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Abstract

Here we frame the cis-regulatory code (that connects the regulatory functions of non-coding
regions, such as promoters and UTRs, to their DNA sequences) as a representation building
problem. Representation learning has emerged as a new approach to understand function of
DNA and proteins, by projecting sequences into high-dimensional feature spaces, where the
features are learned from data by a neural network. Inspired by these approaches, we seek to
define a feature space where non-coding regions with similar regulatory functions are nearby
each other. As a first attempt, we engineered features based on matches to biochemically
characterized regulatory motifs in the DNA sequences of non-coding regions. Remarkably, we
found that functionally similar promoters and 3’ UTRs could be grouped together in a feature
space defined by simple averages of the best match scores in (unaligned) orthologous
non-coding regions, which we refer to as phylogenetic average motif scores. Perhaps most
important, because this feature space is based on known motifs and not fit to any data, it is fully
interpretable and not limited to any particular cell type or experimental context. We find that we
can read off known regulatory relationships and evolutionary rewiring from visualizations of
phylogenetic average motif score representations, and that predicted regulatory interactions
based on neighbors in the feature space are borne out in transcription factor deletion
experiments. Phylogenetic averages of match scores to known motifs is a baseline for
representation learning applied to non-coding sequences, and may continue to improve as
databases of motifs become more complete.

Introduction

Understanding how the DNA sequences of non-coding regions determine gene expression
changes and cell-type specific expression patterns remains a central challenge in genome
analysis; it is referred to as the cis-regulatory code [1-3]. Key to understanding the
cis-regulatory code are sequence specific transcription factors that control the rate of
transcription initiation and elongation [1]. In the past two decades, increasingly sophisticated
experimental techniques have been developed to identify the targets of transcription factors in
cells [4-6], and these data have been integrated to produce functional genomics maps at the
genome scale[7,8]. Another regulatory code is believed to control mRNA stability, localization
and splicing [9,10], and there are analogous techniques for high-throughput interrogation of
RNA-binding proteins that control these processes[11,12]. However, even when integrated,
multi-omics data appear to be less useful than anticipated in predicting transcriptional regulatory
networks [1,13,14] and inferring strongly predictive regulatory codes from these data remains a
challenge [13].
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Recently, deep learning (and other advanced computational) methods trained on
high-throughput cellular assays have been shown to predict gene expression directly from
non-coding DNA sequences [15—18], suggesting that an understanding of the cis-regulatory
code might be within reach[19,20]. Extending these approaches to generalize beyond the
cell-types and data on which they were trained is now a major goal [21,22]. These methods
learn directly from data to use large numbers of features and combinations thereof, but it is not
yet clear whether it is the sheer number of comparably scaled informative features learned by
these methods, the quality or novelty of the features, or their non-linear combination that is
responsible for the predictive success. Studies from other areas of deep learning often reveal
that it is the quality of the dataset specific features [23] and their appropriate scaling [24,25] that
leads to the improved performance, rather than the non-linear combinations of features in higher
layers of the encoder (e.g., [26]). Indeed, genomics deep learning approaches often appear to
learn known DNA motifs as features[15,27,28] and in some systems, at least some aspects of
regulatory function can be predicted using simple combinations of motifs, with relatively few
constraints on their order orientation or distance [19,29-31].

In parallel to developments in computational methods, databases of genome sequences [32]
and consensus motifs (Position Weight Matrices, PWMs) for RNA-binding proteins and
transcription factors have continued to expand [33-37]. Databases of experimentally determined
transcription factor motifs now reflect a substantial fraction of the “vocabulary” of the
cis-regulatory code[37]. Although it is widely appreciated that transcription factor target genes
cannot be reliably predicted from matches to their consensus motifs (the so-called futility
theorem[38]), evolutionary conservation of motif-matches has been shown to increase the
power of motif-matching[39—41]. Unfortunately, alignment-based motif-conservation approaches
are unable to leverage the large numbers of genome sequences now available: they are limited
by errors in sequence alignments of highly diverged non-coding sequences [42], loss of synteny
of binding sites due to so-called “turnover” [43—47], as well as the technical difficulty of scaling
phylogenetic analysis to large numbers of species (see, e.g., [48,49]). A further potential issue is
that transcriptional regulatory networks are not always conserved between species[50,51].

Here we aim to reframe the problem of understanding how the function of non-coding regions is
encoded in their DNA sequences as a representation building problem. We seek a feature
space where non-coding DNA sequences with similar biological functions are nearby each
other. Searching for similar non-coding regions in this space would allow us to predict function,
analogous to the way BLAST uses sequence similarity to identify proteins of similar function. If
we are successful in building a representation that captures global similarity of biological
function, our predictions will immediately generalize across cell types and experimental
conditions[21]. As a first step, we tested whether matches to experimentally determined PWMs
could be used to build a functionally informative representation. To incorporate evolutionary
information, we treat the motif match score as a quantitative trait and simply average over sets
of orthologous non-coding sequences, similar to other studies that used simple summaries of
motif matches in orthologs[52—-54]. Although this approach is expected to have less power than
rigorous phylogenetic approaches [40,41] and does not capture spacing, number and strength
of motif matches as is possible with motif-based deep learning models[18,30,55], it has the clear
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advantages of no need for training data in any specific condition, and scaling to large numbers
of homologs with no need for phylogenetic inference or tunable parameters of any kind.

Remarkably, despite the simplicity of our approach (no deep learning, no parameter fitting, no
training data, etc.), we found that, from sequence alone, we were able to recall known functions
and predict new functions of promoters in S. cerevisiae and, to some extent, human. Similarly,
when we build a representation for 3’UTR sequences of S. cerevisiae using RNA-binding
protein motifs, patterns in the representation space are strongly associated with sub-cellular
localization of mMRNAs. Our results suggest that given the relevant motifs, prediction of function
for non-coding DNA might be easier than currently believed.

Results
Building a phylogenetic average motif score representation for non-coding regions

In the computer science literature, “feature extraction” (reviewed in [56]) refers to defining a
collection of mathematical functions that map input such as images or human language to a
feature space or “representation” that can be used for machine learning. Ideally, these features
are designed so that semantically similar objects are grouped together. In bioinformatics,
decomposing DNA sequences into k-mers (or gapped k-mers) is the most common way to
extract putatively relevant features for non-coding regions (reviewed in [57]) although many
other approaches have also been considered (e.g., [58]).

Here we set out to define a collection of knowledge-based features that could be extracted
directly from DNA sequences to create a functionally informative representation vector for a
non-coding region of interest. In our representation, each motif (Position Weight Matrix, PWM)
denotes a feature, such that a representation built with k PWMs becomes a k-dimensional
representation. Because PWM matches in individual DNA sequences occur frequently by
chance [38], we averaged the (maximum) PWM scores over homologs (see Methods). For
example, the Hsf1 transcription factor binding motif (TFBM) returns high match scores in the S.
cerevisiae promoter sequences HSP26, which is regulated by Hsf1[59], and RKM3, which is not
regulated by Hsf1 (Figure 1A). Clearly, high match scores alone in promoter sequences are not
an indication of regulation. However, taking orthologous sequences into account, the maximum
match scores for Hsf1 in all the orthologs of RKM3 are significantly lower than the match scores
for Hsf1 in the orthologs of HSP26 (paired t-test: t = 4.4, p-value = 0.0007, n = 14) (Figure 1A).
We summarize this by simply taking the average of the match score for all orthologs for each
PWM, and assigning these scores to the non-coding regions of interest: in this example, for
Hsf1, the RKM3 promoter would get an average maximum motif score of 6.2 and the HSP26
promoter would get 9.9 (Figure 1A, mean of orange points vs. mean of blue points,
respectively). By averaging the match scores for motifs across evolution (which we refer to as
phylogenetic averaging), we can prevent potential false matches in non-coding sequences from
obscuring the real biological signal.

