

1 **Predicting splicing patterns from the transcription factor binding sites in the
2 promoter with deep learning**

3
4 Tzu-Chieh Lin^{1,†}, Cheng-Hung Tsai^{1,†}, Cheng-Kai Shiau¹, Jia-Hsin Huang^{1,2,*}, Huai-Kuang
5 Tsai^{1,2,*}

6
7 ¹Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
8 ²Taiwan AI Labs & Foundation, Taipei 10351, Taiwan

9
10 [†]Both authors contributed equally to this work.

11 *Co-corresponding authors: Jia-Hsin Huang (jiahsin.huang@gmail.com) and Huai-Kuang Tsai
12 (hktsai@iis.sinica.edu.tw)

13
14

15 **Abstract**

16 **Background**

17 Alternative splicing is a crucial mechanism of post-transcriptional modification responsible for
18 the transcriptome plasticity and proteome diversity of a metazoan cell. Although many splicing
19 regulations around the exon/intron regions have been discovered, the relationship between
20 promoter-bound transcription factors and the downstream alternative splicing remains largely
21 unexplored.

22 **Results**

23 In this study, we present computational approaches to decipher the regulation relationship
24 connecting the promoter-bound transcription factor binding sites (TFBSs) and the splicing
25 patterns. We curated a fine data set, including DNase I hypersensitive sites sequencing and
26 transcriptome in fifteen human tissues from ENCODE. Specifically, we proposed different
27 representations of TF binding context and splicing patterns to tackle the associations between the
28 promoter and downstream splicing events. Our results demonstrated that the convolutional neural
29 network (CNN) models learned from the TF binding changes in the promoter to predict the
30 splicing pattern changes. Furthermore, through an *in silico* perturbation-based analysis of the

31 CNN models, we identified several TFs that considerably reduced the model performance of
32 splicing prediction.

33 **Conclusion**

34 In conclusion, our finding highlights the potential role of promoter-bound TFBSSs in influencing
35 the regulation of downstream splicing patterns and provides insights for discovering alternative
36 splicing regulations.

37

38

39 **Keywords**

40 Alternative splicing; TFBS; deep learning; CNN; transcriptional regulation

41

42

43 **Background**

44 Gene splicing endows the transcriptional diversity of the metazoan genome. Splicing is the
45 process by which introns are removed from the nascent pre-mRNA and exons are joined,
46 generating the functional mRNA. Alternative splicing (AS), the selective removal of exons and
47 reconnection of exons by multiple processes, is known to play a pivotal role in regulatory
48 pathways from invertebrates to mammals [1, 2]. By the regulatory mechanism of AS, a single
49 gene is capable of generating multiple RNA molecules encoding proteins with different functions
50 [3]. The importance of AS lies in the evidence that the human genome has been estimated more
51 than 95% of multi-exon genes undergo alternative splicing in an underlying tissue-specific
52 manner [4]. Moreover, the variations in splicing patterns are prevalent to associate with many
53 complex diseases in humans [5, 6], and one-third of all disease-associated alleles have been
54 estimated to alter splicing [7].

55

56 Studies on AS regulation have mainly focused on the sequence information of spliced exons and
57 flanked introns. Machine learning has unprecedented performance in predicting exon-
58 inclusion/skipping levels in bulk tissues or single cells. Several computational models to derive
59 “splicing codes” that predict splice site selection in a genomic sequence successfully capture
60 patterns around the skipped exon and elucidate complex regulatory mechanisms from genomic

61 and epigenomic features [8–12]. Despite many efforts to characterize the splicing regulatory
62 codes within the splice sites, the extent and effects of transcription machinery at the relatively
63 distant promoter regions in splicing regulation remain unsolved.

64

65 In the past decades, AS has been generally accepted to be tightly coupled with RNA polymerase
66 transcription of the nascent pre-mRNA [13, 14]. Two prevailing models have been proposed to
67 explain the coupling between alternative splicing and transcription: the recruitment model [15,
68 16] and the kinetics model [14]. Notably, the chromatins are mostly not in linear form; the
69 transcription complex on a promoter affects the recruitment of splicing factors and elongation of
70 RNA polymerase II to promote exon exclusion through chromatin looping [17]. In addition,
71 various DNA-binding proteins have been reported to influence the AS patterns by changing
72 epigenetic conditions in the promoter [18].

73

74 Each gene contains a set of unique combinations of TF binding sites (TFBSs) in the promoter
75 that determines its temporal and spatial expression. Transcriptional regulation is usually a
76 combinatorial effect of multiple TFs binding to *cis*-regulatory elements located in the proximate
77 and distal regions from transcription start sites [19]. Date to 20 years ago, the regulation of exon
78 splicing patterns was demonstrated directly through the specific TFBS occupancy in the
79 promoter [20, 21]. Moreover, the coupling of promoter and splicing is later proposed with
80 extensive regulator mechanisms [22, 23]. Given the three-dimensional folding of chromatin
81 loops, the proximal promoter- or distal enhancer-bound factors joined into transcription
82 compartments correlate with alternative splicing of exons [24]. Although the biological findings
83 connect the promoter with AS by focusing on a few gene models, the hypothesis that promoter
84 architecture in terms of TFBS composition regulates AS remains unexplored at the genome-wide
85 level.

86

87 In this study, we developed analytical strategies to approach this question using data of both
88 RNA-seq and DNase-seq in pairs across the different human tissues from the ENCODE project.
89 We first considered the associations between the occurrences of more than 300 TF binding
90 motifs in the promoter and the corresponding splicing patterns. Secondly, we examined whether
91 the changes in TF binding condition were able to predict the splicing change by studying the

92 relative changes of the splice-in percent (PSI) values between any paired tissues. Then, we
93 conducted machine learning methods and deep learning neural networks to predict the splicing
94 patterns. Notably, the convolutional neural network (CNN) models that took complete TF
95 occupancy information in promoter regions as input achieved the highest performance at 0.889
96 of the area under receiver operating characteristic curve (AUROC). Lastly, we applied the
97 importance analysis of the CNN models for each TF and identified some important TFs that
98 affecting the splicing prediction genome-wide.

99

100

101 **Results**

102 In this study, we considered the cassette exon splicing, which is the most frequent alternative
103 splicing type in the human genome [36]. We proposed two scenarios to examine the relationship
104 between TFBSs in the promoter and the splicing patterns of the gene. First, we asked if
105 compositions of TFBS occupancies, which were defined as the expressed TFs (TPM > 1) in the
106 given tissues and their binding motifs in the open chromatin regions, are associated with the
107 splicing patterns of the gene. Second, we asked if the changes of TF binding condition in the
108 promoter modify the splicing efficiency of the cassette exon usage by comparing their PSI values.
109 The data preprocessing procedures for TFBS identification in the promoter and exon-skipped
110 events are illustrated in Fig. 1A. The TF binding profiles of each promoter were curated by
111 integration of DNase-seq for open-chromatin regions, human TF motif scan, and expression
112 profile across 15 tissues. The splicing patterns of each gene were analyzed based on the
113 transcriptome in different tissues.

114

115 **Characterizing the TFBS occupancies in the promoter and first cassette exons across 116 tissues**

117 We investigated the associated relationship between the TFBSs in the promoter and the first
118 cassette exon, which is relatively closed to the promoter. The distribution of the PSI values as
119 exon usage levels was bimodal across 15 human tissues (Fig. 1B). Here, we defined the PSI
120 values smaller than 0.2 and larger than 0.8 as the exclusion form and inclusion form, respectively.
121 Based on the criteria, the usage of the first cassette exons of human genes across 15 tissues was
122 mostly skewed in either one of the categories, *i.e.*, exclusion or inclusion forms (Fig. 1C). There

123 were only 4.6% of genes having both splicing forms in different tissues.

124

125 Experimental studies have shown that the promoter architecture, by using different gene
126 promoters, affects the splicing patterns of the exon skipping in the gene bodies [37, 38].
127 Following this idea, we sought to examine whether the promoter architecture in terms of TFBS
128 occupancies as the features determine the inclusion or exclusion of the first cassette exon. First,
129 we asked which TFBSs were predominant within the promoters of these genes with different
130 splicing patterns of their first cassette exon. In order to address this, the discrepancy between the
131 frequency of individual TFBS on the promoters of the exclusion sets and that of the inclusion
132 sets was evaluated independently by using a chi-squared (χ^2) test for each tissue. Considering an
133 adjusted significance level of p -value < 0.001 after Bonferroni correction, more than half of TF
134 binding motifs are significantly enriched in the promoter of either exclusion or inclusion sets. In
135 addition, we calculated the gene expression specificity index tau [31, 32] for each TF and set 0.8
136 as the cut-off for tissue-specific TFs. However, there is no particular enrichment of TFs showing
137 more enriched across statistical significance ranks (Fig. 1D, right panel).

