

Effect of temperature on mosquito olfaction

Chloé Lahondère^{†1,2,3,4,5}, Clément Vinauger^{1,2,5}, Jessica E. Liaw⁶, Kennedy K.S. Tobin⁶,
Jillian M. Joiner⁶ and Jeffrey A. Riffell⁶

¹ Department of Biochemistry, ² The Fralin Life Science Institute, ³ The Global Change Center, ⁴ Department of Entomology, ⁵ Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.

⁶Department of Biology, University of Washington, Seattle, WA 98195, USA.

Keywords: olfaction, disease vector insect, blood-feeding, *Aedes aegypti*, electroantennogram, flight arena, olfactometer, temperature

† To whom all correspondence should be addressed:

Chloé Lahondère
Department of Biochemistry,
Virginia Tech,
Blacksburg, VA 24061, USA

E-mail: lahonder@vt.edu

43

44 **ABSTRACT**

45 Mosquitoes use a wide range of cues to find a host to feed on, eventually leading to the
46 transmission of pathogens. Among them, olfactory cues (*e.g.*, host emitted odors, including
47 CO₂, and skin volatiles) play a central role in mediating host seeking behaviors. While
48 mosquito olfaction can be impacted by many factors, such as the physiological state of the
49 insect (*e.g.*, age, reproductive state), the impact of environmental temperature on the olfactory
50 system remains unknown. In this study, we quantified the behavioral responses of *Aedes*
51 *aegypti* mosquitoes, vectors of dengue, yellow fever and Zika viruses, to host and plant related
52 odors under different environmental temperatures.

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 INTRODUCTION

70 Temperature is one of the most important physical factors affecting the life of insects.
71 Because of their ectothermic nature (*i.e.*, their inability to maintain a constant body
72 temperature, independently of the temperature of the environment), excessive heat or cold can
73 have deleterious effects on insects' physiology and behavior. For each insect species, its
74 behavioral performance, such as feeding or flying, is optimal at a given temperature. Although
75 these responses and behaviors are possible within a range of temperatures (*i.e.*, tolerance
76 range), beyond a critical minimum and maximum point it is impossible for the insect to perform
77 (Huey and Stevenson, 1979). Nevertheless, insects have developed strategies to avoid thermal
78 stress and some species can rely on thermoregulation processes (Heinrich, 1993). For example,
79 they can for adjust their body position toward the sun (May, 1976), seek shade (Herrera, 1997),
80 use evaporative cooling of droplets of nectar (Heinrich, 1979) or urine and blood (Lahondère
81 and Lazzari, 2012; Lazzari *et al.*, 2021; Reinhold *et al.*, 2021), or actively produce or release
82 heat via counter-current heat exchangers (Heinrich 1976; Lahondère *et al.*, 2017).

83 In mosquitoes, the deadliest animals on earth (WHO, 2019), the temperature of the
84 environment has been shown to affect their behavior (Kirby and Lindsay, 2004; Thomson,
85 1938), metabolism (Clements, 1992), development (Lanciani and Le, 1995; Lyimo *et al.*, 1992;
86 Rueda *et al.*, 1990), and reproduction and blood-feeding (Eldridge, 1968). Moreover, by
87 affecting the development of the pathogens that they might carry, temperature can also affect
88 the vectorial capacity of mosquitoes (Paaijmans *et al.*, 2011; Reinhold *et al.*, 2018).

89 In blood feeding insects, the physiological processes regulating host-seeking behavior
90 have been well-described (*e.g.*, nutritional, and reproductive states, age, time of the day, etc.
91 reviewed by Lazzari, 2009). By contrast, comparatively less is known about how the
92 temperature of the environment could affect their sensory-mediated behaviors and systems, and
93 by extension their host-seeking behavior and the transmission of the pathogens responsible for

94 diseases. In the context of global warming and the ability of mosquitoes to invade new areas,
95 there is an urgent need to identify the physical processes influencing mosquito behavior and
96 biology (Lahondère and Bonizzoni, 2022). In the present study, we focused on the mosquito
97 olfactory system – essential for host and plant seeking – and how the temperature of the
98 environment affects mosquito responses. More specifically, we examined: (1) how temperature
99 affects flight dynamics of tethered and free-flying mosquitoes; (2) how *Aedes aegypti*, a major
100 vector of pathogens such as Zika, dengue or yellow fever viruses, responds to host and plant
101 related odors under different, yet ecologically relevant, thermal conditions and (3) the possible
102 modulation of antennal responses to odors by the environmental temperature.

103

104 MATERIAL and METHODS

105 Insects

106 Female *Aedes aegypti* mosquitoes (wild type, line F21 MRA-726, MR4, ATCC®,
107 Manassas, VA, USA) were used for all experiments. The colony was kept in a climatic chamber
108 maintained at $25\pm1^{\circ}\text{C}$, $60\pm10\%$ relative humidity (RH) and under a 12-12 hr light-dark cycle.
109 Groups of 160 - 200 larvae were placed in 26x35x4cm covered pans containing tap water and
110 were fed daily on fish food (Hikari Tropic 382 First Bites - Petco, San Diego, CA, USA).
111 Groups of same day pupae (both males and females) were then isolated in 16 Oz containers
112 (Mosquito Breeder Jar, Bioquip Products, Rancho Dominguez, CA, USA) until emergence.
113 Adults were then transferred into mating cages (BioQuip Products, Rancho Dominguez, CA,
114 USA) and maintained on 10% sucrose. An artificial feeder (D.E. Lillie Glassblowers, Atlanta,
115 GA, USA; 2.5 cm internal diameter) filled with heparinized bovine blood (Lampire Biological
116 Laboratories, Pipersville, PA, USA) placed on the top of the cage and heated at 37°C using a
117 water-bath circulation was used to feed mosquitoes weekly.

118 For the experiments, groups of 120 pupae were isolated and maintained in their
119 container for 6 days after their emergence. This gave the mosquitoes time to mate in the
120 containers before the experiments (random dissection of females revealed that 95% of them
121 had oocytes). Mosquitoes had access to 10% sucrose *ad libitum* but were not blood-fed before
122 the experiments. The day the experiments were conducted, females were selected manually
123 with forceps after placing the container for a few minutes in a climatic chamber at 10°C.
124 Depending on the type of experiment, they were then either placed individually or in groups of
125 20 in 50 mL conical Falcon™ tubes (Thermo Fisher Scientific, Pittsburgh, PA, USA) and
126 covered with a piece of mesh. We gave them at least 1 hr to recover before testing them in the
127 olfactometer. All experiments were conducted when *Ae. aegypti* mosquitoes are the most active
128 and responsive to host related cues, either 2 hours before their subjective night or 2 hours after
129 their subjective dawn (Trpis *et al.*, 1973, Vinaugger *et al.*, 2014).

130

131 **1. Tethered flight under different thermal conditions**

132 **1.1. Flight arena**

133 The in-flight response to CO₂ of individual female mosquitoes was quantified in an
134 LED-based arena (*sensu* Reiser and Dickinson, 2008; Vinaugger *et al.*, 2018; 2019). Mosquitoes
135 were cold anesthetized on ice and tethered by the thorax with a tungsten wire using UV-
136 activated glue (Loctite 3104 Light Cure Adhesive, Loctite, Düsseldorf, Germany), positioning
137 their main body axis at a 30° angle from the tether. Mosquitoes were then kept at room
138 temperature in a closed container for an approximate 30-minute recovery period. A tethered
139 mosquito was centered in a hovering position within an arena composed of 12 columns of 2
140 panels each, which were arranged into a regular dodecagon and produced a display resolution
141 of 96 x 16 pixels (Fig. 1A; Reiser and Dickinson, 2008, Vinaugger *et al.*, 2018; 2019).
142 Mosquitoes were placed directly under an infrared (IR) diode and above an optical sensor

143 coupled to a wingbeat analyzer (JFI Electronics, University of Chicago; Götz, 1987; Lehmann
144 and Dickinson, 1997, Reiser and Dickinson 2008). The beating wings cast a shadow onto the
145 sensor, allowing the analyzer to track their motion and measure the amplitude and frequency
146 of each wing stroke. Measurements were sampled at 5 kHz and acquired with a National
147 Instrument Acquisition board (BNC -2090A, National Instruments, Austin, Texas, USA). The
148 mosquito was centered between an air inlet and a vacuum line aligned diagonally with one
149 another, 30° from the vertical axis. The air inlet was positioned 12 mm in front of and slightly
150 above the mosquito's head, targeting the antennae from an angle of 15°. The vacuum line was
151 positioned behind the mosquito 25 mm away from the tip of the abdomen. Two different
152 airlines independently controlled by a solenoid valve (The Lee Company, Westbrook, CT,
153 USAREF) intersected this main air inlet, either delivering clean air or CO₂. A visual pattern of
154 alternating stripes of either inactive or fully lit LEDs, each 16×6 pixels in size (22.5°) was used
155 in conjunction with the odor stimulus and set in closed-loop with the mosquito behavior to
156 maintain their motivation to fly. Odor stimuli consisted of a 1sec pulse followed by a 60-s inter-
157 trial-interval, after which the sequence was repeated for a total of 5 pulses. The responses of
158 the mosquitoes were tested at 20°C (n=16), 25°C (n=14) and 30°C (n=13). A nitrogen control
159 (n= 11) was also performed.

160

161 **1.2. Data analysis**

162 Data were analyzed in R version 4.0.0. For each pulse (either CO₂ or N₂ control), the
163 wingbeat frequency and amplitude were normalized by averaging the signal across a 1-s time
164 window preceding the stimulus delivery and then subtracting this baseline value from the signal
165 values following the pulse. Trials were discarded in which mosquitoes had frequency
166 fluctuations greater than 5 Hz in this 1-s window or frequency changes greater than 30 Hz that
167 did not begin within the four seconds following stimulation (as they presumably were not in

168 response to the stimulus). The mean response for each individual was calculated from the saved
169 trials and used as a replicate to calculate the mean response for each treatment group. This latter
170 was calculated using the difference between the mean frequency - and amplitude - before (200
171 msec before stimulation) and the maxima of the signal after stimulus delivery (within a window
172 starting at 1 s and ending 3 s after the pulse). One-tailed Student's *t*-tests for paired samples
173 were used to test for differences from baseline and Student's *t*-tests for independent samples
174 were used to test for differences between groups.

