

1
2
3
4 ***Caenorhabditis elegans* models for striated muscle disorders**
5 **caused by missense variants of human *LMNA***
6

7
8 Ellen F. Gregory¹, Shilpi Kalra¹, Trisha Brock², Gisèle Bonne³, G.W. Gant Luxton¹, Christopher
9 Hopkins², Daniel A. Starr^{1*}

10
11
12
13 ¹Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
14 ²InVivo Biosystems, Eugene, OR, USA
15 ³Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France

16
17
18 *Corresponding author
19 E-mail: dastarr@ucdavis.edu (DAS)

20
21
22
23
24

25 Abstract

26 Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene *LMNA* are
27 characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which *LMNA*
28 variants are pathogenic and to understand their physiological effects lags behind variant discovery. We
29 created *Caenorhabditis elegans* models for striated muscle laminopathies by introducing pathogenic human
30 *LMNA* variants and variants of unknown significance at conserved residues within the *lmn-1* gene. Severe
31 missense variants reduced fertility and/or motility in *C. elegans*. Nuclear morphology defects were evident
32 in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity.
33 Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease,
34 but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe
35 phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a
36 separation of function allele, *lmn-1(R204W)*, that exhibited normal viability and swimming behavior but
37 had a severe nuclear migration defect. Thus, we established *C. elegans* avatars for striated muscle
38 laminopathies and identified *LMNA* variants that offer insight into lamin mechanisms during normal
39 development.

40

41 Author summary

42 Muscular dystrophy is a progressive muscle-wasting disorder that eventually leads to cardiac disease.
43 Mutations in the *LMNA* gene, which encodes an intermediate filament protein involved in the structure and
44 organization of the nucleus, is a common but poorly understood cause of this disease. How variants across
45 the breadth of *LMNA* contribute to mechanistic cellular defects that lead to disease is poorly understood,
46 leading to hurdles in diagnosing disease and developing treatments. We found that by introducing amino
47 acid substitutions found in patients with striated muscle disorders caused by *LMNA* into the conserved *lmn-*
48 *I* gene of the nematode *C. elegans*, we could rapidly test the function of these variants to better understand

49 their roles. We found that variants modeling diseases that involve both skeletal and cardiac muscle in
50 humans were the most pathogenic in *C. elegans*, typically affecting both viability and movement, while
51 those that modeled cardiac disease alone had less deleterious effects in *C. elegans*. Furthermore, we
52 uncovered molecular mechanisms for how lamins interact with other nuclear envelope proteins to carry out
53 their cellular functions. Thus, our new *C. elegans* models can be used to diagnose and predict the severity
54 of new variants of human *LMNA* as well as better understanding the molecular mechanisms of lamins in
55 normal development.

56

57 **Introduction**

58 Lamins are highly conserved intermediate filament proteins that underlie the inner nuclear membrane of
59 the nuclear envelope and form a nucleoskeletal meshwork known as the nuclear lamina [1]. Lamins are
60 integral to the mechanical stability of the nucleus, cytoskeletal coupling, genome organization, and gene
61 expression [2]. Pathogenic variants of the human *LMNA* gene contribute to a broad spectrum of tissue-
62 specific diseases that are collectively referred to as laminopathies [3,4]. 80% of pathogenic mutations in
63 *LMNA* give rise to striated muscle laminopathies [5].

64 Striated muscle laminopathies lead to dilated cardiomyopathy (DCM-CD), which is the main cause of death
65 in affected individuals [3]. However, the range and severity of symptoms within any given *LMNA*-
66 associated striated muscle disease varies [5–7]. While many individuals only have cardiac defects [8],
67 others additionally experience impaired skeletal muscle function [9,10]. At the severe end of the spectrum,
68 *LMNA*-related congenital muscular dystrophy (L-CMD) presents as early onset dystrophic symptoms and
69 rapid disease progression [9,11]. Autosomal-dominant Emery-Dreifuss muscular dystrophy (AD-EDMD)
70 is characterized by childhood onset and manifests as gradual progressive skeletal muscle weakness [6,12].
71 In contrast, limb-girdle muscular dystrophy type 1B (LGMD1B) is a primarily adult-onset disease with
72 milder weakness typically affecting proximal muscle [13]. How mutations within *LMNA* lead to multiple
73 diseases with a wide range of overlapping etiologies is poorly understood.

74 Striated muscle laminopathies lack a clear phenotype-genotype link, which further complicates prognoses.
75 The location of a disease-associated variant within the *LMNA* gene does not correspond to symptom onset,
76 type, or severity [14,15]. The need for precise characterization of known pathogenic *LMNA* mutations is
77 compounded by the accelerated pace of variant discovery, which has identified hundreds of variants of
78 unknown clinical significance (VUS), most commonly missense variants [16]. Therefore, a model that can
79 efficiently evaluate the pathogenicity of specific variants is critical to accelerate the diagnosis of *LMNA*
80 VUS. Furthermore, new models would expand our understanding of both the physiological progression of
81 laminopathies and basic roles of lamins throughout normal development.

82 Vertebrate models have been developed to study the effects of several laminopathic variants. Zebrafish
83 containing a 5-bp deletion that is predicted to create an early stop codon in one or both copies of *lmna* have
84 skeletal muscle defects, reduced movement, and aberrant expression of genes that are also dysregulated in
85 laminopathy patients [17]. *Lmna*^{-/-} mice lose nuclear envelope integrity, have delayed postnatal growth, and
86 experience a rapid onset of muscular dystrophy, while *Lmna*^{+/-} mice develop adult-onset DCM [18]. Murine
87 models also exist for laminopathic missense mutations. A line designed to model AD-EDMD with the
88 *Lmna*^{L530P/L530P} mutation produces mice with symptoms similar to premature aging disorders [19]. Another
89 mouse model, *Lmna*^{H222P/H222P}, develops the dystrophic and cardiac phenotypes of AD-EDMD [20,21].
90 Notwithstanding these advances, vertebrate models are time-consuming and expensive to generate, limiting
91 their ability to encompass the spectrum of *LMNA*-associated striated muscle laminopathies.

92 The model nematode *Caenorhabditis elegans* is genetically and microscopically tractable, making it
93 suitable for quickly generating and characterizing mutant strains and an excellent system for studying
94 striated muscle laminopathies. *C. elegans* has a single lamin protein, LMN-1 that is 30.3% identical to
95 human lamin A and performs many of the same functions. LMN-1 binds BAF, emerin, and other LEM-
96 domain homologs, and knock-down of *lmn-1* leads to defects in nuclear shape, chromosome segregation,
97 nuclear import, germline organization, and embryonic viability [22–29]. Because many of the residues in
98 human lamin A that are implicated in disease are conserved in LMN-1, *C. elegans* has been used to model

99 laminopathy-associated missense variants, and these animals exhibit phenotypes such as defects in striated
100 body-wall muscles that are reminiscent of human pathologies [30–34].

101 Despite these important advantages, *C. elegans* models to date have been limited in their ability to
102 recapitulate human laminopathies. First, published models express missense variant LMN-1 proteins from
103 multi-copy extrachromosomal arrays in the presence of the intact endogenous *lmn-1* locus [30–34].
104 Consequently, the relative levels of mutant and wild-type LMN-1 are difficult to accurately measure and
105 may vary from tissue to tissue or cell to cell. Second, most models fuse LMN-1 to fluorescent proteins or
106 tags that have been demonstrated to disrupt lamin function *in vivo* [30,33,35].

107 Our goal is to characterize laminopathy-associated missense variants of human *LMNA* in order to accelerate
108 phenotypic evaluation of known pathogenic variants and emergent VUS. We established new models that
109 express missense variant proteins from the endogenous *C. elegans lmn-1* locus to better model human
110 disease. We selected *lmn-1* mutations that are homologous to *LMNA* missense variants reported in striated
111 muscle laminopathy patients and classified them based on whether they were known to exhibit cardiac
112 defects only (DCM-CD), or both cardiac and skeletal muscle defects (AD-EDMD). We also evaluated four
113 *LMNA* VUS to determine their potential pathogenicity. To functionally characterize lamin variants, we
114 assayed animal viability and motility. Lamins also interact with components of the LINC complex, which
115 is required to move nuclei during cell migration and has been implicated in striated muscle disorders. We
116 therefore quantified nuclear migration and morphology in hypodermal tissue, revealing new mechanistic
117 insights into lamin function during nuclear migration in normal development.

118

119 **Results**

120 **Introduction of human *LMNA* variants linked to skeletal and cardiac**
121 **muscle laminopathies into *C. elegans lmn-1***

122 Our goal was to take clinical *LMNA* variants and edit them into the *C. elegans lmn-1* gene. We selected
123 eight missense variants throughout the open reading frame of human *LMNA* that are linked to diseases
124 that affect skeletal and/or cardiac muscle (Fig 1A). The diseases associated with each selected missense
125 variant are listed in Fig 1A. Three mutations in human *LMNA* (p.E82K, p.E161K, and p.R190W,
126 corresponding to E96K, E175K, and R204W in *C. elegans lmn-1*, respectively) cause defects primarily in
127 cardiac muscle [36–51]. Five variants in human *LMNA* (p.N39S, p.Y45C, p.R50P, p.E358K and p.L530P,
128 equivalent to N53S, Y59C, R64P, E358K, and L535P in *lmn-1*), are associated with earlier age of
129 symptom onset and often are considered more severe, as they contribute to diseases that affect both
130 cardiac and skeletal muscles (red throughout the figures) [6,9,10,12,14,52–58].

A.	Human LMNA	# of mutated subjects in UMD/LMNA	Families in UMD/LMNA	Type of clinical presentation	C. elegans lmn-1	
					9 L-CMD, 7 EDMD, 1 LGMD1B	N53S
	N39S	17	17	9 L-CMD, 7 EDMD, 1 LGMD1B	N53S	
	Y45C	4	4	2 EDMD, 1 DCM-CD, 1 SML	Y59C	
	R50P	3	3	2 L-CMD, 1 EDMD	R64P	
	E82K	22	3	12 DCM-CD (in 3 families), 10 asymptomatic (in 2 families)	E96K	
	E161K	37	18	29 DCM-CD (in 18 families), 8 asymptomatic (in 7 families)	E175K	
	R190W	75	20	50 DCM-CD (in 20 families), 23 asymptomatic (in 10 families), 2 unknown (in 1 family)	R204W	
	K270Q	1		1 DCM-CD	K284Q	
	R331Q	9	9	8 DCM-CD, 1 SML	K331Q	
	E358K	32	30	11 L-CMD (in 10 families), 19 EDMD (in 18 families), 1 LGMD1B, 1 unknown	E358K	
	S407D	0		None	G407D	
	G523R	3	3	1 LGMD1B, 2 DCM-CD	G528R	
	L530P	3	1	3 EDMD	L535P	

B.

