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Abstract1

Variation in gene expression across lineages is thought to explain much of the observed phenotypic varia-2

tion and adaptation. The protein is closer to the target of natural selection but gene expression is typically3

measured as the amount of mRNA. The broad assumption that mRNA levels are good proxies for protein4

levels has been undermined by a number of studies reporting moderate or weak correlations between5

the two measures across species. One biological explanation for this discrepancy is that there has been6

compensatory evolution between the mRNA level and regulation of translation. However, we do not7

understand the evolutionary conditions necessary for this to occur nor the expected strength of the cor-8

relation between mRNA and protein levels. Here we develop a theoretical model for the coevolution of9

mRNA and protein levels and investigate the dynamics of the model over time. We find that compen-10

satory evolution is widespread when there is stabilizing selection on the protein level, which is true across11

a variety of regulatory pathways. When the protein level is under directional selection, the mRNA level12

of a gene and its translation rate of the same gene were negatively correlated across lineages but positively13

correlated across genes. These findings help explain results from comparative studies of gene expression14

and potentially enable researchers to disentangle biological and statistical hypotheses for the mismatch15

between transcriptomic and proteomic studies.16

2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2023. ; https://doi.org/10.1101/2023.04.08.536110doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.08.536110
http://creativecommons.org/licenses/by-nd/4.0/


Introduction17

Understanding the causes and consequences of evolutionary divergence in gene expression is important for18

explaining divergence in organismal phenotypes and adaptation [1]. As proteins carry out functions encoded19

by protein-coding sequences and are generally thought of as the functional unit of the cell, the protein abun-20

dance (hereafter, the protein level) is expected to be the target of natural selection. However, previous work21

on gene expression evolution has predominantly relied on mRNA levels due to the relative simplicity and22

cost-effectiveness of high-throughput mRNA sequencing methods compared to mass spectrometry-based23

proteomics. This implicitly assumes that mRNA levels are an adequate proxy for protein levels; however,24

many studies have documented weak to moderate correlations (i.e., < 0.6) between mRNA and protein25

levels across genes [2–5], tissues [5–9], and species [10–12]. Disentangling the biological, technical, and26

statistical explanations for the observed correlations between mRNA and protein levels remains an open and27

challenging problem [13–16]. In order to understand the biological underpinnings of this relationship — i.e.,28

to better understand how, when, and why discrepancies between mRNA and protein levels arise on evolu-29

tionary timescales — we need mathematical models that describe the coevolution between these two aspects30

of gene expression and that can generate clear predictions.31

In this study, we focus specifically on the correlation between mRNA and protein levels of the same32

gene across species. In addition to a weak to moderate correlation between mRNA and protein levels, pro-33

tein levels are generally more conserved than mRNA levels across species [10, 11, 17]. This phenomenon34

is hypothesized to be due to compensatory evolution, in which changes to the mRNA level can be offset by35

changes to translation regulation, and vice versa [10, 11, 17, 18]. Consistent with the compensatory evolu-36

tion interpretation is the observed negative correlation between the evolutionary divergence of mRNA levels37

and translational efficiencies (i.e., per-transcript rate of translation, as measured by ribosome profiling). For38

instance, the difference between two yeast species, Saccharomyces cerevisiae and S. paradoxus in the mRNA39

level and that in translational efficiency of the same gene is more frequently in opposite directions than in the40

same direction [19, 20]. Similarly in mammals, the amount of divergence across species in the mRNA level41

and that in translational efficiency are negatively correlated [18]. However, the observed negative correla-42

tion between the mRNA level and the translational efficiency may be attributable to a statistical artifact, as43

translational efficiency estimated using ribosome profiling data is a ratio of the total translation level and the44
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mRNA level, and regressing Y/X (or Y − X after log transformation) against X is well-known to induce45

spurious negative relationships when there is measurement error in one, or both, of the variables [21–23].46

Indeed, findings from other studies find little evidence of compensatory evolution between transcription and47

translation, with changes to translation largely mirroring changes to transcription [24, 25]. The conflicting48

observations regarding the coevolution of transcription, translation, and protein levels generally raise the49

question of the evolutionary conditions likely to result in compensatory evolution and its general prevalence50

in shaping gene expression evolution.51

Complicating biological interpretations from empirical data is a lack of theoretical justification for the52

model of compensatory evolution between transcription and translation. Compensatory evolution is generally53

invoked as a post hoc explanation that is based on the assumption that the protein level is the most likely54

target of natural selection, but it is unknown whether this explanation is adequate to generate the observed55

patterns under realistic evolutionary scenarios. To address this lack of theoretical justification, we develop a56

framework rooted in quantitative genetics theory to investigate the coevolution of the mRNA level, the rate of57

translation, and the protein level of a gene when the protein level is the target of natural selection. Under this58

framework, we conducted simulations to demonstrate how patterns of evolutionary divergence in these traits59

and correlation between them are related to values of evolutionary parameters. Our simulations reveal that60

stabilizing selection on the protein level is sufficient to cause compensatory evolution, which holds across a61

variety of evolutionary conditions. We also find that evolutionary changes in the mRNA level and that in the62

rate of translation complement each other when the protein level is under directional selection, resulting in a63

negative transcription-translation correlation that is similar to that caused by stabilizing selection.64