175

176 **2. Free flight orientation to the olfactory cue under different thermal conditions**

177 **2.1. Olfactometer**

178 To test if the ambient temperature impacts mosquito's olfaction, we measured and
179 compared the mosquito behavioral responses to different odors under various thermal
180 conditions using a Y-maze Plexiglas® olfactometer. Three different temperature conditions
181 were tested: 20°C, 25°C, and 30°C which are in the range of activity of *Aedes aegypti* (*i.e.*,
182 17°C to 34°C, Christophers (1960)). The olfactometer was composed of a releasing chamber
183 connected to a tube of 30 cm long and 10 cm of diameter attached to a central box where two
184 choice arms (39 cm long, 10 cm diameter) were placed. White cardboard was placed under and
185 on the sides of the olfactometer to prevent the mosquitoes from being distracted by
186 surroundings. Fans (Rosewill, Los Angeles, CA, USA) were placed at the end of the two arms
187 of the olfactometer to generate a constant airflow (air speed approximately 40 cm.sec⁻¹). To
188 create a laminar flow, the air first entered a charcoal filter (to remove odor contaminants
189 (C16x48, Complete Filtration Services, Greenville NC, USA)) and a series of mesh screens
190 and honeycomb metal sheet (10 cm thick). The odor delivery system to the two choice arms
191 was made using a charcoal-filtered air stream adjusted with flow meters equipped with needle
192 valves. Teflon® tubing (3 mm internal diameter) conducted the air flow through each of the

193 two 20 mL scintillation vials (Thermo Fisher Scientific, Waltham, MA, USA) containing 12
194 mL of either the tested odor or the control solution (*i.e.*, MilliQ water or ethanol 100%). Each
195 tubing was connected to the corresponding choice arm of the olfactometer and placed at about
196 4 cm from the fans and its end located in the center of the arm. All the olfactometer experiments
197 were conducted in a well-ventilated climatic chamber (Environmental Structures, Colorado
198 Springs, CO, USA), 50% RH. After each experiment, the olfactometer, tubing and vials were
199 cleaned with water and then ethanol 100% to avoid any odorant contamination between
200 experiments. Finally, to avoid any side biases in the arms of the olfactometer, both stimulus
201 and control vials were randomly tested on both sides for all groups.

202

203 **2.2. Experimental procedure**

204 *2.2.1. Response to carbon dioxide in groups*

205 The first experiment consisted in measuring the response of groups of mosquitoes to
206 carbon dioxide (CO₂) which is a strong activator and attractant (*i.e.*, host-seeking cue). Carbon
207 dioxide was chemically generated using sulfuric acid (1M) and sodium carbonate (0.3M) *via*
208 the reaction: Na₂CO₃ + H₂SO₄ → CO₂ + H₂O + Na₂SO₄. Briefly, a solution of Na₂CO₃ was
209 injected at a constant rate (10 mL/h) in a jar containing 100 mL of H₂SO₄ using a drip-feed
210 device (Barrozo and Lazzari, 2004). The production of CO₂ was monitored along the
211 experiment with a carbon dioxide detector and calibrated so the level of CO₂ in the olfactometer
212 was of 2000 ppm. The jar containing sulfuric acid was placed on a stir plate to help mixing the
213 two chemicals and ensure a constant CO₂ production. To send the odor to the olfactometer, an
214 air pump gently injected air to the jar through tubing from the jar to the arm of the olfactometer.
215 As a control, 100 mL of sulfuric acid was placed in a jar and the same air delivery system was
216 used to connect to the olfactometer. Twenty female mosquitoes were released in the
217 olfactometer and were given 30 minutes total to choose between the two arms carrying either

218 the tested odor or the control. The number of females in each arm was then counted and the
219 ones that stayed in the central box and main arm of the olfactometer were considered as
220 inactive.

221

222 *2.2.2. Individual response to ecologically relevant odors*

223 The individual response to different odors was then tested using the olfactometer. This
224 allowed us to observe the behavior of each mosquito and record their flight behavior and
225 analyze their flight trajectories. We tested seven different biologically relevant odors, both
226 host- and plant-related: lactic acid (L-+)-lactic, Sigma Aldrich, $\geq 98\%$ purity - concentration:
227 50mM in milliQ water); Octenol (1-octen-3-ol, Sigma Aldrich, $\geq 98\%$ purity; enantiomeric
228 ratio: $\geq 99:1$ (GC) - concentration: 140mM in milliQ water); Nonanol (1-nonal, Sigma
229 Aldrich, purum, $\geq 98.0\%$ (GC) - concentration: 1.58mM in milliQ water), Hexanol (1-hexanol;
230 Sigma Aldrich, $> 98\%$ purity; 92% of the Z isomer - concentration: 85mM in milliQ water),
231 Benzaldehyde (Sigma Aldrich, purified by redistillation, $\geq 99.5\%$ - concentration: 0.98M in
232 milliQ water), DEET (N,N-diethyl-meta-toluamide, Supelco, $\geq 95\%$ purity - concentration:
233 40% diluted in 100% ethanol to match commercial version of the repellent) and CO₂
234 (chemically produced as previously described - concentration: 2000 ppm above ambient air
235 levels). Hexanol and DEET are known olfactory repellents and feeding deterrents of *Ae.*
236 *aegypti*, while octenol and lactic acid (here used at a concentration similar to human skin
237 emissions (Eiras and Jepson, 1991; Cork and Park, 1996; Geier *et al.*, 1996)) evoke a slight
238 attraction preference, and nonanol is neutral. Carbon dioxide was used as a positive control and
239 we also ran experiments with two clean air currents as a negative control and to assess that no
240 bias (*i.e.*, innate preference for one side of the olfactometer) could be evinced. We also
241 performed each set of experiments in duplicate, switching the odor side to control for any
242 possible side preference. The results from the two sets of experiments were then grouped and

243 summed. After releasing the mosquito in the olfactometer, each female was given 5 minutes to
244 choose between the two arms. We considered that the mosquito made a choice when it crossed
245 the entry of one of the two decision arms. If after 5 minutes the mosquito didn't make any
246 choice and stayed either in the central box or the main arm, then this individual was considered
247 as inactive. A camera placed above the olfactometer allowed us to record the flight of each of
248 the tested insects. Then, flight trajectories were recreated with video tracking using MATLAB
249 (toolbox: DLT digitizing tools) and a mean flight velocity of the mosquitoes was calculated (as
250 in Vinauger *et al.*, 2018).

251

252 **2.3. Data analyses**

253 *2.3.1. Comparisons of mosquito choices in the olfactometer*

254 Binary data collected in the olfactometer were analyzed and all statistical tests were
255 computed using R software (R Development Core Team, 2017). Comparisons were performed
256 by means of the exact binomial test ($\alpha=0.05$). For each treatment, the choice of the mosquitoes
257 in the olfactometer was either compared to a random distribution of 50% on each arm of the
258 maze or to the distribution of the corresponding control when appropriate. For binary data, the
259 standard errors (SE) were calculated as in (Le, 2003):

$$260 \quad SEM = \left(\frac{p(1-p)}{n} \right)^{\frac{1}{2}}$$

261 A preference index (PI) was calculated as follows: $PI = [(number\ of\ females\ in\ the\ odor\ arm - number\ of\ females\ in\ the\ control\ arm) / (total\ number\ of\ active\ mosquitoes)]$. A PI with
262 a positive value indicates that the mosquitoes were attracted to the odor while a PI with a
263 negative value indicates that mosquitoes were repelled. A PI of 0 indicates that 50% of insects
264 chose the odor arm and 50% the control arm (adapted from Schwaerzel *et al.*, 2003).
265

266

267 *2.3.2. Comparisons of mosquito velocity*

268 Flight patterns were recreated with video tracking using MATLAB (toolbox: DLT
269 digitizing tools) and a mean flight velocity of the mosquitoes was calculated. A Two-way
270 ANOVA was performed to evaluate the impact of both temperature and odor on the
271 mosquitoes' flight velocity.

272

273 **3. Electroantennography (EAG)**

274 **3.1. Mosquito head preparation**

275 Electroantennograms were performed following the procedure by Lahondère (2021).
276 Briefly, the head of the mosquitoes was excised and one segment of the tip of each antenna
277 was cut off with fine scissors under a binocular microscope (Carl Zeiss, Oberkochen,
278 Germany). The head was then mounted on an electrode made of a silver wire 0.01" (A-M
279 Systems, Carlsbord, WA, USA) and a borosilicate pulled capillary (0.78 mm I.D. Sutter
280 Instrument Company, Novato, CA, USA) filled with a 1:3 mix of saline solution (Beyenbach
281 and Masia, 2002) and electrode gel (Parker Laboratories, Fairfield, NJ, USA) to limit
282 desiccation during the experiment. The head was mounted by the neck on the reference
283 electrode. The preparation was then moved to the EAG setup and using a micromanipulator
284 (Narishige, Japan) the tips of the antennae were inserted, under the microscope (Optiphot-2,
285 Nikon, Tokyo, Japan) into a recording electrode, identical to the reference electrode. The
286 mounted head was oriented at 90° from the main airline which was carrying clean air (Praxair,
287 Danbury, CT, USA) and volatiles from the syringe to the preparation for the whole duration of
288 the experiment. Two pulses of a duration of 2.5 s and separated by 10 s were delivered to the
289 mosquito head preparation by switching a solenoid valve controlled by a custom MATLAB
290 script. All the chemicals tested in the olfactometer (except for CO₂, which is detected by the
291 mosquito palps) were used for these experiments. Pulses of clean air were used as a control as
292 well as 100% ethanol (solvent of DEET).

