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Abstract

Understanding the genetic basis of complex phenotypes is a central pursuit of genetics.
Genome-wide Association Studies (GWAS) are a powerful way to find genetic loci associated
with phenotypes. GWAS are widely and successfully used, but they face challenges related
to the fact that variants are tested for association with a phenotype independently, whereas
in reality variants at different sites are correlated because of their shared evolutionary
history. One way to model this shared history is through the ancestral recombination
graph (ARG), which encodes a series of local coalescent trees. Recent computational
and methodological breakthroughs have made it feasible to estimate approximate ARGs
from large-scale samples. Here, we explore the potential of an ARG-based approach to
quantitative-trait locus (QTL) mapping, echoing existing variance-components approaches.
We propose a framework that relies on the conditional expectation of a local genetic
relatedness matrix given the ARG (local eGRM). Simulations show that our method is
especially beneficial for finding QTLs in the presence of allelic heterogeneity. By framing
QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs
in understudied populations. We use local eGRM to identify a large-effect BMI locus, the
CREBREF gene, in a sample of Native Hawaiians in which it was not previously detectable by
GWAS because of a lack of population-specific imputation resources. Our investigations can
provide intuition about the benefits of using estimated ARGs in population- and statistical-
genetic methods in general.
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» Introduction

w

a1 ldentifying trait-associated genetic loci is one of the central aims of genetics. Over the past
3 several decades, a range of approaches—prominently including linkage mapping and genome-
1 wide association studies (GWAS)—appeared to fill this need (Balding et al., 2019). In humans,
s GWAS has become a tremendous research enterprise, with millions of study participants enrolled
55 and hundreds of thousands of trait-associated variants identified (Visscher et al., 2017).

36 For decades, geneticists have noted the usefulness of tree-based structures for describing
37 genetic variation and for characterizing the genealogical and evolutionary processes that create
;s genetic variation. At a single non-recombining locus, a tree called a gene genealogy describes
30 the shared ancestry of individual copies of the locus (Rosenberg and Nordborg, 2002). For entire
s genomes or genomic regions in which recombination events occurred in the history of the sample,
s one can represent the sample’s shared ancestry via an ancestral recombination graph (ARG) that
2 encodes the sequence of "local" or "marginal" trees along the genome (Griffiths and Marjoram,
13 1996), with recombination events as the source of differences in topology between neighboring
s trees. The ARG encodes all mutation, recombination, and shared ancestry events in the history
s of a sample of genomes.

46 Tree-based approaches to quantitative trait locus (QTL) mapping—in which a trait is tested
s for association with a tree or set of trees describing genetic variation in a region—have been
s proposed several times and shown to provide some advantages (Templeton et al., 1987; McPeek
s and Strahs, 1999; Larribe et al., 2002; Morris et al., 2002; Zéllner and Pritchard, 2005; Minichiello
so and Durbin, 2006; Mailund et al., 2006; Tachmazidou et al., 2007; Kimmel et al., 2008; Wu, 2008;
51 Besenbacher et al., 2009; Zhang et al., 2012; Burkett et al., 2013; Thompson and Kubatko, 2013;
2 Thompson et al., 2016), as have approaches to haplotype-based mapping that leverage awareness
s3 of tree-like relatedness patterns among sets of haplotypes (Liu et al., 2001; Morris, 2005; Selle
s+ et al., 2021). At the same time, explicitly tree-based approaches have until recently been limited
ss by difficulties in estimating locus-level trees at scale. Further, the dominance of meta-analysis
ss in GWAS (Cantor et al., 2010) and other methods based on summary statistics has meant that
sz individual-level genetic data are often not available to data analysts, precluding most tree-based
ss approaches.

50 In principle, tree-based approaches have the potential to address three long-standing difficul-
oo ties of GWAS. First, GWAS entails a huge number of statistical tests and requires a substantial
s correction for multiple testing as a result (Pe’er et al., 2008). Many of these tests are cor-
2 related or redundant because the variants tested occur on the same or very similar underlying
&3 gene-genealogical trees. Testing the trees themselves may allow for fewer tests.

64 Second, GWAS is known to be prone to miss trait-associated genetic loci characterized by
es allelic heterogeneity, in which multiple nearby causal variants affect a trait of interest (Platt
e et al., 2010; Flister et al., 2013; Korte and Farlow, 2013; Hormozdiari et al., 2017). Under
o7 allelic heterogeneity, causal alleles with opposing effects on a trait might be associated with
e the same marker allele, diminishing the association signal at the marker. Allelic heterogeneity
e IS not rare, appearing in many Mendelian loci identified during the linkage era (Terwilliger and


https://doi.org/10.1101/2023.04.07.536093
http://creativecommons.org/licenses/by-nc-nd/4.0/

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

108

109

110

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.07.536093; this version posted April 8, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

Weiss, 1998)—Ilinkage mapping is robust to allelic heterogeneity—and estimated recently to occur
at a substantial fraction of complex trait loci (Hormozdiari et al., 2017) and expression QTLs
(Jansen et al., 2017; Abell et al., 2022). Tree-based approaches, by focusing on local relatedness
of haplotypes in the sample, can offer the same robustness to allelic heterogeneity as linkage
analysis.

Third, modern GWAS is fueled by imputation, in which a reference sample is fully sequenced,
and then study samples that are more sparsely genotyped have their missing genotypes imputed
statistically (Marchini and Howie, 2010; Das et al., 2018). The imputed genotypes can then be
tested for association with the trait of interest. The success of modern imputation approaches is
made possible by the fact that genetic variation is structured locally in a tree-like way (Stephens
and Scheet, 2005; Edge et al., 2013). At the same time, imputation is most successful if the
reference and study samples are closely related (Huang et al., 2009; Jewett et al., 2012; Lin
et al., 2020), and closely related reference samples are not always available. Testing the tree
structures that underlie imputation may offer a more direct approach to identifying QTLs that
could circumvent the need for closely related reference samples.

Due to advances in ARG estimation, it may now be possible to apply tree-based methods at
sufficient scale to detect QTLs. Although estimation of the ARG is extremely difficult, approx-
imate estimation procedures that operate on single-nucleotide polymorphism (SNP) array data
and scale to thousands of samples have emerged in the last few years (Kelleher et al., 2019;
Speidel et al., 2019; Zhang et al., 2021; Wohns et al., 2022). Further, for researchers studying
QTLs in humans, the emergence of large biobanks has meant that individual researchers or re-
search teams have access to individual-level genetic data in sample sizes that might allow the
identification of trait-associated loci.

