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Abstract

Background

Alternative splicing is a crucial mechanism of post-transcriptional modification responsible for
the transcriptome plasticity and proteome diversity of a metazoan cell. Although many splicing
regulations around the exon/intron regions have been discovered, the relationship between
promoter-bound transcription factors and the downstream alternative splicing remains largely

unexplored.

Results

In this study, we present computational approaches to decipher the regulation relationship
connecting the promoter-bound transcription factor binding sites (TFBSs) and the splicing
patterns. We curated a fine data set, including DNase | hypersensitive sites sequencing and
transcriptome in fifteen human tissues from ENCODE. Specifically, we proposed different
representations of TF binding context and splicing patterns to tackle the associations between the
promoter and downstream splicing events. Our results demonstrated that the convolutional neural
network (CNN) models learned from the TF binding changes in the promoter to predict the
splicing pattern changes. Furthermore, through an in silico perturbation-based analysis of the
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CNN models, we identified several TFs that considerably reduced the model performance of

splicing prediction.

Conclusion
In conclusion, our finding highlights the potential role of promoter-bound TFBSs in influencing
the regulation of downstream splicing patterns and provides insights for discovering alternative

splicing regulations.
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Background

Gene splicing endows the transcriptional diversity of the metazoan genome. Splicing is the
process by which introns are removed from the nascent pre-mRNA and exons are joined,
generating the functional mRNA. Alternative splicing (AS), the selective removal of exons and
reconnection of exons by multiple processes, is known to play a pivotal role in regulatory
pathways from invertebrates to mammals [1, 2]. By the regulatory mechanism of AS, a single
gene is capable of generating multiple RNA molecules encoding proteins with different functions
[3]. The importance of AS lies in the evidence that the human genome has been estimated more
than 95% of multi-exon genes undergo alternative splicing in an underlying tissue-specific
manner [4]. Moreover, the variations in splicing patterns are prevalent to associate with many
complex diseases in humans [5, 6], and one-third of all disease-associated alleles have been

estimated to alter splicing [7].

Studies on AS regulation have mainly focused on the sequence information of spliced exons and
flanked introns. Machine learning has unprecedented performance in predicting exon-
inclusion/skipping levels in bulk tissues or single cells. Several computational models to derive
“splicing codes” that predict splice site selection in a genomic sequence successfully capture

patterns around the skipped exon and elucidate complex regulatory mechanisms from genomic
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and epigenomic features [8-12]. Despite many efforts to characterize the splicing regulatory
codes within the splice sites, the extent and effects of transcription machinery at the relatively

distant promoter regions in splicing regulation remain unsolved.

In the past decades, AS has been generally accepted to be tightly coupled with RNA polymerase
transcription of the nascent pre-mRNA [13, 14]. Two prevailing models have been proposed to
explain the coupling between alternative splicing and transcription: the recruitment model [15,
16] and the kinetics model [14]. Notably, the chromatins are mostly not in linear form; the
transcription complex on a promoter affects the recruitment of splicing factors and elongation of
RNA polymerase Il to promote exon exclusion through chromatin looping [17]. In addition,
various DNA-binding proteins have been reported to influence the AS patterns by changing

epigenetic conditions in the promoter [18].

Each gene contains a set of unique combinations of TF binding sites (TFBSs) in the promoter
that determines its temporal and spatial expression. Transcriptional regulation is usually a
combinatorial effect of multiple TFs binding to cis-regulatory elements located in the proximate
and distal regions from transcription start sites [19]. Date to 20 years ago, the regulation of exon
splicing patterns was demonstrated directly through the specific TFBS occupancy in the
promoter [20, 21]. Moreover, the coupling of promoter and splicing is later proposed with
extensive regulator mechanisms [22, 23]. Given the three-dimensional folding of chromatin
loops, the proximal promoter- or distal enhancer-bound factors joined into transcription
compartments correlate with alternative splicing of exons [24]. Although the biological findings
connect the promoter with AS by focusing on a few gene models, the hypothesis that promoter
architecture in terms of TFBS composition regulates AS remains unexplored at the genome-wide

level.

In this study, we developed analytical strategies to approach this question using data of both
RNA-seq and DNase-seq in pairs across the different human tissues from the ENCODE project.
We first considered the associations between the occurrences of more than 300 TF binding
motifs in the promoter and the corresponding splicing patterns. Secondly, we examined whether
the changes in TF binding condition were able to predict the splicing change by studying the
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92 relative changes of the splice-in percent (PSI) values between any paired tissues. Then, we
93  conducted machine learning methods and deep learning neural networks to predict the splicing
94  patterns. Notably, the convolutional neural network (CNN) models that took complete TF
95  occupancy information in promoter regions as input achieved the highest performance at 0.889
96 of the area under receiver operating characteristic curve (AUROC). Lastly, we applied the
97 importance analysis of the CNN models for each TF and identified some important TFs that
98 affecting the splicing prediction genome-widely.