293

294 **3.2. Data acquisition and analyses**

295 Electrophysiological signals were amplified 100X and filtered (0.1-500 Hz) (A-M
296 Systems Model 1800, Sequim, WA, USA), recorded and digitized at 20 Hz using WinEDR
297 software (Strathclyde Electrophysiology Software, Glasgow, UK) and a BNC-2090A analog-
298 to-digital board (National Instruments, Austin, TX, USA) on a personal computer. A Humbug
299 noise eliminator (Quest Scientific, Vancouver, Canada) was used to eliminate electrical noise.
300 The voltage pulse delivered to the solenoid valve was recorded simultaneously, on a separate
301 channel, and a custom-written R script was used to detect the onset of the odor pulses to trigger
302 averaging responses to each stimulus. The electrophysiological signal collected was further
303 filtered (Butterworth digital filter set as a low pass with a Nyquist frequency of 0.99; R package
304 *signal*). Amplitude of the EAG response was determined as the difference between the mean
305 baseline signal in a 2 s window immediately preceding the onset of the odor pulse, and largest
306 voltage deflection in a 5 s window following the onset of the odor pulse. A generalized linear
307 model (glm) was fitted to the data, as: *EAG Response* ~ *Temperature*odor type*. As a post-hoc
308 analysis, general linear hypotheses and multiple comparisons were tested with the *glht* of the
309 *multcomp* package in R.

310

311 **RESULTS**

312 **1. Flight arena**

313 To examine how temperature modulates flight kinematics, mosquitoes were tethered
314 by the thorax and maintained in an air flow at different temperatures in a LED arena (Fig. 1A).
315 First, we found that the average baseline wingbeat frequency was lower at 20°C (408.8 ± 11.2
316 Hz; mean \pm SEM) than at 25°C (449.3 ± 11 Hz) and 30°C (501.2 ± 11.5 Hz) (Student's *t*-tests,
317 $p < 0.01$) (Fig. 1B). Regarding the amplitude, we found that the baseline was higher at 25°C

318 (4.39 ± 0.45 a.u.) than 20°C (3.91 ± 0.38 a.u.) and 30°C (3.14 ± 0.50 a.u.) (Student's *t*-tests, all
319 $p < 0.01$) (Fig. 1B). We also found that with increasing temperature, higher the numbers of
320 mosquitoes responded (20°C: 43%; 25°C: 64% and 30°C: 84%; Binomial Exact tests: 20-25:
321 $p = 0.08$; 25-30: $p = 0.05$; 20-30: $p = 0.0002$) (Fig. 1 C). As a control for a potential mechanical
322 perturbation induced by the onset of the odor delivery, we stimulated mosquitoes with a pulse
323 of the carrier gas (N₂) at the same flow rate. Mosquitoes did not change their wingbeat
324 frequency (Student's *t*-test, $t = -1.1013$, $df = 10$, $p = 0.2966$) or wingbeat amplitude ($t =$
325 0.18055, $df = 10$, $p = 0.8603$) in response to the N₂ pulse (Fig. 1D).

326

327 Next, changes in wingbeat frequency and amplitude in response to pulses of CO₂ were
328 measured. We found that the temperature affected mosquitoes' response to CO₂ and that the
329 average increase was lower at 20°C (4.62 ± 1.28 Hz) than at 25°C (12.2 ± 4.22 Hz) and 30°C
330 (22.22 ± 5.06 Hz) (20-25: $t = -1.7178$, $df = 15.396$, $p = 0.05$; 25-30: $t = -1.5206$, $df = 23.841$,
331 $p = 0.07$; 20-30: $t = -3.3693$, $df = 13.543$, $p = 0.002$) (Fig. 1D). Moreover, the average changes
332 in amplitude in response to a pulse of CO₂ gradually increased with increasing temperatures
333 (20°C: 0.28 ± 0.11 a.u., 25°C: 0.73 ± 0.19 a.u. and 30°C: 0.98 ± 0.29 a.u; 20-25: $t = -2.0295$,
334 $df = 20.799$, $p = 0.03$; 25-30: $t = -0.7196$, $df = 21.229$, $p = 0.24$; 20-30: $t = -2.2695$, $df = 15.431$,
335 $p = 0.02$) (Fig. 1D). The intensity of the responses to the CO₂ pulse was higher at 30°C than at
336 20°C (Student's *t*-tests, $p < 0.01$).

337

338 2. Olfactometer

339 *Response to carbon dioxide in groups*

340 To test whether the temperature of the environment could affect the mosquito's
341 olfactory behaviors, we first measured their response to carbon dioxide, an important cue used
342 by the insects for host-seeking, in the olfactometer under different thermal conditions. We

343 found that mosquito groups were more attracted by CO₂ when tested at 30°C compared to 20°C
344 and 25°C (binomial tests, $p < 0.05$) (Fig. 2A). Moreover, the proportion of mosquitoes that made
345 a choice in the olfactometer was also higher at higher temperatures (5.4% at 20°C, 45.3% at
346 25°C and 64.8% at 30°C; Chi², $p < 0.05$) (Fig. 2B).

347

348 *Individual response to ecologically relevant odors*

349 To determine whether releasing the mosquitoes in groups had any effect, and to easily
350 track the behavior of the mosquitoes, we conducted the same experiment with individual female
351 mosquitoes. We confirmed the results we obtained for the response to CO₂ in groups and found
352 that higher temperatures elicited a stronger level of attraction for the odor (binomial tests, $p <$
353 0.05) (Fig. 3A). We also found that hexen-1-ol, benzaldehyde and DEET significantly repelled
354 more mosquitoes at higher temperatures (binomial tests, $p < 0.05$) (Fig. 3A). Interestingly, for
355 some other odors such as L-(+)-lactic acid, 1-octen-3-ol and nonanol, no effect of the
356 temperature was evinced on the mosquito choice (Fig. 3A, top panel). However, the overall
357 level of activity was generally higher at higher temperature, independently of the odor tested
358 (binomial tests, $p < 0.05$) (Fig. 3B).

359

360 *Comparisons of mosquito velocity*

361 We then compared the flight velocity of the mosquitoes and found that temperature
362 affected it for some odors (*e.g.*, benzaldehyde, hexen-1-ol), *i.e.*, mosquitoes flew faster at
363 higher temperatures (Benzaldehyde: 20°C = 13 cm.s⁻¹; 25°C = 19.1 cm.s⁻¹; 30°C = 18.7 cm.s⁻¹;
364 ¹; Hexen-1-ol: 20°C = 14.5 cm.s⁻¹; 25°C = 14.5 cm.s⁻¹; 30°C = 21.9 cm.s⁻¹), but not for others
365 (*e.g.*, DEET, nonanol) (DEET: 20°C = 19.3 cm.s⁻¹; 25°C = 16.1 cm.s⁻¹; 30°C = 18.7 cm.s⁻¹;
366 Nonanol: 20°C = 15.4 cm.s⁻¹; 25°C = 18.1 cm.s⁻¹; 30°C = 16.1 cm.s⁻¹) (Student's *t*-tests, $p <$
367 0.05, ANOVA, Table 1) (Fig. 4A, 4B).

368

369 **3. Electroantennography**

370 Recording from the antennae of mosquitoes allowed us to quantify the peripheral
371 olfactory sensitivity under different temperatures. Fitting a generalized linear model on the
372 EAG data showed a significant effect of temperature (Analysis of deviance: $p < 0.001$) and of
373 the odor identity ($p < 0.0001$) on the electrophysiological responses. Overall, responses at 25°C
374 were significantly different from responses at 20 and 30°C (Simultaneous tests for general
375 linear hypotheses; Multiple comparisons of means: Tukey Contrasts; 20°C vs 25°C: $p < 0.001$;
376 25°C vs 30°C: $p = 0.003$). However, responses at 20°C and 30°C were overall not significantly
377 different from each other (simultaneous tests for general linear hypotheses; 20°C vs 30°C: $p =$
378 0.73) (Fig. 5).

379 No significant effect of the interaction between temperature and the odor identity was
380 found (Analysis of deviance: $p = 0.078$), although we observed a trend for some odors (e.g.,
381 octenol, nonanol, hexanol, benzaldehyde, ethanol), but not others (e.g., lactic acid, DEET), to
382 display an optimum in EAG response at 25°C (Fig. 5).

383

384 **DISCUSSION**

385 The present study provides clear evidence that temperature modulates mosquito
386 olfactory behavior in both tethered preparations and free flight. In addition, our
387 electrophysiological results show that the effect of ambient temperature on mosquito behavior
388 is mediated by a modulation of the antennal sensitivity to odors. The approach employed here
389 allowed us to discriminate between effects on the overall activity of mosquitoes and effects on
390 the oriented response to odorants. Indeed, the proportion of responsive mosquitoes tended to
391 be higher when the temperature increased in both the flight arena and the olfactometer, but the
392 response of the mosquitoes was modulated in an odor-dependent manner. While a larger

393 proportion of mosquitoes made a choice at higher temperature in free flight, this response
394 remained neutral for several chemicals at the three tested temperatures. Interestingly, a stronger
395 level of attraction (*i.e.*, CO₂) or aversion (*i.e.*, benzaldehyde, DEET, and hexen-1-ol) were
396 noted for several chemicals, indicating that temperature affects mosquito olfactory choices as
397 well as their flight kinematics. In the arena, we noted that baseline wing beat frequency
398 proportionally increased with temperature, while the amplitude of wing motion was maximal
399 at 25°C. It is well known that ambient temperature (T_a) affects insect flight (*e.g.*, Heinrich,
400 1993, Reinhold *et al.*, 2018) and that the flight force generated by insect wings is affected by
401 changes in stroke amplitude and frequency (Lehmann and Dickinson, 1997). Using a mosquito
402 flight mill, Rowlet and Graham (1968) found that 21°C is the optimal flight temperature in
403 terms of flight distance and duration but indicated that the maximum flight speed occurred
404 between 27°C and 32°C. Christophers (1960) also highlighted that flight frequency increases
405 with T_a, reporting 367 beat/s at 18 °C vs. 427 beat/s at 25 °C in *Ae. aegypti*. Gopfert *et al.*
406 (1999) and Arthur *et al.* (2014) recorded higher average frequencies, ranging from 445 Hz to
407 510 Hz at medium temperature (23°C). More recently, Villarreal *et al.* (2017) showed an
408 increase of 8 - 13 Hz in wing beat frequency for every 1°C gain in *Ae. aegypti*. Temperature
409 also affected mosquito flight velocity in the olfactometer, which increased in response to some
410 odors but not others. In our olfactometer experiments, in both group and individual assays, we
411 found that more mosquitoes made a choice towards the arm delivering the CO₂ at 30°C than
412 20°C. It is worth mentioning that more mosquitoes were active at higher temperatures but the
413 nature of their choice (*i.e.*, the preference for the test odor arm among the mosquitoes that chose
414 one of the two arms) also changed at higher temperatures.

