

Protective effect of pre-existing natural immunity in a nonhuman primate reinfection model of congenital cytomegalovirus infection

Short title: Non-primary congenital CMV infection model in rhesus macaques

Matilda Moström¹, Shan Yu¹, Dollnovan Tran¹, Frances Saccoccio², Cyril J. Versoza³, Daniel Malouli⁴, Anne Mirza⁵, Sarah Valencia², Margaret Gilbert¹, Robert Blair¹, Scott Hansen⁴, Peter Barry⁶, Klaus Früh⁴, Jeffrey D. Jensen³, Susanne P. Pfeifer³, Timothy F. Kowalik⁵, Sallie R. Permar^{2, 7*}, and Amitinder Kaur^{1*}

10
11 ¹Tulane National Primate Research Center, Tulane University, Covington LA; ²Duke Human Vaccine
12 Institute, Duke University, Durham, NC; ³Center for Evolution & Medicine, School of Life Sciences, Arizona
13 State University, Tempe, AZ; ⁴Oregon Health and Sciences University, Beaverton, OR; ⁵University of
14 Massachusetts Chan Medical School, Worcester, MA; ⁶University of California, Davis, CA; ⁷Weill Cornell
15 Medicine, New York, NY.

17 *Corresponding authors: Sallie Permar, sallie.permar@med.cornell.edu (SP) and Amitinder Kaur,
18 akaur@tulane.edu (AK)

21 **Abstract**

22 Congenital cytomegalovirus (cCMV) is the leading infectious cause of neurologic defects in newborns with particularly
23 severe sequelae in the setting of primary CMV infection in the first trimester of pregnancy. The majority of cCMV
24 cases worldwide occur after non-primary infection in CMV-seropositive women; yet the extent to which pre-existing
25 natural CMV-specific immunity protects against CMV reinfection or reactivation during pregnancy remains ill-defined.
26 We previously reported on a novel nonhuman primate model of cCMV in rhesus macaques where 100% placental
27 transmission and 83% fetal loss were seen in CD4+ T lymphocyte-depleted rhesus CMV (RhCMV)-seronegative dams
28 after primary RhCMV infection. To investigate the protective effect of preconception maternal immunity, we performed
29 reinfection studies in CD4+ T lymphocyte-depleted RhCMV-seropositive dams inoculated in late first / early second
30 trimester gestation with RhCMV strains 180.92 ($n=2$), or RhCMV UCD52 and FL-RhCMV Δ Rh13.1/SIVgag, a wild-
31 type-like RhCMV clone with SIVgag inserted as an immunological marker ($n=3$). An early transient increase in
32 circulating monocytes followed by boosting of the pre-existing RhCMV-specific CD8+ T lymphocyte and antibody
33 response was observed in the reinfected dams but not in control CD4+ T lymphocyte-depleted dams. Emergence of
34 SIV Gag-specific CD8+ T lymphocyte responses in macaques inoculated with the FL-RhCMV Δ Rh13.1/SIVgag virus
35 confirmed reinfection. Placental transmission was detected in only one of five reinfected dams and there were no
36 adverse fetal sequelae. Viral whole genome, short-read, deep sequencing analysis confirmed transmission of both
37 reinfection RhCMV strains across the placenta with ~30% corresponding to FL-RhCMV Δ Rh13.1/SIVgag and ~70% to
38 RhCMV UCD52, consistent with the mixed human CMV infections reported in infants with cCMV. Our data showing
39 reduced placental transmission and absence of fetal loss after non-primary as opposed to primary infection in CD4+ T
40 lymphocyte-depleted dams indicates that preconception maternal CMV-specific CD8+ T lymphocyte and/or humoral
41 immunity can protect against cCMV infection.

42 **Author Summary:**

43 Globally, pregnancies in CMV-seropositive women account for the majority of cases of congenital CMV infection but
44 the immune responses needed for protection against placental transmission in mothers with non-primary infection
45 remains unknown. Recently, we developed a nonhuman primate model of primary rhesus CMV (RhCMV) infection in
46 which placental transmission and fetal loss occurred in RhCMV-seronegative CD4+ T lymphocyte-depleted
47 macaques. By conducting similar studies in RhCMV-seropositive dams, we demonstrated the protective effect of pre-
48 existing natural CMV-specific CD8+ T lymphocytes and humoral immunity against congenital CMV after reinfection. A
49 5-fold reduction in congenital transmission and complete protection against fetal loss was observed in dams with pre-
50 existing immunity compared to primary CMV in this model. Our study is the first formal demonstration in a relevant
51 model of human congenital CMV that natural pre-existing CMV-specific maternal immunity can limit congenital CMV
52 transmission and its sequelae. The nonhuman primate model of non-primary congenital CMV will be especially
53 relevant to studying immune requirements of a maternal vaccine for women in high CMV seroprevalence areas at risk
54 of repeated CMV reinfections during pregnancy.

55 **Introduction**

56 Human cytomegalovirus (CMV) is a betaherpesvirus that results in lifelong persistent infection. While infection in
57 immunocompetent hosts is typically asymptomatic, CMV causes life-threatening illness in immunosuppressed hosts
58 such as transplant recipients and individuals with untreated HIV infection. CMV is also the most common cause of
59 congenital infection in newborns with severe neurological sequelae resulting from primary infection in CMV-
60 seronegative women in the first trimester of pregnancy (1). Congenital CMV (cCMV) can also follow non-primary
61 infection in pregnant CMV-seropositive women. Non-primary infection due to either reactivation of endogenous latent
62 CMV or reinfection with diverse CMV strains is the most common cause of human cCMV cases worldwide occurring
63 in regions with high CMV seroprevalence rates among women of reproductive age (2, 3, 4, 5, 6). Even in the United
64 States, three-quarters of cCMV infections reported between 1988-1994 were attributed to non-primary infection (7).
65 Consequently, the development of a maternal vaccine to prevent cCMV has been a tier 1 priority of the National
66 Institute of Medicine for two decades but has faced several challenges (8). A major barrier to vaccine development is
67 that the immune determinants of protection against vertical transmission, particularly after non-primary infection,
68 remain elusive. Even though natural CMV infection induces a robust and durable humoral and cellular immune
69 response, pre-existing immunity is not sufficient to prevent reinfections or cCMV. High maternal seroprevalence
70 regions in the world can account for >500,000 cCMV infant births per year despite "low" transmission rates of 1-2%
71 (9). To have worldwide relevance, an effective CMV vaccine will need to prevent both primary and non-primary
72 cCMV. Insight into the role of pre-existing natural immunity in limiting congenital CMV transmission and its protective
73 components are thus of paramount importance for the rational design of an effective maternal vaccine against cCMV.

74 Several studies have reported a reduced fetal infection rate after non-primary compared to primary CMV infection.
75 A meta-analysis of epidemiologic studies conducted between 1966 and 2006 revealed that the rate of intra-uterine
76 CMV transmission after primary infection during pregnancy was 32%, as opposed to 1.4% after non-primary infection
77 (10). In a prospective study of 2,378 woman/newborn pairs with maternal CMV serology at first visit and CMV
78 screening of newborns at birth, the risk of maternal-fetal transmission after primary infection was 4-fold higher
79 compared to non-primary infection (11). A similar reduction in transmission after non-primary infection has been
80 reported from cCMV cohorts in Italy and Brazil where maternal primary and non-primary infections were monitored by

81 serial serology (12, 13). It is worth noting that in contrast to transmission, the symptomatology and severity of cCMV
82 with respect to sensorineural hearing loss and neurodevelopmental anomalies can be comparable in non-primary and
83 primary infection (14, 15, 16). These data suggest that the mechanisms protecting against vertical transmission may
84 be different from those determining the outcome of fetal infection once transmission has occurred. Elucidating the
85 determinants of protection against acquisition and disease severity, particularly the role of pre-conceptional immunity
86 in CMV-seropositive pregnant women, is of paramount importance for the development of a maternal vaccine
87 effective against both primary and non-primary cCMV infection (13, 17). In this regard, the rhesus macaque CMV
88 reinfection pregnancy model has the potential to address some of the unanswered questions pertaining to non-
89 primary cCMV, including the rate of placental transmission, protective effects of pre-existent natural immunity, and the
90 host response to reinfection.

91 The rhesus macaque animal model offers several translational benefits for studying the pathogenesis and
92 immunology of human CMV (HCMV) infection. The rhesus CMV (RhCMV) genome is closely related to HCMV and
93 the natural history and biology of RhCMV infection in rhesus macaques bears important similarities to HCMV infection
94 (18, 19, 20). Natural RhCMV infection is widespread in colony-bred rhesus macaques; near 100% seroprevalence
95 rates are reached within a year of birth with natural acquisition occurring as a result of horizontal transmission from
96 close contact with infectious body fluids containing shed virus (21, 22, 23). Thus, breeding rhesus macaques have
97 been CMV-seropositive for at least 2-3 years before reaching the age of sexual maturity. This mimics the natural
98 history and infection profile of HCMV in regions of the world where CMV-seroprevalence in women of child-bearing
99 age exceeds 95% as a result of primary infections occurring in childhood (17). The rhesus macaque model of RhCMV
100 infection is thus well suited for investigating immune determinants of protection against non-primary cCMV infection.
101 We previously reported on a placental transmission model of primary cCMV infection in rhesus macaques (24). In this
102 model, we observed 100% vertical transmission and 83% fetal loss in CD4+ T lymphocyte-depleted CMV-
103 seronegative macaques infected with RhCMV in late first / early second trimester gestation, with protection conferred
104 by passive infusion of high potency anti-CMV antibodies prior to infection (24, 25). Here we report the first instance of
105 cCMV in CMV-seropositive rhesus macaques, representing a nonhuman primate (NHP) non-primary cCMV model.
106 Similar to our primary infection studies, pregnant macaques at late first / early second trimester gestation were

Mostrom et al_NatComm_4-3-23.docx

107 subjected to CD4+ T lymphocyte depletion and then inoculated with RhCMV virus strains. The difference here was
108 that the experiments were performed in CMV-seropositive macaques with pre-existing naturally acquired RhCMV-
109 specific immunity that were then experimentally inoculated with RhCMV to simulate reinfection during pregnancy. In a
110 subset of animals we used FL-RhCMV Δ Rh13.1/SIVgag, a wild-type-like RhCMV clone with *SIVgag* inserted as an
111 immunological marker (26), for experimental reinfection to enable *in vivo* tracking of the reinfection virus and
112 distinguish it from reactivation of endogenous RhCMV. In contrast to primary RhCMV infection, reinfection of CD4+ T
113 lymphocyte-depleted RhCMV-seropositive dams resulted in reduced placental transmission and complete protection
114 against fetal loss, accompanied by a robust innate immune response and boosting of pre-existent CMV-specific
115 immunity. Our study demonstrates the feasibility of using a NHP animal model to study non-primary cCMV infection
116 and demonstrates the protective effect of pre-existing natural CMV-specific CD8+ T lymphocytes and humoral
117 immunity in a biologically relevant model of human cCMV infection.

118 **Results**

119 **Reinfection model of congenital CMV in rhesus macaques**

120 To investigate the protective effect of natural pre-existing CMV-specific immunity against placental transmission,
121 we applied the study design of our previously published CD4+ T lymphocyte depletion primary cCMV infection model
122 (24). We repeated the study design but substituted primary infection studies in RhCMV-seronegative macaques with
123 non-primary reinfection studies in CD4+ T lymphocyte-depleted RhCMV-seropositive macaques with naturally
124 acquired RhCMV infection. Colony-bred rhesus macaques have high RhCMV seroprevalence rates with natural
125 acquisition of CMV by one year of age and thus have established pre-existing RhCMV-specific immunity for at least
126 two years before reaching sexual maturity at 3-4 years of age (21, 23). The reinfection experiments were performed
127 after CD4+ T lymphocyte depletion using the same dose and timeframe of infection as in the primary infection model
128 which had yielded 100% placental transmission. Hence, comparison of placental transmission in CD4+ T lymphocyte-
129 depleted macaques with primary RhCMV infection and RhCMV reinfection enabled an evaluation of the protective
130 effect of pre-existing natural RhCMV-specific CD8+ T lymphocyte and humoral immunity in RhCMV-seropositive
131 dams.