99

100

101 Results

102 In this study, we considered the cassette exon splicing, which is the most frequent alternative
103  splicing type in the human genome [36]. We proposed two scenarios to examine the relationship
104  between TFBSs in the promoter and the splicing patterns of the gene. First, we asked if
105 compositions of TFBS occupancies, which were defined as the expressed TFs (TPM > 1) in the
106  given tissues and their binding motifs in the open chromatin regions, are associated with the
107  splicing patterns of the gene. Second, we asked if the changes of TF binding condition in the
108  promoter modify the splicing efficiency of the cassette exon usage by comparing their PSI values.
109 The data preprocessing procedures for TFBS identification in the promoter and exon-skipped
110 events are illustrated in Fig. 1A. The TF binding profiles of each promoter were curated by
111  integration of DNase-seq for open-chromatin regions, human TF motif scan, and expression
112  profile across 15 tissues. The splicing patterns of each gene were analyzed based on the
113  transcriptome in different tissues.

114

115 Characterizing the TFBS occupancies in the promoter and first cassette exons across
116  tissues

117  We investigated the associated relationship between the TFBSs in the promoter and the first
118  cassette exon, which is relatively closed to the promoter. The distribution of the PSI values as
119  exon usage levels was bimodal across 15 human tissues (Fig. 1B). Here, we defined the PSI
120  values smaller than 0.2 and larger than 0.8 as the exclusion form and inclusion form, respectively.
121  Based on the criteria, the usage of the first cassette exons of human genes across 15 tissues was
122 mostly skewed in either one of the categories, i.e., exclusion or inclusion forms (Fig. 1C). There
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123 were only 4.6% of genes having both splicing forms in different tissues.

124

125  Experimental studies have shown that the promoter architecture, by using different gene
126  promoters, affects the splicing patterns of the exon skipping in the gene bodies [37, 38].
127  Following this idea, we sought to examine whether the promoter architecture in terms of TFBS
128  occupancies as the features determine the inclusion or exclusion of the first cassette exon. First,
129  we asked which TFBSs were predominant within the promoters of these genes with different
130 splicing patterns of their first cassette exon. In order to address this, the discrepancy between the
131  frequency of individual TFBS on the promoters of the exclusion sets and that of the inclusion
132  sets was evaluated independently by using a chi-squared (3°) test for each tissue. Considering an
133  adjusted significance level of p-value < 0.001 after Bonferroni correction, more than half of TF
134  binding motifs are significantly enriched in the promoter of either exclusion or inclusion sets. In
135 addition, we calculated the gene expression specificity index tau [31, 32] for each TF and set 0.8
136  as the cut-off for tissue-specific TFs. However, there is no particular enrichment of TFs showing
137  more enriched across statistical significance ranks (Fig. 1D, right panel).

138

139  Next, we considered the complex relationship among TFBSs within promoters on the prediction
140  of splicing patterns by using a machine learning approach. We employed the XGBoost method
141  [39], a decision-tree-based ensemble model, and used the presence of TFBSs within the open
142  chromatins of promoter as input data to predict the inclusion or exclusion of the first cassette
143  exons. Due to the coarser resolution of DNase-seq and in silico motif scanning to profile the
144  TFBS occupancies, we noticed that some genes share identical features in different tissues. We
145  thus removed the samples that share identical features in the training data from the testing data of
146  the given tissues to avoid the fallacy of prediction accuracy in the cross-tissue evaluation.
147  Herein, we proposed three different cross-fold validation schemes in order to properly evaluate
148  prediction performance (Fig. 1E). For event-wise scheme, we randomly left 10% of promoter-
149  splicing pairs as the independent testing data and performed a 10-fold cross-validation (CV). For
150  tissue-wise scheme, we conducted leave-one-tissues-out cross-validation by treating the
151  promoter-splicing pairs from a single tissue as the independent testing data. For gene-wise
152  scheme, we used 90% of genes with all promoter-splicing pairs across tissues to train model and

153  remained 10% of genes were for an independent testing set. In Fig. 1F, three evaluation metrics,
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154  including F1-score, AUROC, and accuracy, were shown to compare the prediction performance
155 in different CV schemes. Interestingly, the prediction performance using event-wise scheme
156 achieved an Fl-score and AUROC closed to 0.80 (Fig. 1F, green bars). In the cross-tissue
157  validation results, we further observed that the overall performance of the models obtained an
158 average AUROC of 0.84 (Fig. 1F, purple bar). However, all three metrics underlying gene-wise
159  CV could yield slightly better than random guess at 0.50 (Fig. 1F, yellow bars).

