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1 Abstract

2 Variation in gene expression across lineages is thought to explain much of the observed phenotypic varia-
3 tion and adaptation. The protein is closer to the target of natural selection but gene expression is typically
4 measured as the amount of mRNA. The broad assumption that mRNA levels are good proxies for protein
5 levels has been undermined by a number of studies reporting moderate or weak correlations between
6 the two measures across species. One biological explanation for this discrepancy is that there has been
7 compensatory evolution between the mRNA level and regulation of translation. However, we do not
8 understand the evolutionary conditions necessary for this to occur nor the expected strength of the cor-
9 relation between mRNA and protein levels. Here we develop a theoretical model for the coevolution of
10 mRNA and protein levels and investigate the dynamics of the model over time. We find that compen-
11 satory evolution is widespread when there is stabilizing selection on the protein level, which is true across
12 a variety of regulatory pathways. When the protein level is under directional selection, the mRNA level
13 of a gene and its translation rate of the same gene were negatively correlated across lineages but positively
14 correlated across genes. These findings help explain results from comparative studies of gene expression
15 and potentially enable researchers to disentangle biological and statistical hypotheses for the mismatch

16 between transcriptomic and proteomic studies.
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. Introduction

15 Understanding the causes and consequences of evolutionary divergence in gene expression is important for
10 explaining divergence in organismal phenotypes and adaptation [1]. As proteins carry out functions encoded
20 by protein-coding sequences and are generally thought of as the functional unit of the cell, the protein abun-
1 dance (hereafter, the protein level) is expected to be the target of natural selection. However, previous work
2> on gene expression evolution has predominantly relied on mRNA levels due to the relative simplicity and
23 cost-effectiveness of high-throughput mRNA sequencing methods compared to mass spectrometry-based
22 proteomics. This implicitly assumes that mRINA levels are an adequate proxy for protein levels; however,
25 many studies have documented weak to moderate correlations (i.e., < 0.6) between mRNA and protein
6 levels across genes [2-5], tissues [5-9], and species [10—12]. Disentangling the biological, technical, and
o7 statistical explanations for the observed correlations between mRNA and protein levels remains an open and
25 challenging problem [13-16]. In order to understand the biological underpinnings of this relationship —i.e.,
20 to better understand how, when, and why discrepancies between mRNA and protein levels arise on evolu-
50 tionary timescales — we need mathematical models that describe the coevolution between these two aspects

51 of gene expression and that can generate clear predictions.

32 In this study, we focus specifically on the correlation between mRNA and protein levels of the same
33 gene across species. In addition to a weak to moderate correlation between mRNA and protein levels, pro-
s tein levels are generally more conserved than mRNA levels across species [10, 11, 17]. This phenomenon
55 is hypothesized to be due to compensatory evolution, in which changes to the mRNA level can be offset by
56 changes to translation regulation, and vice versa [10, 11, 17, 18]. Consistent with the compensatory evolu-
57 tion interpretation is the observed negative correlation between the evolutionary divergence of mRNA levels
55 and translational efficiencies (i.e., per-transcript rate of translation, as measured by ribosome profiling). For
50 instance, the difference between two yeast species, Saccharomyces cerevisiae and S. paradoxus in the mRNA
20 level and that in translational efficiency of the same gene is more frequently in opposite directions than in the
21 same direction [19, 20]. Similarly in mammals, the amount of divergence across species in the mRNA level
« and that in translational efficiency are negatively correlated [18]. However, the observed negative correla-
23 tion between the mRINA level and the translational efficiency may be attributable to a statistical artifact, as

4 translational efficiency estimated using ribosome profiling data is a ratio of the total translation level and the
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ss mRNA level, and regressing Y/ X (or Y — X after log transformation) against X is well-known to induce
s spurious negative relationships when there is measurement error in one, or both, of the variables [21-23].
27 Indeed, findings from other studies find little evidence of compensatory evolution between transcription and
s translation, with changes to translation largely mirroring changes to transcription [24, 25]. The conflicting
20 observations regarding the coevolution of transcription, translation, and protein levels generally raise the
s0 question of the evolutionary conditions likely to result in compensatory evolution and its general prevalence

51 in shaping gene expression evolution.

52 Complicating biological interpretations from empirical data is a lack of theoretical justification for the
53 model of compensatory evolution between transcription and translation. Compensatory evolution is generally
s« invoked as a post hoc explanation that is based on the assumption that the protein level is the most likely
55 target of natural selection, but it is unknown whether this explanation is adequate to generate the observed
s6 patterns under realistic evolutionary scenarios. To address this lack of theoretical justification, we develop a
57 framework rooted in quantitative genetics theory to investigate the coevolution of the mRNA level, the rate of
ss translation, and the protein level of a gene when the protein level is the target of natural selection. Under this
s framework, we conducted simulations to demonstrate how patterns of evolutionary divergence in these traits
¢ and correlation between them are related to values of evolutionary parameters. Our simulations reveal that
¢1 stabilizing selection on the protein level is sufficient to cause compensatory evolution, which holds across a
> variety of evolutionary conditions. We also find that evolutionary changes in the mRNA level and that in the
s rate of translation complement each other when the protein level is under directional selection, resulting in a

¢« negative transcription-translation correlation that is similar to that caused by stabilizing selection.