Here, we present a tree-based approach to QTL mapping (Figure 1). We build on a recently
proposed representation of tree-based relatedness, the expectated genetic relatedness matrix, or
eGRM (Fan et al., 2022, see Figure 1B here), independently identified by Zhang and colleagues
(2021) as the ARG-GRM and in a phylogenetic context by Wang and colleagues (2021) as the
expected genetic similarity matrix. (And see McVean (2009, eq. 10) for a similar computation.)
Genetic relatedness matrices (GRMs) are used in a wide array of statistical genetic tasks, including
adjusting for population stratification and estimation of heritability (Speed and Balding, 2015).
Given an ARG encoding the history of a sample, the eGRM is the expectation of the GRM
assuming that mutations are placed on the ARG as a Poisson process. In general, we can compute
a tree-based analog of any statistic computed from genetic variation by taking its expectation
given the ARG (Ralph et al., 2020).

Our procedure is to test eGRMs built from local segments of the ARG for concordance
with a phenotype using a random-effects model fit by restricted maximum likelihood (REML).
Loosely, the test is sensitive to cases in which individuals who are more closely related in some
local segment of the genome are likely to be more similar on the phenotype. This approach is
essentially a tree-based version of previous methods to test local GRMs for concordance with a
phenotype, which have been framed variously as QTL mapping approaches (Wang et al., 2013;
Sasaki et al., 2015) or local heritability estimation (Nagamine et al., 2012; Uemoto et al., 2013;
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Gusev et al., 2013; Caballero et al., 2015). Using tree sequences estimated by Relate (Speidel
et al., 2019), we test our approach in simulations of varying degrees of allelic heterogeneity. We
also use our approach to analyze data from a sample of Native Hawaiians from near the CREBRF
gene, in which the lack of a population-specific reference panel has previously precluded the
detection by GWAS of a known large-effect polymorphism (Minster et al., 2016; Lin et al., 2020).

Methods

Characterizing local relatedness

The key to our approach is a matrix A, called a local genetic relatedness matrix (local GRM),
that characterizes the relatedness of individuals in a local region to be tested as a candidate
QTL. Classically, a local GRM is calculated based on the observed variants in a a window (e.g.
Yang et al., 2010). Our method is instead based on using the expectation of a local GRM (local
eGRM) given an estimated ancestral recombination graph (ARG).

A B o 100 ,—Q—I
> e
8 [mi1 | m2]m3]ma]ms]|ms)
A REML A 5 % genotype 4[4 [1|[[1 [0l [0 [0
expected pairwise '§ . bl 1 0o o0 4 0o o0
B relatedness < - "_ B phenotypic o ! l (haploid)
C| (local eGRM) test for similarity C| similarities s ol ! ’ c.0 0 [0 [0 1t
D D a b ¢
single-variant
GRM
a 1 center 4l1/3 normalize g 212 outer
B *
Fan et al. N 2/3 o 342 oIEB product
c 0 c-23 c -2
mutation ml ~ m2 m3 mé4 m5 mé GRM
a b c
1 1 1
= += 2 += += += =
6 6 *s
branch de ad bd ce eGRM
) a b c
1 a
.A + 5 piEE--©° pEE-° b
4 260 260 260 260 c
-

Figure 1: A) Local eGRM framework. Schematic of the marginal trees of an ARG of 4 haploid
invdividuals, A-D. The gold circles on the trees correspond to mutations. The clade marked with
the dotted circles is identical at loci 1 and 2, and the mutation at locus 2 is informative about the
branch length at locus 1. One or more marginal trees are used to calculate a local eGRM using
the method described in Fan et al. (2022). This matrix is then tested for association with the
phenotypes using Restricted Maximum Likelihood (REML). B) Computing the eGRM. This
panel is redrawn from Fan et al. (2022). A genome-wide genetic relatedness matrix (GRM) can
be viewed as an average of single-locus GRMs for every genotyped locus. An expected GRM
(eGRM) can be obtained as a weighted average of single-locus GRMs defined by each branch in
the ARG, where the weights are proportional to the expected number of mutations falling on each
branch. C) Allelic heterogeneity. One marginal tree of an ARG with three causal mutations
with opposing phenotypic effects.
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Fig. 1 describes the main ideas of our framework: in each window, we calculate one genetic
relatedness matrix using the ARG's marginal trees in that window, and then use REML (Restricted
Maximum Likelihood) to test whether the local genetic relatedness explains phenotypic similarities
in the sample. One advantage of using the ARG to describe genetic relatedness is that information
from neighboring trees is naturally shared. To illustrate this idea, the dotted circles in Fig. 1A
show a clade that exists in trees 1 and 2, with a mutation at locus 2 that differentiates tips C
and D. Though the mutation is at marginal tree 2, its presence is informative about the branch
lengths at marginal tree 1, since the relevant subtree is identical in marginal trees 1 and 2.

Figure 1B describes the method we use to calculate the pairwise expected relatedness matrix
(eGRM), developed by Fan et al. (2022), and also how the genetic relatedness matrix is conven-
tionally calculated. Figure 1C shows an example of allelic heterogeneity: multiple causal alleles
are in close linkage (e.g. on the same marginal tree of the ARG), so tag SNPs will be linked to
several causal alleles with opposing effects. If the causal variants are themselves untyped, this
can lead to association signals interfering or even cancelling each other out at the typed variant.
Even if the causal variants are typed, association power will be improved if they are tested for
association jointly rather than separately.

Local GRM We compute local GRMs from biallelic variants in the local window to be tested
as a QTL (e.g. Yang et al., 2010). The entry relating individuals ¢ and j in the GRM can be
written as

1 & (i — 200) (Y — 2p1)
GRM,, — -~ 5 Wi ) 1
IR Eali-pP g

where k in an index over the sites considered, ¢ is the total number of sites considered, y;  is
the number of focal alleles carried by individual i, and p;. is the sample frequency of the focal
allele (Speed and Balding, 2015). The constant « determines the relative emphasis placed on
rarer variants in computing relatedness estimates, with larger values giving greater weight to rarer
variants. In this paper, we use a = 1. With a = 1, the local GRM is a covariance matrix of
mean-centered, standardized genotype counts among individuals, where the standardization is by
\/2p(1 — p), the standard deviation of the genotype under Hardy—Weinberg equilibrium.

