

1 **Single-Copy Orthologs (SCOs) improve species discrimination: A case study in**
2 **subgus *Jensoa* (*Cymbidium*)**

3

4 Zheng-Shan He¹ | De-Zhu Li¹ | Jun-Bo Yang¹

5 ¹Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics,

6 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China

7

8 Correspondence

9 De-Zhu Li, and Jun-Bo Yang, No.132 Lanhei Rd, Heilongtan, Kunming, Yunnan 650201, China.

10 Email: dzl@mail.kib.ac.cn; jbyang@mail.kib.ac.cn

11

12 **Abstract**

13 Standard barcodes and ultra-barcodes face challenges in delimitation and discrimination
14 of closely related species with deep coalescence, hybrid speciation, gene flow or low sequence-
15 variation. Single copy orthologs (SCOs) have been recommended as standardized nuclear
16 markers in metazoan DNA taxonomy. Here, we assessed the performance of SCOs in identifying
17 recently diverged species in subgenus *Jensoa* (*Cymbidium*) which has been poorly settled by
18 ultra-barcode. More than 90% of target 9094 reference SCOs inferred from three genomes of
19 *Cymbidium* were successfully retrieved for all 11 representative species in subg. *Jensoa* by
20 ALiBaSeq from as low as 5× depth whole genome shotgun sequences. Species tree reconstructed
21 from multiple refined SCO matrices under multispecies coalescent model successfully
22 discriminated all species and discerned wrongly identified or labeled species. Plentiful and

23 refined SCOs matrices obtained by implementing our pipeline facilitate not only phylogenetic
24 study, but also high-resolution species diagnosing. Biparentally inherited SCOs as multi-locus
25 marker not only advances the force of DNA barcoding, but also facilitates an eventual transition
26 to species-tree-based barcoding strategies.

27

28 **Keywords**

29 Single-Copy Orthologs (SCOs), Ultrabarcoding (UBC), species discrimination, closely related
30 species, *Jensoa*, pipeline

31

32 **1 | INTRODUCTION**

33 Species recognition is paramount for science and society. DNA barcoding, a tool
34 proposed by Hebert 20 years ago (Hebert et al., 2003), has proven instrumental in plant species
35 identification and discovery based on genetic variations of DNA sequences (Hollingsworth et al.,
36 2016). Four easily amplified gene regions, *rbcL*, *matK*, *trnH-psbA*, and ITS (internal transcribed
37 spacers), have been agreed upon as the standard plant DNA barcodes (Hollingsworth et al., 2009;
38 Kress et al., 2005; Li et al., 2011). However, traditional standard barcodes failed in many
39 evolutionarily young species for lacking sequence divergence (Li et al., 2015; Spooner, 2009; van
40 Velzen et al., 2012). Ultrabarcoding (UBC), using whole chloroplast genome (Kane & Cronk,
41 2008) or ribosomal DNA (rDNA) repeat unit (Kane et al., 2012) as extended barcodes, has
42 overcome the inherent limitations of the traditional single- or multi-locus DNA barcodes by
43 offering sufficient variable characters (Coissac et al., 2016). By assembling plastomes and rDNA
44 clusters from low-coverage shotgun sequencing of genomic DNA, universal primers and loci
45 preference is not annoyance any more (Kress et al., 2005; Straub et al., 2012). Ultrabarcoding has

46 become more highly discriminating and efficient plant DNA barcode to resolve some difficult
47 taxa (Ji et al., 2019; Kane et al., 2012; Parks et al., 2009; Šlipiko et al., 2020; Yang et al., 2013;
48 Zeng et al., 2018). However, plastomes and rDNA repeats could not address the limitations in
49 discrimination species involving introgression, hybridization, incomplete lineage sorting (ILS) or
50 recent divergence (RuhSAM et al., 2015; Weitemier et al., 2014). Species level polyphyly or
51 paraphyly are common in closely related species, especially for groups that diverged recently (Z.
52 F. Liu et al., 2021; van Velzen et al., 2012; Yu et al., 2022).

53 Nuclear genes, which have a preponderance of biparental inheritance over organelle
54 genes, could considerably improve the accuracy and robustness of DNA barcoding (David et al.,
55 2021; Huang et al., 2022; Small et al., 2004; Wang et al., 2019; Zimmer & Wen, 2012). ITS and
56 rDNA do not always track both parents' genome in hybrids and allopolyploids due to lack of
57 intragenomic uniformity and complex evolutionary fates (Álvarez & Wendel, 2003; Bailey et al.,
58 2003). Ultra-conserved elements (UCEs) and restriction site-associated DNA (RAD) are also
59 problematic because of insufficient intraspecific variation or non-homologous flanking region
60 sequences (Eberle et al., 2020). The compromise between cost and accuracy of the barcoding
61 results has been broken by progress in sequencing technologies. Whole transcriptome, DNA
62 target enrichment and whole genome sequencing have become affordable for sampling hundreds
63 of single copy target loci from nuclear genome (Lemmon et al., 2012; Weitemier et al., 2014;
64 Wen et al., 2013; Xi et al., 2013). Single copy orthologs (SCOs) are protein-coding genes under
65 strong selection to be present in one single copy, and they allow a more reliable assessment of
66 homology to serve as highly suitable and universal makers (Waterhouse et al., 2011). The
67 number of SCOs increases with increasing relatedness of the species chosen so the number of
68 inferred SCOs of lower taxonomic levels are larger than higher lineages (Emms & Kelly, 2019;

69 Smith & Hahn, 2021). Putative SCOs could be recovered by two ways, a) to identify
70 corresponding reads of reference SCOs and then to assemble each putative SCO, b) to assemble
71 the whole genome and then to extract each putative SCO by querying them to the whole assemble
72 (Knyshov et al., 2021). SCOs have successfully improved and homogenized species delimitation
73 and discrimination in Metazoa (Dietz et al., 2021; Joshi et al., 2022). SCOs have been used as
74 molecular markers in plant phylogenetics for several year (Hu et al., 2023; Huang et al., 2022;
75 Johnson et al., 2018; B. B. Liu et al., 2021; Liu et al., 2022; G. Zhang et al., 2023; Zhang et al.,
76 2012), but no report on species identification yet.

77 Subgenus *Jensoa* (Raf.) Seth & Cribb (Orchidaceae; Epidendroideae; Cymbidieae;
78 Cymbidiinae; *Cymbidium*) consisting of about 20 species, are mostly terrestrial growing in
79 tropical and subtropical Asia (Liu et al., 2006; Zhang et al., 2021). The well-known Asian
80 Cymbidiums cultivated more than 2000 years in China are all from this subgenus and comprise
81 thousands of artificial hybrids (Du Puy et al., 2007; Hew, 2001). Subgenus *Jensoa* diverged less
82 than 4 Ma (G. Zhang et al., 2023), and species from this subgenus had little morphological
83 variation before flowering. Hybridization is as common as poaching in *Jensoa*, therefore,
84 accurate identification of this subgenus is essential to breeding and trade (Liu et al., 2006).
85 Previous effort has failed by using standard barcodes, plastomes and un-assembled reads (L.
86 Zhang et al., 2023). As an example of how SCOs could be applied, we will here examin the
87 power of SCOs on discriminating *Cymbidium* subgenus *Jensoa* (Orchidaceae), recently diverged
88 species with frequently hybridization. Lineage specific reference SCOs were firstly inferred from
89 three annotated whole genomes of species in *Cymbidium*. Putative SCOs were then recovered
90 from deep genome skimming data of 11 *Jensoa* species with multiple samples. We aim to address
91 these three questions: (i) Is it possible to recover the vast majority of SCOs from genomic

92 sequencing data with lower than 10× depth? (ii) How to achieve convincing SCoS matrices and
93 subsequent species tree by a convenient pipeline? (iii) To assess the feasibility of SCoS in plant
94 species identification using low-pass sequencing data.

95

96 **2 | MATERIALS AND METHODS**

97 **2.1 | Plant material and data collection**

98 According to our previous study (L. Zhang et al., 2023), 11 species of *Cymbidium* subg.
99 *Jensoa* were chosen for their nonmonophyly except *C. omeiense* and *C. qiubeiense*.
100 Each species with four individual representatives were sequenced at first to output about 100 Gb
101 genomic sequencing data. 33 of these 44 vouchers were identical to our previous study (L. Zhang
102 et al., 2023). *Cymbidium mannii* (subg. *Cymbidium*) (Fan et al., 2023), *Cymbidium tracyanum*
103 (subg. *Cyperorchis*) from our project of comparative genomics of *Cymbidium* were included as
104 the closely related outgroup. Three species from the same tribe Cymbidieae were chose as the
105 distantly related outgroup, two from subtribe Cymbidiinae (*Grammatophyllum scriptum*,
106 *Thecopus maingayi*), one from subtribe Acriopsidinae (*Acriopsis javanica*). Three additional
107 collections of *C. ensifolium* (H3204, ZL442, ZL443) and another published collection (Vocher
108 RL0671, accession SRR7121924) (Liu et al., 2019) were further added to verify the intraspecific
109 genetic variation of *C. ensifolium* (Table 1). DNA extraction and genomic sequencing methods
110 are same as previously described (L. Zhang et al., 2023). Raw data were filtered by Fastp v0.22.0
111 with default parameters (Chen et al., 2018).

112

113 **2.2 | genome size estimation**

114 Genome size estimates for all samples were obtained using flow cytometry (FCM). About
115 20mg fresh young leaf tissue was chopped by scalpel in a Petri dish containing ice-cold Modified
116 Gitschier Buffer (45 mM MgCl₂·6H₂O, 20 mM MOPS, 30 mM Trisodium citrate, 1% (W/V)
117 PVP 40, 0.2% (V/V) Triton X-100, 10 mM Na₂EDTA, pH 7.0). Homogenate was filtered through
118 a 42-mm nylon mesh and stained with propidium iodide (50 mg/ml) and analyzed using a BD
119 FACSCalibur Flow Cytometer (Table S1).