132 Five RhCMV-seropositive dams were enrolled in the “RhCMV-seropositive Reinfection” group and three RhCMV-
133 seropositive dams were enrolled in the “RhCMV-seropositive Control” group to control for endogenous RhCMV
134 reactivation without reinfection (**Fig 1A, Table 1**). All dams were enrolled in the first trimester of pregnancy and
135 subjected to *in vivo* CD4+ T lymphocyte depletion at late first trimester / early second trimester between 49 to 59
136 gestation days, similar to the historical control group of CD4+ T lymphocyte depletion and primary RhCMV infection
137 (**Table 1**). One week after administration of the CD4+ T lymphocyte depleting antibody, the reinfection group dams
138 were inoculated with different RhCMV strains. Two RhCMV-seropositive dams received an intravenous inoculation of
139 the fibroblast-passaged UL128-complex intact RhCMV strain 180.92 (27, 28) at 2×10^6 TCID₅₀ and were followed until
140 natural birth at 152 and 164 gestational days, respectively (**Table 1, Fig 1A**). Three dams were intravenously
141 inoculated with 1×10^6 pfu each of RhCMV strains UCD52 and full-length recombinant RhCMV expressing SIVgag (FL-
142 RhCMVΔRh13.1/SIVgag), and followed up until an elective Cesarian section (C-section) at mean 144 (range 142-
143 147) days gestation (**Fig 1A, Table 1**). The choice of RhCMV 180.92 and RhCMV UCD52 virus strains were based

Mostrom et al _NatComm_4-3-23.docx

144 on previously used isolates shown to cross the placenta in primary infection studies (24, 25, 29). FL-
145 RhCMV Δ Rh13.1/SIVgag, a full-length RhCMV generated by repairing strain 68-1 with wild-type sequence that
146 includes a heterologous SIVgag sequence as a foreign gene in the place of Rh13.1 (26), was used for reinfection
147 experiments in three macaques. The full length clone enabled distinction of endogenous virus from the exogenous
148 challenge inoculum in RhCMV-seropositive animals and allowed confirmation of reinfection as previously
149 demonstrated in RhCMV/SIV vaccine studies (30, 31, 32). Three RhCMV-seropositive dams that underwent CD4+ T
150 lymphocyte depletion without reinfection were included as a control group to monitor placental transmission due to
151 reactivation of endogenous RhCMV virus strains (**Table 1, Fig 1A**).

152
153 **Table 1. Study outline of animal groups**
154

	Number of animals		RhCMV Inoculum	Age in years Mean (Range)	Gestational day Mean (Range)		
					CD4+ T lymphocyte depletion	RhCMV inoculation	Study termination
CMV-seropositive Reinfection	n=5	n=2	• RhCMV 180.92	5.5 (4-9)	53.2 (49-59)	60.2 (56-66)	144 (142-147)
		n=3	• RhCMV UCD52 • FL-RhCMV Δ Rh13.1/SIVgag				
CMV-seropositive Controls	n=3	n=3	Not inoculated	7.0 (4-11)	52.0 (50-55)	Not inoculated	164 (155-171)
CMV-seronegative Primary Infection*	n=6	n=1	• RhCMV 180.92	11.6 (4-16)	50.5 (47-56)	57.5 (54-63)	94 (74-165)
		n=5	• UCD52 • UCD59 • RhCMV 180.92				

155
156 *Bialas, et al. PNAS (2015). Nelson, et al. JCI Insight (2017)

157
158 **CD4+ T lymphocyte and RhCMV viral dynamics**

159 Following administration of a single dose of 50mg/kg rhesus recombinant anti-CD4 monoclonal antibody (clone
160 CD4R1), profound CD4 depletion, resulting in loss of >95% of circulating CD4+ T lymphocytes, was observed at day

161 7 in three out of five RhCMV-seropositive reinfected animals as well as in all three RhCMV-seropositive controls (**Fig**
162 **1B-C**). The peripheral blood CD4+ T lymphocyte count in these animals declined from a mean baseline value of 950
163 cells/ μ L to less than 65 cells/ μ L throughout the study period. Two RhCMV-seropositive reinfected macaques (JP01
164 and KK24) showed relatively suboptimal depletion with persistent circulating CD4+ T lymphocytes at 46-68% of
165 baseline values (**Fig 1B**).

166 RhCMV DNA was monitored in the plasma, saliva, urine and amniotic fluid of reinfection and control dams (**Fig**
167 **2A-B**). Immunocompetent RhCMV-seropositive macaques are typically aviremic but shed RhCMV in body fluids such
168 as urine and saliva (21). Following CD4+ T lymphocyte depletion, low levels of plasma RhCMV DNA were detected
169 intermittently in two out of five RhCMV-seropositive reinfection dams (KK24 and KB91) but in none of the three CMV-
170 seropositive control dams (**Fig 2A-B**). Placental RhCMV transmission as evidenced by detection of RhCMV DNA in
171 the amniotic fluid was detected in one of five RhCMV-seropositive reinfected dams (KK24) at day 7 post RhCMV
172 inoculation (**Fig 2A**) but not in any of the CD4+ T lymphocyte depletion control animals (**Fig 2B**). Consistent with
173 previous reports, virus shedding as evidenced by detection of RhCMV DNA in the saliva and urine was present in all
174 eight RhCMV-seropositive dams at baseline (21). A one-log or greater increase in virus shedding in the saliva and / or
175 urine was detected in all five reinfected dams at 1-9 weeks post reinfection (**Fig 2A**). It was also seen in all three
176 control dams post CD4+ T lymphocyte depletion (**Fig 2B**) suggesting that increased viral shedding could result from
177 both reactivation and reinfection. Taken together, these data demonstrate placental transmission after RhCMV
178 reinfection but not after reactivation. The transmitter dam KK24 had low-level transient viremia post reinfection,
179 however this did not coincide temporally with the time point of detection of RhCMV DNA in the amniotic fluid (**Fig 2B**).
180

181 **Innate and adaptive host response to RhCMV reinfection**

182 Several features of innate immune activation were evident within one week of RhCMV reinfection. A 3- to 100-fold
183 non-significant (p-value=0.25; non-parametric Wilcoxon Signed Rank test) increase in frequency of circulating HLA-
184 DR^{hi}CD14⁺ monocytes from $3.1 \pm 3.7\%$ (mean \pm SD) to $14.3 \pm 10.9\%$ was observed at day 1-5 post reinfection in
185 RhCMV-seropositive pregnant macaques (**Fig 3, Fig S1A**). Concurrently, there was also an expansion of lineage
186 (Lin)-HLA-DR^{hi} dendritic cells, Lin-HLA-DR-SSC^{hi}CD14⁺ putative myeloid-derived suppressor cells (MDSC) and a

187 transient decline in circulating B lymphocytes which did not reach statistical significance (p-value=0.25; non-
188 parametric Wilcoxon Signed Rank test) (**Fig 3, Fig S1A-C**). There was also no significant change in the frequency of
189 circulating natural killer (NK) cells and CD8+ T lymphocytes (**Fig 3**). Evidence of innate immune activation was
190 corroborated by an increase in plasma analytes, notably IL-8 and MIP-1b, as measured by Luminex in the first week
191 post reinfection (**Fig S2A**). Of note, an increase in eotaxin was only observed in KK24, the transmitter dam (**Fig S2A**).
192 Overall, these data indicate a rapid activation of the innate immune system predominantly involving myeloid cells in
193 response to RhCMV reinfection.

194 To evaluate the effect of RhCMV reinfection on pre-existing adaptive immunity, we longitudinally monitored
195 RhCMV-specific CD8+ T lymphocyte responses and anti-RhCMV antibodies in the CD4+ T lymphocyte-depleted
196 reinfection and control macaques. Memory RhCMV-specific CD8+ T lymphocyte responses against the RhCMV
197 immediate early 1 (IE1), IE2 or pp65 peptide pools measured by intracellular cytokine staining assay were detected at
198 baseline in all the CMV-seropositive macaques. RhCMV-specific CD8+ T lymphocyte responses were also measured
199 at 8-10 weeks post reinfection and compared with baseline responses. Four dams in the RhCMV-seropositive
200 reinfection group had baseline immunodominant CD8+ T lymphocyte responses targeting the IE1 or IE2 peptide pools
201 which increased 2- to 10-fold following reinfection indicating a booster effect (**Fig 4**). An increase in CD107a
202 expression, and IFN- γ , IL-2, and TNF- α cytokine secretion was observed post reinfection with a significant increase in
203 the frequency of TNF- α cytokine secreting RhCMV-specific CD8+ memory T lymphocytes (**Fig 4A**). Boolean analysis
204 of all four effector functions showed a trend for decreased proportion of monofunctional and increased proportion of
205 polyfunctional RhCMV-specific CD8+ T cell responses post reinfection (P -value 0.11; **Fig 4B**). This was associated
206 with a significant increase in the frequency of RhCMV-specific 4-functional (P -value 0.03) and dual CD107a+IFN- γ +
207 positive (P -value 0.03) CD8+ T lymphocytes post reinfection compared to pre-reinfection values (**Fig 4C**). Analysis of
208 pre-reinfection RhCMV-specific CD8+ T lymphocyte responses in individual animals revealed that the transmitter dam
209 KK24 had the the lowest frequency (0.91%) as well as the highest proportion of monofunctional responses at baseline
210 compared to the other reinfection dams (**Fig S2B**). However, the post reinfection boost in this frequency was
211 comparable in the transmitter and non-transmitter dams (**Fig S2B**). It is noteworthy that the increase in magnitude
212 and polyfunctionality of memory RhCMV-specific CD8+ T lymphocytes post reinfection occurred despite the presence

213 of CD4+ T lymphocyte depletion.

214 We also monitored end-point dilution titers of anti-RhCMV gB-binding IgG responses and fibroblast neutralization
215 activity against RhCMV 180.92 (**Fig 5**). Following reinfection, a transient 0.8- to >1.0- log increase in anti-gB binding
216 titers was observed in three RhCMV-reinfected macaques (**Fig. 5A**). Analysis of individual animals showed the two
217 macaques (KK24 and JP01) that experienced a suboptimal CD4+ lymphocyte depletion (46-68% loss) responded
218 with a 1.0-log or greater increase in magnitude of anti-gB IgG responses (**Fig 5A**), suggesting that CD4+ T
219 lymphocyte help may have aided a boost of anti-gB antibodies against pre-existing and new specificities post RhCMV
220 reinfection. In a group analysis, baseline values for gB-binding and neutralizing antibody levels at pre-CD4+ T
221 lymphocyte depletion time-points were comparable between the RhCMV-seropositive reinfected and RhCMV-
222 seropositive control dams (**Fig 5B**). Post CD4+ T lymphocyte depletion, a change in antibody titers was only observed
223 in the reinfection dams with significant increases in the first 8 weeks post reinfection compared to the RhCMV-
224 seropositive control dams (**Fig. 5C-D**).

225 In contrast to the reinfected animals, the CD4+ T lymphocyte depleted CMV-seropositive control macaques
226 showed no change in the RhCMV-specific CD8+ memory response post CD4+ T lymphocyte depletion (**Fig S3A**).
227 Neither did they display an increase in anti-gB IgG levels post CD4+ T lymphocyte depletion (**Fig S3B**). In all, our
228 results demonstrate elevation of RhCMV-specific CD8+ T lymphocyte and antibody responses that was evident only
229 after RhCMV reinfection, not reactivation following CD4+ T lymphocyte depletion.

230

231 **Placental transmission of reinfection virus**

232 Although the boosting of pre-existing RhCMV-specific immune responses and the increase in viral shedding were
233 suggestive of reinfection, natural fluctuations of endogenous virus replication could also lead to changes in shed
234 virus. To determine if reinfection virus was being shed, we evaluated the three macaques (KB91, KK24, and JP01)
235 that were infected with the clone FL-RhCMVΔRh13.1/SIVgag virus containing the exogenous transgene *SIVgag*.
236 Screening the saliva and urine at every time-point in each of the three macaques revealed a low positive signal by
237 SIVgag-specific real time PCR in the saliva of one animal, KB91, at a single time-point (**Fig 6A**). However, SIV Gag-
238 specific IFN- γ -secreting memory CD8+ T lymphocyte responses were detected in all three macaques at 6 weeks or

239 later post reinfection and ranged in frequency between 0.9 to 1.4% of circulating memory CD8+ T lymphocytes (**Fig**
240 **6B**). An antibody assay was also developed to determine if these animals generated antibody responses to the SIV
241 Gag protein. No measureable responses were found in the dams which may be due to a near absence of viremia in
242 the reinfected animals (**Fig S4**). Cumulatively, these data provide evidence for successful RhCMV reinfection of the
243 CD4+ T lymphocyte-depleted CMV-seropositive dams.

