

1 **Latent taste diversity revealed by a vertebrate-wide catalogue of T1R receptors**

2

3 Hidenori Nishihara<sup>1,2,\*,#</sup>, Yasuka Toda<sup>3,†</sup>, Tae Kuramoto<sup>1</sup>, Kota Kamohara<sup>3</sup>, Azusa Goto<sup>3</sup>, Kyoko

4 Hoshino<sup>3</sup>, Shinji Okada<sup>4</sup>, Shigehiro Kuraku<sup>5,6</sup>, Masataka Okabe<sup>7</sup>, Yoshiro Ishimaru<sup>3,\*</sup>

5

6 <sup>1</sup> School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.

7 <sup>2</sup> Faculty of Agriculture, Kindai University, Nara 631-8505, Japan.

8 <sup>3</sup> Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa  
9 214-8571, Japan.

10 <sup>4</sup> Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

11 <sup>5</sup> Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.

12 <sup>6</sup> Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka  
13 411-8540, Japan

14 <sup>7</sup> Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan

15

16 <sup>#</sup> These authors contributed equally to this work.

17

18 \*Corresponding authors:

19 Hidenori Nishihara

20 Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204  
21 Nakamachi, Nara 631-8505, Japan.

22 Tel: +81 742 43 7306

23 E-mail: nishihara@nara.kindai.ac.jp

24 Yoshiro Ishimaru

25 Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1  
26 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

27 Tel: +81 44 934 7835

28 E-mail: yishimaru@meiji.ac.jp

29 **Abstract**

30 Taste is a vital chemical sense for feeding behavior. In mammals, the umami and sweet taste  
31 receptors are composed of three members of the taste receptor type 1 (T1R/TAS1R) family:  
32 T1R1, T1R2, and T1R3. Because their functional homologs exist in teleosts, only three *TAS1R*  
33 genes generated by gene duplication are believed to have been inherited from the common  
34 ancestor of bony vertebrates. Here, we report five previously uncharacterized *TAS1R* members  
35 in vertebrates, named *TAS1R4*, 5, 6, 7, and *TAS1Rcf*, through a genome-wide survey of diverse  
36 taxa. For *TAS1R2* and *TAS1R3*, mammalian and teleost fish genes were found to be paralogous.  
37 Phylogenetic analysis suggests that the bony vertebrate ancestor had nine *TAS1Rs* due to  
38 multiple gene duplications, and some *TAS1Rs* were lost independently in each lineage;  
39 ultimately, mammals and teleosts have retained only three *TAS1Rs*, whereas other lineages have  
40 retained more *TAS1Rs*. Functional assays and expression analysis in non-teleost fishes suggest  
41 that the novel T1Rs form heterodimers in taste receptor cells and contribute to the recognition of  
42 a broad range of ligands such as essential amino acids, including branched-chain amino acids,  
43 which were not previously considered as T1R ligands. These results highlight an unexpected  
44 diversity of taste sensations in both modern and the ancestors of vertebrates. The complex  
45 evolution of the taste receptor family might have enabled vertebrates to adapt to diverse habitats  
46 on Earth.

47 **Introduction**

48 Taste is one of the most important senses that govern the feeding behavior of animals. It is  
49 widely accepted that mammals have five basic tastes: umami (savory), sweet, bitter, salty, and  
50 sour <sup>1,2</sup>. Taste receptor type 1 (T1R, encoded by *TAS1R*), a G protein-coupled receptor family,  
51 consists of three members, namely T1R1, T1R2, and T1R3, which are encoded by the genes  
52 *TAS1R1*, *TAS1R2*, and *TAS1R3*, respectively, and act as umami or sweet receptors <sup>3,4</sup>. The  
53 T1R1/T1R3 heterodimer functions as an umami taste receptor in mammals and detects L-amino  
54 acids and 5'-ribonucleotides <sup>5-7</sup>. The mammalian T1R2/T1R3 heterodimer acts as a sweet sensor  
55 <sup>6,8</sup>. Likewise, homologs of *TAS1R* family genes have been identified in teleost fishes <sup>9</sup>, and each  
56 of the heterodimers T1R1/T1R3 and T1R2/T1R3 can sense several amino acids in teleosts <sup>10</sup>.

57 A previous phylogenetic analysis revealed that all mammalian and teleost *TAS1R*s can be  
58 grouped into the *TAS1R1*, *TAS1R2*, and *TAS1R3* clades <sup>11</sup>, suggesting that their common  
59 ancestor had only three T1R members derived from gene duplications that have been retained in  
60 present-day species. Lineage-specific duplications and losses of *TAS1R* genes have occurred  
61 within each of these three clades, as exemplified by multiple *TAS1R2* genes in zebrafish and  
62 fugu and loss of *TAS1R2* in birds <sup>12</sup>. A few genomic studies of vertebrates such as reptiles and  
63 non-teleost fishes have suggested the existence of taxonomically unplaced *TAS1R*s that may not  
64 be included in the aforementioned three clades <sup>13-15</sup>. However, the lack of comprehensive  
65 characterization and systematic classification has limited our understanding of the evolutionary  
66 history of *TAS1R* genes, the functional diversity of T1Rs, and the molecular basis of taste sense  
67 in vertebrates.

68 Here, we present an evolutionary analysis of diverse *TAS1R*s in jawed vertebrates, with the  
69 first-ever exhaustive taxon sampling encompassing all major ‘fish’ lineages. In addition to  
70 clades *TAS1R1*, *TAS1R2*, and *TAS1R3*, we identified five novel *TAS1R* clades. The results

71 suggest that the vertebrate ancestor possessed more T1Rs than most modern vertebrates,  
72 challenging the paradigm that only three T1R family members have been retained during  
73 evolution. Functional analyses suggest that the novel T1Rs have shaped the diversity of taste  
74 sense. We propose that the T1R family has undergone an ancient birth-and-death evolution that  
75 accelerated their functional differentiation, which may have led to the diversification of feeding  
76 habitats among vertebrates.

77

78

79 **Results**

80 **Identification of novel *TAS1R* family members**

81 We identified homologs of *TAS1R* genes that are included in public genome/transcriptome  
82 databases for diverse taxa of jawed vertebrates (Table S1). A phylogenetic analysis revealed the  
83 existence of many *TAS1Rs* that had not been categorized into any of the three clades *TAS1R1*,  
84 *TAS1R2*, or *TAS1R3*; these *TAS1Rs* were found in lizards, axolotl, lungfishes, coelacanth, bichir,  
85 and cartilaginous fishes (Fig. 1a, Figs. S1 and S2). These novel *TAS1Rs* could be classified into  
86 five new clades. One clade, the sister clade of *TAS1R3*, was named *TAS1R4*. Clade *TAS1R4*  
87 contains genes from all the aforementioned species but not mammals, birds, crocodilians, turtles,  
88 or teleost fishes (Fig. 1b). Another novel *TAS1R*, named *TAS1R5*, was present in axolotl,  
89 lungfishes, and coelacanth and was determined to be a sister clade of the clade comprising  
90 *TAS1R1* and *TAS1R2* (Fig. 1).

91 The sister clade to *TAS1R1* + *TAS1R2* + *TAS1R5* was identified exclusively in cartilaginous  
92 fishes (denoted *cf* in clade names) and named *TAS1Rcf*. *TAS1Rcf* could be further divided into  
93 three subclades, namely *TAS1Rcf-1*, *TAS1Rcf-2*, and *TAS1Rcf-3*, all of which were found to be  
94 present in elephant fish (also called elephant shark), belonging to the taxon Holocephali of

95 cartilaginous fishes (Fig. S1 and S2). Therefore, the three *TAS1Rcf* subclades are likely to have  
96 emerged in the common ancestor of extant cartilaginous fishes. A thorough search of the  
97 genomes and transcriptomes of the four cartilaginous fish species identified only *TAS1R3*,  
98 *TAS1R4*, and *TAS1Rcf* but no orthologs of *TAS1R1*, *TAS1R2*, or *TAS1R5* (Fig. 1b), suggesting  
99 that *TAS1Rcf* is orthologous to the clade comprising *TAS1R1 + TAS1R2 + TAS1R5*.

100 Another novel *TAS1R* clade, *TAS1R6*, was found exclusively in axolotl and lizards. Further,  
101 the other clade, *TAS1R7*, was identified only in bichir and lungfishes, and a sister-relationship of  
102 the two genes was robustly supported (Fig. 1, Figs. S1 and S2), suggesting that *TAS1R7*  
103 emerged in their common ancestor. Indeed, the likelihood of an alternative relationship, i.e., in  
104 which *TAS1R6* and *TAS1R7* form an exclusive cluster and represent a species tree, was  
105 statistically rejected based on the approximately unbiased test ( $p < 10^{-4}$ ; Fig. S3), suggesting  
106 that *TAS1R6* and *TAS1R7* are distinct groups. Among the species included in the study, no  
107 *TAS1R* homologs were found in the two jawless vertebrates (lamprey and hagfish) or  
108 invertebrates (e.g., lancelet) (Fig. 1b).