We next sought to ensure that the distributions of (phylogenetic averaged maximum) scores for
each motif are comparable to each other, so that we could use them as features in a
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high-dimensional representation space. Non-coding sequences vary in GC content, repetitive
elements, and other biases that are expected to affect motif scores. For example, random
background matches to GC-rich PWMs will have higher scores in GC-rich promoters. Further,
PWM match scores depend on the length of the PWM and its information content, and therefore
scores from different PWMs cannot be directly compared. To address this, we normalized our
features by randomly scrambling the positions of the PWM 100 times (which preserves the
GC-content and information content of the PWM) and repeating the scanning for each
scrambled matrix, then computing a z-score between the real match scores and the distribution
of the scrambled match scores (see Methods). The output of this normalization resulted in a
representation vector whose values are the z-scores comparing the real motif to scrambled
motif scores. To confirm the normalization of the distribution of motif scores, we looked at
matches of S. cerevisiae promoters to three different PWMs: Hsf1, a relatively long motif; Tod6,
a medium length motif; and Msn2, a relatively short motif. The raw distributions of the best
match score averaged over orthologs for 4337 S. cerevisiae promoter sequences (See
Methods) for these PWMs are not standard normally distributed, and so it is difficult to compare
their distributions. After applying our normalization method, we found that the distributions of
Z-scores for each PWM were more comparable (Figure 1B). In fact, we found that much of the
distribution was approximately standard normal except for the deviation in the positive tail which
we believe to be the biological signal of highly conserved high scoring motifs (Figure 1C). Thus,
we were able to make the phylogenetic average scores of different PWMs comparable.
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Figure 1: Overview of computational method. A) Yeast Hsf1 PWM scanned against HSP26
and RKM3 promoters in S. cerevisiae and its orthologs. Blue and orange dots correspond to the
best match score to Hsf1 on either strand for HSP26 and RKM3 respectively. The x-axis
represents orthologous species ordered from left to right according to approximate evolutionary
divergence. Density plot on the right represents distribution of the scores for both HSP26 and
RKM3. B) Top panel shows raw distribution of average best match scores for 3TFs (Hsf1, Tod6,
and Msn2 in blue, white, and red respectively) and bottom panel shows scores after
normalization (see text and Methods for details). The y-axis indicates the number of promoter
sequences in each bin for a total of n = 4337 promoter sequences. C) QQ-plots testing the
standard normality of the distributions in b) before and after normalization. In each panel, the
coloured lines (blue, yellow, and red for Hsf1, Tod6, and Msn2 respectively) indicate the raw
scores, gray indicates the normalized scores, and black indicates y = x.

Phylogenetic average motif score representations are strongly associated with biological
function

We first sought to perform unsupervised analysis on the knowledge-based representations. We
built two promoter representations: one for S. cerevisiae promoters and one for human
promoters: 4337 S. cerevisiae promoters (500 bp upstream of the start codon of the gene) with
244 PWMs from YeTFaSCo [34] and 15,906 human promoters (700 bp upstream of the
annotated transcription start sites of Ensembl canonical promoters[60]) with the 137
non-redundant JASPAR 2022 [33] core PWMs. We clustered and visualized the representation
vectors using standard approaches (see Methods).

Remarkably, despite no “fitting” of any parameters or training data, we found that patterns of
phylogenetic average motif scores in yeast promoters (Figure 2A) and to some extent human
promoters (Figure 2B) were associated with gene function. Using the SGD GO term finder[61]
and g:Profiler (Raudvere et al., 2019) respectively (see Methods), we discovered at least 26
different clusters significantly enriched for various GO categories in both our yeast (Table 1) and
human (Table 2) promoter sequence representations (False Discovery Rate [FDR] = 0.05,
Benjamini-Hochberg corrected). At least for yeast promoters, the functional enrichments for
these clusters, based only on sequence analysis, are comparable to those obtained by classic
clustering of gene expression patterns[62], even though no gene expression measurements
were used in our approach.

We next compared our yeast promoter representations to large-scale expression datasets (a
compilation of >1000 stress experiments [63], and a collection of >1000 deletion experiments
[64]) to see if the clusters of promoters we discovered in the sequence data drove similar gene
expression patterns. We found broad agreement: clusters in phylogenetic average motif score
space corresponded to genes with similar patterns of gene expression. We noted at least one
cluster of yeast promoters (indicated below cluster | in Figure 2A) that share sequence signals,
appear to drive similar expression patterns in many conditions (center panel in figure 2A), but
were not enriched for any particular GO function. These promoters show signals for Msn2/4 and
other STRE-like PWMs (Gis1, Com2) indicating that they are the induced stress-response
promoters[65].
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For the human promoter representation, the comparison with gene expression data (Human
proteome atlas cell-type gene expression from sc-RNA-seq[66] and GTEx median expression,
obtained from the GTEx Portal on 03/25/23) revealed a weaker association between gene
expression patterns and cell-type and tissue-specific gene expression patterns (Figure 2B).
Nevertheless, several of our sequence-based clusters showed clear cell-type specific gene
expression patterns, For example, cluster S, which showed a strong signal for the neuronal
repressor REST[67], showed clear expression in brain tissues. This level of tissue specificity
was somewhat unexpected considering that enhancers were not included in the analysis, but is
consistent with the finding that other sequence-based models are able to predict tissue-specific
expression mostly using promoter sequences[22]. We also noted a clear association between
the absolute expression level (median expression level across GTEXx tissues) and the
motif-based promoter representation (Figure 2B). Three of the clusters D, E, and R, which
showed strong signals for Znf143, yy1 and CTCF, which are known regulators of enhancer
promoter interactions[68,69], were associated with higher absolute expression levels. These
results support the idea that human promoters contain a mixture of information about both
tissue specific expression and absolute mRNA abundance.

To quantify the genome-wide association of the motif-based representation with gene
expression, we assessed the power of the “guilt-by-association” approach in the representation
space. We used nearest neighbour (NN) regression (also known as k-nearest neighbour
regression with k=1, or 1-NN regression) to predict gene expression and summarized the
predictive power of the regression by averaging the Pearson correlation over all the expression
experiments in the datasets (numbers of experiments indicated in Figure 2). To avoid choosing
a cutoff for similarity in this analysis, we required a prediction for each promoter under each
condition, regardless of the similarity of the neighbour. Since there does not necessarily exist
another promoter that drives an identical expression pattern for any gene, even an ideal
representation is not expected to achieve a correlation of 1.0 in this analysis. Finding highly
similar expression-pattern-driving promoters also becomes increasingly unlikely as the number
of experimental conditions increase. Therefore, to obtain an upper bound, we computed the
correlation of each gene with its nearest neighbour in the expression space. We also permuted
the labels of our representation to estimate any correlation with gene expression measurements
expected by chance. Consistent with the visual inspection (Figure 2) we found association with
gene expression patterns (average R values around 0.2) far beyond what could be expected by
chance (R values around 0), but still well below the upper bounds for these datasets (Tables 3
and 4). We note that these can be considered 0-shot sequence-based predictions of gene
expression over diverse experimental contexts, a task that has proven difficult even for
sophisticated deep learning models: in order to compare sequence-based models outside of
their training data, other studies have fit regressions to part of the evaluation data[22].