415 Temperature is known to affect neuronal activity in both vertebrates and invertebrates
416 (Martin *et al.*, 2011). In the present study, we assessed whether the peripheral detection of
417 chemicals by the antennae was affected by T_a. We found that responses of the antennae varied

418 with T_a but were also odor-dependent, reflecting effects observed in the olfactometer. Our data
419 indicate an optimum at 25°C for antennal sensitivity. Martin *et al.* (2011) found that exposure
420 to a higher T_a led to an increase in the EAG response amplitude. Moreover, using single
421 sensillum recordings (SSRs), they noted that the ORNs were directly impacted by T_a . It is
422 worth mentioning that although sensitivity peaks at 25°C in the EAG, some odors still show
423 higher behavioral attraction levels at 30°C which could be due to an effect of the temperature
424 at the central level, *e.g.*, at the level of the antennal lobes. Moreover, a higher antennal
425 sensitivity did not necessarily correlate with a higher behavioral response, as expected for odors
426 presented alone. This further supports the hypothesis of an additional layer of modulation of
427 T_a , at the level of central olfactory processing. Future experiments including antennal lobe
428 recordings will reveal whether T_a has an impact on signal processing in the brain. Moreover,
429 testing the impact on temperature on ORs sensitivity in mosquitoes could also help determine
430 why T_a affects behavioral responses to certain odors but not others.

431 *Aedes aegypti* is a major disease vector and an invasive species which global
432 distribution is expected to shift because of global warming (Reinhold *et al.*, 2018). Increased
433 average daily temperatures will impact the mosquito's general activity, including flight, as well
434 host-seeking and biting behavior, which could have major consequences for public health due
435 to increased pathogen transmissions. It is thus critical to understand how T_a affects mosquito
436 behavior and in particular olfactory behaviors which are central to host seeking. Finally, as we
437 are facing challenges in mosquito control due, in part, to insecticide resistance, a better
438 understanding of how environmental factors affect mosquito behaviors can provide important
439 knowledge to trap and bait design. The present data provide critical insights on how T_a affects
440 both the mosquito olfactory system and its flight kinematics which can be integrated in traps
441 relying on olfactory baits as well as acoustic traps (Andrés *et al.*, 2020).

442

443 **Acknowledgments**

444 We thank Binh Nguyen and Mikayla Kiyokawa for taking care of the mosquito colony.
445 We would like to thank Raymond Huey for helpful discussions. We are indebted to *The Journal*
446 *of Experimental Biology Travelling Fellowship* awarded to Chloé Lahondère. Jessica Liaw and
447 Kennedy Tobin were supported by *The Mary Gates Fellowship*. We acknowledge the support
448 of the Air Force Office of Scientific Research under grants FA9550-16-1-0167 (JAR), and
449 FA9550-21-1-0101 (JAR); the National Science Foundation under grant 2121935 (JAR); and
450 the National Institutes of Health under grant R01AI148300 (JAR).

451

452 **Conflict of interest**

453 The authors have no conflict of interest to declare.

454

455 **REFERENCES**

456 Andrés, M., Su, M. P., Albert, J., & Cator, L. J. (2020). Buzzkill: targeting the mosquito
457 auditory system. *Current opinion in insect science*, 40, 11-17.

458 Arthur, B. J., Emr, K. S., Wyttenbach, R. A., & Hoy, R. R. (2014). Mosquito (*Aedes aegypti*)
459 flight tones: Frequency, harmonicity, spherical spreading, and phase relationships. *The Journal*
460 *of the Acoustical Society of America*, 135(2), 933-941.

461 Barrozo, R. B., & Lazzari, C. R. (2004). The response of the blood-sucking bug *Triatoma*
462 *infestans* to carbon dioxide and other host odours. *Chemical senses*, 29(4), 319-329.

463 K. Beyenbach & R. Masia (2002). Membrane conductances of principal cells in Malpighian
464 tubules of *Aedes aegypti*. *Journal of Insect Physiology*. 48, 375-386.

465 Christophers, S. (1960). *Aedes aegypti* (L.) the yellow fever mosquito: its life history,
466 bionomics and structure. *Cambridge University Press*. 750 pp.

467 Cork, A., & Park, K. C. (1996). Identification of electrophysiologically-active compounds for
468 the malaria mosquito, *Anopheles gambiae*, in human sweat extracts. *Medical and veterinary*
469 *entomology*, 10(3), 269-276.

470 Clements, A. N. (1992). The biology of mosquitoes. Vol. I. Development, nutrition and
471 reproduction. *Chapman & Hall*, 509 pp.

472 Eiras, A. E., & Jepson, P. C. (1991). Host location by *Aedes aegypti* (Diptera: Culicidae): a
473 wind tunnel study of chemical cues. *Bulletin of Entomological Research*, 81(2), 151-160.

474 Eldridge, B. F. (1968). The effect of temperature and photoperiod on blood-feeding and ovarian
475 development in mosquitoes of the *Culex pipiens* complex. *The American journal of tropical
476 medicine and hygiene*, 17(1), 133-140.

477 Geier, M., Sass, H., & Boeckh, J. (1996). A search for components in human body odour that
478 attract females of *Aedes aegypti*. *Olfaction in mosquito–host interactions*, 200, 132-144.

479 Gopfert, M. C., Briegel, H., & Robert, D. (1999). Mosquito hearing: sound-induced antennal
480 vibrations in male and female *Aedes aegypti*. *Journal of Experimental Biology*, 202(20), 2727-
481 2738.

482 Götz, K. G. (1987). Course-control, metabolism and wing interference during ultralong
483 tethered flight in *Drosophila melanogaster*. *Journal of Experimental Biology*, 128(1), 35-46.

484 Heinrich, B. (1976). Heat exchange in relation to blood flow between thorax and abdomen in
485 bumblebees. *Journal of Experimental Biology*, 64(3), 561-585.

486 Heinrich, B. (1979). Keeping a cool head: honeybee thermoregulation. *Science*, 205(4412),
487 1269-1271.

488 Heinrich, B. (1993). The hot-blooded insects: mechanisms and evolution of thermoregulation.

489 Herrera, C. M. (1997). Thermal biology and foraging responses of insect pollinators to the
490 forest floor irradiance mosaic. *Oikos*, 601-611.

491 Huey, R. B., & Stevenson, R. D. (1979). Integrating thermal physiology and ecology of
492 ectotherms: a discussion of approaches. *American Zoologist*, 19(1), 357-366.

493 Kirby, M. J., & Lindsay, S. W. (2004). Responses of adult mosquitoes of two sibling species,
494 *Anopheles arabiensis* and *A. gambiae* ss (Diptera: Culicidae), to high temperatures. *Bulletin of
495 entomological research*, 94(5), 441-448.

496 Lahondère, C. (2021). A Step-by-step guide to mosquito electroantennography. *Journal of
497 Vizualized Experiments*, e62042, doi:10.3791/62042(2021).

498 Lahondère, C., & Bonizzoni, M. (2022). Thermal biology of invasive *Aedes* mosquitoes in the
499 context of climate change. *Current Opinion in Insect Science*, 100920.

500 Lahondère, C., Insausti, T. C., Paim, R. M., Luan, X., Belev, G., Pereira, M. H., *et al.* (2017).
501 Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs.
502 *Elife*, 6, e26107.

503 Lahondère, C., & Lazzari, C. R. (2012). Mosquitoes cool down during blood feeding to avoid
504 overheating. *Current biology*, 22(1), 40-45.

505 Lazzari, C. R. (2009). Orientation towards hosts in haematophagous insects: an integrative
506 perspective. *Advances in insect physiology*, 37, 1-58.

507 Lazzari, C. R., Fauquet, A., Lahondère, C., Araújo, R. N., & Pereira, M. H. (2021). Soft ticks
508 perform evaporative cooling during blood-feeding. *Journal of Insect Physiology*, 130, 104197.

509 Lanciani, C. A., & Le, T. M. (1995). Effect of temperature on the wing length-body weight
510 relationship in *Anopheles quadrimaculatus*. *Journal of the American Mosquito Control
511 Association*, 11(2 Pt 1), 241-243.

512 Le, C. T. (2003). *Introductory Biostatistics*. Hoboken, NJ: John Wiley and Sons Ltd.

513 Lehmann, F. O., & Dickinson, M. H. (1997). The changes in power requirements and muscle
514 efficiency during elevated force production in the fruit fly *Drosophila melanogaster*. *Journal of Experimental Biology*, 200(7), 1133-1143.

515

516 Lyimo, E. O., Takken, W., & Koella, J. C. (1992). Effect of rearing temperature and larval
517 density on larval survival, age at pupation and adult size of *Anopheles gambiae*. *Entomologia
518 Experimentalis et Applicata*, 63(3), 265-271.

519 Martin, F., Riveron, J., & Alcorta, E. (2011). Environmental temperature modulates olfactory
520 reception in *Drosophila melanogaster*. *Journal of insect physiology*, 57(12), 1631-1642.

521 May, M. L. (1976). Thermoregulation and adaptation to temperature in dragonflies (Odonata:
522 Anisoptera). *Ecological Monographs*, 46(1), 1-32.

523 Paaijmans, K. P., Blanford, S., Chan, B. H., & Thomas, M. B. (2011). Warmer temperatures
524 reduce the vectorial capacity of malaria mosquitoes. *Biology letters*, rsbl20111075.

525 Thomson, R. M. (1938). The reactions of mosquitoes to temperature and humidity. *Bulletin of
526 Entomological Research*, 29(2), 125-140.

527 R Development Core Team (2017). R: A Language and Environment for Statistical Computing.
528 R Foundation for Statistical Computing, Vienna, Austria. Available at: <http://www.R-project.org>.

529

530 Reinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018). Effects of the environmental
531 temperature on *Aedes aegypti* and *Aedes albopictus* mosquitoes: a review. *Insects*, 9(4), 158.

532 Reinhold, J. M., Shaw, R., & Lahondère, C. (2021). Beat the heat: *Culex quinquefasciatus*
533 regulates its body temperature during blood feeding. *Journal of thermal biology*, 96, 102826.

534 Reiser, M. B., & Dickinson, M. H. (2008). A modular display system for insect behavioral
535 neuroscience. *Journal of neuroscience methods*, 167(2), 127-139.