» Results

s Stabilizing selection leads to compensatory evolutionary of transcription and translation

o7 To understand the coevolutionary dynamics of mRNA and protein levels when the latter is subject to natural
s selection, we considered a model where the mRNA level and the per-transcript rate of translation (more
e concisely, the “translation rate”) are directly affected by mutations and collectively determine the protein

70 level. The protein level is the fitness-related trait, and we first considered the case when protein levels are


https://doi.org/10.1101/2023.04.08.536110
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.08.536110; this version posted April 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

71 subject to stabilizing selection. Under this model, we conducted simulations of evolution in 500 replicate
72 lineages and examined the resulting distribution of phenotypes among these lineages (see Methods). This
73 model assumes mRINA and protein degradation rates remain constant through time, such that all evolutionary
7+ changes to mRNA and protein levels are mediated through changes to transcription and/or translation. Here,
75 each replicate lineage can be conceived as a species, and the amount of evolutionary divergence among
76 species was represented by the variance among these lineages. As a negative control, we also simulated

77 mRNA and protein levels when neither trait is subject to natural selection, i.e. neutral evolution.

78 When the protein level is under stabilizing selection, the correlation between the mRNA level and
70 the translation rate (the “transcription-translation correlation™) were strongly negatively (r < —0.95 under
so the parameter combination we considered, Fig. 1A). In contrast, such a negative transcription-translation
s1 correlation was not observed under neutrality (Fig. S1A). The correlation between the mRNA level and the
&2 protein level (the "mRNA-protein correlation") was much weaker under stabilizing selection compared to
ss that under neutrality (Fig. 1B, Fig. S1B). As measurement errors are known to impact empirical measures
s« of gene expression [26], we added noise to each end-point mRNA level and protein level (see Methods)
s and repeated our analyses to determine if our results were robust. In general, measurement error had little
s impact on our general results (Table S1). The dependence of measurement error in the translation rate on
s7 measurement error in the mRNA level (see Methods) created a trend towards a negative correlation between
s the mRINA level and the translation rate under neutrality. In contrast, measurement error did not strengthen,
s but weakened, the negative transcript-translation correlation in the presence of stabilizing selection (Table
o0 S1). This is consistent with attenuation bias towards 0, which is known to occur when two correlated traits
o1 are measured with error. Variances of both the mRNA level and the translation rate increased over time when
o> the protein level was subject to stabilizing selection, although the variances of each trait were much lower
o3 than the neutral expectation (Fig. 1C and Fig. S1C). In contrast, the variance of the protein level saturated
o« early during the simulated evolution in the presence of stabilizing selection (Fig. 1C), which did not happen

os under neutrality (Fig. S1A).

%6 To confirm that a negative transcription-translation correlation arises due to stabilizing selection, we
o7 varied the strength of stabilizing selection by altering the effective population size N, and standard devia-
s tion of the fitness function o,,. As expected, the transcription-translation correlation became more negative

oo when selection was stronger (i.e., greater N, and/or smaller o,,) (Fig. 1D). In contrast, the mRNA-protein
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10 correlation was close to zero when selection was strong, but more positive when selection was weak (Fig.
w1 1E). Together, these observations support the view that compensatory evolution between the mRNA level
102 and the translation rate helps maintain a relatively constant protein level when protein levels are subject to

103 stabilizing selection.

104 We also conducted simulations along a phylogenetic tree of 50 species (Fig. 2A) and estimated evo-
105 lutionary correlations between traits (i.e., the correlation accounting for phylogenetic history) to confirm
106 whether the above patterns would be seen in phylogenetic comparative analyses. Consistent with observa-
107 tions from the simulated replicate lineages, the evolutionary correlation between the mRNA level and the
108 translation rate is strongly negative when the protein level is under stabilizing selection (r ~ —0.8 under
100 the parameter combinations we considered, Table S2). As this correlation is not as negative as that across
110 replicate lineages or across simulations (i.e., correlation calculated from same species’ phenotypes in 500
111 simulations, which is mathematically equivalent to 500 replicate lineages), we repeated the simulation along
112 trees transformed using Pagel’s A transformation [27] (i.e., extending external branches and shortening in-
113 ternal branches of the original tree) to test if the discrepancy is due to small effective sample size caused
114 by the tree structure [28]. Indeed, evolutionary correlations estimated from the transformed trees were more
15 similar to the correlations among replicate lineages (Table S3). We also observed a positive association of
116 divergence time with both the mRNA level and the translation rate, while obvious saturation was seen for the
117 protein level (Fig. 2B), consistent with the time-variance relationships seen in simulations along replicate
us  lineages. Fitting standard phylogenetic models of continuous trait evolution (see Methods) indicates that di-
110 vergence of the protein level is better described by an Ornstein—Uhlenbeck (OU) process, while divergence
120 of the mRNA level and the translation rate are better described by a Brownian motion (BM) process (Fig.
11 S2A, C, and E). However, when measurement error was unaccounted for, model comparisons to the mRNA
122 level and the translation rate favored OU models as well (Fig. S2A, C, E). This is consistent with previous
123 findings that measurement error biases model fits toward OU models even if the traits evolved under a BM

122 model [29, 30]

s Transcription-translation coevolution of interacting genes

16 Due to shared gene regulatory architecture, the expression levels of different genes are not independent of

127 each other, and this interdependence can potentially shape the mutational architecture and influence the way
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s evolution of expression levels is constrained [31]. Therefore, we also examined how interactions between
1o genes influence the coevolution of mRNA and protein levels. We simulated data under a model of two
130 interacting genes where each gene’s realized transcription rate is determined collectively by its genotypic
131 value (i.e., a baseline transcription rate) and the regulatory effect of protein product(s) of other gene(s) (Fig.

132 3A, also see Methods).