Because the strength of functional association with our sequence-based clusters was
unexpected, we performed controls to rule out that simple primary sequence similarity was
responsible. For example, we computed the pairwise percent identity (See Methods) between
the promoters for three clusters of S. cerevisiae promoters and three clusters of human
promoters that all showed strong associations with function (Figure 3). As expected from
non-homologous promoter sequences, we found that all pairs show percent identity that is
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consistent with what can be observed in comparisons of randomly shuffled sequences (See
Methods). This also confirms our expectation that functional similarity of non-coding sequences
is generally not detectable using sequence alignments: the clustering of functionally similar

promoters in the (sequence-based) phylogenetic average motif score representation space is
remarkable.
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Figure 2: Clusters in the phylogenetic average motif score feature space are associated
with biological function. A) The left heatmap shows the sequence-based representation of
yeast promoter sequences, where each row is a promoter (total indicated by n) and each
column is a known motif (total indicated by n). Bright yellow squares indicate motifs that on
average have much higher scores in homologous promoters than scrambled versions of those
motifs. Center and left panels show gene expression measurements in stress conditions and
genetic perturbations (total experiments indicated by n), ordered by the rows of the clustering of
the sequence-based representation (left) heatmap. IESR indicates a cluster of promoters with
clear expression similarity, but no GO function association. B) human promoter representation
compared to cell type- and tissue-specific gene expression patterns, as well as absolute RNA
levels obtained from RNA-seq data. In the left panels, dendrograms represent the hierarchical
clustering of the promoters (left) and the motifs (top). Letters represent enriched annotations
(see Table 1 for yeast and Table 2 for human).

Clusters in the phylogenetic average motif score representation for yeast and human
promoters reveal known regulatory relationships and predict new ones

Because each feature in our representation corresponds to a transcription factor, we can predict
regulatory relationships from the heatmap visualization. Interestingly, within the yeast promoter
representation, we identify a few groups of promoters with strong signals for only one or two
TFs. For example, Hap4 is known to regulate the expression of key mitochondrial complexes
(Cytochrome c and ATP synthase) in the electron transport chain[70]. Remarkably, we find a
cluster of promoters with a strong signal for only the Hap4 motif (Table1, cluster F), where 26/29
(90%) are annotated as belonging to protein complexes in the inner mitochondrial membrane.
The other three promoters include PMT2 and YNG1, both characterized genes that have no
known association to respiration. Nevertheless, in this unusual case, it appears that
phylogenetic average score for a single motif is a very strong predictor of promoter function. A
slightly more complex example is the cluster of lysine biosynthesis promoters (Table 1, cluster
J), where we find a clear signals for both the lysine specific factor, Lys14 [71], as well as the
more general cellular amino acid biosynthetic regulator Gen4 [72]. (We note that these
promoters also contain strong signals for Rtg3, Vhr1, and Vhr2 which have similar PWMs to
Gcen4 that likely cannot be distinguished in our analysis) Nevertheless, in these cases we can
apparently read the cis-regulatory code directly from the visualization of the representation.

More typically, clusters of promoters show signals for multiple transcription factors. For example
in the chromosome segregation promoters (Table 1, cluster A), a variety of TFs are highlighted:
Hcm1, Fkh1/Fkh2, Tye7, and Stb2. While three of these (Hcm1, Fkh1, and Fkh2) have similar
motifs, they are all known to regulate the cell cycle[73—75]. On the other hand, the roles of Tye7
and Stb2, (which have distinct motifs) in this process are unclear. However, Tye7 is cell-cycle
regulated and Tye7 mutants are defective in sporulation[76]. Remarkably, Stb2 is not known to
be involved in the yeast cell cycle, and this represents a new hypothesis of function for this
transcription factor. However, we note that there is some similarity between the motif for Stb2
and the cell cycle regulators Swi4/6. Further experiments are needed to test how (or if) these
factors work together to control transcription of chromosome segregation genes.
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We identified other examples of strong signals for transcription factor motifs that represent new
predictions for regulators of basic cellular functions. For example, the proteasome is known to
be regulated by Rpn4[77] and a cluster that consists of mostly proteasomal promoters that all
contain a strong signal for the Rpn4 PWM (Table 1 cluster G, supplementary Figure 1).
However, in this cluster, we also find strong signals for Abf1 and Reb1, which to our knowledge
have no reported role in proteasome regulation (Table 1 cluster G). Remarkably, Abf1 tends to
have stronger signals in the promoters that tend to lack signals for Reb1 (Spearman’s R=
-0.275, n=67 Z-scores for Abf1 and Reb1, P=0.025) and Reb1 and Abf1 have been previously
reported to be interchangeable in at least one (unrelated) promoter[78]. We suggest a simple
logic for these promoters: either Abf1 or Reb1 is needed in addition to Rpn4 in these promoters.
Similarly, in addition to the known regulators of ribosome biogenesis (cluster Y; Stb3, Tod6/Dot6
and Sfp1) we observe a strong signal for Spt10, a factor that is not known to regulate the
ribosome and has a low confidence motif not similar to the known factors. We speculate that
either Spt10 is a new regulator of ribosomal biogenesis, or its motif is similar to another
regulator (such as Ith1) whose motif is not yet well-characterized.

Overall, we observed that most of the functions associated with phylogenetic average motif
patterns include at least 3 different motifs, with additional, previously unreported motifs
implicated for many functions. This suggests that for most yeast promoters, the full complexity of
regulation is not fully understood. These observations are broadly consistent with the
combinatorial nature of the cis-regulatory code [1].

Unlike the yeast promoter representation, the human promoter representation did not appear to
have multiple motifs in each cluster; rather, each cluster was usually associated with only a
single motif. Nevertheless, they reflected known regulatory relationships: we discovered clusters
of genes involved in striated muscle differentiation, trans-synaptic signaling, and protein folding
(Figure 3B). Interestingly, we noticed that the striated muscle differentiation cluster was
associated with SRF and included the SRF promoter, which shows a strong signal for its own
binding site. This is consistent with the known autoregulation of SRF[79]. Two other known SRF
target genes, FOS and ACTGZ2[80] are in this cluster and contain strong signals for SRF. This
demonstrates that we can capture some of the known biology using only phylogenetic averages
of matches of TFs to promoter sequences. However, the small number of motifs associated with
each cluster suggests that fewer or less diverse motifs are found in each human promoter
(compared to yeast) or that a smaller subset of regulatory interactions are conserved during
evolution.
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Figure 3: Diverse clusters reveal known regulators of biological processes in yeast and
human promoters. Heatmaps of sequence-based promoter representation are displayed as in
Figure 2. A) Clusters in the yeast promoter representation space associated with cytochrome
c-oxidase and ATP synthase (top) lysine biosynthesis (middle) and chromosome segregation
(bottom). Labels under each cluster represent the TFs with the highest z-scores in each cluster,
with their logos (retrieved from YeTFaSCo). B) Clusters in the human promoter representation
associated with striated muscle differentiation (top) trans-synaptic signaling (middle) and protein
folding (bottom). Labels under each cluster represent the TFs with the highest z-scores in each
cluster, with their logos (retrieved from JASPAR).

