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Abstract10

Understanding the genetic basis of complex phenotypes is a central pursuit of genetics.11

Genome-wide Association Studies (GWAS) are a powerful way to find genetic loci associated12

with phenotypes. GWAS are widely and successfully used, but they face challenges related13

to the fact that variants are tested for association with a phenotype independently, whereas14

in reality variants at different sites are correlated because of their shared evolutionary15

history. One way to model this shared history is through the ancestral recombination16

graph (ARG), which encodes a series of local coalescent trees. Recent computational17

and methodological breakthroughs have made it feasible to estimate approximate ARGs18

from large-scale samples. Here, we explore the potential of an ARG-based approach to19

quantitative-trait locus (QTL) mapping, echoing existing variance-components approaches.20

We propose a framework that relies on the conditional expectation of a local genetic21

relatedness matrix given the ARG (local eGRM). Simulations show that our method is22

especially beneficial for finding QTLs in the presence of allelic heterogeneity. By framing23

QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs24

in understudied populations. We use local eGRM to identify a large-effect BMI locus, the25

CREBRF gene, in a sample of Native Hawaiians in which it was not previously detectable by26

GWAS because of a lack of population-specific imputation resources. Our investigations can27

provide intuition about the benefits of using estimated ARGs in population- and statistical-28

genetic methods in general.29
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Introduction30

Identifying trait-associated genetic loci is one of the central aims of genetics. Over the past31

several decades, a range of approaches—prominently including linkage mapping and genome-32

wide association studies (GWAS)—appeared to fill this need (Balding et al., 2019). In humans,33

GWAS has become a tremendous research enterprise, with millions of study participants enrolled34

and hundreds of thousands of trait-associated variants identified (Visscher et al., 2017).35

For decades, geneticists have noted the usefulness of tree-based structures for describing36

genetic variation and for characterizing the genealogical and evolutionary processes that create37

genetic variation. At a single non-recombining locus, a tree called a gene genealogy describes38

the shared ancestry of individual copies of the locus (Rosenberg and Nordborg, 2002). For entire39

genomes or genomic regions in which recombination events occurred in the history of the sample,40

one can represent the sample’s shared ancestry via an ancestral recombination graph (ARG) that41

encodes the sequence of "local" or "marginal" trees along the genome (Griffiths and Marjoram,42

1996), with recombination events as the source of differences in topology between neighboring43

trees. The ARG encodes all mutation, recombination, and shared ancestry events in the history44

of a sample of genomes.45

Tree-based approaches to quantitative trait locus (QTL) mapping—in which a trait is tested46

for association with a tree or set of trees describing genetic variation in a region—have been47

proposed several times and shown to provide some advantages (Templeton et al., 1987; McPeek48

and Strahs, 1999; Larribe et al., 2002; Morris et al., 2002; Zöllner and Pritchard, 2005; Minichiello49

and Durbin, 2006; Mailund et al., 2006; Tachmazidou et al., 2007; Kimmel et al., 2008; Wu, 2008;50

Besenbacher et al., 2009; Zhang et al., 2012; Burkett et al., 2013; Thompson and Kubatko, 2013;51

Thompson et al., 2016), as have approaches to haplotype-based mapping that leverage awareness52

of tree-like relatedness patterns among sets of haplotypes (Liu et al., 2001; Morris, 2005; Selle53

et al., 2021). At the same time, explicitly tree-based approaches have until recently been limited54

by difficulties in estimating locus-level trees at scale. Further, the dominance of meta-analysis55

in GWAS (Cantor et al., 2010) and other methods based on summary statistics has meant that56

individual-level genetic data are often not available to data analysts, precluding most tree-based57

approaches.58

In principle, tree-based approaches have the potential to address three long-standing difficul-59

ties of GWAS. First, GWAS entails a huge number of statistical tests and requires a substantial60

correction for multiple testing as a result (Pe’er et al., 2008). Many of these tests are cor-61

related or redundant because the variants tested occur on the same or very similar underlying62

gene-genealogical trees. Testing the trees themselves may allow for fewer tests.63

Second, GWAS is known to be prone to miss trait-associated genetic loci characterized by64

allelic heterogeneity, in which multiple nearby causal variants affect a trait of interest (Platt65

et al., 2010; Flister et al., 2013; Korte and Farlow, 2013; Hormozdiari et al., 2017). Under66

allelic heterogeneity, causal alleles with opposing effects on a trait might be associated with67

the same marker allele, diminishing the association signal at the marker. Allelic heterogeneity68

is not rare, appearing in many Mendelian loci identified during the linkage era (Terwilliger and69
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Weiss, 1998)—linkage mapping is robust to allelic heterogeneity—and estimated recently to occur70

at a substantial fraction of complex trait loci (Hormozdiari et al., 2017) and expression QTLs71

(Jansen et al., 2017; Abell et al., 2022). Tree-based approaches, by focusing on local relatedness72

of haplotypes in the sample, can offer the same robustness to allelic heterogeneity as linkage73

analysis.74

Third, modern GWAS is fueled by imputation, in which a reference sample is fully sequenced,75

and then study samples that are more sparsely genotyped have their missing genotypes imputed76

statistically (Marchini and Howie, 2010; Das et al., 2018). The imputed genotypes can then be77

tested for association with the trait of interest. The success of modern imputation approaches is78

made possible by the fact that genetic variation is structured locally in a tree-like way (Stephens79

and Scheet, 2005; Edge et al., 2013). At the same time, imputation is most successful if the80

reference and study samples are closely related (Huang et al., 2009; Jewett et al., 2012; Lin81

et al., 2020), and closely related reference samples are not always available. Testing the tree82

structures that underlie imputation may offer a more direct approach to identifying QTLs that83

could circumvent the need for closely related reference samples.84

Due to advances in ARG estimation, it may now be possible to apply tree-based methods at85

sufficient scale to detect QTLs. Although estimation of the ARG is extremely difficult, approx-86

imate estimation procedures that operate on single-nucleotide polymorphism (SNP) array data87

and scale to thousands of samples have emerged in the last few years (Kelleher et al., 2019;88

Speidel et al., 2019; Zhang et al., 2021; Wohns et al., 2022). Further, for researchers studying89

QTLs in humans, the emergence of large biobanks has meant that individual researchers or re-90

search teams have access to individual-level genetic data in sample sizes that might allow the91

identification of trait-associated loci.92

Here, we present a tree-based approach to QTL mapping (Figure 1). We build on a recently93

proposed representation of tree-based relatedness, the expectated genetic relatedness matrix, or94

eGRM (Fan et al., 2022, see Figure 1B here), independently identified by Zhang and colleagues95