Results65

Stabilizing selection leads to compensatory evolutionary of transcription and translation66

To understand the coevolutionary dynamics of mRNA and protein levels when the latter is subject to natural67

selection, we considered a model where the mRNA level and the per-transcript rate of translation (more68

concisely, the “translation rate”) are directly affected by mutations and collectively determine the protein69

level. The protein level is the fitness-related trait, and we first considered the case when protein levels are70

4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2023. ; https://doi.org/10.1101/2023.04.08.536110doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.08.536110
http://creativecommons.org/licenses/by-nd/4.0/


subject to stabilizing selection. Under this model, we conducted simulations of evolution in 500 replicate71

lineages and examined the resulting distribution of phenotypes among these lineages (see Methods). This72

model assumes mRNA and protein degradation rates remain constant through time, such that all evolutionary73

changes to mRNA and protein levels are mediated through changes to transcription and/or translation. Here,74

each replicate lineage can be conceived as a species, and the amount of evolutionary divergence among75

species was represented by the variance among these lineages. As a negative control, we also simulated76

mRNA and protein levels when neither trait is subject to natural selection, i.e. neutral evolution.77

When the protein level is under stabilizing selection, the correlation between the mRNA level and78

the translation rate (the “transcription-translation correlation”) were strongly negatively (r < −0.95 under79

the parameter combination we considered, Fig. 1A). In contrast, such a negative transcription-translation80

correlation was not observed under neutrality (Fig. S1A). The correlation between the mRNA level and the81

protein level (the "mRNA-protein correlation") was much weaker under stabilizing selection compared to82

that under neutrality (Fig. 1B, Fig. S1B). As measurement errors are known to impact empirical measures83

of gene expression [26], we added noise to each end-point mRNA level and protein level (see Methods)84

and repeated our analyses to determine if our results were robust. In general, measurement error had little85

impact on our general results (Table S1). The dependence of measurement error in the translation rate on86

measurement error in the mRNA level (see Methods) created a trend towards a negative correlation between87

the mRNA level and the translation rate under neutrality. In contrast, measurement error did not strengthen,88

but weakened, the negative transcript-translation correlation in the presence of stabilizing selection (Table89

S1). This is consistent with attenuation bias towards 0, which is known to occur when two correlated traits90

are measured with error. Variances of both the mRNA level and the translation rate increased over time when91

the protein level was subject to stabilizing selection, although the variances of each trait were much lower92

than the neutral expectation (Fig. 1C and Fig. S1C). In contrast, the variance of the protein level saturated93

early during the simulated evolution in the presence of stabilizing selection (Fig. 1C), which did not happen94

under neutrality (Fig. S1A).95

To confirm that a negative transcription-translation correlation arises due to stabilizing selection, we96

varied the strength of stabilizing selection by altering the effective population size Ne and standard devia-97

tion of the fitness function σω. As expected, the transcription-translation correlation became more negative98

when selection was stronger (i.e., greater Ne and/or smaller σω) (Fig. 1D). In contrast, the mRNA-protein99
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correlation was close to zero when selection was strong, but more positive when selection was weak (Fig.100

1E). Together, these observations support the view that compensatory evolution between the mRNA level101

and the translation rate helps maintain a relatively constant protein level when protein levels are subject to102

stabilizing selection.103

We also conducted simulations along a phylogenetic tree of 50 species (Fig. 2A) and estimated evo-104

lutionary correlations between traits (i.e., the correlation accounting for phylogenetic history) to confirm105

whether the above patterns would be seen in phylogenetic comparative analyses. Consistent with observa-106

tions from the simulated replicate lineages, the evolutionary correlation between the mRNA level and the107

translation rate is strongly negative when the protein level is under stabilizing selection (r ≈ −0.8 under108

the parameter combinations we considered, Table S2). As this correlation is not as negative as that across109

replicate lineages or across simulations (i.e., correlation calculated from same species’ phenotypes in 500110

simulations, which is mathematically equivalent to 500 replicate lineages), we repeated the simulation along111

trees transformed using Pagel’s λ transformation [27] (i.e., extending external branches and shortening in-112

ternal branches of the original tree) to test if the discrepancy is due to small effective sample size caused113

by the tree structure [28]. Indeed, evolutionary correlations estimated from the transformed trees were more114

similar to the correlations among replicate lineages (Table S3). We also observed a positive association of115

divergence time with both the mRNA level and the translation rate, while obvious saturation was seen for the116

protein level (Fig. 2B), consistent with the time-variance relationships seen in simulations along replicate117

lineages. Fitting standard phylogenetic models of continuous trait evolution (see Methods) indicates that di-118

vergence of the protein level is better described by an Ornstein–Uhlenbeck (OU) process, while divergence119

of the mRNA level and the translation rate are better described by a Brownian motion (BM) process (Fig.120