Testing predictions of regulation for yeast genes of unknown function

Having confirmed that known regulatory relationships were recovered in the phylogenetic
average motif score representation, we next tested whether similarity in the representation
space could predict the regulation of yeast genes of unknown function. We identified five genes
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of unknown function from diverse clusters and obtained gene expression patterns under
relevant perturbations[61] for them and their neighboring genes in the sequence based
clustering (Figure 4A-E). For example, we found YPR174C and the genes in its cluster all had
increased mMRNA expression after SWI4 was deleted, which is consistent with the expectations
for DNA replication and repair genes regulated by Swi4[81] and with previous predictions that
YPR174C is involved in DNA repair[82] (Figure 4A). As another example, we found that
YKROO05C contained a strong signal for UMEG, which is known to regulate early meiosis genes
and some middle stage meiosis genes, and YKR005C was reported to be a target of UMEG6 and
is induced in later stages of meiosis[83] (Figure 4B). In all these cases, we were able to identify
a relevant perturbation that affected expression of the genes in the sequence-based cluster,
highlighting the ease of hypothesis testing using this fully interpretable knowledge-based
representation.
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Figure 4: Predicting the regulation of unknown genes. The expression of genes of unknown
function (red symbols) compared to their cluster (black symbols, clusters as defined in Table 1)
under A) SWI4 deletion, B) UMEG deletion, C) GCN4 deletion, D) TOD6/DOT6 deletion and
heat shock, E) heat shock. Gene expression data was obtained from the Saccharomyces
Genome Database (SGD). Error bars on the black circles represent the standard deviation of
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the promoter sequence cluster mean, while red dots represent single value expression data
points for a single gene of unknown function.

A yeast 3’ UTR representation based on phylogenetic average RBP motif scores is
associated with sub-cellular localization and binding of PUF proteins

Since our phylogenetic average motif score representation revealed functional similarity in
promoter sequences, we next investigated if the same approach would lead to an informative
representation for 3° UTRs, which are implicated in regulation of mMRNA localization and stability,
but usually show little sequence similarity. We built a representation for 4294 S. cerevisiae
3'UTRs (defined as 200 bp downstream of the stop codon of the gene) using the 74 yeast
RNA-binding protein motifs (RBPMs) from AtTract[35]. We found that clusters of 3’UTRs in this
RBPM representation were associated with sub-cellular localization (Figure 5).
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Figure 5: Functional similarity of yeast 3’'UTRs. An phylogenetic average motif score
representation for yeast 3'UTR sequences, displayed as for the promoter representations in
figure 2. Letters correspond to enrichments described in Table 6. The dendrograms represent
the hierarchical clustering of the UTRs(left) and the motifs (top).

We discovered 3 clusters significantly enriched for GO terms relating to localization to a cellular
component: mitochondria, nucleus, and nucleolus (False Discovery Rate [FDR] = 0.05,
Benjamani-Hochberg corrected) (Table 6). We found many fewer clusters compared to the
promoter representations, perhaps due to the relative paucity and high redundancy of the RNA
binding motif data (See Discussion). Nevertheless, we found that the association with
mitochondrial localization was remarkably strong: 342/430 = 79.5% of promoters in this cluster
drive expression of a nuclear encoded, mitochondrially localized protein(Table 6). This indicates
that in yeast it is possible to predict mitochondrial protein localization from the 3'UTR of the
mMRNA, with positive predictive power of at least 80% for hundreds of transcripts. The
appearance of these patterns in our representation is consistent with the idea that 3’UTRs are
involved in localization of mRNA in the cell[84], and is similar to what was recently observed in a
previous large-scale analysis of 3' UTR evolution[54].

We noticed that each cluster seemed to be associated with a particular PUF motif, so we next
checked for enrichment of PUF proteins in the clusters using in vivo RNA-protein binding data
for PUF2, PUF3, PUF4, and PUF5 [85] in S. cerevisiae. We found that each of the three
significant clusters was associated with a PUF binding protein (Table 6). Thus the phylogenetic
average motif score representation appears to reflect the conserved binding of these
well-characterized RNA binding proteins[53]. Interestingly, we noted that the association with
GO annotated localizations are stronger than the association with experimental measurements
of RNA protein binding, suggesting two (non-mutually-exclusive) possibilities: either there are
other signals in the UTR sequences, or that the binding data are noisier than the phylogenetic
average motif scores.

Evolution is important for revealing biological signals despite transcriptional rewiring

Since the input to our encoder is a set of homologous non-coding sequences, we wondered
how many orthologous species are required to reveal biological signals. Does including more
species increase the biological signal, or does it plateau or decrease after a certain evolutionary
divergence? To answer this question, we began with a fixed number of S. cerevisiae promoter
sequences (n = 2925), each of which were associated with at least 17 orthologous sequences.
We organized the orthologous species into 9 clades so we could increase the evolutionary
divergence from one representation to another by including those species in groups (Figure 6A,
black dots indicate presence of species). For each level of evolutionary divergence, we compute
an phylogenetic average motif score representation as described above, and compared to gene
expression using nearest neighbour regression as above. Since nearest neighbour regression
has no trainable parameters and treats all dimensions of the representation equally, we can
fairly compare our representation approach with standard sequence-based bioinformatics
baselines: pairwise sequence similarity detected using BLAST (both promoter sequence and
amino acid sequence of the encoded protein).


https://www.zotero.org/google-docs/?PiejKT
https://www.zotero.org/google-docs/?dmUacG
https://www.zotero.org/google-docs/?mIKBbQ
https://www.zotero.org/google-docs/?fUzPou
https://doi.org/10.1101/2023.04.09.536185
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.09.536185; this version posted April 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

As expected, a representation based on the matches to the PWMs in S. cerevisiae alone
showed less predictive power than BLAST. However, we found that as we increased the
evolutionary divergence, the mean Pearson correlation increased, eventually surpassing the
predictive power of BLAST, even if we used the amino acid sequence of the encoded proteins
for BLAST (Figure 6A). We noted that there is a slight decrease or plateau in the Pearson
correlation coefficient after 7 clades, suggesting that we had reached the limit of the useful
divergence. We wondered whether the rewiring of the transcriptional network in distant species
may be responsible for this plateau. To test this, we averaged PWM scores across the
promoters for 8 of the clusters (as identified in Figure 2A) for each of the 36 species (Figure 6B)
(see Methods). Remarkably, of these 8 examples, four showed conservation over regulation
over nearly all the species here (Figure 6B ) while for the other four the average signals for
some motifs did not extend to all 36 species. This may explain the drop in predictive power
observed in Figure 6A. Nevertheless, taken together, these results confirm that averaging over
large numbers of orthologs was essential to the predictive power we observed in the yeast
promoter representation (Figure 2).

Remarkably, we were able to visually identify examples of transcriptional regulatory rewiring
from this analysis (indicated in gray on the heatmap in figure 6B). At least one of these is a
known case, the transcriptional rewiring of ribosomal biosynthesis regulation [86—-89]: Rap1 in S.
cerevisiae to Cbf1 and Sfp1 in C. albicans and beyond (Figure 6B, purple) . We also noticed that
promoters of genes involved in Meiosis | appear to lose regulation by Ume6 (and Stb5, which
has a similar motif, Figure 6B, green) in about half of the species considered here, which may
be consistent with a previous report that predicted Ume6 as changing function in C albicans
[90]. Similarly, while ribosomal biogenesis is regulated by Stb3 [91,92] in S. cerevisiae, this
appears to be lost in the more distant species (Figure 6B, magenta). Two of the previously
unreported associations we observed in S. cerevisiae (Abf1 and Reb1 in proteasomal
promoters, dark blue, and Spt10 in ribosomal biogenesis promoters, purple) are also not found
in distant species. Despite this transcriptional rewiring, we were able to group promoters of
similar function together in the phylogenetic average motif score representation (Figure 2). We
believe this is because the phylogenetic averaging retains signals that occur in a subset of
species, albeit they appear quantitatively weaker (see Discussion).
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Figure 6: Evolution is important for detecting functional similarity of non-coding
sequences. A) Shows the mean (filled symbol) and three times the standard error (error bars)
of the Pearson correlation from nearest neighbour regression of gene expression based on
similarity in the representation space (See Methods) as evolutionary divergence is increased.
“Stress experiments” of 1337 stress-related conditions and “Genetic Perturbations” is a gene
expression dataset with 1487 single gene deletions. The x-axis represents the number of clades
included as depicted in the phylogenetic tree, and the y-axis represents the Pearson correlation.
The branch lengths in the phylogenetic tree do not reflect evolutionary distances. Black dots
under graphs represent species included at each evolutionary distance. B) Heat map depicting
average motif scores in species in a particular functional cluster. Each square represents a
z-score of the real motif score to a distribution of scores generated using 100 scrambled motifs
averaged across a particular yeast species for genes in a particular cluster (See Methods).
Clusters of S. cerevisiae promoters are described by the colours below the heat map and were
extracted from Figure 2A. Within each cluster, species are organized roughly by evolutionary
distance as described by the phylogenetic tree on the left. The dendrogram represents the
hierarchical clustering of the motifs (top).