Local eGRM Fan et al. (2022) compute a genome-wide global eGRM, which is the expectation
of the genetic relatedness matrix (GRM) described by eq. 1 (with a = 1) conditional on the
ARG, assuming that infinite-sites mutations are placed on the ARG as a Poisson process. The
global eGRM can be computed as a weighted sum of single-locus GRMs implied by each branch
in the ARG. Specifically, each branch in the ARG defines a clade of tips that descend from the
branch. A mutation on that branch would be inherited by all these tips and so would define
a single-locus GRM following eq. 1. The eGRM is equal to the weighted average of all such
branch-wise GRMs, with weights per branch proportional to a product p(b)I(b)t(b), where 1(b) is
the mutation rate on the branch, [(b) is the length of the genomic region spanned by the branch,
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and t(b) is the length of the branch (i.e. the time in the tree that the branch exists). Here, as in
Fan et al. (2022), we assume that the mutation rates are the same on all branches.

We compute the local eGRM for genomic regions of a pre-defined size. The local eGRM
for one tree is a weighted sum over the tree's branches. In order to calculate the local eGRM
for a genomic window, we first calculate the local eGRM for all trees whose genomic intervals
overlap the window, and then take a weighted average of these matrices, where the weights
correspond to the fraction of the window covered by each tree's genomic interval. This approach
to computation is redundant because many branches exist across multiple marginal trees, and
can be ameliorated in principle via an approach that records unique branches only once (Ralph
et al., 2020). We did not pursue this solution because of our decision to work with Relate trees,
which do not preserve branch lengths exactly between neighboring marginal trees.

We computed local eGRMs using egrm software (Fan et al., 2022).

The variance-components model

Let y be quantitative phenotypes for n individuals, X be an n x k design matrix of covariates,
and [ the covariates’ regression coefficients. The k covariates may include nuisance variables
and potentially confounding factors, such as age, sex, and descriptions of population structure
or global relatedness. Additionally, let I,, the n x n identity matrix, and o the variance of
environmental noise. Given a GRM A of dimensions n x n representing relatedness among
individuals in a local segment of the genome, we model the phenotypic variation in the sample
by

y|B,05,0% ~ N(XB,0;A + o7L,). (2)

We estimate 3, 02, and o2 with Restricted Maximum Likelihood (REML). We identify a QTL

if the parameter o2 is significantly different from 0, and can further estimate the local heritability
2

o2+o2"

To understand the difference between using a GRM based on observed variants compared
with an expectation conditional on an estimated ARG, note that when A is based on observed
variants, the model in eq. 2 is equivalent to one in which the typed sites in the window receive
random, uncorrelated effect sizes with expectation 0 and variance proportional to 1/(2p(1 —p))®
(Lynch and Walsh, 1998; Goddard et al., 2019) that contribute additively to the trait. That is,
y =X+ Zu+ e, with X an n x k design matrix of covariates with fixed effects g (k x 1), Z
an n x ¢ matrix of genotypes at the sites considered with random effects u (¢ x 1), and e an

n X 1 vector of random, uncorrelated environmental effects.

as

On the other hand, if A is computed by taking an expectation over an ARG, the model in
eq. 2 is equivalent to one in which each branch of the ARG incorporated in A receives a random,
uncorrelated effect size with expectation 0 and variance proportional to 1(b)I(b)t(b)/(2p(1—p)),
where p is the proportion of tips that descend from a branch in the relevant span of the genome,
and again u(b) is the mutation rate on the branch, [(b) is the length of the genomic region
spanned by the branch, and ¢(b) is the length of the branch.
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Simulating genealogy and genotypes

One population For most of our simulations, we simulated ARGs using stdpopsim (Adrion
et al., 2020; Lauterbur et al., 2022, version 0.1.2) using the Python API. We simulated chromo-
some 1 for 2000 haploid individuals of African ancestry using the "OutOfAfrica_3G09" model
and msprime (Kelleher et al., 2016, version 1.1.1) and otherwise default parameters. We then
extracted the genomic region starting at position 49,000,000 and ending at position 50,000,000.
Then, we randomly assigned pairs of haplotypes to 1000 individuals to create diploids.

Two populations Using msprime directly, we simulated two samples of 1000 diploids, sampled
from two populations that split 10,000 generations ago and each had a diploid N, of 20,000,
which corresponds to an Fsp of % (Slatkin, 1991). We simulated two chromosomes: one “test”
chromosome used for association testing of length 100,000bp and and a second chromosome, used
to estimate the global eGRM, with length 3,000,000bp. We set the mutation and recombination
rates to 1075,

Estimating ARGs with Relate To simulate genotyping array data, we filtered the simulated
ARG's variants by retaining 20% of those with a minor allele frequency of at least 1%. We then
used the retained variants to estimate ARGs with Relate (Speidel et al., 2019) using parameters
'“mode All', '-mutation_rate 1.25e-8’, '—effectiveN 2000’ and the human recombination map
(HapMap phase Il, build GRCh37, provided with the Relate software). We then converted the
output to treeSequence format (Baumdicker et al., 2022) with Relate's tool RelateFileFormats
and '-mode ConvertToTreeSequence’

Simulating phenotypes

Choosing the causal variants We selected causal variants among those that were not retained
in the downsampling scheme described above ("untyped"). In the experiments with one causal
variant, the selection was uniformly at random among variants of a predefined frequency. If no
branch in the local trees subtended the desired frequency, we chose the nearest possible frequency.
In the experiments with allelic heterogeneity, we defined causal regions of different lengths in the
center of the ARG and randomly selected a given proportion of untyped variants within the region
to be causal.

Choosing the effect sizes We chose the effect size for each variant on the basis of its allele
frequency, sampling from a normal distribution with expectation 0 and standard deviation inversely
proportional to /p(1 — p) (Speed et al., 2017, LDAK model with o = 1),where p is the variant’s
minor allele frequency. This leads variants with lower allele frequencies to have effects with larger
absolute sizes.

In order to obtain the desired local heritability, we added random noise to the phenotypes
such that Vi = V(1 —h?)/h?, where Vj is the phenotypic variance due to environmental effects

7
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uncorrelated with genotype, V{; is the phenotypic variance due to genetic effects, and h? is the
desired local heritability.