244 To confirm the passage of reinfection RhCMV virus across the placenta, amniotic fluid DNA from the transmitter
245 dam KK24 was amplified by multiple displacement amplification (MDA) and viral DNA enriched by PCR-amplification
246 using RhCMV-specific primer pairs. Amplicons were then sequenced to >10,000X coverage on a Ion Torrent
247 Sequencer. The resulting whole genome sequencing data (mean read length: ~200 bp) was mapped against the
248 RhCMV UCD52 and FL-RhCMVΔRh13.1/SIV*gag* reference assemblies. Investigations of uniquely mapping regions
249 demonstrated placental transmission of both reinfection RhCMV strains with ~70% corresponding to RhCMV UCD52
250 and ~30% to FL-RhCMVΔRh13.1/SIV*gag* consistent with the mixed human CMV infections reported in infants with
251 cCMV (33).

252

253 **Protective effect of natural pre-existing immunity against congenital CMV transmission**

254 To evaluate protection conferred by pre-conception immunity, we compared viral and pregnancy outcome
255 parameters in the CD4+ T lymphocyte-depleted RhCMV-seropositive reinfection macaques with the CD4+ T
256 lymphocyte-depleted primary RhCMV infection historical control animals (**Fig 7 and Table 2**). The CD4+ T
257 lymphocyte-depleted RhCMV-seropositive reinfected dams showed intermittent, detectable RhCMV DNAemia which
258 was significantly lower compared to RhCMV-seronegative animals with primary infection (**Fig 7A**). The CD4+ T
259 lymphocyte-depleted RhCMV-seropositive controls showed no detectable RhCMV DNAemia (**Fig 7A**). Amniotic fluid
260 sampled at weekly intervals showed variable detection of RhCMV transmission across the study groups as shown in
261 a heatmap (**Fig 7B**). While all six dams in the primary infection group had detectable amniotic fluid RhCMV DNA
262 (mean range 49-580 copies/ml) at one or more sampling time-points, amniotic fluid RhCMV DNA at mean \pm S.D
263 57 \pm 146 copies/mL was detected in only one animal in the reinfection group at a single time-point (**Fig 7B**). Amniotic
264 fluid RhCMV transmission was not detected in any of the CD4+ T lymphocyte depletion RhCMV-seropositive controls

265 (Fig 7B). The fetuses of the mothers with natural pre-existing immunity fared better with 100% fetal survival (Fig 7C-
266 D). Overall, placental transmission was reduced from 100% in primary infection to 20% in the reinfection group (P
267 <0.05 ; Log-rank test), whereas fetal survival was increased from 16% to 100% in the reinfection groups ($P < 0.05$;
268 Log-rank test) (Table 2, Fig 7C-D). RhCMV DNA PCR evaluation of placental tissues and fetal tissues confirmed a
269 protective role of maternal pre-existing immunity in preventing the spread and replication of RhCMV *in vivo* during first
270 trimester infection of rhesus macaques (S1 Table). The fetal growth parameters in the CD4+ T lymphocyte-depleted
271 RhCMV reinfected dams were comparable to the RhCMV-seropositive control dams (S5 Fig) and within the normal
272 range of reference values established in rhesus macaques (34).

Group name	Natural Immunity to RhCMV	Amniotic fluid PCR RhCMV DNA	Placental and fetal tissue PCR RhCMV DNA	Number of animals
CMV-seropositive Reinfestation	Yes	20%	0%	5
CMV-seropositive Controls	Yes	0%	0%	3
CMV-seronegative Primary Infection	No	100%	100%	6

273
274 **Table 2. Improved study outcome in dams with pre-existing immunity.** The main readouts of the study are
275 described as a frequency of total number of animals.
276
277

278 **Discussion**

279 In this study we provide the first evidence of placental transmission in a nonhuman primate model of non-primary
280 cCMV and demonstrate that pre-conception maternal CMV-specific immunity from previous natural CMV infection has
281 a protective effect against congenital transmission and disease. By conducting a longitudinal experimental
282 superinfection study with an inoculum of defined RhCMV virus stocks administered at a known gestation time-point in
283 pregnant RhCMV-seropositive rhesus macaque dams, we could determine the risk of vertical transmission after non-
284 primary CMV infection and compare it with historical controls from our previous studies of primary cCMV in this animal
285 model. Moreover, by including a RhCMV virus with a foreign transgene (SIVgag), we could track one of the inoculated
286 RhCMV viruses *in vivo* and distinguish it from endogenous RhCMV in the reinfected animals. Our data show that
287 even in the setting of CD4+ T lymphocyte depletion, RhCMV-reinfected RhCMV-seropositive dams showed only 20%
288 placental transmission and did not suffer any adverse pregnancy outcome or fetal infection. These findings are in
289 sharp contrast to primary RhCMV infection in CD4+ T lymphocyte-depleted CMV-seronegative rhesus macaque
290 dams, which resulted in 100% placental transmission and 83% fetal loss (24, 25). In the absence of CD4+ T
291 lymphocytes, the protective effect of prior natural RhCMV infection was accompanied by an initial activation of the
292 innate immune system in the first week after reinfection followed by boosting of pre-existing memory RhCMV-specific
293 CD8+ T lymphocyte and antibody responses. These data point to redundant pathways of immune-mediated
294 protection and suggest that vaccine approaches harnessing different arms of the immune system will be needed to
295 prevent cCMV infection.

296 RhCMV-seropositive pregnant macaques model the immunity of reproductive age women in a high CMV
297 seroprevalence settings. The RhCMV-seropositive macaques used in this study acquired naturally circulating RhCMV
298 strains prevalent in the primate center colony and were never experimentally infected prior to this study. Thus, their
299 pre-existing immune status was a result of natural RhCMV infection akin to human populations susceptible to non-
300 primary infections. As demonstrated previously, reinfection of RhCMV-seropositive animals is enabled by viral T cell
301 evasion mechanisms (32). However, although T cells cannot prevent reinfection due to viral immune evasion there
302 was a clear impact of pre-existing immunity on congenital infection. In the current study, we saw a 5-fold reduction in
303 transmission rate after non-primary infection as compared to primary infection despite the presence of CD4+ T

304 lymphocyte depletion – akin to a recent study in humans (11). However, unlike in humans, we did not find any
305 evidence of fetal infection or pathology. Because the diagnosis of non-primary cCMV in humans is based on the
306 screening of newborns, and because there are no data on amniotic fluid CMV load monitoring in pregnant CMV-
307 seropositive women, we cannot exclude the possibility of placental transmission without fetal infection also occurring
308 in human subjects. The reduction in transmission and absence of fetal infection is indicative of a protective role of
309 natural pre-conceptional immunity. However, there are caveats to extrapolating the findings in the NHP model to non-
310 primary cCMV in humans. The small number of animals in this study precludes definitive conclusion of the
311 transmission rate following non-primary infection. Furthermore, the risk of placental transmission following a single
312 reinfection event, as was the design of the current study, does not capture the potential of multiple reinfections
313 occurring in CMV-seropositive pregnant women in high CMV seroprevalence regions when exposed to frequent high
314 levels of CMV shedding from different sources. Annualized CMV seroconversion rates in CMV-seronegative women
315 are directly related to the extent of exposure to CMV shedding with 20% or higher rates in high CMV seroprevalence
316 areas (13, 35). The same pattern may hold true for reinfection rates.

317 The extent to which non-primary CMV infection is a result of reactivation or reinfection, or a combination of both
318 factors, is not known. In one of the first studies to document reinfection as an important cause of non-primary cCMV,
319 62% of mothers with cCMV births compared to 13% with normal births developed new antibody specificities against
320 glycoprotein H during pregnancy suggestive of reinfection (4). More recently, the contribution of reinfection to non-
321 primary cCMV has been deduced from detection of new antibody specificities to strain-specific polymorphic regions in
322 the glycoproteins gB and gH (5, 6). Using these criteria, the annualized rate of reinfection in CMV-seropositive women
323 has ranged between 10-35% in different studies with reinfections being associated with an increased risk of cCMV (5,
324 6). In addition to reinfection, new strain-specificities could also be due to emergence of a previously subdominant or
325 quiescent endogenous CMV due to reactivation, but this has not been established. Our model looked at both modes
326 of non-primary CMV infection in pregnant rhesus macaques, albeit in a small number of animals. As controls for the
327 group of CD4+ T lymphocyte-depleted reinfected macaques, we used CD4+ T lymphocyte depletion alone to model
328 endogenous CMV reactivation without reinfection. We inferred reactivation from a one-log or greater increase in
329 RhCMV load shed in the urine or saliva at one or more post CD4+ T lymphocyte depletion time points. Unlike adult

330 humans where CMV shedding is detected only in a subset of individuals, group-housed RhCMV-seropositive rhesus
331 macaques invariably have detectable RhCMV DNA shed in the urine and/or saliva (21, 36). Consistent with this
332 observation, all the RhCMV-seropositive macaques enrolled in this study had detectable presence of RhCMV DNA
333 shed in the urine and/or saliva at baseline prior to any intervention. A one-log or greater increase in RhCMV shedding
334 at post CD4+ T lymphocyte depletion time-points was detected in both the reinfection and control group of animals
335 suggestive of reactivation. However, transient viremia and amniotic fluid transmission were only detected in the
336 RhCMV-seropositive, CD4+ T lymphocyte depleted, reinfected dams and not the RhCMV-seropositive, CD4+ T
337 lymphocyte depleted controls. One of the viremic reinfected dams, macaque KK24, transmitted the virus across the
338 placenta. Confirmation of reinfection was supported by the emergence of immune responses against the foreign
339 transgene present in the inoculated RhCMV virus, and detection of this foreign gene in shed virus. These findings
340 were confirmed by detection of the reinfection virus in the amniotic fluid of the transmitter dam by genome-wide deep
341 sequencing. In the absence of sequencing RhCMV shed in the urine and saliva prior to reinfection we cannot
342 ascertain if endogenous reactivated RhCMV also crossed the placenta in the transmitter dam.

343 Sequencing analysis confirmed that the two RhCMV strains used for reinfection had both crossed the placenta,
344 with RhCMV UCD52 being more prevalent than FL-RhCMVΔRh13.1/SIVgag. Passage of the RhCMV UCD52 strain
345 was consistent with the findings in our primary infection studies where UCD52 was the dominant virus in the
346 circulation and amniotic fluid (24, 25). This raises the question of what might determine placental transmission of
347 reinfection virus. Aside from protective immunity, viral diversity and inoculum size are likely to be important
348 determinants of cCMV transmission after reinfection. Recent studies have shown the surprising diversity of naturally
349 circulating HCMV, which can be in the range of that observed in RNA viruses such as dengue virus and HIV (37).
350 Moreover, mixed strain infections, such as the one observed here, are common in CMV-seroimmune individuals and
351 reinfection cCMV (33, 38, 39). The presence of significant diversity between RhCMV strains may be an important
352 factor determining which virus strains are transmitted. For example, viral diversity of the reinfection RhCMV from the
353 endogenous circulating strains could render it less susceptible to immune control and hence more transmissible.
354 Based on the sequencing data, the bottleneck of transmission appears to be wide as both virus inoculums were
355 detected in the amniotic fluid. This phenomenon is similar to our findings in primary infection in CD4+ T lymphocyte-

Mostrom et al _NatComm_4-3-23.docx

356 depleted dams where the genetic composition of RhCMV in the blood and amniotic fluid after a mixed infection with
357 three RhCMV viruses was similar and did not reveal a readily detectable transmission bottleneck even in the
358 presence of immune pressure exerted by pre-existing passively infused antibodies (29). However, with the current
359 data we are unable to exclude the endogenous virus from being present in the transmitting sequences. Future
360 sequencing analysis of the endogenous vs challenge sequences are required to answer this and to determine the
361 relative divergence between endogenous and inoculum viruses between the animals.