120 44 clean pair-end genomic data were submitted to JellyFish v2.3.0 (Marçais & Kingsford,
121 2011) to compute histogram of k-mer frequencies of each sample using sub-command 'jellyfish
122 count -C -m21' and 'jellyfish histo -h 3000000'. GenomeScope v2.0(Ranallo-Benavidez et al.,
123 2020) were then employed to estimate the genome size of each sample with default parameters.
124 Because GenomeScope2 failed in some samples, original data of all individuals were sub-
125 sampled to 0.5~4X by seqtk v1.3-r106 (Li, 2012) and merged by BBMerge v39.01 (Bushnell et
126 al., 2017). Genome sizes of all individuals were then estimated by RESPECT v1.3.0 (Sarmashghi
127 et al., 2021) (Table S1).

128 Table 1. Species information of all materials used in this study
129

Species	Voucher	Locality	Clean data (Gbp)	Genome Size (Gb)	Sequencing Depth
<i>C. tortisepalum</i>	18HT2037	Lijiang, Yunnan, China	115.80	3.64	31.81
	ZL55	KBG, Yunnan, China	118.75		32.62
	ZL56	Baoshan, Yunnan, China ‡	113.30		31.13
	ZL70	Dali, Yunnan, China	114.29		31.40
<i>C. goeringii</i>	15043	Enshi, Hubei, China	132.81	4.88	27.21
	16264	Chongqing, China	102.04		20.91
	16266	Chongqing, China ‡	110.48		22.64
	16280	Chongqing, China ‡	115.07		23.58

<i>C. serratum</i>	H4001	Baise, Guangxi, China	100.78	3.70	27.22
	H4002	Baise, Guangxi, China ‡	104.15		28.13
	H4003	Baise, Guangxi, China ‡	125.60		33.92
	ZL453	Qianxinan, Guizhou, China ‡	109.45		29.56
<i>C. omeiense</i>	15002	Zhangjiajie, Hunan, China ‡	120.23	3.82 †	31.46
	15009	Zhangjiajie, Hunan, China ‡	102.52		26.83
	15032	Enshi, Hubei, China ‡	130.21		34.07
	15034	Enshi, Hubei, China ‡	107.39		28.10
<i>C. kanran</i>	18HT1428	Honghe, Yunnan, China ‡	147.91	4.22	35.05
	18HT1873	Lijiang, Yunnan, China ‡	123.40		29.24
	H3602	Qianxinan, Guizhou, China ‡	95.08		22.53
	H3605	Qianxinan, Guizhou, China ‡	99.29		23.53
<i>C. faberi</i>	15019	Enshi, Hubei, China ‡	125.75	3.12	40.30
	15020	Enshi, Hubei, China ‡	149.05		47.77
	15030	Enshi, Hubei, China ‡	112.40		36.03
	ZL39	KBG, Yunnan, China	107.26		34.38
<i>C. sinense</i>	ZL3	Honghe, Yunnan, China ‡	102.69	4.62	22.22
	ZL4	Honghe, Yunnan, China ‡	110.76		23.96
	ZL444	Honghe, Yunnan, China ‡	114.16		24.70
	ZL445	Yunnan, China ‡	107.57		23.27
<i>C. qiubeiense</i>	19HT2776	Qianxinan, Guizhou, China ‡	160.75	6.19	25.97
	ZL13	Qianxinan, Guizhou, China ‡	170.09		27.48
	ZL14	Qianxinan, Guizhou, China ‡	135.91		21.96
	ZL457	Qianxinan, Guizhou, China	105.37		17.02
<i>C. cyperifolium</i> var. <i>szechuanicum</i>	ZL19	Qianxinan, Guizhou, China ‡	131.17	4.41	29.72
	ZL20	Qianxinan, Guizhou, China ‡	154.88		35.09
	ZL64	Qianxinan, Guizhou, China ‡	112.20		25.42
	ZL65	Baise, Guangxi, China ‡	146.16		33.12
<i>C. cyperifolium</i>	14942	Hechi, Guangxi, China	90.55	4.09	22.14
	16268	Chongqing, China ‡	102.68		25.10
	ZL21	Qianxinan, Guizhou, China ‡	103.54		25.32
	ZL22	KBG, Yunnan, China	105.78		25.86
<i>C. ensifolium</i>	13553	Baise, Guangxi, China	107.19	3.18	33.76
	18HT2190	Linzhi, Xizang, China ‡	144.94		45.65
	H3201	Baise, Guangxi, China ‡	138.53		43.63

	H3202	Baise, Guangxi, China	112.05		35.29
	H3204 †	KBG, Yunnan, China	30.45		9.59
	ZL442 †	Wenshan, Yunnan, China ‡	31.95		10.06
	ZL443 †	Nujiang, Yunnan, China ‡	31.46		9.91
	RL0671	Ruili, Yunnan, China §	73.50		23.15
Outgroup					
<i>C. manii</i>	YYL1809	KBG, Yunnan, China	Chromosome-level assembly	2.75	/
<i>C. tracyanum</i>	ZL1	KBG, Yunnan, China ‡	Chromosome-level assembly	3.95	/
<i>Grammatophyllum scriptum</i>	Cymw4 †	Taiwan, China ‡	56.09	/	/
<i>Acriopsis javanica</i>	Cymw6 †	Thailand ‡	62.02	/	/
<i>Thecopus maingayi</i>	Cymw7 †	Thailand ‡	31.30	/	/

130

131 Note: †, 6 additional individuals sequenced more than 25 Gb genomic data; KBG, Kunming Botany Garden; ‡,
132 vouchers same to our previous study (L. Zhang et al., 2023); §, accessions (Liu et al., 2019); ¶, estimated genome
133 size according to RESPECT result, not by flow cytometry.

134

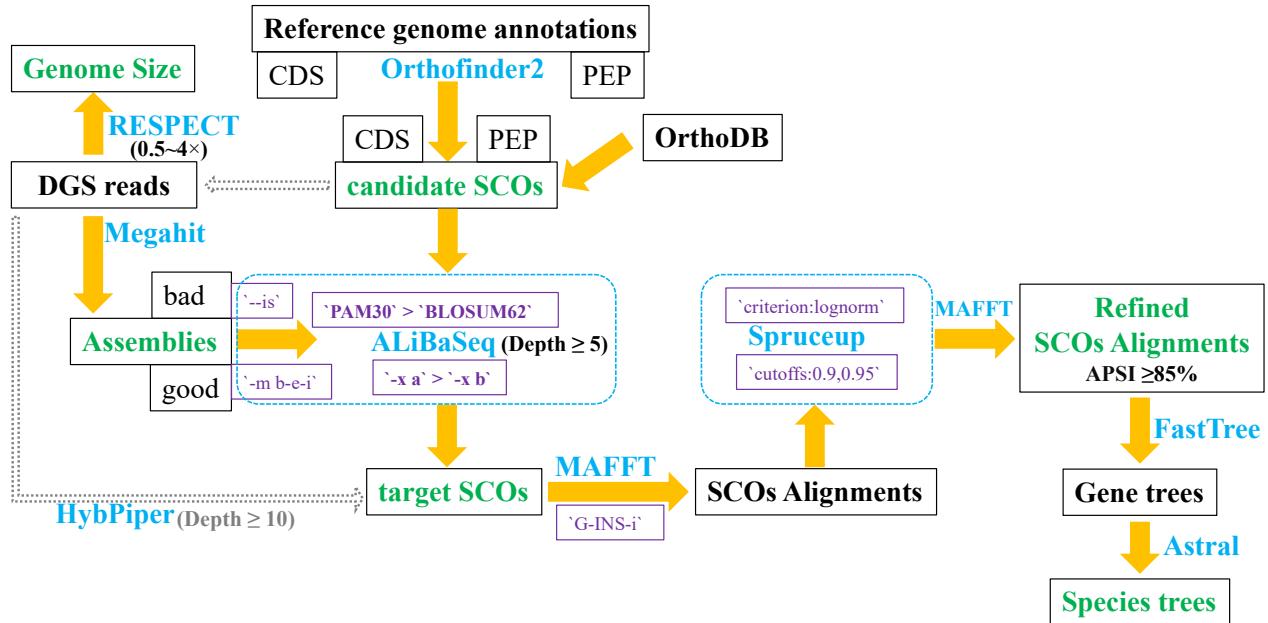
135 2.3 | Genome assembling and Single-Copy Orthologs retrieval

136 To efficiently assemble to the approximately 5 TB clean genomic data, ultrafast, memory-
137 efficient short read assemblers were chosen. Clean pair-end reads were assembled by
138 SOAPdenovo v2.04 (Luo et al., 2012) with command `SOAPdenovo-63mer all -K 41` or
139 MegaHit v1.2.9 with default parameters. Protein annotations of our three *Cymbidium* genomes
140 (*C. tortisepalum*, *C. manii*, *C. tracyanum*) were subject to OrthoFinder v2.3.8 (Emms & Kelly,
141 2019) to obtain 9094 single copy orthologues. These 9094 protein sequences used as queries to
142 TBLASTN against all short-read assemblies and two chromosomal level assemblies. ALiBaSeq
143 v1.2 (Knyshov et al., 2021) was employed to extract these 9094 single copy orthologs from the
144 TBLASTN results with parameters ` -x a -e 1e-10 --is --amalgamate-hits --ac aa-tdna`. To

145 eliminate the introns extracted by ALiBaSeq, the default scoring matrix of TBLASTN were
146 modified to PAM30. To test the performance of ALiBaSeq at lower sequencing depth, i.e.,
147 below 10× coverage recommended by previous study (B. B. Liu et al., 2021), 25% subsampling
148 was imposed on all clean genomic data of all 44 individuals.