S2A, C, and E). However, when measurement error was unaccounted for, model comparisons to the mRNA121

level and the translation rate favored OU models as well (Fig. S2A, C, E). This is consistent with previous122

findings that measurement error biases model fits toward OU models even if the traits evolved under a BM123

model [29, 30].124

Transcription-translation coevolution of interacting genes125

Due to shared gene regulatory architecture, the expression levels of different genes are not independent of126

each other, and this interdependence can potentially shape the mutational architecture and influence the way127
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evolution of expression levels is constrained [31]. Therefore, we also examined how interactions between128

genes influence the coevolution of mRNA and protein levels. We simulated data under a model of two129

interacting genes where each gene’s realized transcription rate is determined collectively by its genotypic130

value (i.e., a baseline transcription rate) and the regulatory effect of protein product(s) of other gene(s) (Fig.131

3A, also see Methods).132

We first examined the scenario where one gene is only a regulator (referred to as “the regulator”)133

while the protein level of the other gene is subject to stabilizing selection (referred to as “the target”). The134

target gene, which is directly under stabilizing selection, showed negative transcription-translation correla-135

tion (i.e., correlation between genotypic values of transcription and translation; Fig. 3B) and weak mRNA-136

protein correlation (Fig. 3C) for most combinations of interaction parameter values. However, the negative137

transcription-translation correlation became weaker in the presence of the regulator, reflecting between-gene138

compensatory evolution. In other words, in the presence of a regulator, a deleterious substitution affecting139

the target’s transcription or translation rates can be compensated by a substitution affecting transcription or140

translation rate of either the target itself or the regulator. In the presence of strong negative feedback (i.e.,141

regulatory effects of two genes on each other both have large absolute values but opposite signs), the mRNA-142

protein correlation became more positive. The regulator also exhibited a negative transcription-translation143

correlation (Fig. 3D), indicating that indirect selection due to the regulatory roles of a gene is sufficient to144

cause its transcription-translation compensatory evolution. The mRNA-protein correlation of the regulator145

was weakened by the interaction but remained rather strong across the parameter space (Fig. 3E). When both146

genes under consideration are directly subject to stabilizing selection, we observed a negative transcription-147

translation across the examined parameter space, yet was weaker in the presence of strong negative feedback148

(Fig. 3F). Consistently, the mRNA-protein correlation is generally weak but becomes stronger when there is149

strong negative feedback (Fig. 3G).150

Although the number of genes involved in real regulatory networks is much greater, it is impractical to151

evenly sample a higher-dimensional space of interaction parameter combinations. To this end, we examined152

a series of motifs that bear features commonly seen in real regulatory networks (Fig. S4). The correlations153

were mostly consistent with those of genes in two-gene regulatory motifs: the regulator(s) and the target(s) all154

showed negative, though not necessarily strong transcription-translation correlations, while targets subject155

to direct stabilizing selection showed weaker mRNA-protein correlation (Table S4). Together, these results156
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show transcription-translation compensatory evolution can take place as a result of a gene’s regulatory effect157

on other gene(s), yet would be less pronounced due to other gene(s)’ regulatory effect(s) on the gene of158

interest.159

Transcription-translation coevolution of functionally equivalent genes160

Next, we considered a scenario where two genes express functionally equivalent proteins, such that fitness is161

determined by the total amount of proteins expressed from the two genes. These genes can be perceived as162

duplicate genes that have not yet been divergent enough in their protein sequences to be functionally distinct,163

in which case selection would act to maintain the total expression level [32]. In simulations under this164

scenario, both genes show negative transcription-translation correlations (Table S5, though the correlations165

are not as strong as that in the single gene case (Fig. 1A, S1). We also observed negative correlations166

between expression traits (i.e., mRNA levels, translation rates, and protein levels) of different genes (Table167

S5). This scenario, like examples of interacting genes (Fig. 3B, C, F, G), demonstrates that between-gene168

compensatory evolution can complement compensatory evolution of transcription and translation of the same169

gene and weaken the negative transcription-translation correlation.170

Transcription-translation coevolution under directional selection171

To understand how directional selection might influence the coevolution of mRNA and protein levels dif-172

ferently, we simulated evolution towards the optimal protein level in 500 replicate lineages starting from the173

same phenotype (see Methods). The end-point protein level is distributed around the new optimum, yet the174

relative contribution of mRNA level and translation to evolutionary change in the protein level varied across175

lineages (Fig. 4A-B). The end-point mRNA level and the end-point translation rate are negatively correlated176

(Fig. 4A), while the protein level is essentially uncorrelated with the mRNA level (Fig. 4B). This was similar177

to the observed correlations when the protein level is under stabilizing selection.178

As different genes within a genome likely have different optimal protein levels, we repeated the above179

simulations for multiple genes with the same starting mRNA levels and translation rates but different optimal180

protein levels. Specifically, we asked if patterns of correlation across species (within gene) and that across181

genes would be different (difference between two types of correlation illustrated in Fig. 4C). Patterns of182
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correlations across species and across genes are drastically different: for each gene, there is a strong negative183

correlation between the mRNA level and the translation rate, but essentially no correlation between the184

mRNA level and the protein level. In contrast, both correlations are positive when compared among genes185