109

110 **Each of *TAS1R3* and *TAS1R2* consists of two paralogous clades**

111 Another remarkable finding of the phylogenetic analysis was that *TAS1R3* of bony  
112 vertebrates could be divided into two clades with high node support, which we named *TAS1R3A*  
113 and *TAS1R3B* (Fig. 1, Figs. S1 and S2). *TAS1R3A* was found to be present in tetrapods and  
114 lungfishes but not in other vertebrates, whereas *TAS1R3B* was identified only in amphibians,  
115 lungfishes, coelacanth, and ray-finned fishes. This distribution suggested that an ancestral  
116 *TAS1R3* gene was duplicated in the common ancestor of bony vertebrates, with subsequent  
117 independent loss of *TAS1R3A* in certain lineages such as coelacanth and ray-finned fishes,  
118 whereas *TAS1R3B* was lost in Amniota (mammals, birds and reptiles). Therefore, the *TAS1R3*

119 genes in mammals and teleost fishes are paralogous to each other. Axolotl and Australian  
120 lungfish retained both *TAS1R3A* and *TAS1R3B* although the lungfish *TAS1R3B* has been  
121 pseudogenized. Furthermore, the amphibians possess two groups of *TAS1R3B* (named  
122 *TAS1R3B1* and *TAS1R3B2*; Figs. S1 and S2), suggesting that *TAS1R3B* was duplicated again at  
123 the latest before the common ancestor of amphibians.

124 Also, *TAS1R2* did not form a single clade in the tree (Fig. 1). The *TAS1R2* genes in  
125 ray-finned fishes formed a clade with *TAS1R1*, and the other *TAS1R2* group from tetrapods,  
126 lungfish, coelacanth, bowfin, and bichir was a sister of them. The paraphyletic relationship of  
127 the two *TAS1R2* groups is concordant with previous reports <sup>13</sup>. Hereafter, we refer to the major  
128 vertebrate group as *TAS1R2A* and the ray-finned fish group as *TAS1R2B* (Fig. 1). Notably, we  
129 found that the anciently diverged ray-finned fishes such as bowfin and bichir retained both  
130 *TAS1R2A* and *TAS1R2B* as well as *TAS1R1*. We assessed the likelihood of other phylogenetic  
131 relationships in which *TAS1R2s* have a single origin, and the hypotheses were significantly  
132 rejected ( $p < 10^{-6}$ , approximately unbiased test; Fig. S3). These results suggested that the  
133 *TAS1R2* genes in mammals and teleost fishes are probably paralogs. Thus, the *TAS1R*  
134 phylogenetic tree comprised a total of 10 *TAS1R* clades: *TAS1R1*, *TAS1R2A*, *TAS1R2B*,  
135 *TAS1R3A*, *TAS1R3B*, *TAS1R4*, *TAS1R5*, *TAS1R6*, *TAS1R7*, and *TAS1Rcf*. This unexpected gene  
136 diversity challenges the conventional conceptions about the evolution of the genetic basis for  
137 umami and sweet receptors.

138

### 139 **Birth-and-death evolution of the *TAS1R* family**

140 Some of the higher-level relationships among the *TAS1R* clades were supported with  
141 relatively high node support, as exemplified by the exclusive cluster of *TAS1R3* + *TAS1R4*, the  
142 clade of the other *TAS1Rs*, the clade of *TAS1R1* + *TAS1R2B* + *TAS1R2A* + *TAS1R5*, and the

143 sister relationship of this latter clade to *TAS1Rcf* (Fig. 1, Fig. S1, Fig. S2). Based on the  
144 phylogenetic relationships and the distribution of all *TAS1R* members (Fig. 1b), the most  
145 parsimonious evolutionary scenario could be deduced as follows (Fig. 2). The first *TAS1R* gene  
146 emerged in the ancestral lineage of jawed vertebrates during the period 615–473 million years  
147 ago (Mya). This ancestral *TAS1R* underwent multiple duplications to produce at least five  
148 *TAS1Rs*: *TAS1R3* (the ancestral gene of *TAS1R3A* + *TAS1R3B*), *TAS1R4*, *TAS1R6*, *TAS1R7*, and  
149 the ancestral gene of *TAS1R1* + *TAS1R2B* + *TAS1R2A* + *TAS1R5*, the latter of which corresponds  
150 to the current *TAS1Rcf* in cartilaginous fishes. In the stem lineage of bony vertebrates (473–435  
151 Mya), *TAS1R1*, *TAS1R2A*, *TAS1R2B*, and *TAS1R5* were generated via additional gene  
152 duplication events. Simultaneously, the ancestral *TAS1R3* diverged to *TAS1R3A* and *TAS1R3B*,  
153 resulting in a total of nine *TAS1Rs* in the common ancestor of bony vertebrates (Fig. 2). After  
154 the divergence of ray-finned and lobe-finned fishes ~435 Mya, a portion of the expanded  
155 *TAS1Rs* began to be differentially lost during vertebrate evolution. For example, *TAS1R7* was  
156 lost in the tetrapod ancestor, *TAS1R3B* and *TAS1R5* were lost in the amniote ancestor, and  
157 *TAS1R4* and *TAS1R6* were lost in the mammalian ancestor (Fig. 2). Thus, gene expansion before  
158 the common ancestor of bony vertebrates as well as the subsequent loss of a subset of genes  
159 have resulted in the rather dispersed distribution of *TAS1Rs* in extant species (Fig. 1b).

160

161 ***TAS1R* gene cluster retrieved by scanning understudied vertebrate genomes**

162 The simplest model for gene amplification is a tandem duplication that produces multiple  
163 genes located side-by-side<sup>16,17</sup>. However, *TAS1R1*, *TAS1R2*, and *TAS1R3* are located far from  
164 each other in both mammalian and teleost genomes. In human chromosome 1, for example,  
165 *TAS1R1* is 12 Mb distant from *TAS1R2A* and 5 Mb distant from *TAS1R3*, with many intervening  
166 genes in each case. In zebrafish, each of *TAS1R1* and *TAS1R3B* is located on different

167 chromosomes from the two copies of *TASIR2*, prompting us to hypothesize that *TASIR*  
168 members may have undergone expansion by tandem duplications in the ancestral genome,  
169 followed by subsequent translocation to distant regions during evolution. To address this  
170 possibility, the synteny of *TASIR3* and *TASIR4* was investigated among vertebrates, particularly  
171 those having the novel *TASIR*s (Fig. 3, Fig. S4). Indeed, the novel *TASIR*s were found to be  
172 located side-by-side in anole lizard, axolotl, lungfish, coelacanth, and elephant fish (Fig. 3a ).  
173 Even *TASIR2A* and *TASIR3B* are located next to each other in axolotl and bichir. This result  
174 suggested that a *TASIR* gene cluster had formed in the common ancestor of jawed vertebrates.

175 A comparison of neighboring genes revealed that the *TASIR* cluster is flanked by two genes,  
176 namely *DCL1* and *MXRA8*, in the genomes of human, chicken, axolotl, lungfish, coelacanth,  
177 bichir, and elephant fish (Fig. 3a), suggesting that these two genes were adjacent to the *TASIR*  
178 cluster in the common ancestor of jawed vertebrates. On the opposite end of the *TASIR* cluster,  
179 the gene order of *ACAP3–PUS11–LPAR6–INTS11–CPTP* may have been established in the  
180 sarcopterygian ancestor based on conservation among coelacanth and chicken and partly in  
181 lizard. Furthermore, the presence of other *TASIR*-proximal genes is also conserved even across  
182 distant chromosomal regions (Fig. S4). This suggested that a chromosomal region containing  
183 both *TASIR* and multiple neighboring genes—rather than the *TASIR* gene alone—had  
184 translocated to a different region in each lineage. Based on the inferred ancestral gene order, the  
185 unique distribution of *TASIR*s among present-day mammals and teleost fishes may have been a  
186 consequence of a combination of several events: 1) tandem duplication producing a *TASIR*  
187 cluster, 2) local translocation of a subset of *TASIR*s within a chromosome, 3) translocation of  
188 entire *TASIR*-containing regions to different chromosomes, and 4) gene loss(es) in each lineage  
189 (Fig. 3b). Moreover, lineage-specific duplication events have occurred such as *TASIR2B* in  
190 zebrafish and Fugu and *TASIR2A* in coelacanth (Fig. 1a and S4) <sup>12,13</sup>. Finally, we found that

191 some of the *TASIR*s identified have been pseudogenized; e.g., the whale shark *TASIR3* and the  
192 lungfish *TASIR3B* (Fig. 1). These observations also support the evolutionary model of the  
193 *TASIR* family presented in Fig. 3b.