133 We first examined the scenario where one gene is only a regulator (referred to as “the regulator”)
13 while the protein level of the other gene is subject to stabilizing selection (referred to as “the target”). The
135 target gene, which is directly under stabilizing selection, showed negative transcription-translation correla-
136 tion (i.e., correlation between genotypic values of transcription and translation; Fig. 3B) and weak mRNA-
137 protein correlation (Fig. 3C) for most combinations of interaction parameter values. However, the negative
138 transcription-translation correlation became weaker in the presence of the regulator, reflecting between-gene
130 compensatory evolution. In other words, in the presence of a regulator, a deleterious substitution affecting
uo the target’s transcription or translation rates can be compensated by a substitution affecting transcription or
141 translation rate of either the target itself or the regulator. In the presence of strong negative feedback (i.e.,
112 regulatory effects of two genes on each other both have large absolute values but opposite signs), the mRNA-
123 protein correlation became more positive. The regulator also exhibited a negative transcription-translation
122 correlation (Fig. 3D), indicating that indirect selection due to the regulatory roles of a gene is sufficient to
145 cause its transcription-translation compensatory evolution. The mRNA-protein correlation of the regulator
126 was weakened by the interaction but remained rather strong across the parameter space (Fig. 3E). When both
127 genes under consideration are directly subject to stabilizing selection, we observed a negative transcription-
115 translation across the examined parameter space, yet was weaker in the presence of strong negative feedback
1o (Fig. 3F). Consistently, the mRNA-protein correlation is generally weak but becomes stronger when there is

150 strong negative feedback (Fig. 3G).

151 Although the number of genes involved in real regulatory networks is much greater, it is impractical to
152 evenly sample a higher-dimensional space of interaction parameter combinations. To this end, we examined
153 a series of motifs that bear features commonly seen in real regulatory networks (Fig. S4). The correlations
152 were mostly consistent with those of genes in two-gene regulatory motifs: the regulator(s) and the target(s) all
155 showed negative, though not necessarily strong transcription-translation correlations, while targets subject

156 to direct stabilizing selection showed weaker mRINA-protein correlation (Table S4). Together, these results
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157 show transcription-translation compensatory evolution can take place as a result of a gene’s regulatory effect
155 on other gene(s), yet would be less pronounced due to other gene(s)’ regulatory effect(s) on the gene of

150 interest.

w0 Transcription-translation coevolution of functionally equivalent genes

161 Next, we considered a scenario where two genes express functionally equivalent proteins, such that fitness is
12 determined by the total amount of proteins expressed from the two genes. These genes can be perceived as
163 duplicate genes that have not yet been divergent enough in their protein sequences to be functionally distinct,
16« in which case selection would act to maintain the total expression level [32]. In simulations under this
165 scenario, both genes show negative transcription-translation correlations (Table S5, though the correlations
166 are not as strong as that in the single gene case (Fig. 1A, S1). We also observed negative correlations
167 between expression traits (i.e., mRNA levels, translation rates, and protein levels) of different genes (Table
s 55). This scenario, like examples of interacting genes (Fig. 3B, C, F, G), demonstrates that between-gene
10 compensatory evolution can complement compensatory evolution of transcription and translation of the same

170 gene and weaken the negative transcription-translation correlation.

7 Transcription-translation coevolution under directional selection

172 To understand how directional selection might influence the coevolution of mRNA and protein levels dif-
173 ferently, we simulated evolution towards the optimal protein level in 500 replicate lineages starting from the
174 same phenotype (see Methods). The end-point protein level is distributed around the new optimum, yet the
175 relative contribution of mRNA level and translation to evolutionary change in the protein level varied across
176 lineages (Fig. 4A-B). The end-point mRNA level and the end-point translation rate are negatively correlated
177 (Fig. 4A), while the protein level is essentially uncorrelated with the mRNA level (Fig. 4B). This was similar

175 to the observed correlations when the protein level is under stabilizing selection.

179 As different genes within a genome likely have different optimal protein levels, we repeated the above
150 simulations for multiple genes with the same starting mRNA levels and translation rates but different optimal
151 protein levels. Specifically, we asked if patterns of correlation across species (within gene) and that across

122 genes would be different (difference between two types of correlation illustrated in Fig. 4C). Patterns of
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153 correlations across species and across genes are drastically different: for each gene, there is a strong negative
184 correlation between the mRNA level and the translation rate, but essentially no correlation between the
155 mRNA level and the protein level. In contrast, both correlations are positive when compared among genes
155 (Fig. 4D-E, Table S6). These observations reflect the fact that evolutionary changes in a gene’s mRNA level
157 and translation rate were usually concordant (i.e., changing the protein level in the same direction), despite

s the negative correlation in terms of magnitude.

w0 Discussion

100 In this study, we demonstrate how the mRNA level, the translation rate, and the protein level coevolve when
101 it is the protein level that is subject to selection. Using simulated data generated under a quantitative genetics
102 model of gene expression evolution, we show that stabilizing selection on the protein level can cause a nega-
103 tive transcription-translation correlation (Fig. 1A) and weaken the mRNA-protein correlation (Fig. 1B). As
104 measurement errors are known to impact empirical estimates of gene expression, we examined the impact of
105 random error added to the end-point traits on our results. While measurement error weakened the negative
105 transcription-translation correlation under neutrality, it does not account for the strong correlation observed
107 in the presence of stabilizing selection on the protein level (Table S1). Notably, as errors in the translation
105 rate are correlated with errors in the mRNA level, a spurious correlation between estimates of these two
109 traits might arise. Our simulations also reveal that stabilizing selection on the protein level can make the
200 protein level more conserved across species than the mRNA level (Fig. 1C, Fig. 2B), which is a pattern often
201 found in empirical studies [10, 11, 17]. However, we note this phenomenon is only expected to occur under
20 some combinations of evolutionary parameters (see the “Expected phenotypic variances” subsection of the

203 Methods).

204 The data points in Fig. 1A, which correspond to different lineages, can also be interpreted as represent-
205 ing different genes. In this case, the end-point phenotypes shall be labeled as divergence from the ancestral
206 phenotype. Such negative correlation between evolutionary divergence in transcription and translation of
207 different genes has been observed in empirical studies of both budding yeasts [19, 20] and mammals [18].
205 The negative correlations observed in these empirical studies shown in were weaker than those observed in

200 our simulations, likely because different genes have different evolutionary parameters (e.g., protein levels of
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210 different genes are not under equally strong selection).