160

161 It is worth noting that the gene-wise CV scenario indeed examined whether the generalization of
162 a trained model enables to classify the splicing events using the unseen promoter information
163  about TF binding profiles, which were not included in the training dataset. We later addressed a
164  following question if the same gene promoter in different tissues both present in the training and
165  testing sets was critical for prediction performance. Subsequently, we split the genes into three
166  groups, i.e., one-sided, both-sided, and singleton, according to their splicing forms across all
167  tissues and re-examined the results of prediction accuracy in the individual tissues. In contrast to
168  the genes with one-sided and both-sided splicing forms, the trained models using data from other
169 tissues did not predict the splicing forms of the singleton genes correctly in the given tissue (Fig.
170  1G, left panel). Furthermore, we counted the number of genes in the respective groups (Fig. 1G,
171  right panel), and found that a good overall performance of the models underlying tissue-wise CV
172 was dominant by the large number of genes with one-sided splicing form across all tissues. The
173  poor prediction on those small portions of singleton genes (less than 200) did not cause a drastic
174  drop in overall prediction accuracy. In summary, our current approach failed to construct the
175 models with generalization ability to infer the splicing forms using promoter information that
176  pertains to TF binding profiles.

177

178 Changesof TF bindingto the promoter reflect the distinct exon splicing phases

179 In this section, we sought to examine whether changes of individual TF binding to promoter alter
180 the splicing efficiency that was estimated by PSI values. The PSI value summarizes the splicing
181  condition of the constitutive exons that are included in all or part of transcripts from expressed
182  isoforms [40]. As the fact that ranges of PSI values of different genes are varied across 15 tissues,
183  the genes differ from each other in terms of their efficiency of splicing first cassette exon into the

184  expressed isoforms. As a result, the efficiency of exon usage should be considered for each gene
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185 itself instead of the absolute PSI (W) value. To this end, we applied the Z-score transformation to
186  normalize the absolute PSI scores of all genes. Of note, some genes that had a smaller PSI range
187 (< 0.2) and/or expressed in less than three tissues were discarded in the following experiments.
188  We then defined the top 20% and last 20% of transformed Zy scores in each gene as the two
189  distinct phases of exon usage, i.e., low and high splicing efficiency respectively (Fig. 2A). To
190 test the hypothesis that changes of TFBS in the open chromatin of the promoter are associated
191  with splicing phase change, the differences of two Zy and their TF binding occupancies in a
192  given paired tissues for each gene were calculated (Fig. 2B). The distribution of delta Zy scores
193  was shown in Fig. 2C, where the unchanged group (same splicing phase) was below 1 and the
194  changed group (different splicing phase) was larger than 1.8. Of note, no overlapped events were
195  observed between concordance and discordance groups.

196

197  To examine the association between TFBS-occupied difference and splicing phase for individual
198 TFs, we constructed a 2 x 2 contingency table for each TF. Specifically, for each tissue pair in
199 one gene, we assigned the pair into groups according to whether its TFBS occupancy is changed
200 (ATFa = 0 or ATFa = 1), and whether the splicing phase is changed (concordance or
201  discordance). We thus calculated the odds ratio from contingency table and applied chi-squared
202  test. About two-third of TFs, their binding occupancy changes were significantly associated with
203  splicing phase changes (N = 203, adj. p-value < 10, Fig. 2D). Since every tissue usually
204  expresses different sets of TFs to control the cell fate [41, 42], we estimated the tissue specificity
205 of TF expression by tau score [32]. More than half (53%) of TFs among those non-significant
206  groups were ubiquitously expressed, while most of the TFs (75%) among those significant
207  associations with splicing phase change were tissue-specifically expressed (Fig. 2D). Of note, the
208  open chromatin regions in the promoter of the same gene in different tissues show less variations.
209  Thus, TFBSs without filtered by expression profiles of given TFs did not show any significant
210 association. Therefore, although the DNA sequences of the promoter are identical, the
211  divergence on the TF expression across different tissues is a likely regulating mechanism to
212  affect the splicing phase change.