138

139 Next, we considered the complex relationship among TFBSs within promoters on the prediction
140 of splicing patterns by using a machine learning approach. We employed the XGBoost method
141 [39], a decision-tree-based ensemble model, and used the presence of TFBSs within the open
142 chromatin of promoter as input data to predict the inclusion or exclusion of the first cassette
143 exons. Due to the coarser resolution of DNase-seq and *in silico* motif scanning to profile the
144 TFBS occupancies, we noticed that some genes share identical features in different tissues. We
145 thus removed the samples that share identical features in the training data from the testing data of
146 the given tissues to avoid the fallacy of prediction accuracy in the cross-tissue evaluation.
147 Herein, we proposed three different cross-fold validation schemes in order to properly evaluate
148 prediction performance (Fig. 1E). For event-wise scheme, we randomly left 10% of promoter-
149 splicing pairs as the independent testing data and performed a 10-fold cross-validation (CV). For
150 tissue-wise scheme, we conducted leave-one-tissues-out cross-validation by treating the
151 promoter-splicing pairs from a single tissue as the independent testing data. For gene-wise
152 scheme, we used 90% of genes with all promoter-splicing pairs across tissues to train model and
153 remained 10% of genes were for an independent testing set. In Fig. 1F, three evaluation metrics,

154 including F1-score, AUROC, and accuracy, were shown to compare the prediction performance
155 in different CV schemes. Interestingly, the prediction performance using event-wise scheme
156 achieved an F1-score and AUROC closed to 0.80 (Fig. 1F, green bars). In the cross-tissue
157 validation results, we further observed that the overall performance of the models obtained an
158 average AUROC of 0.84 (Fig. 1F, purple bar). However, all three metrics underlying gene-wise
159 CV could yield slightly better than random guess at 0.50 (Fig. 1F, yellow bars).

160

161 It is worth noting that the gene-wise CV scenario indeed examined whether the generalization of
162 a trained model enables to classify the splicing events using the unseen promoter information
163 about TF binding profiles, which were not included in the training dataset. We later addressed a
164 following question if the same gene promoter in different tissues both present in the training and
165 testing sets was critical for prediction performance. Subsequently, we split the genes into three
166 groups, i.e., one-sided, both-sided, and singleton, according to their splicing forms across all
167 tissues and re-examined the results of prediction accuracy in the individual tissues. In contrast to
168 the genes with one-sided and both-sided splicing forms, the trained models using data from other
169 tissues did not predict the splicing forms of the singleton genes correctly in the given tissue (Fig.
170 1G, left panel). Furthermore, we counted the number of genes in the respective groups (Fig. 1G,
171 right panel), and found that a good overall performance of the models underlying tissue-wise CV
172 was dominant by the large number of genes with one-sided splicing form across all tissues. The
173 poor prediction on those small portions of singleton genes (less than 200) did not cause a drastic
174 drop in overall prediction accuracy. In summary, our current approach failed to construct the
175 models with generalization ability to infer the splicing forms using promoter information that
176 pertains to TF binding profiles.

177

178 **Changes of TF binding to the promoter reflect the distinct exon splicing phases**

179 In this section, we sought to examine whether changes of individual TF binding to promoter alter
180 the splicing efficiency that was estimated by PSI values. The PSI value summarizes the splicing
181 condition of the constitutive exons that are included in all or part of transcripts from expressed
182 isoforms [40]. As the fact that ranges of PSI values of different genes are varied across 15 tissues,
183 the genes differ from each other in terms of their efficiency of splicing first cassette exon into the
184 expressed isoforms. As a result, the efficiency of exon usage should be considered for each gene

185 itself instead of the absolute PSI (Ψ) value. To this end, we applied the Z-score transformation to
186 normalize the absolute PSI scores of all genes. Of note, some genes that had a smaller PSI range
187 (< 0.2) and/or expressed in less than three tissues were discarded in the following experiments.
188 We then defined the top 20% and last 20% of transformed Z_Ψ scores in each gene as the two
189 distinct phases of exon usage, i.e., low and high splicing efficiency respectively (Fig. 2A). To
190 test the hypothesis that changes of TFBS in the open chromatin of the promoter are associated
191 with splicing phase change, the differences of two Z_Ψ and their TF binding occupancies in a
192 given paired tissues for each gene were calculated (Fig. 2B). The distribution of delta Z_Ψ scores
193 was shown in Fig. 2C, where the unchanged group (same splicing phase) was below 1 and the
194 changed group (different splicing phase) was larger than 1.8. Of note, no overlapped events were
195 observed between concordance and discordance groups.

196

197 To examine the association between TFBS-occupied difference and splicing phase for individual
198 TFs, we constructed a 2×2 contingency table for each TF. Specifically, for each tissue pair in
199 one gene, we assigned the pair into groups according to whether its TFBS occupancy is changed
200 ($\Delta\text{TF}\alpha = 0$ or $\Delta\text{TF}\alpha = 1$), and whether the splicing phase is changed (concordance or
201 discordance). We thus calculated the odds ratio from contingency table and applied chi-squared
202 test. About two-third of TFs, their binding occupancy changes were significantly associated with
203 splicing phase changes ($N = 203$, adj. p -value $< 10^{-3}$, Fig. 2D). Since every tissue usually
204 expresses different sets of TFs to control the cell fate [41, 42], we estimated the tissue specificity
205 of TF expression by tau score [32]. More than half (53%) of TFs among those non-significant
206 groups were ubiquitously expressed, while most of the TFs (75%) among those significant
207 associations with splicing phase change were tissue-specifically expressed (Fig. 2D). Of note, the
208 open chromatin regions in the promoter of the same gene in different tissues show less variations.
209 Thus, TFBSs without filtered by expression profiles of given TFs did not show any significant
210 association. Therefore, although the DNA sequences of the promoter are identical, the
211 divergence on the TF expression across different tissues is a likely regulating mechanism to
212 affect the splicing phase change.

213

214 **Machine learning confirm the association between TF binding changes and splicing phase
215 shift**

216 Next, we employed different machine learning algorithms, including logistic regression,
217 XGBoost (ensemble tree algorithm), and deep neural network methods, to test whether the
218 combinations of TF binding changes predict the splicing phase changes. To monitor sensitivity
219 and specificity simultaneously, we assessed the models using the AUROC in the plot of the true
220 positive rate (TPR) against the false positive rate (FPR) for five-fold cross-validation tests (Fig.
221 3A). Three classifiers achieved an average AUROC of 0.691, 0.766, 0.771 for logistic regression
222 (LReg), deep neural network (DNN), and XGBoost (XGB) models, respectively on all the events
223 of the dataset. Since there were imbalanced data sets in the changed and unchanged groups, the
224 area under the precision-recall curve (AUPRC) is also instructive to assess the model
225 performance (Fig. 3B). The XGB models also achieved a greater mean AUPRC of 0.630 than
226 0.531 and 0.624 respectively for LReg and DNN. Because there is often more than one binding
227 site in the promoter for each TF, we also constructed other ML models using frequencies of all
228 possible TF binding site changes between promoters as the features. The overall performance of
229 prediction of splicing phase change was decreased about 6% based on AUROC. This indicates
230 that the decision tree-based ML method could not deal with the frequencies of TFBSs change
231 properly.

232

233 **Integration of TFBS locations in the promoter using deep learning models improve 234 prediction performance**

235 We next integrated the position information of TFBSs in the promoter as the features to train the
236 deep neural network (DNN) and convolution neural network (CNN) models respectively. The
237 two-dimension array consisting of 2,500 bp and 345 TF binding changes were used as the input
238 features as shown in Fig. 4A. The architecture of the CNN model includes the one-dimensional
239 convolutions kernels, which are designed as the filters for revealing the combinations of TF
240 binding changes. The convolution layers are followed by a max-pooling layer with sliding
241 window size and a stride step of 10 units. And a single flatten layer with 256 neurons was used to
242 summarize all features and followed by three hidden layers. To prevent overfitting, the dropout
243 technique was applied to remove 25% of the connected neurons in the flatten and hidden layer
244 during the training (26).