(2021) as the ARG-GRM and in a phylogenetic context by Wang and colleagues (2021) as the96

expected genetic similarity matrix. (And see McVean (2009, eq. 10) for a similar computation.)97

Genetic relatedness matrices (GRMs) are used in a wide array of statistical genetic tasks, including98

adjusting for population stratification and estimation of heritability (Speed and Balding, 2015).99

Given an ARG encoding the history of a sample, the eGRM is the expectation of the GRM100

assuming that mutations are placed on the ARG as a Poisson process. In general, we can compute101

a tree-based analog of any statistic computed from genetic variation by taking its expectation102

given the ARG (Ralph et al., 2020).103

Our procedure is to test eGRMs built from local segments of the ARG for concordance104

with a phenotype using a random-effects model fit by restricted maximum likelihood (REML).105

Loosely, the test is sensitive to cases in which individuals who are more closely related in some106

local segment of the genome are likely to be more similar on the phenotype. This approach is107

essentially a tree-based version of previous methods to test local GRMs for concordance with a108

phenotype, which have been framed variously as QTL mapping approaches (Wang et al., 2013;109

Sasaki et al., 2015) or local heritability estimation (Nagamine et al., 2012; Uemoto et al., 2013;110
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Gusev et al., 2013; Caballero et al., 2015). Using tree sequences estimated by Relate (Speidel111

et al., 2019), we test our approach in simulations of varying degrees of allelic heterogeneity. We112

also use our approach to analyze data from a sample of Native Hawaiians from near the CREBRF113

gene, in which the lack of a population-specific reference panel has previously precluded the114

detection by GWAS of a known large-effect polymorphism (Minster et al., 2016; Lin et al., 2020).115

Methods116

Characterizing local relatedness117

The key to our approach is a matrix A, called a local genetic relatedness matrix (local GRM),118

that characterizes the relatedness of individuals in a local region to be tested as a candidate119

QTL. Classically, a local GRM is calculated based on the observed variants in a a window (e.g.120

Yang et al., 2010). Our method is instead based on using the expectation of a local GRM (local121

eGRM) given an estimated ancestral recombination graph (ARG).122

DA B C

pairwise 
phenotypic 
similarities

D

A
B
C

DA B C

D

A
B
C

expected 
relatedness 
(local eGRM) test for similarity

REML

A
B C D

D F GEAB C

-1
-2

+2

A

C

B

Fan et al.

locus 1

locus 2

●
●

●

●

●
●

●
●

●

●

●

em1
m5

d

m6

c

m2 m4

b

m3

a
0

60

100

g
e

n
e

ra
tio

n
s 

a
g

o

m1

1a

m2

1b

m3

0c

m4

1

m5

0

m6

0

1

0

0

0

1

0

0

0

1

0

0

1

0.5

0.5

−1

0.5

0.5

−1

−1

−1

2

2

−1

−1

−1

0.5

0.5

−1

0.5

0.5

2

−1

−1

−1

0.5

0.5

−1

0.5

0.5

0.5

−1

0.5

−1

2

−1

0.5

−1

0.5

0.5

0.5

−1

0.5

0.5

−1

−1

−1

2

0.5

0.5

−1

0.5

0.5

−1

−1

−1

2

= 

1

−0.25

−0.75

−0.25

0.75

−0.5

−0.75

−0.5

1.25

−2

−1

0

1

2

0.5

0.5

−1

0.5

0.5

−1

−1

−1

2

2

−1

−1

−1

0.5

0.5

−1

0.5

0.5

0.5

−1

0.5

−1

2

−1

0.5

−1

0.5

0.5

0.5

−1

0.5

0.5

−1

−1

−1

2

0.85

−0.19

−0.65

−0.19

0.85

−0.65

−0.65

−0.65

1.31

m2 m3 m4 m5 m6

branch de ad bd ce

mutation m1

genotype 
matrix

(haploid)

0.5

0.5

−1

0.5

0.5

−1

−1

−1

2

single-variant 
GRM

a

b

c

1

1

0

a

b

c

1/3

1/3

-2/3

a

b

c

2/2

2/2

2-

center
-2/3

normalize
*3/ 2

outer 
product

GRM

eGRM

a

b

c

a

b

c

a b

b

c

a c

+ 
1
6

+ 
1
6

+ 
1
6

+ 

+ 

1
6

+ 
1
6

1
6

40 60

260 260 260 260

100
+ + 

60
= 

Figure 1: A) Local eGRM framework. Schematic of the marginal trees of an ARG of 4 haploid
invdividuals, A-D. The gold circles on the trees correspond to mutations. The clade marked with
the dotted circles is identical at loci 1 and 2, and the mutation at locus 2 is informative about the
branch length at locus 1. One or more marginal trees are used to calculate a local eGRM using
the method described in Fan et al. (2022). This matrix is then tested for association with the
phenotypes using Restricted Maximum Likelihood (REML). B) Computing the eGRM. This
panel is redrawn from Fan et al. (2022). A genome-wide genetic relatedness matrix (GRM) can
be viewed as an average of single-locus GRMs for every genotyped locus. An expected GRM
(eGRM) can be obtained as a weighted average of single-locus GRMs defined by each branch in
the ARG, where the weights are proportional to the expected number of mutations falling on each
branch. C) Allelic heterogeneity. One marginal tree of an ARG with three causal mutations
with opposing phenotypic effects.
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Fig. 1 describes the main ideas of our framework: in each window, we calculate one genetic123

relatedness matrix using the ARG’s marginal trees in that window, and then use REML (Restricted124

Maximum Likelihood) to test whether the local genetic relatedness explains phenotypic similarities125

in the sample. One advantage of using the ARG to describe genetic relatedness is that information126

from neighboring trees is naturally shared. To illustrate this idea, the dotted circles in Fig. 1A127

show a clade that exists in trees 1 and 2, with a mutation at locus 2 that differentiates tips C128

and D. Though the mutation is at marginal tree 2, its presence is informative about the branch129

lengths at marginal tree 1, since the relevant subtree is identical in marginal trees 1 and 2.130

Figure 1B describes the method we use to calculate the pairwise expected relatedness matrix131

(eGRM), developed by Fan et al. (2022), and also how the genetic relatedness matrix is conven-132

tionally calculated. Figure 1C shows an example of allelic heterogeneity: multiple causal alleles133

are in close linkage (e.g. on the same marginal tree of the ARG), so tag SNPs will be linked to134

several causal alleles with opposing effects. If the causal variants are themselves untyped, this135

can lead to association signals interfering or even cancelling each other out at the typed variant.136