(Fig. 4D-E, Table S6). These observations reflect the fact that evolutionary changes in a gene’s mRNA level186

and translation rate were usually concordant (i.e., changing the protein level in the same direction), despite187

the negative correlation in terms of magnitude.188

Discussion189

In this study, we demonstrate how the mRNA level, the translation rate, and the protein level coevolve when190

it is the protein level that is subject to selection. Using simulated data generated under a quantitative genetics191

model of gene expression evolution, we show that stabilizing selection on the protein level can cause a nega-192

tive transcription-translation correlation (Fig. 1A) and weaken the mRNA-protein correlation (Fig. 1B). As193

measurement errors are known to impact empirical estimates of gene expression, we examined the impact of194

random error added to the end-point traits on our results. While measurement error weakened the negative195

transcription-translation correlation under neutrality, it does not account for the strong correlation observed196

in the presence of stabilizing selection on the protein level (Table S1). Notably, as errors in the translation197

rate are correlated with errors in the mRNA level, a spurious correlation between estimates of these two198

traits might arise. Our simulations also reveal that stabilizing selection on the protein level can make the199

protein level more conserved across species than the mRNA level (Fig. 1C, Fig. 2B), which is a pattern often200

found in empirical studies [10, 11, 17]. However, we note this phenomenon is only expected to occur under201

some combinations of evolutionary parameters (see the “Expected phenotypic variances” subsection of the202

Methods).203

The data points in Fig. 1A, which correspond to different lineages, can also be interpreted as represent-204

ing different genes. In this case, the end-point phenotypes shall be labeled as divergence from the ancestral205

phenotype. Such negative correlation between evolutionary divergence in transcription and translation of206

different genes has been observed in empirical studies of both budding yeasts [19, 20] and mammals [18].207

The negative correlations observed in these empirical studies shown in were weaker than those observed in208

our simulations, likely because different genes have different evolutionary parameters (e.g., protein levels of209
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different genes are not under equally strong selection).210

We observed that the evolution of the mRNA level and the translation rate, which are not directly un-211

der selection and have no optima was qualitatively similar under both neutral evolution (i.e., no optimum for212

protein levels) and protein levels subject to stabilizing selection. Under neutrality, variance among lineages213

is expected to increase through time at a rate determined by the mutational variance [33, 34]. In our simula-214

tions where the protein level is under stabilizing selection, variances in the mRNA level and the translation215

rate among replicate lineages increased through time without saturation (Fig. 1C), and phylogenetic analysis216

of simulations along a phylogenetic tree favored a Brownian motion model as well, consistent with neutral217

expectations. Importantly, the evolution of the mRNA level and the translation rate were affected by selec-218

tion, as they underwent much less evolutionary divergence than expected under neutrality. Such apparently219

(but not truly) neutral evolution occurs when a trait is not under direct selection but genetically correlated220

to trait(s) subjected to constraint: some mutations affecting the focal traits are purged by selection due to221

their deleterious effect on other trait(s), yet the focal trait itself has neither an optimal value nor bound-222

aries, allowing it to diverge indefinitely, albeit slowly [35]. It should be noted that the mRNA level and the223

rate of translation are presumably not truly unbounded, as resources within the cell (i.e., RNA polymerase224

molecules, ribosomes, ATP, etc.) are ultimately limited, though we assumed that the phenotypes are far from225

such limits in our simulations.226

Previous studies have shown evolutionary divergence in the mRNA level at phylogenetic scales is best227

described by an OU process [36–38], which appears in contradiction to our observation that variance in the228

mRNA level continued to increase through time (Fig. 1C, 2B). One possible explanation for this is that229

measurement errors create a bias in favor of the OU model [29, 30], which is confirmed in this study (Fig.230

S2). The discrepancy between our simulation results and observations from analyses of real data is likely231

to be due in part to measurement error. It is also worth noting that the same amount of error would cause232

more severe bias when the total amount of divergence is low. Therefore, stabilizing selection on the protein233

level does make it more likely that divergence in the mRNA level appears to fit an OU model by augmenting234

the influence of measurement errors. Note that there could be other, non-mutually exclusive explanations to235

these discrepancies. For example, there might be an upper bound to each gene’s mRNA level and translation236

rate imposed by the availability of cellular resources.237

Directional selection on the protein level results in patterns of correlations that are similar to those238
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resulting from stabilizing selection. To reach the optimal protein level, the mRNA level and the rate of239

translation undergo evolutionary changes that are concordant in terms of direction, but complementary in240

terms of magnitude. As a result, negative transcription-translation correlation and weak mRNA-protein241

correlation are both expected among a group of species that underwent selection towards the same optimal242

protein level. After the optimum is reached, stabilizing selection takes over and continues to promote the243

same kind of correlation. The effects of stabilizing and directional selection can be collectively viewed as244

the effect of the fitness landscape: when there exists an optimal protein level, selection is expected to result in245

a negative correlation between the mRNA level and the translation rate, and weak to no correlation between246

the mRNA level and the protein level.247

The negative transcription-translation correlation and weak mRNA-protein correlation resulting from248

selection on the protein level are within gene and across species. We also extended our model to explore249

how the same evolutionary processes would shape the correlations across different genes. We show strongly250

positive transcription-translation and mRNA-protein correlations among genes with different optimal protein251