149

150 **2.4 | chloroplast genomes and nrDNA assembling**


151 Chloroplast genomes and nuclear ribosomal DNA (nrDNA) clusters were de novo
152 assembled using GetOrganelle v1.7.5 (Jin et al., 2020) and/or NOVOPlasty v4.3.1 (Dierckxsens
153 et al., 2016). Plastome of *C. sinense* (accession: NC_021430) and nrDNA of *C. macrorhizon*
154 (accession: MK333261) were chosen as references. SSCs of all assembled plastomes were
155 adjusted to the same direction when necessary. nrDNA sequences of each individual were
156 manually stitched according to the mapping results if they were not complete in Geneious R9
157 (Biomatters).

158

159 **2.5 | Alignment filtering and tree building**

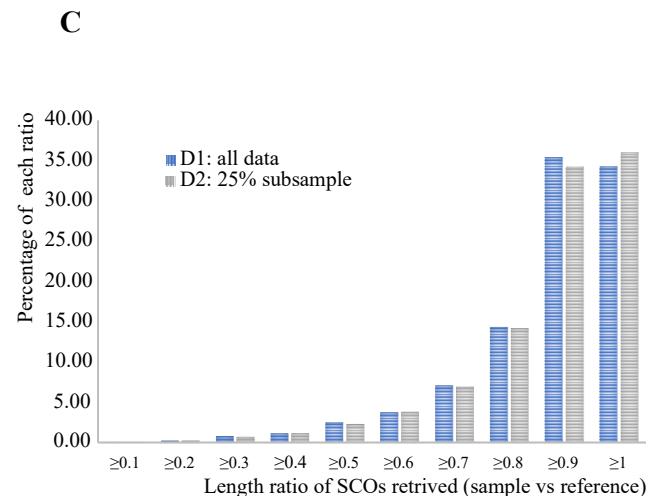
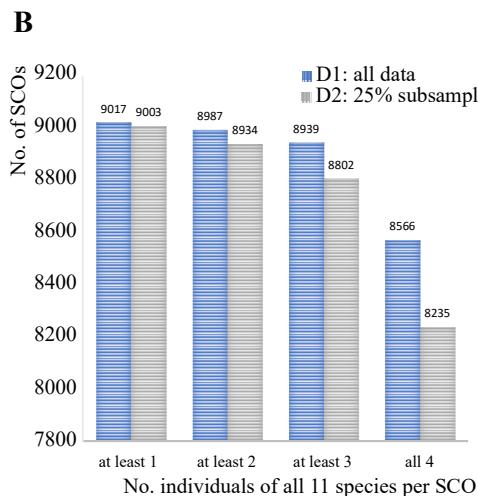
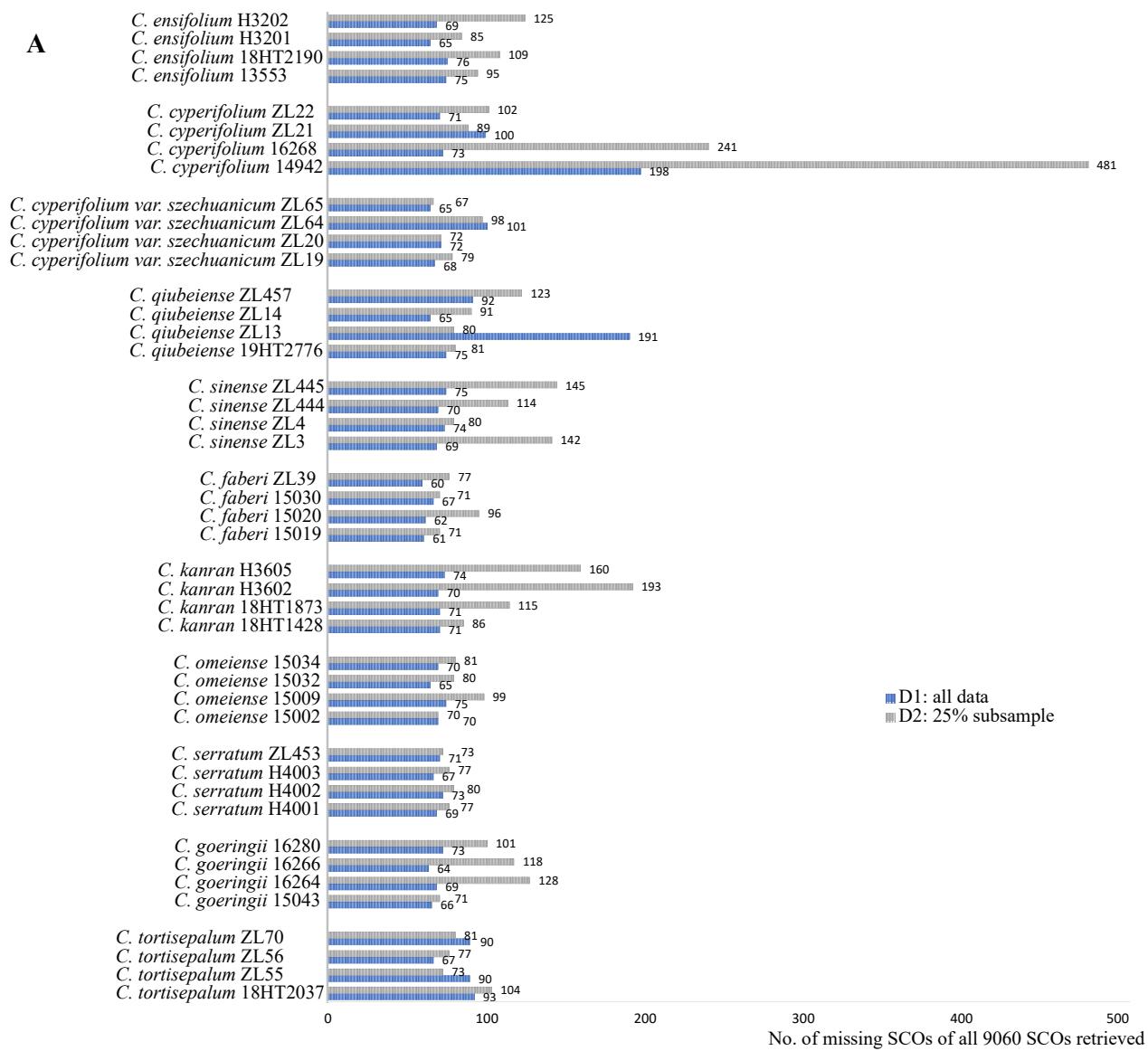
160 The single copy homologs matrix recovered by ALiBaSeq were aligned by MAFFT v7.508 with
161 parameters `--globalpair` (Katoh & Standley, 2013). Average pairwise sequence identity (APSI)
162 of each alignment, a measure for sequence homology computed with ALISTAT v1.9g from the
163 squid package (Eddy, 2005). To reduce the hazard of non-homologous region, Spruceup
164 v2022.2.4 (Borowiec, 2019) was used to filter. Only alignments with no missing data and APSI
165 larger than 85% were chosen for subsequent analysis. Approximately-maximum-likelihood gene
166 trees were built by FastTree v2.1.10 (Price et al., 2010) with parameters `--gtr --gamma --nt` using

167 the refined alignments. Species trees were inferred using ASTRAL v5.7.8 and normalized quartet
 168 scores were retrieved from logfiles (Mirarab et al., 2014). (FIGURE 1)

169
 170 **FIGURE 1.** Graphical overview of the pipeline of this study. Softwires names were depict by
 171 blue color, and key parameters were in purple. Dashed gray arrows indicate another way to
 172 recover putative SCOs which is not fully testified in this study. APSI, Average pairwise sequence
 173 identity.

174

175 3. | RESULTS

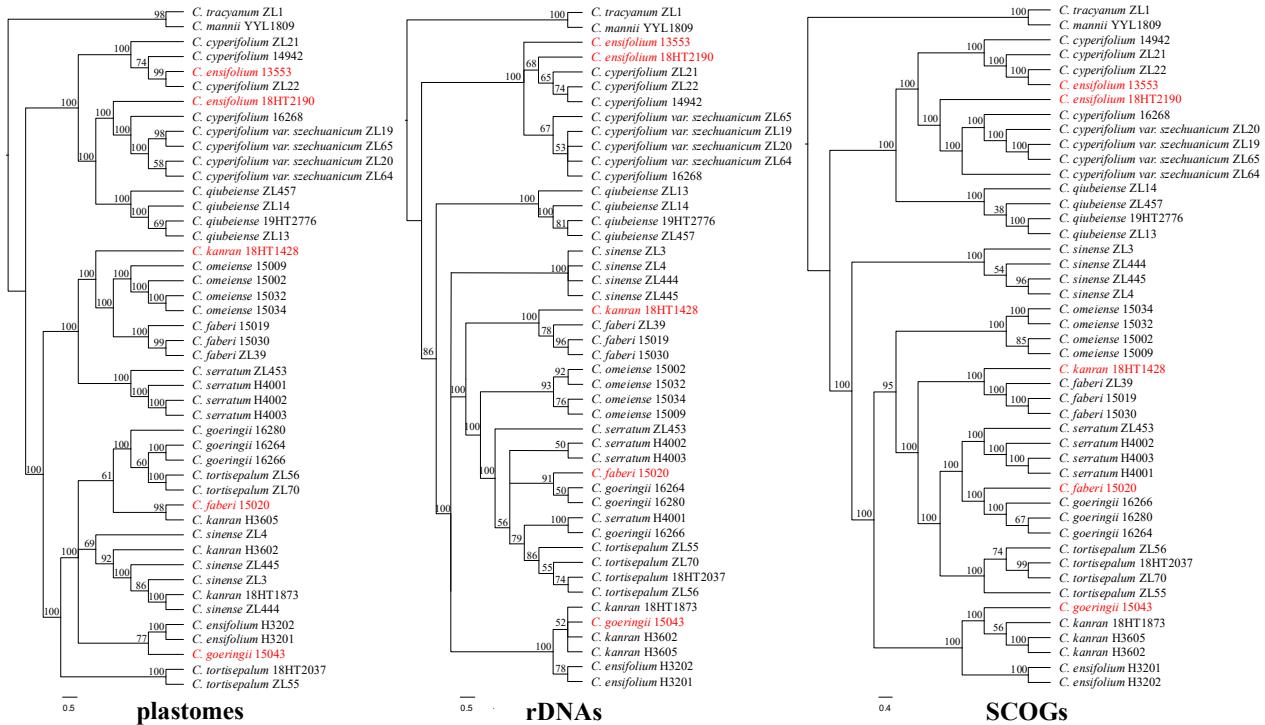



176 3.1 | Genome sizes of species in *Cymbidium* subg. *Jensoa*

177 To accurately estimate the sequencing depth of each species, genome size were measured
 178 firstly. According to the flow cytometry results, the average genome size of all 11 species in
 179 subg. *Jensoa* was 4.1 Gb, which is same to the mean value of *Cymbidium* in plant DNA C-values
 180 database (Leitch et al., 2019). *C. qiubeiense* has the largest genome (6.19Gb), while *C. faberi* and
 181 *C. ensifolium* have the smallest genome (about 3.1 Gb) (Table 1). Genome sizes estimated by
 182 GenomeScope2 are not always close to the flow cytometry, which may be caused by insufficient