194

195 **Conservation of a possible binding site for the transcription factor Oct in *TASIR4***

196 Because *TASIR4* is shared among a wide variety of vertebrates in contrast to the other novel  
197 *TASIR*s, we expected that a transcriptional regulatory mechanism might be conserved among  
198 the species. To explore existence of a possible regulatory element, the upstream sequences of  
199 the *TASIR4* open reading frames were aligned, and MEME<sup>18</sup> was used to search for  
200 transcription-factor binding motifs conserved among the species. The most significant hit was  
201 the binding motif for the Oct family ( $p < 10^{-12}$  and  $p < 10^{-7}$  for Oct-4 and Oct-1, respectively).  
202 At least one sequence of the known Oct-binding motif 'ATGCAAAT' is conserved among  
203 cartilaginous fishes, coelacanth, bichir, and lizards in the region upstream of *TASIR4* (Fig. 3c,  
204 3d). Although little is known about the transcriptional regulatory network in taste receptor cells  
205 (TRCs), one known transcription factor responsible for TRC differentiation is Skn-1a, an Oct  
206 factor also known as Oct-11, Epoc-1, or Pou2f3<sup>19</sup>. In mammals, Skn-1a is exclusively  
207 expressed in umami, sweet, and bitter TRCs, and loss of Skn-1a results in the complete absence  
208 of these taste receptor cells<sup>19,20</sup>. This finding suggested that *TASIR4* expression is governed by  
209 a conserved regulatory mechanism involving an Oct transcription factor, possibly Skn-1a.  
210 Although Oct binding sites were not observed in the other novel *TASIR*s, these findings may  
211 help to elucidate the molecular mechanisms underlying the conserved and/or lineage-specific  
212 expression of a variety of *TASIR*s in TRCs.

213

214 **T1R diversity enhances the range of taste sensation**

215 To examine which T1R receptors can form heterodimers and which ligands they respond to,  
216 we performed a cell-based functional analysis for the T1Rs of bichir, which possesses two  
217 newly discovered T1R groups (T1R4 and T1R7) and four known T1R groups (T1R1, T1R2A,  
218 T1R2B, and T1R3B). It has been proposed that T1R1 and T1R2 are responsible for ligand  
219 recognition <sup>21</sup>, whereas T1R3 plays a subsidiary role, such as intersubunit conformational  
220 coupling, G-protein coupling, or membrane trafficking of T1R heterodimers <sup>22</sup>. Because *TAS1R4*  
221 was found to be present in all vertebrates that harbor the other novel *TAS1Rs* (Fig. 1b), T1R4  
222 could be assumed to form a heterodimer with another T1R. We combined either T1R3B or  
223 T1R4 with another T1R (T1R1, T1R2A, T1R2B, or T1R7) in the functional analysis (Fig. 4a).  
224 Among these receptor pairs, strong responses to amino acids were detected for T1R1/T1R3B,  
225 T1R2B/T1R3B, and T1R4/T1R7 (Fig. 4b and Fig. S5). For bichir T1R2A, its combination with  
226 T1R3B or T1R4 did not yield a response to any of the tastants examined (Fig. S5a). Responses  
227 were not observed when T1R4 or T1R7 alone was used (Fig. S5a), suggesting that these newly  
228 discovered T1Rs function as an obligate heterodimers in bichir.

229 The bichir T1R7/T1R4 responded strongly to branched-chain amino acids (BCAA; Ile, Val,  
230 and Leu) and Phe, whereas T1R1/T1R3B and T1R2B/T1R3B responded strongly to basic amino  
231 acids (Arg and His) (Fig. 4b and 4c). Fishes have 12 nutritionally essential amino acids (Cys,  
232 His, Ile, Leu, Lys, Met, Phe, Arg, Thr, Trp, Tyr, and Val) <sup>23</sup>, 9 of which are included in the 17  
233 amino acids that were tested in the T1R functional analysis. Notably, all six amino acids to  
234 which the bichir T1Rs responded are essential amino acids ( $p < 0.05$ ; one-sided Fisher's exact  
235 test), suggesting that the bichir T1Rs may sense essential amino acids in foods by taking  
236 advantage of the ability to perceive BCAA via the T1R4-related receptor.

237 Bichir T1R1/T1R3B also responded to sucralose, a structural analog of sucrose. Although

238 only T1R2A/T1R3A is responsible for sugar perception in mammals and reptiles <sup>24</sup>, we  
239 previously demonstrated that T1R1/T1R3A of birds has gained the ability to detect sugars <sup>25,26</sup>.  
240 Also, T1R2B/T1R3B of two teleost fishes, namely carp <sup>27</sup> and gilthead seabream <sup>28</sup>, can detect  
241 sugars at high concentrations (100–200 mM). In addition, we found that bichir T1R7/T1R4  
242 could respond to GMP, although a previous study reported that neither T1R1/T1R3B nor  
243 T1R2B/T1R3B of medaka fish nor T1R2B/T1R3B of zebrafish could be activated by  
244 5'-ribonucleotides <sup>10</sup>. Therefore, the origin and evolution of sugar and nucleotide taste  
245 perception may need to be reconsidered based on future genetic and functional analyses of  
246 T1Rs.

247 We also performed a functional analysis of elephant fish T1Rs. Three genes of the T1Rcf  
248 clade, namely T1Rcf-1, T1Rcf-2, and T1Rcf-3, were tested in combination with T1R3 and T1R4,  
249 and only the response of the T1Rcf-2/T1R4 pair could be detected (Fig. 4d–f, Fig. S5b). This  
250 combination responded to a relatively broad range of amino acids, including both BCAA (Val,  
251 Leu) and basic amino acids (Arg, Lys). The T1Rs of mammals and teleosts have little or no  
252 response to BCAA but can respond to basic amino acids <sup>5,10,29</sup>. The observed strong response of  
253 bichir T1R7/T1R4 and elephant fish T1Rcf-2/T1R4 to BCAA may reflect functional  
254 characteristics of the novel T1Rs involving T1R4 and possibly that of ancient T1Rs in the  
255 vertebrate ancestor.

256

### 257 **Expression of the novel T1Rs in taste receptor cells**

258 To investigate whether the novel T1Rs are indeed expressed in TRCs, we performed *in situ*  
259 hybridization with sections of the lips and gill rakers of bichir (Fig. 5a). T1R1, T1R2B, T1R3B,  
260 T1R4, and T1R7 were expressed in subsets of TRCs. Genes encoding downstream signal  
261 transduction molecules, such as TRPM5, Gαia1, and Gα14, were also highly expressed in

262 subsets of TRCs in the lips and gill rakers. The signal frequencies for TRPM5, G $\alpha$ 1, and  
263 G $\alpha$ 14 were higher than those for T1Rs.

264 To examine the localization of T1Rs in TRCs, we next performed double-label fluorescence  
265 *in situ* hybridization. This analysis confirmed the overlap of the signal for T1R1 with that of  
266 T1R3B, T1R2B with T1R3B, and T1R7 with T1R4 (Fig. 5b). These results suggested that  
267 T1R1/T1R3B, T1R2B/T1R3B, and T1R7/T1R4 function as heterodimers, in accordance with  
268 the results of our functional assays.

269

## 270 **Discussion**

271 The complex history of the T1R/TAS1R family includes ancient gene expansions followed  
272 by independent lineage-specific losses, which contrasts with conventional wisdom that  
273 essentially only three members were retained during evolution<sup>11,30</sup>. The evolution of certain  
274 other chemoreceptors, such as the T2R (or TAS2R) bitter-taste receptor family and olfactory  
275 receptors, followed a birth-and-death process<sup>31</sup>. In this mode of evolution, tens or hundreds of  
276 the receptor family/superfamily genes have undergone lineage-specific extensive duplication  
277 followed by frequent gene loss via natural selection<sup>30</sup>. Our results suggest that a similar  
278 process—although less extensive than what occurred for other chemoreceptors—contributed to  
279 the phylogenetic and functional expansion of the T1R family early during evolution. *TAS1Rs*  
280 were not subjected to extensive birth-and-death evolution possibly because T1R ligands are  
281 limited to amino acids, sugars, and nucleotides in contrast to T2Rs and olfactory receptors that  
282 respond to a wider range of ligands/stimulants. It is also possible that the ancient expansion  
283 might have contributed to an alternate use of T1Rs in other tissues because certain G  
284 protein-coupled receptors (including T1Rs) are expressed in the gut of mammals and fishes<sup>32,33</sup>  
285 although their functions remain unresolved.

286 The functional combinations of the bichir T1R7/T1R4 and the elephant fish T1Rcf-2/T1R4  
287 suggest that T1R4 may have a similar role to T1R3 by forming a functional heterodimer with  
288 another novel T1R such as T1R5, T1R6, T1R7, or T1Rcf. This model is also supported by the  
289 fact that species with either *TAS1R5*, *TAS1R6*, *TAS1R7*, or *TAS1Rcf* also have *TAS1R4* (Fig. 1b)  
290 and that *TAS1R4* is phylogenetically the sister group of *TAS1R3* (Fig. 1a). Therefore, the  
291 common ancestor of bony vertebrates with at least nine T1Rs likely had two types of  
292 heterodimeric T1R receptors, namely T1R3- and T1R4-dependent receptors. This relatively  
293 wide variety of possible T1R combinations involving two duplicated genes of T1R2 (A and B)  
294 and T1R3 (A and B) might have contributed to the diversification of taste sensation.