Discussion

Our effort to reframe the cis-regulatory code as a representation building problem was
remarkably successful, especially considering the simplicity of the approach we took. To our
knowledge, this is the first report of a DNA sequence-based measure of similarity for non-coding
regions that is more informative than alignment-based sequence similarity using BLAST.
Because the phylogenetic average motif score representations are based only on prior
knowledge of motifs and homologous non-coding sequences, similarity of non-coding
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sequences in these spaces can predict function without relying on specific experimental data
collected in a particular condition or cell type. Surprisingly, but consistent with recent results[13]
and our finding that phylogenetic average motifs scores had stronger association with
subcellular localization than with in vivo PUF protein binding data (Table 6), a representation of
yeast promoters based on large-scale in vivo transcription factor binding data (192 transcription
factors[93], See Methods) was a poor predictor of gene expression patterns (nearest neighbor
regression, Pearson correlation, R = 0.003 +/- 0.006 and 0.004 +/- 0.02 on the yeast expression
data sets described above).

The power of simple phylogenetic averaging of motif scores to predict gene expression is
surprising because we know that many aspects of transcriptional regulation have changed
during the hundreds of millions of years of divergence represented by the species considered
here [51,52,90]. The naive expectation is that if regulation is not conserved, this method should
fail to identify functional similarity. However, in our example of yeast promoters, although the
ribosomal transcriptional regulation is known to have switched from regulation by Tbf1 in C.
albicans to regulation by Rap1 in S. cerevisiae[87], and both species were present in the
representation, we were still able to identify a clear cluster of ribosomal proteins, and these
were distinct from other promoters involved in translation (cluster W, Y and Z, Table 2).
Additionally, the TFs identified as important (cluster W: Stb3, Sfp1, Y:Tod6, Dot6 and Z: Rap1,
Table 2) were the expected TFs for each cluster. Thus, the approach can be quite robust to
evolutionary changes in transcriptional regulation, perhaps due to our simple averaging of best
match scores over all the orthologous species.

The high-dimensional phylogenetic average motif score feature space has the advantage of
using all available TFs at once, which reflects the combinatorial nature of the cis-regulatory
code[1]. Compared to deep learning approaches based on deep convolutional neural networks
[27,94,95] or language models [28], the average motif score representation is trivially
interpretable, and needs no downstream steps to identify important motif combinations (e.g.,
Abf1 and Reb1 working with Rpn4, supplementary figure S1). Because we can “read off”
predictions from a visualization of the representation with no fine-tuning on additional datasets
(as is needed for current deep learning approaches [22,28]), we can make highly specific
biological predictions for cases where it would not be possible to create even a small training
dataset for supervised analysis (e.g., Hap4 targets, Figure 3A). Indeed, for several genes of
unknown function, we directly compared the predictions of regulation with TF knock out gene
expression experiments (Figure 4).

One downside of our approach is that it relies on the quality of sequence and motif data. For
example, the PWMs for RBPs are of lower quality and diversity than for TFs, and this may have
limited the number of clusters we identified in the 3’ UTR analysis. Although we did not directly
use any functional data to build the representation, there may still be some bias due to the way
the motifs are derived: ChIP experiments are sometimes used to derive motifs[34]. Since these
experiments are usually performed in standard lab conditions and cell lines, we may be missing
motifs that would help predict other unknown functions. Motifs derived from promoter sequences
may also be biased to match those promoters. However, motifs derived from in vitro binding
(e.g., [96]) avoid this potential bias or circularity.
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This phylogenetic average motif score representation building approach does not use deep
learning. However, could we improve the representation with deep learning? Recently,
self-supervised training of natural language models on biological sequences and subsequent
fine-tuning for specific tasks has led to new approaches for many classic problems in protein
[97—99] and DNA[28] sequence analysis. Representation learning has the potential to learn
motifs that are not found in the databases[27,100,101], as well as more complicated regulation
and rules about motif spacing and orientation [94,95,102]; here we simply took the best match in
each sequence. Because it uses no deep learning or trainable parameters and is based on
freely available data, phylogenetic average motif score representations serve as a baseline for
future representation learning efforts.

Taken together, the success of the phylogenetic average motif score representation to group
together promoters and 3'UTRs with similar function indicates that combinations of transcription
factor and RNA binding motifs may be sufficient to predict (at least some) functions for these
non-coding regions. Finally, our results suggest that, at least when averaged over evolution, the
“‘rules” and “grammar” of the cis-regulatory code may be simpler than is currently anticipated[1],
but that global, high-dimensional views may be essential to its understanding.

Methods
Data collection of yeast and human non-coding sequences

The ideal choice of species for our approach would be those with maximum sequence
divergence and minimal functional divergence; too close to the reference species and the
promoters may be too similar, but too diverged and the TFs and gene expression patterns may
not be conserved. For S. cerevisiae, we decided on up to 35 species per gene (Shen et al.,
2016;[54]). In alphabetical order: Ashbya gossypii, Candida albicans, Candida auris, Candida
glabrata, Candida parapsilosis, Candida tropicalis, Clavispora lusitaniae, Debaryomyces fabryi,
Debaryomyces hansenii, Eremothecium cymbalariae, Eremothecium gossypii, Kazachstania
africana, Kazachstania naganishii, Kluyveromyces dobzhanskii, Kluyveromyces lactis,
Kluyveromyces marxianus, Komagataella pastoris, Komagataella phaffii, Lachancea dasiensis,
Lachancea lanzarotensis, Lodderomyces elongisporus, Naumovozyma castellii, Naumovozyma
dairenensis, Rhodotorula graminis, Saccharomyces arboricola, Saccharomyces eubayanus,
Saccharomyces boulardii, Saccharomycetaceae ashbya aceri, Tetrapisispora blattae,
Tetrapisispora phaffii, Tortispora caseinolytica, Torulaspora delbrueckii, Vanderwaltozyma
polyspora, Yarrowia lipolytica, and Zygosaccharomyces rouxii. 6600 S. cerevisiae promoter
sequences and up to 35 one-to-one orthologs per S. cerevisiae gene were retrieved from
Ensembl[60]. They were filtered for only those sequences that contained the letters A, T, G, and
C. Only those S. cerevisiae genes that were associated with a minimum of 10 orthologous
species were used. The final representation for yeast promoter sequences contained 4337 S.
cerevisiae genes with a total of 126,049 promoter sequences. 3'UTR sequences were obtained
similarly, with 4294 S. cerevisiae genes in the representation and 82,187 3'UTR sequences in
total. Human gene IDs for 18,256 genes were obtained from Ensembl and 2,612,699
homologous sequences were obtained from a Zoonomia alignment[103]. We then used a
heuristic filter similar to the approach described elsewhere[101] to make the number of
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homologs more comparable to the yeast dataset. After this filtering, we were left with 814,963
sequences for the 18,256 promoters. We then applied the filters described above for the yeast
sequences and obtained 800,178 sequences in 15,906 human homologous promoter sets.