		593S			
Ce LMN-1	MSRKRR-GTR-SSRIVTLERSANSISSLNNQQGCGDFGSLTLLTSLRQKEDHNLSSILAT	58	Ce LMN-1	IAEILNQEIEINRMSQESRHDLLDVWKLQDIAELATYQVALLGEEEERNLTQZEPQNTSVHHYRF	404
Hs LMNA	METPSSQ	59	Hs LMNA	MABRBAQKQGQKQCLLQYQKEDLIDRQALMEHAYNQCLLGEEEERNLTSFSPSQSGRASS	405
Hs LMNB1	MAATAFPVPPM-GSQAQGTTPLSTLTSRQKEDHNLSSILAT	44	Hs LMNB1	MABRQDQGQKQCLLQYQKEDLIDRQALMEHAYNQCLLGEEEERNLTSFSPSQSGRASS	405
Hs LMNB2	MSPSPSPQRERERQKPPAATPL-PGAGAGTATPLSTLTSRQKEDHNLSSILAT	59	Hs LMNB2	MTEBBDVQGQKQCLLQYQKEDLIDRQALMEHAYNQCLLGEEEERNLTSFSPSQSGRASS	419
	Y59C R64P	E59K	N93S		
Ce LMN-1	MDYRVR-CLQEQQNNLQVQ1DIEEVVVERKESNLSNADARVQKEDARLRAISLADSQADLARVYI	118	Ce LMN-1	G407D	ES59K
Hs LMNA	MDYRVR-CLQEQQNNLQVQ1DIEEVVVERKESNLSNADARVQKEDARLRAISLADSQADLARVYI	104	Hs LMNA	S59GASA -SQIGKWRHGRVVDVNGEDEQ -DIDYL - -NRSLKINKEVTKGVPG1DEV	452
Hs LMNB1	MDYRVR-CLQEQQNNLQVQ1DIEEVVVERKESNLSNADARVQKEDARLRAISLADSQADLARVYI	104	Hs LMNA	Hs59TQGQG -SFTVKEKRL3EST - -ES3-SFTGQHAT-TG8WVAEEV	445
Hs LMNB2	MDYRVR-CLQEQQNNLQVQ1DIEEVVVERKESNLSNADARVQKEDARLRAISLADSQADLARVYI	119	Hs LMNB1	S59V -TRTGGKKEWVDEESEA - -S3V-S13HSA-S0TNCIEVE	479
	Y48C R60P	E82K	E175K		
Ce LMN-1	EVKDDAVVVEYKKLFLQFVERLEELAAGAEELAAGAQSIAQDQGQTLQARNDVYVHINND	178	Ce LMN-1	S59GASA -S59GASA -S59GASA -S59GASA -S59GASA -S59GASA	479
Hs LMNA	ELSRVVEFHPLAATNTKKGEDLQIAKPLDLEALNSAALALTSALESQESTLSEHLL	164	Ce LMN-1	DEEGFNVWVANNSSEEQSQISGGYLVVKA -GNEKASFQFSRMSLPHASATWMSADAGAV	511
Hs LMNB1	ELRCGAHEDQDILLNQYAKKESDQGAAQKPLDLEALNSAALALTSALESQESTLSEHLL	165	Hs LMNA	DEEGFNVWVANNSSEEQSQISGGYLVVKA -GNEKASFQFSRMSLPHASATWMSADAGAV	505
Hs LMNB2	EIGRLRAELDEVNSAAMPKREGELTVAGWVQDLSLPHNSEVLLAALSDEGKLGSEVAE	179	Hs LMNB1	DEGGFVNLRSNNSDKDQSLGNNBHQKQVLEEEGIAVYKFTPKYIILSAGQVNTWVAAGAGVA	539
	R204W	E161K			
Ce LMN-1	LKQGKNTLTDATVGEGLKKKAVADELQVAA-CANNNKIALEADELLAYLAQKQHGELEEVHHRVQV	238	Ce LMN-1	G528R L55SP	
Hs LMNA	LKGQVVALEAAGQKQCLLQGQSLMIA-NDLNLQKQCLLQGQSLMIA-NKQYSEELVETRPHR	224	Hs LMNA	Hs59FVQVWVQHQQ-QMP1QDNNFQVWVQHQQ-QMP1QDNNFQVWVQHQQ-QMP1QDNNFQVWVQHQQ	558
Hs LMNB1	LKDQKQLEASLAAQKQCLLQGQSLMIA-NDLNLQKQCLLQGQSLMIA-NKQYSEELVETRPHR	225	Hs LMNB1	Hs59PTLWVWVQHQQ-QMP1DNNFQVWVQHQQ-QMP1DNNFQVWVQHQQ-QMP1DNNFQVWVQHQQ	558
Hs LMNB2	LKQALQKQLEASLAAQKQCLLQGQSLMIA-NDLNLQKQCLLQGQSLMIA-NKQYSEELVETRPHR	239	Hs LMNB2	Hs59PTLWVWVQHQQ-QMP1DNNFQVWVQHQQ-QMP1DNNFQVWVQHQQ-QMP1DNNFQVWVQHQQ	599
	R190W	K284Q			
Ce LMN-1	DMTIVTAQ1NDEYQGKQRLQDQEFNNE6AAGFNNNLHQKNTFEDAYDNVQVLAQABERQEEAVAE	298	Ce LMN-1	G528R L55P	
Hs LMNA	RFLVEIDNGQVQEPEFSLADQALQKQALQHEDQVQEYQKNTFEDAYDNVQVLAQABERQEEAVAE	284	Hs LMNA	Hs59FVQVWVQHQQ-QMP1QDNNFQVWVQHQQ-QMP1QDNNFQVWVQHQQ-QMP1QDNNFQVWVQHQQ	558
Hs LMNB1	RFLVEIDNGQVQEPEFSLADQALQKQALQHEDQVQEYQKNTFEDAYDNVQVLAQABERQEEAVAE	295	Hs LMNB1	Hs59PTLWVWVQHQQ-QMP1DNNFQVWVQHQQ-QMP1DNNFQVWVQHQQ-QMP1DNNFQVWVQHQQ	558
Hs LMNB2	RFLVEIDNGQVQEPEFSLADQALQKQALQHEDQVQEYQKNTFEDAYDNVQVLAQABERQEEAVAE	299	Hs LMNB2	Hs59PTLWVWVQHQQ-QMP1DNNFQVWVQHQQ-QMP1DNNFQVWVQHQQ-QMP1DNNFQVWVQHQQ	599
	K270Q	K331Q			
Ce LMN-1	A - -IDH2A-APV - -DLETSQSG96NAA1S1E2Q1QGQKQCLLQYQKEDLIDRQALMEHAYNQCLLGE	344	Ce LMN-1	G523R L530P	
Hs LMNA	VGAAHBEQQS96NAA1S1E2Q1QGQKQCLLQYQKEDLIDRQALMEHAYNQCLLGE	344	Hs LMNA	PADR - -CS1M	566
Hs LMNB1	VNSAEEHLEMS96NAA1S1E2Q1QGQKQCLLQYQKEDLIDRQALMEHAYNQCLLGE	345	Hs LMNB1	DQ1LHHHHGHC3C3SGDPAV1NL1SRTVLCOTGQFADKASAGSGAQVGGP13SGSAS	618
Hs LMNB2	ASAAEFLVQHLEMS96NAA1S1E2Q1QGQKQCLLQYQKEDLIDRQALMEHAYNQCLLGE	359	Hs LMNB2	EELLFHQGQ - -TPRA5N3 - -CALM	586

C.

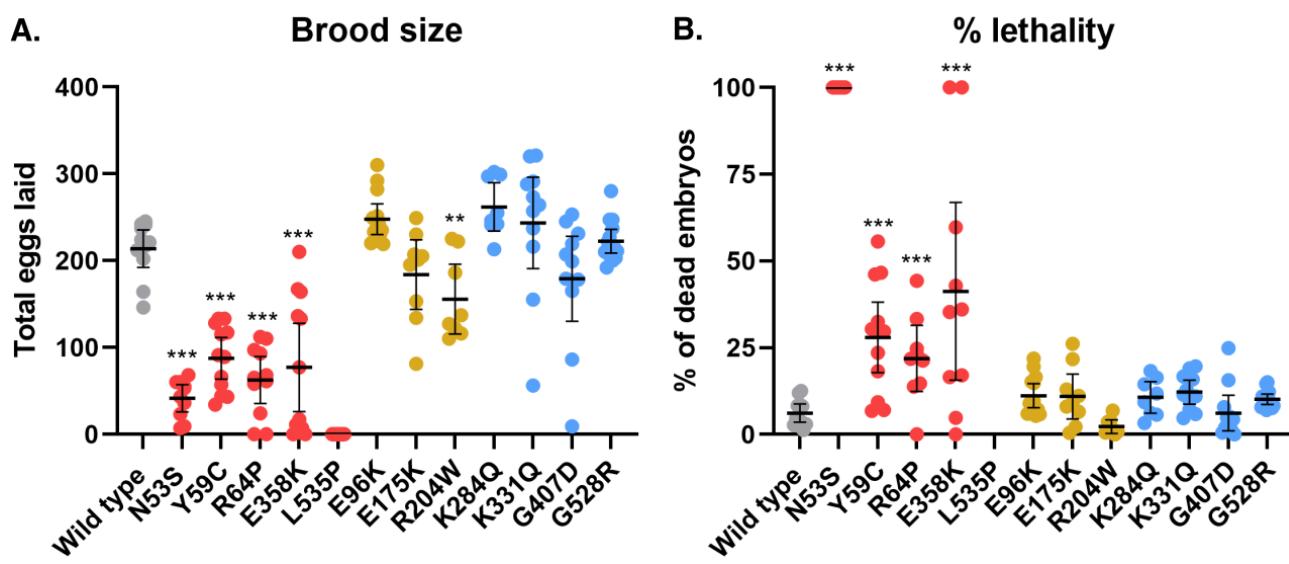
Figure 1. Introducing Human *LMNA* Missense Variants into *C. elegans* *lmn-1*.

(A) Table of human *LMNA* missense variants and the homologous *C. elegans* LMN-1 residue changes. Variants are colored according to their clinical classification: missense variants that exhibit both cardiac and skeletal muscle defects in humans (red), variants that affect cardiac muscle specifically (yellow), and VUS (blue). Clinical presentations and the number of subjects reported are from www.umd.be/LMNA/ (and G Bonne, R Ben Yaou personal communication). L-CMD: *LMNA*-related congenital muscular dystrophy, EDMD: Emery-Dreifuss muscular dystrophy, LGMD1B: limb-girdle muscular dystrophy type 1B, DCM-CD: dilated cardiomyopathy with conduction defects, SML: striated muscle laminopathy (subtype undetermined). Asymptomatic subjects are essentially young ‘DCM family’ members who may have not yet developed cardiac

141 disease. (B) Alignment of *C. elegans* LMN-1 and human lamin A/C, lamin B1 and lamin B2 proteins generated
142 by Clustal-Omega multiple sequence alignment. The amino acid changes examined in this study are indicated
143 with boxes, colored as in 1A. *C. elegans* residues are listed above the boxes, and the corresponding human
144 residues are shown below. (C) Diagram of the *C. elegans* LMN-1 protein structure with the head (orange), coils
145 (red) and tail (blue) domains indicated. The positions of the amino acid changes featured in this study are shown
146 using the same color scheme as in A.

147 We also chose missense *LMNA* VUS (p.K270Q, p.R331Q, and p.G523R, corresponding to K284Q, K331Q,
148 and G528R in *lmn-1*, respectively) that are suspected to be involved in disease. *LMNA* p.G523R has a
149 relatively high allele frequency (0.00006), according to the Genome Aggregation Database (gnomAD) [59],
150 and is therefore predicted to be benign. However, the Clinvar database [60] designates p.G523R, as well as
151 two other *LMNA* VUS (p.K270Q and p.R331Q), as potentially pathogenic based on clinical testing, large-
152 scale genomic analyses of patient cohorts, and *in silico* structural predictions (Fig 1A) [14,49,61–67]. The
153 fourth VUS, *LMNA* p.S407D, which corresponds to *lmn-1*(G407D), is a predicted benign variant that has
154 not previously been associated with disease [68].

155 We generated homologous missense variants of *C. elegans* *lmn-1* corresponding to each of the eight
156 pathogenic *LMNA* variants and the four VUS (Fig 1). Homozygous point mutations were engineered into
157 the endogenous *lmn-1* locus using CRISPR-Cas9-mediated genome editing. We will refer to the variants
158 using the amino acid position in the *C. elegans* LMN-1 protein throughout the rest of this manuscript.


159 ***lmn-1* variants that model skeletal and cardiac muscle disorders**

160 **exhibit reduced fitness**

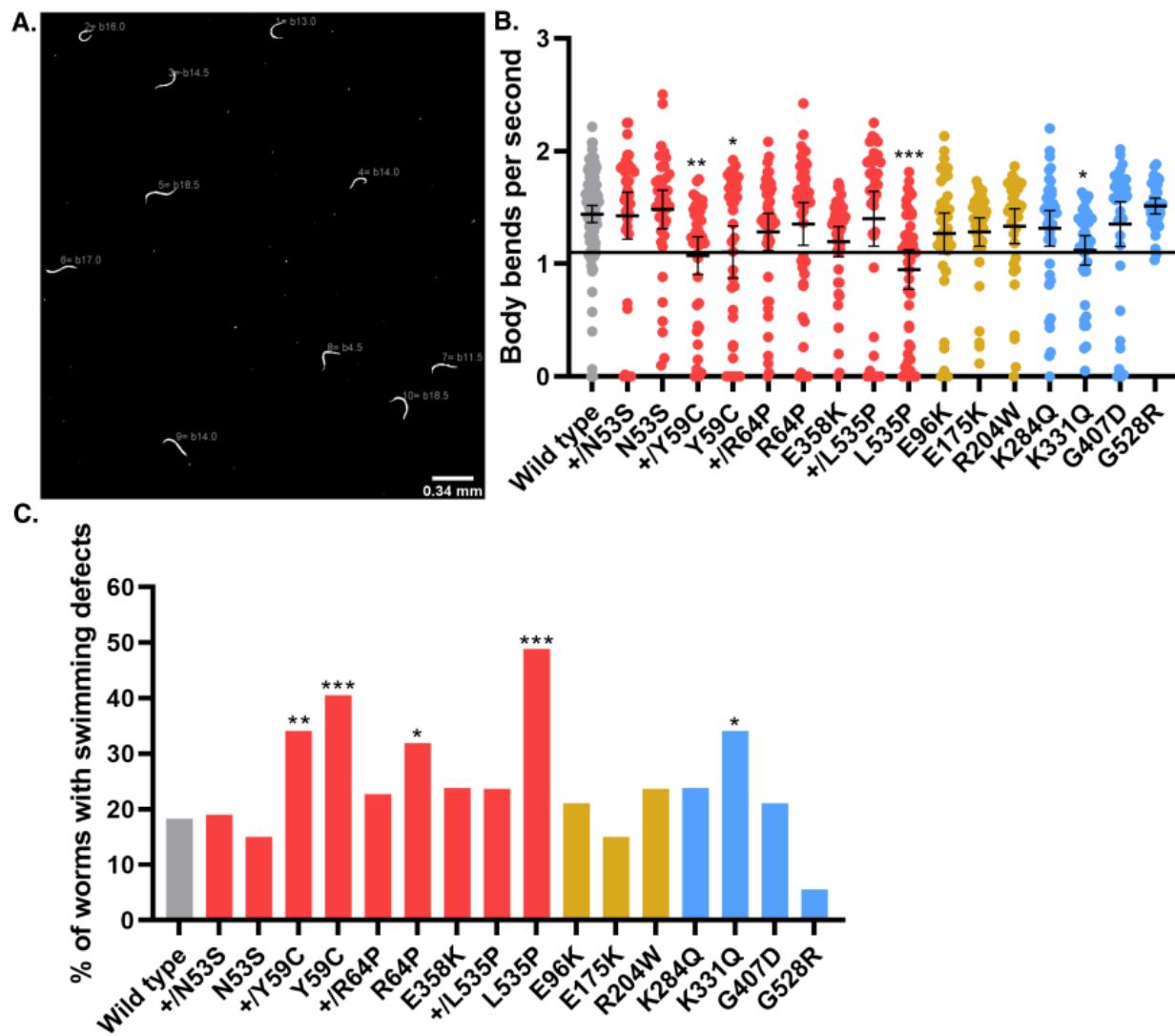
161 *lmn-1* (*RNAi*) causes embryonic lethality [24]. Chromosome segregation defects are evident as early as the
162 2-cell stage, and embryos arrest around the 100-cell stage, indicating that *lmn-1* is required for early
163 embryonic development [24]. Although *lmn-1* null homozygous animals from heterozygous mothers are
164 able to develop with the help of maternally-loaded LMN-1, they are sterile due to the lack of lamin in the