levels, demonstrating an instance of Simpson’s paradox (i.e., the correlation between variables seen in certain252

subsets of data differs from that seen in the complete dataset). Recent studies have found rather strong mRNA-253

protein correlations across genes (e.g., [7, 8]), and it is suggested that measurement errors played a significant254

role in weakening the correlations in earlier studies [26]. Our finding reconciles these results and the weaker255

with-gene, among-species correlations.256

In our simulations, we considered a simple mutational architecture with no pleiotropic mutations (i.e.,257

each mutation affects either transcription or translation but not both) as parameterization of pleiotropy in258

the simulations is challenging. The prevalence of pleiotropic mutations and their effects on transcription259

and translation are unclear. If the mRNA level and the rate of translation could be measured simultaneously260

for a sufficiently large number of mutant genotypes, a more complete picture of the two traits’ mutational261

architecture could be obtained, which would allow better parameterization. Similarly, we did not consider262

mutations affecting the degradation rates due to the difficulty of parameterization.263
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Conclusion264

By connecting patterns in the coevolution of the mRNA level, the rate of translation, and the protein level to265

explicit evolutionary processes, we demonstrate that several widely observed phenomena in between-species266

comparisons — namely, weak mRNA-protein correlation, negative transcription-translation correlation, and267

the protein levels being more evolutionarily conserved than the mRNA level — can all result from stabilizing268

selection on the protein level. Additionally, positive mRNA-protein correlations across genes arise because269

different genes have different optimal protein levels. With these connections built, our results can aid the270

interpretation of observation in future empirical studies and help disentangle the effects of biological and271

technical factors.272

Methods273

Model of gene expression274

The basic model we study is a system of two equations. The first describes the rate at which the mRNA level275

of a single gene, R changes with time. This is given by276

dR

dt
= α − γRR (1)

where α is the gene’s transcription rate, and γR is the rate at which the mRNA molecules are degraded. The277

rate at which the protein level, P changes with time is described as278

dP

dt
= βR − γP P (2)

where β is the per-transcript translation rate, and γP is the rate by which protein products are degraded γP .279

The β parameter can be interpreted as the rate of translation initiation, as initiation has been shown to be280

a major rate-limiting step of translation [39]. At the equilibrium state (i.e., neither the mRNA level nor the281

protein level is changing),282 
α = γRR

βR = γP P.

(3)
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We can solve Eqn. (3) and obtain283 
R = α

γR

P = αβ
γRγP

, (4)

which can then be log-transformed284


ln R = ln α − ln γR

ln P = ln α + ln β − ln γR − ln γP .

(5)

In our model, we assume a precise match between the genotypic values (i.e., α and β) and the phe-285

notype (i.e., equilibrium R and P ) and did not consider expression noise. Although expression noise could286

play a role in constraining evolution of transcription and translation rates [40], we assume, in this study, that287

selection imposed by noise is far weaker than that imposed by the mean protein level and thus negligible.288

Expected phenotypic variances289

Under the assumption that degradation rates in Eqn. (5) are constant, the variance of the mRNA level across290

samples (i.e., replicate lineages) is equal to variance of the transcription rate (i.e., Var(ln R) = Var(ln α)).291

Variance of the protein level, as a function of other variances, is given by292

Var(ln P ) = Var(ln α + ln β)

= Var(ln α) + Var(ln β) + 2Cov(ln α, ln β)

= Var(ln α) + Var(ln β) + 2ρ
√

Var(ln α)Var(ln β)

(6)

where Cov(ln α, ln β) is the covariance between ln α and ln β, and ρ is their correlation coefficient. The293

protein level is more conserved than the mRNA level if:294

Var(ln α) + Var(ln β) + 2ρ
√

Var(ln α)Var(ln β) < Var(ln α). (7)

If we re-arrange the inequality, we obtain the conditions under which we would expect to see the more inter-295

lineage variation in R than P296

ρ < −
√

Var(ln β)
2
√

Var(ln α)
. (8)
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We note that the inequality in Eqn. (8) is invalid when
√

Var(ln β) > 2
√

Var(ln α) since ρ is only defined297

between -1 and 1, which means the protein level can be more conserved than the mRNA only if variance in298

the rate of translation is not too much higher than variance of the mRNA level. The variances (Var(ln β) and299

Var(ln α)) are depending on multiple factors, including strength of selection on the protein level, mutational300

parameters, and indirect effect of selection due to interaction with other gene(s) (see below). Therefore, the301

phenomenon the the protein level is more conserved than the mRNA level reflects the collective effect of302

multiple factors and may not occur depending on value of different parameters.303

Model of interaction between genes304

Let us consider two interacting genes, gene 1 and gene 2. Gene 1’s protein can influence gene 2’s transcrip-305

tion, and vice versa. We assume that the expression level of gene 1 and gene 2 are governed by the dynamics306

depicted above, with each gene having its own genotypic values for the translation and transcription rate pa-307

rameters (i.e., the α value for gene 1 is α1 and for gene 2 is α2). We assume the rates of mRNA and protein308

degradation are the same for all genes. In this model, the two genes interact according to a set of interaction309

parameters C. The parameter C1,2 is the effect of gene 1’s protein product P1 on gene 2’s transcription level,310

and C2,1 is the reverse. We can then set up a system of differential equations as follows:311



dR1
dt = α1P

C2,1
2 − γRR1

dP1
dt = β1R1 − γP P1

dR2
dt = α2P

C2,1
1 − γRR2

dP2
dt = β2R2 − γP P2.

