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Abstract 15 

Background  16 

Alternative splicing is a crucial mechanism of post-transcriptional modification responsible for 17 

the transcriptome plasticity and proteome diversity of a metazoan cell. Although many splicing 18 

regulations around the exon/intron regions have been discovered, the relationship between 19 

promoter-bound transcription factors and the downstream alternative splicing remains largely 20 

unexplored.  21 

Results 22 

In this study, we present computational approaches to decipher the regulation relationship 23 

connecting the promoter-bound transcription factor binding sites (TFBSs) and the splicing 24 

patterns. We curated a fine data set, including DNase I hypersensitive sites sequencing and 25 

transcriptome in fifteen human tissues from ENCODE. Specifically, we proposed different 26 

representations of TF binding context and splicing patterns to tackle the associations between the 27 

promoter and downstream splicing events. Our results demonstrated that the convolutional neural 28 

network (CNN) models learned from the TF binding changes in the promoter to predict the 29 

splicing pattern changes. Furthermore, through an in silico perturbation-based analysis of the 30 
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CNN models, we identified several TFs that considerably reduced the model performance of 31 

splicing prediction.  32 

Conclusion 33 

In conclusion, our finding highlights the potential role of promoter-bound TFBSs in influencing 34 

the regulation of downstream splicing patterns and provides insights for discovering alternative 35 

splicing regulations. 36 

 37 

 38 
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 42 

Background 43 

Gene splicing endows the transcriptional diversity of the metazoan genome. Splicing is the 44 

process by which introns are removed from the nascent pre-mRNA and exons are joined, 45 

generating the functional mRNA. Alternative splicing (AS), the selective removal of exons and 46 

reconnection of exons by multiple processes, is known to play a pivotal role in regulatory 47 

pathways from invertebrates to mammals [1, 2]. By the regulatory mechanism of AS, a single 48 

gene is capable of generating multiple RNA molecules encoding proteins with different functions 49 

[3]. The importance of AS lies in the evidence that the human genome has been estimated more 50 

than 95% of multi-exon genes undergo alternative splicing in an underlying tissue-specific 51 

manner [4]. Moreover, the variations in splicing patterns are prevalent to associate with many 52 

complex diseases in humans [5, 6], and one-third of all disease-associated alleles have been 53 

estimated to alter splicing [7]. 54 

  55 

Studies on AS regulation have mainly focused on the sequence information of spliced exons and 56 

flanked introns. Machine learning has unprecedented performance in predicting exon-57 

inclusion/skipping levels in bulk tissues or single cells. Several computational models to derive 58 

“splicing codes” that predict splice site selection in a genomic sequence successfully capture 59 

patterns around the skipped exon and elucidate complex regulatory mechanisms from genomic 60 
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and epigenomic features [8–12]. Despite many efforts to characterize the splicing regulatory 61 

codes within the splice sites, the extent and effects of transcription machinery at the relatively 62 

distant promoter regions in splicing regulation remain unsolved. 63 

  64 

In the past decades, AS has been generally accepted to be tightly coupled with RNA polymerase 65 

transcription of the nascent pre-mRNA [13, 14]. Two prevailing models have been proposed to 66 

explain the coupling between alternative splicing and transcription: the recruitment model [15, 67 

16] and the kinetics model [14]. Notably, the chromatins are mostly not in linear form; the 68 

transcription complex on a promoter affects the recruitment of splicing factors and elongation of 69 

RNA polymerase II to promote exon exclusion through chromatin looping [17]. In addition, 70 

various DNA-binding proteins have been reported to influence the AS patterns by changing 71 

epigenetic conditions in the promoter [18]. 72 

  73 

Each gene contains a set of unique combinations of TF binding sites (TFBSs) in the promoter 74 

that determines its temporal and spatial expression. Transcriptional regulation is usually a 75 

combinatorial effect of multiple TFs binding to cis-regulatory elements located in the proximate 76 

and distal regions from transcription start sites [19]. Date to 20 years ago, the regulation of exon 77 

splicing patterns was demonstrated directly through the specific TFBS occupancy in the 78 

promoter [20, 21]. Moreover, the coupling of promoter and splicing is later proposed with 79 

extensive regulator mechanisms [22, 23]. Given the three-dimensional folding of chromatin 80 

loops, the proximal promoter- or distal enhancer-bound factors joined into transcription 81 

compartments correlate with alternative splicing of exons [24]. Although the biological findings 82 

connect the promoter with AS by focusing on a few gene models, the hypothesis that promoter 83 

architecture in terms of TFBS composition regulates AS remains unexplored at the genome-wide 84 

level. 85 

  86 

In this study, we developed analytical strategies to approach this question using data of both 87 

RNA-seq and DNase-seq in pairs across the different human tissues from the ENCODE project. 88 