165 germline [69]. We therefore examined the effect of the *lmn-1* missense mutations on overall *C. elegans*
166 health and fitness by quantifying the brood size and level of embryonic lethality of each engineered line.

167 All five *C. elegans* strains carrying missense *lmn-1* mutations that model human *LMNA* variants associated
168 with both skeletal and cardiac muscle dysfunction had significant viability and fertility defects (Fig 2).
169 Homozygous N53S, Y59C, R64P, and L535P LMN-1 variants had the most deleterious effects on brood
170 size. These strains were maintained as balanced heterozygotes. Homozygous animals from heterozygous
171 mothers survived to adulthood, which allowed us to assay the effect of having no genetically-encoded wild-
172 type copies of *lmn-1*. Homozygous L535P adults were sterile, failing to lay any eggs. N53S homozygous
173 animals laid some eggs, but none were viable. LMN-1 Y59C and R64P homozygous animals had small
174 broods, roughly 30-40% the size of those of wild type animals. In addition, embryonic lethality in Y59C
175 and R64P animals was 20-30% higher than that of wild type. E358K also had a significantly reduced brood
176 size, less than 40% that of wild type. Half of E358K animals laid few or no embryos and had elevated
177 lethality.
178

179 **Figure 2. Severe Human Pathogenic *LMNA* Variants Modeled in *C. elegans* *lmn-1* Cause Decreased**
180 **Brood Size and Elevated Embryonic Lethality.** (A) Brood size of wild type and *lmn-1* homozygous missense
181 mutant lines. Each dot represents the average number of eggs laid by a single animal. (B) The percent of

182 embryos laid that failed to hatch within 24 hours for each genotype is shown. Each dot represents the average
183 number of eggs laid by a single animal. Both A and B are grouped and colored according to clinical
184 classifications as in Fig 1. n = 8-12 animals. Means and 95% CI are shown. Significance compared to wild type
185 was calculated using student's t test. **p≤0.01; ***p≤0.001.


186 In contrast to the mutants modeling diseases affecting both skeletal and cardiac muscles, *lmn-1* mutants
187 modeling *LMNA* variants associated solely with DCM-CD (E96K, E175K, and R204W), did not show
188 pronounced reductions in brood size or heightened lethality. Likewise, the four VUS showed no defects in
189 viability or fertility compared to wild type animals. These results indicate that our *C. elegans* models reflect
190 how missense variants linked to muscle and cardiac laminopathies like L-CMD and EDMD in humans
191 reduce overall health and fitness.

192 **Most *lmn-1* missense mutants had impaired swimming behavior**

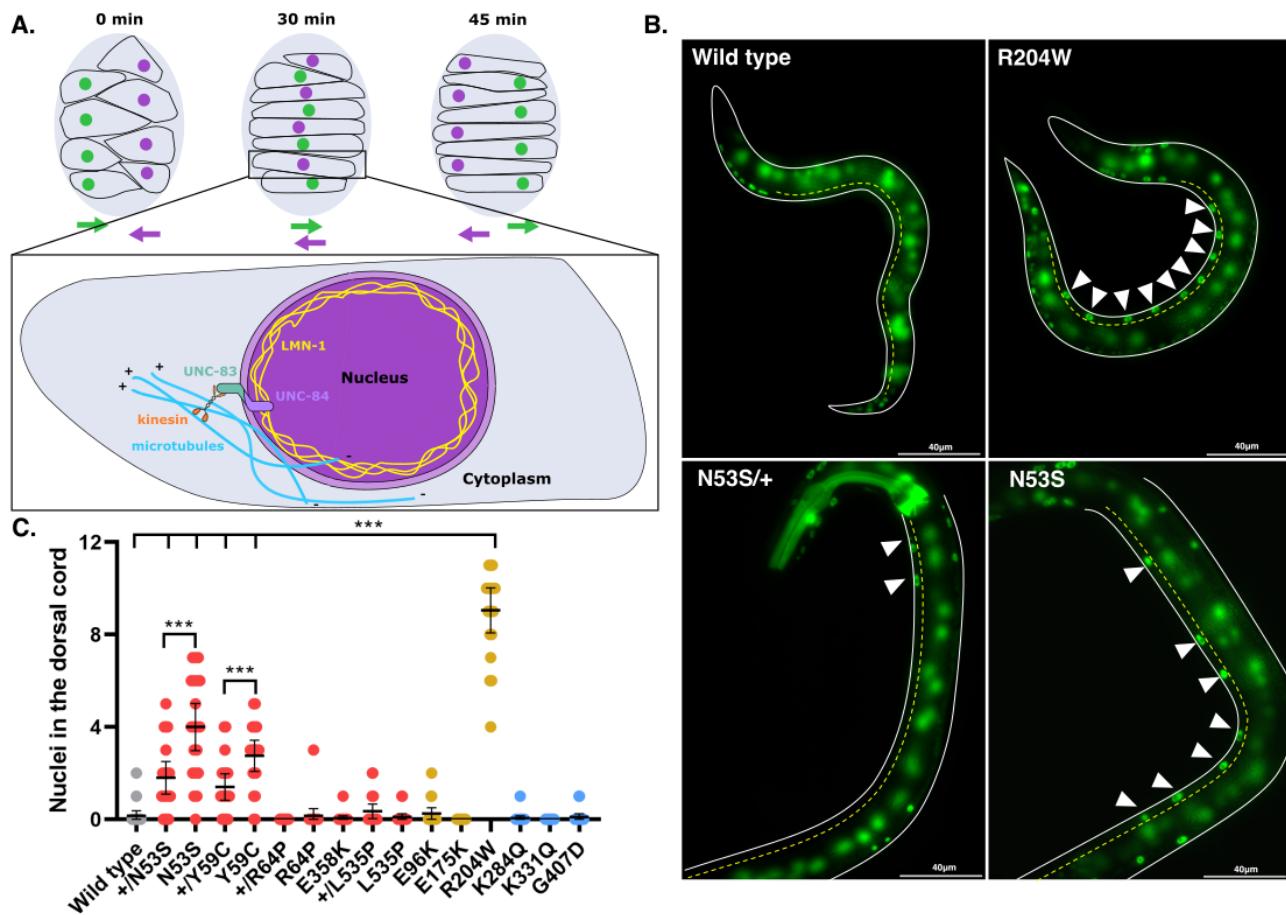
193 Muscular dystrophies usually manifest as defects in skeletal muscle function that variously restrict mobility
194 [5]. We therefore assayed swimming behavior [31,70] in our *lmn-1* variant lines to test whether
195 physiological changes in *C. elegans* might predict the potential severity of *LMNA*-associated striated muscle
196 disease missense variants. We assayed major motor movements by observing animals thrashing in buffer
197 and quantified the number of body bends per second (BBPS) for each of the homozygous missense lines
198 (Fig 3). We also measured swimming in heterozygous animals carrying variants that caused major viability
199 and fertility defects.

200 LMN-1 L535P homozygous animals had the most severe motility defects, averaging less than 1 BBPS,
201 followed by LMN-1 Y59C with a rate of 1.1 BBPS compared to 1.86 BBPS in wild type (Fig 3B). However,
202 we observed a wide distribution of phenotypes within each strain, with individual animals exhibiting
203 anywhere from normal swimming behavior to severely reduced or undetectable movement. To test the
204 significance of the effect of *lmn-1* missense mutations on motility, we scored the percentage of individuals

205 in each strain that thrashed more slowly than the mean rate of *lmn-1(Y59C)*, which at 1.1 BBPS is a well-
206 studied mutation in *C. elegans* known to disrupt swimming (Fig 3C) [30,31,70].

207
208 **Figure 3. *lmn-1* Missense Variants can Reduce Swimming Motility.** (A) An example of a processed
209 swimming video. Each animal is assigned a number by the Fiji wrMTrck plugin, which records the number of
210 body bends per second (BBPS) (shown in dark gray beside the animals). (B) Each dot represents a single animal
211 that was tracked over 30 seconds. BBPS over the 30 second interval is shown. Genotypes (homozygous (e.g.,
212 N53S) and heterozygous (e.g., N53S/+)) are grouped by variant clinical classification as in Fig 1. Significance
213 was calculated using a one-way ANOVA and corrected for multiple comparisons using Dunnett's test. *p≤0.05;
214 **p≤0.01; ***p≤0.001 A threshold of 1.1 BBPS is indicated by the line. Means and error bars of 95% CI are

215 shown. n ~ 40 animals, except for wild type which is ~100. (C) The same data as in B, but instead, the bars
216 represent the percentage of animals with swimming defects below 1.1 BBPS for each strain. Significance was
217 determined by chi-squared test of the percentage of individuals in each strain that fell at or below 1.1 BBPS as
218 compared to wild type. *p≤0.05; **p≤0.01; ***p≤0.001.


219

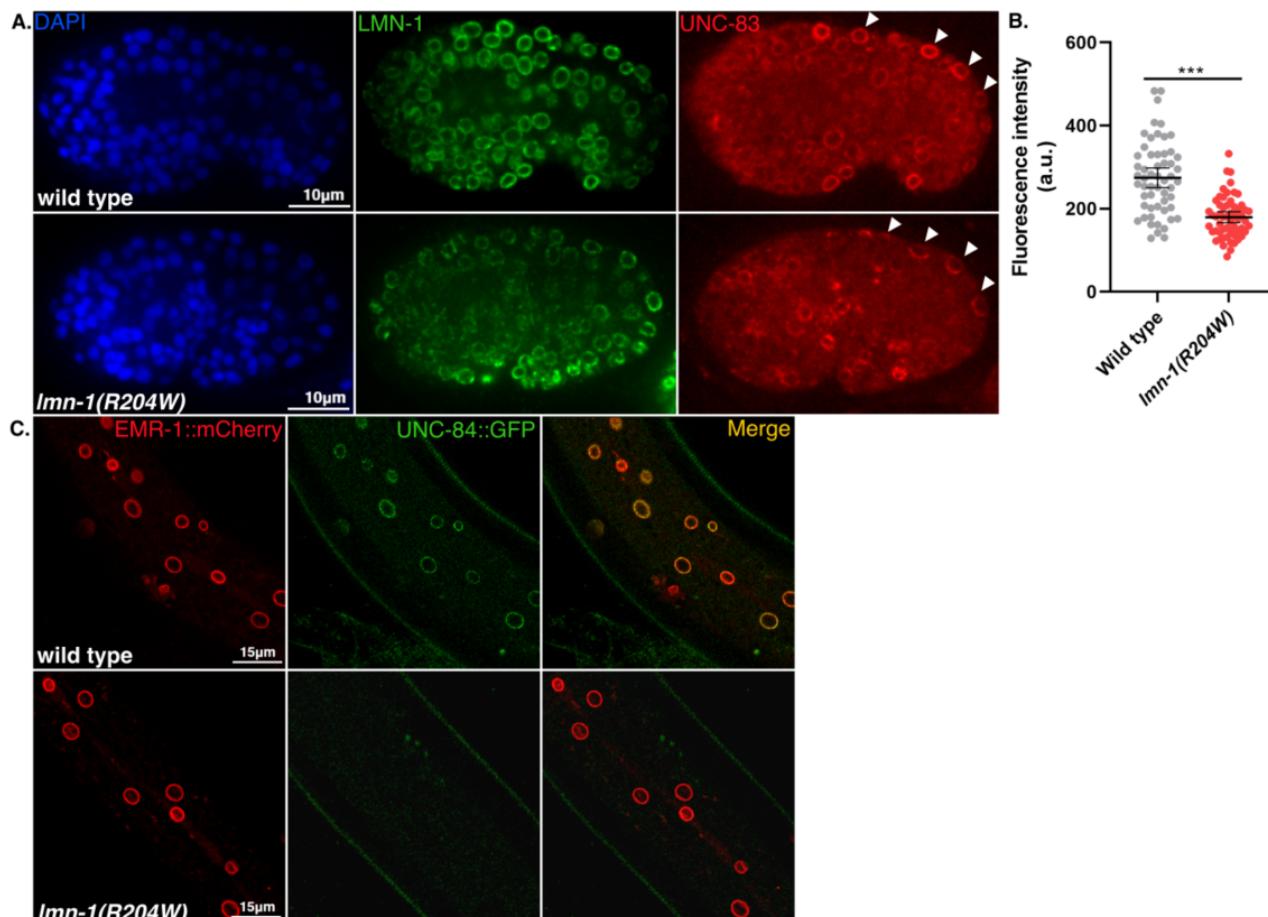
220 Four homozygous *lmn-1* mutations (Y59C, R64P, K331Q and L535P) caused severe swimming defects.
221 Three of these mutations (Y59C, R64P, and L535P) were designed to model human mutations in *LMNA*
222 that affect both skeletal and cardiac muscle function. Of the alleles that were designed to model
223 cardiomyopathy-linked variants without skeletal muscle involvement (Fig 3), none caused significant
224 motility defects. Three of the VUS, K284Q, G407D, and G528R, had normal swimming rates (Figs 3B-C).
225 In contrast, K331Q had a statistically significant swimming defect, suggesting this VUS is pathogenic.
226 Since our initial test, K331 was linked to DCM-CD (Table1), validating our approach for predicting VUS
227 pathogenicity.