295 Our findings provoke new questions, one of which is why many *TAS1R* genes—particularly  
296 the T1R4-related receptors—have been frequently lost and many species have come to rely  
297 predominantly on T1R3-dependent receptors (Fig. 2). One possible reason is that the loss of one  
298 or more T1Rs might have been triggered by dietary changes that occurred in the ancestral  
299 lineages. This is plausible because previous studies reported losses of *TAS1Rs* and *TAS2Rs* in  
300 many land vertebrates, presumably owing to specific dietary shifts<sup>34-36</sup>. Also, the behavior of  
301 swallowing foods whole, i.e., without mastication, might have reduced the necessity for taste  
302 sense, which may have led to T1R loss, as previously discussed with respect to mammals<sup>35,37</sup>  
303 and reptiles<sup>38</sup>. Alternatively, it is possible that T1R3-dependent receptors have acquired greater  
304 functional flexibility and/or evolvability than other T1Rs; i.e., various tastants might have been  
305 detected by evolutionary tuning of the sequences and structures of the T1R3-dependent  
306 receptors rather than additional gene duplication. Such cases are indeed known for land  
307 vertebrates such as primates<sup>7</sup> and birds<sup>25,26</sup>. To address these issues, it will be essential to carry  
308 out functional analyses of the newly discovered T1Rs in addition to the known T1R1/T1R3 and  
309 T1R2/T1R3 for a broad range of vertebrates, as our current results demonstrate. For example,

310 the response to BCAA is a previously unreported characteristic shared between the bichir  
311 T1R7/T1R4 and elephant fish T1Rcf-2/T1R4 (Fig. 4). These results will provide the first insight  
312 into the sensory characteristics of an ancestor of vertebrates. The bichir T1Rs also responded to  
313 other essential amino acids, a sucrose analog, and a nucleotide. Future analysis will resolve  
314 whether the functions indeed reflect the characteristics of the ancestral species.

315 Thus, by demonstrating the unexpected diversity and unique evolutionary process of the  
316 T1R family, our results set the stage for understanding the evolutionary-scale changes in taste  
317 sense in vertebrates. Our understanding of taste sense will be further enhanced by clarifying  
318 T1R repertoires in each species, their tissue-specific expression, transcriptional regulatory  
319 mechanisms, and protein structures. Revealing the functional and structural diversity of the  
320 novel T1Rs will help us elucidate the molecular mechanism(s) by which human T1Rs recognize  
321 palatable tastes.

322

323

324 **Materials and Methods**

325

326 **Identification of *TAS1R* genes from the genome and RNA-seq data in vertebrates**

327 We used genome and transcriptome data as well as related raw sequence reads for a broad  
328 range of vertebrates (Table S1). A tblastn search was carried out using amino acid sequences of  
329 the validated *TAS1R*s in human, chicken, and zebrafish as queries. In the blast hit scaffolds,  
330 exon regions were predicted using AUGUSTUS ver. 3.2.3<sup>39</sup>, followed by an evaluation of the  
331 exon-intron boundaries by aligning the genome sequences with the query *TAS1R* sequences and  
332 by the GT/AG rule. Because frequent base errors were observed in the genome assembly for  
333 axolotl, sequence correction was needed for our *TAS1R* identification. We retrieved the raw

334 reads of the public genome data and RNA sequencing data corresponding to the *TAS1R* exons  
335 using bowtie2<sup>40</sup> and blastn and used that data to correct the *TAS1R* sequences by checking the  
336 alignment. The *TAS1R* amino acid sequences identified for axolotl, coelacanth, and bichir were  
337 used as queries for an additional tblastn search of other vertebrates.

338

### 339 **Phylogenetic analysis**

340 Amino acid sequences of T1Rs were aligned using MAFFT ver. 7.427 with the ginsi option  
341<sup>41</sup>, followed by manual adjustment. Hypervariable and unalignable regions were removed using  
342 prequal<sup>42</sup>, and a maximum likelihood tree was constructed using RAxML ver. 8.2.12 with the  
343 JTT-CAT model with 1,000 bootstrap replicates<sup>43</sup>. The G protein-coupled receptor family C  
344 group 6 member A (GPRC6A) genes, which are the closest relative of T1Rs<sup>44</sup>, were used as the  
345 outgroup. Bayesian tree inference was conducted with MrBayes 3.2.6 with the JTT-F +  $\Gamma_4$   
346 model<sup>45</sup>. Two simultaneous runs were carried out with 10,000,000 generations, of which  
347 2,500,000 were discarded as burn-in, and convergence was assessed with Tracer<sup>46</sup>. Trees were  
348 visualized with iTOL<sup>47</sup>. Alternative tree topologies were evaluated with the approximately  
349 unbiased test using CONSEL v0.20<sup>48</sup>.

350

### 351 **Synteny analysis**

352 The synteny of genes proximal to the novel T1Rs was analyzed using annotations available  
353 in Ensembl 97<sup>49</sup> for human (GRCh38), chicken (GRCg6a), anole lizard (AnoCar2.0),  
354 coelacanth (LatCha1), zebrafish (GRCz11), and spotted gar (LepOcu1). For bichir, gene  
355 annotation data generated by Cufflinks, which will be published elsewhere, was used for our  
356 synteny analysis. The gene annotation for axolotl was obtained from the Axolotl-omics website  
357 (AmexG\_3.0.0)<sup>50</sup>. NCBI annotation was referred to for the West African lungfish (PAN1.0) and

358 elephant fish (*Callorhinchus\_milii*-6.1.3). Novel *TAS1Rs* were added if they were not accurately  
359 identified in the public annotation data.

360

361 **Survey of conserved motifs in the sequence upstream of *TAS1R4***

362 Sequences up to 300 bp upstream of the *TAS1R4* open reading frames were collected for  
363 whale shark, bamboo shark, cloudy catshark, elephant fish, bichir, coelacanth, axolotl, two-lined  
364 caecilian, Japanese gecko, anole lizard, and central bearded dragon. The sequences were aligned  
365 using MAFFT <sup>41</sup> and then used for MEME analysis <sup>18</sup> to search for a maximum of three  
366 conserved sequence motifs. The motifs discovered by MEME were then used for comparison  
367 with known transcription-factor binding motifs in TRANSFAC v11.3 using STAMP <sup>51</sup>. The  
368 known Oct-11/Pou2f3 motif was obtained from JASPAR <sup>52</sup>.

369

370 **Cloning fish *TAS1Rs***

371 *TAS1R1*, *TAS1R2A*, *TAS1R2B*, *TAS1R3B*, *TAS1R4*, and *TAS1R7* were amplified by PCR from  
372 the genomic DNA or cDNA of bichir (*Polypterus senegalus*). *TAS1Rcf-1*, *TAS1Rcf-2*, *TAS1Rcf-3*,  
373 *TAS1R3*, and *TAS1R4* were amplified by PCR from the genomic DNA of elephant fish  
374 (*Callorhinchus milii*). PCR and Sanger sequencing for the coding sequences of their *TAS1R*  
375 genes were performed using specific primers designed based on the annotation from the whole  
376 genome assemblies. The PCR products of the exons were assembled into one full-length  
377 sequence using overlapping PCR (In-fusion cloning, Clontech) for each *TAS1R* and were then  
378 subcloned into the pEAK10 expression vector (Edge Biosystems, Gaithersburg, MD).

379

380 **Functional analysis of T1Rs**

381 Responses of the T1Rs to various taste-associated stimulants were measured by using a

382 heterologous expression system<sup>29</sup>. Briefly, HEK293T cells were transiently co-transfected with  
383 an expression vector for an individual T1R along with rat G15i2 and mt-apoclytin-II and then  
384 exposed to taste stimuli, and luminescence intensity was measured using a FlexStation 3  
385 microplate reader (Molecular Devices). The response in each well was calculated based on the  
386 area under the curve and expressed as relative light units. Data were collected from three  
387 independent experiments carried out in duplicate. We adapted a strict definition for the positive  
388 response as over 10,000 relative light units and statistically significant differences against  
389 control (buffer) with a false discovery rate (q) of <0.01 (one-sided *t*-test).