QTL testing

local REML We tested each local relatedness matrix (GRM and eGRM) for association with the
phenotypes using GCTA (version 1.94.1) (Yang et al., 2011) and its implementation of Restricted
Maximum Likelihood (REML) with tag '—reml’ and providing the local relatedness matrix (tag -
grm’), the phenotypes (tag '—pheno’), and running the algorithm for a maximum of 500 iterations.
Note that GCTA p-values for random effects in such a model are never larger than 1/2.

GWAS We tested each typed variant for association with the phenotypes using python’s
statsmodels (Seabold and Perktold, 2010) (version 0.13.2) OLS function.

ACAT-V We use function ACAT from R package ACAT (Liu and Xie, 2018, version 0.91) to
run ACAT-V on the p-values from the GWAS results in a window.

Correcting for population stratification

We simulated 100 replicates of samples from two populations, as described above. Then, we
assigned a random phenotype sampled from N (0, 1) to the individuals from the first population,
and a phenotype sampled from A (1,1) to the individuals from the second population. We
estimated a global eGRM for the long chromosome and used GCTA to estimate the 20 first
principal components (with tag '—pca’). We incorporated these principal components as fixed
effects in GCTA to correct for population stratification (with tag '—qcovar’).

Estimating the power to find associations

Null simulations In order to determine a significance cutoff for each simulation configuration,
we used 300 ARG replicates from the "one population" set, and assigned each individual from
each ARG a random N (0, 1) phenotype value irrespective of genotype. We performed association
tests for each association method, for each variant set / tree type and for each testing window
size, i.e. for every power simulation configuration that affects the number of association tests.
We set the significance cutoff such that the family-wise error rate (i.e. the fraction of replicates
containing at least one significant association) was 5%.

Power as a function of genetic architecture For each parameter combination of variant
set / tree type, causal variant proportion, causal window size, testing window size and local
heritability, we counted the number of replicates for which the p-value of a at least one window


https://doi.org/10.1101/2023.04.07.536093
http://creativecommons.org/licenses/by-nc-nd/4.0/

260

261

262

266

267

268

269

270

271

272

273

274

275

276

277

278

279

281

282

283

284

285

287

288

289

290

201

292

293

294

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.07.536093; this version posted April 8, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

(for ACAT-V, local eGRM and local GRM) or variant (for GWAS) exceeded the significance
threshold defined with the null simulations.

Application to CREBRF

Transforming the phenotypes Phenotype data for Body Mass Index (BMI) was available for
5371 people from the Hawaiian population of the Multiethnic Cohort (MEC, Kolonel et al., 2000),
along with sex and age. To ensure that the phenotype residuals would follow a standard normal
distribution, we performed a transformation typical for BMI data. Namely, we stratified by sex,
regressed out age and age squared, and removed individuals for which the residual was more
than six standard deviations removed from the sex's mean. Then, we inverse rank normalized the
phenotypes (McCaw et al., 2020).

Estimating the ARG with Relate In total, 5,384 self-identified Native Hawaiians from the
Multiethnic Cohort (MEC) were genotyped on two separate GWAS arrays: Illlumina MEGA and
lllumina Global Diversity Array (GDA). After taking the intersection of SNPs found on both
arrays, we removed variants that were genotyped in fewer than 95% of people in the sample,
variants out of Hardy-Weinberg Equilibrium (p < 107%). We also applied a filter for people with
more than 2% missing genotypes but removed no one with this filter.

With approximately 990,000 SNPs after quality control, we phased the genotypes with EAGLE
(Loh et al., 2016) by using its default hg38 genetic map. We inferred ancestral alleles by using
the Relate add-on module with ancestral genome homo_sapiens_ancestor_ GRCh38_e86.tar.gz,
downloaded from (ftp://ftp.ensembl.org/pub/release-86/fasta/ancestral_alleles/). We divided
the genome into segments containing 10,000 SNPs, and ran Relate on these segments in parallel
with all default parameters per the user manual.

Inferring the global eGRM to correct for population structure We first inferred the
segment-wise eGRMs for all chromosomes except chromosome 5, which contains the gene of
interest CREBRF. We combined the segment-wise eGRMs into a global eGRM by taking their
weighted sum, where the weights were given by the the expected number of mutations in each
eGRM, which is a parameter that is provided in the output of egrm (Fan et al., 2022).

Determining the significance cutoffs The cutoffs in Table S1 were calculated for a genomic
region of length 1Mb. We compute the effective number of independent tests for each method
as the number of tests for which the significance cutoff we obtain corresponds to a Bonferroni
correction. For GWAS, the effective number of tests was 281.2, and for local eGRM with 5kb
testing windows, 30.8. The standard genome-wide significance for GWAS is 5 x 108, which
corresponds to the cutoff for one million independent test with Bonferroni correction. To approx-
imate the genome-wide cutoff value for local eGRM, we assume that the ratio of % GWAS tests
to local eGRM tests for a given region holds across the genome. We thus set the genome-wide
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0.05 -7
local eGRM cutoff to To8. 3T ~ 4.5 x 1077).

Testing for QTLs We ran our local eGRM method to test for correespondence between the
transformed phenotypes and the estimated ARG around the CREBRF region in windows of
5kb. We corrected for population stratification by using GCTA to estimate the first 20 principal
components of the global eGRM, leaving out chromosome 5, which we then included as fixed
effects in the linear mixed model. We further used PLINK (Purcell et al., 2007, version 1.07)
to test for association between the genotypes within the CREBRF region and the transformed
phenotypes. To generate principal components as covariates for GWAS, we held out chromosome
5, and generated the 20 PCs using EIGENSTRAT (Price et al., 2006) after additionally filtering out
variants with minor allele frequency < 1% and filtering for LD using commmand using —indep-
pairwise 50 5 0.8 in PLINK.

Results

We compare our framework based on computing the expected genetic relatedness matrix from
an inferred ARG, referred to here as local eGRM, with three other association methods: GWAS,
in which each variant is tested separately; local GRM, which for each testing window calculates
a genetic relatedness matrix based on the typed variants within the window (see methods); and
ACAT-V (Liu et al., 2019), which for each window combines the variant-level p-values from
GWAS and is especially powerful when a small proportion of variants within a window are causal.
Although ACAT-V is most typically applied to sequence data, our focus here is on array data,
and so we apply ACAT-V to simulated array data in the main text, deferring comparisons with
complete data to supplementary figures.