245

246 Training the network with input matrices including both TFBS and their interactions with other

247 TFs markedly impacts the performance of the splice predictions. In contrast to the performance
248 of previous DNN models using only TFBS changes input (Fig. 3A), current DNN classifiers
249 achieved greater AUROC, increasing from the average 0.766 to 0.853 (Fig. 4B). The CNN
250 classifiers achieved an even greater AUROC of 0.889 (Fig. 4B). Additionally, CNN models
251 achieved greater AUPRC for all five-fold experiments than DNN models, increasing the average
252 from 0.730 to 0.782 (Fig. 4C).

253

254 **Evaluation of TF changes on the splicing patterns**

255 We next to understand the importance of TF motifs on splicing patterns utilized by the network
256 to achieve its remarkable accuracy. In brief, we performed systemic *in silico* substitution of each
257 TF change as zero, then measured the effects on the CNN model's prediction. The importance of
258 each TF was estimated by the fraction of changed prediction under the *in silico* substitution. The
259 underlying idea is if assume a TF plays a key role in regulating splicing patterns, the prediction
260 output of the machine learning model should change dramatically after substitution rather than
261 other TF. We performed importance analysis on each TF and ranked them by their importance
262 measurement, and found that a small proportion of TFs resulted in dramatical changes in the
263 splicing prediction (Fig. 5A). As most of TFs had a little effect on the CNN model performance,
264 we highlighted top-ranked 19 TFs with outlier values based on the interquartile range rule (Q3 +
265 $1.5 \times \text{IQR}$) as the candidate splicing regulators.

266

267 Previous studies have demonstrated that binding of the acetyltransferase p300 at promoter
268 regions modifies acetylation of splicing factors, and thereby modulate the alternative splicing
269 pattern of the gene [43, 44]. We thus submitted our 19 candidate TFs and p300 to the STRING
270 database [45] for identification of their interactions. We applied default settings to search both
271 functional and physical protein associations with medium confidence score of 0.400 in the
272 STRING database (ver. 11.5). Then, we configured the network between query proteins only to
273 reveal the associations among them. Interestingly, the network was relatively less complex and
274 p300 were thought of as a hub gene associated with nine out of 19 top-ranked TFs (Fig. 5B).
275 Moreover, the interaction between KLF14 and p300 is experimentally and functionally
276 confirmed that the binding of KLF14 to the promoter recruits p300 to increase the levels of
277 acetylation associated with transcriptional activation [46]. Although the interaction between

278 KLF14 and p300 on the gene activation was not investigated in the context of splicing,
279 compelling evidence showing a direct link between histone modification and splicing [17, 18]
280 raises the intriguing possibility of KLF14/p300 complex in modulating exon splicing. Similarly,
281 some top-ranked TFs might share a common mechanism in regulating RNA splicing via
282 recruitment of p300 to promote the deposition of histone acetylation at the promoter.

283

284 Lastly, to further confirm our *in silico* prediction for potential splicing regulators, we obtained
285 the K562 CTCFL shRNA knock-down RNA-Seq data [47] and its control from previous
286 research [48]. We re-analyzed the splicing status by calculating PSI through MISO and applied
287 Z-score transformation using the previous method in machine learning model training. We
288 observed the ΔZ_{Ψ} values of CTCFL-target genes were higher than that of non-target genes
289 significantly (Fig. 5B, with p -value < 0.0001 , Wilcoxon rank-sum test). This revealed in the
290 CTCFL deplete condition, genes targeted by CTCFL change their first skipped exon usage thus
291 influence ΔZ_{Ψ} . We further seek for case studies to investigate how splicing status changed in
292 CTCFL-target genes under CTCFL depletes (Fig. 5C). The first skipped exon in
293 ENSG00000101096 has a higher skipped exon usage and increases the average PSI value. In
294 contrast, in ENSG00000147364 the first skipped exon usage reduced in the CTCFL deplete
295 condition thus has a lower average PSI value. These results suggest that CTCFL can influence
296 the splicing pattern. Nevertheless, CTCFL shows a dual function in splicing regulation, not only
297 increase skipped exon usage but also reduce usage in some genes. This result also matches the
298 previous study on CTCFL-depletion mediate alternative splicing change in MCF7 cell line [49].
299 In the CTCFL-depletion they detect exclusion of 361 and the inclusion of 221 alternative exons
300 compared to the normal condition. The CTCFL can influence the recruitment of RNAPII and
301 thus impact the RNAPII elongation speed and finally alter the splicing result of pre-mRNA.
302 Overall, these results support the feasibility of our modeling and importance analysis approaches
303 for *in silico* prediction.

304

305

306 **Discussion**

307 The applications of machine learning methods to characterize the regulatory potential of genomic
308 sequences on alternative splicing have been a subject of interest for over a decade [8, 50]. Instead

309 of using the genomic information around the splicing exons, in this study, we focused on the
310 upstream promoter region for predicting downstream exon-skipped events genome-wide. In
311 contrast to some previous study using the DNA sequences directly [8, 9, 11], one major
312 difference of our approach is that we applied TF binding motif scan with prior domain
313 knowledge to represent the sequence information in the promoter. We demonstrate how the
314 promoter signals in terms of TFBS profiles can be integrated using machine learning approaches
315 for the further implication of association between the promoter and alternative splicing. Our
316 results showed that the prediction accuracy differed among the different algorithms and input
317 information. Notably, one-dimensional CNN architecture is highly capable of learning the
318 regulatory code from the TF binding changes in the promoter to discriminate the splicing
319 patterns (Fig 4).

320

321 The main drawback of this study is the limited number of tissues because we aimed to use a
322 high-quality dataset to avoid the noise and artifacts in the DNase-seq and RNA-seq datasets
323 conducted by different labs. Thus, we excluded any experiments that did not meet every quality
324 standard defined by ENCODE. When conducting the data analyses, we noticed that the splicing
325 forms for most of the gene were not varied extensively in these 15 tissues (Fig. 1C). Inspired by
326 the previous study to avoid fallacy of model performance using alternative cross-fold validation
327 schemes properly [51], we implemented three different CV schemes, i.e., event-wise, tissue-wide,
328 and gene-wise, to evaluate generation performance carefully. In the course of examining the
329 difference across three CV schemes to find possible reasons for high performance in the tissue-
330 wise evaluation, we noticed that majority of genes were expressed in more than two tissues and
331 displayed same splicing form. Because every gene promoter in different tissues shares most
332 TFBS features, the event- and tissue-wise schemes are subject to the problem of test set
333 contamination and could lead to an artificially inflated accuracy in this study. On the bright side,
334 there is considerable room for improvement in model generalization by collecting varied splicing
335 forms of every gene from different tissues extensively to evaluate promoter-splicing interactions.

336

337 To address the problem of shared TFBSs in promoter across tissues, we turned to look at the TF
338 binding changes in promoter (Fig 2B). Notably, this approach diminished the high similarity of
339 TFBS features in tissues and making a comparison in any given paired tissues also augmented

340 the datasets incrementally for improvement of the model training. On the other hand, we
341 considered the changes in splicing efficiency (ΔZ_Ψ) by introducing a transformation procedure of
342 absolute PSI values into the efficiency of exon usage. Our computational method is different
343 than a previous study using the absolute PSI values to estimate splicing efficiency directly [52].
344 The fact that the ranges of the PSI values in a particular gene across 15 tissues are mostly
345 ununiformed distribution is evident as the averaged PSI values of genes from closed to 0 or 1
346 (Fig 2A). The Z-transform method could remain commensurate in the scale to measure splicing
347 efficiency for each gene accordingly. In addition, instead of using fixed arbitrary cutoff values
348 (e.g., $\Psi < 0.2$ and $\Psi > 0.8$) to subsect the splicing status, we applied a percentile threshold to
349 divide genes into two tendencies, i.e., “splice-in” or “splice-out”. This approach avoids that those
350 small-PSI-ranged genes are skew to be classified into a single group of splice-in or splice-out.
351 Based on our observation, it is perhaps noteworthy to rethink about the definition of the splicing
352 status using PSI as a metric to explore alternative solutions in discovery of splicing mechanisms.
353 By carefully considering the fundamental issues in our preprocessing procedures on data, this
354 study provides a different perspective to study how TFs in promoter affects the exon splicing
355 genome-widely.