(9)

When the interaction parameter is negative, the regulatory effect on the target gene is repression. This is312

reflected in the asymptotic decrease of the realized transcription rate (α1P
C2,1
2 or α2P

C2,1
1 ) as the concen-313

tration of the repressor increases. Conversely, a positive interaction parameter indicates an activation effect,314

where the realized transcription rate increases with the concentration of the activator.315

It is worth noting that the activation effect would plateau as the activator’s concentration increases, be-316

cause an excess of activator molecules would not be able to bind the target. Although the realized transcrip-317

tion rate increases monotonously in our model, our approximation remains reasonable when the interaction318
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parameter is between 0 and 1 and the regulator’s expression level is not extremely high. Given our focus319

on scenarios where stabilizing selection is in action, we can assume that the concentration of the regulator’s320

protein would never reach a level where target’s transcription rate plateaus. We did not consider interaction321

parameter values above one in this study.322

At equilibrium, the following four equations hold:323



α1P
C2,1
2 = γRR1

β1R1 = γP P1

α2P
C2,1
1 = γRR2

β2R2 = γP P2

(10)

After log-transformation and rearrangement, we can express Eqn. (10) in matrix form as follows:324



−1 0 0 C2,1

1 −1 0 0

0 C1,2 −1 0

0 0 1 −1





ln R1

ln P1

ln R2

ln P2


=



ln γR − ln α1

ln γP − ln β1

ln γR − ln α2

ln γP − ln β2


(11)

Solving the system of linear equations gives the logarithms of R1, R2, P1, and P2.325

This model can be extended to systems of three or more genes. For gene i in a system of n genes, we326

have the following differential equations:327


dRi
dt = αi

∏n
j=1 P

Cj,i

j − γRRi

dPi
dt = βiRi − γP Pi

(12)

Again, after log-transformation and rearrangement, we can express Eqn. (12) in matrix form as fol-328
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lows:329 

−1 0 0 C2,1 0 C3,1 · · · 0 Cn,1

1 −1 0 0 0 0 · · · 0 0

0 C1,2 −1 0 0 C3,2 · · · 0 Cn,2

0 0 1 −1 0 0 · · · 0 0

0 C1,3 0 C2,3 −1 0 · · · 0 Cn,3

0 0 0 0 1 −1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 C1,n 0 C2,n 0 C3,n · · · −1 0

0 0 0 0 0 0 · · · 1 −1





ln R1

ln P1

ln R2

ln P2

ln R3

ln P3

· · ·

ln Rn

ln Pn



=



ln γR − ln α1

ln γP − ln β1

ln γR − ln α2

ln γP − ln β2

ln γR − ln α3

ln γP − ln β3

· · ·

ln γR − ln αn

ln γP − ln βn



(13)

Note that the system may not have a solution (i.e., the leftmost matrix may not be invertible), depend-330

ing on values of the parameters. A biological mechanism underlying such scenarios is positive feedback:331

if a set of genes activate each other, and their initial expression levels are high enough such that the degra-332

dation cannot counteract the increase of their expression, there would not be an equilibrium. Instead, their333

expression levels would increase indefinitely until a physical barrier is reached (e.g., limited by availability334

of ribosomes).335

When we simulated evolution of two interacting genes (see below), we considered all combinations of336

the following values for C1,2 and C2,1: −0.8, −0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6, and 0.8. When we simulated337

evolution of three interacting genes, we had absolute values of all non-zero interaction parameters equal to338

0.5. The set of triple-gene regulatory motif examined in this study were chosen because they bear features339

commonly seen in real regulatory networks [41, 42]. Specifically, motif 1 is a simple regulator chain, motif340

2 is a negative feedback loop, motifs 3-5 represent regulatory motifs where the same target is regulated by341

more than one regulators, while motifs 6-8 represent motifs where one regulator (i.e., transcription factor)342

regulates more than one targets (see Fig. S4 for graphical depictions of the motifs).343

Simulation of evolution along a single lineage344

For a system of n genes, we considered a total of 2n traits that are directly affected by mutations, in-345

cluding log-transformed genotypic values of their transcription rates (ln α1, . . . , ln αn) and translation rates346
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(ln β1, . . . , ln βn), and simulated the evolution of the population mean phenotype through time. Traits that347

are directly under selection are the equilibrium protein levels (ln P1, . . . , ln Pn). Given the genotypic values,348

the steady-state protein levels are calculated using equation system (5) when only a single gene is under con-349

cern, using (11) for a system of two genes, or (13) for a system of three or more genes. As the degradation350

terms in Eqn. (5) are constants, we omitted them in the simulations when only a single gene is considered;351

that is, ln R is represented by ln α, and ln P is represented by ln α+ln β. The total number of mutations that352

would occur in time step t, denoted mt, is drawn from a Poisson distribution. The mean of the distribution,353