211 We observed that the evolution of the mRNA level and the translation rate, which are not directly un-
212 der selection and have no optima was qualitatively similar under both neutral evolution (i.e., no optimum for
213 protein levels) and protein levels subject to stabilizing selection. Under neutrality, variance among lineages
214 is expected to increase through time at a rate determined by the mutational variance [33, 34]. In our simula-
215 tions where the protein level is under stabilizing selection, variances in the mRNA level and the translation
216 rate among replicate lineages increased through time without saturation (Fig. 1C), and phylogenetic analysis
217 of simulations along a phylogenetic tree favored a Brownian motion model as well, consistent with neutral
213 expectations. Importantly, the evolution of the mRNA level and the translation rate were affected by selec-
210 tion, as they underwent much less evolutionary divergence than expected under neutrality. Such apparently
20 (but not truly) neutral evolution occurs when a trait is not under direct selection but genetically correlated
21 to trait(s) subjected to constraint: some mutations affecting the focal traits are purged by selection due to
22> their deleterious effect on other trait(s), yet the focal trait itself has neither an optimal value nor bound-
23 aries, allowing it to diverge indefinitely, albeit slowly [35]. It should be noted that the mRNA level and the
224 rate of translation are presumably not truly unbounded, as resources within the cell (i.e., RNA polymerase
25 molecules, ribosomes, ATP, etc.) are ultimately limited, though we assumed that the phenotypes are far from

26 such limits in our simulations.

207 Previous studies have shown evolutionary divergence in the mRNA level at phylogenetic scales is best
2s described by an OU process [36—38], which appears in contradiction to our observation that variance in the
20 MRNA level continued to increase through time (Fig. 1C, 2B). One possible explanation for this is that
23 measurement errors create a bias in favor of the OU model [29, 30], which is confirmed in this study (Fig.
231 S2). The discrepancy between our simulation results and observations from analyses of real data is likely
32 to be due in part to measurement error. It is also worth noting that the same amount of error would cause
233 more severe bias when the total amount of divergence is low. Therefore, stabilizing selection on the protein
234 level does make it more likely that divergence in the mRINA level appears to fit an OU model by augmenting
235 the influence of measurement errors. Note that there could be other, non-mutually exclusive explanations to
236 these discrepancies. For example, there might be an upper bound to each gene’s mRINA level and translation

237 rate imposed by the availability of cellular resources.

238 Directional selection on the protein level results in patterns of correlations that are similar to those

10
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239 resulting from stabilizing selection. To reach the optimal protein level, the mRNA level and the rate of
20 translation undergo evolutionary changes that are concordant in terms of direction, but complementary in

241 terms of magnitude. As a result, negative transcription-translation correlation and weak mRNA-protein

N
=
%)

correlation are both expected among a group of species that underwent selection towards the same optimal
213 protein level. After the optimum is reached, stabilizing selection takes over and continues to promote the

244 same kind of correlation. The effects of stabilizing and directional selection can be collectively viewed as

N
=
o

the effect of the fitness landscape: when there exists an optimal protein level, selection is expected to result in
246 a negative correlation between the mRNA level and the translation rate, and weak to no correlation between

247 the mRNA level and the protein level.

248 The negative transcription-translation correlation and weak mRNA-protein correlation resulting from
220 selection on the protein level are within gene and across species. We also extended our model to explore
250 how the same evolutionary processes would shape the correlations across different genes. We show strongly
251 positive transcription-translation and mRNA-protein correlations among genes with different optimal protein
252 levels, demonstrating an instance of Simpson’s paradox (i.e., the correlation between variables seen in certain
253 subsets of data differs from that seen in the complete dataset). Recent studies have found rather strong mRNA-
254 protein correlations across genes (e.g., [7, 8]), and it is suggested that measurement errors played a significant
255 role in weakening the correlations in earlier studies [26]. Our finding reconciles these results and the weaker

256 with-gene, among-species correlations.

257 In our simulations, we considered a simple mutational architecture with no pleiotropic mutations (i.e.,
»ss - each mutation affects either transcription or translation but not both) as parameterization of pleiotropy in
250 the simulations is challenging. The prevalence of pleiotropic mutations and their effects on transcription
260 and translation are unclear. If the mRNA level and the rate of translation could be measured simultaneously
261 for a sufficiently large number of mutant genotypes, a more complete picture of the two traits’ mutational
26> architecture could be obtained, which would allow better parameterization. Similarly, we did not consider

263 mutations affecting the degradation rates due to the difficulty of parameterization.

11
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- Conclusion

265 By connecting patterns in the coevolution of the mRNA level, the rate of translation, and the protein level to
266 explicit evolutionary processes, we demonstrate that several widely observed phenomena in between-species
267 comparisons — namely, weak mRNA-protein correlation, negative transcription-translation correlation, and
265 the protein levels being more evolutionarily conserved than the mRNA level — can all result from stabilizing
260 selection on the protein level. Additionally, positive mRNA-protein correlations across genes arise because
270 different genes have different optimal protein levels. With these connections built, our results can aid the
o7 interpretation of observation in future empirical studies and help disentangle the effects of biological and

>72 - technical factors.