183 sequencing depth or wrong k-mer peaks chosen by GenomeScope2. Genome sizes calculated by
184 RESPECT are slightly larger (about 1.19-fold) than flow cytometry (Table S1). According to the
185 genome sizes of each species, the sequencing depth of all 44 individuals is between 17.02× and
186 47.77× (average 29.46×), and the depth of 25% subsampled of the 44 individuals and 3 additional
187 added *C. ensifolium* is between 4.26× and 11.94× (Table 1).

188 **3.2 | putative Single-Copy Orthologs recovery**

189 The average assembly sizes of all 44 individuals with about 100 Gb data (**D1**) and 25%
190 subsampled (**D2**) were 7.18 Gb and 3.75 Gb, respectively. The abnormal smallest assembly size
191 of *C. cyperifolium* 14942 (1.56Gb and 0.4Gb for D1 and D2, respectively), was probably caused
192 by extremely high duplication rate when genomic sequencing. The actual depth of voucher 14942
193 could be much smaller than 22.14× (Table S1). ALiBaSeq succeeded to retrieve 9060 SCOs from
194 each dataset (D1 and D2), with only 2 SCOs different from each other. For each species, 98.95%
195 and 98.06% of all 99660 SCOs (9060 multiplied by 11) were obtained in its all four individuals
196 from dataset D1 and D2, respectively (Table S2). On average, 99.5% and 99.2% SCOs were
197 successfully retrieved from each individual in both dataset (D1 and D2), with the lowest
198 efficiency from *C. cyperifolium* 14942 (FIGURE 2A). From the perspective of SCO, 9017 and
199 9003 of 9060 SCOs were acquired from at least one individual of each species in dataset D1 and
200 D2 respectively. 8566 and 8235 of 9060 SCOs were retrieved from all 4 individuals of each
201 species in dataset D1 and D2 respectively (FIGURE 2B). The ratios of mean length of retrieved
202 SCOs to the mean length of corresponding reference SCOs were mostly bigger than 0.9 (the
203 accumulative frequencies were 69.8% and 70.3% in D1 and D2, respectively) (FIGURE 2C,
204 Table S3). Overall, ALiBaSeq performed great in both recovering efficiency and
205 representativeness of recovered SCOs.

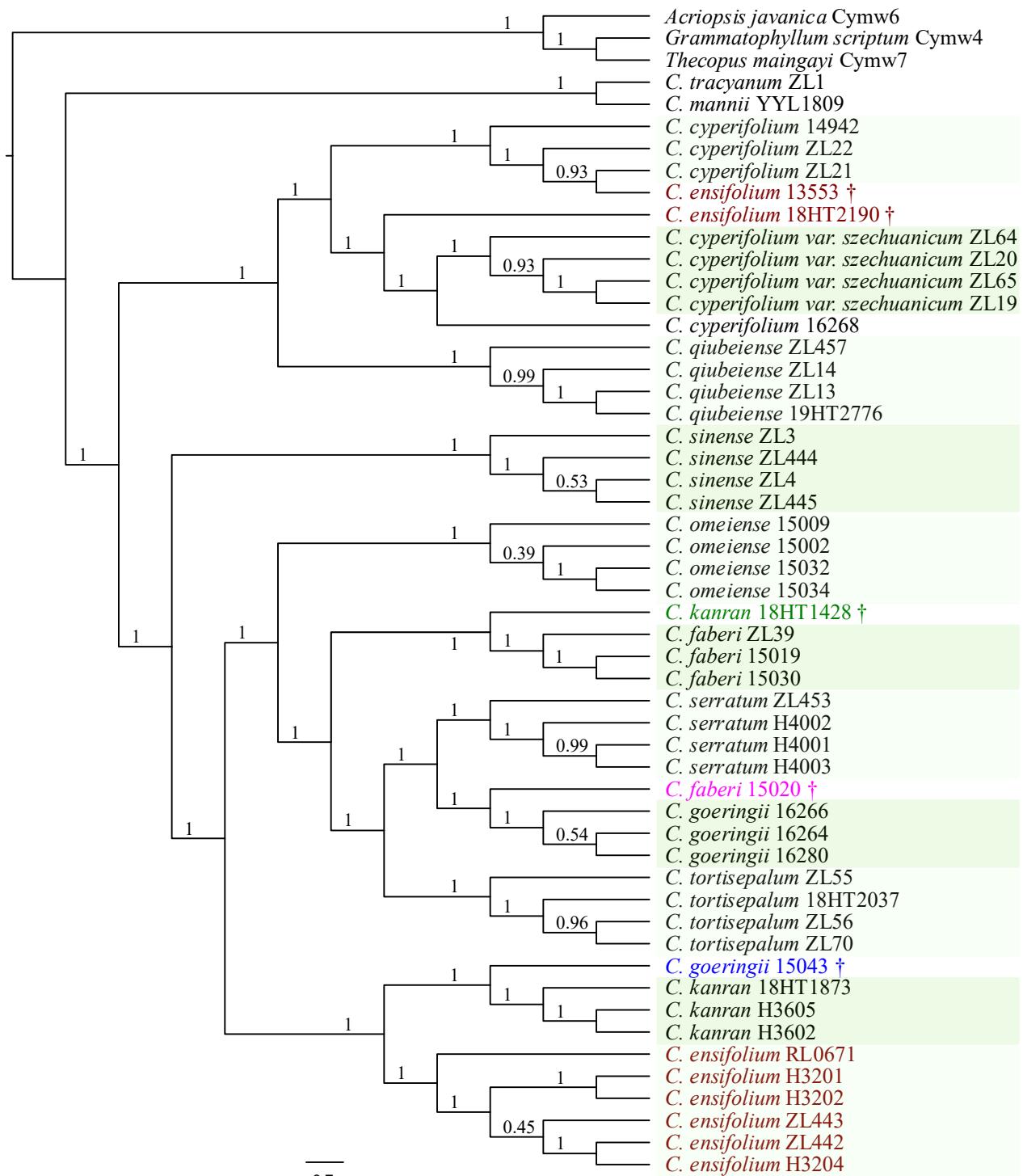

207

208 **FIGURE 2.** Performance of ALiBaSeq. **(A)** The number of missing SCoS of all 9060 SCoS
209 extracted in each individual in dataset D1 and D2; **(B)** The Number of SCoS extracted in all
210 species per SCoS. **(C)** Frequency distribution of ratio of mean length of retrieved SCoS to the
211 mean length of corresponding reference SCoS.

212

213 **3.3 | SCoS perform better than plastomes and rDNA**

214 Our previous study had showed that the identification rate of *C. subg. Jensoa* was the
215 lowest in genus *Cymbidium* by using plastome as barcode (L. Zhang et al., 2023). After curation
216 of the plastomes of 44 individuals of 11 species in this study, *C. cyperifolium var. szechuanicum*
217 and *C. serratum* were successfully identified. rDNA clusters succeeded to identify *C.*
218 *tortisepalum* and *C. sinense* other than plastomes did, but failed to identify *C. cyperifolium var.*
219 *szechuanicum* and *C. serratum*. SCoS (extracted from dataset D1 and two outgroup)
220 outperformed rDNA clusters and plastomes, only *C. ensifolium*, *C. kanran*, *C. faberi*, and *C.*
221 *goringii* failed to form monophyletic clade (FIGURE 3). Species trees reconstructed by SCoS
222 recovered from dataset D1 (all data) and D2 (25% subsample) had the same topology and branch
223 support value (Supplementary FIGURE 1). It strongly foretold that, deep genome skimming
224 (DGS) with as low as 4 - 5 \times coverage sufficed ALiBaSeq to recover abundant SCoS to
225 reconstruct robust species tree. ALiBaSeq outperformed HybPiper taking advantage of half
226 sequencing depth (B. B. Liu et al., 2021). It's worth noting that, the four species which SCoS
227 failed to identified also occurred abnormally in trees reconstructed by plastomes and rDNA
228 clusters. These may be vouchers mis-identified or disorder during DNA extraction or genomic
229 sequencing, especially these three vouchers, 18HT1428, 15020 and 15034 (FIGURE 3,
230 Supplementary FIGURE 1). Additional vouchers need to include to address these issues.