E[mt], is given by354

E[mt] = 2Ne

∑
U = 2Ne(

n∑
i=0

Uαi +
n∑

i=0
Uβi

) (14)

where Ne is the effective population size,
∑

U is the total per-genome rate of mutations affecting the tran-355

scription and translation rates, while Uαi and Uβi
are rates of mutations affecting gene i ’s transcription and356

translation rates (i.e., number of mutations per haploid genome per time step), respectively. It is assumed357

here that a mutation can affect either transcription or translation rate of one gene, but not both.358

Each mutation can affect either transcription or translation rate. The probability that a mutation affects359

the transcription rate of gene i is Uαi/
∑

U , and the probability that it affects the translation rate of gene i is360

Uβi
/
∑

U . The phenotypic effect of a mutation affecting a gene i’s transcription rate (ln αi) is drawn from361

a normal distribution N (0, σαi). Similarly, if the mutation affects the translation rate of gene i (ln βi), its362

effect is drawn from another normal distribution, N (0, σβi
). Given the protein level of a gene i, the fitness363

ω with respect to its protein level is given by a Gaussian function:364

ω = exp
(

−(ln P − ln O)2

2σ2
ω

)
(15)

where O is the optimal protein level and σω is the standard deviation of the fitness function (also referred to365

as width of the fitness function).366

In a system where protein levels of n genes are subject to selection, the overall fitness is calculated as:367

ω = exp
(

−
n∑

i=0

(
(ln Pi − ln Oi)2

2σ2
ω,i

))
(16)

When n = 1, equation (16) gives the same result as (15). If there is any gene that has no equilibrium368
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phenotype, the fitness would be treated as zero, though such situations did not occur in our simulations. The369

coefficient of selection, s, is then calculated as s = (ω/ωA) − 1, where ωA is the ancestral fitness. The370

fixation probability pf of the mutation is calculated following the approach of Kimura [43]:371

pf = 1 − exp (−2s)
1 − exp (−4Nes) (17)

With probability pf , the mutation’s phenotypic effect would be added to the population’s mean before the372

next mutation is considered.373

The above process would be repeated for T times for each lineage. We set T = 105, Ne = 1000,374

Uα = Uβ = 5 × 10−4 (i.e., 2NeU = 1), σα = σβ = 0.1, ln O = 0, and σω = 1 for all simulations, unless375

specified. When we simulated a single gene that is subject to directional selection, we set ln O = 1. All376

simulations started with ln α = 0 and ln β = 0, unless specified. For each combination of parameter values,377

we simulated 500 independent lineages.378

For simulations where multiple genes with different optimal protein levels were involved, we randomly379

sampled a set of 20 optima ln O ∼ N (0, 2). For each gene, we conducted simulation along 500 replicate380

lineages. We assumed no linkage between these genes and had them evolve independently (i.e., simulations381

for different genes were run separately).382

For simulations of functional equivalent genes, fitness is calculated as383

ω = exp
(

−(ln (P1 + P2) − ln O)2

2σ2
ω

)
(18)

where P1 and P2 are two genes’ respective protein levels. In these simulations, the two genes are assumed384

to be unlinked and independently regulated (i.e., each mutation can affect either transcription or translation385

of only one gene).386

It should be noted that our simulations were based on a sequential-fixation model of evolution, which387

allows more efficient simulations. That is, only one mutation is considered each time, and fixation probability388

of a mutation is calculated after it is determined if the previous mutation being considered is fixed. Such a389

model can be a good approximation as long as the mutation rate is not too high such that the probability that390

multiple mutations affecting the trait of interest segregate in the population at the same time is very low [44].391
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Simulation along a phylogenetic tree392

We generated a Yule tree (no extinction) and used this for all subsequent simulations (Fig. 2A). We then393

rescaled the tree to make its height (i.e., distance between the root and each tip) equal to 105. We simulated394

evolution along each branch following the same procedure as above. The number of time steps is equal to395

the branch length (rounded down to the nearest integer). As this is purely for illustrative purposes (the model396

is the same as the case studied above), we used a single, representative tree. The qualitative patterns did not397

depend on the shape of the tree.398

For each simulation, we estimated the evolutionary variance-covariance (VCV) matrix between lin-399

eages. To assess the influence of tree structure, we used a λ transformation [27] to rescale the relative length400

of terminal branches with tree height kept the same. We fitted two models, Brownian motion (BM) and401

Ornstein-Uhlenbeck (OU) to each trait (the mRNA level, the translation rate, and the protein level) for each402

simulation and compared the relative support of the models using their sample-size corrected AICc weights403

(following [29]) and averaged the AICc weights across replicate simulations. All phylogenetic analyses were404

conducted using geiger [45].405

Adding measurement errors to simulated data406

For each sample (i.e., an independent lineage or a tip of the phylogenetic tree), we added errors to the end-407

point mRNA and protein levels; the errors ε were normally distributed and centered on the true value (i.e.,408