228 **A cardiomopathy-linked missense variant drastically disrupts**
229 **nuclear migration**

230 Knocking down *lmn-1* via RNAi leads to embryonic lethality [24]. However, animals that survive due to a
231 presumably low level of RNAi have nuclear migration defects in embryonic dorsal hyp7 precursor cells
232 [71]. Hyp7 precursor nuclei that fail to migrate are mislocalized in the dorsal cord of *lmn-1(RNAi)* early
233 larval stage animals, suggesting that LMN-1 is required for this migration event (Fig 4A). Therefore, we
234 examined the extent to which our *lmn-1* missense mutations might affect nuclear migration. We used a
235 previously described line expressing a nuclear GFP marker specifically in the hypodermis to assay nuclear
236 migration in hyp7 precursor cells [72]. *lmn-1(N53S)* and *lmn-1(Y59C)* homozygous animals had significant
237 nuclear migration defects, where 20-35% of hyp7 nuclei were mislocalized in the dorsal cord (Figs 4B and
238 C). Interestingly, R204W displayed a severe hyp7 nuclear migration defect, where about 75% of hyp7
239 precursor nuclei failed to migrate (Figs 4B and C). None of the other missense mutant lines, including the

240 VUS, significantly disrupted nuclear migration. These data suggest that residues N53 and Y59 contribute
241 to the function of LMN-1 in nuclear migration while R204 is critical to the role of LMN-1 during nuclear
242 migration in the developing hypodermis.

243


244 **Figure 4. *lmn-1* Missense Variants can Lead to Defects in Nuclear Migration.** (A) Schematic of nuclear
245 migration in hypodermal cells. Dorsal hyp7 precursor nuclei (purple and green circles) migrate to opposite sides
246 of the embryo (gray; dorsal view; anterior is up) over the course of ~45 minutes. Colored arrows show the
247 direction of migrating nuclei of the same color. Inset shows the molecular motor kinesin (orange) attached to
248 the LINC complex, made up of UNC-83 and UNC-84 (teal and violet, respectively), which binds to lamin
249 (yellow) and facilitates nuclear migration in hyp7 precursors. Microtubules (blue) are shown with their plus
250 ends in front of the migrating nucleus. (B) Representative epifluorescence images of animals with the indicated
251 genotypes expressing a GFP nuclear marker in hyp7 cells. GFP fluorescence in the pharynx of N53S/+ marks
252 the presence of the balancer chromosome. On the left is the dorsal cord, (yellow dotted line), and the ventral

253 side of the animal is shown on the right. Arrowheads indicate mislocalized nuclei in the dorsal cord. Scale bar:
254 40 μ m. (C) Number of nuclei mislocalized in the dorsal cord of wild type and missense variant lines. Each dot
255 represents a single worm. n=20 per genotype. Means and 95% CI are shown. ***p \leq 0.001.

256

257 LMN-1 directly interacts with the nucleoplasmic domain of the inner nuclear membrane SUN (Sad1/UNC-
258 84) protein UNC-84, and is necessary for the assembly of the Linker of the Nucleoskeleton and
259 Cytoskeleton (LINC) complex [71]. Once UNC-84 is recruited to the inner nuclear membrane, it recruits
260 the KASH (Klarsicht/ANC-1/SYNE homology) protein UNC-83 to the outer nuclear membrane, and the
261 binding of both proteins in the perinuclear space forms the nucleo-cytoskeletal bridge known as the LINC
262 complex [73]. To determine whether the *lmn-1(R204W)* variant disrupts the interaction between the LINC
263 complex and LMN-1, we examined the nuclear envelope localization of UNC-83 and UNC-84. In the *lmn-*
264 *I(R204W)* background, the intensity of UNC-83 immunofluorescence was significantly lower than that of
265 wild type in embryonic hyp7 precursor nuclei (Figs 5A and B). Similarly, we observed reduced fluorescence
266 intensity of GFP-tagged UNC-84 at the nuclear envelope in the hypodermis of R204W compared to wild-
267 type young adult animals (Fig 5C). Together, these data suggest that the LMN-1 R204W variant interferes
268 with the formation of the LINC complex by disrupting UNC-84 and UNC-83 localization to the nuclear
269 envelope in the *C. elegans* hypodermis.

270

271

272 **Figure 5. The *lmn-1(R204W)* Missense Variant Disrupts UNC-84 and UNC-83 Localization to the**
273 **Nuclear Envelope.** (A) Immunofluorescence images showing anti-UNC-83 localization to the nuclear

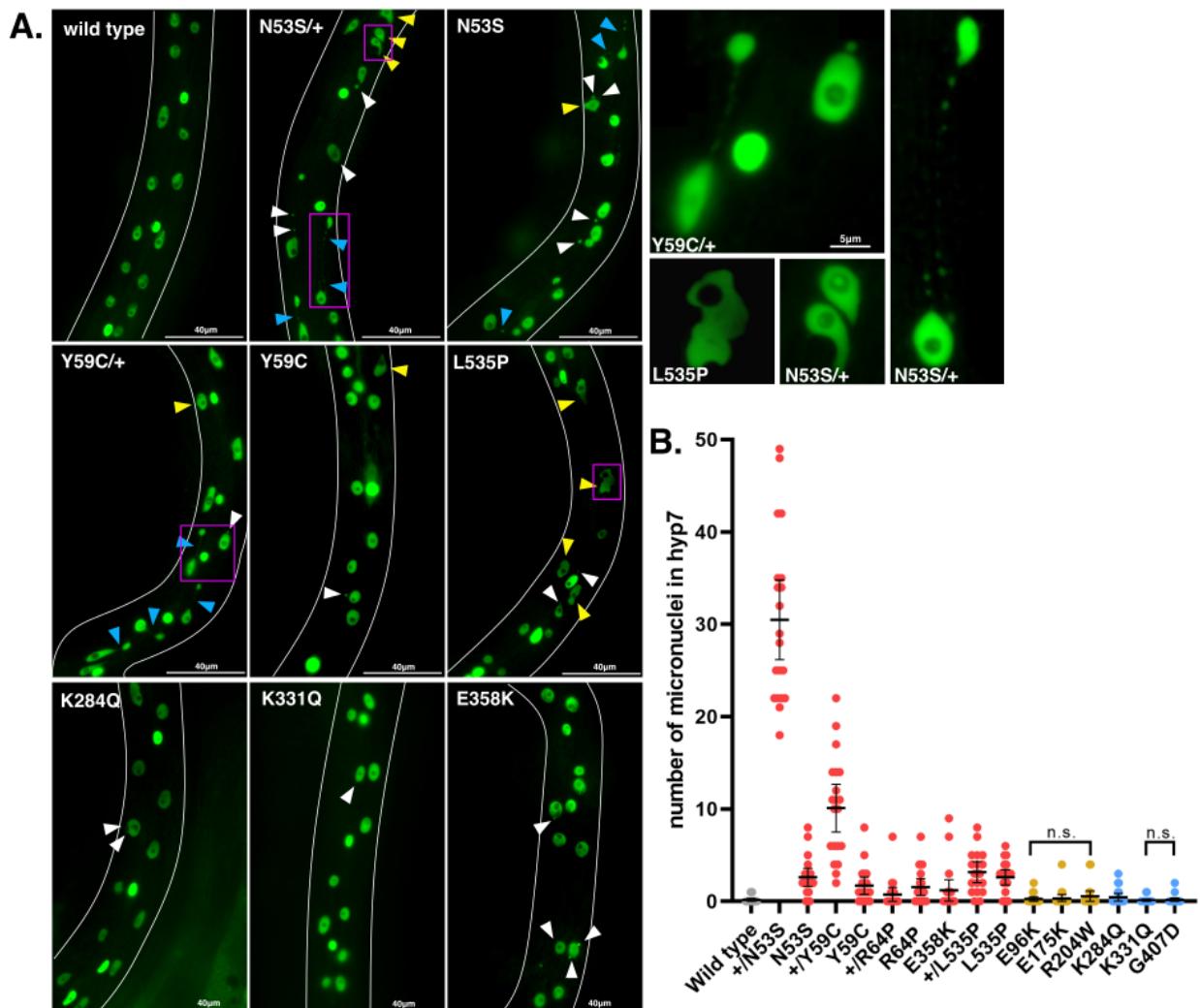
274 periphery of dorsal hypodermal nuclei (white arrowheads) in wild-type and *lmn-1(R204W)* comma-stage

275 embryos. Anti-LMN-1 immunostaining (green) and DAPI-stained nuclei (blue) are also shown. Scale bar:

276 10µm (B) Fluorescence intensity (arbitrary units) of UNC-83 at the nuclear envelope of wild type embryos

277 (n=10, 56 nuclei) and *lmn-1(R204W)* embryos (n=12, 57 nuclei). Means and error bars of 95% CI are shown.

278 Significance was calculated using student's t test. ***= p<0.001. (C) Representative confocal images of EMR-


279 1::mCherry and UNC-84::GFP-tagged hypodermal nuclei in live wild type and *lmn-1(R204W)* young adult

280 animals. Scale bar: 15µm.

281 **Some *lmn-1* variants have abnormal nuclear morphology and high**
282 **numbers of micronuclei**

283 Disrupting A-type nuclear lamins in mammalian or invertebrate models leads to nuclear blebbing,
284 chromosome bridges, and the formation of micronuclei [24,74–77]. We assayed nuclear morphology in *C.*
285 *elegans* hypodermal syncytia to determine the extent to which missense mutations in *lmn-1* affect nuclear
286 architecture and stability.

287 We screened for abnormal nuclear morphology in the hyp7 syncytia of young adults using a nuclear GFP
288 marker expressed in the hypodermis [72]. Three *lmn-1* variant strains (N53S, Y59C, and L535P) had severe
289 nuclear morphology defects, including misshapen and lobulated nuclei, chromatin bridges, and micronuclei
290 (Fig 6A). To quantify these defects, we focused on the number of micronuclei present in each animal. N53S,
291 Y59C, and L535P animals had the highest number of micronuclei. Strains with the other two variants
292 designed to model both skeletal and cardiac pathologies (R64P and E358K) had fewer micronuclei, but
293 statistically more than wild type (Fig 6B). R204W, K284Q, and K331Q variant strains also had mild, but
294 statistically significant, micronuclear defects. The evidence that missense mutations in *lmn-1* can cause
295 defects in nuclear envelope morphology and the formation of micronuclei indicates that nuclear instability
296 may play a role in the pathology of striated muscle laminopathies.

Figure 6. Missense Mutations in *lmn-1* Often Result in Abnormal Hypodermal Nuclear Morphology and the Formation of Micronuclei. (A) Representative epifluorescence images of animals with the indicated genotypes expressing a GFP nuclear marker in hyp7 cells. Micronuclei (white arrowheads), blebbled nuclei (yellow arrowheads), and chromosome bridges (blue arrowheads) are indicated. Scale bar: 40 μm. Magenta boxes designate nuclei featured in the insets on the right. Scale bar: 5 μm. (B) Number of micronuclei on one lateral side of the hyp7 syncytia in a young adult. The genotypes are colored as in Fig 1. n = 20. Means and error bars of 95% CI are shown. To control for type 1 error, p values were adjusted using the Benjamini-Hochberg procedure with a false discovery rate of 5%.