Even if the causal variants are typed, association power will be improved if they are tested for137

association jointly rather than separately.138

Local GRM We compute local GRMs from biallelic variants in the local window to be tested139

as a QTL (e.g. Yang et al., 2010). The entry relating individuals i and j in the GRM can be140

written as141

GRMi,j = 1
ℓ

ℓ∑
k=1

(yi,k − 2pk)(yj,k − 2pk)
[2pk(1 − pk)]α , (1)

where k in an index over the sites considered, ℓ is the total number of sites considered, yi,k is142

the number of focal alleles carried by individual i, and pk is the sample frequency of the focal143

allele (Speed and Balding, 2015). The constant α determines the relative emphasis placed on144

rarer variants in computing relatedness estimates, with larger values giving greater weight to rarer145

variants. In this paper, we use α = 1. With α = 1, the local GRM is a covariance matrix of146

mean-centered, standardized genotype counts among individuals, where the standardization is by147 √
2p(1 − p), the standard deviation of the genotype under Hardy–Weinberg equilibrium.148

Local eGRM Fan et al. (2022) compute a genome-wide global eGRM, which is the expectation149

of the genetic relatedness matrix (GRM) described by eq. 1 (with α = 1) conditional on the150

ARG, assuming that infinite-sites mutations are placed on the ARG as a Poisson process. The151

global eGRM can be computed as a weighted sum of single-locus GRMs implied by each branch152

in the ARG. Specifically, each branch in the ARG defines a clade of tips that descend from the153

branch. A mutation on that branch would be inherited by all these tips and so would define154

a single-locus GRM following eq. 1. The eGRM is equal to the weighted average of all such155

branch-wise GRMs, with weights per branch proportional to a product µ(b)l(b)t(b), where µ(b) is156

the mutation rate on the branch, l(b) is the length of the genomic region spanned by the branch,157
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and t(b) is the length of the branch (i.e. the time in the tree that the branch exists). Here, as in158

Fan et al. (2022), we assume that the mutation rates are the same on all branches.159

We compute the local eGRM for genomic regions of a pre-defined size. The local eGRM160

for one tree is a weighted sum over the tree’s branches. In order to calculate the local eGRM161

for a genomic window, we first calculate the local eGRM for all trees whose genomic intervals162

overlap the window, and then take a weighted average of these matrices, where the weights163

correspond to the fraction of the window covered by each tree’s genomic interval. This approach164

to computation is redundant because many branches exist across multiple marginal trees, and165

can be ameliorated in principle via an approach that records unique branches only once (Ralph166

et al., 2020). We did not pursue this solution because of our decision to work with Relate trees,167

which do not preserve branch lengths exactly between neighboring marginal trees.168

We computed local eGRMs using egrm software (Fan et al., 2022).169

The variance-components model170

Let y be quantitative phenotypes for n individuals, X be an n x k design matrix of covariates,171

and β the covariates’ regression coefficients. The k covariates may include nuisance variables172

and potentially confounding factors, such as age, sex, and descriptions of population structure173

or global relatedness. Additionally, let In the n x n identity matrix, and σ2
ϵ the variance of174

environmental noise. Given a GRM A of dimensions n x n representing relatedness among175

individuals in a local segment of the genome, we model the phenotypic variation in the sample176

by177

y|β, σ2
a, σ2

ϵ ∼ N(Xβ, σ2
aA + σ2

ϵ In). (2)

We estimate β, σ2
a, and σ2

e with Restricted Maximum Likelihood (REML). We identify a QTL178

if the parameter σ2
a is significantly different from 0, and can further estimate the local heritability179

as σ2
a

σ2
a+σ2

ϵ
.180

To understand the difference between using a GRM based on observed variants compared181

with an expectation conditional on an estimated ARG, note that when A is based on observed182

variants, the model in eq. 2 is equivalent to one in which the typed sites in the window receive183

random, uncorrelated effect sizes with expectation 0 and variance proportional to 1/(2p(1 − p))α184

(Lynch and Walsh, 1998; Goddard et al., 2019) that contribute additively to the trait. That is,185

y = Xβ + Zu + e, with X an n × k design matrix of covariates with fixed effects β (k × 1), Z186

an n × ℓ matrix of genotypes at the sites considered with random effects u (ℓ × 1), and e an187

n × 1 vector of random, uncorrelated environmental effects.188

On the other hand, if A is computed by taking an expectation over an ARG, the model in189

eq. 2 is equivalent to one in which each branch of the ARG incorporated in A receives a random,190

uncorrelated effect size with expectation 0 and variance proportional to µ(b)l(b)t(b)/(2p(1−p))α,191

where p is the proportion of tips that descend from a branch in the relevant span of the genome,192

and again µ(b) is the mutation rate on the branch, l(b) is the length of the genomic region193

spanned by the branch, and t(b) is the length of the branch.194
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Simulating genealogy and genotypes195

One population For most of our simulations, we simulated ARGs using stdpopsim (Adrion196

et al., 2020; Lauterbur et al., 2022, version 0.1.2) using the Python API. We simulated chromo-197

some 1 for 2000 haploid individuals of African ancestry using the "OutOfAfrica_3G09" model198

and msprime (Kelleher et al., 2016, version 1.1.1) and otherwise default parameters. We then199

extracted the genomic region starting at position 49,000,000 and ending at position 50,000,000.200

Then, we randomly assigned pairs of haplotypes to 1000 individuals to create diploids.201

Two populations Using msprime directly, we simulated two samples of 1000 diploids, sampled202

from two populations that split 10,000 generations ago and each had a diploid Ne of 20,000,203

which corresponds to an FST of 1
9 (Slatkin, 1991). We simulated two chromosomes: one “test”204

chromosome used for association testing of length 100,000bp and and a second chromosome, used205

to estimate the global eGRM, with length 3,000,000bp. We set the mutation and recombination206

rates to 10−8.207

Estimating ARGs with Relate To simulate genotyping array data, we filtered the simulated208

ARG’s variants by retaining 20% of those with a minor allele frequency of at least 1%. We then209

used the retained variants to estimate ARGs with Relate (Speidel et al., 2019) using parameters210

’–mode All’, ’–mutation_rate 1.25e-8’, ’–effectiveN 2000’ and the human recombination map211

(HapMap phase II, build GRCh37, provided with the Relate software). We then converted the212

output to treeSequence format (Baumdicker et al., 2022) with Relate’s tool RelateFileFormats213

and ’–mode ConvertToTreeSequence’214

Simulating phenotypes215

Choosing the causal variants We selected causal variants among those that were not retained216

in the downsampling scheme described above ("untyped"). In the experiments with one causal217

variant, the selection was uniformly at random among variants of a predefined frequency. If no218

branch in the local trees subtended the desired frequency, we chose the nearest possible frequency.219