We first considered the associations between the occurrences of more than 300 TF binding 89 

motifs in the promoter and the corresponding splicing patterns. Secondly, we examined whether 90 

the changes in TF binding condition were able to predict the splicing change by studying the 91 
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relative changes of the splice-in percent (PSI) values between any paired tissues. Then, we 92 

conducted machine learning methods and deep learning neural networks to predict the splicing 93 

patterns. Notably, the convolutional neural network (CNN) models that took complete TF 94 

occupancy information in promoter regions as input achieved the highest performance at 0.889 95 

of the area under receiver operating characteristic curve (AUROC). Lastly, we applied the 96 

importance analysis of the CNN models for each TF and identified some important TFs that 97 

affecting the splicing prediction genome-widely.  98 

 99 

 100 

Results 101 

In this study, we considered the cassette exon splicing, which is the most frequent alternative 102 

splicing type in the human genome [36]. We proposed two scenarios to examine the relationship 103 

between TFBSs in the promoter and the splicing patterns of the gene. First, we asked if 104 

compositions of TFBS occupancies, which were defined as the expressed TFs (TPM > 1) in the 105 

given tissues and their binding motifs in the open chromatin regions, are associated with the 106 

splicing patterns of the gene. Second, we asked if the changes of TF binding condition in the 107 

promoter modify the splicing efficiency of the cassette exon usage by comparing their PSI values. 108 

The data preprocessing procedures for TFBS identification in the promoter and exon-skipped 109 

events are illustrated in Fig. 1A. The TF binding profiles of each promoter were curated by 110 

integration of DNase-seq for open-chromatin regions, human TF motif scan, and expression 111 

profile across 15 tissues. The splicing patterns of each gene were analyzed based on the 112 

transcriptome in different tissues. 113 

  114 

Characterizing the TFBS occupancies in the promoter and first cassette exons across 115 

tissues 116 

We investigated the associated relationship between the TFBSs in the promoter and the first 117 

cassette exon, which is relatively closed to the promoter. The distribution of the PSI values as 118 

exon usage levels was bimodal across 15 human tissues (Fig. 1B). Here, we defined the PSI 119 

values smaller than 0.2 and larger than 0.8 as the exclusion form and inclusion form, respectively. 120 

Based on the criteria, the usage of the first cassette exons of human genes across 15 tissues was 121 

mostly skewed in either one of the categories, i.e., exclusion or inclusion forms (Fig. 1C). There 122 
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were only 4.6% of genes having both splicing forms in different tissues. 123 

  124 

Experimental studies have shown that the promoter architecture, by using different gene 125 

promoters, affects the splicing patterns of the exon skipping in the gene bodies [37, 38]. 126 

Following this idea, we sought to examine whether the promoter architecture in terms of TFBS 127 

occupancies as the features determine the inclusion or exclusion of the first cassette exon. First, 128 

we asked which TFBSs were predominant within the promoters of these genes with different 129 

splicing patterns of their first cassette exon. In order to address this, the discrepancy between the 130 

frequency of individual TFBS on the promoters of the exclusion sets and that of the inclusion 131 

sets was evaluated independently by using a chi-squared (χ2) test for each tissue. Considering an 132 

adjusted significance level of p-value < 0.001 after Bonferroni correction, more than half of TF 133 

binding motifs are significantly enriched in the promoter of either exclusion or inclusion sets. In 134 

addition, we calculated the gene expression specificity index tau [31, 32] for each TF and set 0.8 135 

as the cut-off for tissue-specific TFs. However, there is no particular enrichment of TFs showing 136 

more enriched across statistical significance ranks (Fig. 1D, right panel). 137 

  138 

Next, we considered the complex relationship among TFBSs within promoters on the prediction 139 

of splicing patterns by using a machine learning approach. We employed the XGBoost method 140 

[39], a decision-tree-based ensemble model, and used the presence of TFBSs within the open 141 

chromatins of promoter as input data to predict the inclusion or exclusion of the first cassette 142 

exons. Due to the coarser resolution of DNase-seq and in silico motif scanning to profile the 143 

TFBS occupancies, we noticed that some genes share identical features in different tissues. We 144 

thus removed the samples that share identical features in the training data from the testing data of 145 

the given tissues to avoid the fallacy of prediction accuracy in the cross-tissue evaluation.  146 

Herein, we proposed three different cross-fold validation schemes in order to properly evaluate 147 

prediction performance (Fig. 1E). For event-wise scheme, we randomly left 10% of promoter-148 

splicing pairs as the independent testing data and performed a 10-fold cross-validation (CV). For 149 

tissue-wise scheme, we conducted leave-one-tissues-out cross-validation by treating the 150 

promoter-splicing pairs from a single tissue as the independent testing data. For gene-wise 151 

scheme, we used 90% of genes with all promoter-splicing pairs across tissues to train model and 152 

remained 10% of genes were for an independent testing set. In Fig. 1F, three evaluation metrics, 153 
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including F1-score, AUROC, and accuracy, were shown to compare the prediction performance 154 

in different CV schemes. Interestingly, the prediction performance using event-wise scheme 155 

achieved an F1-score and AUROC closed to 0.80 (Fig. 1F, green bars). In the cross-tissue 156 

validation results, we further observed that the overall performance of the models obtained an 157 

average AUROC of 0.84 (Fig. 1F, purple bar). However, all three metrics underlying gene-wise 158 