390

391 ***In situ* hybridization**

392 *In situ* hybridization was performed as previously described<sup>9</sup>. In brief, fresh-frozen sections  
393 (10-μm thick) of bichir jaw tissue were placed on MAS-coated glass slides (Matsunami Glass,  
394 Osaka, Japan) and fixed with 4% paraformaldehyde in phosphate-buffered saline.  
395 Prehybridization (58°C, 1 h), hybridization (58°C, for two overnights), washing (58°C, 0.2×  
396 saline-sodium citrate), and development (NBT-BCIP) were performed using  
397 digoxigenin-labeled probes. Images of stained sections were obtained using a fluorescence  
398 microscope (DM6 B, Leica, Nussloch, Germany) equipped with a cooled CCD digital camera  
399 (DFC7000 T, Leica). Double-label fluorescence *in situ* hybridization was performed using  
400 digoxigenin- and fluorescein-labeled RNA probes. Each labeled probe was sequentially detected  
401 by incubation with a peroxidase-conjugated antibody against digoxigenin and  
402 peroxidase-conjugated anti-fluorescein (Roche, Indianapolis, IN, USA) followed by incubation  
403 with TSA-Alexa Fluor 555 and TSA-Alexa Fluor 488 (Invitrogen, Carlsbad, CA, USA) using  
404 the tyramide signal amplification method. Images of stained sections were obtained using a  
405 confocal laser-scanning microscope (LSM 800; ZEISS, Oberkochen, Germany). The entire

406 coding regions for the six T1Rs and two G protein  $\alpha$  subunits as well as the partial coding  
407 region for Trpm5, all of which were amplified from bichir cDNA synthesized from lip tissue,  
408 were used as probes for *in situ* hybridization.

409

410 **Acknowledgments**

411 We thank Dr. Susumu Hyodo (The University of Tokyo) for providing the *Callorhinchus*  
412 *mili* sample. We also thank Erina Kamiya (School of Life Science and Technology, Tokyo  
413 Institute of Technology) for technical assistance. The authors acknowledge Open Facility Center,  
414 Tokyo Institute of Technology, for sequencing assistance. Computations were partially  
415 performed on the supercomputer systems at the ROIS National Institute of Genetics and the  
416 Institute of Statistical Mathematics. This study was supported by JSPS KAKENHI Grant  
417 Number 19H03272 (to H.N.), 18K14427, 20H02941, and 23H02168 (to Y.T.), Research Project  
418 Grant(B) by Institute of Science and Technology, Meiji University (to Y.I.), and the Lotte  
419 Shigemitsu Prize (to Y.T. and Y.I.).

420

421 **Author contributions**

422 H.N., Y.T., and Y.I. conceived and supervised the study. H.N., T.K., S.K., and M.O. analyzed the  
423 vertebrate genomes. H.N. performed the phylogenetic and synteny analyses. Y.T. performed the  
424 functional assay. K.K., A.G., K.H., S.O., and Y.I. performed *in situ* hybridization experiments.  
425 H.N., Y.T., and Y.I. wrote the original draft of the manuscript. H.N., Y.T., Y.I., S.K., and M.O.  
426 edited the manuscript.

427

428 **Competing interests**

429 The authors declare no competing interests.

430

431 **References**

432

433 1 Trivedi, B. P. Gustatory system: the finer points of taste. *Nature* **486**, S2-3,  
434 doi:10.1038/486S2a (2012).

435 2 Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. Common sense about taste: from mammals  
436 to insects. *Cell* **139**, 234-244, doi:10.1016/j.cell.2009.10.001 (2009).

437 3 Li, X. *et al.* Human receptors for sweet and umami taste. *Proc Natl Acad Sci U S A* **99**,  
438 4692-4696, doi:10.1073/pnas.072090199 (2002).

439 4 Hummel, T. & Welge-Luhsen, A. *Taste and smell : an update*. (Karger, 2006).

440 5 Nelson, G. *et al.* An amino-acid taste receptor. *Nature* **416**, 199-202, doi:10.1038/nature726  
441 (2002).

442 6 Zhao, G. Q. *et al.* The receptors for mammalian sweet and umami taste. *Cell* **115**, 255-266,  
443 doi:10.1016/s0092-8674(03)00844-4 (2003).

444 7 Toda, Y. *et al.* Evolution of the primate glutamate taste sensor from a nucleotide sensor.  
445 *Curr Biol* **31**, 4641-4649 e4645, doi:10.1016/j.cub.2021.08.002 (2021).

446 8 Nelson, G. *et al.* Mammalian sweet taste receptors. *Cell* **106**, 381-390,  
447 doi:10.1016/s0092-8674(01)00451-2 (2001).

448 9 Ishimaru, Y. *et al.* Two families of candidate taste receptors in fishes. *Mech Dev* **122**,  
449 1310-1321, doi:10.1016/j.mod.2005.07.005 (2005).

450 10 Oike, H. *et al.* Characterization of ligands for fish taste receptors. *J Neurosci* **27**,  
451 5584-5592, doi:10.1523/JNEUROSCI.0651-07.2007 (2007).

452 11 Shi, P. & Zhang, J. Contrasting modes of evolution between vertebrate sweet/umami  
453 receptor genes and bitter receptor genes. *Mol Biol Evol* **23**, 292-300,  
454 doi:10.1093/molbev/msj028 (2006).

455 12 Bachmanov, A. A. *et al.* Genetics of taste receptors. *Curr Pharm Des* **20**, 2669-2683,  
456 doi:10.2174/13816128113199990566 (2014).

457 13 Picone, B. *et al.* Taste and odorant receptors of the coelacanth--a gene repertoire in  
458 transition. *J Exp Zool B Mol Dev Evol* **322**, 403-414, doi:10.1002/jez.b.22531 (2014).

459 14 Hara, Y. *et al.* Madagascar ground gecko genome analysis characterizes asymmetric fates  
460 of duplicated genes. *BMC Biol* **16**, 40, doi:10.1186/s12915-018-0509-4 (2018).

461 15 Sharma, K., Syed, A. S., Ferrando, S., Mazan, S. & Korschning, S. I. The Chemosensory  
462 Receptor Repertoire of a True Shark Is Dominated by a Single Olfactory Receptor Family.  
463 *Genome Biol Evol* **11**, 398-405, doi:10.1093/gbe/evz002 (2019).

464 16 Ohno, S. *Evolution by Gene Duplication*. (Springer, Berlin, Heidelberg, 1970).

465 17 Lewis, E. B. A gene complex controlling segmentation in *Drosophila*. *Nature* **276**, 565-570,  
466 doi:10.1038/276565a0 (1978).

467 18 Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. *Nucleic Acids Res*  
468 **43**, W39-49, doi:10.1093/nar/gkv416 (2015).

469 19 Matsumoto, I., Ohmoto, M., Narukawa, M., Yoshihara, Y. & Abe, K. Skn-1a (Pou2f3)  
470 specifies taste receptor cell lineage. *Nat Neurosci* **14**, 685-687, doi:10.1038/nn.2820  
471 (2011).

472 20 Yamashita, J., Ohmoto, M., Yamaguchi, T., Matsumoto, I. & Hirota, J. Skn-1a/Pou2f3  
473 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice.  
474 *PLoS One* **12**, e0189340, doi:10.1371/journal.pone.0189340 (2017).

475 21 Zhang, F. *et al.* Molecular mechanism for the umami taste synergism. *Proc Natl Acad Sci U  
476 S A* **105**, 20930-20934, doi:10.1073/pnas.0810174106 (2008).

477 22 Nuemket, N. *et al.* Structural basis for perception of diverse chemical substances by T1r  
478 taste receptors. *Nat Commun* **8**, 15530, doi:10.1038/ncomms15530 (2017).

479 23 Hou, Y. & Wu, G. Nutritionally Essential Amino Acids. *Adv Nutr* **9**, 849-851,  
480 doi:10.1093/advances/nmy054 (2018).

481 24 Liang, Q. *et al.* T1R2-mediated sweet sensing in a lizard. *Curr Biol* **32**, R1302-R1303,  
482 doi:10.1016/j.cub.2022.10.061 (2022).

483 25 Baldwin, M. W. *et al.* Sensory biology. Evolution of sweet taste perception in  
484 hummingbirds by transformation of the ancestral umami receptor. *Science* **345**, 929-933,  
485 doi:10.1126/science.1255097 (2014).

486 26 Toda, Y. *et al.* Early origin of sweet perception in the songbird radiation. *Science* **373**,  
487 226-231, doi:10.1126/science.abf6505 (2021).

488 27 Yuan, X. C. *et al.* Expansion of sweet taste receptor genes in grass carp (*Ctenopharyngodon  
489 idellus*) coincided with vegetarian adaptation. *BMC Evol Biol* **20**, 25,  
490 doi:10.1186/s12862-020-1590-1 (2020).

491 28 Angotzi, A. R., Puchol, S., Cerdá-Reverter, J. M. & Morais, S. Insights into the Function  
492 and Evolution of Taste 1 Receptor Gene Family in the Carnivore Fish Gilthead Seabream  
493 (*Sparus aurata*). *Int J Mol Sci* **21**, doi:10.3390/ijms21207732 (2020).

494 29 Toda, Y. *et al.* Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami  
495 taste receptor). *J Biol Chem* **288**, 36863-36877, doi:10.1074/jbc.M113.494443 (2013).

496 30 Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene  
497 repertoires: roles of chance and necessity. *Nat Rev Genet* **9**, 951-963, doi:10.1038/nrg2480  
498 (2008).

499 31 Nei, M. & Rooney, A. P. Concerted and birth-and-death evolution of multigene families.  
500 *Annu Rev Genet* **39**, 121-152, doi:10.1146/annurev.genet.39.073003.112240 (2005).