In the experiments with allelic heterogeneity, we defined causal regions of different lengths in the220

center of the ARG and randomly selected a given proportion of untyped variants within the region221

to be causal.222

Choosing the effect sizes We chose the effect size for each variant on the basis of its allele223

frequency, sampling from a normal distribution with expectation 0 and standard deviation inversely224

proportional to
√

p(1 − p) (Speed et al., 2017, LDAK model with α = 1),where p is the variant’s225

minor allele frequency. This leads variants with lower allele frequencies to have effects with larger226

absolute sizes.227

In order to obtain the desired local heritability, we added random noise to the phenotypes228

such that VE = VG(1−h2)/h2, where VE is the phenotypic variance due to environmental effects229
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uncorrelated with genotype, VG is the phenotypic variance due to genetic effects, and h2 is the230

desired local heritability.231

QTL testing232

local REML We tested each local relatedness matrix (GRM and eGRM) for association with the233

phenotypes using GCTA (version 1.94.1) (Yang et al., 2011) and its implementation of Restricted234

Maximum Likelihood (REML) with tag ’–reml’ and providing the local relatedness matrix (tag ’–235

grm’), the phenotypes (tag ’–pheno’), and running the algorithm for a maximum of 500 iterations.236

Note that GCTA p-values for random effects in such a model are never larger than 1/2.237

GWAS We tested each typed variant for association with the phenotypes using python’s238

statsmodels (Seabold and Perktold, 2010) (version 0.13.2) OLS function.239

ACAT-V We use function ACAT from R package ACAT (Liu and Xie, 2018, version 0.91) to240

run ACAT-V on the p-values from the GWAS results in a window.241

Correcting for population stratification242

We simulated 100 replicates of samples from two populations, as described above. Then, we243

assigned a random phenotype sampled from N (0, 1) to the individuals from the first population,244

and a phenotype sampled from N (1, 1) to the individuals from the second population. We245

estimated a global eGRM for the long chromosome and used GCTA to estimate the 20 first246

principal components (with tag ’–pca’). We incorporated these principal components as fixed247

effects in GCTA to correct for population stratification (with tag ’–qcovar’).248

Estimating the power to find associations249

Null simulations In order to determine a significance cutoff for each simulation configuration,250

we used 300 ARG replicates from the "one population" set, and assigned each individual from251

each ARG a random N (0, 1) phenotype value irrespective of genotype. We performed association252

tests for each association method, for each variant set / tree type and for each testing window253

size, i.e. for every power simulation configuration that affects the number of association tests.254

We set the significance cutoff such that the family-wise error rate (i.e. the fraction of replicates255

containing at least one significant association) was 5%.256

Power as a function of genetic architecture For each parameter combination of variant257

set / tree type, causal variant proportion, causal window size, testing window size and local258

heritability, we counted the number of replicates for which the p-value of a at least one window259
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(for ACAT-V, local eGRM and local GRM) or variant (for GWAS) exceeded the significance260

threshold defined with the null simulations.261

Application to CREBRF262

Transforming the phenotypes Phenotype data for Body Mass Index (BMI) was available for263

5371 people from the Hawaiian population of the Multiethnic Cohort (MEC, Kolonel et al., 2000),264

along with sex and age. To ensure that the phenotype residuals would follow a standard normal265

distribution, we performed a transformation typical for BMI data. Namely, we stratified by sex,266

regressed out age and age squared, and removed individuals for which the residual was more267

than six standard deviations removed from the sex’s mean. Then, we inverse rank normalized the268

phenotypes (McCaw et al., 2020).269

Estimating the ARG with Relate In total, 5,384 self-identified Native Hawaiians from the270

Multiethnic Cohort (MEC) were genotyped on two separate GWAS arrays: Illumina MEGA and271

Illumina Global Diversity Array (GDA). After taking the intersection of SNPs found on both272

arrays, we removed variants that were genotyped in fewer than 95% of people in the sample,273

variants out of Hardy-Weinberg Equilibrium (p < 10−6). We also applied a filter for people with274

more than 2% missing genotypes but removed no one with this filter.275

With approximately 990,000 SNPs after quality control, we phased the genotypes with EAGLE276

(Loh et al., 2016) by using its default hg38 genetic map. We inferred ancestral alleles by using277

the Relate add-on module with ancestral genome homo_sapiens_ancestor_GRCh38_e86.tar.gz,278

downloaded from (ftp://ftp.ensembl.org/pub/release-86/fasta/ancestral_alleles/). We divided279

the genome into segments containing 10,000 SNPs, and ran Relate on these segments in parallel280

with all default parameters per the user manual.281

Inferring the global eGRM to correct for population structure We first inferred the282

segment-wise eGRMs for all chromosomes except chromosome 5, which contains the gene of283

interest CREBRF. We combined the segment-wise eGRMs into a global eGRM by taking their284

weighted sum, where the weights were given by the the expected number of mutations in each285

eGRM, which is a parameter that is provided in the output of egrm (Fan et al., 2022).286

Determining the significance cutoffs The cutoffs in Table S1 were calculated for a genomic287

region of length 1Mb. We compute the effective number of independent tests for each method288

as the number of tests for which the significance cutoff we obtain corresponds to a Bonferroni289

correction. For GWAS, the effective number of tests was 281.2, and for local eGRM with 5kb290

testing windows, 30.8. The standard genome-wide significance for GWAS is 5 × 10−8, which291

corresponds to the cutoff for one million independent test with Bonferroni correction. To approx-292

imate the genome-wide cutoff value for local eGRM, we assume that the ratio of 281
31 GWAS tests293

to local eGRM tests for a given region holds across the genome. We thus set the genome-wide294
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local eGRM cutoff to 0.05
106∗ 31

281
≈ 4.5 × 10−7).295

Testing for QTLs We ran our local eGRM method to test for correespondence between the296

transformed phenotypes and the estimated ARG around the CREBRF region in windows of297

5kb. We corrected for population stratification by using GCTA to estimate the first 20 principal298

components of the global eGRM, leaving out chromosome 5, which we then included as fixed299

effects in the linear mixed model. We further used PLINK (Purcell et al., 2007, version 1.07)300

to test for association between the genotypes within the CREBRF region and the transformed301

phenotypes. To generate principal components as covariates for GWAS, we held out chromosome302

