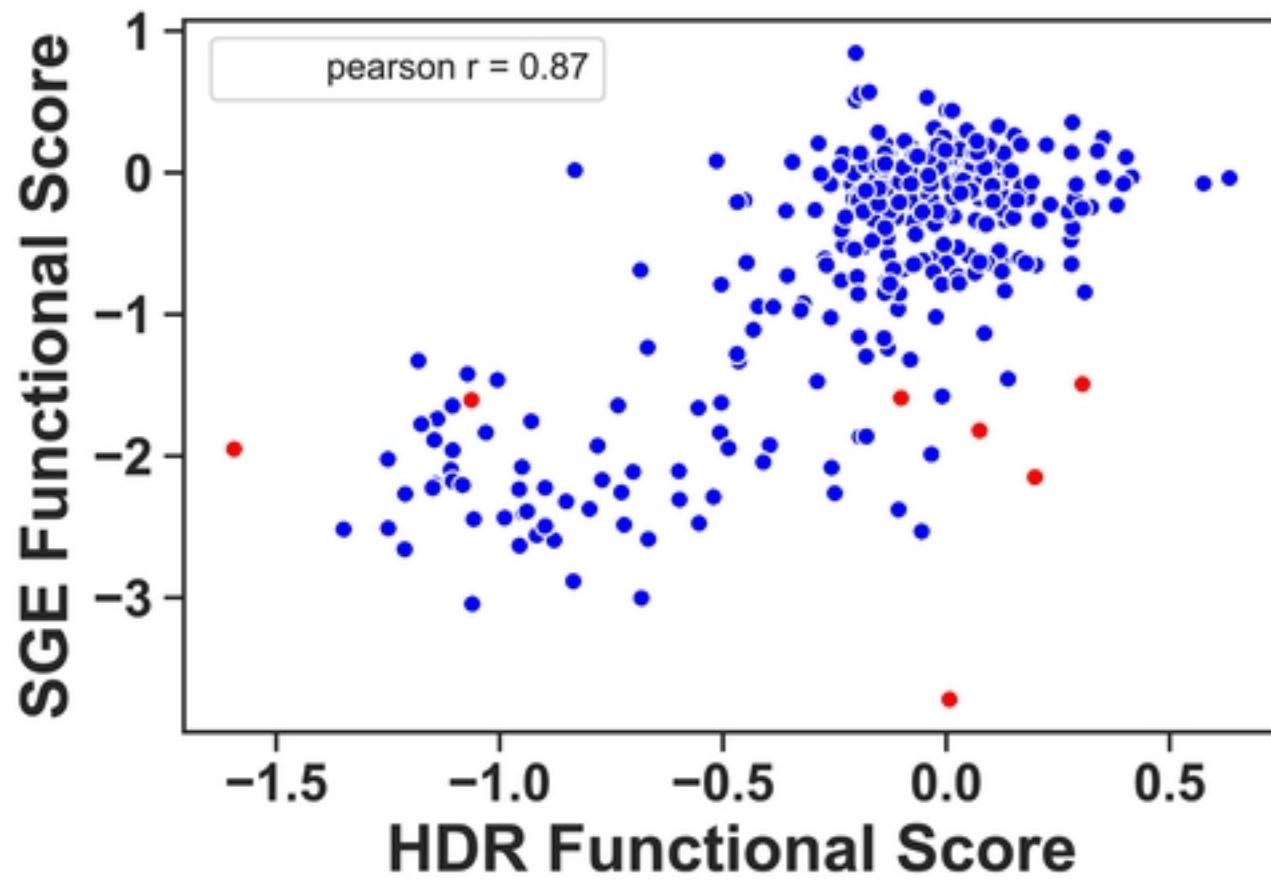



Fig 6

Figure 5

bioRxiv preprint doi: <https://doi.org/10.1101/2023.04.10.536331>; this version posted April 11, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 4