The multiple testing burden is smaller for window-based association tests
than for GWAS

To determine the p-value cutoffs for each method, we performed null simulations for each pa-
rameter combination of variant set or tree type and testing window size, i.e. for every simulation
configuration that could lead to a different number of tests required per ARG. For each parameter
combination, we simulated random phenotypes for all individuals in the sample, and we recorded
the smallest p-value resulting from the tests of the simulated chromosome against the null phe-
notypes. We determined the significance cutoff such that the family-wise error rate was 5% in
null simulations (Table S1). Fig. 2 shows the ordered p-values for one of these null simulations.
It shows the general pattern that can be seen for all parameter combinations, namely that the
multiple testing burden is highest for GWAS and lower for the window-based association tests
ACAT-V, local GRM and local eGRM. We can compare the results in terms of the number of "ef-
fective tests" implied by the p-value cutoffs necessary to achieve a family-wise error rate (FWER)
of 0.05—that is, the number of tests that would lead to the same cutoff under a Bonferroni
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correction. For bkb windows and Relate trees, the local eEGRM method applied to a 1 megabase
window entails /&~ 31 effective tests. In contrast, GWAS on typed variants implies =~ 280 effective
tests, or &~ 9 times as many as the local eGRM method. Further, the cutoffs are more stringent
for GWAS when all variants are used rather than only the subset of variants selected for geno-
typing, whereas the difference between using only typed variants and all variants is much smaller
for the window-based methods.

The null simulations were also useful to determine how well the local eGRM method is
calibrated with regard to the distribution of p-values under the null. The quantile-quantile plots
in S1 confirm for multiple simulation configurations that both local eGRM and local GRM produce
close-to-uniformly-distributed but slightly conservative p-values. Details of the p-value distribution
do not influence the simulation results below, since we choose the cutoff for significance empirically
based on the null simulations.

6 7 true trees / all variants
. Relate / typed variants
5 ! GWAS
] B ACAT-V
| local GRM
4 \\ local eGRM
£
3
S 34
|
2 —
1 -

I T T T T T 1
0 50 100 150 200 250 300
ordered simulation number

Figure 2: Setting p-value cutoffs for family-wise error rate of 5%.. The most significant
p-value for any window (local GRM, local eGRM, ACAT-V) or any SNP (GWAS) in each of the
300 replicates is shown on the y-axis for each association method and ARG type / variant set,
starting with the lowest minimum p-values on the left. The testing window size was bkb. The
vertical black line corresponds to 5% of the replicates.

Local eGRM exhibits power advantages in cases of allelic heterogeneity

We used simulations to understand the power of our framework to find true trait-relevant genetic
regions. As with the null simulations, we simulated 200 replicates of realistic human ARGs for
chromosome 1 of 1000 Africans under the out-of-Africa model using stdpopsim (Adrion et al.,
2020). We simulated phenotypes for each individual in each ARG with a variety of architectures

11


https://doi.org/10.1101/2023.04.07.536093
http://creativecommons.org/licenses/by-nc-nd/4.0/

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.07.536093; this version posted April 8, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

inside a trait-relevant genomic window by varying the number of causal variants in the window,
the heritability explained by variants in the window, and the size of the testing window.

We compared the power of the following approaches: GWAS on both typed and all variants,
local GRM with both typed and all variants, local eGRM with Relate trees estimated from typed
variants, local eGRM with true trees, and ACAT-V with both typed and all variants.

First, we investigated power in the presence of allelic heterogeneity, i.e. multiple causal
variants within close physical proximity and thus genetically linked with each other. Within a
predefined causal window of the genome, each untyped variant has a given probability of being
causal.

Each causal variant is given a random phenotypic effect size such that loci with lower fre-
quency minor alleles tend to be assigned larger absolute effect sizes, as is observed in human data
(see Methods for details). Fig. 3 shows power results for causal window of size 5kb, with 20% of
variants causal (panels A and B, median 4 causal variants per window) or 50% of variants causal
(panels C and D, median 11 causal variants per window). We also varied the local heritability, and
the testing window sizes (5kb for panels A and C, 10kb for panels B and D) for the window-based
tests. For the results obtained with a more extensive set of simulation parameters, including
results that incorporate both typed and untyped variants, see Fig. S2.

Across simulated genetic architectures, our local eGRM method consistently has higher power
than other approaches when analyzing array data. Across the local heritability values simulated
in Figure 3, the local eGRM approach with 5kb analysis windows has on average 17% higher
power than GWAS with 20% of variants causal, and 31% higher power when 50% of the variants
are causal. The other three methods (GWAS, local GRM, ACAT-V) performed similarly to each
other. In contrast, when using the true ARG and all variant information, as would be captured
by accurate sequencing data, GWAS, ACAT-V and local GRM all outperform local eGRM (Fig.
S2), even when local eGRM is performed on the true trees.

Fig. 4 shows the power of each method for phenotypes that have a single untyped causal
variant with allele frequency 0.02 (panel A) or 0.2 (panel B). With a single causal variant, local
eGRM is roughly comparable to the other methods, operating at a slight disadvantage when the
frequency of the causal variant is low (0.02), and perhaps a slight advantage when the frequency
of the causal variant is higher (0.2).

Tables S6 - S9 show how many replicates were found to contain a significant peak by two
methods. Generally, the concordance was higher for true ARGs than for Relate-estimated ARGs.
The highest concordance is generally between GWAS and ACAT, followed by the other pairs which
have similar concordances., Tables S8 and S9 show analogous results for null simulations.
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Figure 3: Power comparisons under allelic heterogeneity Each panel shows the power to
detect an association for 4 methods using array-like data when there is a 5kb causal window. In
panels A and B, phenotypes are determined by 20% of the untyped variants in the window, while
in panels C and D, phenotypes are determiend by 50% of the untyped variants in the window.
In panels A and C, a 5kb test window is used (matching the simulated causal window size). In
panels B and D, a 10kb test window is used. Error bars correspond to one standard error.
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Figure 4: Power comparisons with one causal variant Each panel shows the power to detect
an association for 4 methods using array-like data when there is a causal variant at a frequency of
either 0.02 (A) or 0.2 (B). Association tests with methods local eGRM and GRM were performed
in genomic windows of 5kb. The error bars correspond to one standard error.