5, and generated the 20 PCs using EIGENSTRAT (Price et al., 2006) after additionally filtering out303

variants with minor allele frequency < 1% and filtering for LD using commmand using –indep-304

pairwise 50 5 0.8 in PLINK.305

Results306

We compare our framework based on computing the expected genetic relatedness matrix from307

an inferred ARG, referred to here as local eGRM, with three other association methods: GWAS,308

in which each variant is tested separately; local GRM, which for each testing window calculates309

a genetic relatedness matrix based on the typed variants within the window (see methods); and310

ACAT-V (Liu et al., 2019), which for each window combines the variant-level p-values from311

GWAS and is especially powerful when a small proportion of variants within a window are causal.312

Although ACAT-V is most typically applied to sequence data, our focus here is on array data,313

and so we apply ACAT-V to simulated array data in the main text, deferring comparisons with314

complete data to supplementary figures.315

The multiple testing burden is smaller for window-based association tests316

than for GWAS317

To determine the p-value cutoffs for each method, we performed null simulations for each pa-318

rameter combination of variant set or tree type and testing window size, i.e. for every simulation319

configuration that could lead to a different number of tests required per ARG. For each parameter320

combination, we simulated random phenotypes for all individuals in the sample, and we recorded321

the smallest p-value resulting from the tests of the simulated chromosome against the null phe-322

notypes. We determined the significance cutoff such that the family-wise error rate was 5% in323

null simulations (Table S1). Fig. 2 shows the ordered p-values for one of these null simulations.324

It shows the general pattern that can be seen for all parameter combinations, namely that the325

multiple testing burden is highest for GWAS and lower for the window-based association tests326

ACAT-V, local GRM and local eGRM. We can compare the results in terms of the number of "ef-327

fective tests" implied by the p-value cutoffs necessary to achieve a family-wise error rate (FWER)328

of 0.05—that is, the number of tests that would lead to the same cutoff under a Bonferroni329
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correction. For 5kb windows and Relate trees, the local eGRM method applied to a 1 megabase330

window entails ≈ 31 effective tests. In contrast, GWAS on typed variants implies ≈ 280 effective331

tests, or ≈ 9 times as many as the local eGRM method. Further, the cutoffs are more stringent332

for GWAS when all variants are used rather than only the subset of variants selected for geno-333

typing, whereas the difference between using only typed variants and all variants is much smaller334

for the window-based methods.335

The null simulations were also useful to determine how well the local eGRM method is336

calibrated with regard to the distribution of p-values under the null. The quantile-quantile plots337

in S1 confirm for multiple simulation configurations that both local eGRM and local GRM produce338

close-to-uniformly-distributed but slightly conservative p-values. Details of the p-value distribution339

do not influence the simulation results below, since we choose the cutoff for significance empirically340

based on the null simulations.341

0 50 100 150 200 250 300

−
lo

g 1
0(

p)

ordered simulation number

1

2

3

4

5

6 true trees / all variants
Relate / typed variants
GWAS
ACAT−V
local GRM
local eGRM

Figure 2: Setting p-value cutoffs for family-wise error rate of 5%.. The most significant
p-value for any window (local GRM, local eGRM, ACAT-V) or any SNP (GWAS) in each of the
300 replicates is shown on the y-axis for each association method and ARG type / variant set,
starting with the lowest minimum p-values on the left. The testing window size was 5kb. The
vertical black line corresponds to 5% of the replicates.

Local eGRM exhibits power advantages in cases of allelic heterogeneity342

We used simulations to understand the power of our framework to find true trait-relevant genetic343

regions. As with the null simulations, we simulated 200 replicates of realistic human ARGs for344

chromosome 1 of 1000 Africans under the out-of-Africa model using stdpopsim (Adrion et al.,345

2020). We simulated phenotypes for each individual in each ARG with a variety of architectures346
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inside a trait-relevant genomic window by varying the number of causal variants in the window,347

the heritability explained by variants in the window, and the size of the testing window.348

We compared the power of the following approaches: GWAS on both typed and all variants,349

local GRM with both typed and all variants, local eGRM with Relate trees estimated from typed350

variants, local eGRM with true trees, and ACAT-V with both typed and all variants.351

First, we investigated power in the presence of allelic heterogeneity, i.e. multiple causal352

variants within close physical proximity and thus genetically linked with each other. Within a353

predefined causal window of the genome, each untyped variant has a given probability of being354

causal.355

Each causal variant is given a random phenotypic effect size such that loci with lower fre-356

quency minor alleles tend to be assigned larger absolute effect sizes, as is observed in human data357

(see Methods for details). Fig. 3 shows power results for causal window of size 5kb, with 20% of358

variants causal (panels A and B, median 4 causal variants per window) or 50% of variants causal359

(panels C and D, median 11 causal variants per window). We also varied the local heritability, and360

the testing window sizes (5kb for panels A and C, 10kb for panels B and D) for the window-based361

tests. For the results obtained with a more extensive set of simulation parameters, including362

results that incorporate both typed and untyped variants, see Fig. S2.363

Across simulated genetic architectures, our local eGRM method consistently has higher power364

than other approaches when analyzing array data. Across the local heritability values simulated365

in Figure 3, the local eGRM approach with 5kb analysis windows has on average 17% higher366

power than GWAS with 20% of variants causal, and 31% higher power when 50% of the variants367

are causal. The other three methods (GWAS, local GRM, ACAT-V) performed similarly to each368

other. In contrast, when using the true ARG and all variant information, as would be captured369

by accurate sequencing data, GWAS, ACAT-V and local GRM all outperform local eGRM (Fig.370

S2), even when local eGRM is performed on the true trees.371

Fig. 4 shows the power of each method for phenotypes that have a single untyped causal372

variant with allele frequency 0.02 (panel A) or 0.2 (panel B). With a single causal variant, local373

eGRM is roughly comparable to the other methods, operating at a slight disadvantage when the374

frequency of the causal variant is low (0.02), and perhaps a slight advantage when the frequency375

of the causal variant is higher (0.2).376

Tables S6 - S9 show how many replicates were found to contain a significant peak by two377

methods. Generally, the concordance was higher for true ARGs than for Relate-estimated ARGs.378

The highest concordance is generally between GWAS and ACAT, followed by the other pairs which379

have similar concordances., Tables S8 and S9 show analogous results for null simulations.380
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Figure 3: Power comparisons under allelic heterogeneity Each panel shows the power to
detect an association for 4 methods using array-like data when there is a 5kb causal window. In
panels A and B, phenotypes are determined by 20% of the untyped variants in the window, while
in panels C and D, phenotypes are determiend by 50% of the untyped variants in the window.
In panels A and C, a 5kb test window is used (matching the simulated causal window size). In
panels B and D, a 10kb test window is used. Error bars correspond to one standard error.
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Figure 4: Power comparisons with one causal variant Each panel shows the power to detect
an association for 4 methods using array-like data when there is a causal variant at a frequency of
either 0.02 (A) or 0.2 (B). Association tests with methods local eGRM and GRM were performed
in genomic windows of 5kb. The error bars correspond to one standard error.