CV could yield slightly better than random guess at 0.50 (Fig. 1F, yellow bars).  159 

 160 

It is worth noting that the gene-wise CV scenario indeed examined whether the generalization of 161 

a trained model enables to classify the splicing events using the unseen promoter information 162 

about TF binding profiles, which were not included in the training dataset. We later addressed a 163 

following question if the same gene promoter in different tissues both present in the training and 164 

testing sets was critical for prediction performance. Subsequently, we split the genes into three 165 

groups, i.e., one-sided, both-sided, and singleton, according to their splicing forms across all 166 

tissues and re-examined the results of prediction accuracy in the individual tissues. In contrast to 167 

the genes with one-sided and both-sided splicing forms, the trained models using data from other 168 

tissues did not predict the splicing forms of the singleton genes correctly in the given tissue (Fig. 169 

1G, left panel). Furthermore, we counted the number of genes in the respective groups (Fig. 1G, 170 

right panel), and found that a good overall performance of the models underlying tissue-wise CV 171 

was dominant by the large number of genes with one-sided splicing form across all tissues. The 172 

poor prediction on those small portions of singleton genes (less than 200) did not cause a drastic 173 

drop in overall prediction accuracy. In summary, our current approach failed to construct the 174 

models with generalization ability to infer the splicing forms using promoter information that 175 

pertains to TF binding profiles.  176 

 177 

Changes of TF binding to the promoter reflect the distinct exon splicing phases 178 

In this section, we sought to examine whether changes of individual TF binding to promoter alter 179 

the splicing efficiency that was estimated by PSI values. The PSI value summarizes the splicing 180 

condition of the constitutive exons that are included in all or part of transcripts from expressed 181 

isoforms [40]. As the fact that ranges of PSI values of different genes are varied across 15 tissues, 182 

the genes differ from each other in terms of their efficiency of splicing first cassette exon into the 183 

expressed isoforms. As a result, the efficiency of exon usage should be considered for each gene 184 
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itself instead of the absolute PSI (Ψ) value. To this end, we applied the Z-score transformation to 185 

normalize the absolute PSI scores of all genes. Of note, some genes that had a smaller PSI range 186 

(< 0.2) and/or expressed in less than three tissues were discarded in the following experiments. 187 

We then defined the top 20% and last 20% of transformed ZΨ scores in each gene as the two 188 

distinct phases of exon usage, i.e., low and high splicing efficiency respectively (Fig. 2A). To 189 

test the hypothesis that changes of TFBS in the open chromatin of the promoter are associated 190 

with splicing phase change, the differences of two ZΨ and their TF binding occupancies in a 191 

given paired tissues for each gene were calculated (Fig. 2B). The distribution of delta ZΨ scores 192 

was shown in Fig. 2C, where the unchanged group (same splicing phase) was below 1 and the 193 

changed group (different splicing phase) was larger than 1.8. Of note, no overlapped events were 194 

observed between concordance and discordance groups. 195 

  196 

To examine the association between TFBS-occupied difference and splicing phase for individual 197 

TFs, we constructed a 2 × 2 contingency table for each TF. Specifically, for each tissue pair in 198 

one gene, we assigned the pair into groups according to whether its TFBS occupancy is changed 199 

(ΔTFα = 0 or ΔTFα = 1), and whether the splicing phase is changed (concordance or 200 

discordance). We thus calculated the odds ratio from contingency table and applied chi-squared 201 

test. About two-third of TFs, their binding occupancy changes were significantly associated with 202 

splicing phase changes (N = 203, adj. p-value < 10-3, Fig. 2D). Since every tissue usually 203 

expresses different sets of TFs to control the cell fate [41, 42], we estimated the tissue specificity 204 

of TF expression by tau score [32]. More than half (53%) of TFs among those non-significant 205 

groups were ubiquitously expressed, while most of the TFs (75%) among those significant 206 

associations with splicing phase change were tissue-specifically expressed (Fig. 2D). Of note, the 207 

open chromatin regions in the promoter of the same gene in different tissues show less variations. 208 

Thus, TFBSs without filtered by expression profiles of given TFs did not show any significant 209 

association. Therefore, although the DNA sequences of the promoter are identical, the 210 

divergence on the TF expression across different tissues is a likely regulating mechanism to 211 

affect the splicing phase change. 212 

  213 

Machine learning confirm the association between TF binding changes and splicing phase 214 

shift 215 
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Next, we employed different machine learning algorithms, including logistic regression, 216 