536 Rowley, W. A., & Graham, C. L. (1968). The effect of temperature and relative humidity on
537 the flight performance of female *Aedes aegypti*. *Journal of Insect Physiology*, 14(9), 1251-
538 1257.

539 Rueda, L. M., Patel, K. J., Axtell, R. C., & Stinner, R. E. (1990). Temperature-dependent
540 development and survival rates of *Culex quinquefasciatus* and *Aedes aegypti* (Diptera:
541 Culicidae). *Journal of medical entomology*, 27(5), 892-898.

542 Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., & Heisenberg, M.
543 (2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory
544 memories in *Drosophila*. *The Journal of neuroscience*, 23(33), 10495-10502.

545 Trpis, M., McClelland, G. A. H., Gillett, J. D., Teesdale, C., & Rao, T. R. (1973). Diel
546 periodicity in the landing of *Aedes aegypti* on man. *Bulletin of the World Health Organization*,
547 48(5), 623.

548 Villarreal, S. M., Winokur, O., & Harrington, L. (2017). The impact of temperature and body
549 size on fundamental flight tone variation in the mosquito vector *Aedes aegypti* (Diptera:
550 Culicidae): implications for acoustic lures. *Journal of medical entomology*, 54(5), 1116-1121.

551 Vinauger, C., Lutz, E. K., & Riffell, J. A. (2014). Olfactory learning and memory in the disease
552 vector mosquito *Aedes aegypti*. *Journal of Experimental Biology*, 217(13), 2321-2330.

553 Vinauger, C., Lahondère, C., Wolff, G. H., Locke, L. T., Liaw, J. E., *et al.* (2018). Modulation
554 of host learning in *Aedes aegypti* mosquitoes. *Current Biology*, 28(3), 333-344.

555 Vinauger, C., Van Breugel, F., Locke, L. T., Tobin, K. K., Dickinson, M. H., *et al.* (2019).
556 Visual-olfactory integration in the human disease vector mosquito *Aedes aegypti*. *Current
557 Biology*, 29(15), 2509-2516.

558 World health statistics 2019: monitoring health for the SDGs, sustainable development goals.
559 Geneva: World Health Organization. (2019).

560

561

562 **FIGURE CAPTIONS**

563

564 **Figure 1. A.** Schematic of the LED arena. The odor delivery line was connected to a
565 thermostat-controlled conductive tubing, maintaining the main air flow at a constant
566 temperature set at either 20, 25 or 30°C. **B. (Top)** trigger-averaged and baseline-subtracted
567 wingbeat frequency (WBF), in response to a 1s long pulse of nitrogen (N₂, grey bar, n = 11),
568 or CO₂ diluted into N2 at 20°C (blue bar, n = 16), 25°C (purple bar, n = 14) or 30°C (red bar,
569 n = 13). **(Bottom)** trigger-averaged and baseline-subtracted wingbeat amplitude (WBA) in
570 response to the same stimuli.

571

572 **Figure 2. A.** Responses of female mosquitoes to carbon dioxide tested in the y-maze
573 olfactometer at different environmental temperatures (20°C, 25°C and 30°C). Mosquitoes were
574 released in groups and given a choice between CO₂ (2000 ppm) (grey bars) and clean air (white
575 bars). Number of groups of mosquitoes tested at 20°C (N = 12, n = 240), 25°C (N = 14, n =
576 267) and 30°C (N = 9, n = 179). **B.** Proportion of active mosquitoes (*i.e.*, the number of
577 mosquitoes that entered one of the two decision arms over the total number of individuals
578 tested) at different temperatures. Asterisks indicate distributions that are significantly different
579 from random (Binomial tests; p < 0.05). Vertical bars represent S.E.M.

580

581 **Figure 3. A.** Responses of female mosquitoes to different odors, at different environmental
582 temperatures (20°C, 25°C and 30°C). Mosquitoes were tested individually and given a choice
583 between the test odor and a control (*i.e.*, the solvent of the odor). Mosquito choices are
584 represented as the preference index calculated from the distribution of insects in the
585 olfactometer. Each bar represents an experimental group tested at either 20°C (blue bars), 25°C
586 (purple bars) or 30°C (red bars). Odor tested: L-(+) lactic acid (20°C: n = 19, 25°C: n = 23 and
587 30°C: n = 29), octenol (20°C: n = 12, 25°C: n = 24 and 30°C: n = 29), nonanol (20°C: n = 16,
588 25°C: n = 34 and 30°C: n = 31), hexanol (20°C: n = 19, 25°C: n = 29 and 30°C: n = 29), DEET
589 (20°C: n = 21, 25°C: n = 40 and 30°C: n = 32), CO₂ (20°C: n = 11, 25°C: n = 18 and 30°C: n
590 = 13). As a control, mosquitoes were also exposed to two clean air currents (20°C: n = 5, 25°C:
591 n = 30 and 30°C: n = 22). **B.** Proportion of active mosquitoes (*i.e.*, the number of mosquitoes
592 that entered one of the two decision arms over the total number of individuals tested) at
593 different temperatures. Odor tested: L-(+) lactic acid (20°C: N = 40, 25°C: N = 38 and 30°C:
594 N = 33), octenol (20°C: N = 40, 25°C: N = 32 and 30°C: N = 34), nonanol (20°C: N = 39, 25°C:
595 N = 44 and 30°C: N = 33), hexanol (20°C: N = 36, 25°C: n = 44 and 30°C: N = 34), DEET
596 (20°C: N = 40, 25°C: N = 46 and 30°C: N = 38), CO₂ (20°C: N = 19, 25°C: N = 20 and 30°C:
597 N = 13). A clean air control where mosquitoes are exposed to two clean air currents was also
598 performed (20°C: N = 27, 25°C: N = 38 and 30°C: N = 31). Asterisks indicate distributions
599 that are significantly different from random (Binomial tests; p < 0.05). Vertical bars represent
600 S.E.M.

601

602 **Figure 4. A.** Examples of reconstructed flight trajectories obtained via video-tracking of
603 mosquitoes in the olfactometer at 25°C. Multiple individual tracks were overlapped to obtain
604 the present figures for mosquitoes tested for their response to CO₂ (left; N = 18), or two control

605 clean air currents (right; N = 30). Tracks are color coded as a function of the instantaneous
606 flight velocity of the insect. The dark gray circle represents the arm delivering CO₂, while the
607 white circle represents the control side. **B.** Mean flight velocities (cm.s⁻¹) of female mosquitoes
608 in the olfactometer. Each boxplot represents an experimental group tested with the different
609 odors at either 20°C (blue box plots), 25°C (purple box plots) or 30°C (red boxplots). Dots
610 represent the mean flight velocity of individual mosquitoes; the central bar represents the
611 median and the upper and lower bars of the plot represent the 1st and 3rd quartiles respectively.
612 A two-way ANOVA was performed to compare the flight velocities under different
613 temperature regimes according to the tested odor. Statistical results are depicted in table 1.
614 Vertical bars represent S.E.M.

615

616 **Figure 5.** Violin plots of the EAG responses (- mV) to the different chemicals tested under
617 different thermal conditions. The central black dot indicates the mean, and the vertical bar
618 represents S.E.M. Above each violin plot is a representative EAG response. The grey bar
619 indicates the odor pulse. Note the typical “V” shape of the EAG responses as well as the
620 absence of antennal response to the solvent (no odor) control, mineral oil.

621

622 **Table 1.** Results of the analysis of variance (two-way ANOVA with interaction) on the mean
623 flight velocity of female mosquitoes under different thermal conditions and tested for their
624 responses to different odors. Df: degree of freedom. Sum sq: sum square, Mean Sq: mean
625 square, F value: Mean square / Residual, Pr(>F): p-value.

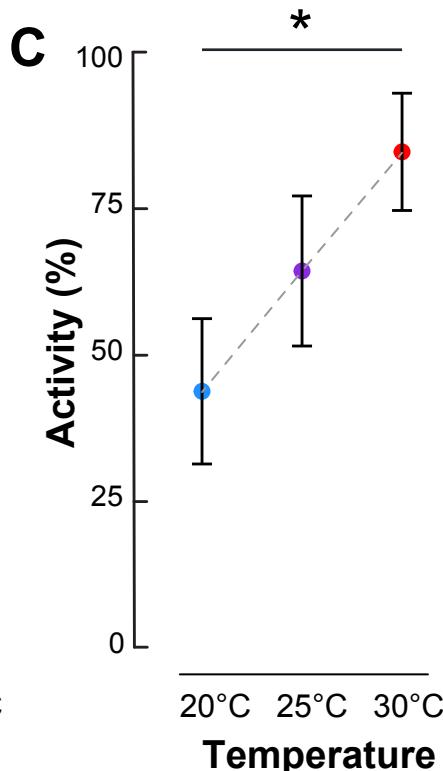
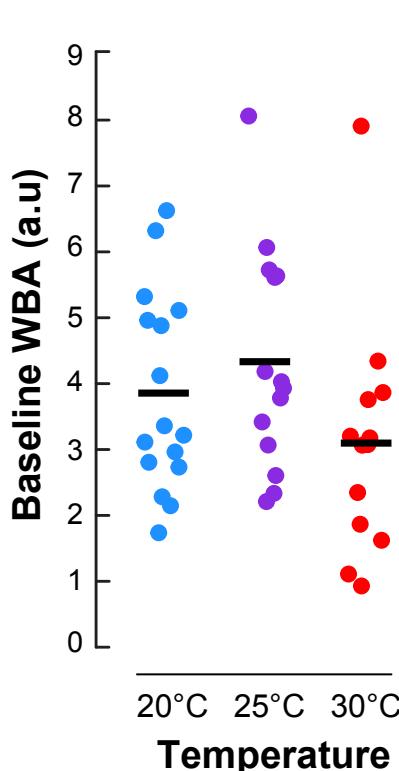
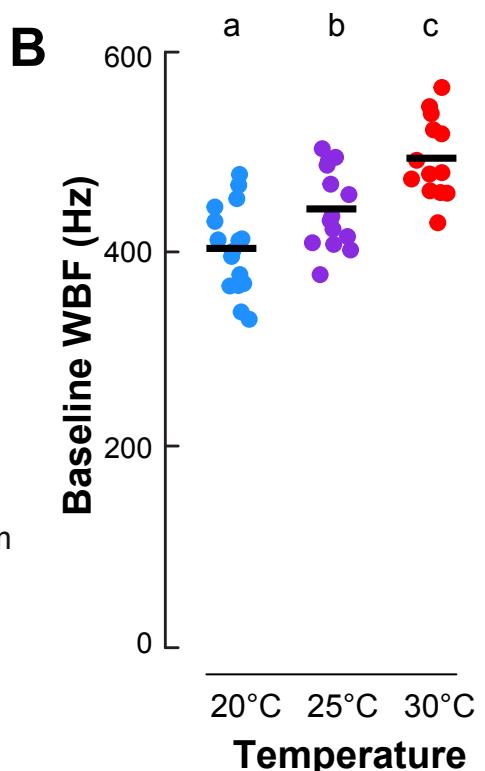
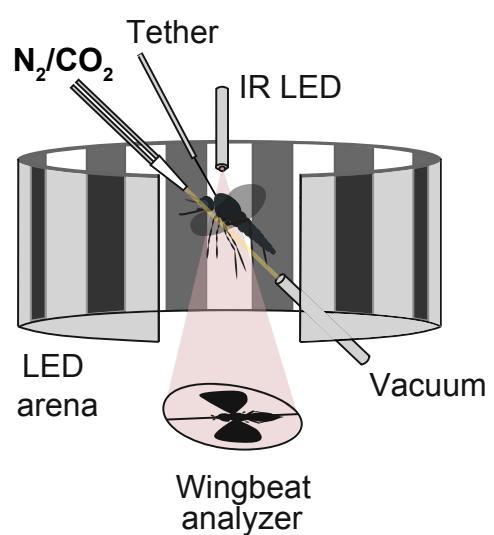
626