356

357 To train the prediction model of splicing phase shift, we used two different input data, *i.e.*, an
358 array of TF binding changes and a matrix of full TF binding changes along with the promoter
359 regions. Our results demonstrated that training the DNN models with varying input of TF
360 binding context noticeably impacts the accuracy of the splicing phase shift prediction (Fig. 3 and
361 4). Despite amount of trainable network parameters drastically are increased when using an input
362 of TF binding context, DNN models is capable to automatically learn the task from the training
363 data. Remarkably, CNNs achieved even higher prediction performance than DNNs with matrices
364 of TF binding context (Fig. 4). In contrast to DNNs, CNNs indeed are designed to deal with
365 high-dimensional inputs by applying of a serious of convolutional and pooling steps [53, 54]. A
366 likely explanation for high accuracy boosting in CNNs is the convolutional operations, which
367 learned higher-level features from the combinations of different TF changes. With the good
368 prediction performance of CNN models, the importance analysis experiments allowed us to
369 identify a couple of TFs that potentially involve in splicing regulation. To our knowledge, our
370 study is the first genome-wide effort to investigate that the splicing pattern changes across tissues

371 were accurately predicted from the TF binding occupancies in the promoter.

372

373

374 **Materials and Methods**

375 **Data processing and sample selection**

376 We downloaded both the DNase-seq peak BED files and the RNA-seq data for 15 human tissues
377 from the ENCODE data portal [25]. To obtain high quality of data, the data without any flags,
378 such as insufficient read depth, in the experimental metadata that were reported by the ENCODE
379 Data Coordination Center are used in the following experiments. For DNase-seq datasets, the
380 standard pipeline (accession: ENCPL201DNS for single-ended data, ENCPL202DNS for paired-
381 ended data) from ENCODE called the peaks using hotspot2 algorithm with 1% false-discovery
382 rate. For RNA-seq data, the ENCODE RNA-seq pipeline for long RNAs (accession:
383 ENCPL002LSE for single-ended data, ENCPL002LPE for paired-ended data) used the STAR
384 program for mapping the reads and the RSEM algorithm for quantification of genes. We used
385 genomic and annotation files of the human reference genome version GRCh37 as provided by
386 release V19 of GENCODE [26].

387

388 **Identification of putative *in vivo* TF binding sites**

389 The DNase-seq peaks were used to define the open chromatin regions in the promoter regions
390 (-2 kb to +500 bp from the transcription start site). We downloaded TF motifs from the JASPAR
391 database (ver. 2018) [27] and excluded the fusion TF (i.e., EWSR1/FLI1 fusion) and older
392 versions of motifs from the same TF, as a result, we obtained 407 TF binding motifs from
393 JASPAR. Later, we scanned the sequence from each open chromatin region for each TF binding
394 motif in position-weight-matrix (PWM) format, using FIMO from the MEME (Motif-based
395 sequence analysis tools) suite [28]. Of note, we applied the FIMO with a threshold false
396 discovery rate of $< 10^{-3}$, which is less stringent than the general recommended parameter ($< 10^{-4}$)
397 for putative *cis*-regulatory elements detection. Since we only considered TF binding sites located
398 in the open chromatin regions, the general parameter is too stringent for our purpose.

399

400 **RNA-seq processing and calculation of cassette exon usage (PSI)**

401 To estimate the splicing level for each exon and tissue, we first used CATANA [29] to annotate

402 AS events in all human transcripts for the AS annotation index file. The BAM files of RNA-seq
403 data generated by the ENCODE were used to estimate the percent spliced-in (PSI) values for the
404 first cassette exon of the protein-coding genes using the MISO (Mixture of Isoforms) tool [30].
405 For the calculation of the Z_ψ score, we first selected the genes that PSI range is larger than 0.2
406 across different tissues and then standardized their PSI by z-score transformation for each gene.

407

408 **Enrichment analysis**

409 We analyzed the association of TF binding occupancies and splicing patterns from 2×2
410 contingency tables categorizing all human genes according to the occurrences of binding sites for
411 a given TF and splicing patterns (exclusion or inclusion in Fig. 1D). In parallel, we built the
412 contingency table to analyze the association between TFBS-occupied differences and splicing
413 phases (concordance or discordance in Fig. 2D) for each TF. The odds ratio (OR) based on the
414 contingency table was calculated for each TF and a chi-squared (χ^2) test was applied to
415 determine the statistical significance of the association. The p -value is adjusted by Bonferroni
416 correction (and its $-\log_{10}$ transformation) for the association, and the odds ratio with \log_2
417 transformation is a measure of the effect size. The adjusted p -value < 0.001 is considered as
418 significant.

419

420 **Tau index of TF tissue specificity**

421 We calculated the tissue specificity index tau [31, 32] using the gene expression of each TFs
422 across different tissues, as follows:

$$423 \tau = \frac{\sum_{i=1}^n (1 - \hat{x}_i)}{n-1}; \hat{x}_i = \frac{x_i}{\max_{1 \leq i \leq n} x_i}$$

424 where x_i represents the gene expression of TF x in tissue i ; and n is the number of tissues
425 expressing the TF ($TPM > 1$). We then adopted the cut-off of tau based on a previous study [33]
426 and defined the TFs with $\tau \geq 0.8$ as tissue-specifically expressed.

427

428 **Machine learning and deep learning models**

429 In order to get a better prediction power, we compared the accuracy between four methods,
430 logistic regression, XGBoost, deep neural network (DNN), and convolutional neural network
431 (CNN). To avoid biases caused by imbalanced data, we applied a balanced sampler as the

432 concept described on the imbalanced-dataset-sampler (from
433 <https://github.com/ufoym/imbalanced-dataset-sampler>) to our training dataset before model
434 training. We trained the basic logistic regression model with default parameter settings described
435 in the scikit-learn [34]. For the XGBoost model, we limited the max tree depth to 6, set the eta by
436 1, and used gbtree as a booster.

437

438 In this research, we implemented our DNN and CNN models using the PyTorch framework [35].
439 The architecture of DNN began with flattening the input data and followed by 3 dense layers,
440 with 512, 256, and 128 nodes, respectively. ReLU activation function was applied on the output
441 of each dense layer and then followed by a dropout layer to randomly set 25 percent of input
442 units to 0. The sigmoid function was applied to the final output of the tensor to generate binary
443 classification predictions.

444

445 The architecture of CNN is similar to DNN with some modifications. The input data was first
446 processed through a convolution layer which followed by the ReLU activation function, max
447 pooling layer and a dropout layer, and then connected to 2 dense-ReLU-dropout units as
448 described above, both with 128 nodes. The sigmoid function is also used to do the binary
449 classification task.

450

451 **Importance analysis**

452 To extract informative TF binding features from the CNN model, we performed an *in silico*
453 perturbation-based analysis to observe the impact on the perturbed input data. Similar to the
454 previous method, we perturb the input by assigning a zero value for a given TF of the input
455 feature (zero-out operation) and perform inference on the trained model. The feature importance
456 through zero-out operation was measured by the output changing ratio. Output changing ratio
457 was defined as $N_{\text{changed}} / N_{\text{total}}$, where N_{changed} represents the count of changed output label after
458 zero-out and N_{total} represents the total input delta instances number with corresponding TF
459 binding site.

460

461

462 **Availability of data and materials**

463 The source codes supporting the conclusions of this study are available at GitHub repository
464 (<https://github.com/bio-it-station/DoTA>).

465

466

467 **References**

- 468 1. Cáceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and
469 involvement in human disease. *Trends in Genetics*. 2002;18:186–93.
- 470 2. Ule J, Blencowe BJ. Alternative Splicing Regulatory Networks: Functions, Mechanisms, and
471 Evolution. *Molecular Cell*. 2019;76:329–45.
- 472 3. Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, et al. Function of
473 alternative splicing. 2013.
- 474 4. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing
475 complexity in the human transcriptome by high-throughput sequencing. *Nature Genetics*.
476 2008;40:1413–5.
- 477 5. Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. *Biochimica et biophysica acta*.
478 2009;1792:14–26.
- 479 6. Daguenet E, Dujardin G, Valcárcel J. The pathogenicity of splicing defects: mechanistic
480 insights into pre-mRNA processing inform novel therapeutic approaches. *EMBO reports*.
481 2015;16:1640–55.
- 482 7. Havens MA, Duelli DM, Hastings ML. Targeting RNA splicing for disease therapy. 2013.
- 483 8. Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, et al. Deciphering the splicing code.
484 *Nature*. 2010;465:53–9.
- 485 9. Bretschneider H, Gandhi S, Deshwar AG, Zuberi K, Frey BJ. COSSMO: Predicting
486 competitive alternative splice site selection using deep learning. In: *Bioinformatics*. Oxford
487 University Press; 2018. p. i429–37.
- 488 10. Bao S, Moakley DF, Zhang C. The Splicing Code Goes Deep. *Cell*. 2019;176:414–6.