XGBoost (ensemble tree algorithm), and deep neural network methods, to test whether the 217 

combinations of TF binding changes predict the splicing phase changes. To monitor sensitivity 218 

and specificity simultaneously, we assessed the models using the AUROC in the plot of the true 219 

positive rate (TPR) against the false positive rate (FPR) for five-fold cross-validation tests (Fig. 220 

3A). Three classifiers achieved an average AUROC of 0.691, 0.766, 0.771 for logistic regression 221 

(LReg), deep neural network (DNN), and XGBoost (XGB) models, respectively on all the events 222 

of the dataset. Since there were imbalanced data sets in the changed and unchanged groups, the 223 

area under the precision-recall curve (AUPRC) is also instructive to assess the model 224 

performance (Fig. 3B). The XGB models also achieved a greater mean AUPRC of 0.630 than 225 

0.531 and 0.624 respectively for LReg and DNN. Because there is often more than one binding 226 

site in the promoter for each TF, we also constructed other ML models using frequencies of all 227 

possible TF binding site changes between promoters as the features. The overall performance of 228 

prediction of splicing phase change was decreased about 6% based on AUROC. This indicates 229 

that the decision tree-based ML method could not deal with the frequencies of TFBSs change 230 

properly.  231 

 232 

Integration of TFBS locations in the promoter using deep learning models improve 233 

prediction performance 234 

We next integrated the position information of TFBSs in the promoter as the features to train the 235 

deep neural network (DNN) and convolution neural network (CNN) models respectively. The 236 

two-dimension array consisting of 2,500 bp and 345 TF binding changes were used as the input 237 

features as shown in Fig. 4A. The architecture of the CNN model includes the one-dimensional 238 

convolutions kernels, which are designed as the filters for revealing the combinations of TF 239 

binding changes. The convolution layers are followed by a max-pooling layer with sliding 240 

window size and a stride step of 10 units. And a single flatten layer with 256 neurons was used to 241 

summarize all features and followed by three hidden layers. To prevent overfitting, the dropout 242 

technique was applied to remove 25% of the connected neurons in the flatten and hidden layer 243 

during the training (26). 244 

  245 

Training the network with input matrices including both TFBS and their interactions with other 246 
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TFs markedly impacts the performance of the splice predictions. In contrast to the performance 247 

of previous DNN models using only TFBS changes input (Fig. 3A), current DNN classifiers 248 

achieved greater AUROC, increasing from the average 0.766 to 0.853 (Fig. 4B). The CNN 249 

classifiers achieved an even greater AUROC of 0.889 (Fig. 4B). Additionally, CNN models 250 

achieved greater AUPRC for all five-fold experiments than DNN models, increasing the average 251 

from 0.730 to 0.782 (Fig. 4C). 252 

 253 

Evaluation of TF changes on the splicing patterns 254 

We next to understand the importance of TF motifs on splicing patterns utilized by the network 255 

to achieve its remarkable accuracy. In brief, we performed systemic in silico substitution of each 256 

TF change as zero, then measured the effects on the CNN model’s prediction. The importance of 257 

each TF was estimated by the fraction of changed prediction under the in silico substitution. The 258 

underlying idea is if assume a TF plays a key role in regulating splicing patterns, the prediction 259 

output of the machine learning model should change dramatically after substitution rather than 260 

other TF. We performed importance analysis on each TF and ranked them by their importance 261 

measurement, and found that a small proportion of TFs resulted in dramatical changes in the 262 

splicing prediction (Fig. 5A). As most of TFs had a little effect on the CNN model performance, 263 

we highlighted top-ranked 19 TFs with outlier values based on the interquartile range rule (Q3 + 264 

1.5 × IQR) as the candidate splicing regulators. 265 

 266 

Previous studies have demonstrated that binding of the acetyltransferase p300 at promoter 267 

regions modifies acetylation of splicing factors, and thereby modulate the alternative splicing 268 

pattern of the gene [43, 44]. We thus submitted our 19 candidate TFs and p300 to the STRING 269 

database [45] for identification of their interactions. We applied default settings to search both 270 

functional and physical protein associations with medium confidence score of 0.400 in the 271 

STRING database (ver. 11.5). Then, we configured the network between query proteins only to 272 

reveal the associations among them. Interestingly, the network was relatively less complex and 273 

p300 were thought of as a hub gene associated with nine out of 19 top-ranked TFs (Fig. 5B). 274 