231 **FIGURE 3.** Cladogram tree-based species discrimination of *Jensoa* reconstructed by different
 232 dataset. Vouchers which are possibly wrong identified are indicated in red. Numbers above each
 233 brancher expressed as percentage are SH-like (Shimodaira-Hasegawa) local support value in
 234 plastomes and rDNA trees, and LPP (local posterior probability) in SCOs tree (reconstructed by
 235 6083 SCOs with $APSI \geq 85\%$).
 236

237
 238 **3.4 | Adding individuals to validate the efficacy of SCOs as the barcode**

239 After adding four vouchers of *C. ensifolium* and three vouchers as distantly related
 240 outgroups to the dataset D2, the performance of SCOs were proved. The two vouchers of *C.*
 241 *ensifolium*, 13553 and 18HT2190, were both misidentified. They should be *C. cyperifolium* or *C.*
 242 *cyperifolium var. szechuanicum*. 4 individuals of *C. cyperifolium var. szechuanicum* formed a
 243 monophyletic clade rather than *C. cyperifolium* (FIGURE 4). In this study, we re-produced the
 244 genomic data of vouchers by redoing all the molecular experiments including the vouchers used
 245 in our previous study (L. Zhang et al., 2023). The three vouchers which confused with each other,

246 18HT1428, 15020 and 15034, could be incorrectly identified or distributed before their molecular
247 materials were sent to us. These two vouchers, 18HT1428, 15020, also clustered around *C. faberi*
248 and *C. kanran* respectively in our previous study (L. Zhang et al., 2023). If we removing these 5
249 vouchers, all conspecific samples would be reciprocally monophyletic except *C. cyperifolium*
250 (voucher 16268). It should be noticed that, SCoS had the power to discriminate all species of *C.*
251 subg. *Jensoa*, and SCoS may be the most powerful barcode to identification of lower taxonomic
252 levels where recent divergence or ancient rapid radiation have resulted in limited sequence
253 variations.

254

255

0.7

256 **FIGURE 4.** Species tree of 11 species of reed grasses (Cyperaceae) reconstructed by 5732 SCOs with APSI $\geq 85\%$.

257 Numbers above each brancher expressed as decimal are LPP (local posterior probability). Species
258 in color contains misidentified vouchers which are marked with dagger symbol (†).

259

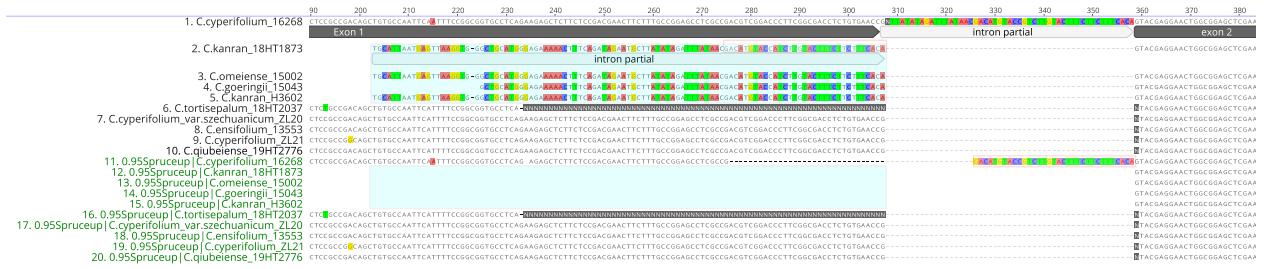
260 **4. | Discussion**

261 **4.1 | Choosing of reference SCOs**

262 We hooked the 9094 baits (reference SCOs) needed by ALiBaSeq by OrthoFinder using
263 the annotated representative protein sequences as the input in this study. Afterward we found that
264 by chance, the default software used by OrthoFinder was DIAMOND, which gave 1-2% accuracy
265 decrease but with a runtime of approximately 20 \times shorter (Emms & Kelly, 2019). When using
266 BLASTP instead of DIAMOND, we got 9104 SCOs, similar total number, but 629 SCOs missing
267 in DIAMOND result. 619 SCOs in DIAMOND also missed in BLASTP result vice versa. When
268 using the annotated CDS sequences as the input of OrthoFinder with parameters ` -d -f cds `,
269 9995 DNA SCOs were produced, much more than protein SCOs. Among these 9995 DNA SCOs,
270 1736 and 1780 SCOs were absent in BLASTP and DIAMOND results, respectively. 844 and 880
271 protein SCOs from BLASTP and DIAMOND, respectively, were also absent in DNA results.
272 There were only 7785 SCOs present in all three results. BLAST should be top priority when
273 computation resources were rich. To get the whole sequences from chromosomal level genome
274 assemblies by ALiBaSeq, DNA SCOs as baits were also tested. It turned out that, more exons
275 were recovered using DNA SCOs as the baits by ALiBaSeq. We didn't test the performance of
276 DNA bait, which may be a worthwhile choice.

277 What if there are no close related genomes (more than three) available? Could we choose
278 the pre-determined orthologous gene sets? OrthoDB v5 is a database that catalogs groups of
279 orthologous genes in a hierarchical manner, from more general lineage to more fine-grained
280 delineations (Kriventseva et al., 2019). We also test the performance of 1614 SCOs from
281 embryophyta_odb10 (inferred from 50 land plants genomes) by using the same workflow as the

282 9094 baits. The final species tree reconstructed by 709 SCOs from 1614 SCOs set was nearly the
283 same with the tree reconstructed by 5648 SCOs from 9094 SCOs in this study, except the
284 collection *C. ensifolium* RL0761 (Supplementary FIGURE 2). OrthoDB was another reliable
285 resource to offer SCOs when there were no close related genomic annotation resources. Other
286 SCOs set, like Angiosperms353 gene set (Johnson et al., 2018), or strictly/mostly single copy
287 OGs used by MarkerMiner (Chamala et al., 2015; De Smet et al., 2013), should be also
288 considered.


289

290 **4.2 | Introns could create nonhomologous alignments**

291 The accuracy of phylogenetic reconstruction depends on the correct identification of
292 homologous sites by sequence alignment. Only homologous alignments produced believable
293 trees. The nucleotides of orthologous introns are difficult to align, especially the sample
294 examined are relatively distant from each other (Creer, 2007; Sverdlov et al., 2005). Introns could
295 create nonhomologous alignment, that is, intron residual sequences aligned with neighboring
296 exon sequences. This phenomenon could be eased after filter by Spruceup, which could reduce
297 the Shannon entropies of the alignments (FIGURE 5). And the results of Spruceup may still need
298 to re-align to obtain the eventual refined alignments (Supplementary FIGURE 3). Our study also
299 demonstrate that protein coding regions of SCOs are enough for high resolution species trees, and
300 introns of SCOs are not necessary to keep.

301

302

303 **FIGURE 5.** Intron caused nonhomologous alignment could be relieved by Spruceup. The blue
 304 shadows indicated the mis-aligned intron residual sequences mixed up with exon sequences. The
 305 red border rectangle indicated the nucleotides that still needed to re-align after Spruceup filter.
 306
 307

308 **4.3 | Much lower depth than 10 \times**

309 The numbers of SCOs recovered by HybPiper decrease dramatically when genomic
 310 sequencing depth lower than 10 \times with an average nucleotide coverage cutoff value of 5 (B. B.
 311 Liu et al., 2021). This could due to the integrated assembling software SPAdes, which is designed
 312 to assemble small genome like microorganism. By default, HybPiper performs per-sample/gene
 313 assemblies using SPAdes with the parameter `--cov-cutoff 8` to generate less/short length contigs
 314 with high base-level accuracy (Johnson et al., 2016). Lower the `--cov-cutoff` value to 5 still
 315 screw up at coverage lower than 10 \times (B. B. Liu et al., 2021). ALiBaSeq didn't assemble the reads
 316 mapped to reference SCOs, ALiBaSeq hands whole genome assembling over professional
 317 software designed to assemble complicated genomes regarding of large genome size and rich
 318 repetitive elements. The actual depth of 25% subsampled *C. cyperifolium* 14942 could be less
 319 then 3 \times due to its extremely high PCR duplication rate (59.5%) (Table S1), but only 481 of 9060
 320 SCOs failed to recovered (Figure 2A). Lower sequencing depth costs less money and relieves
 321 computation burden too.

322 **4.4 | Convenient, fast and convincing pipeline**

323 To achieve convincing SCOs matrices to reconstruct species tree, lots of software were
324 investigated and compared. Unlike GenomeScope2 (Ranallo-Benavidez et al., 2020) or FindGSE
325 (Sun et al., 2017), RESPECT only need $0.5\times$ to $4\times$ sequencing depth to estimate the genome sizes
326 of samples (Sarmashghi et al., 2021). One can just gradually down-sample the genomic
327 sequencing data to get relatively stable value calculated by RESPECT to determine genome size
328 of sampled specie. We also recommend Megehit for its stable performance and less memory
329 usage after comparing it with several other light whole genome assembling software, like
330 SOAPdenovo2 (Luo et al., 2012), Minia3 (<https://github.com/GATB/minia>), SH-assembly (Shi &
331 Yip, 2020). HybPiper could not directly extract SCOs from available genome assembly, but
332 ALiBaSeq can retrieve SCOs from existing genome assembly whether annotations available or
333 not. However, assembling whole genome needs huge computing resources. We could not run
334 HybPiper v1.3 successfully on *Jensoa* dataset, but we test it on *Arabidopsis* (unpublished data).
335 The results showed that ALiBaSeq performed much better than HybPiper when genome
336 sequencing depth were lower than $10\times$, which was similar to the findings by previous research
337 (B. B. Liu et al., 2021). However, HybPiper v2 released recently, its performance needs to re-
338 evaluate. Another similar software, Easy353 (Zhang et al., 2022), is also worth investigating. At
339 the step of alignment refining, Spruceup outperforms other popular software, like Gblocks
340 (Castresana, 2000), trimAl (Capella-Gutiérrez et al., 2009), MACSE (Ranwez et al., 2018).
341

342 **4.5 | Kept most SCOs alignments with stringent percent identity**

343 A common rule of thumb is that two sequences are homologous if they are more than
344 30% identical over their entire lengths (Pearson, 2013). Sequence identity of 60% was

345 recommended together with encoded proteins ≥ 300 amino acids when low-copy nuclear genes
346 were chosen to conduct phylogenetic analyses (Zhang et al., 2012). To reconstruct the correct
347 species tree by ASTRAL, SCOs should be kept as more as possible (Warnow, 2015). In our
348 study, stringent identity of SCOs alignments were required. We found that about half of all
349 recovered SCOs meet the standard of average pairwise sequence identity (APSI) $\geq 80\%$. We also
350 tested using all SCOs with no percent identity filtering, and SCOs with APSI more than 90% and
351 95%, topologies of species trees were nearly same, with LPP support value slightly down.