213

214  Machine learning confirm the association between TF binding changes and splicing phase
215  shift
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216  Next, we employed different machine learning algorithms, including logistic regression,
217  XGBoost (ensemble tree algorithm), and deep neural network methods, to test whether the
218 combinations of TF binding changes predict the splicing phase changes. To monitor sensitivity
219  and specificity simultaneously, we assessed the models using the AUROC in the plot of the true
220  positive rate (TPR) against the false positive rate (FPR) for five-fold cross-validation tests (Fig.
221 3A). Three classifiers achieved an average AUROC of 0.691, 0.766, 0.771 for logistic regression
222  (LReq), deep neural network (DNN), and XGBoost (XGB) models, respectively on all the events
223  of the dataset. Since there were imbalanced data sets in the changed and unchanged groups, the
224  area under the precision-recall curve (AUPRC) is also instructive to assess the model
225  performance (Fig. 3B). The XGB models also achieved a greater mean AUPRC of 0.630 than
226 0.531 and 0.624 respectively for LReg and DNN. Because there is often more than one binding
227  site in the promoter for each TF, we also constructed other ML models using frequencies of all
228  possible TF binding site changes between promoters as the features. The overall performance of
229  prediction of splicing phase change was decreased about 6% based on AUROC. This indicates
230 that the decision tree-based ML method could not deal with the frequencies of TFBSs change
231  properly.

232

233 Integration of TFBS locations in the promoter using deep learning models improve
234  prediction performance

235  We next integrated the position information of TFBSs in the promoter as the features to train the
236  deep neural network (DNN) and convolution neural network (CNN) models respectively. The
237  two-dimension array consisting of 2,500 bp and 345 TF binding changes were used as the input
238  features as shown in Fig. 4A. The architecture of the CNN model includes the one-dimensional
239  convolutions kernels, which are designed as the filters for revealing the combinations of TF
240  binding changes. The convolution layers are followed by a max-pooling layer with sliding
241  window size and a stride step of 10 units. And a single flatten layer with 256 neurons was used to
242  summarize all features and followed by three hidden layers. To prevent overfitting, the dropout
243  technique was applied to remove 25% of the connected neurons in the flatten and hidden layer
244 during the training (26).

245

246  Training the network with input matrices including both TFBS and their interactions with other
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247  TFs markedly impacts the performance of the splice predictions. In contrast to the performance
248  of previous DNN models using only TFBS changes input (Fig. 3A), current DNN classifiers
249 achieved greater AUROC, increasing from the average 0.766 to 0.853 (Fig. 4B). The CNN
250 classifiers achieved an even greater AUROC of 0.889 (Fig. 4B). Additionally, CNN models
251  achieved greater AUPRC for all five-fold experiments than DNN models, increasing the average
252  from 0.730 to 0.782 (Fig. 4C).

253

254  Evaluation of TF changeson the splicing patterns

255  We next to understand the importance of TF motifs on splicing patterns utilized by the network
256  to achieve its remarkable accuracy. In brief, we performed systemic in silico substitution of each
257  TF change as zero, then measured the effects on the CNN model’s prediction. The importance of
258 each TF was estimated by the fraction of changed prediction under the in silico substitution. The
259 underlying idea is if assume a TF plays a key role in regulating splicing patterns, the prediction
260  output of the machine learning model should change dramatically after substitution rather than
261  other TF. We performed importance analysis on each TF and ranked them by their importance
262  measurement, and found that a small proportion of TFs resulted in dramatical changes in the
263  splicing prediction (Fig. 5A). As most of TFs had a little effect on the CNN model performance,
264  we highlighted top-ranked 19 TFs with outlier values based on the interquartile range rule (Q3 +
265 1.5 x IQR) as the candidate splicing regulators.

266

267  Previous studies have demonstrated that binding of the acetyltransferase p300 at promoter
268  regions modifies acetylation of splicing factors, and thereby modulate the alternative splicing
269  pattern of the gene [43, 44]. We thus submitted our 19 candidate TFs and p300 to the STRING
270  database [45] for identification of their interactions. We applied default settings to search both
271  functional and physical protein associations with medium confidence score of 0.400 in the
272  STRING database (ver. 11.5). Then, we configured the network between query proteins only to
273  reveal the associations among them. Interestingly, the network was relatively less complex and
274  p300 were thought of as a hub gene associated with nine out of 19 top-ranked TFs (Fig. 5B).
275  Moreover, the interaction between KLF14 and p300 is experimentally and functionally
276  confirmed that the binding of KLF14 to the promoter recruits p300 to increase the levels of

277  acetylation associated with transcriptional activation [46]. Although the interaction between
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278 KLF14 and p300 on the gene activation was not investigated in the context of splicing,
279  compelling evidence showing a direct link between histone modification and splicing [17, 18]
280 raises the intriguing possibility of KLF14/p300 complex in modulating exon splicing. Similarly,
281 some top-ranked TFs might share a common mechanism in regulating RNA splicing via
282  recruitment of p300 to promote the deposition of histone acetylation at the promoter.