Moreover, the interaction between KLF14 and p300 is experimentally and functionally 275 

confirmed that the binding of KLF14 to the promoter recruits p300 to increase the levels of 276 

acetylation associated with transcriptional activation [46]. Although the interaction between 277 
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KLF14 and p300 on the gene activation was not investigated in the context of splicing, 278 

compelling evidence showing a direct link between histone modification and splicing [17, 18] 279 

raises the intriguing possibility of KLF14/p300 complex in modulating exon splicing. Similarly, 280 

some top-ranked TFs might share a common mechanism in regulating RNA splicing via 281 

recruitment of p300 to promote the deposition of histone acetylation at the promoter. 282 

 283 

Lastly, to further confirm our in silico prediction for potential splicing regulators, we obtained 284 

the K562 CTCFL shRNA knock-down RNA-Seq data [47] and its control from previous 285 

research [48]. We re-analyzed the splicing status by calculating PSI through MISO and applied 286 

Z-score transformation using the previous method in machine learning model training. We 287 

observed the ΔZΨ values of CTCFL-target genes were higher than that of non-target genes 288 

significantly (Fig. 5B, with p-value < 0.0001, Wilcoxon rank-sum test). This revealed in the 289 

CTCFL deplete condition, genes targeted by CTCFL change their first skipped exon usage thus 290 

influence ΔZΨ. We further seek for case studies to investigate how splicing status changed in 291 

CTCFL-target genes under CTCFL depletes (Fig. 5C). The first skipped exon in 292 

ENSG00000101096 has a higher skipped exon usage and increases the average PSI value. In 293 

contrast, in ENSG00000147364 the first skipped exon usage reduced in the CTCFL deplete 294 

condition thus has a lower average PSI value. These results suggest that CTCFL can influence 295 

the splicing pattern. Nevertheless, CTCFL shows a dual function in splicing regulation, not only 296 

increase skipped exon usage but also reduce usage in some genes. This result also matches the 297 

previous study on CTCFL-depletion mediate alternative splicing change in MCF7 cell line [49]. 298 

In the CTCFL-depletion they detect exclusion of 361 and the inclusion of 221 alternative exons 299 

compared to the normal condition. The CTCFL can influence the recruitment of RNAPII and 300 

thus impact the RNAPII elongation speed and finally alter the splicing result of pre-mRNA. 301 

Overall, these results support the feasibility of our modeling and importance analysis approaches 302 

for in silico prediction. 303 

  304 

 305 

Discussion 306 

The applications of machine learning methods to characterize the regulatory potential of genomic 307 

sequences on alternative splicing have been a subject of interest for over a decade [8, 50]. Instead 308 
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of using the genomic information around the splicing exons, in this study, we focused on the 309 

upstream promoter region for predicting downstream exon-skipped events genome-widely. In 310 

contrast to some previous study using the DNA sequences directly [8, 9, 11], one major 311 

difference of our approach is that we applied TF binding motif scan with prior domain 312 

knowledge to represent the sequence information in the promoter. We demonstrate how the 313 

promoter signals in terms of TFBS profiles can be integrated using machine learning approaches 314 

for the further implication of association between the promoter and alternative splicing. Our 315 

results showed that the prediction accuracy differed among the different algorithms and input 316 

information. Notably, one-dimensional CNN architecture is highly capable of learning the 317 

regulatory code from the TF binding changes in the promoter to discriminate the splicing 318 

patterns (Fig 4).  319 

 320 

The main drawback of this study is the limited number of tissues because we aimed to use a 321 

high-quality dataset to avoid the noise and artifacts in the DNase-seq and RNA-seq datasets 322 

conducted by different labs. Thus, we excluded any experiments that did not meet every quality 323 

standard defined by ENCODE. When conducting the data analyses, we noticed that the splicing 324 

forms for most of the gene were not varied extensively in these 15 tissues (Fig. 1C). Inspired by 325 

the previous study to avoid fallacy of model performance using alternative cross-fold validation 326 

schemes properly [51], we implemented three different CV schemes, i.e., event-wise, tissue-wide, 327 

and gene-wise, to evaluate generation performance carefully. In the course of examining the 328 

difference across three CV schemes to find possible reasons for high performance in the tissue-329 

wise evaluation, we noticed that majority of genes were expressed in more than two tissues and 330 

displayed same splicing form. Because every gene promoter in different tissues shares most 331 

TFBS features, the event- and tissue-wise schemes are subject to the problem of test set 332 

contamination and could lead to an artificially inflated accuracy in this study. On the bright side, 333 

there is considerable room for improvement in model generalization by collecting varied splicing 334 

forms of every gene from different tissues extensively to evaluate promoter-splicing interactions.  335 

 336 

To address the problem of shared TFBSs in promoter across tissues, we turned to look at the TF 337 

binding changes in promoter (Fig 2B). Notably, this approach diminished the high similarity of 338 