362 Despite the absence of CD4+ T lymphocytes, RhCMV-seropositive macaques showed evidence of protection
363 against cCMV transmission and infection. The protective effect was likely mediated by both innate immunity and
364 CMV-specific adaptive immunity. Protection in the absence of CD4+ T lymphocytes points to protection mediated by
365 the CD8+ T lymphocyte and humoral components of adaptive immunity. It is noteworthy that despite CD4+ T
366 lymphocyte depletion and potential lack of CD4 help, there was still a robust memory CMV-specific CD8+ T
367 lymphocyte or the antibody response post reinfection. Boosting of CD8+ T lymphocyte and antibody responses were
368 only seen in reinfection animals and not in the CD4+ T lymphocyte depletion control animals. The endogenous anti-
369 gB IgG antibodies and the pre- reinfection CMV-specific CD8+ T lymphocyte responses were significantly increased
370 following reinfection when compared to controls. The increase in gB-specific IgG and RhCMV-specific CD8+ T
371 lymphocyte responses is unlikely to have been a result of RhCMV reactivation as it was not observed in the CD4+ T
372 lymphocyte depleted controls without reinfection. Of note, rhesus macaques that were both CD4- and CD8 T
373 lymphocyte-depleted preceding kidney transplant did not see a rise in anti-gB IgG titer, suggesting that it is unlikely
374 that our observation of boosted immune responses are a consequence of reactivation (40). It is interesting that the
375 magnitude of the increase in antibody responses was greatest in the two macaques with partial CD4+ T lymphocyte
376 depletion suggesting a facilitatory role for CD4 help in potentiating humoral immunity. The magnitude of the boosted
377 memory CMV-specific CD8+ T lymphocyte response however did not appear to be affected by the extent of CD4+ T
378 lymphocyte depletion. In the absence of epitope mapping, we cannot determine whether the amplified responses
379 were anamnestic in nature with expansion of pre-existing or cross-reactive specificities against reinfection virus or
380 included new responses directed towards new epitopes in the reinfecting strain.

381 The small number of animals in this study with only one placental-transmitter dam prevents analysis of protective

382 correlates based on differences in immunity between transmitters and non-transmitters. Observationally, the
383 placental-transmitter dam (KK24) displayed certain features that were different from the non-transmitter dams. For
384 example, an increase in plasma eotaxin following reinfection was only detected in the transmitter dam. KK24 also had
385 the lowest frequency of RhCMV IE-specific CD8+ T lymphocyte responses at baseline prior to reinfection. In addition,
386 KK24 was one out of two dams that showed transient viremia post reinfection and that had a partial CD4+ T
387 lymphocyte depletion as well as a 1.0 log or greater increase in anti-gB IgG response following reinfection. Whether
388 this could have resulted in an increase in low affinity binding antibodies and transmission facilitated by transcytosis of
389 immune complexes is an interesting possibility. Studies with a larger group of animals are warranted.

390 In conclusion, establishment of the NHP reinfection cCMV model has provided definitive evidence for a role of
391 pre-conceptional natural immunity in CMV-seropositive individuals to partially protect against cCMV. Strikingly, this
392 protection is evident even in the absence of CD4+ T lymphocytes and likely involves multiple arms of the immune
393 system including CD8+ T lymphocyte-mediated and humoral immunity. Importantly, the establishment of this model
394 lays the groundwork for future experiments including CD8+ T lymphocyte depletion and B lymphocyte depletion
395 studies in CMV-seropositive macaques to dissect the contribution of different arms of the adaptive immune system
396 involved in protection against non-primary cCMV. Taken together, our data reinforces the utility of the rhesus
397 macaque model in furthering knowledge about immune determinants of cCMV protection, needed for rational vaccine
398 design.

399 **Methods**

400 **Animals and study design**

401 A total of eight CMV-seropositive Indian-origin first trimester of gestation rhesus macaques were enrolled in the
402 study from the specific pathogen free colony at the Tulane National Primate Research Center (TNPRC) and the New
403 England Primate Research Center (NPRC) (**Table 1**). Gestational age at enrollment was estimated by ultrasound
404 measurement of gestational sac diameter and/or crown-rump length. Subsequently, the gestational age was
405 monitored weekly by ultrasound measurement of biparietal diameter and femur length. At Caesarian section (C-
406 section), measurements of occipitofrontal diameter, head circumference, and abdominal circumference were
407 recorded.

408 All eight dams were subjected to *in vivo* CD4+ T lymphocyte depletion by intravenous (IV) administration of 50
409 mg/kg rhesus-recombinant anti-CD4 antibody (Clone CD4R1; Nonhuman Primate Reagent Resource) at mean 52.3
410 gestation days (range 49-59). The rhesus IgG1 recombinant Anti-CD4 [CD4R1] monoclonal antibody was engineered
411 and produced by the Nonhuman Primate Reagent Resource (NIH Nonhuman Primate Reagent Resource Cat# PR-
412 0407, RRID:AB_2716322).

413 Five of eight dams were reinfected with RhCMV one week after administration of the CD4-depleting antibody
414 (CMV-seropositive reinfection group), whereas the remaining three dams that received the CD4-depleting antibody
415 were not reinfected and served as a control group for reactivation following CD4+ T lymphocyte depletion (CMV-
416 seropositive Controls). Data from six dams with CD4-depletion and a primary infection with RhCMV served as
417 historical controls (**Table 1**)(24, 25).

418 One week after administration of the anti-CD4 antibody, the CMV-seropositive reinfection group were inoculated
419 IV with 2×10^6 TCID₅₀ of RhCMV 180.92 (n=2) or 1×10^6 pfu each of RhCMV UCD52 and FL-RhCMV Δ Rh13.1/SIVgag
420 (n=3; **Table 1**). Maternal blood, saliva, urine, amniotic fluid were collected preceding anti-CD4+ T lymphocyte
421 depletion and virus inoculation. Following RhCMV inoculation the animals were sampled weekly for all sample types.
422 Three animals that received the RhCMV UCD52 and FL-RhCMV Δ Rh13.1/SIVgag were in addition sampled for blood,
423 urine and saliva every 1-3 days within the first 7 days post infection to study the acute phase of infection. All animals
424 were subsequently followed with weekly sampling until term or C-section, outlined in **Table 1**.

425 **Virus stocks for reinfection**

426 Full Length-RhCMV68-1-ΔRh13.1/SIVgag (RhCMVΔRh13.1/SIVgag) virus was generated and characterized as
427 previously described (26) was administered intravenously at a single dose of 1×10^6 pfu. RhCMV strain UCD52 virus
428 stock grown in TeloRF cells was provided by Dr. Peter Barry (41) and administered intravenously at a single dose of
429 1×10^6 pfu. Both virus strains were inoculated in to separate arms of three animals. RhCMV 180.92 virus stock grown
430 in primary rhesus fibroblasts as previously described (27, 28) was administered at a single dose of 2×10^6 TCID₅₀
431 intravenously to two animals.

432

433 **Sample collection and processing**

434 Maternal PBMC's were isolated by ficoll separation after collecting plasma. All PBMC were cryopreserved using
435 90%FBS/10% DMSO. Amniotic fluid was spun to remove debris prior to storage in aliquots at -20°C. Saliva and urine
436 sample supernatants were concentrated using Ultracel YM-30 (Amicon/Milipore) and subsequently aliquoted for
437 storage at -20°C for DNA extraction. At C-section, the placenta and fetal tissues were harvested and processed for
438 lymphocyte isolation, snap frozen for DNA extraction for PCR and placed in Z-fix for paraffin blocks.

439 DNA was extracted from urine with the QIAamp RNA mini kit (Qiagen, Velencia, CA); from amniotic fluid, plasma,
440 and saliva with the QIAamp DNA mini kit (Qiagen, Velencia, CA); and from 10-25mgm of snap-frozen tissue using the
441 DNeasy Blood and Tissue kit (Qiagen) as previously described (21, 24).

442

443 **Viral quantitation by real time PCR**

444 Absolute quantification of RhCMV DNA in tissues and maternal fluids were performed as previously described
445 (24, 42). Briefly, for RhCMV DNA PCR, the primers/probe targeting the noncoding exon 1 region of the immediate
446 early gene were used. The Forward primer 5'-GTTTAGGGAACCGCCATTCTG-3', Reverse primer 5'-
447 GTATCCCGCGTTCCAATGCA-3', and probe 5'-FAM-TCCAGCCTCCATAGCCGGGAAGG-TAMRA-3' were used in a
448 25μL reaction with Supermix Platinum™ Quantitative PCR SuperMix-UDG (Invitrogen). The reaction was performed
449 in a 96-well format for real time quantification on Applied Biosystems 7900HT Fast Real-Time PCR System. A
450 standard curve generated from amplification of 10^5 - 10^0 copies of plasmid standard containing the RhCMV IE target

451 sequence diluted in genomic DNA from CMV-seronegative rhesus macaques was used for absolute quantitation of
452 RhCMV DNA. Real time PCR was performed in 6-12 replicates and at least 2 positive replicates were required to be
453 reported as a positive result. Data of plasma and amniotic fluid were reported as RhCMV DNA copies per mL of
454 sample while saliva, urine, and tissues were reported as copies per microg of input DNA.

455 For absolute quantification of SIVgag DNA in the three animals which received FL-RhCMVΔRh13.1/SIVgag both
456 a nested and real-time PCR protocol was performed. A plasmid carrying SIVgag sequence was synthesized
457 (Intregrated DNA Technology, Iowa) and used as standard in a 25uL reaction with Platinum Taq DNA polymerase
458 (cat# 10966034 Invitrogen) mastermix containing 0.012% Tween 20, 0.006% gelatin, 4.5mM MgCl₂, 300μM dNTPs,
459 10% PCR II buffer, 300nM Forward 5'-CAACTACGTCAACCTGCCACTGTC-3', 300nM Reverse 5'-
460 TCCAACGCAGTTCAGCATCTGG-3', 200nM Probe 5'-FAM-CCGAGAACCTGAACGCTTGGGTCAAGC-3BHQ-3'.
461 This was performed in 96 well plate format on Applied Biosystems 7900HT Fast Real-Time PCR System at 95°C for 2
462 minutes and cycled for 45 cycles at 95°C for 15 seconds, and 60°C for 1 minute.

463

464 **Viral sequencing and analysis**

465 Ultradeep sequencing of RhCMV DNA in the amniotic fluid of KK24 generally followed amplicon based
466 methodologies previously established for sequencing human CMV genomes (43) as applied to RhCMV (44). These
467 studies demonstrated that the error rates observed in amplicon based sequencing and direct sequencing of BAC
468 clones for both viral species are very low and produce nearly identical results. Thus, errors resulting from the
469 amplicon-based workflow plus sequencing are very similar in type and rate to those introduced by direct sequencing
470 and applicable to differentiating viral strains in a sample. As the amount of viral DNA in the KK24 amniotic fluid was
471 limited, MDA (Repli-g, Qiagen) was initially used to increase the overall amounts of DNA for the sequencing workflow.
472 The resulting DNA was repurified and subjected to plate PCR using primer pairs that span the parental RhCMV
473 genome and the SIVgag insert, fragmented and then ligated to Ion Express barcodes (Life Technologies). Products
474 were pooled with final processing performed on an Ion Chef (Life Technologies) followed by sequencing on an Ion
475 Proton Sequencer (Life Technologies).

476

477 Whole-genome sequencing data was mapped against the RhCMV UCD52 and FL-RhCMVΔRh13.1/SIVgag
478 reference assemblies using NextGenMap v.0.5.15 (45). Thereby, the human (hg38) and rhesus (rheMac10) genomes
479 (downloaded from NCBI GenBank using accession numbers GCA_000001405.29 and GCA_003339765.3,
480 respectively) were included as decoys to remove any potential contamination. To distinguish between the RhCMV
481 strains, uniquely mapping regions were identified using SAMtools v.1.12.0 (46).