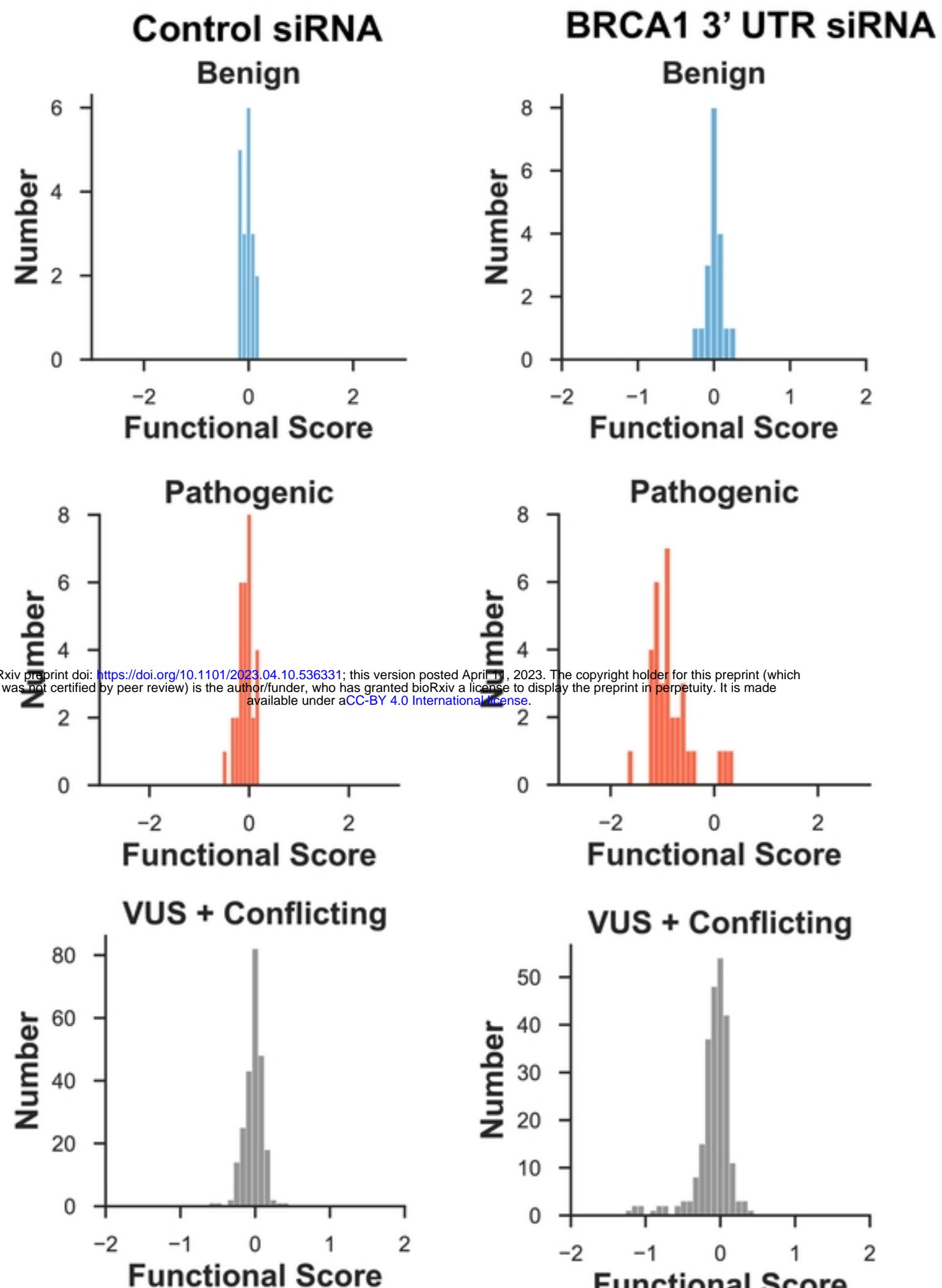