-» Methods

- Model of gene expression

275 The basic model we study is a system of two equations. The first describes the rate at which the mRNA level

276 of a single gene, R changes with time. This is given by

dR
o =@ rRR (1

>77 - where « is the gene’s transcription rate, and g is the rate at which the mRNA molecules are degraded. The

275 rate at which the protein level, P changes with time is described as

dP
— =38R —~pP 2
o BR—vp 2

279 where [ is the per-transcript translation rate, and yp is the rate by which protein products are degraded ~vp.
50 The [ parameter can be interpreted as the rate of translation initiation, as initiation has been shown to be
251 a major rate-limiting step of translation [39]. At the equilibrium state (i.e., neither the mRNA level nor the

252 protein level is changing),
a=7rR
3)
BR =~ypP.

12
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253 We can solve Eqn. (3) and obtain

— o
R= YR
; “)
_ _ap
T YRYP
234+ which can then be log-transformed
ImR=Ina—Invgp
&)
InP=Ina+Ing—Inyg — Invyp.
285 In our model, we assume a precise match between the genotypic values (i.e., & and [3) and the phe-

256 notype (i.e., equilibrium R and P) and did not consider expression noise. Although expression noise could
257 play a role in constraining evolution of transcription and translation rates [40], we assume, in this study, that

23 selection imposed by noise is far weaker than that imposed by the mean protein level and thus negligible.

»0  Expected phenotypic variances

200 Under the assumption that degradation rates in Eqn. (5) are constant, the variance of the mRNA level across

201 samples (i.e., replicate lineages) is equal to variance of the transcription rate (i.e., Var(In R) = Var(ln «)).

N
©
N

Variance of the protein level, as a function of other variances, is given by

Var(In P) = Var(lna + In 3)

= Var(ln ) + Var(In 8) 4+ 2Cov(In o, In f) (6)

= Var(ln ) + Var(In ) + 2p\/Var(ln a)Var(In g)

203 where Cov(In v, In /3) is the covariance between In o and In /3, and p is their correlation coefficient. The

204 protein level is more conserved than the mRNA level if:

Var(In o) + Var(Iln 5) + 2p\/Var(ln a)Var(ln ) < Var(In «). 7

205 If we re-arrange the inequality, we obtain the conditions under which we would expect to see the more inter-

20 lineage variation in R than P
V/Var(In )

p= 2/ Var(lna)’ ®
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207 We note that the inequality in Eqn. (8) is invalid when /Var(In 8) > 2,/Var(In «) since p is only defined
205 between -1 and 1, which means the protein level can be more conserved than the mRNA only if variance in
200 the rate of translation is not too much higher than variance of the mRNA level. The variances (Var(In /3) and
s00 Var(Iln o)) are depending on multiple factors, including strength of selection on the protein level, mutational
s00  parameters, and indirect effect of selection due to interaction with other gene(s) (see below). Therefore, the
;0 phenomenon the the protein level is more conserved than the mRNA level reflects the collective effect of

303 multiple factors and may not occur depending on value of different parameters.

s« Model of interaction between genes

305 Let us consider two interacting genes, gene 1 and gene 2. Gene 1’s protein can influence gene 2’s transcrip-
306 tion, and vice versa. We assume that the expression level of gene 1 and gene 2 are governed by the dynamics
s07  depicted above, with each gene having its own genotypic values for the translation and transcription rate pa-
308 rameters (i.e., the o value for gene 1 is oy and for gene 2 is ag). We assume the rates of mRNA and protein
a0 degradation are the same for all genes. In this model, the two genes interact according to a set of interaction
s10 - parameters C'. The parameter C 7 is the effect of gene 1’s protein product P; on gene 2’s transcription level,

a1 and Uy q is the reverse. We can then set up a system of differential equations as follows:

dR; __ Ca,1
G =Py —yrRy

% = B Ry — vpPy
)

dR Ca 1
G =P —rR

U2 = ByRy — vpPs.

s> When the interaction parameter is negative, the regulatory effect on the target gene is repression. This is
. . . o C C:

215 reflected in the asymptotic decrease of the realized transcription rate (a1 Py " or aaP,*") as the concen-

s14 - tration of the repressor increases. Conversely, a positive interaction parameter indicates an activation effect,

a5 where the realized transcription rate increases with the concentration of the activator.

316 It is worth noting that the activation effect would plateau as the activator’s concentration increases, be-
317 cause an excess of activator molecules would not be able to bind the target. Although the realized transcrip-

31 tion rate increases monotonously in our model, our approximation remains reasonable when the interaction

14
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a9 parameter is between 0 and 1 and the regulator’s expression level is not extremely high. Given our focus
320 on scenarios where stabilizing selection is in action, we can assume that the concentration of the regulator’s
521 protein would never reach a level where target’s transcription rate plateaus. We did not consider interaction

32 parameter values above one in this study.

323 At equilibrium, the following four equations hold:
OqP2 = YrE1
iRy =ypP
(10)
asP ™ =yRrRy
BaRy = vp P2
324 After log-transformation and rearrangement, we can express Eqn. (10) in matrix form as follows:
-1 0 0 Co1| |[Inky Invg — Inay
1 -1 0 0 1nP1 In p—lnﬁl
- (1
0 Cip2 -1 0 In Ry Inyg — Inay
i 0 0 1 —1_ _1HP2_ _lnyp —lnﬁg_

326

Solving the system of linear equations gives the logarithms of R;, R2, P;, and Ps.