352

353 4.6 | Perspectives

354 Organellar genomes are mostly inherited uniparentally, and rDNA genes have high copy
355 number and are subject to incomplete homogenization. Only low copy orthologous nuclear genes
356 provide a biparental record of the evolutionary history. More nuclear genes, including both genes
357 with relatively slow and rapid evolutionary rates, should be used to accurately resolve
358 relationships among close related species (Li et al., 2017; Zhang et al., 2012). Comparing to
359 targeted sequencing, deep genome sequencing could promise large datasets of SCOs *in silico*
360 without laborious baits synthesizing and complicated target enrichment. Predefined
361 embryophyte_odb10 with only 1614 SCOs derived from 50 genomes had showed sufficient
362 resolution at lower taxonomic levels in this study as well as 9094 SCOs inferred from three
363 *Cymbidium* genomes (Supplementary FIGURE 2). Are there SCOs serve as new universal
364 barcodes in the whole plant kingdom like traditional standard barcode (Li et al., 2015) ?
365 OrthoDB-like SCOs (USCOs, universal single-copy orthologs) which could be inferred from
366 thousands of available genomes of deferent-level plant, may be a huge resource to screen easy-to-
367 use barcodes applying to both high- and low- rank taxonomic hierarchies (Eberle et al., 2020).

368 More recently diverged species and more vouchers per species need to be addressed to exploit
369 and validate the power of SCOs as the next generation of DNA barcodes. Additionally, numerous
370 issues related to phylogenetics, molecular evolution and population genetics, would benefit
371 greatly by resources of putative SCOs. Furthermore, the bioinformatic tools and computational
372 resources continue to improve rapidly, we believe that SCOs will soon be prevalent in species
373 identification, hybrid speciation, infra-species structure and other applications.

374

375 **AUTHOR CONTRIBUTIONS**

376 J.B.Y. and D.Z.L designed the study, Z.S.H collected, analyzed the data, and wrote the
377 manuscript. All authors revised the manuscript.

378

379 **ACKNOWLEDGEMENTS**

380 This work was funded by Science and Technology Basic Resources Investigation
381 Program of China (2021FY100200), Key Research and Development Program of Yunnan
382 Province (202103AC100003), and Project for Innovation Team of Yunnan Province (Grant No.
383 202105AE160012). We are grateful to Prof. Shi-Bao Zhang, Dr. Jia-Ling Huang, Mr. Ji-Dong
384 Ya, Prof. Xiao-Hua Jin for providing leaf samples. We thank Ji-Xiong Yang, Chun-Yan Lin, Jin-
385 Ping Zhang and other supporting staff from the Molecular Biology Experimental Center in
386 Germplasm Bank of Wild Species for laboratory support, and the iFlora High Performance
387 Computing Center of Germplasm Bank of Wild Species. We thank Prof. Lian-Ming Gao, Ms. Le
388 Zhang for helpful suggestions. We also thank Alexander Knyshov for discussing the usage of
389 ALiBaSeq.

390

391 **CONFLICT OF INTEREST**

392 The authors declare no conflict of interest.

393

394 **ORCID**

395 Zheng-Shan He <https://orcid.org/0000-0001-6683-7151>

396

397

398 **REFERENCES**

399

400 Álvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference.
401 *Molecular Phylogenetics and Evolution*, 29(3), 417-434. [https://doi.org/10.1016/S1055-7903\(03\)00208-2](https://doi.org/10.1016/S1055-7903(03)00208-2)

403 Bailey, C. D., Carr, T. G., Harris, S. A., & Hughes, C. E. (2003). Characterization of angiosperm
404 nrDNA polymorphism, paralogy, and pseudogenes. *Molecular Phylogenetics and*
405 *Evolution*, 29(3), 435-455. <https://doi.org/10.1016/j.ympev.2003.08.021>

406 Borowiec, M. L. (2019). Spruceup: Fast and flexible identification, visualization, and removal of
407 outliers from large multiple sequence alignments. *Journal of Open Source Software*,
408 4(42), 1635. <https://doi.org/10.21105/joss.01635>

409 Bushnell, B., Rood, J., & Singer, E. (2017). BBMerge – Accurate paired shotgun read merging via
410 overlap. *PLOS ONE*, 12(10), e0185056. <https://doi.org/10.1371/journal.pone.0185056>

411 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: a tool for automated
412 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*, 25(15), 1972-
413 1973. <https://doi.org/10.1093/bioinformatics/btp348>

414 Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in
415 phylogenetic analysis. *Molecular Biology and Evolution*, 17(4), 540-552.
416 <https://doi.org/10.1093/oxfordjournals.molbev.a026334>

417 Chamala, S., García, N., Godden, G. T., Krishnakumar, V., Jordon-Thaden, I. E., De Smet, R.,
418 Barbazuk, W. B., Soltis, D. E., & Soltis, P. S. (2015). MarkerMiner 1.0: A new application
419 for phylogenetic marker development using angiosperm transcriptomes. *Applications in*
420 *Plant Sciences*, 3(4), 1400115. <https://doi.org/10.3732/apps.1400115>

421 Chen, S. F., Zhou, Y. Q., Chen, Y. R., & Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ
422 preprocessor. *Bioinformatics*, 34(17), i884-i890.
423 <https://doi.org/10.1093/bioinformatics/bty560>

424 Coissac, E., Hollingsworth, P. M., Lavergne, S., & Taberlet, P. (2016). From barcodes to genomes:
425 Extending the concept of DNA barcoding. *Molecular Ecology*, 25(7), 1423-1428.
426 <https://doi.org/10.1111/mec.13549>

427 Creer, S. (2007). Choosing and using introns in molecular phylogenetics. *Evolutionary*
428 *Bioinformatics*, 3, 117693430700300011. <https://doi.org/10.1177/117693430700300011>

429 David, M. H., Chambers, E. A., & Thomas, J. D. (2021). Contemporary methods and evidence for
430 species delimitation. *Ichthyology & Herpetology*, 109(3), 895-903.
431 <https://doi.org/10.1643/h2021082>

432 De Smet, R., Adams, K. L., Vandepoele, K., Van Montagu, M. C. E., Maere, S., & Van de Peer, Y.
433 (2013). Convergent gene loss following gene and genome duplications creates single-
434 copy families in flowering plants. *Proceedings of the National Academy of Sciences*,
435 110(8), 2898-2903. <https://doi.org/10.1073/pnas.1300127110>

436 Dierckxsens, N., Mardulyn, P., & Smits, G. (2016). NOVOPlasty: de novo assembly of organelle
437 genomes from whole genome data. *Nucleic Acids Research*, 45(4), e18-e18.
438 <https://doi.org/10.1093/nar/gkw955>

439 Dietz, L., Eberle, J., Mayer, C., Kukowka, S., Bohacz, C., Baur, H., Espeland, M., Huber, B. A.,
440 Hutter, C., Mengual, X., Peters, R. S., Vences, M., Wesener, T., Willmott, K., Misof, B.,
441 Niehuis, O., & Ahrens, D. (2021). Standardized nuclear markers advance metazoan
442 taxonomy. *bioRxiv*, 2021.2005.2007.443120.
443 <https://doi.org/10.1101/2021.05.07.443120>

444 Du Puy, D., Cribb, P., & Tibbs, M. (2007). *the genus Cymbidium* (2 ed.). Kew Publishing.
445 Eberle, J., Ahrens, D., Mayer, C., Niehuis, O., & Misof, B. (2020). A plea for standardized nuclear
446 markers in metazoan DNA taxonomy. *Trends in Ecology & Evolution*, 35(4), 336-345.
447 <https://doi.org/10.1016/j.tree.2019.12.003>

448 Eddy, S. R. (2005). *SQuID—C function library for sequence analysis*.
449 <http://eddylab.org/software.html>

450 Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative
451 genomics. *Genome Biology*, 20(1), 238. <https://doi.org/10.1186/s13059-019-1832-y>

452 Fan, W., He, Z.-S., Zhe, M., Feng, J.-Q., Zhang, L., Huang, Y., Liu, F., Huang, J.-L., Ya, J.-D., Zhang,
453 S.-B., Yang, J.-B., Zhu, A., & Li, D.-Z. (2023). High-quality *Cymbidium mannii* genome and
454 multifaceted regulation of crassulacean acid metabolism in epiphytes. *Plant
455 Communications*, 100564. <https://doi.org/10.1016/j.xplc.2023.100564>

456 Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications
457 through DNA barcodes. *Proceedings of the Royal Society of London. Series B: Biological
458 Sciences*, 270(1512), 313-321. <https://doi.org/10.1098/rspb.2002.2218>

459 Hew, C. S. (2001). Ancient Chinese orchid cultivation: A fresh look at an age-old practice.
460 *Scientia Horticulturae*, 87(1), 1-10. [https://doi.org/10.1016/S0304-4238\(00\)00137-0](https://doi.org/10.1016/S0304-4238(00)00137-0)

461 Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., van der Bank,
462 M., Chase, M. W., Cowan, R. S., Erickson, D. L., Fazekas, A. J., Graham, S. W., James, K. E.,
463 Kim, K.-J., Kress, W. J., Schneider, H., van AlphenStahl, J., Barrett, S. C. H., van den Berg,
464 C., Bogarin, D., . . . Little, D. P. (2009). A DNA barcode for land plants. *Proceedings of the
465 National Academy of Sciences*, 106(31), 12794-12797.
466 <https://doi.org/10.1073/pnas.0905845106>

467 Hollingsworth, P. M., Li, D. Z., van der Bank, M., & Twyford, A. D. (2016). Telling plant species
468 apart with DNA: From barcodes to genomes. *Philosophical Transactions of the Royal
469 Society B: Biological Sciences*, 371(1702), 20150338.
470 <https://doi.org/10.1098/rstb.2015.0338>