501 32 Jang, H. J. *et al.* Gut-expressed gustducin and taste receptors regulate secretion of  
502 glucagon-like peptide-1. *Proc Natl Acad Sci U S A* **104**, 15069-15074,  
503 doi:10.1073/pnas.0706890104 (2007).

504 33 Calo, J. *et al.* First evidence for the presence of amino acid sensing mechanisms in the fish  
505 gastrointestinal tract. *Sci Rep* **11**, 4933, doi:10.1038/s41598-021-84303-9 (2021).

506 34 Antinucci, M. & Risso, D. A Matter of Taste: Lineage-Specific Loss of Function of Taste  
507 Receptor Genes in Vertebrates. *Front Mol Biosci* **4**, 81, doi:10.3389/fmolb.2017.00081  
508 (2017).

509 35 Jiang, P. *et al.* Major taste loss in carnivorous mammals. *Proc Natl Acad Sci U S A* **109**,  
510 4956-4961, doi:10.1073/pnas.1118360109 (2012).

511 36 Liu, G. *et al.* Differentiated adaptive evolution, episodic relaxation of selective constraints,  
512 and pseudogenization of umami and sweet taste genes TAS1Rs in catarrhine primates.  
513 *Front Zool* **11**, 79, doi:10.1186/s12983-014-0079-4 (2014).

514 37 Feng, P., Zheng, J., Rossiter, S. J., Wang, D. & Zhao, H. Massive losses of taste receptor  
515 genes in toothed and baleen whales. *Genome Biol Evol* **6**, 1254-1265,  
516 doi:10.1093/gbe/evu095 (2014).

517 38 Feng, P. & Liang, S. Molecular evolution of umami/sweet taste receptor genes in reptiles.  
518 *PeerJ* **6**, e5570, doi:10.7717/peerj.5570 (2018).

519 39 Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in  
520 eukaryotes that allows user-defined constraints. *Nucleic Acids Res* **33**, W465-467,  
521 doi:10.1093/nar/gki458 (2005).

522 40 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**,  
523 357-359, doi:10.1038/nmeth.1923 (2012).

524 41 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:  
525 improvements in performance and usability. *Mol Biol Evol* **30**, 772-780,  
526 doi:10.1093/molbev/mst010 (2013).

527 42 Whelan, S., Irisarri, I. & Burki, F. PREQUAL: detecting non-homologous characters in sets  
528 of unaligned homologous sequences. *Bioinformatics* **34**, 3929-3930,  
529 doi:10.1093/bioinformatics/bty448 (2018).

530 43 Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of  
531 large phylogenies. *Bioinformatics* **30**, 1312-1313, doi:10.1093/bioinformatics/btu033  
532 (2014).

533 44 Kuang, D. *et al.* Ancestral reconstruction of the ligand-binding pocket of Family C G  
534 protein-coupled receptors. *Proc Natl Acad Sci U S A* **103**, 14050-14055,  
535 doi:10.1073/pnas.0604717103 (2006).

536 45 Ronquist, F. *et al.* MrBayes 3.2: efficient Bayesian phylogenetic inference and model

537 choice across a large model space. *Syst Biol* **61**, 539-542, doi:10.1093/sysbio/sys029  
538 (2012).

539 46 Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior  
540 Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Syst Biol* **67**, 901-904,  
541 doi:10.1093/sysbio/syy032 (2018).

542 47 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic  
543 tree display and annotation. *Nucleic Acids Res* **49**, W293-W296, doi:10.1093/nar/gkab301  
544 (2021).

545 48 Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the confidence of phylogenetic  
546 tree selection. *Bioinformatics* **17**, 1246-1247, doi:10.1093/bioinformatics/17.12.1246  
547 (2001).

548 49 Cunningham, F. *et al.* Ensembl 2022. *Nucleic Acids Res* **50**, D988-D995,  
549 doi:10.1093/nar/gkab1049 (2022).

550 50 Nowoshilow, S. & Tanaka, E. M. Introducing [www.axolotl-omics.org](http://www.axolotl-omics.org) - an integrated  
551 -omics data portal for the axolotl research community. *Exp Cell Res* **394**, 112143,  
552 doi:10.1016/j.yexcr.2020.112143 (2020).

553 51 Mahony, S. & Benos, P. V. STAMP: a web tool for exploring DNA-binding motif  
554 similarities. *Nucleic Acids Res* **35**, W253-258, doi:10.1093/nar/gkm272 (2007).

555 52 Castro-Mondragon, J. A. *et al.* JASPAR 2022: the 9th release of the open-access database  
556 of transcription factor binding profiles. *Nucleic Acids Res* **50**, D165-D173,  
557 doi:10.1093/nar/gkab1113 (2022).

558

559 **Legends to Figures**

560

561 **Fig. 1. Phylogenetic tree and the revised classification of *TAS1R* members.**

562 **a**, Maximum-likelihood tree for amino acid sequences inferred from *TAS1R*s for 21 jawed  
563 vertebrates constructed with the JTT-CAT model in RAxML. Colored circles in each node  
564 represent bootstrap probabilities calculated with 1,000 replications, whereas nodes with low  
565 support (bootstrap probability < 60) have no circles. Species classification is represented with  
566 colored highlighting at the tips of the tree. GPRC6A was used as an outgroup (not shown). **b**,  
567 Distribution of *TAS1R* members among 37 chordates. The color of circles corresponds to the  
568 colored highlighting in panel ‘a’ and indicates the presence of *TAS1R* members in the genome  
569 assemblies of the various chordates. Phylogenetic relationships among species and among  
570 *TAS1R*s are shown on the left and top, respectively. *TAS1Rcf* of cartilaginous fishes is the  
571 ortholog of the *TAS1R1/2A/2B/5* clade and is shown as a circle with assorted colors. Similarly,  
572 *TAS1R3* of cartilaginous fishes is shown with two shades of green that represent *TAS1R3A* and  
573 *TAS1R3B*. Circles with asterisks denote putative pseudogenes.

574

575 **Fig. 2. Birth-and-death history of the *TAS1R* family genes during vertebrate evolution.**

576 The color key indicates the names of the various *TAS1R* members. Filled circles on the branches  
577 indicate the presence of the *TAS1R* members, whereas open circles indicate their absence, as  
578 estimated based on the phylogenetic tree (Fig. 1a) and distribution among vertebrates (Fig. 1a).  
579 Arrowheads above open circles indicate that the *TAS1R* member was lost at the branch.  
580 Geological periods and ages (millions of years ago, Mya) are shown at the bottom. Taxon names  
581 are shown below branches. Species-specific gene duplication events for each *TAS1R* were  
582 ignored. Illustrations of the species, such as Kikunae Ikeda as a representative of humans, are

583 shown on the right.

584

585 **Fig. 3. Synteny around *TASIR*s and conserved Oct-like motifs in the *TASIR4* upstream**  
586 **regions across vertebrates.**

587 **a**, Synteny around each *TASIR* gene cluster is partly conserved across representative vertebrates.

588 *TASIR*s are represented by black polygons, and those with asterisks are putative pseudogenes.

589 Colored polygons indicate genes shared among species, and gray color represents genes not  
590 shared among the species or unknown. The species tree is shown on the left. The deduced gene  
591 orders in common ancestors of Sarcopterygii and jawed vertebrates are shown at the bottom. **b**,

592 Proposed model for the expansion of *TASIR* genes across distant chromosomal regions during

593 evolution. **c**, Conserved motifs located upstream of *TASIR4*. Sequence alignment of the  
594 upstream region of the *TASIR4* open reading frame revealed two conserved Oct-like  
595 transcription-factor binding motifs (blue shading). Numbers represent nucleotide positions from  
596 the *TASIR4* start codon site. The asterisk indicates one of the motifs that significantly resembles  
597 the Oct-factor binding motif. **d**, Sequence logo for the conserved motif denoted with the asterisk

598 in (c). Known binding motifs of Oct-1 (retrieved from TRANSFAC) and  
599 Oct-11/Pou2f3/Skn-1a/Epoc-1 (retrieved from JASPAR) are compared.