This model can be extended to systems of three or more genes. For gene ¢ in a system of n genes, we

have the following differential equations:

. Cii
= o [[j=1 ;7" —rER:

(12)
L = B;R; — vpP;

Again, after log-transformation and rearrangement, we can express Eqn. (12) in matrix form as fol-
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320 lows: o _ ~ _
-1 0 0 Con 0 (O3 0 Chi| [Inky Inyg —Inay
1 -1 0 0 0 0 0 0 In P, Invp —In 5y
0 Cig -1 0 0 Csp 0 Ch2| [InRy Inyg — Inas
0 0 1 -1 0 0 0 0 In P, Inyp —In S
0 Ciz 0 Cs3 -1 0 0 Chs| |InR3| = |lnyg —Inag (13)
0 0 0 0 1 -1 0 0 In P5 Invp —In 53
0 Cip 0 Cyp 0 Czp -+ =1 0 InR, Inyg —Ina,
0 0 0 0 0 o --- 1 -1 In P, Invp —In g,
330 Note that the system may not have a solution (i.e., the leftmost matrix may not be invertible), depend-

331 ing on values of the parameters. A biological mechanism underlying such scenarios is positive feedback:
;32 if a set of genes activate each other, and their initial expression levels are high enough such that the degra-
;33 dation cannot counteract the increase of their expression, there would not be an equilibrium. Instead, their
s34 expression levels would increase indefinitely until a physical barrier is reached (e.g., limited by availability

335 of ribosomes).

336 When we simulated evolution of two interacting genes (see below), we considered all combinations of
337 the following values for C'y 2 and C 1: —0.8, —0.6, —0.4, —0.2, 0, 0.2, 0.4, 0.6, and 0.8. When we simulated
s3s  evolution of three interacting genes, we had absolute values of all non-zero interaction parameters equal to
a0 0.5. The set of triple-gene regulatory motif examined in this study were chosen because they bear features
;0 commonly seen in real regulatory networks [41, 42]. Specifically, motif 1 is a simple regulator chain, motif
sa 2 is a negative feedback loop, motifs 3-5 represent regulatory motifs where the same target is regulated by
a2 more than one regulators, while motifs 6-8 represent motifs where one regulator (i.e., transcription factor)

;3 regulates more than one targets (see Fig. S4 for graphical depictions of the motifs).

s« Simulation of evolution along a single lineage

;s For a system of n genes, we considered a total of 2n traits that are directly affected by mutations, in-

a6 cluding log-transformed genotypic values of their transcription rates (In a1, . . ., In v, ) and translation rates

16
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a7 (InBq,...,In B,), and simulated the evolution of the population mean phenotype through time. Traits that
a5 are directly under selection are the equilibrium protein levels (In P, ..., In P,). Given the genotypic values,
;20 the steady-state protein levels are calculated using equation system (5) when only a single gene is under con-
sso - cern, using (11) for a system of two genes, or (13) for a system of three or more genes. As the degradation
351 terms in Eqn. (5) are constants, we omitted them in the simulations when only a single gene is considered;
52 thatis, In R is represented by In «v, and In P is represented by In o+ 1In 3. The total number of mutations that
353 would occur in time step ¢, denoted my, is drawn from a Poisson distribution. The mean of the distribution,
50 E[my], is given by

Elmy] =2Ne > U =2Nc(> Uqs, + > _Us,) (14)
=0 =0

355 where N, is the effective population size, Y U is the total per-genome rate of mutations affecting the tran-
36 scription and translation rates, while U,,, and Ug, are rates of mutations affecting gene ¢ ’s transcription and
357 translation rates (i.e., number of mutations per haploid genome per time step), respectively. It is assumed

555 here that a mutation can affect either transcription or translation rate of one gene, but not both.

350 Each mutation can affect either transcription or translation rate. The probability that a mutation affects
se0  the transcription rate of gene i is Uy, / Y U, and the probability that it affects the translation rate of gene i is
ss0 Up,/ > U. The phenotypic effect of a mutation affecting a gene ¢’s transcription rate (In ;) is drawn from
s a normal distribution AV (0, 04,). Similarly, if the mutation affects the translation rate of gene ¢ (In 3;), its
se:  effect is drawn from another normal distribution, A'(0, 0,). Given the protein level of a gene i, the fitness
364w with respect to its protein level is given by a Gaussian function:

_ 2
" — exp <_(lnP InO) ) 15)

2
20,

ses where O is the optimal protein level and o, is the standard deviation of the fitness function (also referred to

366 as width of the fitness function).

367 In a system where protein levels of n genes are subject to selection, the overall fitness is calculated as:
n 2
(In P, — In O;)
w = exp ( E <202 ' (16)
=0 W,

s When n = 1, equation (16) gives the same result as (15). If there is any gene that has no equilibrium

17
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360 phenotype, the fitness would be treated as zero, though such situations did not occur in our simulations. The
s coefficient of selection, s, is then calculated as s = (w/wa) — 1, where wy is the ancestral fitness. The

571 fixation probability p; of the mutation is calculated following the approach of Kimura [43]:

1 —exp(—2s
Py = (—2s)

1 —exp(—4N,s) 17

;72 With probability ps, the mutation’s phenotypic effect would be added to the population’s mean before the

373 next mutation is considered.

374 The above process would be repeated for T times for each lineage. We set T = 10°, N, = 1000,
s Uy = Ug =5 X 107% (e, 2N U = 1), 04 = og = 0.1,In0 = 0, and o, = 1 for all simulations, unless
a6 specified. When we simulated a single gene that is subject to directional selection, we set InO = 1. All
377 simulations started with In « = 0 and In 8 = 0, unless specified. For each combination of parameter values,

s7s - we simulated 500 independent lineages.

379 For simulations where multiple genes with different optimal protein levels were involved, we randomly
;50 sampled a set of 20 optima In O ~ N(0,2). For each gene, we conducted simulation along 500 replicate
;51 lineages. We assumed no linkage between these genes and had them evolve independently (i.e., simulations

s> for different genes were run separately).