307 Discussion

308 Mutations in *LMNA* give rise to a host of diseases that affect striated muscle, which lead to dilated
309 cardiomyopathy that may or may not be associated with skeletal muscle defects. However, symptom onset,
310 type, and severity overlap across striated muscle laminopathies and range widely within each. Furthermore,
311 causative *LMNA* missense variants are not exclusive to specific diseases or domains of the protein, and their
312 effects on lamin structure and function are unclear [15]. The vast majority of known pathogenic *LMNA*
313 mutations are missense variants, and many other variants remain uncharacterized or have conflicting
314 evidence for pathogenicity. Here we establish a pipeline to rapidly generate models of clinical VUS using
315 gene-edited versions of *C. elegans* *lmn-1*. We found that by subjecting the *C. elegans* *lmn-1* variant strains
316 to a series of cellular and physiological assays, we could discern the degree of severity of different disease-
317 causing human *LMNA* variants and assess the likelihood of VUS to contribute to disease. The modeled
318 missense mutations also uncovered new mechanistic insights into the normal roles of lamin in development.
319 Our assays yielded a broad distribution of phenotypic severity within each *lmn-1* missense variant
320 population, reflective of the wide range of symptom severity observed in human laminopathies. Previous
321 *C. elegans* models show similar results, where animals expressing extra copies of GFP-tagged LMN-1
322 Y59C or LMN-1 L535P in an otherwise wild-type LMN-1 background have variously impaired movements
323 [30,78]. Our data suggest that viability and motility are primary indicators of variant pathogenicity,
324 followed by micronuclei formation and nuclear migration defects. We established a scoring system which
325 incorporates cellular and physiological defects in the *C. elegans* models to predict the potential
326 pathogenicity of each variant (Table 1). Variant strains that were homozygous inviable scored two, and
327 those with significantly reduced viability compared to wild type scored one. Variant strains where greater
328 than 30% of the animals had swimming defects scored two, while strains in which less than 30% of animals
329 exhibited swimming defects were scored zero. Finally, a score of one was assigned to strains with nuclear
330 migration defects. By this metric (Table 1), we found that our models reflect the distinction between severe
331 *LMNA* mutations that affect both cardiac and skeletal muscle (score ≥ 2), and those that tend to contribute

332 to cardiac defects alone (score <2). These scores correlate with the frequency that these variants are found
333 in humans (Fig 1A). Childhood-onset *LMNA* variants are rare in comparison to adult-onset pathologies that
334 are more likely to be passed through families. Finally, our scoring system predicts that one *LMNA* VUS
335 (p.R331Q) is pathogenic, while the others (p.K270Q, p.S407D, and p.G523R) are unlikely to contribute to
336 disease.

337 **Table 1. Phenotypic Scoring of *C. elegans* Laminopathy Models.**

338
339

Human <i>LMNA</i>	<i>C. elegans</i> <i>lmn-1</i>	Viability*	Swimming†	Nuclear migration§	Score
N39S	N53S	2	0	1	3
Y45C	Y59C	1	2	1	4
R50P	R64P	1	2	0	3
E358K	E358K	1	0	0	1
L530P	L535P	2	2	0	4
E82K	E96K	0	0	0	0
E161K	E175K	0	0	0	0
R190W	R204W	0	0	1	1
K270Q	K284Q	0	0	0	0
R331Q	K331Q	0	2	0	2
S407D	G407D	0	0	0	0
G523R	G528R	0	0	N/A	0

340

341 *Score 2 for homozygous inviable, 1 for decreased viability, and 0 for wild type

342 †Score 2 when >30% of animals show a severe defect, and 0 when <30% of animals have severe defects

343 §Score 1 for defective nuclear migration and 0 for wild type

344

345 Human striated muscle laminopathies are primarily dominant disorders [7]. We therefore included
346 heterozygous animals in our analyses of severe *lmn-1* mutations that model both cardiac and skeletal defects
347 (N53S, Y59C, R64P and L535P). These lines largely acted in a dominant fashion in our assays.
348 Furthermore, N53S/+ and Y59C/+ animals had the most severe micronuclei phenotypes, even in
349 comparison to their homozygous counterparts (Fig 6B). Higher numbers of micronuclei in heterozygous

350 animals may result from a dominant-negative effect of wild-type LMN-1, as is hypothesized to occur in
351 human *LMNA*-associated pathologies [16,79]. Similar nuclear morphology defects were observed in
352 heterozygous and homozygous N53S, Y59C, and L535P *lmn-1* hypodermal nuclei, indicating a general loss
353 of the nuclear structure integrity.

354 Nuclear instability can be a hallmark of striated muscle disease [80]. The formation of micronuclei may
355 originate from errors in chromosome segregation, as has been previously described in *lmn-1(RNAi)* early
356 embryos [24]. This idea is supported by decreased fertility in these *lmn-1* missense variant strains.
357 Alternatively, human laminopathies that affect both skeletal and cardiac muscle often have dysmorphic
358 nuclei, which are proposed to be the result of the extreme mechanical forces these nuclei are subject to [81–
359 83]. A third possibility is that nuclear deformation could result from altered nucleocyto-skeletal coupling
360 in *lmn-1* missense variants, similar to what has been reported in other laminopathy models [30,84,85].

361 Lamins directly bind to LINC complexes through the nucleoplasmic domains of SUN proteins at the inner
362 nuclear membrane [71,86]. LINC complex components have been implicated in DCM-CD and EDMD, but
363 the mechanisms by which LINC interfaces with lamins and how defects in this interaction contribute to
364 disease are poorly understood [15]. We found that cardiomyopathy-associated *lmn-1(R204W)* variant
365 animals exhibited a strong nuclear migration defect but did not have defects in viability or motility.
366 Furthermore, LINC complex components failed to localize to the nuclear envelope in *lmn-1(R204W)*
367 animals. Thus, we have isolated a separation-of-function allele that does not disrupt the global function of
368 lamins. Instead, our data are consistent with a hypothesis that *lmn-1(R204W)* specifically disrupts the
369 physical interaction between lamins and the LINC complex. This allele will be valuable for future
370 experiments studying the role of LINC complexes in laminopathies and suggests that a potential mode of
371 pathogenicity in R204W variant animals is through disruption of the interaction between SUN and LMN-
372 1.

373 In summary, our data provides a blueprint for creating and evaluating *C. elegans* clinical avatars for
374 laminopathy-associated missense variants of human *LMNA* and new models to understand the mechanisms

375 of lamin function during normal development. We created molecular and physiological assays for
376 identifying potentially pathogenic missense variants and used these indicators to develop a scoring index
377 in our *C. elegans* models that can be used to predict the tissues affected and relative rate of disease
378 progression in humans with orthologous variants. Furthermore, we identified a separation-of-function point
379 mutation that specifically disrupts the interaction between lamins and LINC complexes. In the future, these
380 new *C. elegans* *lmn-1* missense variant models could also be used to screen candidate drugs to treat striated
381 muscle laminopathies.

382

383 **Materials and methods**

384 ***C. elegans* genetics and gene editing**

385 Strains were grown on nematode growth medium (NGM) plates spotted with OP50 *Escherichia coli* and
386 maintained at room temperature (22-23°C) [87]. Strains used in this study are listed in Table 2. Some strains
387 were obtained from the Caenorhabditis Genome Center, which is funded by NIH Office of Research
388 Infrastructure Programs (P40 OD010440).

389 *lmn-1* missense strains were generated using a *dpy-10* co-CRISPR strategy [88-91]. crRNAs and repair
390 template sequences are in Table 2. Injection mixes were made and injected as described previously [92].
391 Briefly, for UD796, UD750 and UD788 missense strains, an injection mix containing 0.2µL *dpy-10* crRNA
392 (0.6mM from Horizon discovery/Dharmacon), 0.5µL *lmn-1* crRNA (0.6mM), 2.47µL of universal
393 tracrRNA (0.17mM), was combined and added to 7.68µL of purified Cas9 protein (0.04mM from UC
394 Berkeley QB3). The assembly was completed with the addition of 0.28µL of the *dpy-10* single-stranded
395 DNA oligonucleotide (ssODN) (500ng/µL) and 0.21µL of the *lmn-1* ssODN (500ng/µL) repair templates
396 to form CRISPR-Cas9 complexes *in vitro*. For NMX419, NMX554, NMX563, NMX567, NMX589,
397 NMX421, NMX557, and UD837 strains, injection mixes containing 0.8µL *dpy-10* crRNA
398 (30pmol/µl from Synthego Corporation) and 1.65µL of each of two *lmn-1* crRNA per strain (30pmol/µl)

399 was combined and added to 1 μ L of purified Cas9 protein (5 μ g/ μ l from PNA Bio, Inc). Following addition
400 of 1 μ L of the *dpy-10* ssODN (500ng/ μ L) and 1 μ L of the *lmn-1* ssODN (500ng/ μ L) repair
401 templates (Integrated DNA Technologies, Inc). Mixes were injected into the gonads of young adult
402 hermaphrodites. Animals were screened for successful edits using PCR primers ods2621 (5'-
403 TGGCTAACGCTCTAGAAACTTC-3') and ods2672 (5'- CATGACAACCTACGCCAAGCAG-3').

404 **Physiological and molecular assays**

405 To score brood size, L4 animals were singled onto OP50 *E. coli* NGM plates and left to grow for 42 hours,
406 during which they reach adulthood (18 hours) and lay their first batch of eggs (24 hours). Every 24 hours,
407 worms were transferred to new plates, for a total of three days. The total number of eggs and offspring on
408 the previous plate was counted 24 hours after the animals were moved to new plates. The percent lethality
409 of each strain was found by quantifying the number of unhatched eggs and dividing the sum by the brood
410 size.

411 To assay swimming motility, 8-10 L4 animals were picked onto an unspotted NGM plate, which was then
412 flooded with M9 buffer and placed on a light microscope equipped with a Samsung Galaxy A51 5G
413 smartphone attached to the eyepiece. Videos were taken with the smartphone's camera at 30fps. Animals
414 were filmed for thirty seconds. Videos were converted to AVI format using ffmpeg and subsequently
415 processed for background subtraction and binarization in Fiji [93]. The number of body bends per second
416 (BBPS), was quantified using the wrMTrck plugin [94].

417 Nuclear migrations of embryonic hyp7 precursors were scored in larval animals by counting the number of
418 nuclei abnormally localized in the dorsal cord as described previously [72]. To assay nuclear morphology,
419 L4 animals were picked onto plates and allowed to grow for 20 hours. Young adults were then mounted
420 onto 2% agarose pads in ~5 μ L of 1mM tetramisole in M9 buffer. The number of micronuclei were counted,
421 including those associated with chromosome bridges. Only one lateral side of each animal was scored.

422 Nuclei were visualized using a wide-field epifluorescent Leica DM6000 microscope with a 63 × Plan Apo
423 1.40 NA objective, a Leica DC350 FX camera, and Leica LAS AF software.

424 ***lmn-1(R204W)* immunofluorescence and imaging**

425 Comma-stage wild-type and *lmn-1(R204W)* embryos were fixed and stained with monoclonal antibody
426 1209D7 against UNC-83c as previously described [73]. The anti-LMN-1 polyclonal guinea pig antibody
427 was used at a dilution of 1:1000 (gift of Jun Kelly Liu, Cornell University) [95]. Fluorescence intensity of
428 dorsal hypodermal nuclei was calculated using the following equation: Corrected total nuclear fluorescence
429 = Integrated density – (Area of each nucleus x Mean fluorescence of the background). The integrated
430 density is the product of the selected area and the average gray value within the selection. Values were
431 found using ImageJ. Confocal images were taken on a Zeiss LSM 980 with Airyscan using a 63x Plan Apo
432 1.4 NA objective and the Zeiss Zen Blue software made available through the MCB light imaging
433 microscopy core and through NIH grant S10OD026702.

434 **Statistics**

435 Scatter plots show the mean and 95% confidence intervals (CI) as error bars. Swimming phenotypes were
436 analyzed using a chi-squared test comparing the number of wild type animals that fell below a threshold of
437 1.1 BBPS, which corresponds to the corroborated mean swimming rate of *lmn-1(Y59C)* worms [31,70] to
438 the missense mutant populations. Percentages and their corresponding p values are shown in the bar graph.
439 Unpaired student's t tests were used for nuclear migration and were corrected with Tukey. Nuclear
440 morphology was evaluated using the Benjamini-Hochberg adjusted p value and setting a false discovery
441 rate of 0.05. Graphs were generated with Prism 9 software.