TFBS features in tissues and making a comparison in any given paired tissues also augmented 339 
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the datasets incrementally for improvement of the model training. On the other hand, we 340 

considered the changes in splicing efficiency (∆ZΨ) by introducing a transformation procedure of 341 

absolute PSI values into the efficiency of exon usage. Our computational method is different 342 

than a previous study using the absolute PSI values to estimate splicing efficiency directly [52]. 343 

The fact that the ranges of the PSI values in a particular gene across 15 tissues are mostly 344 

ununiformed distribution is evident as the averaged PSI values of genes from closed to 0 or 1 345 

(Fig 2A). The Z-transform method could remain commensurate in the scale to measure splicing 346 

efficiency for each gene accordingly. In addition, instead of using fixed arbitrary cutoff values 347 

(e.g., Ψ < 0.2 and Ψ > 0.8) to subsect the splicing status, we applied a percentile threshold to 348 

divide genes into two tendencies, i.e., “splice-in” or “splice-out”. This approach avoids that those 349 

small-PSI-ranged genes are skew to be classified into a single group of splice-in or splice-out. 350 

Based on our observation, it is perhaps noteworthy to rethink about the definition of the splicing 351 

status using PSI as a metric to explore alternative solutions in discovery of splicing mechanisms. 352 

By carefully considering the fundamental issues in our preprocessing procedures on data, this 353 

study provides a different perspective to study how TFs in promoter affects the exon splicing 354 

genome-widely.   355 

 356 

To train the prediction model of splicing phase shift, we used two different input data, i.e., an 357 

array of TF binding changes and a matrix of full TF binding changes along with the promoter 358 

regions. Our results demonstrated that training the DNN models with varying input of TF 359 

binding context noticeably impacts the accuracy of the splicing phase shift prediction (Fig. 3 and 360 

4). Despite amount of trainable network parameters drastically are increased when using an input 361 

of TF binding context, DNN models is capable to automatically learn the task from the training 362 

data. Remarkably, CNNs achieved even higher prediction performance than DNNs with matrices 363 

of TF binding context (Fig. 4). In contrast to DNNs, CNNs indeed are designed to deal with 364 

high-dimensional inputs by applying of a serious of convolutional and pooling steps [53, 54]. A 365 

likely explanation for high accuracy boosting in CNNs is the convolutional operations, which 366 

learned higher-level features from the combinations of different TF changes. With the good 367 

prediction performance of CNN models, the importance analysis experiments allowed us to 368 

identify a couple of TFs that potentially involve in splicing regulation. To our knowledge, our 369 

study is the first genome-wide effort to investigate that the splicing pattern changes across tissues 370 
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were accurately predicted from the TF binding occupancies in the promoter.  371 

 372 

 373 

Materials and Methods 374 

Data processing and sample selection 375 

We downloaded both the DNase-seq peak BED files and the RNA-seq data for 15 human tissues 376 

from the ENCODE data portal [25]. To obtain high quality of data, the data without any flags, 377 

such as insufficient read depth, in the experimental metadata that were reported by the ENCODE 378 

Data Coordination Center are used in the following experiments. For DNase-seq datasets, the 379 

standard pipeline (accession: ENCPL201DNS for single-ended data, ENCPL202DNS for paired-380 

ended data) from ENCODE called the peaks using hotspot2 algorithm with 1% false-discovery 381 

rate. For RNA-seq data, the ENCODE RNA-seq pipeline for long RNAs (accession: 382 

ENCPL002LSE for single-ended data, ENCPL002LPE for paired-ended data) used the STAR 383 

program for mapping the reads and the RSEM algorithm for quantification of genes. We used 384 

genomic and annotation files of the human reference genome version GRCh37 as provided by 385 

release V19 of GENCODE [26]. 386 

  387 

Identification of putative in vivo TF binding sites 388 

The DNase-seq peaks were used to define the open chromatin regions in the promoter regions 389 

(−2 kb to +500 bp from the transcription start site). We downloaded TF motifs from the JASPAR 390 

database (ver. 2018) [27] and excluded the fusion TF (i.e., EWSR1/FLI1 fusion) and older 391 

versions of motifs from the same TF, as a result, we obtained 407 TF binding motifs from 392 

JASPAR. Later, we scanned the sequence from each open chromatin region for each TF binding 393 

motif in position-weight-matrix (PWM) format, using FIMO from the MEME (Motif-based 394 

sequence analysis tools) suite [28]. Of note, we applied the FIMO with a threshold false 395 

discovery rate of < 10−3, which is less stringent than the general recommended parameter (< 10−4) 396 

for putative cis-regulatory elements detection. Since we only considered TF binding sites located 397 

in the open chromatin regions, the general parameter is too stringent for our purpose. 398 

  399 

RNA-seq processing and calculation of cassette exon usage (PSI) 400 

To estimate the splicing level for each exon and tissue, we first used CATANA [29] to annotate 401 
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AS events in all human transcripts for the AS annotation index file. The BAM files of RNA-seq  402 

data generated by the ENCODE were used to estimate the percent spliced-in (PSI) values for the 403 

first cassette exon of the protein-coding genes using the MISO (Mixture of Isoforms) tool [30]. 404 

