

1 **Interferon & restricts Zika virus infection in the female reproductive tract**
2 Chuan Xu¹, Annie Wang¹, Laith Ebraham¹, Liam Sullivan¹, Carley Tasker¹, Vanessa
3 Pizutelli¹, Jennifer Couret², Cyril Hernandez¹, Pratik Q. Deb³, Luke Fritzky³, Selvakumar
4 Subbian¹, Nan Gao⁴, Yungtai Lo⁵, Mirella Salvatore⁶, Amariliz Rivera², Alexander
5 Lemenze³, Patricia Fitzgerald-Bocarsly³, Sanjay Tyagi¹, Wuyuan Lu⁷, Aimee
6 Beaulieu^{2, #}, and Theresa L. Chang^{1,2,*#},

7

8 Public Health Research Institute¹, Department of Microbiology, Biochemistry and
9 Molecular Genetics², Department of Pathology and Laboratory Medicine³, Rutgers, New
10 Jersey Medical School, Newark, NJ 07103, USA; Department of Cell Biology, Rutgers,
11 School of Art and Science-Newark, Newark, NJ 07103, USA⁴; Department of
12 Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx,
13 NY10461⁵; Department of Medicine, Weill Cornell Medical College, New York, NY,
14 10065⁶; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
15 Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity,
16 School of Public Health, Fudan University, Shanghai 200032, China⁷.
17

18 The authors have declared that no conflict of interest exists.
19

20 [#] These authors contributed equally to this work.
21

22 * Correspondence:
23 Theresa L. Chang
24 Public Health Research Institute, Rutgers, New Jersey Medical School,
25 225 Warren Street, Newark, NJ 07103, USA.
26 e-mail: Theresa.chang@rutgers.edu
27 phone: 973-854-3265
28 fax: 973-854-3101
29
30
31
32
33

34 **Abstract**

35 Interferon ϵ (IFN ϵ) is a unique type I IFN that has been implicated in host defense
36 against sexually transmitted infections (STIs). Zika virus (ZIKV), an emerging pathogen,
37 can infect the female reproductive tract (FRT) and cause devastating diseases,
38 particularly in pregnant women. How IFN ϵ contributes to protection against ZIKV
39 infection *in vivo* is unknown. Here, we show that IFN ϵ plays a critical role in host
40 protection against vaginal ZIKV infection in mice. We found that IFN ϵ was expressed
41 not only by epithelial cells in the FRT, but also by certain immune and other cells at
42 baseline or after exposure to viruses or specific TLR agonists. IFN ϵ -deficient mice
43 exhibited abnormalities in the epithelial border and underlying tissue in the
44 cervicovaginal tract, and these defects were associated with increased susceptibility to
45 vaginal, but not subcutaneous ZIKV infection. IFN ϵ -deficiency resulted in an increase in
46 magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal
47 administration of recombinant IFN ϵ protected *Ifne*^{-/-} mice and highly susceptible *Ifnar1*^{-/-}
48 mice against vaginal ZIKV infection, indicating that IFN ϵ was sufficient to provide
49 protection even in the absence of signals from other type I IFNs and in an IFNAR1-
50 independent manner. Our findings reveal a potentially critical role for IFN ϵ in mediating
51 protection against transmission of ZIKV in the context of sexual contact.

52

53

54

55 **Significance**

56 Interferon ϵ (IFN ϵ), a unique Type I IFN that is highly expressed in the epithelium of the
57 female reproductive tract (FRT), is thought to protect the host against sexually
58 transmitted infections (STIs) but the mechanism of action is not defined. Zika virus
59 (ZIKV), a causative agent for preterm birth and other severe diseases in pregnant
60 women, can be spread through vaginal transmission. Here, we show that mice lacking
61 the *Ifn ϵ* gene have abnormal epithelial development and tissue architecture in the
62 cervicovaginal tract. The role of IFN ϵ in protecting host against ZIKV is FRT-specific and
63 is independent of IFNAR1 signaling. Our findings suggest potential preventive strategies
64 based on harnessing mucosal immunity against STIs.