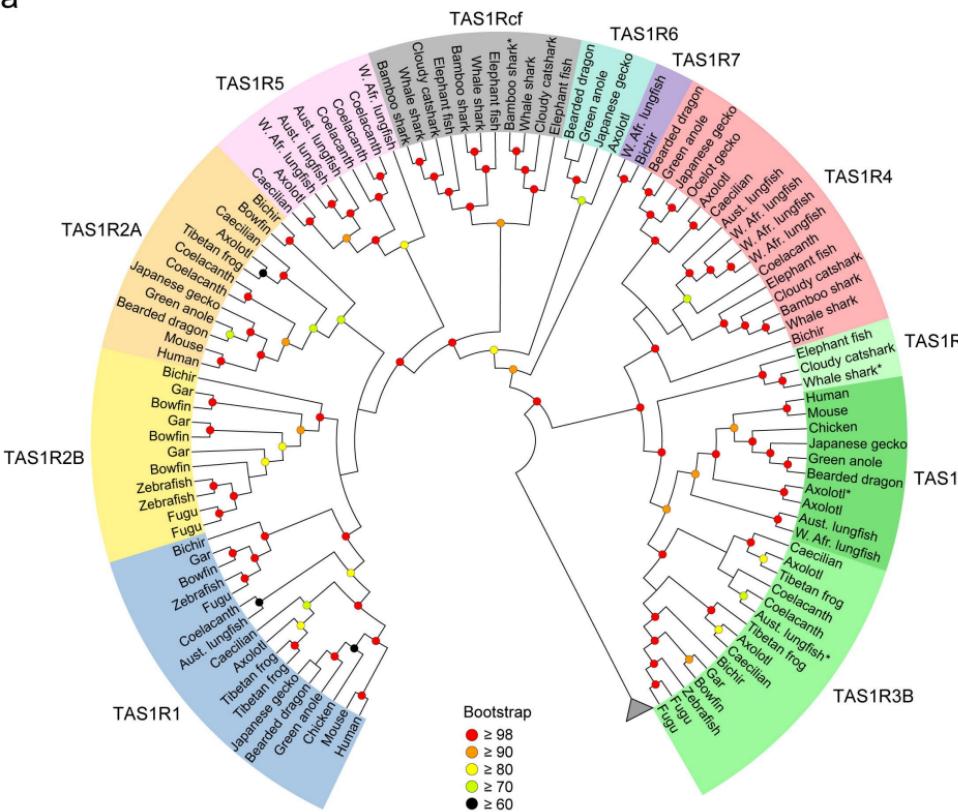
600

601 **Fig. 4. Functional analysis of T1Rs from bichir and elephant fish.**

602 **a**, T1R repertoire in bichir and their combinations used for the functional analysis. n.d.; not

603 detected for any ligands tested. **b**, Responses of three combinations of T1R1/T1R3B (top),  
604 T1R2B/T1R3B (middle), and T1R7/T1R4 (bottom) to each of 17 amino acids (50 mM), nucleic  
605 acids (10 mM), sugars and sucralose (100 mM). Values represent the mean  $\pm$  standard error of  
606 six independent experiments performed with duplicate samples. \*\*: >10,000 relative light units

607 with a false discovery rate (q) of <0.01; \*\*\*: >10,000 relative light units with q < 0.001. Amino  
608 acids that are essential in fishes are highlighted with yellow. **c**, Dose-response curves for  
609 T1R1/T1R3B (top), T1R2/T1R3B (middle), and T1R4/T1R7 (bottom) to three basic amino  
610 acids (Arg, His, and Lys; blue), two branched-chain amino acids (Ile and Val; light blue), and an  
611 artificial sweetener (sucralose; orange). Values represent the mean  $\pm$  standard error of six  
612 independent experiments performed with duplicate samples. **d-f**, Same as a-c for elephant fish  
613 and the functional analysis of T1Rcf-2/T1R4.


614

615 **Fig. 5. *In situ* hybridization of T1Rs in taste receptor cells of bichir.**

616 **a**, Expression of six T1Rs and three marker genes in sagittal sections. Yellow arrowheads  
617 indicate taste receptor cells expressing the various genes. Scale bar: 50  $\mu$ m. **b**, Double-label  
618 fluorescence *in situ* hybridization for the combinations of T1R1/T1R3B (top), T1R2B/T1R3B  
619 (middle), and T1R7/T1R4 (bottom) in the sections. White arrowheads indicate coexpressing  
620 cells. Scale bar: 50  $\mu$ m.