482
483 **Cytokine and Chemokine analysis Luminex**

484 To analyze peripheral soluble cytokines and chemokines, a luminex assay was performed with Cytokine &
485 Chemokine 30-Plex NHP ProcartaPlex™ Panel (Invitrogen, EPX300-40044-901). The analytes in this panel are BLC
486 (CXCL13); Eotaxin (CCL11); G-CSF (CSF-3); GM-CSF; IFN alpha; IFN gamma; IL-1 beta; IL-10; IL-12p70; IL-13; IL-
487 15; IL-17A (CTLA-8); IL-18; IL-1RA; IL-2; IL-23; IL-4; IL-5; IL-6; IL-7; IL-8 (CXCL8); IP-10 (CXCL10); I-TAC (CXCL11);
488 MCP-1 (CCL2); MIG (CXCL9); MIP-1 alpha (CCL3); MIP-1 beta (CCL4); sCD40L; SDF-1 alpha (CXCL12a); TNF
489 alpha. Plasma was thawed on ice and manufacturers instructions were followed to prepare a 96-well plate with
490 samples performed in duplicates and read on a Bio-Plex® 200 System (Bio-Rad Laboratories, Hercules, CA). Results
491 were calculated using Bio-Plex Manager™ Software v6.2 (Bio-Rad) and the mean concentration of each analyte was
492 plotted.

493
494 **Immunophenotyping and intracellular cytokine staining (ICS) assays**

495 CD4+ T lymphocyte depletion kinetics were monitored by flow cytometric evaluation of absolute counts. Briefly,
496 50 µL whole blood was stained with an 8-color panel of FITC-CD3, PerCP-CD45, APC-CD4, V500-CD8, PE-Cy7-
497 CD95, APC-CY7-CD20, BV421-CCR7. A FMO was performed for CCR7 which was first stained alone for 15 minutes
498 and then with the remaining cocktail for an additional 15 minutes. Red blood cells were lysed using BD Lysing buffer
499 for 15-20 minutes and subsequently acquired on a BD FACSVerse.

500 A 13-color flow cytometry panel was used for immunophenotyping of the acute responses following RhCMV
501 infection. PBMCs were stained with the following antibodies: FITC-Ki67, PCP-Cy5.5-TCRgd, APC-KIR2D, AL700-
502 Granzyme B, APC-CY7-CD3, PacBlue-CD20, BV510-live/dead, BV605-CD14, BV650-CD8, BV711-CD16, PE-

503 CD169, PE-CF594-HLA-DR, PE-CY7-NKG2A (for additional details regarding the antibodies, see **Table S2**). These
504 data were aquired on the BD LSRLFortessa™ and analyzed using Flowjo v9.9 (Ashland, Oregon).

505 Antigen-specific T lymphocyte responses were assesed by intracellular cytokine staining for RhCMV-specific and
506 SIV Gag-specific responses. Cryopreseved PBMCs were thawed and stimulated for 12-18 hours with RhCMV IE1,
507 IE2, pp65 and SIV Gag peptide pools. Briefly, the RhCMV peptide pool and the SIV Gag peptide pool consists of
508 pools of 15-amino acid peptides each, overlapping by 11 amnio acids and spanning the entire protein. Peptides were
509 used at a concentration of 1µg/mL of individual peptides for stimulation and DMSO concentrations were kept <0.5%.
510 After 1 hour, monensin 2µM/mL (cat# 554724, BD) and brefeldin A 1µL/mL (cat#555029, BD) were added along with
511 CD107a-FITC and CD107b-FITC for the remaining period of stimulation. After stimulation, cells were washed and
512 stained sequentially with the following: AQUA Live/dead dye, surface, and intracellular cytokine staining antibodies
513 PCP-Cy5.5-CD4, APC-CD69, AL700-TNF α , APC-CY7-CD3, BV421-Granzyme B, BV605-IL-2, BV650-CD8, BV711-
514 CD95, PE-CCR5, PE-CF594-CD28, PE-CY7-IFN γ using the BD fix/perm kit(BD Cat# 554714) and Brilliant Stain
515 buffer(BD Cat# 563794). These data were aquired on the BD LSRLFortessa™ and analyzed using Flowjo v9.9
516 (Ashland, Oregon). Boolean analyses of polyfunctional responses were performed using the SPICE 6 software (47).
517

518 **Antibody assays for RhCMV gB and SIV Gag**

519 **RhCMV gB:** DNA plasmid expressing RhCMV gB was transected into 293F/293i cells. Protein was purified with
520 nickel beads and quantitated on a NanoDrop.

521 **IgG ELISA:** ELISAs were performed as previously described (24). Briefly 384-well high protein binding plates
522 (Corning 3700) were coated overnight at 4°C with either 30 ng RhCMV gB produced as described above or
523 SIVmac251 pr55 Gag recombinant protein (NIH AIDS Reagent Program cat# 13384). Serially diluted plasma samples
524 were added to the coated ELISA plates, incubated for 2 hours after which the plates were washed, and then
525 incubated with the secondary anti-monkey IgG HRP-conjugated antibody followed by addition of substrate as
526 previously described (24). ELISA titers were reported as the serum dilution yielding 50% maximum absorbance
527 (Effective Dose ED₅₀). ED₅₀ was determined using non-linear regression in GraphPad Prism v9.5. Data are reported
528 as log¹⁰ED₅₀.

529

530 **Antibody neutralization assay:** Telo-RF cells were seeded in a 384-well plate and incubated for 1 day at 37⁰C at
531 5% CO₂. The next day, serial dilutions (1:10-1:21,870) of heat-inactivated rhesus plasma were incubated with 1 PFU
532 of RhCMV 180.92 per cell. Infected cells were then fixed for 20 minutes at -20⁰C with 1:1 methanol/acetone,
533 rehydrated in PBS three times for 5 minutes and stained with 1 mg/mL mouse anti-RhCMV-IE1 monoclonal antibody
534 provided by Dr. Klaus Früh (Oregon Health and Science University, Portland, OR) followed by a 1:1000 dilution of
535 anti-mouse IgG-Alexa Fluor 488 antibody. Nuclei were stained with DAPI for 5 minutes (Pierce) and imaged using the
536 CellInsight CX5 High-Content Screening (HCS) platform. The 50% neutralization titer (NT50) was determined by
537 comparing the dilution that resulted in a 50% reduction in fluorescence signal to control wells infected with virus only.

538

539 **Statistics**

540 Unpaired and paired parametric and non-parametric t-tests were performed in GraphPad Prism version 8.4.0.
541 (San Diego, CA). P-values <0.05 were considered significant. For viral load the area under the curve (AUC) was
542 calculated between day 0 and 99 days post infection for inter-group comparison. Kaplan-Meier survival curves were
543 calculated in Graphpad Prism for transmission events and fetal survival and statistical comparisons performed with
544 the Log-rank (Mantel-Cox) test.

545 **Acknowledgements**

546 This work was supported by NIH grants DP2HD075699, P01AI129859, and P51OD011104. The Anti-CD4
547 [CDR1] antibody used in this study was provided by the NIH Nonhuman Primate Reagent Resource (P40
548 OD028116). The authors gratefully acknowledge the Veterinary Medicine staff at the Tulane National Primate
549 Research Center (TNPRC) for care of the animals, TNPRC Flow Cytometry Core for acquisition of flow cytometry data
550 and TNPRC Pathogen Detection and Quantification Core for real time PCR runs and Luminex assays.

551

552 **References**

553 1. Cheeran MC, Lokensgard JR, Schleiss MR. Neuropathogenesis of congenital cytomegalovirus infection:
554 disease mechanisms and prospects for intervention. *Clin Microbiol Rev.* 2009;22(1):99-126.

555 2. Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics
556 associated with infection. *Rev Med Virol.* 2010;20(4):202-13.

557 3. Ahlfors K, Ivarsson SA, Harris S. Secondary maternal cytomegalovirus infection--A significant cause of
558 congenital disease. *Pediatrics.* 2001;107(5):1227-8.

559 4. Boppana SB, Rivera LB, Fowler KB, Mach M, Britt WJ. Intrauterine transmission of cytomegalovirus to infants
560 of women with preconceptional immunity. *The New England journal of medicine.* 2001;344(18):1366-71.

561 5. Ross SA, Arora N, Novak Z, Fowler KB, Britt WJ, Boppana SB. Cytomegalovirus reinfections in healthy
562 seroimmune women. *J Infect Dis.* 2010;201(3):386-9.

563 6. Yamamoto AY, Mussi-Pinhata MM, Boppana SB, Novak Z, Wagatsuma VM, Oliveira Pde F, et al. Human
564 cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal
565 population. *Am J Obstet Gynecol.* 2010;202(3):297 e1-8.

566 7. Wang C, Zhang X, Bialek S, Cannon MJ. Attribution of congenital cytomegalovirus infection to primary versus
567 non-primary maternal infection. *Clin Infect Dis.* 2011;52(2):e11-3.

568 8. Plotkin SA, Boppana SB. Vaccination against the human cytomegalovirus. *Vaccine.* 2019;37(50):7437-42.

569 9. Britt WJ. Congenital Human Cytomegalovirus Infection and the Enigma of Maternal Immunity. *J Virol.*
570 2017;91(15).

571 10. Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV)
572 infection. *Rev Med Virol.* 2007;17(4):253-76.

573 11. Leruez-Ville M, Magny JF, Couderc S, Pichon C, Parodi M, Bussieres L, et al. Risk Factors for Congenital
574 Cytomegalovirus Infection Following Primary and Nonprimary Maternal Infection: A Prospective Neonatal Screening
575 Study Using Polymerase Chain Reaction in Saliva. *Clin Infect Dis.* 2017;65(3):398-404.

576 12. Simonazzi G, Curti A, Cervi F, Gabrielli L, Contoli M, Capretti MG, et al. Perinatal Outcomes of Non-Primary
577 Maternal Cytomegalovirus Infection: A 15-Year Experience. *Fetal Diagnosis and Therapy.* 2018;43(2):138-42.

578 13. Mussi-Pinhata MM, Yamamoto AY, Aragon DC, Duarte G, Fowler KB, Boppana S, et al. Seroconversion for
579 Cytomegalovirus Infection During Pregnancy and Fetal Infection in a Highly Seropositive Population: "The BraCHS
580 Study". *J Infect Dis.* 2018;218(8):1200-4.

581 14. Giannattasio A, Di Costanzo P, De Matteis A, Milite P, De Martino D, Bucci L, et al. Outcomes of congenital
582 cytomegalovirus disease following maternal primary and non-primary infection. *J Clin Virol.* 2017;96:32-6.

583 15. Ornoy A, Diav-Citrin O. Fetal effects of primary and secondary cytomegalovirus infection in pregnancy. *Reprod
584 Toxicol.* 2006;21(4):399-409.

585 16. Yamamoto AY, Anastasio ART, Massuda ET, Isaac ML, Manfredi AKS, Cavalcante JMS, et al. Contribution of
586 Congenital Cytomegalovirus Infection to Permanent Hearing Loss in a Highly Seropositive Population: The Brazilian
587 Cytomegalovirus Hearing and Maternal Secondary Infection Study. *Clin Infect Dis.* 2020;70(7):1379-84.

588 17. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The "Silent" Global Burden of Congenital
589 Cytomegalovirus. *Clinical Microbiology Reviews.* 2013;26(1):86-102.

590 18. Deere JD, Barry PA. Using the nonhuman primate model of HCMV to guide vaccine development. *Viruses.*
591 2014;6(4):1483-501.

592 19. Itell HL, Kaur A, Deere JD, Barry PA, Permar SR. Rhesus monkeys for a nonhuman primate model of
593 cytomegalovirus infections. *Curr Opin Virol.* 2017;25:126-33.

594 20. Malouli D, Nakayasu ES, Viswanathan K, Camp DG, 2nd, Chang WL, Barry PA, et al. Reevaluation of the
595 coding potential and proteomic analysis of the BAC-derived rhesus cytomegalovirus strain 68-1. *J Virol.*
596 2012;86(17):8959-73.