Source of variation	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Temperature	2	185	92.50	6.423	0.001772 **
Odor	6	1524	254.05	17.641	< 2e-16 ***

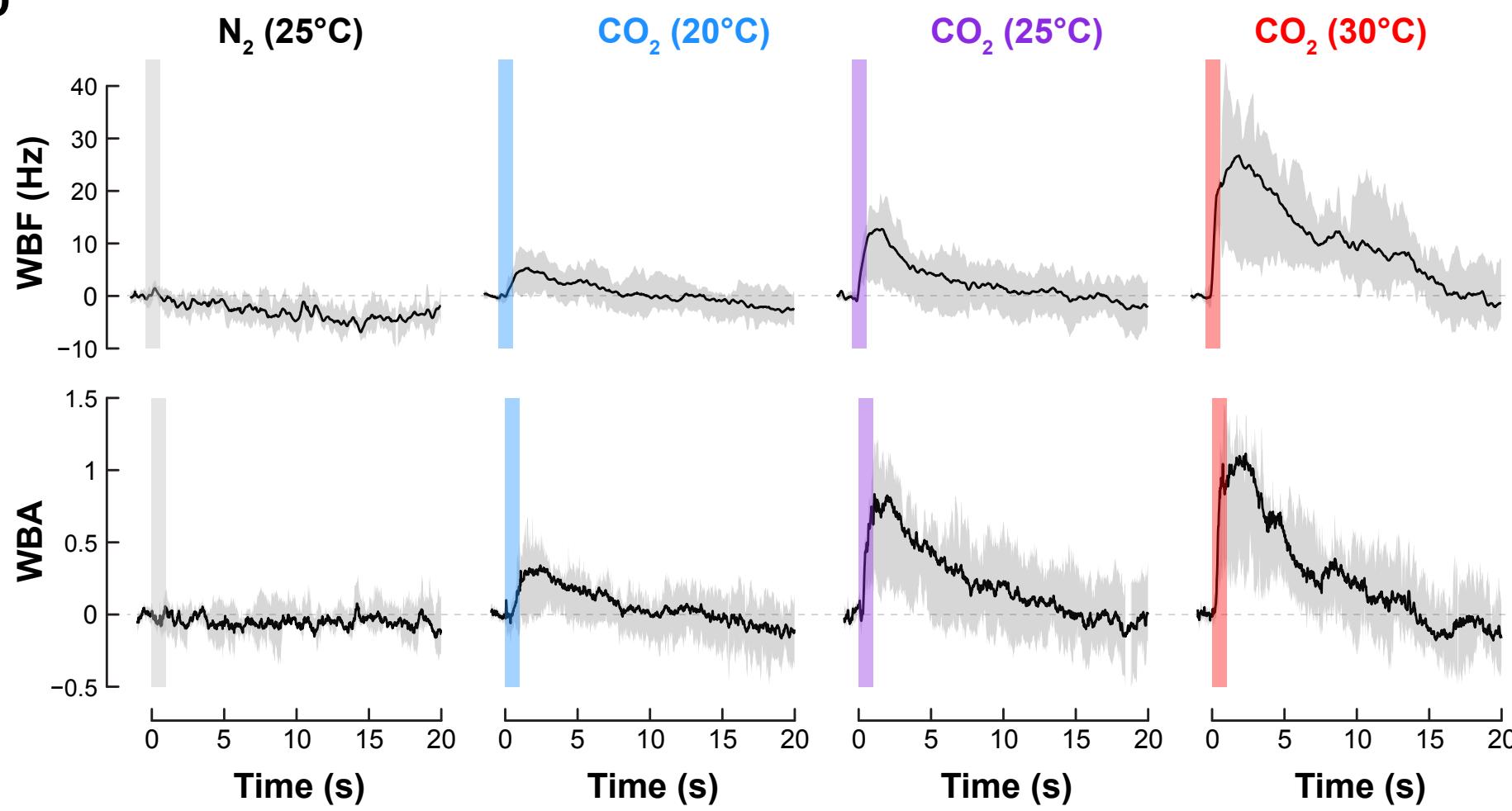
Temperature : Odor	12	573	47.75	3.316	0.000124 ***
Residuals	461	6639	14.40		

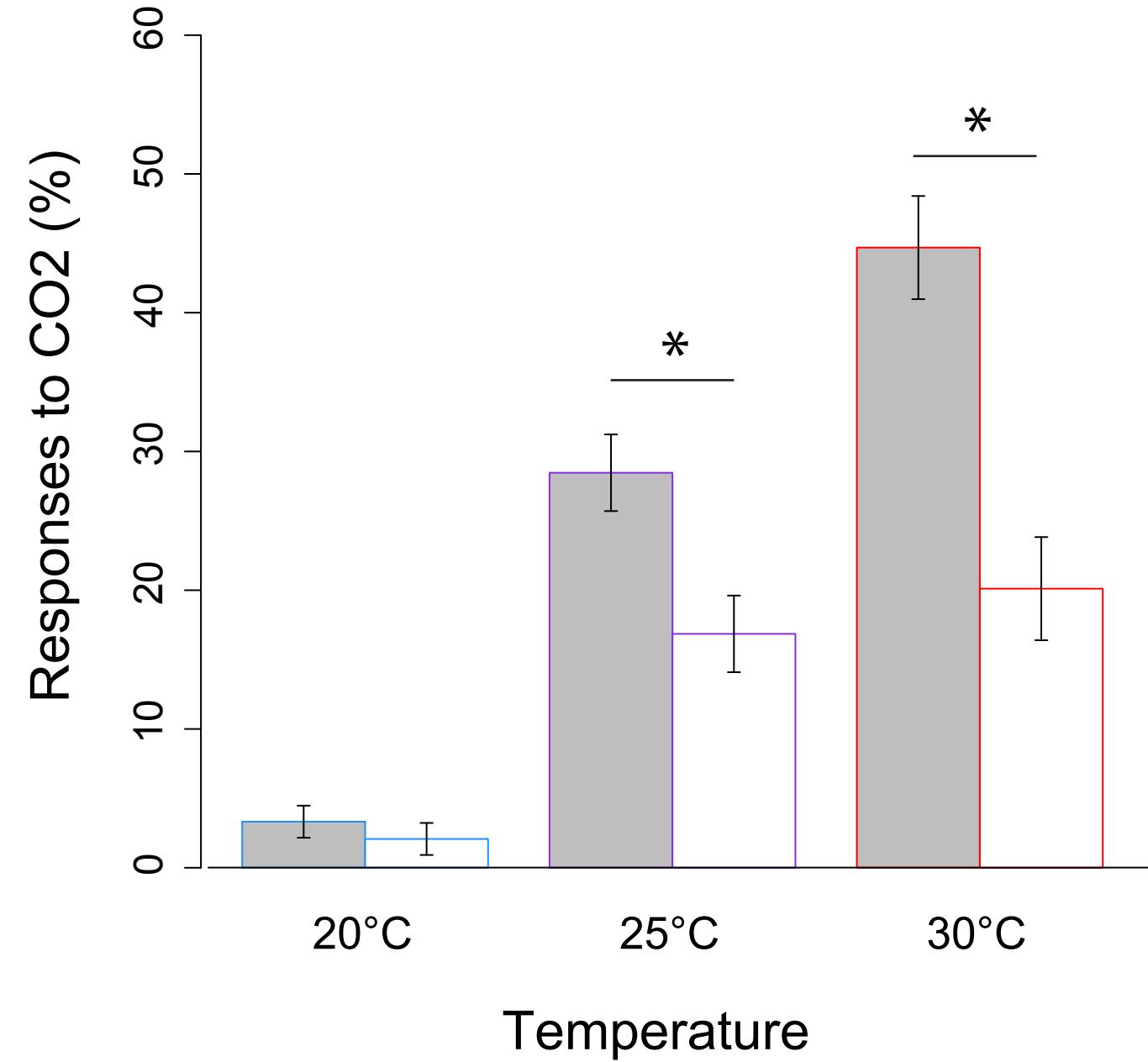
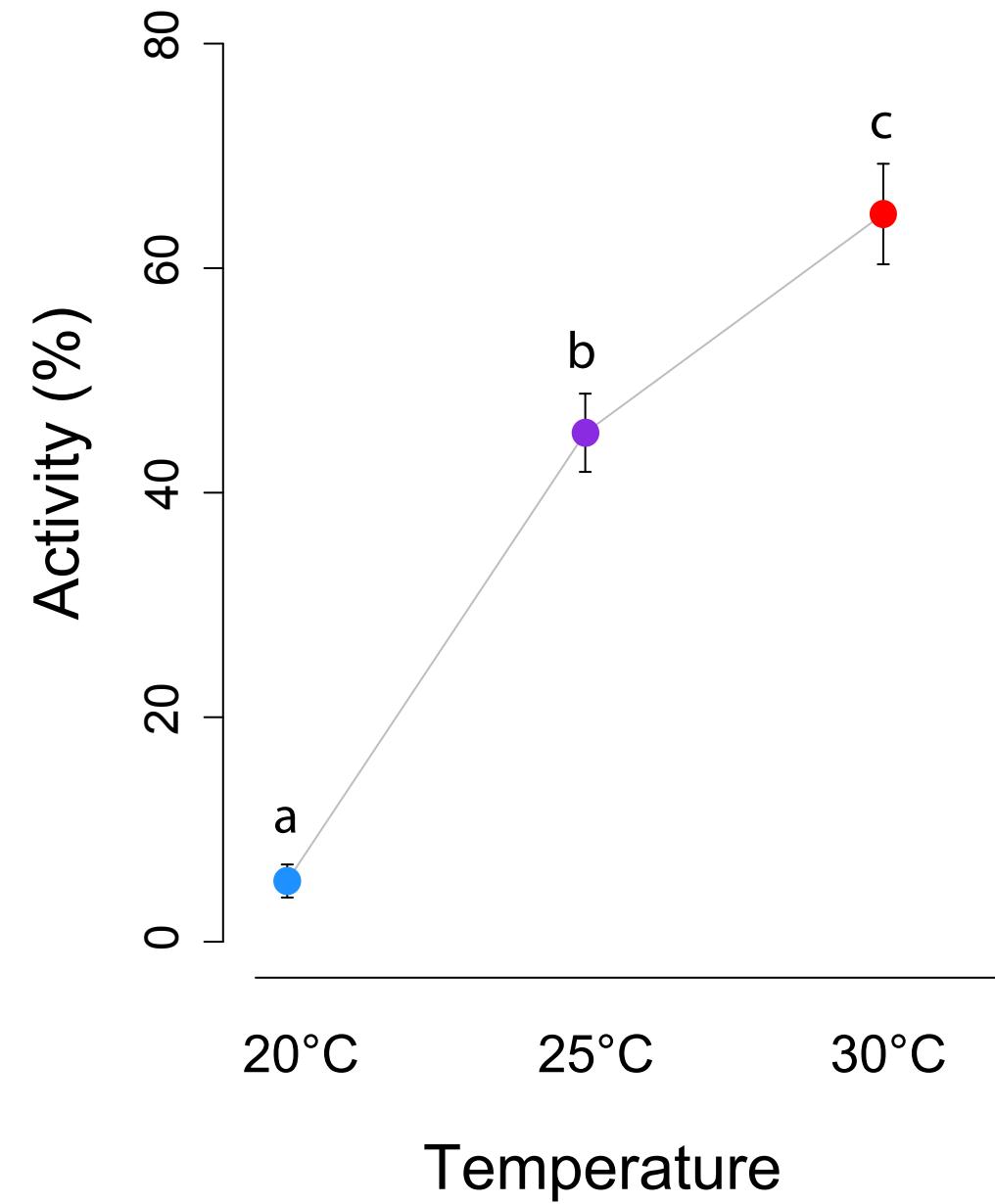
627