Correcting for population stratification by including principal compo-
nents inferred from the global eGRM

The simulations of the power analysis were performed on samples from a panmictic population.
In real GWAS settings, however, samples are often affected by population stratification (Pritchard
and Rosenberg, 1999; Rosenberg and Nordborg, 2006; Vilhjalmsson and Nordborg, 2013; Veller
and Coop, 2023), in which genotypes appear correlated with phenotypes because of confounding
rather than because of close linkage to causal variants. In GWAS, the most popular strategies
for correcting for population stratification are inclusion of a random effect for the global GRM
(Yu et al., 2006) and inclusion of fixed effects for the first several principal components of a
standardized genotype matrix (Price et al., 2006), obtained by eigendecomposition of a GRM.

In order to test whether such a population stratification correction strategy works for local
eGRM, we simulated a simple case of two discrete populations. In particular, we simulated a
sample of 2000 diploids coming from two populations that separated 10,000 years ago. We
simulated random phenotypes for all individuals, and added a fixed effect to individuals in one of
the populations to simulate severe confounding due to population structure. We then computed
PCs from the global eGRM derived from non-causal loci and tested a causal region for the presence
of a QTL using local eGRM in windows of size 5kb, once without correcting for population
stratification, and twice more correcting by including either one PC or twenty PCs as fixed effects
in the model. Figure S4 shows the distribution of p-values resulting from the association tests.
Panel A without the PC correction shows a very clear inflation of significant p-values—all p-
values are effectively zero. Panels B and C with correction shows a p-value distribution that
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is very similar to the distribution of a single population sample without stratification (Fig. S1)
i.e. slightly conservative but almost uniform. In this simple case, one PC should be sufficient
to describe population structure (McVean, 2009), and correcting for additional PCs does not
much change the distribution of p-values under the null. Thus, PC correction on a global eGRM
appears able to ameliorate population stratification, at least in the simplest case. We defer a
more thorough investigation of eGRM-based correction for population stratification—including
investigation of more complex population structure and correction via a random-effects approach
using the global eGRM—for future work.

Analysis of a known QTL that GWAS cannot identify in the absence of
a population-specific imputation panel

Lin et al. (2020) studied the limitations of imputation when there is incomplete representation
of some populations in imputation reference panels. As a demonstration, they used the human
locus containing gene CREBRF. In Pacific Islanders, there is a segregating missense mutation in
CREBRF, rs373863828, with a large effect on adiposity. The frequency of this missense variant is
as high as 26% in Samoans, but is very rare or unknown in people without recent ancestry from
Polynesia. The association signal was originally detected with body mass index (BMI) in Samoans
(Minster et al., 2016) at a linked tag SNP, rs12513649, which was on the Affymetrix 6.0 array.
However, rs373863828 was not observed in any publicly available databases, not even those that
include diverse populations (e.g. 1000 Genomes Project or Haplotype Reference Consortium),
and so it was not well imputed at the time of the study. Lin et al. (2020) genotyped variant
rs373863828 in self-reported Native Hawaiians who were part of the Multiethnic Cohort (MEC).
When Lin et al. (2020) tested the genotyped rs373863828 directly, they found a strong association
with adiposity phenotypes. However, when they used the original genotypes in the MEC, which
did not contain rs373863828, they were not able to discover a significant association using 1000
Genomes Project Phase 3 and Haplotype Reference Consortium reference panels via either GWAS
or admixture mapping.

Because local eGRM does not rely on an imputation panel, we explored whether local eGRM
could find an association between BMI and the CREBRF locus in the Native Hawaiian subset of
the Multiethnic Cohort (MEC, Kolonel et al., 2000) using only genotyping array data. Based on
the phased genotypes, we used Relate to estimate the ARG for the whole genome. We then
used egrm (Fan et al., 2022) to infer the global eGRM using the ARG of all chromosomes except
chromosome 5 (the location of CREBRF). We then used local eGRM to test for association
between the transformed phenotypes of 5371 individuals and the ARG, correcting for population
stratification by including 20 PCs of the global eGRM in the linear mixed model. As can be
seen in the Manhattan plot of our association results (Figure 5), we replicate Lin et al. (2020)'s
inability to find a genome-wide significant association near CREBRF (pink shaded window) using
GWAS (orange dots). However, local eGRM (blue dots) identifies signals that surpass genome-
wide significance in GWAS (dashed orange line) on both sides of the causal SNP rs373863828
(solid pink line). Additional windows near CREBRF surpass the cutoff we posit for genome-
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wide significance using local eGRM with 5kb testing windows based on our null simulations (blue
dashed line). The distances between the observed peaks and the causal SNP rs373863828 are
in line with the distances between peaks and causal variants at frequency 0.02 observed in our
simulations (Table S3 and Fig. S5).

local eGRM

8 7« GWAS
2 6
>
S 4
|

2 —

0— I T | I T |

172 172.5 173 173.5 174 174.5 175

genomic position [Mb]

Figure 5: Association results for Hawaiian cohort of the MEC around CREBRF Blue
dots are per-window negative log,, p-values for the local eGRM, and orange dots are per-SNP
results for GWAS. The horizontal dashed lines are the genome-wide significance cutoffs (5% 1078
for GWAS and 4.5 * 1077 for local eGRM). The vertical shaded area delimits the coordinates
of CREBRF, and the red vertical line within it is the location of the causal SNP rs373863828.
The gray vertical lines are SNPs found in the GWAS catalog that were found to be associated
to traits “Body Mass Index” and “weight”. Their names, studies in which they were found, and
the smallest sample size in which they were found are: rs570053489 (Tachmazidou et al., 2017,
267,616 individuals), rs12513649 (Minster et al., 2016, 3,072 individuals), rs192829047 (Zhu
et al., 2020; Kichaev et al., 2019; Pulit et al., 2019, 457,822 individuals), rs3849724 (Akiyama
et al.,, 2017; Hoffmann et al., 2018, 158,284 individuals), rs10037781 (Sakaue et al., 2021,
165,419 individuals), rs4867732 (Sakaue et al., 2021, 165,419 individuals), rs34017767 (Sakaue
et al., 2021, 165,419 individuals), rs114653914 (Tachmazidou et al., 2017, 267,616 individuals).
The proxy SNP rs12513649 for the CREBRF association is the one directly to the left of CREBRF.