597 21. Antoine P, Varner V, Carville A, Connole M, Marchant A, Kaur A. Postnatal acquisition of primary rhesus
598 cytomegalovirus infection is associated with prolonged virus shedding and impaired CD4+ T lymphocyte function. *J
599 Infect Dis.* 2014;210(7):1090-9.

600 22. Kaur A, Itell HL, Ehlinger EP, Varner V, Gantt S, Permar SR. Natural history of postnatal rhesus
601 cytomegalovirus shedding by dams and acquisition by infant rhesus monkeys. *PLoS One.* 2018;13(10):e0206330.

602 23. Vogel P, Weigler BJ, Kerr H, Hendrickx AG, Barry PA. Seroepidemiologic studies of cytomegalovirus infection
603 in a breeding population of rhesus macaques. *Lab Anim Sci.* 1994;44(1):25-30.

604 24. Bialas KM, Tanaka T, Tran D, Varner V, Cisneros De La Rosa E, Chiuppesi F, et al. Maternal CD4+ T cells
605 protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental
606 cytomegalovirus transmission. *Proceedings of the National Academy of Sciences of the United States of America*.
607 2015;112(44):13645-50.

608 25. Nelson CS, Cruz DV, Tran D, Bialas KM, Stamper L, Wu H, et al. Preexisting antibodies can protect against
609 congenital cytomegalovirus infection in monkeys. *JCI Insight*. 2017;2(13).

610 26. Taher H, Mahyari E, Kreklywich C, Uebelhoer LS, McArdle MR, Mostrom MJ, et al. In vitro and in vivo
611 characterization of a recombinant rhesus cytomegalovirus containing a complete genome. *PLoS Pathog*.
612 2020;16(11):e1008666.

613 27. Assaf BT, Mansfield KG, Strelow L, Westmoreland SV, Barry PA, Kaur A. Limited dissemination and shedding
614 of the UL128 complex-intact, UL/b'-defective rhesus cytomegalovirus strain 180.92. *J Virol*. 2014;88(16):9310-20.

615 28. Rivailler P, Kaur A, Johnson RP, Wang F. Genomic sequence of rhesus cytomegalovirus 180.92: insights into
616 the coding potential of rhesus cytomegalovirus. *J Virol*. 2006;80(8):4179-82.

617 29. Vera Cruz D, Nelson CS, Tran D, Barry PA, Kaur A, Koelle K, et al. Intrahost cytomegalovirus population
618 genetics following antibody pretreatment in a monkey model of congenital transmission. *PLoS Pathog*.
619 2020;16(2):e1007968.

620 30. Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, et al. Profound early control of
621 highly pathogenic SIV by an effector memory T-cell vaccine. *Nature*. 2011;473(7348):523-7.

622 31. Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD, et al. Effector memory T cell
623 responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge.
624 *Nat Med*. 2009;15(3):293-9.

625 32. Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC, Siess D, et al. Evasion of CD8+ T cells is critical
626 for superinfection by cytomegalovirus. *Science*. 2010;328(5974):102-6.

627 33. Ross SA, Novak Z, Pati S, Patro RK, Blumenthal J, Danthuluri VR, et al. Mixed infection and strain diversity in
628 congenital cytomegalovirus infection. *J Infect Dis*. 2011;204(7):1003-7.

629 34. Nyland TG, Hill DE, Hendrickx AG, Farver TB, McGahan JP, Henrickson R, et al. Ultrasonic assessment of
630 fetal growth in the nonhuman primate (*Macaca mulatta*). *J Clin Ultrasound*. 1984;12(7):387-95.

631 35. Hyde TB, Schmid DS, Cannon MJ. Cytomegalovirus seroconversion rates and risk factors: implications for
632 congenital CMV. *Rev Med Virol*. 2010;20(5):311-26.

633 36. Barbosa NG, Yamamoto AY, Duarte G, Aragon DC, Fowler KB, Boppana S, et al. Cytomegalovirus Shedding
634 in Seropositive Pregnant Women From a High-Seroprevalence Population: The Brazilian Cytomegalovirus Hearing and
635 Maternal Secondary Infection Study. *Clin Infect Dis*. 2018;67(5):743-50.

636 37. Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF. Extensive Genome-Wide Variability of Human
637 Cytomegalovirus in Congenitally Infected Infants. *PLoS Pathogens*. 2011;7(5).

638 38. Pokalyuk C, Renzette N, Irwin KK, Pfeifer SP, Gibson L, Britt WJ, et al. Characterizing human cytomegalovirus
639 reinfection in congenitally infected infants: an evolutionary perspective. *Mol Ecol*. 2017;26(7):1980-90.

640 39. Novak Z, Ross SA, Patro RK, Pati SK, Kumbla RA, Brice S, et al. Cytomegalovirus strain diversity in
641 seropositive women. *Journal of clinical microbiology*. 2008;46(3):882-6.

642 40. Ezekian B, Schroder PM, Mulvihill MS, Barbas A, Collins B, Freischlag K, et al. Pretransplant Desensitization
643 with Costimulation Blockade and Proteasome Inhibitor Reduces DSA and Delays Antibody-Mediated Rejection in Highly
644 Sensitized Nonhuman Primate Kidney Transplant Recipients. *J Am Soc Nephrol*. 2019;30(12):2399-411.

645 41. Oxford KL, Strelow L, Yue Y, Chang WL, Schmidt KA, Diamond DJ, et al. Open reading frames carried on UL/b'
646 are implicated in shedding and horizontal transmission of rhesus cytomegalovirus in rhesus monkeys. *J Virol*.
647 2011;85(10):5105-14.

648 42. Kaur A, Kassis N, Hale CL, Simon M, Elliott M, Gomez-Yafal A, et al. Direct relationship between suppression
649 of virus-specific immunity and emergence of cytomegalovirus disease in simian AIDS. *J Virol*. 2003;77(10):5749-58.

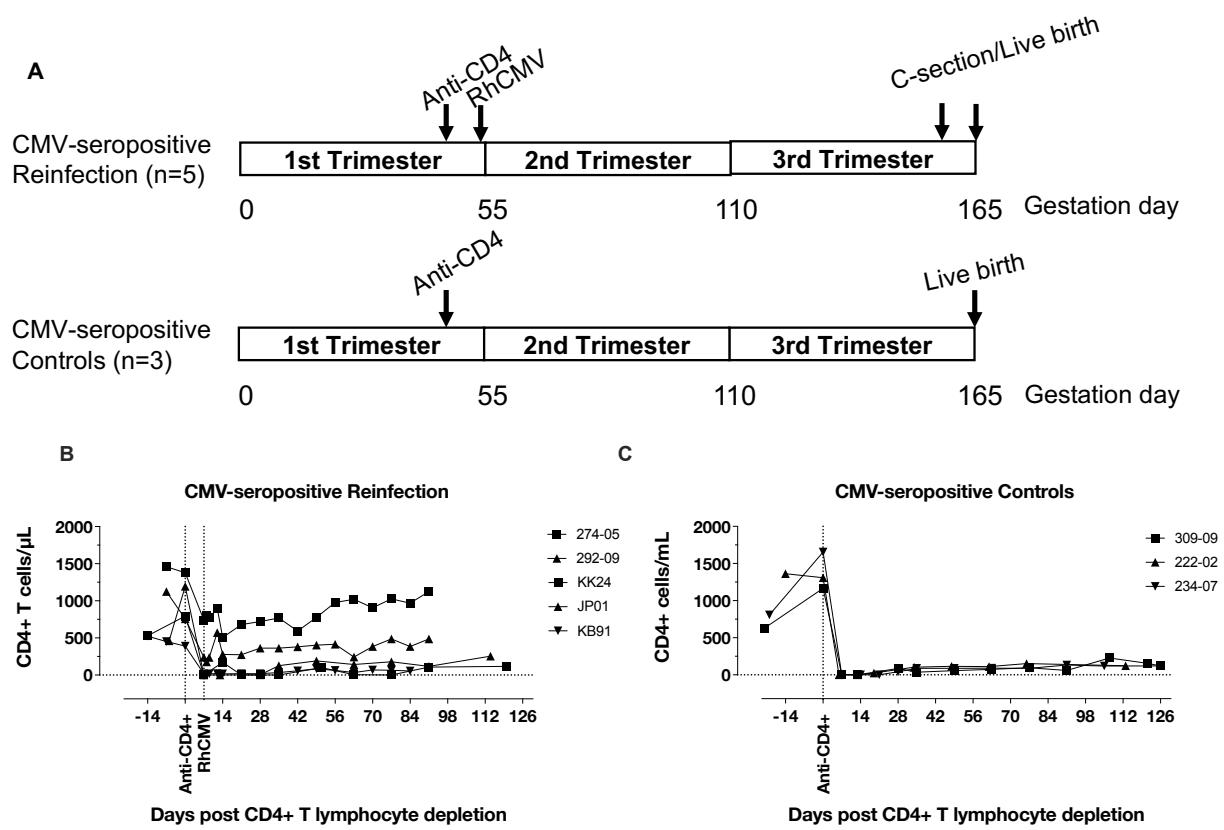
650 43. Renzette N, Pokalyuk C, Gibson L, Bhattacharjee B, Schleiss MR, Hamprecht K, et al. Limits and patterns of
651 cytomegalovirus genomic diversity in humans. *Proceedings of the National Academy of Sciences of the United States
652 of America*. 2015;112(30):E4120-8.

653 44. Deere JD, Chang WL, Castillo LD, Schmidt KA, Kieu HT, Renzette N, et al. Utilizing a TLR5-Adjuvanted
654 Cytomegalovirus as a Lentiviral Vaccine in the Nonhuman Primate Model for AIDS. *PLoS One*. 2016;11(5):e0155629.

Mostrom et al _NatComm_4-3-23.docx

655 45. Sedlazeck FJ, Rescheneder P, von Haeseler A. NextGenMap: fast and accurate read mapping in highly
656 polymorphic genomes. *Bioinformatics*. 2013;29(21):2790-1.

657 46. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and
658 BCFtools. *Gigascience*. 2021;10(2).


659 47. Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate
660 datasets. *Cytometry A*. 2011;79(2):167-74.

661

662

663

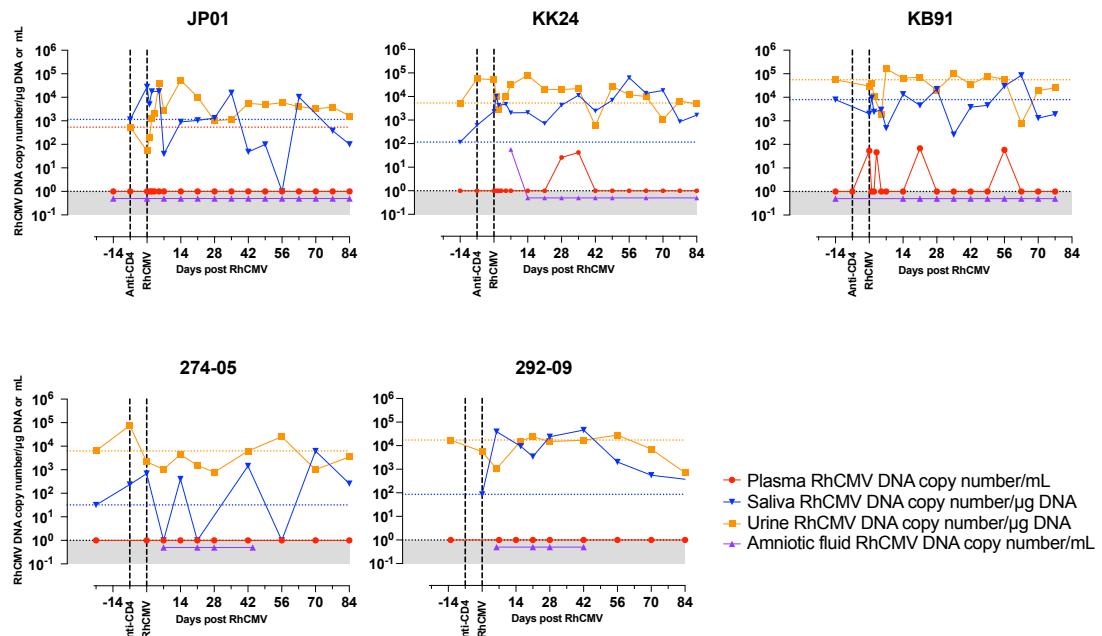
Figures

664

665

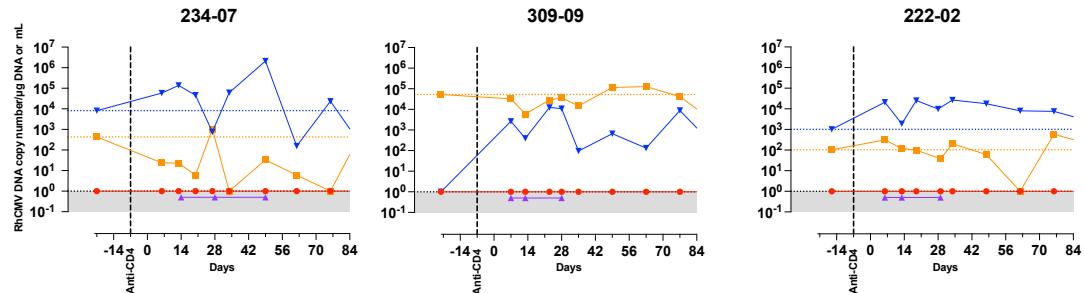
666 Fig 1. Study design and kinetics of CD4+ T lymphocyte depletion in experimental groups.