283

284  Lastly, to further confirm our in silico prediction for potential splicing regulators, we obtained
285 the K562 CTCFL shRNA knock-down RNA-Seq data [47] and its control from previous
286  research [48]. We re-analyzed the splicing status by calculating PSI through MISO and applied
287  Z-score transformation using the previous method in machine learning model training. We
288  observed the AZy values of CTCFL-target genes were higher than that of non-target genes
289 significantly (Fig. 5B, with p-value < 0.0001, Wilcoxon rank-sum test). This revealed in the
290 CTCFL deplete condition, genes targeted by CTCFL change their first skipped exon usage thus
291 influence AZy. We further seek for case studies to investigate how splicing status changed in
292 CTCFL-target genes under CTCFL depletes (Fig. 5C). The first skipped exon in
293 ENSG00000101096 has a higher skipped exon usage and increases the average PSI value. In
294  contrast, in ENSG00000147364 the first skipped exon usage reduced in the CTCFL deplete
295  condition thus has a lower average PSI value. These results suggest that CTCFL can influence
296 the splicing pattern. Nevertheless, CTCFL shows a dual function in splicing regulation, not only
297 increase skipped exon usage but also reduce usage in some genes. This result also matches the
298  previous study on CTCFL-depletion mediate alternative splicing change in MCF7 cell line [49].
299 In the CTCFL-depletion they detect exclusion of 361 and the inclusion of 221 alternative exons
300 compared to the normal condition. The CTCFL can influence the recruitment of RNAPII and
301 thus impact the RNAPII elongation speed and finally alter the splicing result of pre-mRNA.
302  Overall, these results support the feasibility of our modeling and importance analysis approaches
303 forindlico prediction.

304

305

306 Discussion

307  The applications of machine learning methods to characterize the regulatory potential of genomic

308  sequences on alternative splicing have been a subject of interest for over a decade [8, 50]. Instead

10
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309 of using the genomic information around the splicing exons, in this study, we focused on the
310 upstream promoter region for predicting downstream exon-skipped events genome-widely. In
311 contrast to some previous study using the DNA sequences directly [8, 9, 11], one major
312  difference of our approach is that we applied TF binding motif scan with prior domain
313  knowledge to represent the sequence information in the promoter. We demonstrate how the
314  promoter signals in terms of TFBS profiles can be integrated using machine learning approaches
315 for the further implication of association between the promoter and alternative splicing. Our
316  results showed that the prediction accuracy differed among the different algorithms and input
317 information. Notably, one-dimensional CNN architecture is highly capable of learning the
318 regulatory code from the TF binding changes in the promoter to discriminate the splicing
319  patterns (Fig 4).

320

321  The main drawback of this study is the limited number of tissues because we aimed to use a
322 high-quality dataset to avoid the noise and artifacts in the DNase-seq and RNA-seq datasets
323  conducted by different labs. Thus, we excluded any experiments that did not meet every quality
324  standard defined by ENCODE. When conducting the data analyses, we noticed that the splicing
325  forms for most of the gene were not varied extensively in these 15 tissues (Fig. 1C). Inspired by
326  the previous study to avoid fallacy of model performance using alternative cross-fold validation
327  schemes properly [51], we implemented three different CV schemes, i.e., event-wise, tissue-wide,
328 and gene-wise, to evaluate generation performance carefully. In the course of examining the
329 difference across three CV schemes to find possible reasons for high performance in the tissue-
330 wise evaluation, we noticed that majority of genes were expressed in more than two tissues and
331 displayed same splicing form. Because every gene promoter in different tissues shares most
332 TFBS features, the event- and tissue-wise schemes are subject to the problem of test set
333  contamination and could lead to an artificially inflated accuracy in this study. On the bright side,
334  there is considerable room for improvement in model generalization by collecting varied splicing
335 forms of every gene from different tissues extensively to evaluate promoter-splicing interactions.
336

337  To address the problem of shared TFBSs in promoter across tissues, we turned to look at the TF
338 binding changes in promoter (Fig 2B). Notably, this approach diminished the high similarity of