- 489 11. Louadi Z, Oubounyt M, Tayara H, Chong KT. Deep Splicing Code: Classifying Alternative
490 Splicing Events Using Deep Learning. *Genes*. 2019;10:587.
- 491 12. Baeza-Centurion P, Miñana B, Schmiedel JM, Valcárcel J, Lehner B. Combinatorial
492 Genetics Reveals a Scaling Law for the Effects of Mutations on Splicing. *Cell*. 2019;176:549-
493 563.e23.
- 494 13. Carrocci TJ, Neugebauer KM. Pre-mRNA Splicing in the Nuclear Landscape. *Cold Spring
495 Harbor Symposia on Quantitative Biology*. 2020;:040402.
- 496 14. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. Alternative splicing: a
497 pivotal step between eukaryotic transcription and translation. *Nature reviews Molecular cell
498 biology*. 2013;14:153–65.
- 499 15. Muñoz MJ, la Mata M, Kornblihtt AR. The carboxy terminal domain of RNA polymerase II
500 and alternative splicing. 2010.
- 501 16. Huang Y, Li W, Yao X, Lin Q-J, Yin J-W, Liang Y, et al. Mediator complex regulates
502 alternative mRNA processing via the MED23 subunit. *Molecular cell*. 2012;45:459–69.
- 503 17. Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors
504 in Pre-mRNA Splicing. *Chemical Reviews*. 2018;118:4339–64.
- 505 18. Kolathur KK. Role of promoters in regulating alternative splicing. *Gene*. 2021;782:145523.
- 506 19. Komili S, Silver PA. Coupling and coordination in gene expression processes: A systems
507 biology view. 2008.
- 508 20. Monsalve M, Wu Z, Adelman G, Puigserver P, Fan M, Spiegelman BM. Direct coupling of
509 transcription and mRNA processing through the thermogenic coactivator PGC-1. *Mol Cell*.
510 2000;6:307–16.
- 511 21. Auboeuf D, Höning A, Berget SM, O’Malley BW. Coordinate regulation of transcription and
512 splicing by steroid receptor coregulators. *Science*. 2002;298:416–9.

- 513 22. Kornblihtt AR. Promoter usage and alternative splicing. *Current Opinion in Cell Biology*.
514 2005;17:262–8.
- 515 23. Maniatis T, Reed R. An extensive network of coupling among gene expression machines.
516 *Nature*. 2002;416:499–506.
- 517 24. Mercer TR, Edwards SL, Clark MB, Neph SJ, Wang H, Stergachis AB, et al. DNase I-
518 hypersensitive exons colocalize with promoters and distal regulatory elements. *Nature Genetics*.
519 2013;45:852–9.
- 520 25. Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, et al. New developments on the
521 Encyclopedia of DNA Elements (ENCODE) data portal. *Nucleic Acids Res*. 2020;48:D882–9.
- 522 26. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.
523 GENCODE: the reference human genome annotation for The ENCODE Project. *Genome Res*.
524 2012;22:1760–74.
- 525 27. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al.
526 JASPAR 2018: update of the open-access database of transcription factor binding profiles and its
527 web framework. *Nucleic Acids Res*. 2018;46:D260–6.
- 528 28. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. *Nucleic Acids Res*.
529 2015;43:W39-49.
- 530 29. Shiau C-K, Huang J-H, Tsai H-K. CATANA: a tool for generating comprehensive
531 annotations of alternative transcript events. *Bioinformatics*. 2019;35:1414–5.
- 532 30. Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing
533 experiments for identifying isoform regulation. *Nat Methods*. 2010;7:1009–15.
- 534 31. Kryuchkova-Mostacci N, Robinson-Rechavi M. A benchmark of gene expression tissue-
535 specificity metrics. *Briefings in Bioinformatics*. 2017;18:205–14.

- 536 32. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, et al. Genome-wide
537 midrange transcription profiles reveal expression level relationships in human tissue
538 specification. *Bioinformatics*. 2005;21:650–9.
- 539 33. Guschanski K, Warnefors M, Kaessmann H. The evolution of duplicate gene expression in
540 mammalian organs. *Genome Res*. 2017;27:1461–74.
- 541 34. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
542 Machine Learning in Python. *Journal of Machine Learning Research*. 2011;12:2825–30.
- 543 35. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative
544 Style, High-Performance Deep Learning Library. 2019.
- 545 36. Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human
546 tissues. *Genome Biology*. 2004;5:R74.
- 547 37. Cramer P, Pesce CG, Baralle FE, Kornblihtt AR. Functional association between promoter
548 structure and transcript alternative splicing. *Proceedings of the National Academy of Sciences of*
549 *the United States of America*. 1997;94:11456–60.
- 550 38. Pagani F, Buratti E, Stuani C, Bendix R, Dörk T, Baralle FE. A new type of mutation causes
551 a splicing defect in ATM. *Nature genetics*. 2002;30:426–9.
- 552 39. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: *Proceedings of the*
553 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. New
554 *York, NY, USA: Association for Computing Machinery*; 2016. p. 785–94.
- 555 40. Schafer S, Miao K, Benson CC, Heinig M, Cook SA, Hubner N. Alternative Splicing
556 Signatures in RNA-seq Data: Percent Spliced in (PSI). *Current Protocols in Human Genetics*.
557 2015;87:11.16.1-11.16.14.
- 558 41. Sonawane AR, Platig J, Fagny M, Chen C-Y, Paulson JN, Lopes-Ramos CM, et al.
559 Understanding Tissue-Specific Gene Regulation. *Cell Reports*. 2017;21:1077–88.

- 560 42. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human
561 transcription factors: function, expression and evolution. *Nat Rev Genet.* 2009;10:252–63.
- 562 43. Siam A, Baker M, Amit L, Regev G, Rabner A, Najar RA, et al. Regulation of alternative
563 splicing by p300-mediated acetylation of splicing factors. *RNA.* 2019;25:813–24.
- 564 44. Dušková E, Hnilicová J, Staněk D. CRE promoter sites modulate alternative splicing via
565 p300-mediated histone acetylation. *RNA Biology.* 2014;11:865–74.
- 566 45. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING
567 database in 2021: customizable protein–protein networks, and functional characterization of
568 user-uploaded gene/measurement sets. *Nucleic Acids Research.* 2021;49:D605–12.
- 569 46. de Assuncao TM, Lomberk G, Cao S, Yaqoob U, Mathison A, Simonetto DA, et al. New role
570 for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling
571 lipids. *J Biol Chem.* 2014;289:15798–809.
- 572 47. Teplyakov E, Wu Q, Liu J, Pugacheva EM, Loukinov D, Boukaba A, et al. The
573 downregulation of putative anticancer target BORIS/CTCFL in an addicted myeloid cancer cell
574 line modulates the expression of multiple protein coding and ncRNA genes. *Oncotarget.*
575 2017;8:73448–68.
- 576 48. Pugacheva EM, Teplyakov E, Wu Q, Li J, Chen C, Meng C, et al. The cancer-associated
577 CTCFL/BORIS protein targets multiple classes of genomic repeats, with a distinct binding and
578 functional preference for humanoid-specific SVA transposable elements. *Epigenetics Chromatin.*
579 2016;9:35.
- 580 49. Singh S, Narayanan SP, Biswas K, Gupta A, Ahuja N, Yadav S, et al. Intron DNA
581 methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. *Proc
582 Natl Acad Sci U S A.* 2017;114:11440–5.
- 583 50. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, et al.
584 Predicting Splicing from Primary Sequence with Deep Learning. *Cell.* 2019;176:535-548.e24.