The grey vertical lines in Figure 5 are hits for "Body Mass Index" or "weight" identified in the
GWAS catalog. The one immediately to the left of CREBRF rs12513649, the tag SNP identified
in a sample of ~3k Samoans (Minster et al., 2016). The other hits were identified in samples
much larger—by factors of at least thirty—than the one we analyze here. As seen in Figure 5,
local eGRM p values, though they do not usually reach genome-wide significance at this sample
size (except possibly near the rightmost hit), do appear to show some degree of elevation near
most of the GWAS hits.
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Discussion

We developed a new approach to QTL mapping that uses estimated ARGs to characterize local
relatedness and show that it provides advantages complementary to several existing approaches
to QTL mapping with SNP array data. Specifically, our approach lowers the multiple testing
burden, is robust to allelic heterogeneity, and can assist in identifying QTLs even when the causal
loci are not well tagged by any single array SNP and cannot be imputed because of a lack of a
population-specific reference panel.

In cases of allelic heterogeneity, a marker variant can be linked with multiple causal variants
that can have opposing effects, leading to their association signals interfering and causing diffi-
culties for GWAS. The local GRM and local eGRM approaches we consider here both naturally
accommodate allelic heterogeneity, because even if there are multiple causal variants in a trait-
relevant region, it should still be the case that individuals who are more closely related in the
region tend to be more similar on the phenotype. The local GRM and eGRM approaches differ
in that the local eGRM takes into account information about local branch lengths drawn from
mutations occurring in neighboring regions, since trees in neighboring regions tend to share many
of the same coalescent events with the focal region. Thus, the local eGRM can capture local
genetic relatedness more accurately than the local GRM, particularly for small testing windows,
giving it an advantage over local GRMs formed from array data.

We identified a region surrounding the CREBRF gene as a QTL for BMI in a sample of Native
Hawaiians where GWAS previously could not identify a genome-wide significant signal. The causal
variant is not well imputed because of a lack of a population-specific imputation panel. In some
sense, imputation followed by GWAS on imputed markers is conceptually roundabout: an ARG-like
structure is often inferred in order to perform imputation, such as by the Li & Stephens approach
(Li and Stephens, 2003), which is also the basis for recent approaches to ARG estimation (Speidel
et al., 2019; Kelleher et al., 2019). In our approach, we test the structure on which imputation
is performed—that is, the approximate local tree—rather than the imputed variants. Such an
approach may facilitate the identification of trait-associated loci in understudied populations.

Our method adds to a long list of approaches for identifying trait-associated loci. First, and
perhaps most obviously, our method is a tree-based version of methods to test local GRMs for
concordance with a phenotype (Nagamine et al., 2012; Uemoto et al., 2013; Gusev et al., 2013;
Wang et al., 2013; Caballero et al., 2015; Sasaki et al., 2015). As discussed above, the advantage
of our approach over such methods stems from better estimates of local relatedness achieved by
estimated ARGs. Further, our method can be seen as a generalization of identity-by-descent
(IBD) mapping (Albrechtsen et al., 2009; Browning and Thompson, 2012; Gusev et al., 2013),
where our method considers putative IBD over short regions as estimated by local trees in addition
to the relatively large (multiple centiMorgan) segments that can be identified as recent IBD. IBD
mapping, in turn, can be seen as a generalization of linkage mapping that uses IBD among pairs
of people who are not closely related rather than only among close relatives. Our method is
also closely related to haplotype mapping, and in particular approaches to haplotype mapping
that estimate tree-like structures to describe relatedness among sets of haplotypes (Liu et al.,
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2001; Morris, 2005; Selle et al., 2021). Finally, our method adds to a tradition of methods for
identifying trait-involved loci that are explicitly tree-based (Templeton et al., 1987; McPeek and
Strahs, 1999: Larribe et al., 2002; Morris et al., 2002; Zéllner and Pritchard, 2005; Minichiello and
Durbin, 2006; Mailund et al., 2006; Tachmazidou et al., 2007; Kimmel et al., 2008; Wu, 2008;
Besenbacher et al., 2009; Zhang et al., 2012; Burkett et al., 2013; Thompson and Kubatko, 2013;
Thompson et al., 2016). Whereas most previous tree-based approaches to mapping were limited
to samples in the dozens because of difficulties with ARG estimation, modern ARG estimation
frameworks enable a substantial gain in power using sample sizes into the thousands.

Another recent approach that used large estimated ARGs to identify trait-associated loci came
from Zhang and colleagues (2021), who used a novel ARG estimation method, ARG-Needle, to
identify trait-associated variants in a sample of over 300,000 people. Our approach is comple-
mentary to theirs. Whereas Zhang and colleagues also identify and leverage the eGRM, which
they term the ARG-GRM, they use it for genome-wide tasks such as heritability estimation rather
than calculating the eGRM for a local region. In their searches for trait-associated variants,
they sample mutations from the ARG and test them individually, which is equivalent to testing
branches or clades from the ARG. A promising future direction is to combine our approach with
theirs, using our method to prioritize regions and then sampling mutations within that region in
an attempt to localize the signal.

Both our results and those of Zhang and colleagues (2021) point to advantages of using
estimated ARGs in situations in which genotype data are incomplete. In contrast, with complete
data on underlying genetic variants, our simulations suggest that our tree-based approach is
outperformed by other methods. This is sensible: in the scenarios we simulate, if all variants are
known, then the tree provides no additional information. The local coalescent trees are helpful
when data are incomplete because they provide a guide to the structure of unobserved mutations.!

Local coalescent trees could in principle outperform full sequence data in other settings as
well. One such setting is in combination with a model for natural selection on trait-associated
variants. Selection will distort local trees, and thus signals of selection inferred from the trees
might be used to prioritize trees or clades for investigation with respect to traits that could have
been under selection in the history of the sample. Another relevant setting is ascertainment, in
which individuals are sampled for inclusion in the study on the basis of their trait values. Such
ascertainment mimics natural selection in that it creates a sample of individuals selected on their
phenotypes, and distortions in local trees under ascertainment could serve as evidence that the
local region is trait-associated.

Our work here is an initial report of some advantages of a tree-based local relatedness ap-
proach to QTL mapping. The limitations of our current approach raise promising avenues for
future investigation.