621

a



b

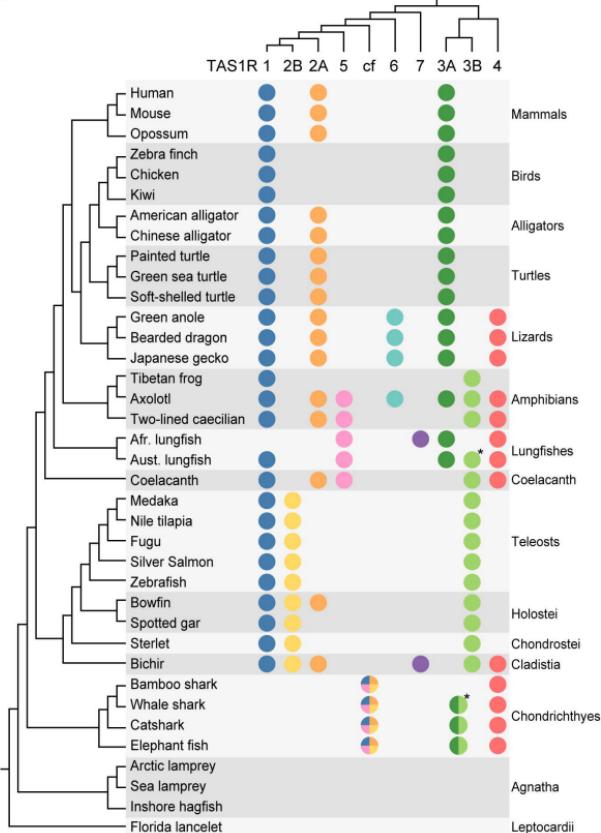



Figure 1

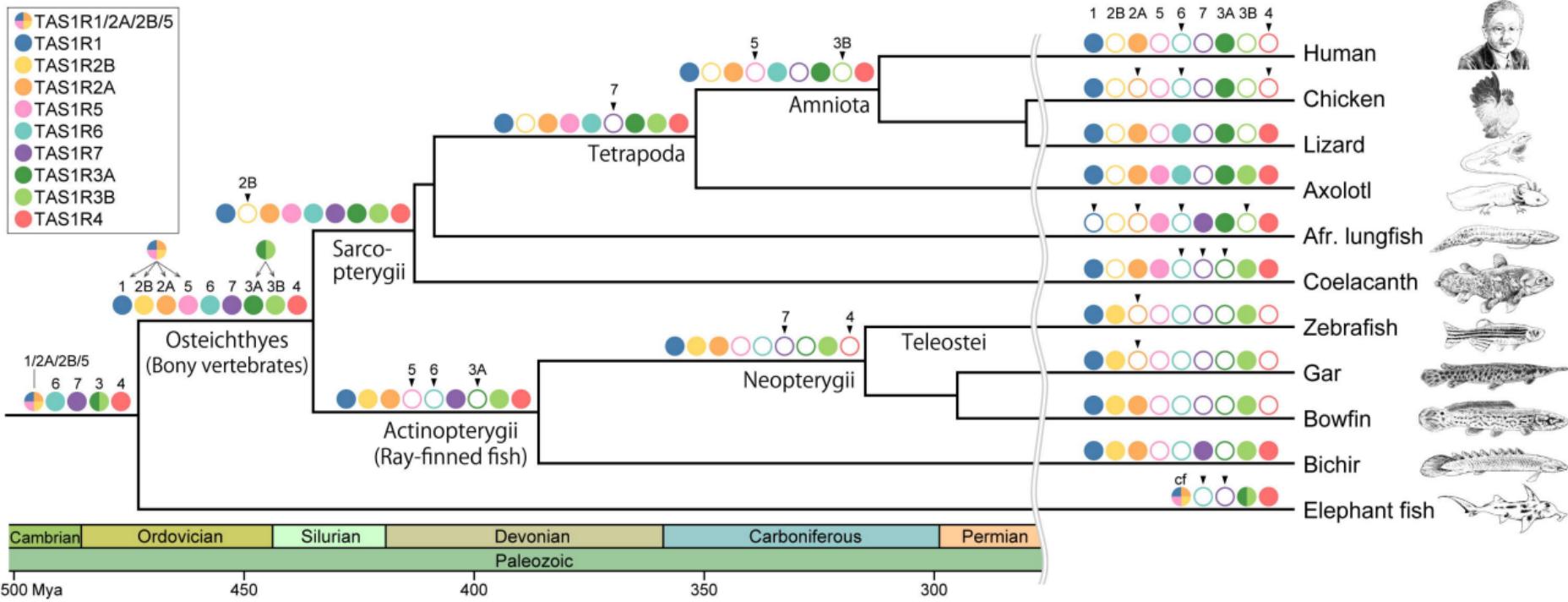



Figure 2

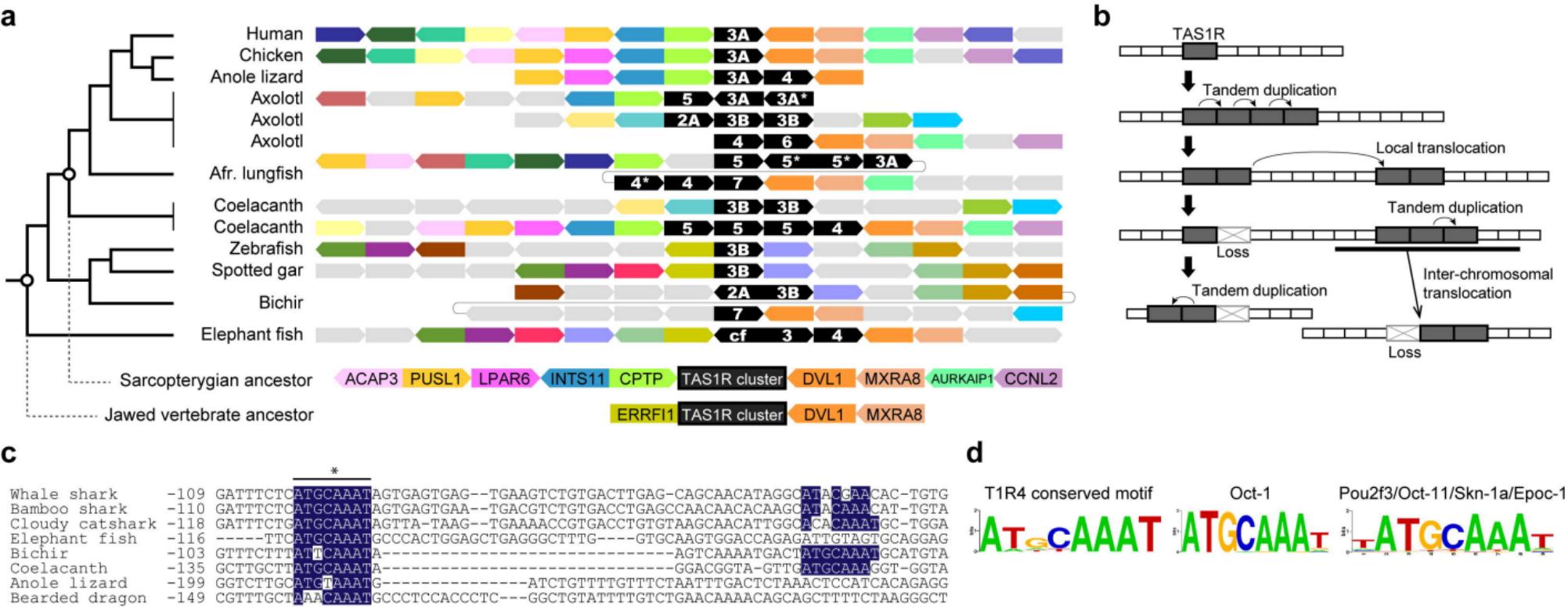



Figure 3

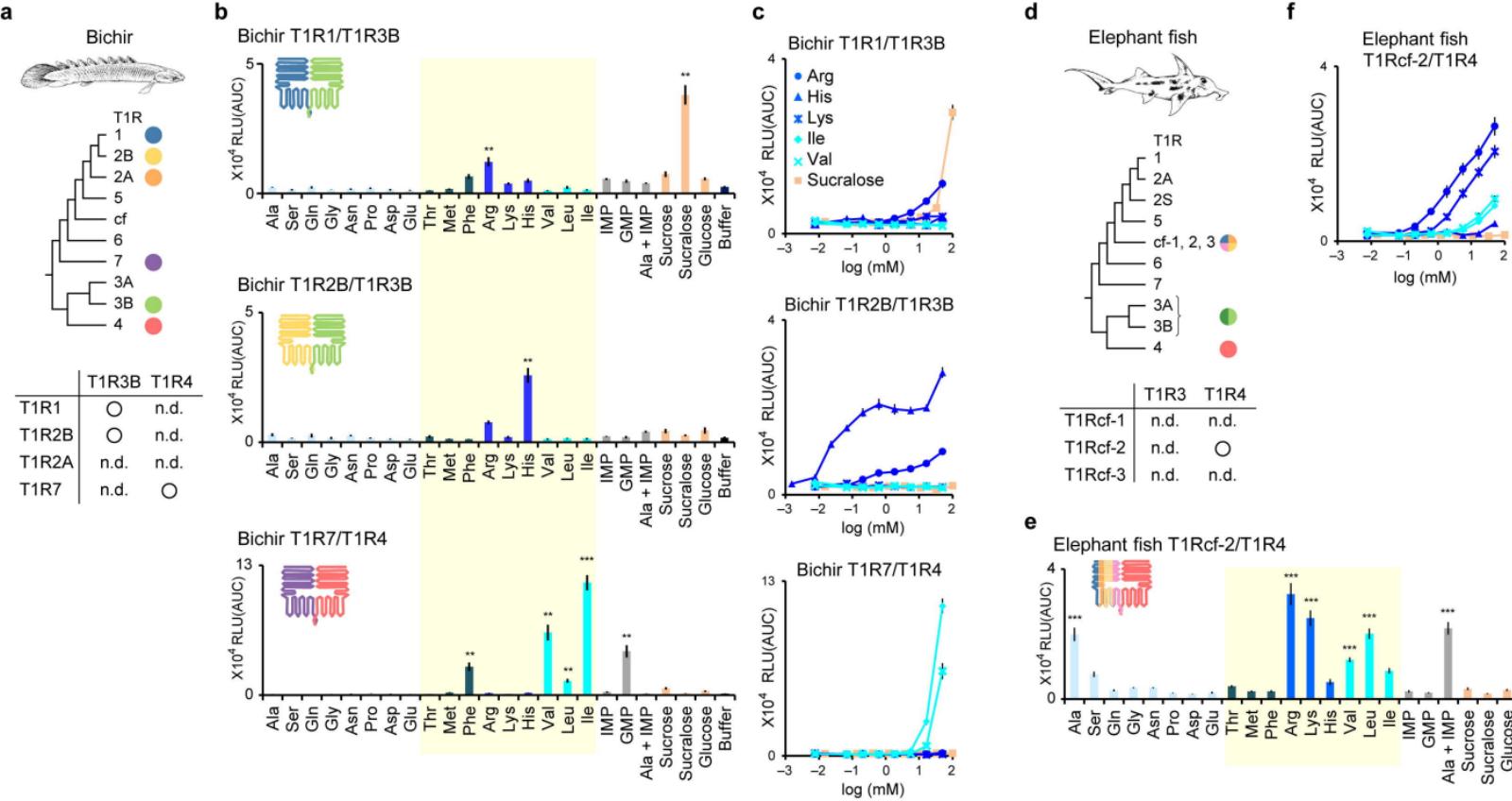
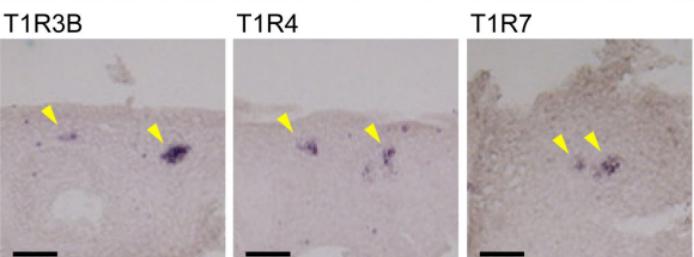
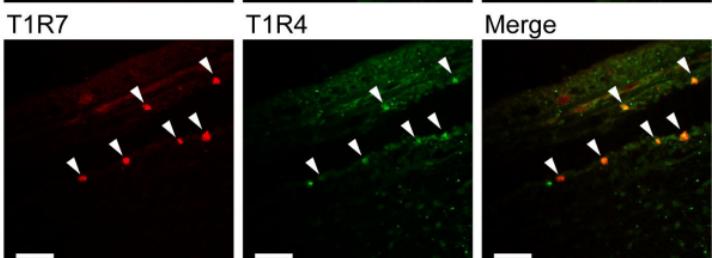
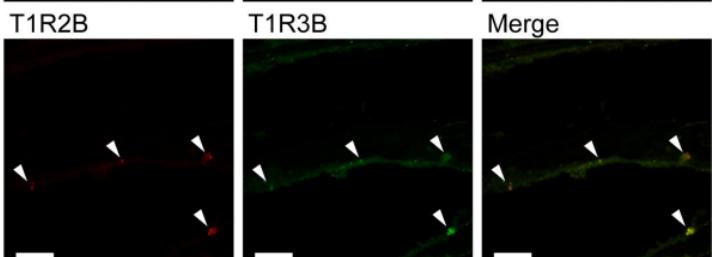
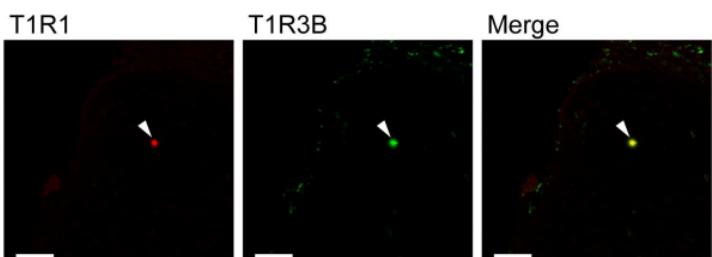







Figure 4

**a****b**

**Figure 5**