667 (A) Schematic of study design of cCMV transmission in pregnant CMV-seropositive rhesus macaques. (B-C)


668 Peripheral blood CD4+ T lymphocyte counts following anti-CD4 antibody administration in (B) CMV-seropositive

669 Reinfection group (n=5); and (C) CMV-seropositive Control group (n=3).

670


CMV-seropositive Reinfection (n=5)

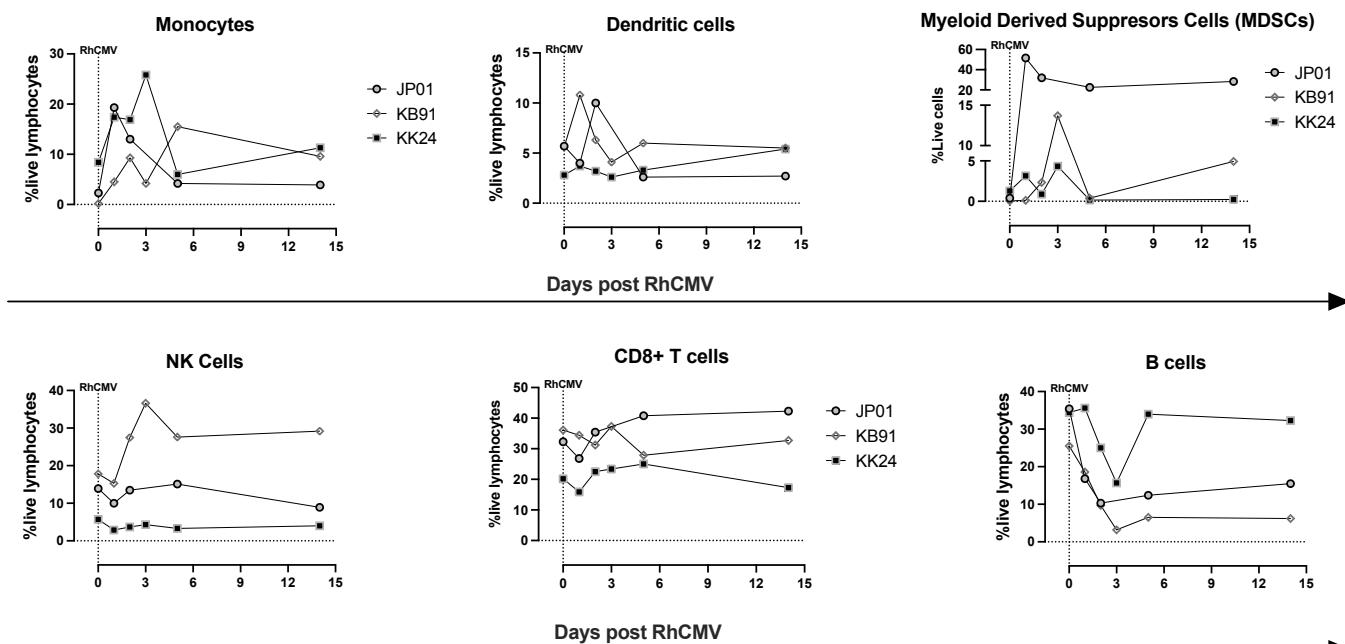
A

CMV-seropositive Controls (n=3)

B

671

672

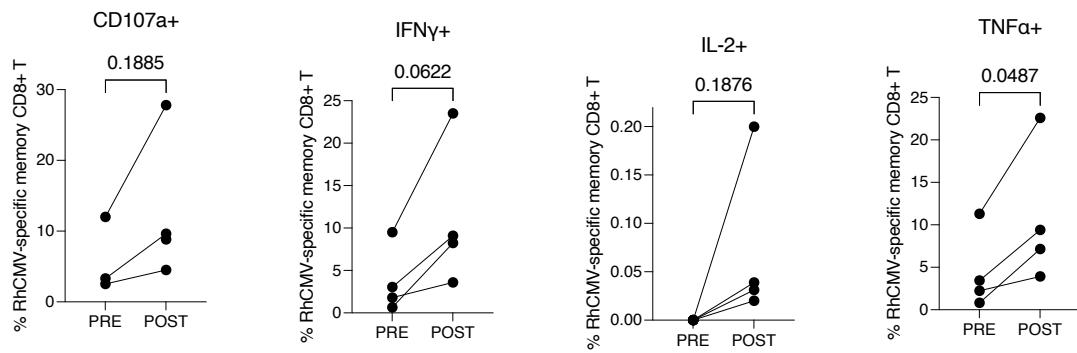

673 **Fig 2. RhCMV viral kinetics in blood and body fluids of individual CD4+ T lymphocyte depleted CMV-
674 seropositive macaques.**

675 RhCMV in plasma (indicated in red), saliva (blue), urine (orange), and amniotic fluid (purple) in (A) five CMV-
676 seropositive reinjected animals and (B) three CMV-seropositive control animals. Plasma and amniotic fluid are
677 reported in RhCMV DNA copy number/mL of sample fluid; saliva and urine are reported as RhCMV DNA copy

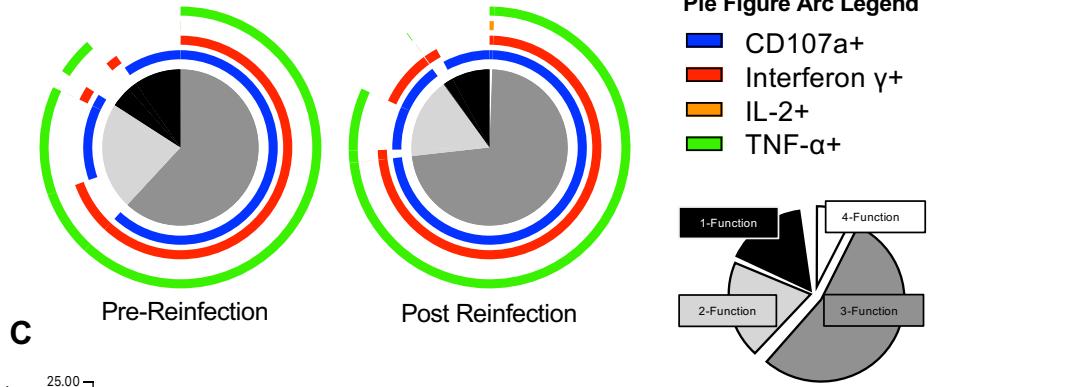
Mostrom et al_NatComm_4-3-23.docx

678 number/µg of input DNA. In CMV-seropositive controls, the equivalent post-infection time-points on the x-axis are
679 aligned concurrently with the CMV-seropositive Reinfection group. The black vertical lines indicate time of anti-CD4
680 antibody (CD4R1) and RhCMV inoculation. Animals JP01, KK24, and KB91 were inoculated with RhCMV UCD52 and
681 FL-RhCMVΔRh13.1/SIVgag; animals 274-05 and 292-09 were inoculated with RhCMV 180.92; animals 234-07, 309-
682 09, and 222-02 remained without a reinfection. The horizontal stippled line indicates the baseline RhCMV DNA copy
683 number/µg of input DNA in either saliva (blue) or urine (orange).

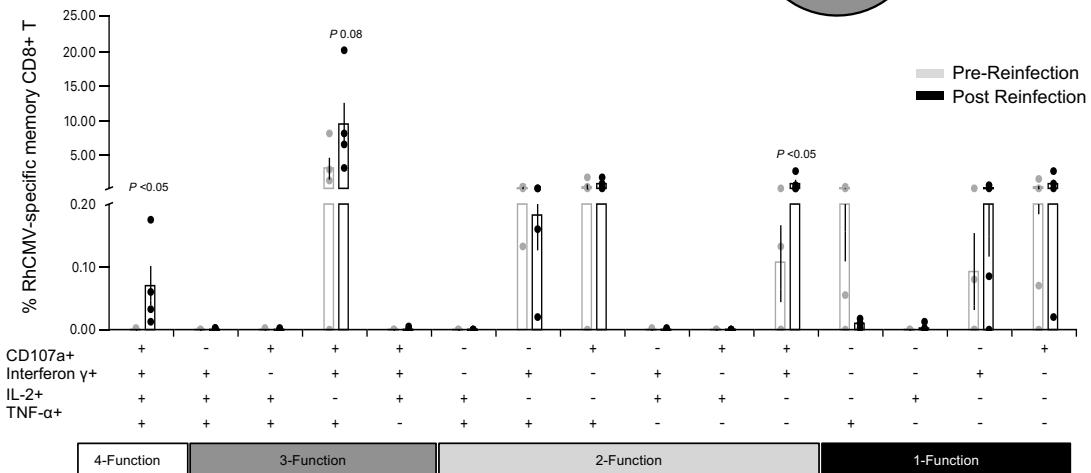
684


685

686 **Fig 3. Early immunophenotypic changes following RhCMV reinfection in CMV-seropositive macaques.**


687 Immunophenotyping of circulating peripheral blood mononuclear cells in acute RhCMV reinfection. Plots show the
688 kinetics of different lymphocyte subsets in three CMV-seropositive reinfected macaques (JP01, KB91, and KK24).
689 Paired t-test comparing baseline prereinfection values with values at time-point of maximal change in the first 7 days
690 post reinfection was performed.