- 585 51. Xi W, Beer MA. Local epigenomic state cannot discriminate interacting and non-interacting
586 enhancer–promoter pairs with high accuracy. *PLOS Computational Biology*. 2018;14:e1006625.
- 587 52. Adamson SI, Zhan L, Graveley BR. Vex-seq: high-throughput identification of the impact of
588 genetic variation on pre-mRNA splicing efficiency. *Genome Biol*. 2018;19:71.
- 589 53. LeCun Y, Bengio Y, Hinton G. Deep learning. *Nature*. 2015;521:436–44.
- 590 54. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning
591 in genomics. *Nat Genet*. 2019;51:12–8.

592

593

594 **Funding**

595 This work was supported by Academia Sinica, Taiwan (AS-GC-110-L15) and the National
596 Science and Technology Council, Taiwan (110-2221-E-001-013-MY3 and 108-2221-E-001-014-
597 MY3).

598

599

600 **Authors' information**

601 **Affiliations**

602 **Institute of Information Science, Academia Sinica, Taipei, Taiwan**

603 Tzu-Chieh Lin, Cheng-Hung Tsai, Cheng-Kai Shiau, Jia-Hsin Huang, Huai-Kuang Tsai

604

605 **Taiwan AI Labs & Foundation, Taipei, Taiwan**

606 Jia-Hsin Huang, Huai-Kuang Tsai

607

608 **Corresponding authors**

609 Correspondence to Jia-Hsin Huang (jiahsin.huang@gmail.com) or Huai-Kuang Tsai
610 (hktsai@iis.sinica.edu.tw).

611

612 **Authors' contributions**

613 TCL and CHT conceived the study and carried out the bioinformatics pipelines. TCL prepared
614 the initial draft of the manuscript. CKS assisted the data curation. JHH and HKT conceived and
615 designed the research, interpreted the results, and drafted the manuscript. All authors read and
616 approved the final manuscript.