339  TFBS features in tissues and making a comparison in any given paired tissues also augmented

11
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340 the datasets incrementally for improvement of the model training. On the other hand, we
341  considered the changes in splicing efficiency (AZy) by introducing a transformation procedure of
342  absolute PSI values into the efficiency of exon usage. Our computational method is different
343  than a previous study using the absolute PSI values to estimate splicing efficiency directly [52].
344  The fact that the ranges of the PSI values in a particular gene across 15 tissues are mostly
345 ununiformed distribution is evident as the averaged PSI values of genes from closed to 0 or 1
346  (Fig 2A). The Z-transform method could remain commensurate in the scale to measure splicing
347  efficiency for each gene accordingly. In addition, instead of using fixed arbitrary cutoff values
348 (e.g., ¥ < 0.2 and ¥ > 0.8) to subsect the splicing status, we applied a percentile threshold to
349  divide genes into two tendencies, i.e., “splice-in” or “splice-out”. This approach avoids that those
350 small-PSl-ranged genes are skew to be classified into a single group of splice-in or splice-out.
351 Based on our observation, it is perhaps noteworthy to rethink about the definition of the splicing
352  status using PSI as a metric to explore alternative solutions in discovery of splicing mechanisms.
353 By carefully considering the fundamental issues in our preprocessing procedures on data, this
354  study provides a different perspective to study how TFs in promoter affects the exon splicing
355  genome-widely.

356

357 To train the prediction model of splicing phase shift, we used two different input data, i.e., an
358 array of TF binding changes and a matrix of full TF binding changes along with the promoter
359 regions. Our results demonstrated that training the DNN models with varying input of TF
360 binding context noticeably impacts the accuracy of the splicing phase shift prediction (Fig. 3 and
361 4). Despite amount of trainable network parameters drastically are increased when using an input
362 of TF binding context, DNN models is capable to automatically learn the task from the training
363 data. Remarkably, CNNs achieved even higher prediction performance than DNNs with matrices
364 of TF binding context (Fig. 4). In contrast to DNNs, CNNs indeed are designed to deal with
365 high-dimensional inputs by applying of a serious of convolutional and pooling steps [53, 54]. A
366 likely explanation for high accuracy boosting in CNNSs is the convolutional operations, which
367 learned higher-level features from the combinations of different TF changes. With the good
368 prediction performance of CNN models, the importance analysis experiments allowed us to
369 identify a couple of TFs that potentially involve in splicing regulation. To our knowledge, our

370  study is the first genome-wide effort to investigate that the splicing pattern changes across tissues
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371  were accurately predicted from the TF binding occupancies in the promoter.
372
373

374 Materialsand Methods

375 Data processing and sample selection

376  We downloaded both the DNase-seq peak BED files and the RNA-seq data for 15 human tissues
377  from the ENCODE data portal [25]. To obtain high quality of data, the data without any flags,
378  such as insufficient read depth, in the experimental metadata that were reported by the ENCODE
379 Data Coordination Center are used in the following experiments. For DNase-seq datasets, the
380 standard pipeline (accession: ENCPL201DNS for single-ended data, ENCPL202DNS for paired-
381 ended data) from ENCODE called the peaks using hotspot2 algorithm with 1% false-discovery
382 rate. For RNA-seq data, the ENCODE RNA-seq pipeline for long RNAs (accession:
383 ENCPLOO2LSE for single-ended data, ENCPLOO2LPE for paired-ended data) used the STAR
384  program for mapping the reads and the RSEM algorithm for quantification of genes. We used
385 genomic and annotation files of the human reference genome version GRCh37 as provided by
386 release V19 of GENCODE [26].

387

388 ldentification of putativein vivo TF binding sites

389  The DNase-seq peaks were used to define the open chromatin regions in the promoter regions
390 (-2 kb to +500 bp from the transcription start site). We downloaded TF motifs from the JASPAR
391 database (ver. 2018) [27] and excluded the fusion TF (i.e., EWSR1/FLI1 fusion) and older
392  versions of motifs from the same TF, as a result, we obtained 407 TF binding motifs from
393 JASPAR. Later, we scanned the sequence from each open chromatin region for each TF binding
394  motif in position-weight-matrix (PWM) format, using FIMO from the MEME (Motif-based
395 sequence analysis tools) suite [28]. Of note, we applied the FIMO with a threshold false
396  discovery rate of < 107%, which is less stringent than the general recommended parameter (< 107%)
397  for putative cis-regulatory elements detection. Since we only considered TF binding sites located
398 in the open chromatin regions, the general parameter is too stringent for our purpose.