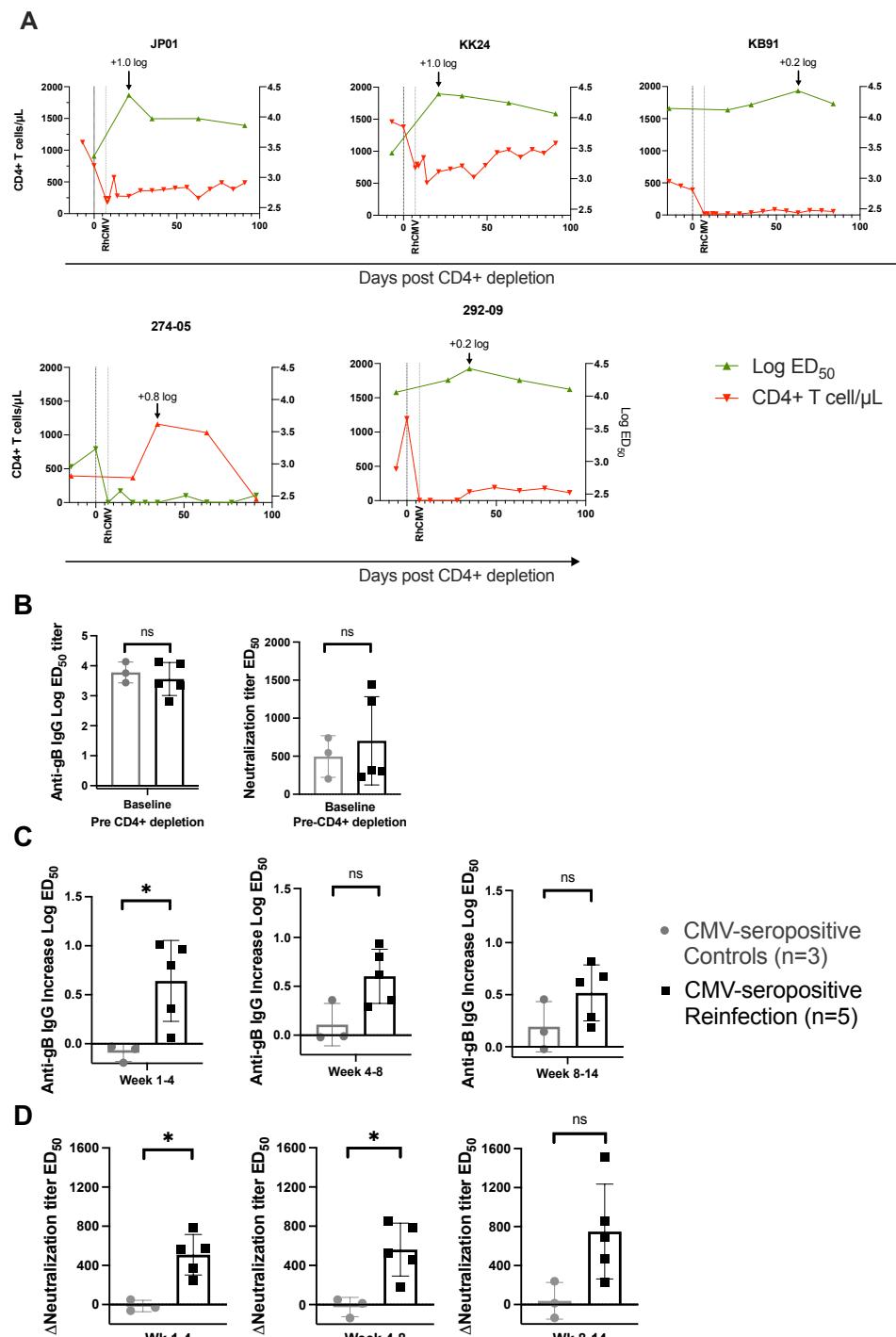
691


A

B

C

692


693 **Fig 4. CMV-specific CD8+ T lymphocyte memory responses to RhCMV immediate early (IE) proteins and**
694 **exogenous SIV Gag protein in CD4+ T lymphocyte depleted RhCMV reinfected macaques.**

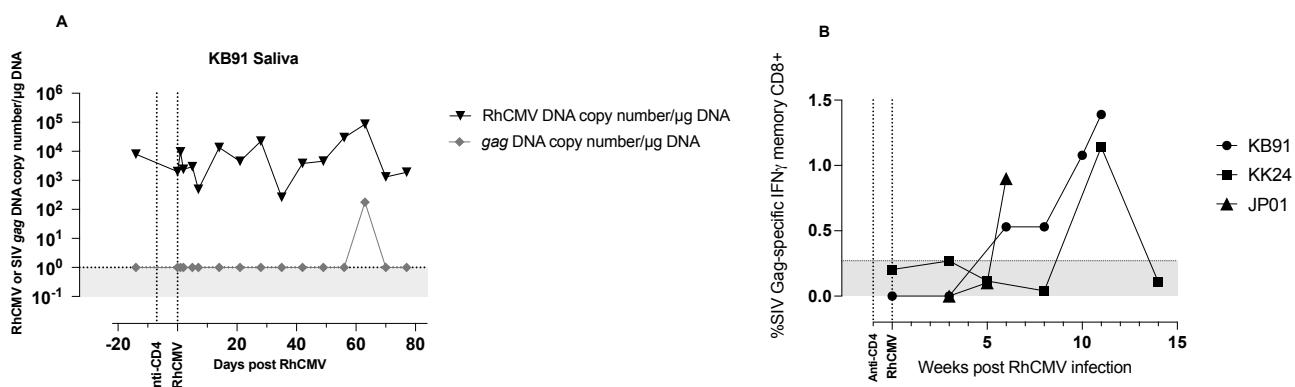
695 (A) Paired IE-specific responses by CD107a expression and secretion of IFN- γ , IL-2, and TNF- α in CMV-seropositive
696 macaques (n=4) reinfected with RhCMV UCD52 and FL-RhCMV Δ Rh13.1/SIVgag. Pre-reinfection responses were

Mostrom et al_NatComm_4-3-23.docx

697 compared with responses at week 8-10 post RhCMV reinfection using paired t-test. (B) Polyfunctional SPICE analysis
698 of IE-specific responses pre vs post RhCMV reinfection. CD107a (blue arc), IFN- γ (red arc), IL-2 (orange arc), and
699 TNF- α (green arc). Four-functional responses are displayed in white, three-functional responses in dark grey, two-
700 functional response in light grey, and mono-functional responses in black. (C) Bar graph of the polyfunctional
701 responses pre (grey) and post (black) RhCMV reinfection ($n=4$). The RhCMV IE-specific response was measured by
702 intracellular cytokine staining after stimulation with RhCMV IE1 and / or IE2 peptide pools depending on the baseline
703 immunodominant response in individual animals. Comparison of pre- and post reinfection Boolean responses were
704 compared with the Wilcoxon rank sum test using SPICE v6 software.

705

706

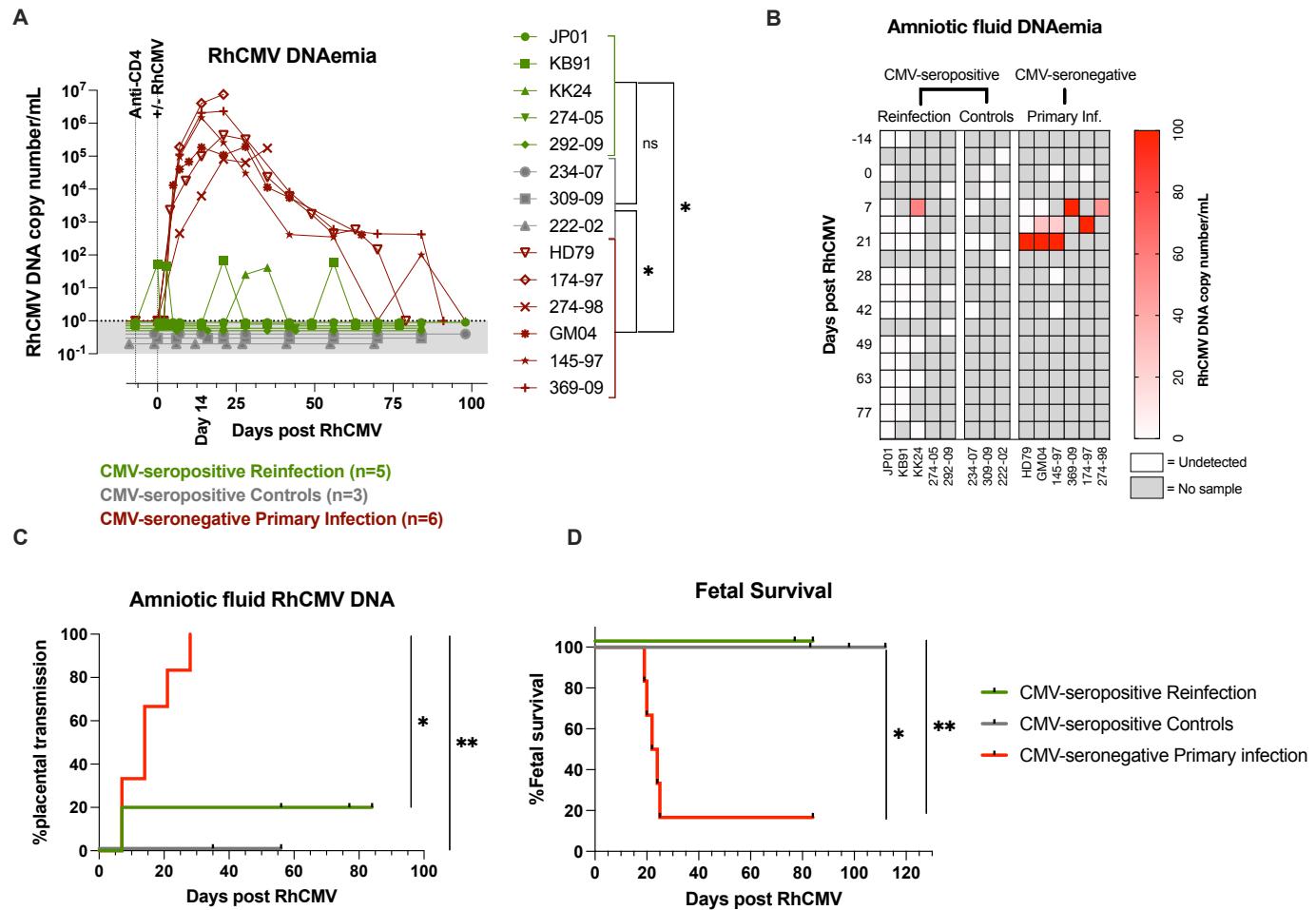

Fig 5. RhCMV-specific antibody responses in CD4+ T lymphocyte depleted CMV-seropositive reinfected

708 **macaques.** (A) Kinetic data of anti-gB binding antibodies in graphs on individual animals showing log ED₅₀ of anti-gB

709 binding titer (green line) superimposed on CD4+ lymphocytes/ μ L (red line). (B) Comparison of CMV-seropositive
710 reinfected dams ($n=5$) and CMV-seropositive controls ($n=3$) by their anti-gB binding titer and fibroblast neutralization
711 against RhCMV 180.92 at baseline preceding CD4+ lymphocyte depletion. (C) Maximal increase in baseline anti-gB
712 ED₅₀ compared between the two groups. (D) Comparison of maximal neutralization titer change from baseline over
713 time in both CMV-seropositive controls and CMV-seropositive reinfected dams.

714 ED₅₀ = Effective Dose 50

715



716

717 **Fig. 6. Evidence of reinfection in CD4+ T lymphocyte depleted FL RhCMV Δ Rh13.1/SIVgag inoculated dams**

718 (A) RhCMV-specific (black line) and SIVgag-specific (grey line) real time PCR results in the saliva of one CMV-
719 seropositive reinfected animal (KB91). All other animals were found negative for SIVgag DNA in saliva and urine. (B)
720 Detection of SIV Gag-specific T lymphocyte responses measured longitudinally against a SIVmac239 Gag peptide
721 pool in CMV-seropositive reinfected macaques (KB91, KK24, and JP01) inoculated with RhCMV UCD52 and FL-
722 RhCMV Δ Rh13.1/SIVgag. Horizontal stippled line shows negative cut-off based on pre-reinfection values.

723

724

725 **Fig 7. Protective effect of pre-existing immunity against congenital CMV transmission.**

726 (A) Plasma RhCMV-specific PCR in CD4+ T lymphocyte depleted CMV-seronegative primary infected macaques
 727 (red; $n=6$) compared to both CMV-seropositive reinfected (green; $n=5$) and CMV-seropositive controls (grey; $n=3$).
 728 Area Under the Curve (AUC) values of plasma RhCMV DNA between 0-99 days were compared between groups
 729 using the Man-Whitney test. P-values <0.05 denoted with a single * were considered significant. (B) Heatmap of
 730 RhCMV-specific DNA copy number in amniotic fluid in CMV-seronegative primary infected macaques ($n=6$), CMV-
 731 seropositive reinfected ($n=5$), and CMV-seropositive controls ($n=3$). (C) Kaplan-Meir curve showing cCMV frequency
 732 based on RhCMV DNA detection in the amniotic fluid in CMV-seronegative primary infected macaques ($n=6$), CMV-
 733 seropositive reinfected ($n=5$), and CMV-seropositive controls ($n=3$). (D) Kaplan-Meir curve showing fetal survival in
 734 CMV-seronegative primary infected macaques ($n=6$), CMV-seropositive reinfected ($n=5$), and CMV-seropositive

Mostrom et al *NatComm* 4-3-23.docx

735 controls ($n=3$). Statistical comparisons by Log-rank (Mantel-Cox) test showing significance levels: *= <0.05 and

736 **= <0.01 .

737