617

618

619 **Ethics declarations**

620 **Ethics approval and consent to participate**

621 Not applicable.

622

623 **Consent for publication**

624 Not applicable.

625

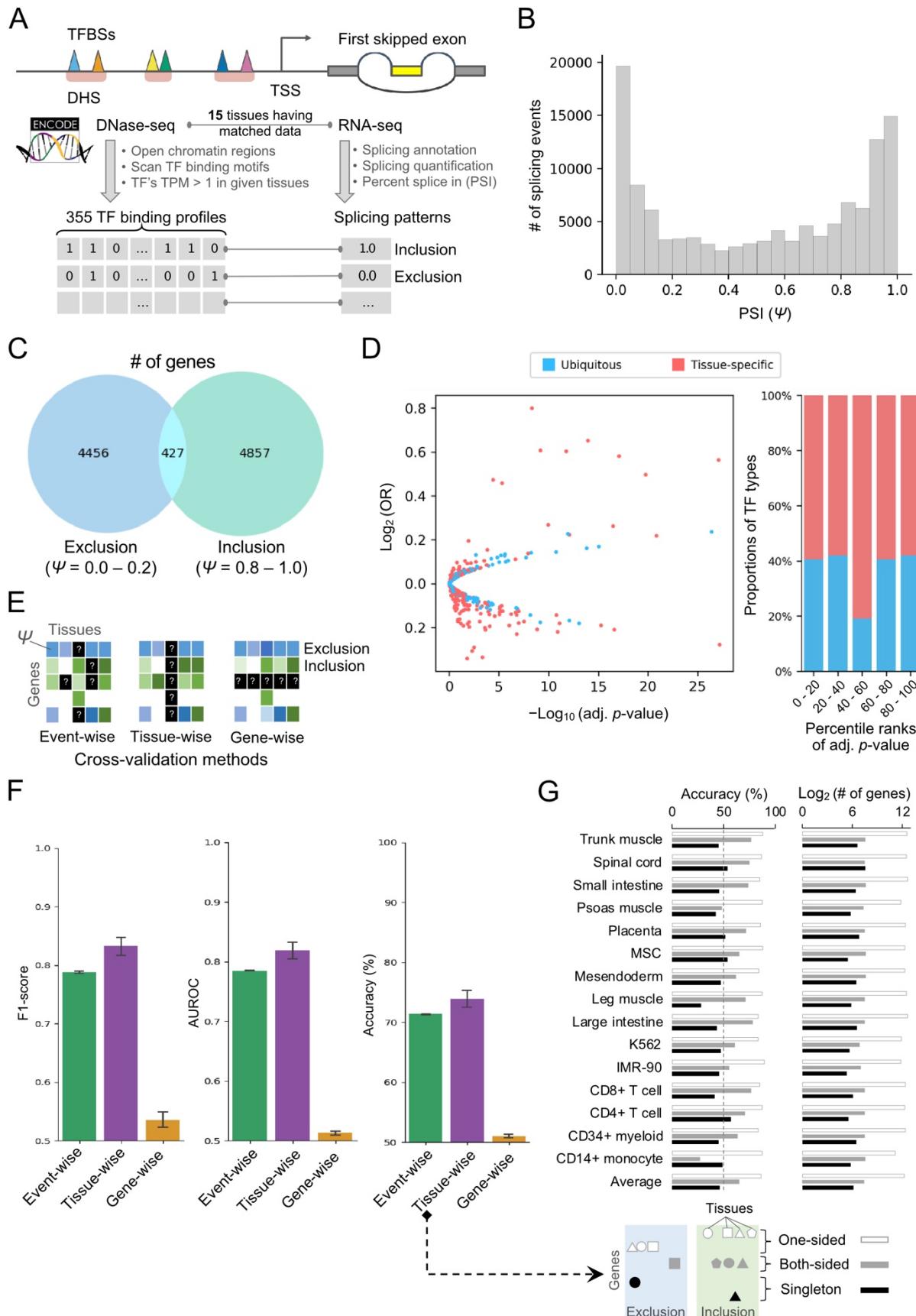
626 **Competing interests**

627 The authors declare that they have no competing interests.

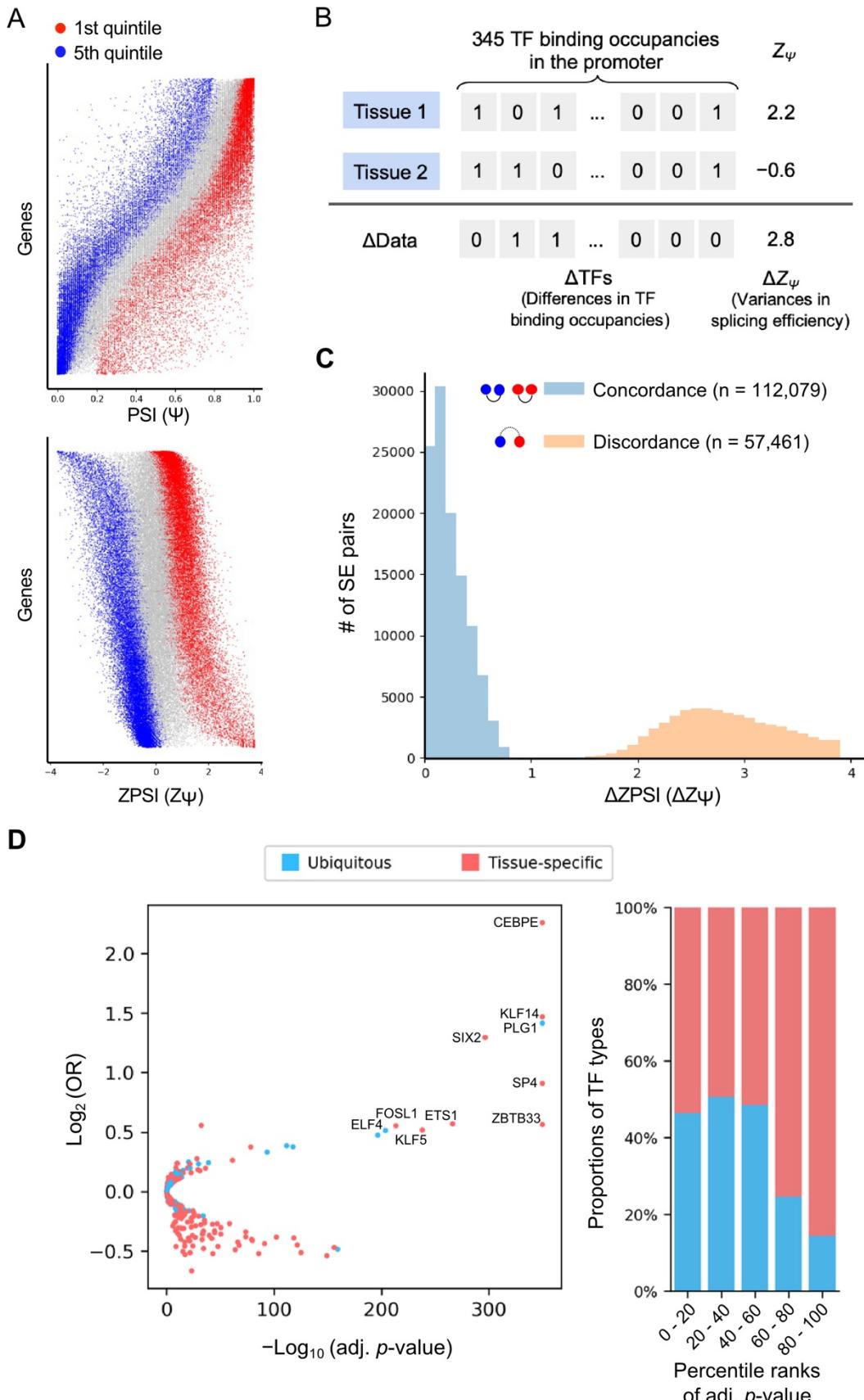
628

629

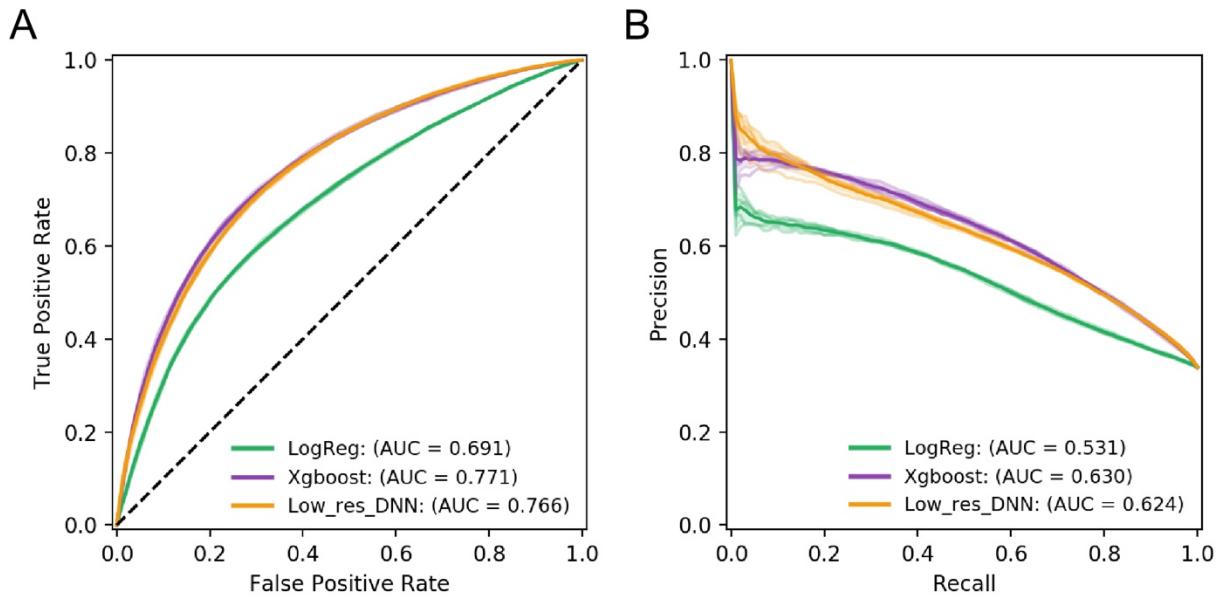
630 **Figure and Figure legends**



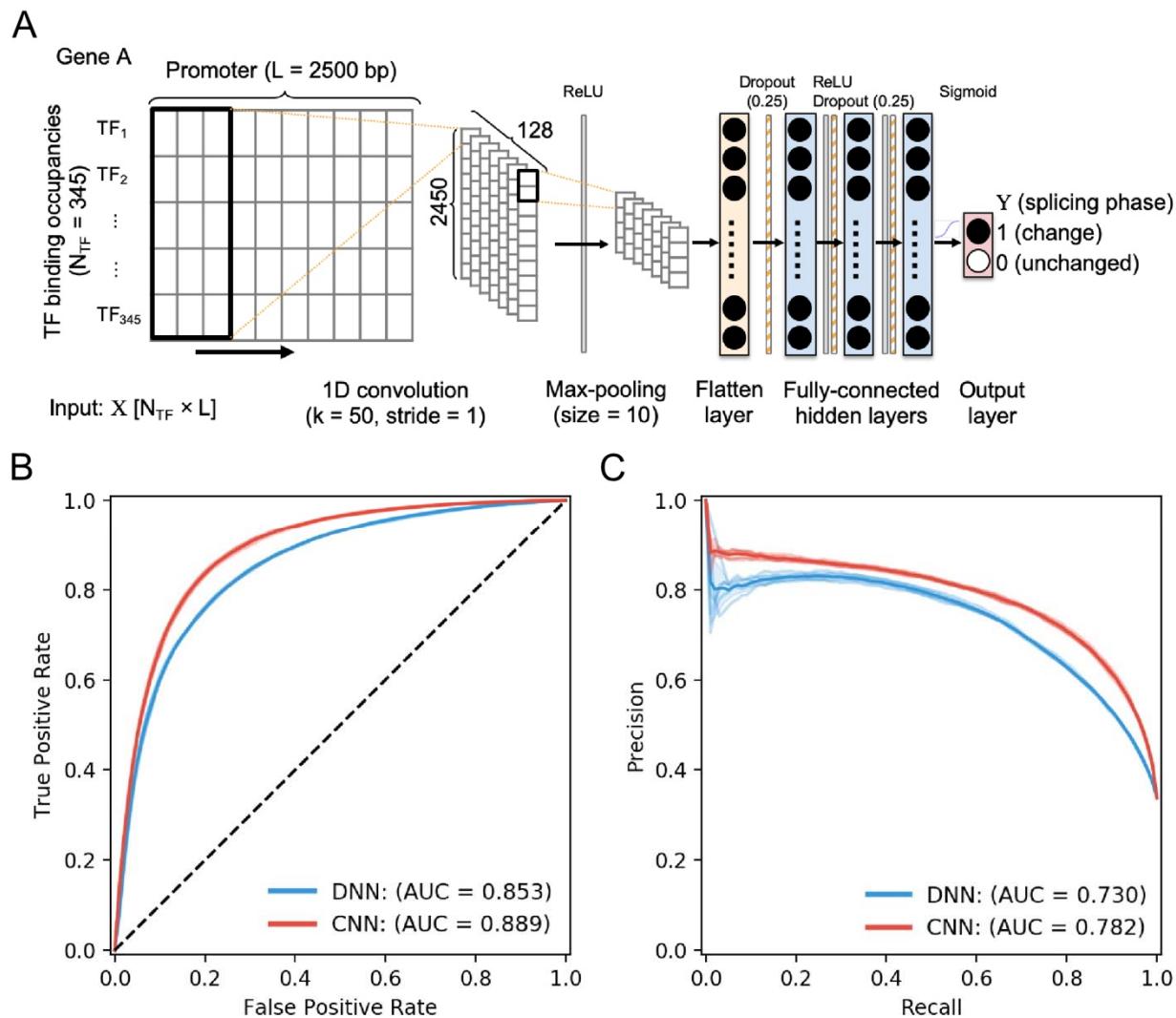
632 **Figure 1.** (A) The workflow schema and the experiment design. We obtain 15 tissues that have
633 matched DNase-seq and RNA-seq from ENCODE. DNase-seq data was used to identify open
634 chromatin regions and followed by TF motif scanning to identify TF binding profile in promoter.
635 RNA-seq data was processed by the MISO program to obtain percent splice in (PSI) metrics
636 which represent the splicing pattern of the first skipped exon. (B) PSI distribution histogram. The
637 horizontal axis represents the PSI value and the vertical axis represents the number of skipping
638 exon events. (C) Venn diagram of the exclusion group gene and inclusion group gene. The
639 exclusion group gene defined as $\text{PSI} < 0.2$ and the inclusion group gene defined as $\text{PSI} > 0.8$. (D)
640 Volcano plot of the chi-square test results and the TF expression tissue specificity distribution
641 along with ranking p -values of the chi-squared test. The horizontal axis of the volcano plot
642 represents the $-\log_{10}(\text{adjust } p\text{-value})$ and the $\log_2(\text{OR})$. The chi-square test p -value is corrected
643 by Bonferroni multiple test correction. The blue dot denoted the ubiquitously expressed TFs (τ_u
644 < 0.8) and the red dot denoted the tissue-specific expressed TFs ($\tau_u \geq 0.8$). (E) The schema of
645 validation strategies. From left to right represents event-wise, tissue-wise, and gene-wise
646 validation schema, respectively. (F) The model performance of event-wise, tissue-wise, and
647 gene-wise validation schema. For left panel to right panel represents F1-score, AUROC, and
648 accuracy, respectively. (G) The gene were assigned into three groups according to the splicing
649 forms across all tissues. One-sided denotes the genes belonging to same splicing form in more
650 than two tissues; both-sided denotes the genes having both inclusion and exclusion forms in 15
651 tissues; singleton denotes the genes expressed in a particular tissue only. The accuracies of
652 prediction and number of genes in three groups were calculated respectively for each tissue from
653 the tissue-wise validation experiments.