471 Hu, H., Sun, P., Yang, Y., Ma, J., & Liu, J. (2023). Genome-scale angiosperm phylogenies based on
472 nuclear, plastome, and mitochondrial datasets [<https://doi.org/10.1111/jipb.13455>].
473 *Journal of Integrative Plant Biology*, n/a(n/a). <https://doi.org/10.1111/jipb.13455>

474 Huang, W., Zhang, L., Columbus, J. T., Hu, Y., Zhao, Y., Tang, L., Guo, Z., Chen, W., McKain, M.,
475 Bartlett, M., Huang, C.-H., Li, D. Z., Ge, S., & Ma, H. (2022). A well-supported nuclear
476 phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. *Molecular*
477 *Plant*, 15(4), 755-777. <https://doi.org/10.1016/j.molp.2022.01.015>

478 Ji, Y. H., Liu, C. K., Yang, Z. Y., Yang, L. F., He, Z. S., Wang, H. C., Yang, J. B., & Yi, T. S. (2019).
479 Testing and using complete plastomes and ribosomal DNA sequences as the next
480 generation DNA barcodes in *Panax* (Araliaceae). *Molecular Ecology Resources*, 19(5),
481 1333-1345. <https://doi.org/10.1111/1755-0998.13050>

482 Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., dePamphilis, C. W., Yi, T. S., & Li, D. Z. (2020).
483 GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle
484 genomes. *Genome Biology*, 21(1), 241. <https://doi.org/10.1186/s13059-020-02154-5>

485 Johnson, M. G., Gardner, E. M., Liu, Y., Medina, R., Goffinet, B., Shaw, A. J., Zerega, N. J. C., &
486 Wickett, N. J. (2016). HybPiper: Extracting coding sequence and introns for phylogenetics
487 from high-throughput sequencing reads using target enrichment. *Applications in Plant*
488 *Sciences*, 4(7), 1600016. <https://doi.org/10.3732/apps.1600016>

489 Johnson, M. G., Pokorny, L., Dodsworth, S., Botigué, L. R., Cowan, R. S., Devault, A., Eiserhardt,
490 W. L., Epitawalage, N., Forest, F., Kim, J. T., Leebens-Mack, J. H., Leitch, I. J., Maurin, O.,
491 Soltis, D. E., Soltis, P. S., Wong, G. K.-s., Baker, W. J., & Wickett, N. J. (2018). A universal
492 probe set for targeted sequencing of 353 nuclear genes from any flowering plant
493 designed using k-medoids clustering. *Systematic Biology*, 68(4), 594-606.
494 <https://doi.org/10.1093/sysbio/syy086>

495 Joshi, M., Espeland, M., Dincă, V., Vila, R., Tahami, M. S., Dietz, L., Mayer, C., Martin, S.,
496 Dapporto, L., & Mutanen, M. (2022). Delimiting continuity: Comparison of target
497 enrichment and ddRAD for delineating admixing parapatric *Melitaea* butterflies. *bioRxiv*,
498 2022.2002.2005.479083. <https://doi.org/10.1101/2022.02.05.479083>

499 Kane, N., Sveinsson, S., Dempewolf, H., Yang, J. Y., Zhang, D., Engels, J. M. M., & Cronk, Q.
500 (2012). Ultra-barcoding in cacao (*Theobroma* spp.; Malvaceae) using whole chloroplast
501 genomes and nuclear ribosomal DNA. *American Journal of Botany*, 99(2), 320-329.
502 <https://doi.org/10.3732/ajb.1100570>

503 Kane, N. C., & Cronk, Q. (2008). Botany without borders: barcoding in focus. *Molecular Ecology*,
504 17(24), 5175-5176. <https://doi.org/10.1111/j.1365-294X.2008.03972.x>

505 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
506 Improvements in performance and usability. *Molecular Biology and Evolution*, 30(4),
507 772-780. <https://doi.org/10.1093/molbev/mst010>

508 Knyshov, A., Gordon, E. R. L., & Weirauch, C. (2021). New alignment-based sequence extraction
509 software (ALiBaSeq) and its utility for deep level phylogenetics. *PeerJ*, 9, e11019.
510 <https://doi.org/10.7717/peerj.11019>

511 Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA
512 barcodes to identify flowering plants. *Proceedings of the National Academy of Sciences*,
513 102(23), 8369-8374. <https://doi.org/10.1073/pnas.0503123102>

514 Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E.
515 M. (2019). OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial
516 and viral genomes for evolutionary and functional annotations of orthologs. *Nucleic
517 Acids Research*, 47(D1), D807-D811. <https://doi.org/10.1093/nar/gky1053>

518 Leitch, I. J., Johnston, E., Pellicer, J., Hidalgo, O., & Bennett, M. (2019). *Plant DNA C-values
519 Database Release 7.1, April 2019*. Retrieved Dec 1 from <https://cvalues.science.kew.org/>

520 Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid enrichment for
521 massively high-throughput phylogenomics. *Systematic Biology*, 61(5), 727-744.
522 <https://doi.org/10.1093/sysbio/sys049>

523 Li, D. Z., Gao, L. M., Li, H. T., Wang, H., Ge, X. J., Liu, J. Q., Chen, Z. D., Zhou, S. L., Chen, S. L.,
524 Yang, J. B., Fu, C. X., Zeng, C. X., Yan, H. F., Zhu, Y. J., Sun, Y. S., Chen, S. Y., Zhao, L.,
525 Wang, K., Yang, T., & Duan, G. W. (2011). Comparative analysis of a large dataset
526 indicates that internal transcribed spacer (ITS) should be incorporated into the core
527 barcode for seed plants. *Proceedings of the National Academy of Sciences*, 108(49),
528 19641-19646. <https://doi.org/10.1073/pnas.1104551108>

529 Li, H. (2012). *seqtk: Toolkit for processing sequences in FASTA/Q formats*.
530 <https://github.com/lh3/seqtk>

531 Li, X. W., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y. T., & Chen, S. L. (2015). Plant DNA
532 barcoding: From gene to genome. *Biological Reviews*, 90(1), 157-166.
533 <https://doi.org/10.1111/brv.12104>

534 Li, Z., De La Torre, A. R., Sterck, L., Cánovas, F. M., Avila, C., Merino, I., Cabezas, J. A., Cervera, M.
535 T., Ingvarsson, P. K., & Van de Peer, Y. (2017). Single-copy genes as molecular markers
536 for phylogenomic studies in seed plants. *Genome Biology and Evolution*, 9(5), 1130-1147.
537 <https://doi.org/10.1093/gbe/evx070>

538 Liu, B. B., Ma, Z. Y., Ren, C., Hodel, R. G. J., Sun, M., Liu, X. Q., Liu, G. N., Hong, D. Y., Zimmer, E.
539 A., & Wen, J. (2021). Capturing single-copy nuclear genes, organellar genomes, and
540 nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: A
541 case study in Vitaceae. *Journal of Systematics and Evolution*, 59(5), 1124-1138.
542 <https://doi.org/10.1111/jse.12806>

543 Liu, H., Wei, J. P., Yang, T., Mu, W. X., Song, B., Yang, T., Fu, Y., Wang, X. B., Hu, G. H., Li, W. S.,
544 Zhou, H. C., Chang, Y., Chen, X. L., Chen, H. Y., Cheng, L., He, X. F., Cai, H. C., Cai, X. C.,
545 Wang, M., . . . Liu, X. (2019). Molecular digitization of a botanical garden: High-depth
546 whole-genome sequencing of 689 vascular plant species from the Ruili Botanical Garden.
547 *GigaScience*, 8(4), giz007. <https://doi.org/10.1093/gigascience/giz007>

548 Liu, L. X., Deng, P., Chen, M. Z., Yu, L.-M., Lee, J., Jiang, W. M., Fu, C. X., Shang, F. D., & Li, P.
549 (2022). Systematics of *Mukdenia* and *Oresitrophe* (Saxifragaceae): Insights from genome
550 skimming data. *Journal of Systematics and Evolution*, 00(0), 1-16.
551 <https://doi.org/10.1111/jse.12833>

552 Liu, Z.-J., Chen, S.-C., Ru, Z.-Z., & Li-Jun, C. (2006). *The genus Cymbidium in China*. Science Press.

553 Liu, Z. F., Ma, H., Ci, X. Q., Li, L., Song, Y., Liu, B., Li, H.-W., Wang, S. L., Qu, X. J., Hu, J. L., Zhang, X. Y., Conran, J. G., Twyford, A. D., Yang, J. B., Hollingsworth, P. M., & Li, J. (2021). Can
554 plastid genome sequencing be used for species identification in Lauraceae? *Botanical
555 Journal of the Linnean Society*, 197(1), 1-14.
556
557 <https://doi.org/10.1093/botlinnean/boab018>

558 Luo, R. B., Liu, B. H., Xie, Y. L., Li, Z. Y., Huang, W. H., Yuan, J. Y., He, G. Z., Chen, Y. X., Pan, Q.,
559 Liu, Y. J., Tang, J. B., Wu, G. X., Zhang, H., Shi, Y. J., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C.
560 L., . . . Wang, J. (2012). SOAPdenovo2: An empirically improved memory-efficient short-
561 read de novo assembler. *GigaScience*, 1(1), 18. <https://doi.org/10.1186/2047-217X-1-18>

562 Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of
563 occurrences of k-mers. *Bioinformatics*, 27(6), 764-770.
564 <https://doi.org/10.1093/bioinformatics/btr011>

565 Mirarab, S., Reaz, R., Bayzid, M. S., Zimmermann, T., Swenson, M. S., & Warnow, T. (2014).
566 ASTRAL: Genome-scale coalescent-based species tree estimation. *Bioinformatics*, 30(17),
567 i541-i548. <https://doi.org/10.1093/bioinformatics/btu462>

568 Parks, M., Cronn, R., & Liston, A. (2009). Increasing phylogenetic resolution at low taxonomic
569 levels using massively parallel sequencing of chloroplast genomes. *BMC Biology*, 7(1), 84.
570 <https://doi.org/10.1186/1741-7007-7-84>