Correcting for population stratification by including principal compo-381

nents inferred from the global eGRM382

The simulations of the power analysis were performed on samples from a panmictic population.383

In real GWAS settings, however, samples are often affected by population stratification (Pritchard384

and Rosenberg, 1999; Rosenberg and Nordborg, 2006; Vilhjálmsson and Nordborg, 2013; Veller385

and Coop, 2023), in which genotypes appear correlated with phenotypes because of confounding386

rather than because of close linkage to causal variants. In GWAS, the most popular strategies387

for correcting for population stratification are inclusion of a random effect for the global GRM388

(Yu et al., 2006) and inclusion of fixed effects for the first several principal components of a389

standardized genotype matrix (Price et al., 2006), obtained by eigendecomposition of a GRM.390

In order to test whether such a population stratification correction strategy works for local391

eGRM, we simulated a simple case of two discrete populations. In particular, we simulated a392

sample of 2000 diploids coming from two populations that separated 10,000 years ago. We393

simulated random phenotypes for all individuals, and added a fixed effect to individuals in one of394

the populations to simulate severe confounding due to population structure. We then computed395

PCs from the global eGRM derived from non-causal loci and tested a causal region for the presence396

of a QTL using local eGRM in windows of size 5kb, once without correcting for population397

stratification, and twice more correcting by including either one PC or twenty PCs as fixed effects398

in the model. Figure S4 shows the distribution of p-values resulting from the association tests.399

Panel A without the PC correction shows a very clear inflation of significant p-values—all p-400

values are effectively zero. Panels B and C with correction shows a p-value distribution that401
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is very similar to the distribution of a single population sample without stratification (Fig. S1)402

i.e. slightly conservative but almost uniform. In this simple case, one PC should be sufficient403

to describe population structure (McVean, 2009), and correcting for additional PCs does not404

much change the distribution of p-values under the null. Thus, PC correction on a global eGRM405

appears able to ameliorate population stratification, at least in the simplest case. We defer a406

more thorough investigation of eGRM-based correction for population stratification—including407

investigation of more complex population structure and correction via a random-effects approach408

using the global eGRM—for future work.409

Analysis of a known QTL that GWAS cannot identify in the absence of410

a population-specific imputation panel411

Lin et al. (2020) studied the limitations of imputation when there is incomplete representation412

of some populations in imputation reference panels. As a demonstration, they used the human413

locus containing gene CREBRF. In Pacific Islanders, there is a segregating missense mutation in414

CREBRF, rs373863828, with a large effect on adiposity. The frequency of this missense variant is415

as high as 26% in Samoans, but is very rare or unknown in people without recent ancestry from416

Polynesia. The association signal was originally detected with body mass index (BMI) in Samoans417

(Minster et al., 2016) at a linked tag SNP, rs12513649, which was on the Affymetrix 6.0 array.418

However, rs373863828 was not observed in any publicly available databases, not even those that419

include diverse populations (e.g. 1000 Genomes Project or Haplotype Reference Consortium),420

and so it was not well imputed at the time of the study. Lin et al. (2020) genotyped variant421

rs373863828 in self-reported Native Hawaiians who were part of the Multiethnic Cohort (MEC).422

When Lin et al. (2020) tested the genotyped rs373863828 directly, they found a strong association423

with adiposity phenotypes. However, when they used the original genotypes in the MEC, which424

did not contain rs373863828, they were not able to discover a significant association using 1000425

Genomes Project Phase 3 and Haplotype Reference Consortium reference panels via either GWAS426

or admixture mapping.427

Because local eGRM does not rely on an imputation panel, we explored whether local eGRM428

could find an association between BMI and the CREBRF locus in the Native Hawaiian subset of429

the Multiethnic Cohort (MEC, Kolonel et al., 2000) using only genotyping array data. Based on430

the phased genotypes, we used Relate to estimate the ARG for the whole genome. We then431

used egrm (Fan et al., 2022) to infer the global eGRM using the ARG of all chromosomes except432

chromosome 5 (the location of CREBRF ). We then used local eGRM to test for association433

between the transformed phenotypes of 5371 individuals and the ARG, correcting for population434

stratification by including 20 PCs of the global eGRM in the linear mixed model. As can be435

seen in the Manhattan plot of our association results (Figure 5), we replicate Lin et al. (2020)’s436

inability to find a genome-wide significant association near CREBRF (pink shaded window) using437

GWAS (orange dots). However, local eGRM (blue dots) identifies signals that surpass genome-438

wide significance in GWAS (dashed orange line) on both sides of the causal SNP rs373863828439

(solid pink line). Additional windows near CREBRF surpass the cutoff we posit for genome-440
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wide significance using local eGRM with 5kb testing windows based on our null simulations (blue441

dashed line). The distances between the observed peaks and the causal SNP rs373863828 are442

in line with the distances between peaks and causal variants at frequency 0.02 observed in our443

simulations (Table S3 and Fig. S5).444
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Figure 5: Association results for Hawaiian cohort of the MEC around CREBRF Blue
dots are per-window negative log10 p-values for the local eGRM, and orange dots are per-SNP
results for GWAS. The horizontal dashed lines are the genome-wide significance cutoffs (5 ∗ 10−8

for GWAS and 4.5 ∗ 10−7 for local eGRM). The vertical shaded area delimits the coordinates
of CREBRF, and the red vertical line within it is the location of the causal SNP rs373863828.
The gray vertical lines are SNPs found in the GWAS catalog that were found to be associated
to traits “Body Mass Index” and “weight”. Their names, studies in which they were found, and
the smallest sample size in which they were found are: rs570053489 (Tachmazidou et al., 2017,
267,616 individuals), rs12513649 (Minster et al., 2016, 3,072 individuals), rs192829047 (Zhu
et al., 2020; Kichaev et al., 2019; Pulit et al., 2019, 457,822 individuals), rs3849724 (Akiyama
et al., 2017; Hoffmann et al., 2018, 158,284 individuals), rs10037781 (Sakaue et al., 2021,
165,419 individuals), rs4867732 (Sakaue et al., 2021, 165,419 individuals), rs34017767 (Sakaue
et al., 2021, 165,419 individuals), rs114653914 (Tachmazidou et al., 2017, 267,616 individuals).
The proxy SNP rs12513649 for the CREBRF association is the one directly to the left of CREBRF.