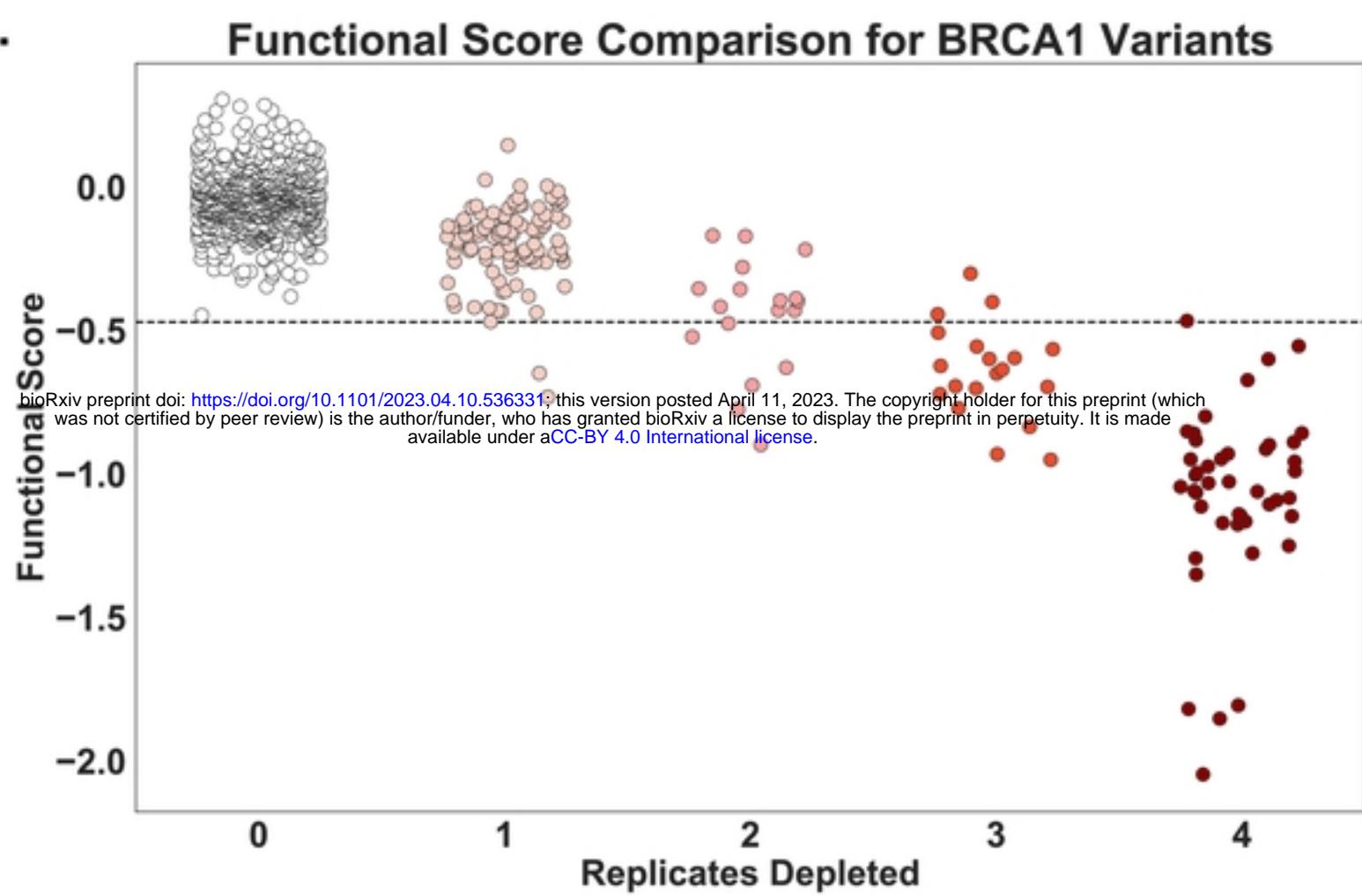