For the calculation of the ZΨ score, we first selected the genes that PSI range is larger than 0.2 405 

across different tissues and then standardized their PSI by z-score transformation for each gene. 406 

  407 

Enrichment analysis 408 

We analyzed the association of TF binding occupancies and splicing patterns from 2 × 2 409 

contingency tables categorizing all human genes according to the occurrences of binding sites for 410 

a given TF and splicing patterns (exclusion or inclusion in Fig. 1D). In parallel, we built the 411 

contingency table to analyze the association between TFBS-occupied differences and splicing 412 

phases (concordance or discordance in Fig. 2D) for each TF. The odds ratio (OR) based on the 413 

contingency table was calculated for each TF and a chi-squared (χ2) test was applied to 414 

determine the statistical significance of the association. The p-value is adjusted by Bonferroni 415 

correction (and its −log10 transformation) for the association, and the odds ratio with log2 416 

transformation is a measure of the effect size. The adjusted p-value < 0.001 is considered as 417 

significant.  418 

  419 

Tau index of TF tissue specificity 420 

We calculated the tissue specificity index tau [31, 32] using the gene expression of each TFs 421 

across different tissues, as follows:  422 

tau �
� ��� ��� �

�

���

	��
;  ��
 �  

��
��
����� ��

 423 

where �
  represents the gene expression of TF �  in tissue �  ; and � is the number of tissues 424 

expressing the TF (TPM > 1). We then adopted the cut-off of tau based on a previous study [33] 425 

and defined the TFs with tau ≥ 0.8 as tissue-specifically expressed. 426 

 427 

Machine learning and deep learning models 428 

In order to get a better prediction power, we compared the accuracy between four methods, 429 

logistic regression, XGBoost, deep neural network (DNN), and convolutional neural network 430 

(CNN). To avoid biases caused by imbalanced data, we applied a balanced sampler as the 431 
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concept described on the imbalanced-dataset-sampler (from 432 

https://github.com/ufoym/imbalanced-dataset-sampler) to our training dataset before model 433 

training. We trained the basic logistic regression model with default parameter settings described 434 

in the scikit-learn [34]. For the XGBoost model, we limited the max tree depth to 6, set the eta by 435 

1, and used gbtree as a booster. 436 

  437 

In this research, we implemented our DNN and CNN models using the PyTorch framework [35]. 438 

The architecture of DNN began with flattening the input data and followed by 3 dense layers, 439 

with 512, 256, and 128 nodes, respectively. ReLU activation function was applied on the output 440 

of each dense layer and then followed by a dropout layer to randomly set 25 percent of input 441 

units to 0. The sigmoid function was applied to the final output of the tensor to generate binary 442 

classification predictions. 443 

  444 

The architecture of CNN is similar to DNN with some modifications. The input data was first 445 

processed through a convolution layer which followed by the ReLU activation function, max 446 

pooling layer and a dropout layer, and then connected to 2 dense-ReLU-dropout units as 447 

described above, both with 128 nodes. The sigmoid function is also used to do the binary 448 

classification task. 449 

 450 

Importance analysis 451 

To extract informative TF binding features from the CNN model, we performed an in silico 452 

perturbation-based analysis to observe the impact on the perturbed input data. Similar to the 453 

previous method, we perturb the input by assigning a zero value for a given TF of the input 454 

feature (zero-out operation) and perform inference on the trained model. The feature importance 455 

through zero-out operation was measured by the output changing ratio. Output changing ratio 456 

was defined as Nchanged / Ntotal, where Nchanged represents the count of changed output label after 457 

zero-out and Ntotal represents the total input delta instances number with corresponding TF 458 

binding site. 459 

 460 

 461 

Availability of data and materials 462 
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The source codes supporting the conclusions of this study are available at GitHub repository 463 

(https://github.com/bio-it-station/DoTA). 464 

 465 
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Figure 1. (A) The workflow schema and the experiment design. We obtain 15 tissues that have 632 

matched DNase-seq and RNA-seq from ENCODE. DNase-seq data was used to identify open 633 

chromatin regions and followed by TF motif scanning to identify TF binding profile in promoter. 634 

RNA-seq data was processed by the MISO program to obtain percent splice in (PSI) metrics 635 

which represent the splicing pattern of the first skipped exon. (B) PSI distribution histogram. The 636 

horizontal axis represents the PSI value and the vertical axis represents the number of skipping 637 

exon events. (C) Venn diagram of the exclusion group gene and inclusion group gene. The 638 

exclusion group gene defined as PSI < 0.2 and the inclusion group gene defined as PSI > 0.8. (D) 639 