The grey vertical lines in Figure 5 are hits for "Body Mass Index" or "weight" identified in the445

GWAS catalog. The one immediately to the left of CREBRF rs12513649, the tag SNP identified446

in a sample of ∼3k Samoans (Minster et al., 2016). The other hits were identified in samples447

much larger—by factors of at least thirty—than the one we analyze here. As seen in Figure 5,448

local eGRM p values, though they do not usually reach genome-wide significance at this sample449

size (except possibly near the rightmost hit), do appear to show some degree of elevation near450

most of the GWAS hits.451
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Discussion452

We developed a new approach to QTL mapping that uses estimated ARGs to characterize local453

relatedness and show that it provides advantages complementary to several existing approaches454

to QTL mapping with SNP array data. Specifically, our approach lowers the multiple testing455

burden, is robust to allelic heterogeneity, and can assist in identifying QTLs even when the causal456

loci are not well tagged by any single array SNP and cannot be imputed because of a lack of a457

population-specific reference panel.458

In cases of allelic heterogeneity, a marker variant can be linked with multiple causal variants459

that can have opposing effects, leading to their association signals interfering and causing diffi-460

culties for GWAS. The local GRM and local eGRM approaches we consider here both naturally461

accommodate allelic heterogeneity, because even if there are multiple causal variants in a trait-462

relevant region, it should still be the case that individuals who are more closely related in the463

region tend to be more similar on the phenotype. The local GRM and eGRM approaches differ464

in that the local eGRM takes into account information about local branch lengths drawn from465

mutations occurring in neighboring regions, since trees in neighboring regions tend to share many466

of the same coalescent events with the focal region. Thus, the local eGRM can capture local467

genetic relatedness more accurately than the local GRM, particularly for small testing windows,468

giving it an advantage over local GRMs formed from array data.469

We identified a region surrounding the CREBRF gene as a QTL for BMI in a sample of Native470

Hawaiians where GWAS previously could not identify a genome-wide significant signal. The causal471

variant is not well imputed because of a lack of a population-specific imputation panel. In some472

sense, imputation followed by GWAS on imputed markers is conceptually roundabout: an ARG-like473

structure is often inferred in order to perform imputation, such as by the Li & Stephens approach474

(Li and Stephens, 2003), which is also the basis for recent approaches to ARG estimation (Speidel475

et al., 2019; Kelleher et al., 2019). In our approach, we test the structure on which imputation476

is performed—that is, the approximate local tree—rather than the imputed variants. Such an477

approach may facilitate the identification of trait-associated loci in understudied populations.478

Our method adds to a long list of approaches for identifying trait-associated loci. First, and479

perhaps most obviously, our method is a tree-based version of methods to test local GRMs for480

concordance with a phenotype (Nagamine et al., 2012; Uemoto et al., 2013; Gusev et al., 2013;481

Wang et al., 2013; Caballero et al., 2015; Sasaki et al., 2015). As discussed above, the advantage482

of our approach over such methods stems from better estimates of local relatedness achieved by483

estimated ARGs. Further, our method can be seen as a generalization of identity-by-descent484

(IBD) mapping (Albrechtsen et al., 2009; Browning and Thompson, 2012; Gusev et al., 2013),485

where our method considers putative IBD over short regions as estimated by local trees in addition486

to the relatively large (multiple centiMorgan) segments that can be identified as recent IBD. IBD487

mapping, in turn, can be seen as a generalization of linkage mapping that uses IBD among pairs488

of people who are not closely related rather than only among close relatives. Our method is489

also closely related to haplotype mapping, and in particular approaches to haplotype mapping490

that estimate tree-like structures to describe relatedness among sets of haplotypes (Liu et al.,491
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2001; Morris, 2005; Selle et al., 2021). Finally, our method adds to a tradition of methods for492

identifying trait-involved loci that are explicitly tree-based (Templeton et al., 1987; McPeek and493

Strahs, 1999; Larribe et al., 2002; Morris et al., 2002; Zöllner and Pritchard, 2005; Minichiello and494

Durbin, 2006; Mailund et al., 2006; Tachmazidou et al., 2007; Kimmel et al., 2008; Wu, 2008;495

Besenbacher et al., 2009; Zhang et al., 2012; Burkett et al., 2013; Thompson and Kubatko, 2013;496

Thompson et al., 2016). Whereas most previous tree-based approaches to mapping were limited497

to samples in the dozens because of difficulties with ARG estimation, modern ARG estimation498

frameworks enable a substantial gain in power using sample sizes into the thousands.499

Another recent approach that used large estimated ARGs to identify trait-associated loci came500

from Zhang and colleagues (2021), who used a novel ARG estimation method, ARG-Needle, to501

identify trait-associated variants in a sample of over 300,000 people. Our approach is comple-502

mentary to theirs. Whereas Zhang and colleagues also identify and leverage the eGRM, which503

they term the ARG-GRM, they use it for genome-wide tasks such as heritability estimation rather504

than calculating the eGRM for a local region. In their searches for trait-associated variants,505

they sample mutations from the ARG and test them individually, which is equivalent to testing506

branches or clades from the ARG. A promising future direction is to combine our approach with507

theirs, using our method to prioritize regions and then sampling mutations within that region in508

an attempt to localize the signal.509

Both our results and those of Zhang and colleagues (2021) point to advantages of using510

estimated ARGs in situations in which genotype data are incomplete. In contrast, with complete511

data on underlying genetic variants, our simulations suggest that our tree-based approach is512

outperformed by other methods. This is sensible: in the scenarios we simulate, if all variants are513

known, then the tree provides no additional information. The local coalescent trees are helpful514

when data are incomplete because they provide a guide to the structure of unobserved mutations.1515

Local coalescent trees could in principle outperform full sequence data in other settings as516

well. One such setting is in combination with a model for natural selection on trait-associated517

variants. Selection will distort local trees, and thus signals of selection inferred from the trees518

might be used to prioritize trees or clades for investigation with respect to traits that could have519

been under selection in the history of the sample. Another relevant setting is ascertainment, in520

which individuals are sampled for inclusion in the study on the basis of their trait values. Such521

ascertainment mimics natural selection in that it creates a sample of individuals selected on their522

phenotypes, and distortions in local trees under ascertainment could serve as evidence that the523

local region is trait-associated.524

Our work here is an initial report of some advantages of a tree-based local relatedness ap-525

proach to QTL mapping. The limitations of our current approach raise promising avenues for526

future investigation.527

1This observation is in line with a "dismal theorem" of which Joe Felsenstein has spoken publicly but not yet
published. Felsenstein’s dismal theorem highlights situations in which knowledge about the evolutionary process
leading to variation in trait-influencing genotypes provides no additional information about trait association if
the genotypes themselves are known (Felsenstein, personal communication). It is equivalent to eq. 1 of Sen &
Churchill (2001).
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Here, we included all branches in the ARG within a genomic window in the eGRM, and we528

weighted them as a function of their branch length, span in the genome, and the number of tips529

descending from them. In principle, one could alter the weighting of branches, even choosing to530

leave some branches out, perhaps to form a time-specific eGRM (Fan et al., 2022). The absolute531

value of GWAS effect sizes is routinely observed to be negatively correlated with minor allele532

frequency, a pattern that could be explained by stabilizing selection on traits keeping large-effect533

variants at low frequency (Simons et al., 2018; Zeng et al., 2018; Simons et al., 2022). The534