383 For simulations of functional equivalent genes, fitness is calculated as

. 2
" — exp (_ (In (P, + P,) —1n0) ) 18)

2
207,

s« where Py and P» are two genes’ respective protein levels. In these simulations, the two genes are assumed
a5 to be unlinked and independently regulated (i.e., each mutation can affect either transcription or translation

a6 of only one gene).

387 It should be noted that our simulations were based on a sequential-fixation model of evolution, which
s allows more efficient simulations. That is, only one mutation is considered each time, and fixation probability
30 of a mutation is calculated after it is determined if the previous mutation being considered is fixed. Such a
300 model can be a good approximation as long as the mutation rate is not too high such that the probability that

501 multiple mutations affecting the trait of interest segregate in the population at the same time is very low [44].

18
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s Simulation along a phylogenetic tree

303 We generated a Yule tree (no extinction) and used this for all subsequent simulations (Fig. 2A). We then
1. rescaled the tree to make its height (i.e., distance between the root and each tip) equal to 10°. We simulated
305 evolution along each branch following the same procedure as above. The number of time steps is equal to
305 the branch length (rounded down to the nearest integer). As this is purely for illustrative purposes (the model
507 is the same as the case studied above), we used a single, representative tree. The qualitative patterns did not

308 depend on the shape of the tree.

399 For each simulation, we estimated the evolutionary variance-covariance (VCV) matrix between lin-
a0 eages. To assess the influence of tree structure, we used a A transformation [27] to rescale the relative length
s of terminal branches with tree height kept the same. We fitted two models, Brownian motion (BM) and
202 Ornstein-Uhlenbeck (OU) to each trait (the mRINA level, the translation rate, and the protein level) for each
203 simulation and compared the relative support of the models using their sample-size corrected AICc weights
a4 (following [29]) and averaged the AICc weights across replicate simulations. All phylogenetic analyses were

a5 conducted using geiger [45].

w0 Adding measurement errors to simulated data

207 For each sample (i.e., an independent lineage or a tip of the phylogenetic tree), we added errors to the end-
a8 point mRNA and protein levels; the errors € were normally distributed and centered on the true value (i.e.,
w &~ N(0,0.)). We considered values of o, = 0.01,0.02,0.03,0.04,0.05 in this study for both mRNA and
a0 protein levels. The "estimated” translation rate is calculated as a ratio of the "measured" protein and mRNA

a1 levels, such that error in the translation rate is correlated with error in the mRNA level.

s> Code availability

215 All R code is available at https://github.com/phylo-lab-usc/Expression_Evolution.
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Figure 1: Coevolution of the mRNA level, the rate of translation, and the protein level when the protein level
is under stabilizing selection. (A) Variances of the mRNA level, the rate of translation, and the protein level
across lineages through time. (B) End-point transcription-translation correlation across lineages. (C) End-
point mRNA-protein correlation. Blue lines in (B) and (C) are least-squares regression lines. (D-E) End-point
transcription-translation correlation (D) and mRNA-protein correlation (E) under different combinations of
N, and SD of the fitness function. All phenotypes plotted are in log scale.
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Figure 2: (A) Phylogenetic tree used for the simulation. The root edge is only shown to indicate the root’s
location. (B) Pairwise phenotypic divergence plotted against pairwise divergence time when the protein level
is under stabilizing selection. Each data point represents a combination of species pair and trait. The y-axis
value of each point is the absolute phenotypic average difference between the two species (i.e., |[In R;|, |In 3;,
and |In P;| for species 7 and j), averaged across 500 simulations. Each curve is a locally estimated scatterplot
smoothing (LOESS) curve for the corresponding trait.
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Figure 3: (A) Schematic illustration for the model of between-gene interaction considered in this study. (B-
G) Transcription-translation correlation and mRNA-protein correlation of interacting genes. Axes are genes’
regulatory effects on each other. (B-C) A gene directly subject to stabilizing selection (i.e., has an optimal
protein level). (D-E) A regulator gene that is not directly subject to selection. Transcription of the target
gene in (B) and (C) is regulated by the protein of the regulator in (D) and (E). (F-G) Correlations observed
for one gene (gene 1) when both genes are directly subject to stabilizing selection.
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Figure 4: Coevolution of the mRNA level, the rate of translation, and the protein level when the protein level
is under directional selection. (A) End-point transcription-translation correlation. (B) End-point mRNA-
protein correlation. (C) A schematic illustration of the difference between across-species and across-gene
correlations, using mRNA-protein correlation as an example. Correlation across species is calculated from
mRNA and protein levels of the same gene in different species, whereas correlation across genes is calculated
from mRNA and protein levels of different genes in the same species. (D) End-point transcription-translation
correlation among multiple genes with different optimal protein levels. (E) End-point mRNA-protein corre-
lation among multiple genes with different optimal protein levels. In (D) and (E), each gene is represented
by a cloud of points of a distinct color. Solid lines of different colors are least-squares regression lines of
different genes, while the dashed lines are least-squares regression lines based on all data points. Correlation
coefficient shown in each panel is based on all data points in the panel.

26


https://doi.org/10.1101/2023.04.08.536110
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.08.536110; this version posted April 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

« Supplementary materials

Table S1: Transcription-translation correlation and mRNA-protein correlation across replicate lineages un-

der different levels of measurement error.

Error SD  Selection regime Correlation coefficient
Transcription-translation mRNA-protein
0 Stabilizing selection  -0.9765 0.09209
Neutral 0.0004967 0.7126
0.01 Stabilizing selection  -0.9670 0.05904
Neutral 0.0003159 0.7121
0.02 Stabilizing selection ~ -0.9487 0.06802
Neutral 0.003284 0.7139
0.03 Stabilizing selection ~ -0.9216 0.05275
Neutral -0.002881 0.7107
0.04 Stabilizing selection  -0.8714 0.1294
Neutral -0.007650 0.7072
0.05 Stabilizing selection  -0.8570 0.02024
Neutral -0.02017 0.7057
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Table S2: Evolutionary correlations between traits under different levels of measurement error.