IThis observation is in line with a "dismal theorem" of which Joe Felsenstein has spoken publicly but not yet
published. Felsenstein’s dismal theorem highlights situations in which knowledge about the evolutionary process
leading to variation in trait-influencing genotypes provides no additional information about trait association if
the genotypes themselves are known (Felsenstein, personal communication). It is equivalent to eq. 1 of Sen &
Churchill (2001).
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528 Here, we included all branches in the ARG within a genomic window in the eGRM, and we
s20 weighted them as a function of their branch length, span in the genome, and the number of tips
s3 descending from them. In principle, one could alter the weighting of branches, even choosing to
su1  leave some branches out, perhaps to form a time-specific eGRM (Fan et al., 2022). The absolute
s value of GWAS effect sizes is routinely observed to be negatively correlated with minor allele
s33 frequency, a pattern that could be explained by stabilizing selection on traits keeping large-effect
s% variants at low frequency (Simons et al., 2018; Zeng et al., 2018; Simons et al., 2022). The
s35 "a-model" we use to simulate effect sizes is in line with the basic observation of larger effect
s3 sizes at lower-frequency variants, as is our practice of estimating a GRM in which variants are
s standardized by a factor proportional to \/p(1 — p), which is equivalent to assuming that the
s3s contribution to heritability of a causal variant does not depend on its frequency. However, the
s  a-model is only a loose match to the observed distribution of effect sizes as a function of allele
s00 frequency (Simons et al., 2022; Spence et al., 2022), and using approaches to normalization or
s weighting of branches informed by more refined models of selection on trait-associated variation
si2 could improve performance in real data.

543 We did not consider errors in estimation of the ARG, instead treating marginal tree estimates
sas  from Relate as if they represented the true marginal trees. Figure S2 shows that using estimated
sas  trees from array data decreases power compared with using the true trees. Our main focus here
ss6 IS hypothesis testing, but a broader consideration of local eGRMs in attempts to estimate locally
se7  explained heritability will entail consideration of the effect of errors in ARG reconstruction on
sss  heritability estimates and their standard errors.

549 The variance-components model underlying our approach also assumes that in QTL windows,
ss0 every branch will be associated with some normally distributed effect on the phenotype. This
51 assumption is reasonable for QTLs with high levels of allelic heterogeneity, but it is worth exploring
s> the application of methods that allow sparse architectures to the eGRM (Zhou et al., 2013).
53 Further, whereas we test an additive architecture, it may be possible to modify our approach
ssa to look for QTLs that act in a dominant, recessive, or locally epistatic manner by computing
sss. modified local eGRMs (Weissbrod et al., 2016; Thompson et al., 2016; Hivert et al., 2021).

556 In a simple model of population structure, we showed that the false-positive rate of local
ssv. €GRM QTL mapping can be controlled via including fixed effects for principal components of the
58 global eGRM. At the same time, there are many remaining avenues to explore regarding population
sso  stratification and assortative mating, including the effect of more subtle forms of confounding
sc0o on local eGRM results, performance with rare causal variants (Mathieson and McVean, 2012),
ss1  the possibility of controlling for structure and relatedness via a random effect of a global eGRM,
ss2 and the possibility of including PCs or random effects for modifications of the eGRM, such as
s time-specific eGRMs (Fan et al., 2022).

564 We used ARGs estimated by Relate (Speidel et al., 2019) for both simulated and real
ss data. Although tsinfer+tsdate (Kelleher et al., 2019; Wohns et al., 2022) scales to much
sss larger sample sizes than Relate, we used Relate because of evidence that it provides more
se7 accurate branch length estimates than tsinfer+tsdate (Brandt et al., 2021), which is reflected
ss¢ the observation of Fan and colleagues 2022 that Relate-based eGRMs are more accurate than
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those formed from tsinfer+tsdate. An approach to QTL mapping based on topology rather
than branch length might open up application to much larger sample sizes via tsinfer+tsdate.
ARG-Needle (Zhang et al., 2021), which is not yet released for general use, may also allow the
procedures developed here to be used with tens or hundreds of thousands of individuals.

We tested for QTLs of size 5 kilobases or 10 kilobases. These sizes are arbitrary, but the
approach of a window-based test also allows for flexibility. For example, windows could be
chosen to form gene-level tests. It is likely possible to reduce the number of tests performed by
adaptively choosing windows on the basis of the extent to which tree topologies change within
the window. For example, in the test of CREBRF in Native Hawaiians, a single marginal tree
spanned the entirety of the CREBRF gene, likely because the genotyping array included few
SNPs within CREBRF. Testing this marginal tree only once is more sensible than testing identical
windows repeatedly, as our current approach does. Building a better approach will likely require
an understanding of how estimated tree topologies change as a function of sample size, population
history, and the local density of typed SNPs.

Importantly, the method as currently implemented is computationally intense because of
three time-consuming steps: estimating approximate ARGs with Relate, computing the eGRM,
and fitting a linear mixed model with GCTA. Regarding the first step, although Relate is much
faster than previous approaches to ARG estimation, it can still be time-consuming to run on
large samples. As mentioned above, tsinfer+tsdate scales to larger samples thanRelate, at
the cost of less accurate branch length estimates (Brandt et al., 2021). ARG-Needle is reported
to run on very large samples. Improvement of tsinfer+tsdate's branch length estimates or
release of ARG-Needle could allow the estimation of approximate ARGs suitable for our approach
on larger samples. The second step, fitting the eGRM, is slow in very large samples because the
computation entails a component for every branch on the ARG. As noted above, our approach
to eGRM estimation is slower than it might be because we touch redundant branches of local
trees multiple times, which can be ameliorated via a branch-based approach to computing local
eGRMs (Ralph et al., 2020). Further, as noted by Zhang and colleagues 2021, it is possible to
take a Monte Carlo approach to eGRM estimation, placing mutations on the ARG randomly at
high rate. The GRM computed from these randomly placed mutations is an approximate eGRM
that retains many of the advantages of the true eGRM. Fortunately, the third step of running
the mixed model has been a major target for speedups among statistical geneticists, so we will
be able to adopt existing approaches when working with larger samples (Loh et al., 2015; Runcie
and Crawford, 2019).

Since before the time of Zaccheaus (Luke 19:4), people have been climbing trees to get a
better view. Here, we explored a coalescent-tree-based approach to QTL mapping, showing that
the expectation of the local GRM conditional on the ARG allows detection of QTLs under allelic
heterogeneity or in cases in which genotype imputation is difficult. Local eGRMs are only one
case of a general framework for computing ARG-based analogues of statistics typically computed
on genetic variants (Ralph et al., 2020). The advantages of this general framework for a broad
range of statistical- and population-genetic tasks have yet to be explored.
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