65

66 Introduction

67 Host defense against microbial invasion in the female reproductive tract (FRT)
68 depends on maintenance of an effective epithelial barrier and continual surveillance by
69 immune cells in the mucosa. Disruption of barrier function or immune responses in the
70 FRT is associated with sexually transmitted infections (STIs) and other genitourinary
71 infections (1-6). Zika virus (ZIKV) is an emerging flavivirus that is principally transmitted
72 by Aedes mosquitoes, but can also be spread through vaginal transmission as an STI
73 (7-11). ZIKV infection can cause severe adverse effects during pregnancy, ranging
74 from preterm birth and miscarriage to microcephaly and other congenital defects in the
75 fetus (12). ZIKV infection has also been associated with diverse pathologies in adults
76 and children, including Guillain-Barre syndrome, myelitis, and neuropathy (13, 14). The
77 cellular and molecular signals that mediate protection against ZIKV infection, particularly
78 in the context of transmission through sexual contact, remain incompletely understood.

79 Prior studies in humans and mice have demonstrated an important role for Type I
80 interferon (IFN) epsilon, IFN ϵ , in protection against STIs including herpes simplex virus
81 2 (HSV2), ZIKV, and chlamydial infection (15-20) but the mechanism of anti-viral
82 activities in vivo was not defined. Although IFN ϵ is classified as a Type I IFN, it differs
83 from other Type I IFNs, i.e., IFN α and IFN β , in many respects, including its low (~ 30%)
84 amino acid homology and distinct expression patterns (15). Indeed, IFN ϵ is
85 constitutively expressed in epithelial cells lining many mucosal tissues including the
86 FRT, whereas IFN α/β expression in these tissues is typically limited to settings of
87 infection or inflammation (21). The mechanisms by which IFN ϵ and other Type I IFNs
88 mediate anti-viral defense also differ. We have previously shown that IFN ϵ protects

89 human primary macrophages against HIV infection via mechanisms distinct from IFN α 2,
90 through induction of reactive oxygen species (ROS), distinct pro-inflammatory cytokines
91 and chemokines, and phagocytosis (22). Moreover, IFN ϵ (at mid ng/ml ranges) has no
92 or weak antiviral activities in transformed cell lines, while IFN α / β exhibit potent antiviral
93 activities in diverse primary and transformed cell types (22-25).

94 In this study, we demonstrate a critical role for IFN ϵ in host defense against
95 vaginal ZIKV infection in mice. We found that IFN ϵ -deficient mice are specifically
96 susceptible to ZIKV when challenged via the intravaginal but not subcutaneous route,
97 suggesting that IFN ϵ plays a specific role in protecting against ZIKV transmission in the
98 context of sexual contact. Our data indicate that IFN ϵ is required to maintain normal
99 epithelial and submucosal architecture in the cervicovaginal tissue of mice at steady
100 state, suggesting that IFN ϵ may promote resistance to ZIKV infection by maintaining
101 tissue integrity. Notably, recombinant IFN ϵ was sufficient to protect highly susceptible
102 *Ifnar1*^{-/-} mice from intravaginal ZIKV challenge, suggesting that IFN ϵ provides host
103 protection even in the absence of signals from other Type I IFNs, and it mediates this
104 protection through IFNAR1-independent mechanisms. Taken together, our data
105 highlight a novel role for IFN ϵ in maintaining epithelial and tissue structure in the FRT
106 and for mediating FRT-specific protection against ZIKV infection.