Error SD  Selection regime

Correlation coefficient

Transcription-translation mRNA-protein

0

0.01

0.02

0.03

0.04

0.05

Stabilizing selection
Neutral
Stabilizing selection
Neutral
Stabilizing selection
Neutral
Stabilizing selection
Neutral
Stabilizing selection
Neutral
Stabilizing selection
Neutral

-0.7823 0.3148
-0.006527 0.7025
-0.7545 0.2266
-0.01005 0.7005
-0.7302 0.1184
-0.02077 0.6961
-0.7157 0.0604
-0.03180 0.6888
-0.7289 -0.0004425
-0.05423 0.6789
-0.7169 0.007953
-0.06931 0.6665
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Table S3: Evolutionary correlations estimated from results of simulations along transformed trees.

Lambda Correlation coefficient
Transcription-translation mRNA-protein

1 (original) -0.7823 0.3148

0.5 -0.9663 0.1323

0 (star tree) -0.9760 0.1073
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Table S4: Transcription-translation correlation and mRNA-protein correlation of genes in triple-gene regu-
latory motifs. Red numbers indicate the gene’s protein level is directly subject to stabilizing selection.

Regulatory motif _Correlation coefficient

Transcription-translation mRNA -protein

Gene 1 Gene 2 Gene 3 Gene 1 Gene 2 Gene 3
Motif 1 -0.134 -0.261 -0.0848 0.651 0.670 0.134
Motif 2 -0.109 -0.204 -0.274 0.657 0.636 0.189
Motif 3 -0.236 -0.271 -0.249 0.609 0.600 0.101
Motif 4 -0.325 -0.313 -0.169 0.580 0.582 0.134
Motif 5 -0.266 -0.208 -0.108 0.886 0.897 0.135
Motif 6 -0.406 -0.493 -0.511 0.579 0.107 0.139
Motif 7 -0.536 -0.536 -0.485 0.491 0.0356 0.109
Motif 8 -0.368 -0.330 -0.368 0.312 0.286 0.279
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Table S5: Correlation matrix for mRNA levels, translation rates and protein levels of two functionally equiv-
alent genes (i.e., fitness is determined by the sum of two genes’ protein levels).

Gene 1 Gene 2
mRNA Translation Protein mRNA Translation Protein
Gene1l mRNA 1 -0.3491 0.5885 -0.2879 -0.3106 -0.5209
Translation -0.3491 1 0.5522 -0.3078 -0.2594 -0.4949
Protein 0.5885 0.5522 1 -0.5217 -0.5002 -0.8904
Gene2 mRNA -0.2879 -0.3078 -0.5217 1 -0.341 0.5974
Translation -0.3106 -0.2594 -0.5002 -0.3414 1 0.5498
Protein -0.5209 -0.4949 -0.8904 0.5974 0.5498 1
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Table S6: Transcription-translation correlation and mRNA-protein correlation of genes with different opti-
mal protein levels.

Gene # Optimal protein level Correlation coefficient

(In 0) Transcription-translation mRNA-protein
1 -5.653 -0.9995 0.06265
2 -4.814 -0.9994 0.1049
3 -2.643 -0.9986 0.003202
4 -1.869 -0.9981 0.06626
5 0.006126 -0.9734 0.1348
6 0.1369 -0.9866 0.08257
7 0.3293 -0.9930 0.09362
8 0.7829 -0.9958 -0.07563
9 0.9896 -0.9971 0.06707
10 1.050 -0.9973 0.09356
11 1.177 -0.9971 0.08134
12 1.581 -0.9980 0.06722
13 1.611 -0.9983 0.01392
14 1.680 -0.9983 0.02384
15 1.788 -0.9982 0.07870
16 1.862 -0.9983 -0.003530
17 2.009 -0.9983 0.01340
18 2.218 -0.9984 0.007559
19 2.379 -0.9986 0.02051
20 3.258 -0.9989 -0.006015
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Figure S1: Coevolution of the mRNA level, the rate of translation, and the protein level under neutrality.
(A) Variances of the mRNA level, the translation rate, and the protein level through time. (B) End-point
correlation between the mRNA level and the translation rate. (C) End-point correlation between the mRNA
level and the translation level. Blues lines in (B) and (C) are least-squares regression lines.
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Figure S2: Relative support for Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models when results
of simulations along the phylogenetic tree in Fig. 2A, with tip phenotypes subject to different levels of
measurement error. For each setting, the extent to which each model is supported is represented by the
average AIC weight across 500 independent simulations. (A), (C), and (E) are for results of simulations
where the protein level is under stabilizing selection, while (B), (D), and (F) are for simulations of neutral
evolution. (A-B) AIC weights computed from the mRNA levels. (C-D) AIC weights computed from the
translation rates. (E-F) AIC weights computed from the protein levels.
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e

A

Figure S3: \-transformed trees used in this study. (A) Tree transformed with A = 0.5. (B) Tree transformed
with A = 0. The root edge is only shown to indicate the root’s location. The original tree is shown in Fig.
2A.
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Figure S4: Special cases of triple-gene regulatory network motifs considered in this study. Genes whose
protein levels are under direct selection (gene 3 in motifs 1-5, gene 2 and 3 in motifs 6-8) are colored dark
gray, while regulators not subject to direct selection are colored light gray. Red arrows represent activation
effects (C; ; = 0.5), while blue, flat-headed arrows represent repression effects (C; ; = —0.5).
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