442

443 **Table 2. Strains Used in this Study.**

444

Strain	Genotype	Reference
N2	wild type	[87]
UD796	<i>lmn-1(yc107[N53S]) I/hT2 [bli-4(e937) let(q782) qIs48[P_{myo-2}::gfp; P_{pes-10}::gfp; P_{ges-1}::gfp]] (I;III)</i>	This study
UD750	<i>lmn-1(yc96[Y59C]) I/hT2 (I;III)</i>	This study
UD788	<i>lmn-1(yc105[R64P]) I/hT2 (I;III)</i>	This study
NMX419	<i>lmn-1(tgx395[E96K]) I</i>	This study
NMX554	<i>lmn-1(tgx526[E175K]) I</i>	This study
NMX563	<i>lmn-1(tgx535[R204W]) I</i>	This study
NMX567	<i>lmn-1(tgx539[K284Q]) I</i>	This study
NMX589	<i>lmn-1(tgx561[K331Q]) I</i>	This study
NMX421	<i>lmn-1(tgx397[E358K]) I</i>	This study
NMX414	<i>lmn-1(tgx390[G407D]) I</i>	This study
NMX557	<i>lmn-1(tgx529[G528R]) I</i>	This study
UD837	<i>lmn-1(tgx550 [L535P]) I/hT2 (I;III)</i>	This study
LW905	<i>lmn-1(tm1502) I/hT2 (I;III)</i>	[69]
UD398	<i>him-8(e1489) IV; ycIs10[P_{col-10}::nls::gfp::lacZ] V</i>	[71]
UD899	<i>lmn-1(yc107[N53S]) I/hT2 (I;III); him-8(e1489) IV; ycIs10V</i>	This study
UD883	<i>lmn-1(yc96[Y59C]) I/hT2 (I;III); him-8(e1489) IV; ycIs10 V</i>	This study
UD895	<i>lmn-1(yc105[R64P]) I/hT2 (I;III); him-8(e1489) IV; ycIs10 V</i>	This study
UD915	<i>lmn-1(tgx395[E96K]) I; him-8(e1489) IV; ycIs10 V</i>	This study
UD913	<i>lmn-1(tgx526[E175K]) I; him-8(e1489) IV; ycIs10 V</i>	This study
UD908	<i>lmn-1(tgx535[R204W]) I; him-8(e1489) IV; ycIs10 V</i>	This study
UD835	<i>lmn-1(tgx539[K284Q]) I; him-8(e1489) IV; ycIs10 V</i>	This study
UD834	<i>lmn-1(tgx561[K331Q]) I; him-8(e1489) IV; ycIs10 V</i>	This study
UD839	<i>lmn-1(tgx[E358K]) I; him-8(e1489) IV; ycIs10 V</i>	This study
UD836	<i>lmn-1(tgx390[G407D]) I; him-8(e1489) IV; ycIs10 V</i>	This study
UD857	<i>lmn-1(tgx550[L535P]) I/hT2 (I;III); him-8(e1489) IV; ycIs10 V</i>	This study
BN147	<i>emr-1(gk119) I; bqSi142 [P_{emr-1}::emr-1::mCherry] II</i>	[96]
UD453	<i>unc-84(yc23[unc-84::GFP]) X</i>	[97]
UD1008	<i>unc-84(yc23[unc-84::GFP]) X; emr-1(gk119)? I; bqSi142 [P_{emr-1}::emr-1::mCherry] II</i>	This study
UD1009	<i>unc-84(yc23[unc-84::GFP]) X; lmn-1(tgx535[R204W]), emr-1(gk119)? I; bqSi142 [P_{emr-1}::emr-1::mCherry] II</i>	This study

445

446

447

448

449

450

451

452

453

454 **Table 3. crRNA and Repair Templates Used in this Study.**

455

New alleles	Strain	crRNA*	DNA repair template*†§
<i>lmn-1</i> (<i>yc107</i> [<i>N53S</i>]) <i>I</i> / <i>hT2</i> [<i>bli-4</i> (<i>e937</i>) <i>let</i> (<i>q782</i>) <i>qIs48</i> [<i>P</i> _{myo-2} :: <i>gfp</i> ; <i>P</i> _{pes-10} :: <i>gfp</i> ; <i>P</i> _{ges-1} :: <i>gfp</i>]] (<i>I</i> ; <i>III</i>)	N2	AAAACUCAC GUCGAUGUA AG	GGCTCAACGCTTCTAGAAACTTCACGTCTCA AGAGAAAGATCATTGACgTCACTCAgCAGTC GTCTTGCTACTTACATCGACGTGAGTTTAAT TTGGAAAGTATTCATATTGA
<i>lmn-1</i> <i>yc96</i> [<i>Y59C</i>] <i>I</i> / <i>hT2</i> (<i>I</i> ; <i>III</i>)	N2	AAAACUCAC GUCGAUGUA AG	AAGTGTACTTCAAATATGAATACTTTCAAA TTAAAACTCACGTGATGcAcGTaGCAAGACG ACTGTTGAGTGAAGTCAAATGATCTTCTCTT GAAGACGTGA
<i>lmn-1</i> (<i>yc105</i> [<i>R64P</i>]) <i>I</i> / <i>hT2</i> (<i>I</i> ; <i>III</i>)	N2	GCAAGAGAA CAACAGACU CC	TTTAATTTGGAAAGTATTCATATTGAAAGT ACACTTTCAGAAAGTTCCtCAAcTGGAGCAA GAGAACACAGACTCCAA GTTCAAATTCCGCA CATCGAAGTTGTTGAAAAGAAAGAGAAGTCAA ACTT
<i>lmn-1</i> (<i>tgx395</i> [<i>E96K</i>]) <i>I</i>	N2	CGATGTCGC GAATTGAA CC CGATCGCTT CGAGGCGGA AA	CGTCAATTGGAGCAAGAGAACACAGACTCCA GGTcCAGAtCCTGAtATTGAGGTcGTcGAGA AaAAgGAAAAaTCtAAATTaGCTGAcCGtTTC aAGGtGAAAAGGTACACTTGTtATATTCT GATGCCAAA
<i>lmn-1</i> (<i>tgx526</i> [<i>E175K</i>]) <i>I</i>	N2	GGCACGCAA CGATAAATT GG AGCCGCCAA CAATAAAAT CA	AAAACAGAAGACGTTGCAGGCACGCAACGATA AATTaGTtGTtaAGAACGAcGAcCTtAAgAAG CAaAACATTACcCTTCGcGAtACCCTcGAGGG ACTtAAGAAGGtGtGAGGtGATGAGACCCCTC TtCGcACcGtGtAACAAcAAgATCAAGGCT CTGGAAGAAGATCTCGCTTTGCTCTT
<i>lmn-1</i> (<i>tgx535</i> [<i>R204W</i>]) <i>I</i>	N2	ACTCTTCGT GACACCGTA GA TTTGCTCTT CAACAGCAC AA	CTCAAAAGAGAACATCACTCTCGTACAC CGTtGAGGGACTtAAaAAgGtGTTGAGGAGcG AgACTCTcCTCtGgACAGCtGCCAAAtAAcAAg ATtAAGGcCTtGAGGAGGAGAcCTtGCCTTGC cCTcCAGCaaCACAAAGGGAGAACTTGAAGAAG TTCGTCACAAGAGAC
<i>lmn-1</i> (<i>tgx539</i> [<i>K284Q</i>]) <i>I</i>	N2	AGCATTGAG CTTGTTTT GT GACTTGGAG ACATCAAGC AG	GCATCAAAACAAAACAGCTTCGAAGATGCCT ACAAGAACcCAGCTtAAcGCcGCcCGTGAAGC CAGGAAAGAACGcGTcTCtGAGGcCATTCAcCT caGaGCCaGaGTcaGaGACcTcGAaACcTCCa GCAGTGGAAATGCTCGCTCATCGAACGTCTT CGTT
<i>lmn-1</i> (<i>tgx561</i> [<i>K331Q</i>]) <i>I</i>	N2	GACTTGGAG ACATCAAGC AG CCAAGAGAA GCTCGACGA CA	CTTCGTGCCGTGTTCGTGAATTGGAGACATC AAGtAGcGGAAACGCCTCtCTtATTGAGaGaC TTaGaTCtGAaCTtGAtACcCTccAacGtTCT TTCCAGGAAAGCTtGAtGACAAGGGATGCTCG AATTGCTGAACCTAATCAAGAG

<i>lmn-1(tgx397[E358K]) I</i>	N2	CCAAGAGAA GCTCGACGA CA TCTTGAGTT CGGCGTCCA AT	CACTCTGAAGAGATCGTCCAAGAGAACGCTCG ACGAtAAaGAcGCcCGcATcGCcGAgTgAAC CAgGAaATtGAaCGaATGATGtcCaAGTTtCA tGAActTgtTgGAcGTcAAgATtCAgTTGGACG CCGAACtCAAGACCTACCAAGCTCTCCTG
<i>lmn-1(tgx390[G407D]) I</i>	N2	GCGTCTCAA TCTTACTCA GG GGAGGGAGCA AGCGCTCAG CG	CCTTGAGGGTGAGGAGGGAGCGTCTCAATCTTA CTCAaGAGGCaCCgCAgAAtACcTCgGTcCAC CAtGTtTCcTTcTCgTCCGat <u>GGcGCc</u> tcCGC CCAGCGCGGAGTGAAGCGTCGTCGCGTTGTCG ATGTAA
<i>lmn-1(tgx529[G528R]) I</i>	N2	AGCATCCGC AGACCAAAC GG GCTCGTCTT GAGGATAGT GA	TCGTATGAAGCTCGCTCCACATGCTAGGCCA CCGTcTGGTCCGtGAcGCcGGaGCTGTcCAC CAtCCACCTGAgGTtTACGTcATGAAaAAGCA gCAaTGGCCTATccGt <u>GAcAA</u> tCCATCtGCC GcCTcGAGGAcAGTGAAGGGAGACACTGTTCT TCTATCACCGTTGAAT
<i>lmn-1(tgx550 [L535P]) I/hT2 (I;III)</i>	N2	CTATCCTCA AGACGAGCT GA GCTCGTCTT GAGGATAGT GA	ACAATTTCA <u>GTGGCCA</u> ATTGGAGATAACCCA TCAGC _c CGCCa <u>GAGGAc</u> tGTAAGGAGACAC TGTTTCTTCTATCACCGTTGAAT

456

457 *All nucleotide sequences are displayed in 5' to 3' orientation.

458 †Lowercase nucleotides differ from the genomic sequence and include the missense, PAM site, and
459 synonymous screening mutations.

460 §Underlined sequences indicate the missense mutation.

461

462 Acknowledgements

463 We thank members of the Starr/Luxton lab for helpful discussions, editing of the paper, and
464 technical help, especially Jamie Ho and Daniel Elnatan for help with imaging. We thank Thomas Wilkop
465 at the MCB Light Microscopy Imaging Facility, which is a UC Davis Campus Core Research Facility, for
466 microscopy assistance.

467 References

- 468 1. Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M, Ben-Harush K, et al. The molecular
469 architecture of lamins in somatic cells. *Nature*. 2017 Mar 1;543(7644):261–4.
- 470 2. Shimi T, Kittisopkul M, Tran J, Goldman AE, Adam SA, Zheng Y, et al. Structural organization of
471 nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. *Mol Biol Cell*. 2015 Nov
472 5;26(22):4075–86.
- 473 3. Worman HJ. Nuclear lamins and laminopathies. *J Pathol*. 2012 Jan;226(2):316–25.
- 474 4. Worman HJ, Bonne G. “Laminopathies”: A wide spectrum of human diseases. *Spec Issue -*
475 *Intermed Filam*. 2007 Jun 10;313(10):2121–33.
- 476 5. Bertrand AT, Chikhaoui K, Yaou RB, Bonne G. Clinical and genetic heterogeneity in
477 laminopathies. *Biochem Soc Trans*. 2011 Nov 21;39(6):1687–92.
- 478 6. Bonne G, Mercuri E, Muchir A, Urtizberea A, Bécane HM, Recan D, et al. Clinical and molecular
479 genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of
480 the lamin A/C gene. *Ann Neurol*. 2000 Aug 1;48(2):170–80.
- 481 7. Bonne G, Quijano-Roy S. Chapter 142 - Emery–Dreifuss muscular dystrophy, laminopathies, and
482 other nuclear envelopathies. In: Dulac O, Lassonde M, Sarnat HB, editors. *Handbook of Clinical*
483 *Neurology* [Internet]. Elsevier; 2013. p. 1367–76. Available from:
484 <https://www.sciencedirect.com/science/article/pii/B9780444595652000071>
- 485 8. Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, et al. Missense Mutations in the
486 Rod Domain of the Lamin A/C Gene as Causes of Dilated Cardiomyopathy and Conduction-System
487 Disease. *N Engl J Med*. 1999 Dec 2;341(23):1715–24.

488 9. Quijano-Roy S, Mbieleu B, Bönnemann CG, Jeannet PY, Colomer J, Clarke NF, et al. De novo
489 LMNA mutations cause a new form of congenital muscular dystrophy. *Ann Neurol.* 2008 Aug
490 1;64(2):177–86.