399

400 RNA-seq processing and calculation of cassette exon usage (PSl)

401  To estimate the splicing level for each exon and tissue, we first used CATANA [29] to annotate
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402  AS events in all human transcripts for the AS annotation index file. The BAM files of RNA-seq
403  data generated by the ENCODE were used to estimate the percent spliced-in (PSI) values for the
404  first cassette exon of the protein-coding genes using the MISO (Mixture of Isoforms) tool [30].
405  For the calculation of the Zy score, we first selected the genes that PSI range is larger than 0.2
406  across different tissues and then standardized their PSI by z-score transformation for each gene.
407

408 Enrichment analysis

409 We analyzed the association of TF binding occupancies and splicing patterns from 2 x 2
410  contingency tables categorizing all human genes according to the occurrences of binding sites for
411 a given TF and splicing patterns (exclusion or inclusion in Fig. 1D). In parallel, we built the
412  contingency table to analyze the association between TFBS-occupied differences and splicing
413  phases (concordance or discordance in Fig. 2D) for each TF. The odds ratio (OR) based on the
414  contingency table was calculated for each TF and a chi-squared (y2) test was applied to
415  determine the statistical significance of the association. The p-value is adjusted by Bonferroni
416  correction (and its —logl0 transformation) for the association, and the odds ratio with log2
417  transformation is a measure of the effect size. The adjusted p-value < 0.001 is considered as
418  significant.

419

420 Tauindex of TF tissue specificity

421  We calculated the tissue specificity index tau [31, 32] using the gene expression of each TFs
422  across different tissues, as follows:

T.l 1- X; ~ i
423 tau:M;xi: ad

n-1 maxi<j<pn Xi
424  where x; represents the gene expression of TF x in tissue i ; and n is the number of tissues
425  expressing the TF (TPM > 1). We then adopted the cut-off of tau based on a previous study [33]
426  and defined the TFs with tau > 0.8 as tissue-specifically expressed.
427
428  Machinelearning and deep lear ning models
429 In order to get a better prediction power, we compared the accuracy between four methods,
430 logistic regression, XGBoost, deep neural network (DNN), and convolutional neural network

431  (CNN). To avoid biases caused by imbalanced data, we applied a balanced sampler as the
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432  concept described on the imbalanced-dataset-sampler (from
433  https://github.com/ufoym/imbalanced-dataset-sampler) to our training dataset before model

434  training. We trained the basic logistic regression model with default parameter settings described
435 in the scikit-learn [34]. For the XGBoost model, we limited the max tree depth to 6, set the eta by
436 1, and used gbtree as a booster.

437

438 In this research, we implemented our DNN and CNN models using the PyTorch framework [35].
439  The architecture of DNN began with flattening the input data and followed by 3 dense layers,
440  with 512, 256, and 128 nodes, respectively. ReLLU activation function was applied on the output
441  of each dense layer and then followed by a dropout layer to randomly set 25 percent of input
442  units to 0. The sigmoid function was applied to the final output of the tensor to generate binary
443  classification predictions.

444

445  The architecture of CNN is similar to DNN with some modifications. The input data was first
446  processed through a convolution layer which followed by the ReLU activation function, max
447  pooling layer and a dropout layer, and then connected to 2 dense-ReLU-dropout units as
448  described above, both with 128 nodes. The sigmoid function is also used to do the binary
449  classification task.

450

451 Importance analysis

452  To extract informative TF binding features from the CNN model, we performed an in silico
453  perturbation-based analysis to observe the impact on the perturbed input data. Similar to the
454  previous method, we perturb the input by assigning a zero value for a given TF of the input
455  feature (zero-out operation) and perform inference on the trained model. The feature importance
456  through zero-out operation was measured by the output changing ratio. Output changing ratio
457  was defined as Nchanged / Niotal, Where Nenanged represents the count of changed output label after
458  zero-out and N represents the total input delta instances number with corresponding TF
459  binding site.

460

461

462 Availability of data and materials
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463  The source codes supporting the conclusions of this study are available at GitHub repository
464  (https://github.com/bio-it-station/DoTA).