571 Pearson, W. R. (2013). An introduction to sequence similarity ("Homology") searching. *Current
572 Protocols in Bioinformatics*, 42(1), 3.1.1-3.1.8.
573 <https://doi.org/10.1002/0471250953.bi0301s42>

574 Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – approximately maximum-likelihood
575 trees for large alignments. *PLOS ONE*, 5(3), e9490.
576 <https://doi.org/10.1371/journal.pone.0009490>

577 Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and Smudgeplot
578 for reference-free profiling of polyploid genomes. *Nature Communications*, 11(1), 1432.
579 <https://doi.org/10.1038/s41467-020-14998-3>

580 Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N., & Delsuc, F. (2018). MACSE v2: Toolkit
581 for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons.
582 *Molecular Biology and Evolution*, 35(10), 2582-2584.
583 <https://doi.org/10.1093/molbev/msy159>

584 Ruhsam, M., Rai, H. S., Mathews, S., Ross, T. G., Graham, S. W., Raubeson, L. A., Mei, W.,
585 Thomas, P. I., Gardner, M. F., Ennos, R. A., & Hollingsworth, P. M. (2015). Does complete
586 plastid genome sequencing improve species discrimination and phylogenetic resolution
587 in Araucaria? *Molecular Ecology Resources*, 15(5), 1067-1078.
588 <https://doi.org/10.1111/1755-0998.12375>

589 Sarmashghi, S., Balaban, M., Rachman, E., Touri, B., Mirarab, S., & Bafna, V. (2021). Estimating
590 repeat spectra and genome length from low-coverage genome skims with RESPECT.
591 *PLOS Computational Biology*, 17(11), e1009449.
592 <https://doi.org/10.1371/journal.pcbi.1009449>

593 Shi, C. H., & Yip, K. Y. (2020). A general near-exact k-mer counting method with low memory
594 consumption enables de novo assembly of 106 \times human sequence data in 2.7 hours.

595 *Bioinformatics*, 36(Supplement_2), i625-i633.
596 <https://doi.org/10.1093/bioinformatics/btaa890>

597 Ślipiko, M., Myszczyński, K., Buczkowska, K., Bączkiewicz, A., Szczecińska, M., & Sawicki, J.
598 (2020). Molecular delimitation of European leafy liverworts of the genus *Calypogeia*
599 based on plastid super-barcodes. *BMC Plant Biology*, 20(1), 243.
600 <https://doi.org/10.1186/s12870-020-02435-y>

601 Small, R. L., Cronn, R. C., & Wendel, J. F. (2004). Use of nuclear genes for phylogeny
602 reconstruction in plants. *Australian Systematic Botany*, 17(2), 145-170.
603 <https://doi.org/10.1071/SB03015>

604 Smith, M. L., & Hahn, M. W. (2021). New approaches for inferring phylogenies in the presence
605 of paralogs. *Trends in Genetics*, 37(2), 174-187.
606 <https://doi.org/10.1016/j.tig.2020.08.012>

607 Spooner, D. M. (2009). DNA barcoding will frequently fail in complicated groups: An example in
608 wild potatoes. *American Journal of Botany*, 96(6), 1177-1189.
609 <https://doi.org/10.3732/ajb.0800246>

610 Straub, S. C. K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., & Liston, A. (2012).
611 Navigating the tip of the genomic iceberg: Next-generation sequencing for plant
612 systematics. *American Journal of Botany*, 99(2), 349-364.
613 <https://doi.org/10.3732/ajb.1100335>

614 Sun, H., Ding, J., Piednoël, M., & Schneeberger, K. (2017). findGSE: estimating genome size
615 variation within human and *Arabidopsis* using k-mer frequencies. *Bioinformatics*, 34(4),
616 550-557. <https://doi.org/10.1093/bioinformatics/btx637>

617 Sverdlov, A. V., Rogozin, I. B., Babenko, V. N., & Koonin, E. V. (2005). Conservation versus
618 parallel gains in intron evolution. *Nucleic Acids Research*, 33(6), 1741-1748.
619 <https://doi.org/10.1093/nar/gki316>

620 van Velzen, R., Weitschek, E., Felici, G., & Bakker, F. T. (2012). DNA barcoding of recently
621 diverged species: Relative performance of matching methods. *PLOS ONE*, 7(1), e30490.
622 <https://doi.org/10.1371/journal.pone.0030490>

623 Wang, J., Luo, J., Ma, Y. Z., Mao, X. X., & Liu, J. Q. (2019). Nuclear simple sequence repeat
624 markers are superior to DNA barcodes for identification of closely related *Rhododendron*
625 species on the same mountain. *Journal of Systematics and Evolution*, 57(3), 278-286.
626 <https://doi.org/10.1111/jse.12460>

627 Warnow, T. (2015). Concatenation Analyses in the Presence of Incomplete Lineage Sorting. *PLoS
628 currents*, 7, ecurrents.currents.tol.8d41ac40f13d41abedf44c44a59f45d41. Retrieved
629 2015/05//, from <http://europepmc.org/abstract/MED/26064786>
630 <https://doi.org/10.1371/currents.tol.8d41ac0f13d1abedf4c4a59f5d17b1f7>
631 <https://europepmc.org/articles/PMC4450984>

632 Waterhouse, R. M., Zdobnov, E. M., & Kriventseva, E. V. (2011). Correlating traits of gene
633 retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods,
634 and fungi. *Genome Biology and Evolution*, 3, 75-86. <https://doi.org/10.1093/gbe/evq083>

635 Weitemier, K., Straub, S. C. K., Cronn, R. C., Fishbein, M., Schmickl, R., McDonnell, A., & Liston,
636 A. (2014). Hyb-Seq: Combining target enrichment and genome skimming for plant

637 phylogenomics. *Applications in Plant Sciences*, 2(9), 1400042.
638 <https://doi.org/10.3732/apps.1400042>

639 Wen, J., Xiong, Z. Q., Nie, Z. L., Mao, L. K., Zhu, Y. B., Kan, X. Z., Ickert-Bond, S. M., Gerrath, J.,
640 Zimmer, E. A., & Fang, X. D. (2013). Transcriptome sequences resolve deep relationships
641 of the grape family. *PLOS ONE*, 8(9), e74394.
642 <https://doi.org/10.1371/journal.pone.0074394>

643 Xi, Z. X., Rest, J. S., & Davis, C. C. (2013). Phylogenomics and coalescent analyses resolve extant
644 seed plant relationships. *PLOS ONE*, 8(11), e80870.
645 <https://doi.org/10.1371/journal.pone.0080870>

646 Yang, J. B., Tang, M., Li, H. T., Zhang, Z. R., & Li, D. Z. (2013). Complete chloroplast genome of
647 the genus *Cymbidium*: lights into the species identification, phylogenetic implications
648 and population genetic analyses. *BMC Evolutionary Biology*, 13(1), 84.
649 <https://doi.org/10.1186/1471-2148-13-84>

650 Yu, X.-Q., Jiang, Y.-Z., Folk, R. A., Zhao, J.-L., Fu, C.-N., Fang, L., Peng, H., Yang, J.-B., & Yang, S.-X.
651 (2022). Species discrimination in *Schima* (Theaceae): Next-generation super-barcodes
652 meet evolutionary complexity. *Molecular Ecology Resources*, 22(8), 3161-3175.
653 <https://doi.org/10.1111/1755-0998.13683>

654 Zeng, C.-X., Hollingsworth, P. M., Yang, J., He, Z.-S., Zhang, Z.-R., Li, D.-Z., & Yang, J.-B. (2018).
655 Genome skimming herbarium specimens for DNA barcoding and phylogenomics. *Plant
656 Methods*, 14(1), 43. <https://doi.org/10.1186/s13007-018-0300-0>

657 Zhang, G., Hu, Y., Huang, M. Z., Huang, W. C., Liu, D. K., Zhang, D., Hu, H., Downing, J. L., Liu, Z.
658 J., & Ma, H. (2023). Comprehensive phylogenetic analyses of orchidaceae using nuclear
659 genes and evolutionary insights into epiphytism. *Journal of Integrative Plant Biology*,
660 00(00), 0–0. <https://doi.org/10.1111/jipb.13462>

661 Zhang, G.-Q., Chen, G.-Z., Chen, L.-J., Zhai, J.-W., Huang, J., Wu, X.-Y., Li, M.-H., Peng, D.-H., Rao,
662 W.-H., Liu, Z.-J., & Lan, S.-R. (2021). Phylogenetic incongruence in *Cymbidium* orchids.
663 *Plant Diversity*, 43(6), 452-461. <https://doi.org/10.1016/j.pld.2021.08.002>

664 Zhang, L., Huang, Y. W., Huang, J. L., Ya, J. D., Zhe, M. Q., Zeng, C. X., Zhang, Z. R., Zhang, S. B., Li,
665 D. Z., Li, H. T., & Yang, J. B. (2023). DNA barcoding of *Cymbidium* by genome skimming:
666 Call for next-generation nuclear barcodes. *Molecular Ecology Resources*, 23(2), 424– 439.
667 <https://doi.org/10.1111/1755-0998.13719>

668 Zhang, N., Zeng, L. P., Shan, H. Y., & Ma, H. (2012). Highly conserved low-copy nuclear genes as
669 effective markers for phylogenetic analyses in angiosperms. *New Phytologist*, 195(4),
670 923-937. <https://doi.org/10.1111/j.1469-8137.2012.04212.x>

671 Zhang, Z., Xie, P., Guo, Y., Zhou, W., Liu, E., & Yu, Y. (2022). Easy353: A tool to get
672 Angiosperms353 genes for phylogenomic research. *Molecular Biology and Evolution*,
673 39(12), msac261. <https://doi.org/10.1093/molbev/msac261>

674 Zimmer, E. A., & Wen, J. (2012). Using nuclear gene data for plant phylogenetics: Progress and
675 prospects. *Molecular Phylogenetics and Evolution*, 65(2), 774-785.
676 <https://doi.org/10.1016/j.ympev.2012.07.015>

677

678