491 10. Bonne G, Barletta MRD, Varnous S, Bécane HM, Hammouda EH, Merlini L, et al. Mutations in the
492 gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. *Nat*
493 *Genet.* 1999 Mar 1;21(3):285–8.

494 11. Ben Yaou R, Yun P, Dabaj I, Norato G, Donkervoort S, Xiong H, et al. International retrospective
495 natural history study of LMNA-related congenital muscular dystrophy. *Brain Commun.* 2021 Jul
496 1;3(3):fcab075.

497 12. Scharner J, Brown CA, Bower M, Iannaccone ST, Khatri IA, Escolar D, et al. Novel LMNA
498 mutations in patients with Emery-Dreifuss muscular dystrophy and functional characterization of
499 four LMNA mutations. *Hum Mutat.* 2011 Feb 1;32(2):152–67.

500 13. Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, et al. Identification of
501 mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy
502 with atrioventricular conduction disturbances (LGMD1B). *Hum Mol Genet.* 2000 May
503 22;9(9):1453–9.

504 14. Benedetti S, Mendiftto I, Degano M, Rodolico C, Merlini L, D'Amico A, et al. Phenotypic clustering
505 of lamin A/C mutations in neuromuscular patients. *Neurology.* 2007 Sep 18;69(12):1285.

506 15. Storey EC, Fuller HR. Genotype-Phenotype Correlations in Human Diseases Caused by Mutations
507 of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. *Cells.*
508 2022;11(24).

509 16. Anderson CL, Langer ER, Routes TC, McWilliams SF, Bereslavskyy I, Kamp TJ, et al. Most
510 myopathic lamin variants aggregate: a functional genomics approach for assessing variants of
511 uncertain significance. *Npj Genomic Med.* 2021 Dec 3;6(1):103.

512 17. Nicolas HA, Hua K, Quigley H, Ivare J, Tesson F, Akimenko MA. A CRISPR/Cas9 zebrafish lamin
513 A/C mutant model of muscular laminopathy. *Dev Dyn [Internet]*. 2021 Oct 2 [cited 2021 Oct
514 29];n/a(n/a). Available from: <https://doi.org/10.1002/dvdy.427>

515 18. Chandar S, Yeo LS, Leimena C, Tan JC, Xiao XH, Nikolova-Krstevski V, et al. Effects of
516 Mechanical Stress and Carvedilol in Lamin A/C–Deficient Dilated Cardiomyopathy. *Circ Res.* 2010
517 Feb 19;106(3):573–82.

518 19. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL. A progeroid syndrome in mice is
519 caused by defects in A-type lamins. *Nature.* 2003 May 1;423(6937):298–301.

520 20. Thomasson R, Vignier N, Peccate C, Mougenot N, Noirez P, Muchir A. Alteration of performance
521 in a mouse model of Emery–Dreifuss muscular dystrophy caused by A-type lamins gene mutation.
522 *Hum Mol Genet.* 2019 Jul 1;28(13):2237–44.

523 21. Vignier N, Mougenot N, Bonne G, Muchir A. Effect of genetic background on the cardiac
524 phenotype in a mouse model of Emery-Dreifuss muscular dystrophy. *Biochem Biophys Rep.* 2019
525 Sep 1;19:100664.

526 22. Lyakhovetsky R, Gruenbaum Y. Studying Lamins in Invertebrate Models. In: Schirmer EC, de las
527 Heras JI, editors. *Cancer Biology and the Nuclear Envelope: Recent Advances May Elucidate Past*
528 *Paradoxes [Internet]*. New York, NY: Springer New York; 2014. p. 245–62. Available from:
529 https://doi.org/10.1007/978-1-4899-8032-8_11

530 23. Cohen-Fix O, Askjaer P. Cell Biology of the *Caenorhabditis elegans* Nucleus. *Genetics*.
531 2017 Jan 1;205(1):25.

532 24. Liu J, Rolef Ben-Shahar T, Riemer D, Treinin M, Spann P, Weber K, et al. Essential roles for
533 *Caenorhabditis elegans* lamin gene in nuclear organization, cell cycle progression, and spatial
534 organization of nuclear pore complexes. *Mol Biol Cell*. 2000 Nov;11(11):3937–47.

535 25. Cohen M, Tzur YB, Neufeld E, Feinstein N, Delannoy MR, Wilson KL, et al. Transmission electron
536 microscope studies of the nuclear envelope in *Caenorhabditis elegans* embryos. *J Struct Biol*. 2002
537 Oct 1;140(1):232–40.

538 26. Gruenbaum Y, Lee KK, Liu J, Cohen M, Wilson KL. The expression, lamin-dependent localization
539 and RNAi depletion phenotype for emerin in *C. elegans*. *J Cell Sci*. 2002 Mar 1;115(5):923–9.

540 27. Liu J, Lee KK, Segura-Totten M, Neufeld E, Wilson KL, Gruenbaum Y. MAN1 and emerin have
541 overlapping function(s) essential for chromosome segregation and cell division in *Caenorhabditis*
542 *elegans*. *Proc Natl Acad Sci*. 2003 Apr 15;100(8):4598–603.

543 28. Margalit A, Neufeld E, Feinstein N, Wilson KL, Podbilewicz B, Gruenbaum Y. Barrier to
544 autointegration factor blocks premature cell fusion and maintains adult muscle integrity in *C.*
545 *elegans*. *J Cell Biol*. 2007 Aug 13;178(4):661–73.

546 29. Lee KK, Starr D, Cohen M, Liu J, Han M, Wilson KL, et al. Lamin-dependent Localization of
547 UNC-84, A Protein Required for Nuclear Migration in *Caenorhabditis elegans*. *Mol Biol Cell*. 2002
548 Mar 1;13(3):892–901.

549 30. Zuela N, Zwerger M, Levin T, Medalia O, Gruenbaum Y. Impaired mechanical response of an
550 EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation. *J Cell Sci*.
551 2016 Jan 1;jcs.184309.

552 31. Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A, Stadler MB, et al. An EDMD
553 Mutation in *C. elegans* Lamin Blocks Muscle-Specific Gene Relocation and Compromises Muscle
554 Integrity. *Curr Biol.* 2011 Oct 11;21(19):1603–14.

555 32. Bank EM, Ben-Harush K, Wiesel-Motiuk N, Barkan R, Feinstein N, Lotan O, et al. A laminopathic
556 mutation disrupting lamin filament assembly causes disease-like phenotypes in *Caenorhabditis*
557 *elegans*. *Mol Biol Cell.* 2011 Aug 1;22(15):2716–28.

558 33. Wiesel N, Mattout A, Melcer S, Melamed-Book N, Herrmann H, Medalia O, et al. Laminopathic
559 mutations interfere with the assembly, localization, and dynamics of nuclear lamins. *Proc Natl Acad
560 Sci U S A.* 2007/12/27 ed. 2008 Jan 8;105(1):180–5.

561 34. Bank EM, Gruenbaum Y. *Caenorhabditis elegans* as a model system for studying the nuclear lamina
562 and laminopathic diseases. *Nucleus.* 2011 Sep 1;2(5):350–7.

563 35. Bone CR, Chang YT, Cain NE, Murphy SP, Starr DA. Nuclei migrate through constricted spaces
564 using microtubule motors and actin networks in *C. elegans* hypodermal cells. *Development.* 2016
565 Nov 15;143(22):4193–202.

566 36. Wu X, Wang QK, Gui L, Liu M, Zhang X, Jin R, et al. Identification of a new lamin A/C mutation
567 in a chinese family affected with atrioventricular block as the prominent phenotype. *J Huazhong
568 Univ Sci Technolog Med Sci.* 2010 Feb 1;30(1):103–7.

569 37. Wang H, Wang J, Zheng W, Wang X, Wang S, Song L, et al. Mutation Glu82Lys in lamin A/C
570 gene is associated with cardiomyopathy and conduction defect. *Biochem Biophys Res Commun.*
571 2006 May 26;344(1):17–24.

572 38. Lin XF, Luo JW, Liu G, Zhu YB, Jin Z, Lin X. Genetic mutation of familial dilated cardiomyopathy
573 based on next-generation semiconductor sequencing. *Mol Med Rep.* 2018/09/05 ed. 2018
574 Nov;18(5):4271–80.

575 39. Sébillon P, Bouchier C, Bidot LD, Bonne G, Ahamed K, Charron P, et al. Expanding the phenotype
576 of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. *J
577 Med Genet.* 2003 Aug;40(8):560–7.

578 40. Song K, Dube MP, Lim J, Hwang I, Lee I, Kim JJ. Lamin A/C mutations associated with familial
579 and sporadic cases of dilated cardiomyopathy in Koreans. *Exp Mol Med.* 2007 Feb 1;39(1):114–20.

580 41. Pasotti M, Klersy C, Pilotto A, Marziliano N, Rapezzi C, Serio A, et al. Long-Term Outcome and
581 Risk Stratification in Dilated Cardiolaminopathies. *J Am Coll Cardiol.* 2008 Oct 7;52(15):1250–60.

582 42. Perrot A, Hussein S, Ruppert V, Schmidt HHJ, Wehnert MS, Duong NT, et al. Identification of
583 mutational hot spots in LMNA encoding lamin A/C in patients with familial dilated
584 cardiomyopathy. *Basic Res Cardiol.* 2009 Jan 1;104(1):90–9.

585 43. Arbustini E, Pilotto A, Repetto A, Grasso M, Negri A, Diegoli M, et al. Autosomal dominant dilated
586 cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. *J Am Coll Cardiol.*
587 2002 Mar 20;39(6):981–90.

588 44. Hermida-Prieto M, Monserrat L, Castro-Beiras A, Laredo R, Soler R, Peteiro J, et al. Familial
589 dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene
590 mutations. *Am J Cardiol.* 2004 Jul 1;94(1):50–4.

591 45. Pethig K, Genschel J, Peters T, Wilhelm M, Flemming P, Lochs H, et al. LMNA Mutations in
592 Cardiac Transplant Recipients. *Cardiology.* 2005;103(2):57–62.

593 46. Sylvius N, Bilinska ZT, Veinot JP, Fidzianska A, Bolongo PM, Poon S, et al. In vivo and in vitro
594 examination of the functional significances of novel lamin gene mutations in heart failure patients. *J
595 Med Genet.* 2005 Aug;42(8):639–47.

596 47. Kärkkäinen S, Reissell E, Heliö T, Kaartinen M, Tuomainen P, Toivonen L, et al. Novel mutations
597 in the lamin A/C gene in heart transplant recipients with end stage dilated cardiomyopathy. *Heart.*
598 2006 Apr 1;92(4):524.

599 48. Quarta G, Syrris P, Ashworth M, Jenkins S, Zuborne Alapi K, Morgan J, et al. Mutations in the
600 Lamin A/C gene mimic arrhythmogenic right ventricular cardiomyopathy. *Eur Heart J.* 2012 May
601 1;33(9):1128–36.

602 49. Millat G, Bouvagnet P, Chevalier P, Sebbag L, Dulac A, Dauphin C, et al. Clinical and mutational
603 spectrum in a cohort of 105 unrelated patients with dilated cardiomyopathy. *Eur J Med Genet.* 2011
604 Nov 1;54(6):e570–5.

605 50. Dal Ferro M, Stolfo D, Altinier A, Gigli M, Perrieri M, Ramani F, et al. Association between
606 mutation status and left ventricular reverse remodelling in dilated cardiomyopathy. *Heart.* 2017 Nov
607 1;103(21):1704.

608 51. Kuruc JC, Durant-Archibald AA, Motta J, Rao KS, Trachtenberg B, Ramos C, et al. Development
609 of anthracycline-induced dilated cardiomyopathy due to mutation on LMNA gene in a breast cancer
610 patient: a case report. *BMC Cardiovasc Disord.* 2019 Jul 16;19(1):169–169.

611 52. Pasqualin LMA, Reed UC, Costa TVMM, Quedas E, Albuquerque MAV, Resende MBD, et al.
612 Congenital Muscular Dystrophy With Dropped Head Linked to the LMNA Gene in a Brazilian
613 Cohort. *Pediatr Neurol.* 2014 Apr 1;50(4):400–6.

614 53. Tan D, Yang H, Yuan Y, Bonnemann C, Chang X, Wang S, et al. Phenotype–Genotype Analysis of
615 Chinese Patients with Early-Onset LMNA-Related Muscular Dystrophy. *PLOS ONE*. 2015 Jun
616 22;10(6):e0129699.

617 54. Brown CA, Lanning RW, McKinney KQ, Salvino AR, Cherniske E, Crowe CA, et al. Novel and
618 recurrent mutations in lamin A/C in patients with Emery–Dreifuss muscular dystrophy. *Am J Med
619 Genet*. 2001 Sep 1;102(4):359–67.