465
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632 Figure 1. (A) The workflow schema and the experiment design. We obtain 15 tissues that have
633 matched DNase-seq and RNA-seq from ENCODE. DNase-seq data was used to identify open
634  chromatin regions and followed by TF motif scanning to identify TF binding profile in promoter.
635 RNA-seq data was processed by the MISO program to obtain percent splice in (PSI) metrics
636  which represent the splicing pattern of the first skipped exon. (B) PSI distribution histogram. The
637  horizontal axis represents the PSI value and the vertical axis represents the number of skipping
638 exon events. (C) Venn diagram of the exclusion group gene and inclusion group gene. The
639  exclusion group gene defined as PSI < 0.2 and the inclusion group gene defined as PSI > 0.8. (D)
640 Volcano plot of the chi-square test results and the TF expression tissue specificity distribution
641 along with ranking p-values of the chi-squared test. The horizontal axis of the volcano plot
642  represents the -logso (adjust p-value) and the log, (OR). The chi-square test p-value is corrected
643 by Bonferroni multiple test correction. The blue dot denoted the ubiquitously expressed TFs (tau
644 < 0.8) and the red dot denoted the tissue-specific expressed TFs (tau > 0.8). (E) The schema of
645 validation strategies. From left to right represents event-wise, tissue-wise, and gene-wise
646  validation schema, respectively. (F) The model performance of event-wise, tissue-wise, and
647  gene-wise validation schema. For left panel to right panel represents F1-score, AUROC, and
648  accuracy, respectively. (G) The gene were assigned into three groups according to the splicing
649  forms across all tissues. One-sided denotes the genes belonging to same splicing form in more
650 than two tissues; both-sided denotes the genes having both inclusion and exclusion forms in 15
651  tissues; singleton denotes the genes expressed in a particular tissue only. The accuracies of
652  prediction and number of genes in three groups were calculated respectively for each tissue from
653  the tissue-wise validation experiments.
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655 Figure 2. (A) The distribution of PSI and ZPSI. Each horizontal line represents PSI values of a
656  gene and the vertical axis was sorted by gene median PSI. The blue dots denote the first quintile
657  (top 20%) of PSI and the red dots denote the fifth quintile (latest 20%) of PSI. (B) The “delta”
658  schema of splicing events. For each gene, we enumerate all tissue pairs and perform exclusive-or
659 (XOR) operation on the TF binding occupancies and yield AData representation which means the
660 differences in TF binding occupancies. For the splicing pattern, we calculate the absolute
661  difference of the ZPSI and yield AZy, which represents the variances in splicing efficiency. (C)
662  The distribution of AZy among splicing status unchanged group (concordance) and changed
663  group (discordance). The distribution showed a clear bimodal pattern, that the discordance AZy
664 s distinctly higher than the concordance AZy. (D) The chi-squared test of association between
665 TFBS-occupied differences and splicing phases. The left panel is the volcano plot of the chi-
666  square test; the horizontal axis represents the -logi (adjusted p-value) and the vertical axis
667  represents the log; (OR). Top 10 significant TFs are shown in their names. The right panel is the
668  ratio of tissue-specific and ubiquitous TFs among adjusted p-value rankings.
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Figure 3. (A) The area under receiver operating characteristic curve (AUROC) of Logistic

regression, XGBoost, and low-resolution deep learning model. The input of the low-resolution

deep learning model only contains a single array of TF occupancy information denote as low-
resolution. Of note, the XGBoost model has the highest AUROC. (B) The area under precision-

recall curve (AUPRC) of Logistic regression, XGBoost, and low-resolution deep learning model.
With the same trend of AUROC, the XGBoost model has the highest AUPRC.
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678
679  Figure 4. (A) The convolutional neural network schema. The first layer is a convolution layer

680  with ReLU activation function and followed by a max-pooling layer. After pooling a flatten layer
681  was applied to reshape the input. Then three dense layer is added followed by a sigmoid function
682  to classified the output. (B) The area under receiver operating characteristic curve (AUROC) of
683  convolutional neural network (CNN) and deep neural network (DNN). (C) The area under
684  precision-recall curve (AUPR) of CNN and DNN. Both AUROC and AUPR suggest the CNN
685 has the better performance.
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687
688 Figure 5. (A) The rank order plot of importance analysis. The horizontal axis represents the TF

689  importance ranks. The vertical axis represents the importance measures (see importance analysis
690 in method section). (B) The gene association network was constructed from the STRING
691  database for top important TFs with p300. The thickness of edges denotes the strength of data
692  support according to textmining, experiments, and databases. (C) The distribution of AZy
693  between control and CTCFL-RNAI experiment. The AZy values of the CTCFL-target genes
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show significant differences than that of non-CTCFL target genes with Wilcoxon rank-sum test
(p-value < 0.0001). (D) The sashimi plot and PSI distribution across control and CTCFL-RNAI
experiment. The left panel shows the first skipped exon event of ENSG00000101096. The right
panel shows the first skipped exon event of ENSG00000147364. Red samples were from the
control of CTCFL experiments and orange samples were from the CTCFL-RNAIi samples.

30


https://doi.org/10.1101/2023.04.09.536141
http://creativecommons.org/licenses/by-nd/4.0/