Collection of motif data:

244 Yeast TF motifs were downloaded from YeTFaSCo[34] (expert curated motifs), 137 human
TF motifs were downloaded from JASPAR[33] (non-redundant core vertebrate set), and 74
yeast RBP motifs were downloaded from AtTract[35]. All position frequency matrices were
converted to PWMs using a log ratio of motif to a background frequency of 0.25 per nucleotide.
For matrices that are given as nucleotide counts, a pseudo-count of 1 per position was added
for smoothing. For matrices that were given as probabilities between 0 and 1, a heuristic
procedure was used for smoothing. The effective number of observations, Ne, was defined as
Ne = 1/min(p) where min(p) was the smallest non-zero number in the PFM probability matrix.
The counts for nucleotide b and position i, were then estimated as ¢ = Ne x p, where p is the
probability of nucleotide b at position i. This estimated counts matrix was then softened with the
usual 1 per position pseudo-count.

Convolutional scanning and normalization to build the representation:

To build the representation, we took advantage of GPUs and the speed of machine learning
tools and used a convolutional layer in Keras/Tensorflow to compute match scores of motifs to
promoter sequences. Motifs were embedded in a single keras convolutional layer with kernel
size set to the largest motif (for yeast TF motifs, kernel size was 29; for human, kernel size was
35; for yeast RBP motifs, kernel size was 12). Motifs were centered in an array of Os so that
they were all a standard size for loading into a convolutional layer.

For promoter sequences, we embedded each motif and its reverse complement in a
one-dimensional convolutional layer and scanned the motifs across the entire sequence. The
greater of the two match scores was reported to be the match score for that position by
performing a max pool over the forward and reverse scores. For 3’UTR sequences, since they
are single-stranded as RNA, we only scanned forward motifs. Generally, a potential binding site
is identified when the score of the PWM model is above an arbitrary threshold, and higher
scores are interpreted as binding sites with greater strength than those with lower scores[2].
Thus, we returned the highest score of the PWM scanning for a particular sequence as the “best
match” of the motif to that sequence by performing a max pool across the length of the
sequence[2]. These “best matches” were averaged over all the available homologs for each
promoter or 3’ UTR. We normalized these phylogenetic averaged “best match” scores by
scrambling the motifs 100 times and repeating the convolutional scanning for each scrambled
matrix, then computing a z-score between the real match scores and the distribution of the
scrambled match scores.

To visualize the feature space, we performed hierarchical clustering on the data using Cluster
3.0[104] (median centered arrays, uncentered correlation on genes and arrays, average
linkage) and visualized the clustering using Java Treeview[105]. Clusters were extracted from
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the feature space using Java Treeview[105]. Yeast clusters were annotated using the
Saccharomyces Genome Database (SGD) GO term finder[61], and human clusters were
annotated using g:Profiler[106]. Process, function, and component GO terms were considered.
The false discovery rate was set to 0.05 and the terms were Benjamini-Hochberg corrected.
P-value threshold was set to 0.05.

Collection and processing of gene expression and binding data:

Gene expression data for yeast was obtained from a collection of stress experiments, where
yeast were subjected to a large variety of growth conditions [63] (arrays were median centered)
and a large set of genetic perturbations [64] (genes and arrays were median centered). Single
cell type data[66] for human was obtained from The Human Protein Atlas and both genes and
cell types were median centered. Median TPM RNA expression for tissues was obtained from
the GTEx v8 portal. The median values for each gene were log transformed and then used as a
measure of absolute expression level. The GTEx data were also log transformed and genes
were median centered. A matrix of yeast promoters with direct evidence for binding of any
transcription factor was retrieved from yeastract on July 26th, 2022.

Nearest neighbour (NN) regression:

To evaluate the predictive power of the feature space and compare between representations
easily, we performed a nearest neighbour (NN) regression (also known as k-nearest neighbour
with k=1) using a cosine similarity metric. Only those genes with less than 15% missing data
points were included. For the remaining genes, the missing data was replaced with 0s. Nearest
Neighbour regression predicts each point (in our case expression measurement) to be the value
of its nearest neighbour (in our case in the sequence-based representation space). We
measured the power of the regression for each set of genome-wide expression measurements
using the Pearson correlation. We then summarized the Pearson correlations using the mean
and standard error over all the experiments in the dataset. For comparison, a randomized
Pearson correlation was calculated by shuffling the gene identifiers of the expression
measurements and performing NN regression with the sequence-based representation space.
Additionally, an upper bound Pearson correlation was determined by performing NN regression
on the expression measurements against themselves.

Sequence similarity of yeast and human promoter sequences:

To calculate sequence similarity of promoter sequences in presented clusters, we used the
Clustal Omega[107]. This generates a matrix of sequence similarity between all promoter
sequences. To generate an expectation for what constitutes as low sequence similarity, we
generated 100 random 500 bp sequences composed of an equal proportion of A, T, C, and G
nucleotides and generated a matrix of sequence similarity with the random sequences. To get
the average and standard deviation of the percent identity of these sequences, we averaged all
the percent identities in the matrix except for the diagonal of 100% identities corresponding to
the sequence similarity between a promoter and itself. The average and standard deviation of
this percent identity matrix generated using random sequence was 28% + 3% but the maximum
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percent identity was approximately 46%, while the minimum percent identity was approximately
19%. Taking this into account, and the fact that the nucleotides do not appear at a rate of 25%
each in yeast or human sequences, we assumed that promoters in clusters presented had
relatively low sequence similarity if the sequence similarity of most of the promoter pairs in the
matrix was below 50%.

Sequence similarity of nucleotide and protein sequences as baselines:

To compare representations in the evolutionary analysis to known baselines, we used blastn
[108] to find nearest neighbours of promoter sequences, and blastp [108] to find nearest
neighbours of protein sequences (also retrieved from Ensembil). Starting with promoters, we first
created a database of all S. cerevisiae promoter sequences, and then we performed “all-by-all”’
blast (maximum target sequences = 2, maximum e-value = 10) between the database and all
the input sequences. We used the closest BLAST hit (other than itself), defined as the hit with
the highest percent identity and lowest e-value, for a particular target sequence as its
“neighbour”. We used these for nearest neighbour regression as described above. These steps
were repeated for protein sequences.

Building a representation for evolutionary analysis of TFs in yeast:

To generate a representation for evolutionary analysis of TFs in yeast (Figure 6), we modified
the encoder so that instead of averaging PWM max scores over all orthologs of a particular
gene, we averaged PWM max scores over all genes in a particular cluster (for example,
ribosome biosynthesis) of a particular species (for example, C. albicans).
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Tables