107

108 **Results**

109 ***IFN ϵ is expressed by epithelial and non-epithelial cells in the FRT.***

110 To better understand steady-state expression patterns of IFN ϵ *in vivo*, we first assessed
111 *Ifne* transcript abundance in different organs and mucosal tissues from naïve wild type

112 (WT) mice. In agreement with a previous study (16), *Ifnε* expression was highest in FRT
113 tissues compared to other tissues, although abundant *Ifnε* transcripts were also
114 detected in the lung and intestinal mucosal tissues (**Figure 1A**). Within the FRT
115 compartment, we found that *Ifnε* expression was highest in the cervicovaginal tissue
116 (CVT), as compared to the uterus and ovaries. Consistent with our gene expression
117 data, IFNε protein was readily detected in vaginal and uterine tissues from WT mice
118 (**Figure 1B**).

119 To identify specific cell types that express *Ifnε* transcripts in the FRT, we
120 performed RT-qPCR on sort-purified CD45⁺ immune cells, EpCAM⁺ epithelial cells, and
121 CD45⁻EpCAM⁻ cells from the ovaries, CVT, and uteri of WT mice. *Ifnε* transcripts were
122 most abundant in epithelial cells, but were also detected in immune and non-immune
123 CD45⁻EpCAM⁻ cells from the FRT (**Figure 1C**). These findings suggest that IFNε is
124 expressed by diverse cell types in the FRT, including epithelial cells and immune cells.

125 Given our findings of IFNε expression by epithelial and immune cells in mouse
126 FRT tissue, we assessed IFNε expression in primary human cervical tissue and human
127 PBMCs. Consistent with our findings in mice, IFNε protein was readily detectable in the
128 luminal and glandular epithelial cells and in non-epithelial cells distributed throughout
129 the submucosa in cervical tissue from healthy donors (**Figure 1D**). We also observed
130 low but detectable levels of *IFNε* transcripts in PBMCs from healthy donors (**Figure 1E**),
131 suggesting that immune cells may also serve as a key source of IFNε in humans.

132

133 ***IFNε is induced in response to TLR activation and viral infection.***

134 Prior studies reported that mouse bone marrow-derived macrophages do not express
135 IFN ϵ at baseline or in response to TLR activation or viral infection (16). However,
136 whether inflammatory or infectious stimuli are sufficient to induce IFN ϵ expression in
137 other cell types remains an open question. To address this, we first investigated the
138 impact of stimulation with TLR agonists on IFN ϵ expression in freshly isolated human
139 PBMCs. *IFN ϵ* transcripts were low at baseline but were significantly upregulated in
140 response to TLR3 or TLR4 activation (**Figure 2A**). Since activated plasmacytoid
141 dendritic cells (pDCs) produce high levels of IFN α , we also measured *Ifn ϵ* expression in
142 human pDCs exposed to various viruses or cytokines for 4 h. *IFN ϵ* transcripts were
143 undetectable in pDCs at baseline, but were significantly upregulated in response to
144 Sendai virus, HSV1, and Influenza virus (**Figure 2B**). In contrast, exposure to HIV did
145 not induce detectable *IFN ϵ* expression in pDCs. Cytokines were less effective than
146 viruses at inducing *IFN ϵ* expression in pDCs. IFN α induced very low levels of *IFN ϵ* in
147 pDCs from some but not all donors, whereas IFN- λ , IL-3, and IL-10 did not induce
148 detectable *IFN ϵ* expression in pDCs from any donor (**Figure 2B**).

149 Our studies (**Figure 1**) identified epithelial cells as key IFN ϵ -expressing cell types
150 in human and mouse FRT tissues at steady state. To determine whether viral infection
151 further increased IFN ϵ expression in epithelial cells, we measured *IFN ϵ* transcript
152 abundance in primary human cervical epithelial cells (CECs) cultured in medium or
153 infected with ZIKV for 24 hours. Primary CECs expressed low but detectable levels of
154 *IFN ϵ* mRNA at baseline (**Figure 2C**), consistent with our findings of IFN ϵ protein
155 expression by epithelial cells in cervical tissue (**Figure 1D**). Nevertheless, infection with