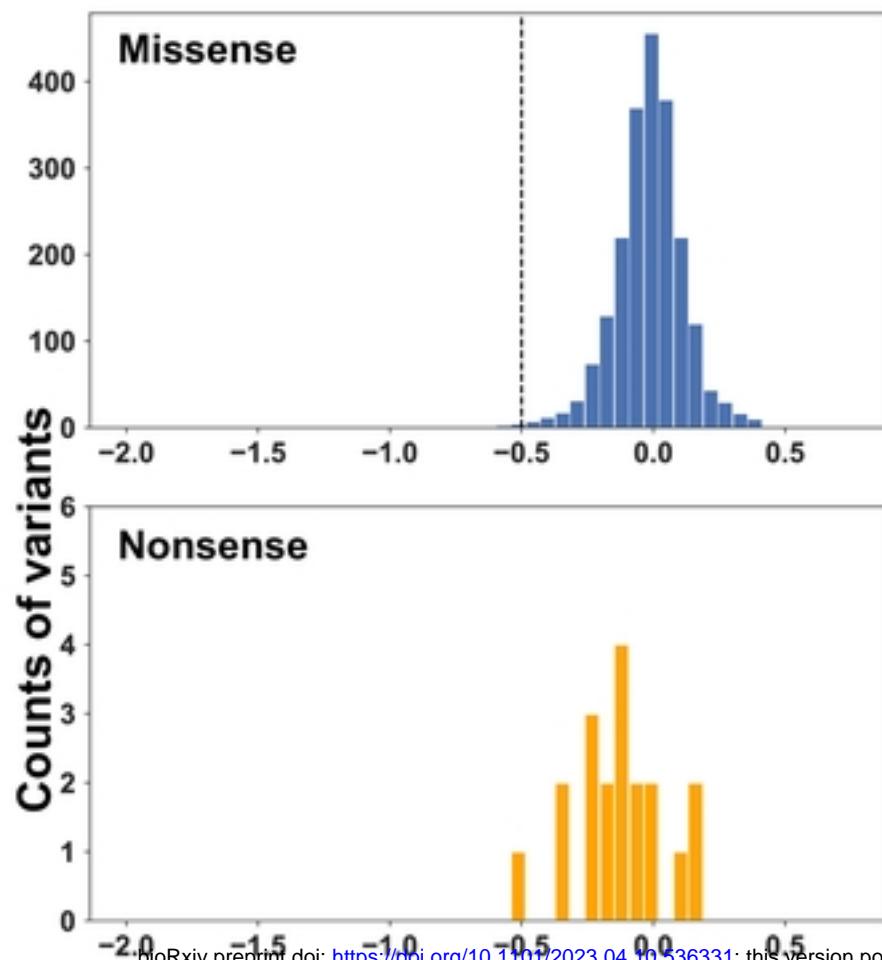
Fig 4