Table 1: Functional GO enrichments of clusters in the yeast promoter representation (SGD GO Term Finder)
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ID PWMs Annotations (Positive genes in cluster/Total genes in Corrected P-value <=
cluster)
A Reb1, Stb2, Microtubule binding (12/44), mitotic cell cycle (32/44), 5.47e-16
Rtg3, Tye7, chromosome (18/44), microtubule cytoskeleton (19/44),
Mbp1, Rsc3, chromosome segregation (25/44) (23/44)
Swi4, Hcm1,
Fkh1, Fkh2
B Nsi1, Reb1, Protein binding (20/49), mitotic cell cycle (18/49), cell 9.76e-06
Stb2, Pho4, division (15/49), cytoskeleton (14/49), cell cycle process
Rtg3, Tye7, Abf1, | (23/49)
Mbp3, Swi4,
Rsc3, Fkh1,
Fkh2
C Stb2, Mbp1, DNA binding (47/105), DNA repair (50/105), cellular 2.37e-21
Rsc3, Swi4, Fhi1, | response to DNA damage stimulus (52/105), chromosome
Fhk2 (59/105), replication fork (22/105)
D Ino2, Pho4, Rtg3, | Catalytic activity (23/29), sulfur amino acid metabolic 2.61e-05
Tye7, Cbf1, process (14/29), sulfur compound metabolic process
Met32, Met31 (18/29), sulfur amino acid biosynthetic process (12/29),
methionine biosynthetic process (10/29)
E Nsi1, Reb1, Stb2 | Transport (27/49), RNA localization (10/49), establishment 3.13e-05
of localization (27/49), macromolecule localization (22/49),
protein-containing complex (35/49)
F Hap4 Proton transmembrane transporter activity (24/29), proton 3.24e-34
transmembrane transport (23/29), inner mitochondrial
membrane protein complex (26/29), monatomic cation
transmembrane transporter (24/29), mitochondrial
protein-containing complex (26/29)
G Rpn4, Abf1, Proteasome complex (34/67), endopeptidase complex 8.02e-10
Reb1 (34/67), ATP hydrolysis activity (15/67),
modification-dependent protein catabolic processes
(42/67), proteolysis involved in protein catabolic
processes (43/67)
H Nsi1, Reb1, Stb2 | Actin filament binding (6/69), Arp2/3 complex-mediated 7.57e-05
actin nucleation (7/69), cortical cytoskeleton (11/69), cell
cortex (14/69), actin nucleation (7/69)
| Yap5, Yap3, Oxidoreductase activity (15/18), antioxidant activity (8/18), 8.41e-13
Yap7, Yap1, response to oxidative stress (11/18), cellular oxidant
Cad1 detoxification (8/18), cellular detoxification (8/18)
J Rtg3, Gen4, Carboxylic acid transmembrane transporter activity (5/12), 2.30e-06
Vhr1, Vhr2, lysine biosynthetic process via aminoadipic acid (7/12),
Bas1, Rtg1, lysine biosynthetic process (7/12), lysine metabolic
Yap7, Lys14
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process (7/12), aspartate family amino acid biosynthetic
process (7/12)

Various TFs Transporter activity (12/21), xenobiotic transport (5/21), 5.37e-07
plasma membrane (10/21), active transmembrane
transporter activity (9/21), xenobiotic export from cell
(4/21)
Various TFs Catalytic activity (40/51), oxidoreductase activity (16/51), 1.07e-07
monocarboxylic acid metabolic process (23/51), fatty acid
metabolic process (17/51), peroxisome (17/51)
Uga3, Ume6, Meiosis | (12/21), meiotic cell cycle (16/21), meiotic 4.93e-10
Stb5 nuclear division (13/21), condensed nuclear chromosome
((8/21), nuclear chromosome (10/21)
Hsf1, Abf2, Sfl1 | Chaperone binding (9/22), unfolded protein binding 2.82e-11
(10/22), heat shock protein binding (7/22), protein folding
(17/22), protein refolding (9/22)
Upc2 Sterol biosynthetic process (6/12), steroid biosynthetic 5.86e-08
process (6/12), sterol metabolic process (6/12), lipid
biosynthetic process (8/12), ergosterol biosynthetic
process (5/12)
Mcm1, Fkh1, Single-stranded DNA helicase activity (5/39), Cell cycle 7.60e-08
Fkh2, Mbp1, (22/39), MCM complex (5/39), Nuclear pre-replicative
Rsc3, Swi4 complex (6/39), cell cycle process (19/39)
Ndt80, Sum1, Ascospore formation (22/39), cell development (22/39), 1.50e-13
Cup9 spore (24/39), sexual sporulation (22/39), intracellular
immature spore (12/39)
Matalpha2-dimer, | Conjugation with cellular fusion (11/14), sexual 7.60e-09
Ste12 reproduction (11/14), mating projection tip (8/14), mating
projection (8/14), reproduction (11/14)
Rtg3, Gen4, Amino acid biosynthetic process (36/49), arginine 5.58e-06
Vhr1, Vhr2, biosynthetic process (8/49), glutamine family amino acid
Bas1, Rtg1, Yap7 | metabolic process (12/49), isoleucine biosynthetic
process (7/49), threonine metabolic process (4/49)
Rtg3, Gcn4, Aminoacyl-tRNA ligase activity (12/18), ligase activity 4.39e-07
Vhr1, Vhr2, forming carbon-oxygen bonds (12/18), tRNA
Bas1, Rtg1 aminoacylation for protein translation (12/18), amino acid
activation (12/18), aminoacyl-tRNA synthetase
multienzyme complex (3/18)
Rtg3, Gcn4, Carboxylic acid binding (4/17), organic acid binding (4/17), 1.46e-06
Vhr1, Vhr2, one-carbon metabolic process (5/17), small molecule
Bas1, Rtg1, metabolic process (13/17), glycine cleavage complex

various Yap TFs

(3117)
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\% Cad1, Yap?7, Iron-sulfur cluster binding (7/39), metal cluster binding 2.53e-07
Yap1, Rtg3, (7/39), sulfur compound metabolic process (15/39),
Gcen4, Vhri, iron-sulfur cluster assembly (8/39), metallo-sulfur cluster

Vhr2, Bas1 assembly (8/39)

w Abf1, Stb3, Structural constituent of ribosome (26/95), translation 2.06e-15
Sum1, Sfp1 (51/95), organellar ribosome (24/95), peptide biosynthetic
process (51/95), mitochondrial ribosome (24/95)

X Tod6, Dot6, Stb3, | RNA polymerase | core promoter sequence-specific DNA 6.57e-03
Sfp1, Tho2 binding (2/21), RNA polymerase | core factor complex
(2/21), RNA polymerase | transcription regulator complex
(2/121)

Y Tod6, Dot6, Catalytic activity acting on RNA (100/491), RNA binding 2.90e-30
Spt10, Stb3, (175/491), ncRNA metabolic process (245/491), ribosome
Sum1, Sfp1 biogenesis (222/491), nucleolus (193/491)

z Rap1 Structural constituent of ribosome (19/30), cytoplasmic 2.39e-10
translation (16/30), translation (20/30), cytosolic ribosome
(19/30), ribosomal subunit (20/30)

Table 2: Functional GO enrichments of clusters in the human promoter representation (g:Profiler)

ID PWMs Annotations (Positive genes in cluster/Total genes in Corrected P-value <=
cluster)
A Hsf2 ATP-dependent protein folding chaperone (6/49), protein 6.51e-03

folding chaperone (6/49), protein folding (7/49), organelle
lumen (28/49), HSF1 (19/49)

B Stat1 Stat1 (27/56) 8.91e-08
C Prdm15 Prdm15 (21/35) 9.45e-15
D Znf143 Nucleic acid binding (155/476), cellular nitrogen compound 1.64e-08

metabolic process (227/476), nucleus (277/476), herpes
simplex virus 1 infection (35/476), gene expression
transcription (79/476), seminal vesicle (256/476), Znf76
(273/476)

E Yy1 Nucleic acid binding (125/341), cellular nitrogen compound 1.91e-06
metabolic process (166/341), nuclear lumen (152/341),
metabolism of RNA (38/341), colon; glandular cells
[>Medium] (195/341), Yy1 (261/341)
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Erf

RNA binding (146/752), cellular nitrogen compound
metabolic process (351/752), intracellular
membrane-bounded organelle (574/752), metabolism of
RNA (71/752), cerebellum; Purkinje cells [>Low] (354/752),
Erf (415/752)