"α-model" we use to simulate effect sizes is in line with the basic observation of larger effect535

sizes at lower-frequency variants, as is our practice of estimating a GRM in which variants are536

standardized by a factor proportional to
√

p(1 − p), which is equivalent to assuming that the537

contribution to heritability of a causal variant does not depend on its frequency. However, the538

α-model is only a loose match to the observed distribution of effect sizes as a function of allele539

frequency (Simons et al., 2022; Spence et al., 2022), and using approaches to normalization or540

weighting of branches informed by more refined models of selection on trait-associated variation541

could improve performance in real data.542

We did not consider errors in estimation of the ARG, instead treating marginal tree estimates543

from Relate as if they represented the true marginal trees. Figure S2 shows that using estimated544

trees from array data decreases power compared with using the true trees. Our main focus here545

is hypothesis testing, but a broader consideration of local eGRMs in attempts to estimate locally546

explained heritability will entail consideration of the effect of errors in ARG reconstruction on547

heritability estimates and their standard errors.548

The variance-components model underlying our approach also assumes that in QTL windows,549

every branch will be associated with some normally distributed effect on the phenotype. This550

assumption is reasonable for QTLs with high levels of allelic heterogeneity, but it is worth exploring551

the application of methods that allow sparse architectures to the eGRM (Zhou et al., 2013).552

Further, whereas we test an additive architecture, it may be possible to modify our approach553

to look for QTLs that act in a dominant, recessive, or locally epistatic manner by computing554

modified local eGRMs (Weissbrod et al., 2016; Thompson et al., 2016; Hivert et al., 2021).555

In a simple model of population structure, we showed that the false-positive rate of local556

eGRM QTL mapping can be controlled via including fixed effects for principal components of the557

global eGRM. At the same time, there are many remaining avenues to explore regarding population558

stratification and assortative mating, including the effect of more subtle forms of confounding559

on local eGRM results, performance with rare causal variants (Mathieson and McVean, 2012),560

the possibility of controlling for structure and relatedness via a random effect of a global eGRM,561

and the possibility of including PCs or random effects for modifications of the eGRM, such as562

time-specific eGRMs (Fan et al., 2022).563

We used ARGs estimated by Relate (Speidel et al., 2019) for both simulated and real564

data. Although tsinfer+tsdate (Kelleher et al., 2019; Wohns et al., 2022) scales to much565

larger sample sizes than Relate, we used Relate because of evidence that it provides more566

accurate branch length estimates than tsinfer+tsdate (Brandt et al., 2021), which is reflected567

the observation of Fan and colleagues 2022 that Relate-based eGRMs are more accurate than568

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2023. ; https://doi.org/10.1101/2023.04.07.536093doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.536093
http://creativecommons.org/licenses/by-nc-nd/4.0/


those formed from tsinfer+tsdate. An approach to QTL mapping based on topology rather569

than branch length might open up application to much larger sample sizes via tsinfer+tsdate.570

ARG-Needle (Zhang et al., 2021), which is not yet released for general use, may also allow the571

procedures developed here to be used with tens or hundreds of thousands of individuals.572

We tested for QTLs of size 5 kilobases or 10 kilobases. These sizes are arbitrary, but the573

approach of a window-based test also allows for flexibility. For example, windows could be574

chosen to form gene-level tests. It is likely possible to reduce the number of tests performed by575

adaptively choosing windows on the basis of the extent to which tree topologies change within576

the window. For example, in the test of CREBRF in Native Hawaiians, a single marginal tree577

spanned the entirety of the CREBRF gene, likely because the genotyping array included few578

SNPs within CREBRF. Testing this marginal tree only once is more sensible than testing identical579

windows repeatedly, as our current approach does. Building a better approach will likely require580

an understanding of how estimated tree topologies change as a function of sample size, population581

history, and the local density of typed SNPs.582

Importantly, the method as currently implemented is computationally intense because of583

three time-consuming steps: estimating approximate ARGs with Relate, computing the eGRM,584

and fitting a linear mixed model with GCTA. Regarding the first step, although Relate is much585

faster than previous approaches to ARG estimation, it can still be time-consuming to run on586

large samples. As mentioned above, tsinfer+tsdate scales to larger samples thanRelate, at587

the cost of less accurate branch length estimates (Brandt et al., 2021). ARG-Needle is reported588

to run on very large samples. Improvement of tsinfer+tsdate’s branch length estimates or589

release of ARG-Needle could allow the estimation of approximate ARGs suitable for our approach590

on larger samples. The second step, fitting the eGRM, is slow in very large samples because the591

computation entails a component for every branch on the ARG. As noted above, our approach592

to eGRM estimation is slower than it might be because we touch redundant branches of local593

trees multiple times, which can be ameliorated via a branch-based approach to computing local594

eGRMs (Ralph et al., 2020). Further, as noted by Zhang and colleagues 2021, it is possible to595

take a Monte Carlo approach to eGRM estimation, placing mutations on the ARG randomly at596

high rate. The GRM computed from these randomly placed mutations is an approximate eGRM597

that retains many of the advantages of the true eGRM. Fortunately, the third step of running598

the mixed model has been a major target for speedups among statistical geneticists, so we will599

be able to adopt existing approaches when working with larger samples (Loh et al., 2015; Runcie600

and Crawford, 2019).601

Since before the time of Zaccheaus (Luke 19:4), people have been climbing trees to get a602

better view. Here, we explored a coalescent-tree-based approach to QTL mapping, showing that603

the expectation of the local GRM conditional on the ARG allows detection of QTLs under allelic604

heterogeneity or in cases in which genotype imputation is difficult. Local eGRMs are only one605

case of a general framework for computing ARG-based analogues of statistics typically computed606

on genetic variants (Ralph et al., 2020). The advantages of this general framework for a broad607

range of statistical- and population-genetic tasks have yet to be explored.608
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