655 **Figure 2.** (A) The distribution of PSI and ZPSI. Each horizontal line represents PSI values of a
656 gene and the vertical axis was sorted by gene median PSI. The blue dots denote the first quintile
657 (top 20%) of PSI and the red dots denote the fifth quintile (latest 20%) of PSI. (B) The “delta”
658 schema of splicing events. For each gene, we enumerate all tissue pairs and perform exclusive-or
659 (XOR) operation on the TF binding occupancies and yield Δ Data representation which means the
660 differences in TF binding occupancies. For the splicing pattern, we calculate the absolute
661 difference of the ZPSI and yield ΔZ_Ψ , which represents the variances in splicing efficiency. (C)
662 The distribution of ΔZ_Ψ among splicing status unchanged group (concordance) and changed
663 group (discordance). The distribution showed a clear bimodal pattern, that the discordance ΔZ_Ψ
664 is distinctly higher than the concordance ΔZ_Ψ . (D) The chi-squared test of association between
665 TFBS-occupied differences and splicing phases. The left panel is the volcano plot of the chi-
666 square test; the horizontal axis represents the $-\log_{10}$ (adjusted p -value) and the vertical axis
667 represents the $\log_2(\text{OR})$. Top 10 significant TFs are shown in their names. The right panel is the
668 ratio of tissue-specific and ubiquitous TFs among adjusted p -value rankings.
669



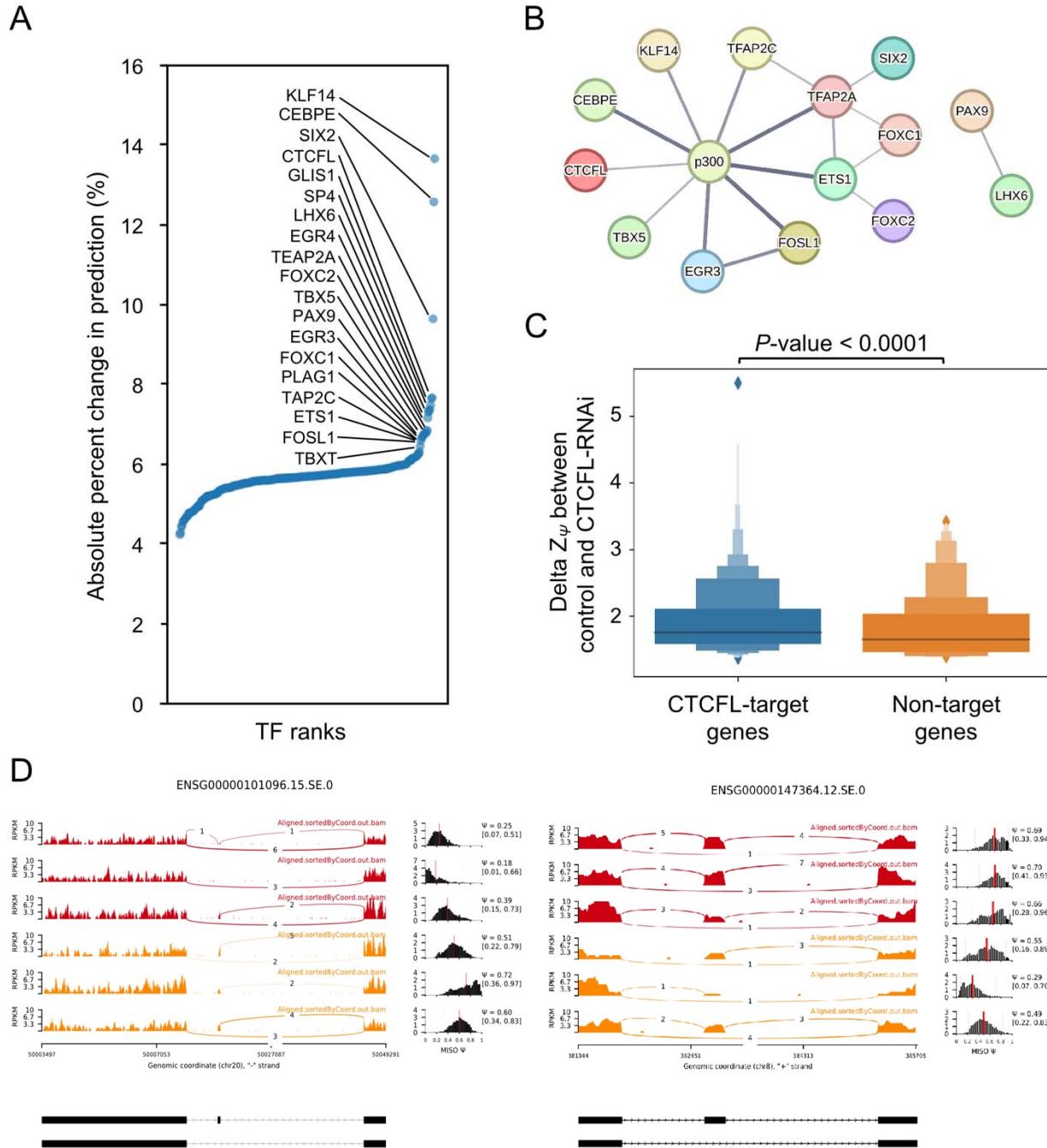
670
671 **Figure 3.** (A) The area under receiver operating characteristic curve (AUROC) of Logistic
672 regression, XGBoost, and low-resolution deep learning model. The input of the low-resolution
673 deep learning model only contains a single array of TF occupancy information denote as low-
674 resolution. Of note, the XGBoost model has the highest AUROC. (B) The area under precision-
675 recall curve (AUPRC) of Logistic regression, XGBoost, and low-resolution deep learning model.
676 With the same trend of AUROC, the XGBoost model has the highest AUPRC.
677



678

679 **Figure 4.** (A) The convolutional neural network schema. The first layer is a convolution layer
 680 with ReLU activation function and followed by a max-pooling layer. After pooling a flatten layer
 681 was applied to reshape the input. Then three dense layer is added followed by a sigmoid function
 682 to classified the output. (B) The area under receiver operating characteristic curve (AUROC) of
 683 convolutional neural network (CNN) and deep neural network (DNN). (C) The area under
 684 precision-recall curve (AUPR) of CNN and DNN. Both AUROC and AUPR suggest the CNN
 685 has the better performance.

686



687
688 **Figure 5.** (A) The rank order plot of importance analysis. The horizontal axis represents the TF
689 importance ranks. The vertical axis represents the importance measures (see importance analysis
690 in method section). (B) The gene association network was constructed from the STRING
691 database for top important TFs with p300. The thickness of edges denotes the strength of data
692 support according to textmining, experiments, and databases. (C) The distribution of ΔZ_Ψ
693 between control and CTCFL-RNAi experiment. The ΔZ_Ψ values of the CTCFL-target genes

694 show significant differences than that of non-CTCFL target genes with Wilcoxon rank-sum test
695 (p -value < 0.0001). (D) The sashimi plot and PSI distribution across control and CTCFL-RNAi
696 experiment. The left panel shows the first skipped exon event of ENSG00000101096. The right
697 panel shows the first skipped exon event of ENSG00000147364. Red samples were from the
698 control of CTCFL experiments and orange samples were from the CTCFL-RNAi samples.