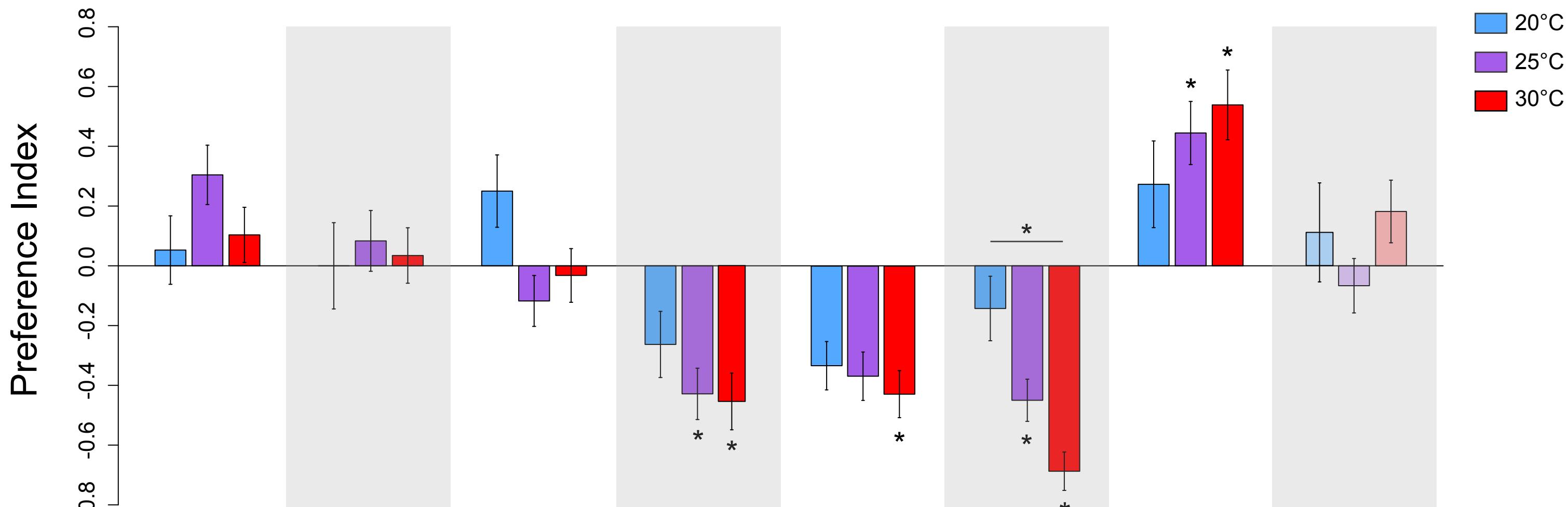
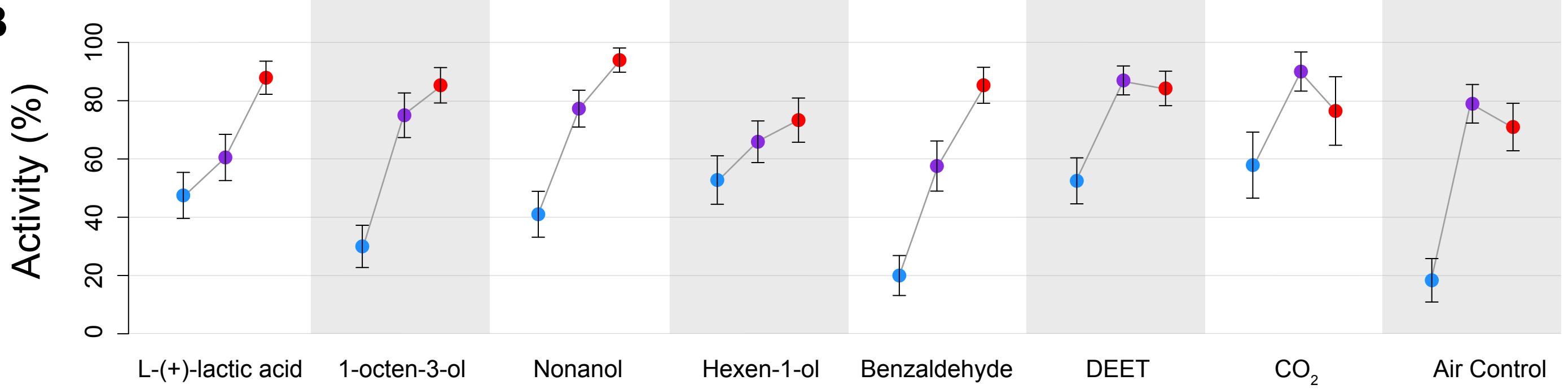
628 Statistically significant differences: $P < 0$ ‘***’, $P < 0.001$ ‘**’.