Figure 3

A.

	Variants above Read Threshold 2018	Variants above Read Threshold 2023	Variants with functional calls 2018	Variants with functional calls 2023
Pool 1 (2-97)	269	889	222	880
Pool 2 (98-192)	790	870	718	868
Pool 3 (193-302)	N.D.	413	N.D.	413

B.

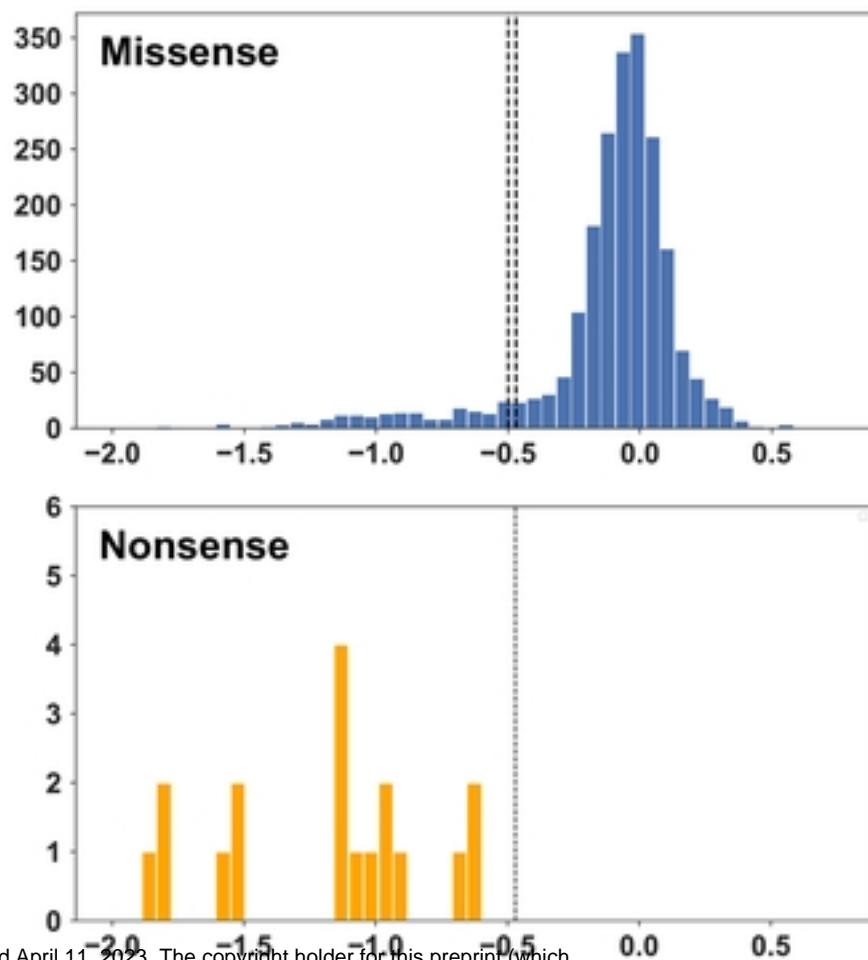
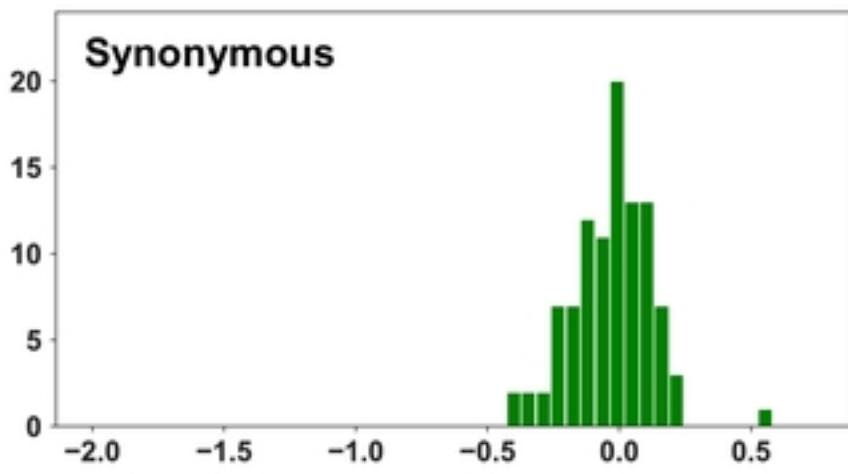

Fig 3

Figure 2

Control siRNA



BRCA1 3'UTR siRNA

bioRxiv preprint doi: <https://doi.org/10.1101/2023.04.10.536331>; this version posted April 11, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Synonymous

Synonymous

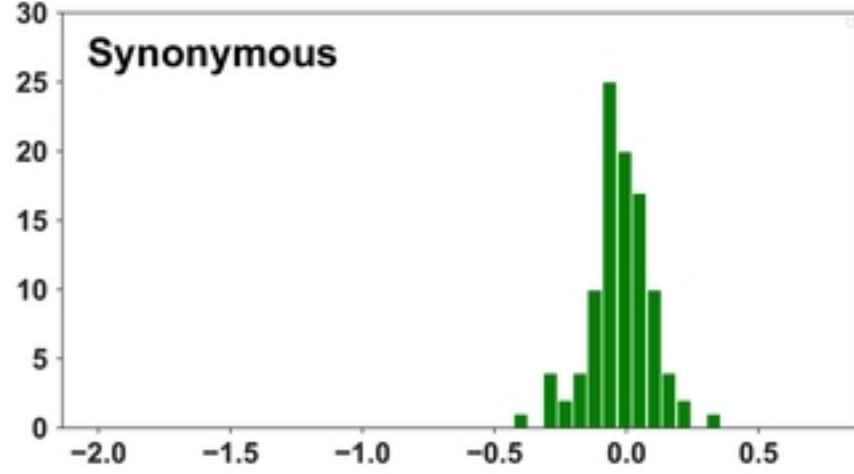


Fig 2