2.12e-10

Rfx5

Cilium organization (55/665), cilium assembly (53/665),
microtubule-based process (84/665), cilium (85/665),
ciliopathies (31/665), bronchus; ciliated cells (tip of cilia)
[>Medium] (43/665), Rfx5 (223/665)

1.31e-05

Nr2f6, Nr1h2

Mitochondrial fatty acid beta-oxidation multienzyme
complex (2/119), 3-Hydroxyacyl CoA dehydrogenase
(2/119), Hnf4a (54/119)

2.35e-02

Fosl2::Junb,
Gmeb1

Intracellular anatomical structure (310/353), nuclear lumen
(126/353), adrenal gland; glandular cells [>Medium]
(161/353), placenta (191/353), Creb (216/353)

1.53e-04

Fosl2::Junb,
Gmeb1, Nyfa

Heterocyclic compound binding (98/190), nuclear lumen
(83/190), skeletal muscle; myocytes [>Low] (92/190),
negative regulation of cell cycle process (13/190), Creb
(94/190)

9..62e-03

Arnt2

Cycteine-type peptidase activity (14/446), cytosolic
transport (19/446), lytic vacuole (48/446), lysosome
(15/446), thyroid gland (244/446), Arnt (402/446)

1.31e-02

Arnt2, Nyfa

POZ domain binding (2/141), intracellular
membrane-bounded organelle (116/141), Nyfa (95/141),
prostate (83/141), Arnt (120/141)

4.07e-02

Nyfa

Heterocyclic compound binding (127/302), cell division
(31/302), cell cycle (58/302), intracellular anatomical
structure (267/302), cholesterol biosynthesis pathway
(5/302), appendix; lymohoid tissue [>Medium] (83/302),
Nyfa (184/302)

8.09e-03

Nyfa, Hsf2

ATP-depending protein folding chaperone (5/24), protein
folding chaperone (5/24), chaperone-mediated protein
folding (7/24), chaperonin-containing T-complex (2/24),
attenuation phase (4/24), Nyfa (16/24), Hsf1 (17/24)

2.22e-03

Srf

Actin binding (66/12), muscle structure development
(19/66), tissue development (29/66), striated muscle cell
differentiation (13/66), contractile fiber (14/66), myofibril
(14/66), muscle contraction (11/66), appendix; enterocytes —
microvilli [High] (6/66), Srf (23/66)

4.13e-04

Tbp

Receptor ligand activity (19/169), signaling receptor
regulatory activity (20/169), cellular developmental process
(76/169), cell differentiation (76/169), extracellular space
(54/169), Tbp (75/169)

1.83e-03
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Q Scrt Scrt1 (11/76) 4.50e-05

R Ctcf DNA-directed 5’-3' RNA polymerase activity (6/545), 3.329e-03
protein-containing-complex (215-545), T cell receptor
complex (13/545), breast (266/545), smooth muscle
(209/545), Ctcf (257/545)

S Rest Trans-synaptic signalling (14/85), synaptic vesicle 1.99e-03
membrane (7/85), presynapse (12/85), Rest (56/85),

T Nfic Leukotriene-B4 20-monooxygenase activity (4/74), 1.57e-07
aromatase activity (5/74), menaquinone K catabolic process
(4/74), eicosanoids (5/74), Nfic (38/74)

U Irf8 CARD domain binding (4/59), response to external biotic 2.45e-03
stimulus (31/59), response to virus (18/59), COVID-19
(7/59), inflammasome complex (3/59), lung; macrophages
[>Medium] (32/59), Irf8 (33/59)

\Y Pou2f1 Cis-regulatory region sequence-specific DNA binding 2.13e-02
(13/73), Pou2f1 (50/73)

w Mef2d Sarcomere organization (5/32), myofibril assembly (5/32), 2.29e-03
muscle structure development (10/32), muscle cell
differentiation (8/32), contractile fiber (8/32), sarcomere
(8/32), muscle contraction (5/32), skeletal muscle; myocytes
[High] (9/32), Mef2 (13/32)

X Tbp Neuropeptide hormone activity (5/96), hormone activity 1.51e-03
(7/96), system process (30/96), muscle contraction (12/96),
extracellular space (42/96), hypothalamus; neuronal
projections [>Medium] (4/96), Tbp (45/96)

Y Fosl2::Junb Fusion of sperm to egg plasma membrane involved in 2.16e-02
single fertilization (4/144), T-cell receptor complex (8/144),
Junb (114/144), C-Fos (114/144)

4 Ctcf Antigen binding (7/55), adaptive immune response (20/55), 1.10e-06
immunoglobulin complex (12/55), classical
antibody-mediated complement activation (6/55)

Table 3: Functional GO enrichments of clusters in the yeast 3’'UTR representation (SGD GO Term Finder)

ID Annotations (Positive genes in cluster/Total genes in cluster) Corrected P-value <=

A Mitochondrial gene expression (132/430), mitochondrial translation 2.57e-37
(117/430), mitochondrion organization (132/430), mitochondrial part
(132/430), mitochondrion (342/430), structural constituent of ribosome
(79/430), mitochondrial ribosome (83/430)
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B RNA biosynthetic process (104/273), transcription by RNA 8.48e-17
polymerase Il (93/273), DNA binding (72/273), chromosome (78/273),
nucleus (173/273)

C RNA binding (98/251), ribosome biogenesis (133/251), rRNA 2.67e-19
processing (100/251), nucleolus (116/251), preribosome (81/251)

Table 4: NN regression R values (Pearson correlation) for yeast promoter representation and gene expression data

Experiment (number of
expression conditions)

Randomized (average R)

Phylogenetic average
motifs scores (average R)

Upper bound (average R)

Stress (n=1337)

0.00267

0.23393

0.57255

Deletions (n=1487)

-0.00051

0.17235

0.56796

Table 5: NN regression R values (Pearson correlation) for human promoter representation and gene expression data

Experiment (number of Randomized (average Phylogenetic average Upper bound (average R)
expression conditions) R) motifs scores (average R)
Cell-types (n=76) 0.00673 0.18226 0.89067
Tissues (n=54) -0.00079 0.21699 0.84400
Absolute expression (n=1) -0.00703 0.24631 0.84422

Table 6: enrichment of GO localization and PUF binding in clusters of 3’ UTRs.

ID GO association
positive in cluster/total
genes in cluster

(all p-value<1e-15)

Positive PUF3 in
cluster/Total genes in
cluster, (p-value)

Positive PUF4 in
cluster/Total genes
in cluster, (p-value)

Positive PUF5 in
cluster/Total genes in
cluster, (p-value)

A Mitochondrion 342/430

165/430 (2.92e-147)

10/430 (0.0261)

10/430 (0.0810)

B Nucleus 173/273,
Chromosome 78/273

2/273 (2.16e-04)

10/273 (0.131)

36/273 (1.01e-14)

C Nucleolus 116/251,

1//251 (8.51e-05)

69/251 (7.59-45)

7/251 (0.150)

Preribosome 81/251
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Supplementary Figure S1. Abf1 or Reb1 are found with Rpn4 (Table 1, cluster G) in
proteasomal promoters and the cytosolic chaperonin ring complex. Not all 244 yeast motifs are
shown for clarity. Z-scores are displayed as in Figure 3

Supplementary Data

Includes the raw phylogenetic average motif score representations as well as the files needed
for the visualizations in figures 2 and 5. Also includes Excel spreadsheets with the information
about each manually identified cluster and the enrichment analysis results shown in tables 1, 2
and 6.
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