Volcano plot of the chi-square test results and the TF expression tissue specificity distribution 640 

along with ranking p-values of the chi-squared test. The horizontal axis of the volcano plot 641 

represents the -log10 (adjust p-value) and the log2 (OR). The chi-square test p-value is corrected 642 

by Bonferroni multiple test correction. The blue dot denoted the ubiquitously expressed TFs (tau 643 

< 0.8) and the red dot denoted the tissue-specific expressed TFs (tau ≥ 0.8). (E) The schema of 644 

validation strategies. From left to right represents event-wise, tissue-wise, and gene-wise 645 

validation schema, respectively. (F) The model performance of event-wise, tissue-wise, and 646 

gene-wise validation schema. For left panel to right panel represents F1-score, AUROC, and 647 

accuracy, respectively. (G) The gene were assigned into three groups according to the splicing 648 

forms across all tissues. One-sided denotes the genes belonging to same splicing form in more 649 

than two tissues; both-sided denotes the genes having both inclusion and exclusion forms in 15 650 

tissues; singleton denotes the genes expressed in a particular tissue only. The accuracies of 651 

prediction and number of genes in three groups were calculated respectively for each tissue from 652 

the tissue-wise validation experiments.   653 
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Figure 2. (A) The distribution of PSI and ZPSI. Each horizontal line represents PSI values of a 655 

gene and the vertical axis was sorted by gene median PSI. The blue dots denote the first quintile 656 

(top 20%) of PSI and the red dots denote the fifth quintile (latest 20%) of PSI. (B) The “delta” 657 

schema of splicing events. For each gene, we enumerate all tissue pairs and perform exclusive-or 658 

(XOR) operation on the TF binding occupancies and yield ΔData representation which means the 659 

differences in TF binding occupancies. For the splicing pattern, we calculate the absolute 660 

difference of the ZPSI and yield ΔZΨ, which represents the variances in splicing efficiency. (C) 661 

The distribution of ΔZΨ among splicing status unchanged group (concordance) and changed 662 

group (discordance). The distribution showed a clear bimodal pattern, that the discordance ΔZΨ 663 

is distinctly higher than the concordance ΔZΨ. (D) The chi-squared test of association between 664 

TFBS-occupied differences and splicing phases. The left panel is the volcano plot of the chi-665 

square test; the horizontal axis represents the -log10 (adjusted p-value) and the vertical axis 666 

represents the log2 (OR). Top 10 significant TFs are shown in their names. The right panel is the 667 

ratio of tissue-specific and ubiquitous TFs among adjusted p-value rankings. 668 

  669 
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 670 

Figure 3. (A) The area under receiver operating characteristic curve (AUROC) of Logistic 671 

regression, XGBoost, and low-resolution deep learning model. The input of the low-resolution 672 

deep learning model only contains a single array of TF occupancy information denote as low-673 

resolution. Of note, the XGBoost model has the highest AUROC.  (B) The area under precision-674 

recall curve (AUPRC) of Logistic regression, XGBoost, and low-resolution deep learning model. 675 

With the same trend of AUROC, the XGBoost model has the highest AUPRC. 676 
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 678 

Figure 4. (A) The convolutional neural network schema. The first layer is a convolution layer 679 

with ReLU activation function and followed by a max-pooling layer. After pooling a flatten layer 680 

was applied to reshape the input. Then three dense layer is added followed by a sigmoid function 681 

to classified the output. (B) The area under receiver operating characteristic curve (AUROC) of 682 

convolutional neural network (CNN) and deep neural network (DNN). (C) The area under 683 

precision-recall curve (AUPR) of CNN and DNN. Both AUROC and AUPR suggest the CNN 684 

has the better performance. 685 

  686 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2023. ; https://doi.org/10.1101/2023.04.09.536141doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.09.536141
http://creativecommons.org/licenses/by-nd/4.0/


 29

 687 

Figure 5. (A) The rank order plot of importance analysis. The horizontal axis represents the TF 688 

importance ranks. The vertical axis represents the importance measures (see importance analysis 689 

in method section).  (B) The gene association network was constructed from the STRING 690 

database for top important TFs with p300. The thickness of edges denotes the strength of data 691 

support according to textmining, experiments, and databases.  (C) The distribution of ΔZΨ 692 

between control and CTCFL-RNAi experiment. The ΔZΨ values of the CTCFL-target genes 693 
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show significant differences than that of non-CTCFL target genes with Wilcoxon rank-sum test 694 

(p-value < 0.0001). (D) The sashimi plot and PSI distribution across control and CTCFL-RNAi 695 

experiment. The left panel shows the first skipped exon event of ENSG00000101096. The right 696 

panel shows the first skipped exon event of ENSG00000147364. Red samples were from the 697 

control of CTCFL experiments and orange samples were from the CTCFL-RNAi samples. 698 
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