ε ∼ N (0, σϵ)). We considered values of σϵ = 0.01, 0.02, 0.03, 0.04, 0.05 in this study for both mRNA and409

protein levels. The "estimated" translation rate is calculated as a ratio of the "measured" protein and mRNA410

levels, such that error in the translation rate is correlated with error in the mRNA level.411

Code availability412

All R code is available at https://github.com/phylo-lab-usc/Expression_Evolution.413
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Figure 1: Coevolution of the mRNA level, the rate of translation, and the protein level when the protein level
is under stabilizing selection. (A) Variances of the mRNA level, the rate of translation, and the protein level
across lineages through time. (B) End-point transcription-translation correlation across lineages. (C) End-
point mRNA-protein correlation. Blue lines in (B) and (C) are least-squares regression lines. (D-E) End-point
transcription-translation correlation (D) and mRNA-protein correlation (E) under different combinations of
Ne and SD of the fitness function. All phenotypes plotted are in log scale.
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Figure 2: (A) Phylogenetic tree used for the simulation. The root edge is only shown to indicate the root’s
location. (B) Pairwise phenotypic divergence plotted against pairwise divergence time when the protein level
is under stabilizing selection. Each data point represents a combination of species pair and trait. The y-axis
value of each point is the absolute phenotypic average difference between the two species (i.e., |ln Ri|, |ln βi|,
and |ln Pi| for species i and j), averaged across 500 simulations. Each curve is a locally estimated scatterplot
smoothing (LOESS) curve for the corresponding trait.
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Figure 3: (A) Schematic illustration for the model of between-gene interaction considered in this study. (B-
G) Transcription-translation correlation and mRNA-protein correlation of interacting genes. Axes are genes’
regulatory effects on each other. (B-C) A gene directly subject to stabilizing selection (i.e., has an optimal
protein level). (D-E) A regulator gene that is not directly subject to selection. Transcription of the target
gene in (B) and (C) is regulated by the protein of the regulator in (D) and (E). (F-G) Correlations observed
for one gene (gene 1) when both genes are directly subject to stabilizing selection.
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Figure 4: Coevolution of the mRNA level, the rate of translation, and the protein level when the protein level
is under directional selection. (A) End-point transcription-translation correlation. (B) End-point mRNA-
protein correlation. (C) A schematic illustration of the difference between across-species and across-gene
correlations, using mRNA-protein correlation as an example. Correlation across species is calculated from
mRNA and protein levels of the same gene in different species, whereas correlation across genes is calculated
from mRNA and protein levels of different genes in the same species. (D) End-point transcription-translation
correlation among multiple genes with different optimal protein levels. (E) End-point mRNA-protein corre-
lation among multiple genes with different optimal protein levels. In (D) and (E), each gene is represented
by a cloud of points of a distinct color. Solid lines of different colors are least-squares regression lines of
different genes, while the dashed lines are least-squares regression lines based on all data points. Correlation
coefficient shown in each panel is based on all data points in the panel.
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Supplementary materials483

Table S1: Transcription-translation correlation and mRNA-protein correlation across replicate lineages un-
der different levels of measurement error.
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Table S2: Evolutionary correlations between traits under different levels of measurement error.
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Table S3: Evolutionary correlations estimated from results of simulations along transformed trees.
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Table S4: Transcription-translation correlation and mRNA-protein correlation of genes in triple-gene regu-
latory motifs. Red numbers indicate the gene’s protein level is directly subject to stabilizing selection.
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Table S5: Correlation matrix for mRNA levels, translation rates and protein levels of two functionally equiv-
alent genes (i.e., fitness is determined by the sum of two genes’ protein levels).
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Table S6: Transcription-translation correlation and mRNA-protein correlation of genes with different opti-
mal protein levels.
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Figure S1: Coevolution of the mRNA level, the rate of translation, and the protein level under neutrality.
(A) Variances of the mRNA level, the translation rate, and the protein level through time. (B) End-point
correlation between the mRNA level and the translation rate. (C) End-point correlation between the mRNA
level and the translation level. Blues lines in (B) and (C) are least-squares regression lines.
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Figure S2: Relative support for Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models when results
of simulations along the phylogenetic tree in Fig. 2A, with tip phenotypes subject to different levels of
measurement error. For each setting, the extent to which each model is supported is represented by the
average AIC weight across 500 independent simulations. (A), (C), and (E) are for results of simulations
where the protein level is under stabilizing selection, while (B), (D), and (F) are for simulations of neutral
evolution. (A-B) AIC weights computed from the mRNA levels. (C-D) AIC weights computed from the
translation rates. (E-F) AIC weights computed from the protein levels.
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A B

Figure S3: λ-transformed trees used in this study. (A) Tree transformed with λ = 0.5. (B) Tree transformed
with λ = 0. The root edge is only shown to indicate the root’s location. The original tree is shown in Fig.
2A.
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Figure S4: Special cases of triple-gene regulatory network motifs considered in this study. Genes whose
protein levels are under direct selection (gene 3 in motifs 1-5, gene 2 and 3 in motifs 6-8) are colored dark
gray, while regulators not subject to direct selection are colored light gray. Red arrows represent activation
effects (Ci,j = 0.5), while blue, flat-headed arrows represent repression effects (Ci,j = −0.5).
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