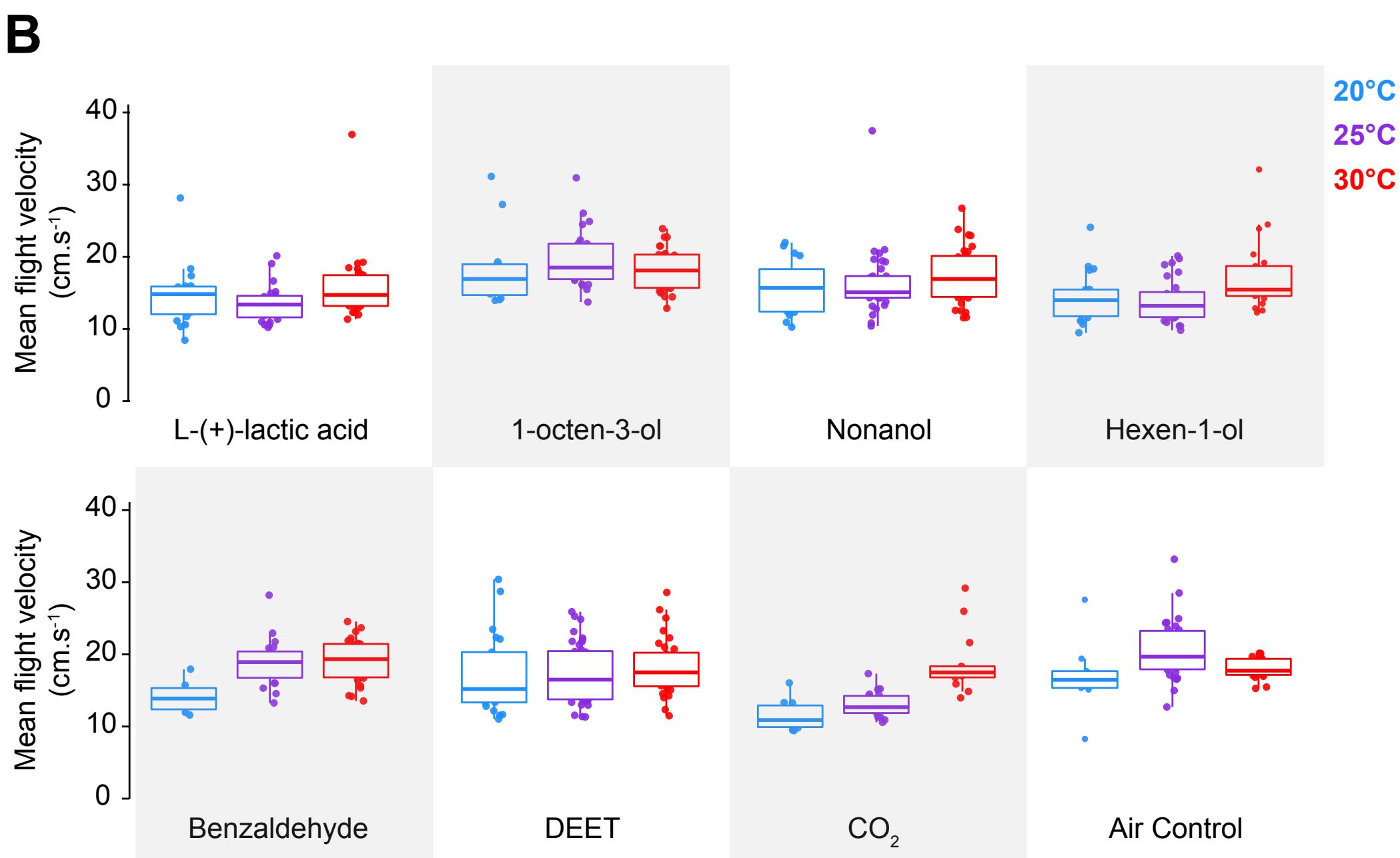
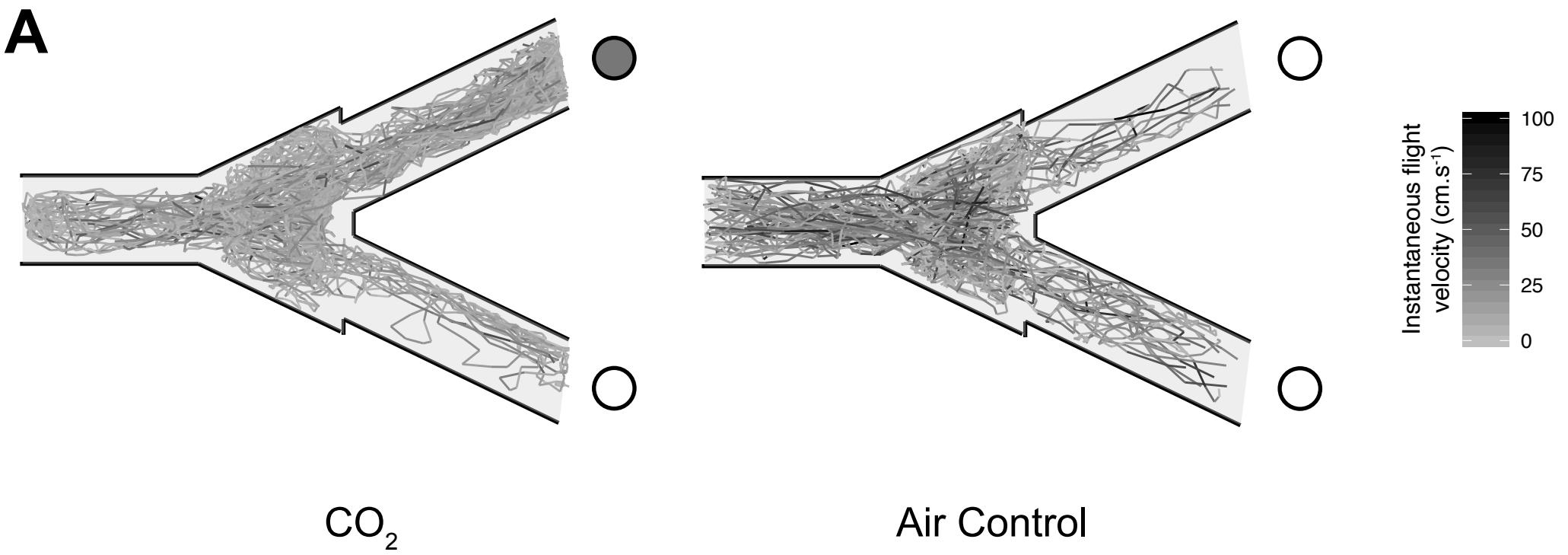




629

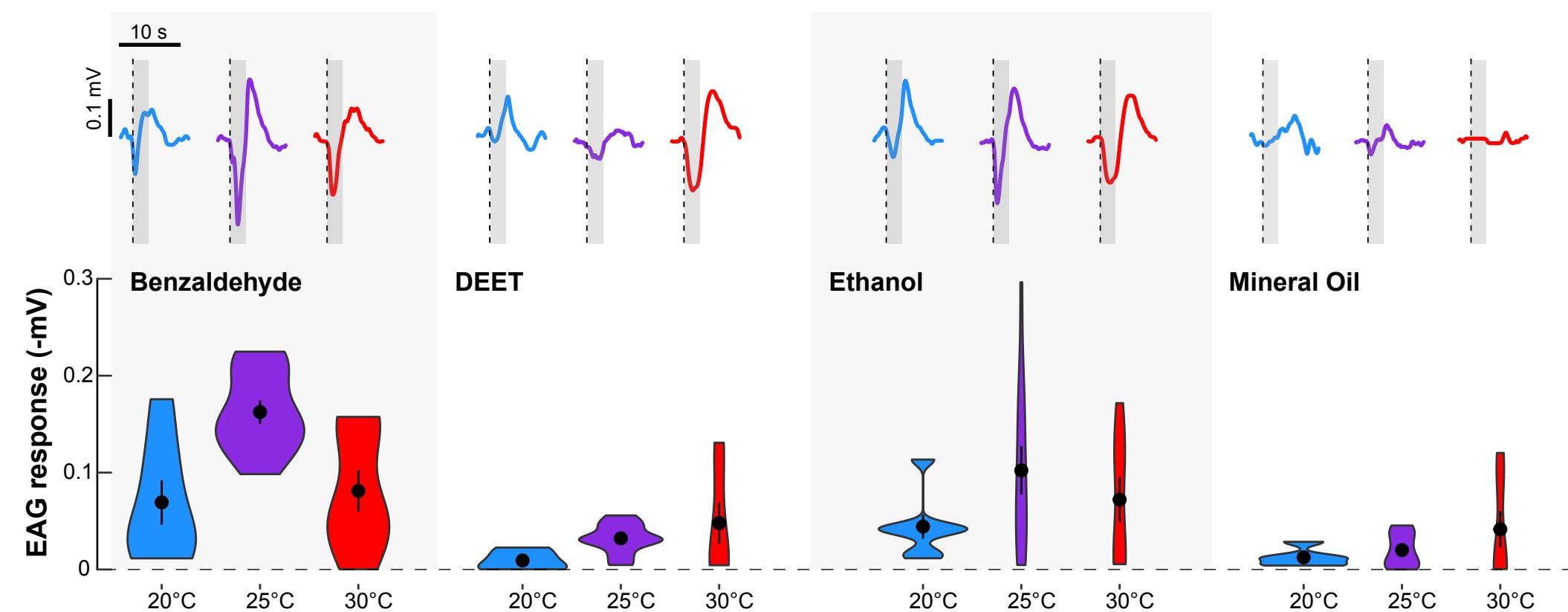
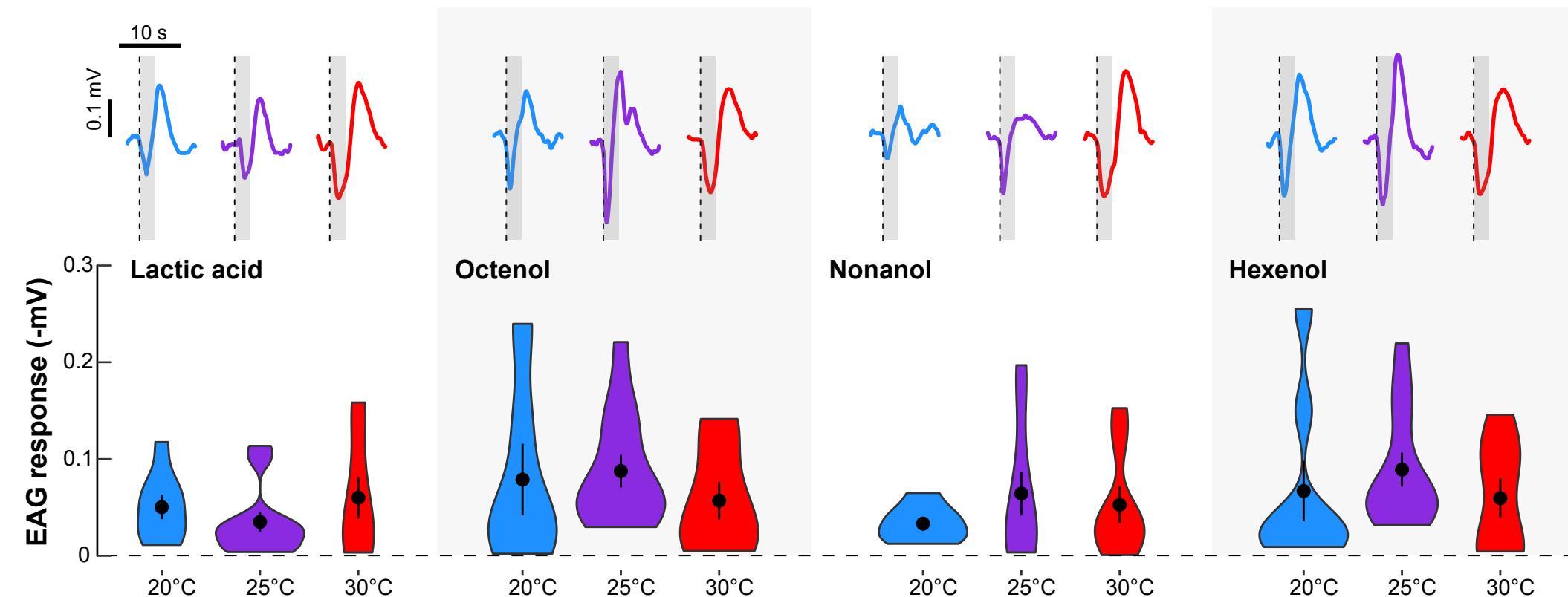
630


631



A



Visual flight simulator



D

A**B**

A**B**