620 55. Mercuri E, Poppe M, Quinlivan R, Messina S, Kiniali M, Demay L, et al. Extreme Variability of
621 Phenotype in Patients With an Identical Missense Mutation in the Lamin A/C Gene: From
622 Congenital Onset With Severe Phenotype to Milder Classic Emery–Dreifuss Variant. *Arch Neurol*.
623 2004 May 1;61(5):690–4.

624 56. Sewry CA, Brown SC, Mercuri E, Bonne G, Feng L, Camici G, et al. Skeletal muscle pathology in
625 autosomal dominant Emery–Dreifuss muscular dystrophy with lamin A/C mutations. *Neuropathol
626 Appl Neurobiol*. 2001 Aug 1;27(4):281–90.

627 57. Liang WC, Tian X, Yuo CY, Chen WZ, Kan TM, Su YN, et al. Comprehensive target capture/next-
628 generation sequencing as a second-tier diagnostic approach for congenital muscular dystrophy in
629 Taiwan. *PLOS ONE*. 2017 Feb 9;12(2):e0170517.

630 58. Le Thanh P, Meinke P, Korfali N, Srsen V, Robson MI, Wehnert M, et al. Immunohistochemistry
631 on a panel of Emery–Dreifuss muscular dystrophy samples reveals nuclear envelope proteins as
632 inconsistent markers for pathology. *Neuromuscul Disord*. 2017 Apr 1;27(4):338–51.

633 59. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational
634 constraint spectrum quantified from variation in 141,456 humans. *Nature*. 2020 May
635 1;581(7809):434–43.

636 60. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving
637 access to variant interpretations and supporting evidence. *Nucleic Acids Res.* 2018 Jan
638 4;46(D1):D1062–7.

639 61. Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM, et al. The landscape of
640 genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. *Genet Med.*
641 2014 Aug 1;16(8):601–8.

642 62. Fichna JP, Macias A, Piechota M, Korostyński M, Potulska-Chromik A, Redowicz MJ, et al.
643 Whole-exome sequencing identifies novel pathogenic mutations and putative phenotype-influencing
644 variants in Polish limb-girdle muscular dystrophy patients. *Hum Genomics.* 2018 Jul 3;12(1):34–34.

645 63. Møller DV, Pham TT, Gustafsson F, Hedley P, Ersbøll MK, Bundgaard H, et al. The role of Lamin
646 A/C mutations in Danish patients with idiopathic dilated cardiomyopathy. *Eur J Heart Fail.* 2009
647 Nov 1;11(11):1031–5.

648 64. van Spaendonck-Zwarts KY, van Rijsingen IAW, van den Berg MP, Lekanne Deprez RH, Post JG,
649 van Mil AM, et al. Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy:
650 overview of 10 years' experience. *Eur J Heart Fail.* 2013 Jun 1;15(6):628–36.

651 65. Dalin MG, Engström PG, Ivarsson EG, Unneberg P, Light S, Schaufelberger M, et al. Massive
652 parallel sequencing questions the pathogenic role of missense variants in dilated cardiomyopathy.
653 *Int J Cardiol.* 2017 Feb 1;228:742–8.

654 66. Hoornje ET, Bollen IA, Barge-Schaapveld DQ, van Tienen FH, te Meerman GJ, Jansweijer JA, et
655 al. Lamin A/C-Related Cardiac Disease. *Circ Cardiovasc Genet.* 2017 Aug 1;10(4):e001631.

656 67. Hasselberg NE, Haland TF, Saberniak J, Brekke PH, Berge KE, Leren TP, et al. Lamin A/C
657 cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. *Eur*
658 *Heart J.* 2018 Mar 7;39(10):853–60.

659 68. Torvaldson E, Kochin V, Eriksson JE. Phosphorylation of lamins determine their structural
660 properties and signaling functions. *Nucleus.* 2015 May 4;6(3):166–71.

661 69. Haithcock E, Dayani Y, Neufeld E, Zahand AJ, Feinstein N, Mattout A, et al. Age-related changes
662 of nuclear architecture in *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A.* 2005/11/03 ed. 2005
663 Nov 15;102(46):16690–5.

664 70. Harr JC, Schmid CD, Muñoz-Jiménez C, Romero-Bueno R, Kalck V, Gonzalez-Sandoval A, et al.
665 Loss of an H3K9me anchor rescues laminopathy-linked changes in nuclear organization and muscle
666 function in an Emery-Dreifuss muscular dystrophy model. *Genes Dev.* 2020/03/05 ed. 2020 Apr
667 1;34(7–8):560–79.

668 71. Bone CR, Tapley EC, Gorjánácz M, Starr DA. The *Caenorhabditis elegans* SUN protein UNC-84
669 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear
670 migration. *Mol Biol Cell.* 2014 Sep 15;25(18):2853–65.

671 72. Fridolfsson HN, Herrera LA, Brandt JN, Cain NE, Hermann GJ, Starr DA. Genetic Analysis of
672 Nuclear Migration and Anchorage to Study LINC Complexes During Development of
673 *Caenorhabditis elegans*. In: Gundersen GG, Worman HJ, editors. *The LINC Complex: Methods and*
674 *Protocols [Internet]*. New York, NY: Springer New York; 2018. p. 163–80. Available from:
675 https://doi.org/10.1007/978-1-4939-8691-0_13

676 73. Starr DA, Hermann GJ, Malone CJ, Fixsen W, Priess JR, Horvitz HR, et al. *unc-83* encodes a novel
677 component of the nuclear envelope and is essential for proper nuclear migration. *Development.*
678 2001 Dec 15;128(24):5039–50.

679 74. Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. A lamin A protein isoform overexpressed in
680 Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. *Proc
681 Natl Acad Sci U S A.* 2007/03/14 ed. 2007 Mar 20;104(12):4949–54.

682 75. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–
683 Gilford progeria syndrome. *Proc Natl Acad Sci.* 2004 Jun 15;101(24):8963.

685 76. Chen CY, Chi YH, Mutalif RA, Starost MF, Myers TG, Anderson SA, et al. Accumulation of the
686 Inner Nuclear Envelope Protein Sun1 Is Pathogenic in Progeric and Dystrophic Laminopathies.
687 *Cell.* 2012 Apr 27;149(3):565–77.

688 77. Uchino R, Nonaka Y ki, Horigome T, Sugiyama S, Furukawa K. Loss of Drosophila A-type lamin
689 C initially causes tendon abnormality including disintegration of cytoskeleton and nuclear lamina in
690 muscular defects. *Dev Biol.* 2013 Jan 1;373(1):216–27.

691 78. Bank EM, Ben-Harush K, Feinstein N, Medalia O, Gruenbaum Y. Structural and physiological
692 phenotypes of disease-linked lamin mutations in *C. elegans*. *Ueli Aebi Festschr.* 2012 Jan
693 1;177(1):106–12.

694 79. Östlund C, Bonne G, Schwartz K, Worman HJ. Properties of lamin A mutants found in Emery–
695 Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. *J Cell Sci.*
696 2001 Dec 15;114(24):4435–45.

697 80. Davidson PM, Lammerding J. Broken nuclei – lamins, nuclear mechanics, and disease. *Trends Cell
698 Biol.* 2014 Apr 1;24(4):247–56.

699 81. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, et al. Loss of A-type
700 lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. *J Cell
701 Biol.* 1999 Nov 29;147(5):913–20.

702 82. Muchir A, Medioni J, Laluc M, Massart C, Arimura T, Kooi AJVD, et al. Nuclear envelope
703 alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial
704 lipodystrophy carrying lamin A/C gene mutations. *Muscle Nerve.* 2004 Oct 1;30(4):444–50.

705 83. Fidziańska A, Hausmanowa-Petrusewicz I. Architectural abnormalities in muscle nuclei.
706 Ultrastructural differences between X-linked and autosomal dominant forms of EDMD. *J Neurol
707 Sci.* 2003 Jun 15;210(1):47–51.

708 84. Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M, Dialynas G, et al. Myopathic
709 lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling.
710 *Hum Mol Genet.* 2013/02/19 ed. 2013 Jun 15;22(12):2335–49.

711 85. Shaw NM, Rios-Monterrosa JL, Fedorchak GR, Ketterer MR, Coombs GS, Lammerding J, et al.
712 Effects of mutant lamins on nucleo-cytoskeletal coupling in Drosophila models of LMNA muscular
713 dystrophy. *Front Cell Dev Biol [Internet].* 2022;10. Available from:
714 <https://www.frontiersin.org/articles/10.3389/fcell.2022.934586>

715 86. Zhou C, Li C, Zhou B, Sun H, Koulourou V, Holt I, et al. Novel nesprin-1 mutations associated
716 with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. *Hum
717 Mol Genet.* 2017 Jun 15;26(12):2258–76.

718 87. Brenner S. THE GENETICS OF CAENORHABDITIS ELEGANS. *Genetics.* 1974 May
719 1;77(1):71–94.

720 88. Arribere JA, Bell RT, Fu BXH, Artiles KL, Hartman PS, Fire AZ. Efficient Marker-Free Recovery
721 of Custom Genetic Modifications with CRISPR/Cas9 in *Caenorhabditis elegans*. *Genetics*. 2014
722 Nov 1;198(3):837–46.

723 89. Paix A, Folkmann A, Rasoloson D, Seydoux G. High Efficiency, Homology-Directed Genome
724 Editing in *Caenorhabditis elegans* Using CRISPR-Cas9 Ribonucleoprotein Complexes. *Genetics*.
725 2015 Sep 1;201(1):47–54.

726 90. Paix A, Folkmann A, Seydoux G. Precision genome editing using CRISPR-Cas9 and linear repair
727 templates in *C. elegans*. *CRISPR-Cas Syst Genome Eng Investig*. 2017 May 15;121–122:86–93.

728 91. Farboud B, Meyer BJ. Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through
729 Improved Guide RNA Design. *Genetics*. 2015 Apr 1;199(4):959–71.

730 92. Hao H, Kalra S, Jameson LE, Guerrero LA, Cain NE, Bolivar J, et al. The Nesprin-1/2 ortholog
731 ANC-1 regulates organelle positioning in *C. elegans* independently from its KASH or actin-binding
732 domains. Parsons M, Sengupta P, Jantsch V, editors. *eLife*. 2021 Apr 16;10:e61069.

733 93. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-
734 source platform for biological-image analysis. *Nat Methods*. 2012 Jul 1;9(7):676–82.

735 94. AU - Nussbaum-Krammer CI, AU - Neto MF, AU - Brielmann RM, AU - Pedersen JS, AU -
736 Morimoto RI. Investigating the Spreading and Toxicity of Prion-like Proteins Using the Metazoan
737 Model Organism *C. elegans*. *J Vis Exp*. 2015 Jan 8;(95):e52321.

738 95. McGee MD, Stagljar I, Starr DA. KDP-1 is a nuclear envelope KASH protein required for cell-
739 cycle progression. *J Cell Sci*. 2009 Aug 15;122(16):2895–905.

740 96. Morales-Martínez A, Dobrzynska A, Askjaer P. Inner nuclear membrane protein LEM-2 is required
741 for correct nuclear separation and morphology in *C. elegans*. *J Cell Sci.* 2015 Mar 15;128(6):1090–
742 6.

743 97. Lawrence KS, Tapley EC, Cruz VE, Li Q, Aung K, Hart KC, et al. LINC complexes promote
744 homologous recombination in part through inhibition of nonhomologous end joining. *J Cell Biol.*
745 2016 Dec 12;215(6):801–21.

746 **Supporting information**

747 **S1 File. Wild-type Animals Exhibit Robust Swimming Behavior.** An example video of L4 stage *C.*
748 *elegans* swimming in buffer for 30 seconds. The number of body bends is shown in gray text next to each
749 animal and was generated by the Fiji wrMTrck plugin.

750 **S2 File. Homozygous *lmn-1(Y59C)* Animals have Impaired Motility.** A representative video of
751 homozygous *lmn-1(Y59C)* L4 stage animals thrashing in buffer for 30 seconds. The number of body
752 bends is shown in gray text next to each animal and was generated by the Fiji wrMTrck plugin.

753 **S3 File. Homozygous *lmn-1(R64P)* Animals Demonstrate Swimming Behavior Ranging from**
754 **Normal to No Motility.** An example video of homozygous *lmn-1(R64P)* L4 stage animals swimming in
755 buffer for 30 seconds. The number of body bends is shown in gray text next to each animal and was
756 generated by the Fiji wrMTrck plugin.

757 **S4 File. A VUS, *lmn-1(K331Q)*, Significantly Reduces Swimming Motility in *C. elegans*.** A
758 representative video of *lmn-1(K331Q)* L4 animals thrashing in buffer for 30 seconds. The number of body
759 bends is shown in gray text next to each animal and was generated by the Fiji wrMTrck plugin.

760 **S5 File. Homozygous *lmn-1(L535P)* animals have the most severe swimming defect.** An example
761 video of homozygous *lmn-1(L535P)* animals swimming in buffer for 30 seconds. The number of body
762 bends is shown in gray text next to each animal and was generated by the Fiji wrMTrck plugin.

763