156 ZIKV elicited a marked increase in *IFN ϵ* expression in CECs within 24 h post-infection
157 (p.i.) (**Figure 2C**).

158 To determine whether IFN ϵ expression in the FRT was increased by ZIKV
159 infection *in vivo*, we challenged WT mice with ZIKV intravaginally and measured *Ifn ϵ*
160 transcript abundance in the CVT on day 1 and 2 p.i. These studies demonstrated a
161 robust increase in *Ifn ϵ* expression in the CVT in response to ZIKV infection (**Figure 2D**).
162 Taken together, our data indicate that ZIKV and certain other viruses are strong
163 inducers of IFN ϵ expression in diverse cell and tissue types, including human PBMCs,
164 pDCs, and CECs, and mouse CVT.

165

166 ***IFN ϵ -deficient mice exhibit abnormal epithelial borders and collagen deposition in***
167 ***the FRT***

168 As a tool to investigate the role of IFN ϵ in protective host responses *in vivo*, we
169 generated *Ifn ϵ* ^{-/-} mice using CRISPR/Cas9 technology (diagrammed in **Figure S1**).
170 Successful disruption of the *Ifn ϵ* gene was confirmed by genomic sequencing (data not
171 shown), by loss of *Ifn ϵ* transcripts (**Figure 3A**), and by loss of protein expression
172 (**Figure 3B**). We used these mice to investigate the impact of IFN ϵ -deficiency on global
173 gene expression in the CVT to identify tissue-level processes regulated by IFN ϵ
174 signaling. Notably, genes identified as differentially expressed in CVT from naïve *Ifn ϵ* ^{-/-}
175 versus WT mice were significantly associated with pathways involved in tissue
176 remodeling and/or epithelial barrier function, including tight junction signaling, fibrosis,
177 epithelial adherens junction signaling, integrin signaling, and actin cytoskeleton
178 signaling pathways (**Figure 3C**). Moreover, numerous genes encoding collagens, Wnt

179 proteins, tight junction proteins, and chemokines or chemokine receptors were
180 dysregulated in IFN ϵ -deficient tissue (**Figure 3D** and Supplementary Information, Table
181 S1).

182 Wnt signaling critically regulates epithelial homeostasis and impacts the
183 expression and function of collagens involved in tissue integrity and structure (26-31).

184 Our finding of dysregulation of both collagen expression and Wnt signaling in CVT from
185 *Ifn ϵ* ^{-/-} mice raised the possibility that IFN ϵ signaling may play a role in supporting proper
186 tissue structure in the CVT. We therefore analyzed tissue architecture in the CVT of
187 naive *Ifn ϵ* ^{-/-} and WT mice (**Figures 3E-F**). These studies revealed discernible
188 abnormalities in the vaginal fornix of *Ifn ϵ* ^{-/-} mice compared to WT mice, including an
189 underdeveloped epithelial border at the center of the vaginal fornix and disordered
190 collagen deposition around the vaginal epithelial folds (10x) (**Figures 3F-G**). In addition,
191 epithelial folds located in the central region of the vaginal fornix were significantly
192 shorter in *Ifn ϵ* ^{-/-} mice compared to WT mice (**Figures 3F-H**). These findings suggest that
193 IFN ϵ plays an important role in maintenance of optimal tissue architecture in the CVT,
194 even in the absence of infection.

195

196 ***IFN ϵ is required for resistance to ZIKV infection following vaginal but not***
197 ***subcutaneous challenge.***

198 Our findings of abnormal barrier and tissue architecture in the CVT of *Ifn ϵ* ^{-/-} mice
199 led us to hypothesize that IFN ϵ may specifically contribute to protection against
200 pathogen entry in the CVT, a common transmission route for STIs. To test this, we
201 challenged hormonally-synchronized *Ifn ϵ* ^{-/-}, WT, and *Ifnar1*^{-/-} mice with ZIKV PRVABC-

202 59 via intravaginal or subcutaneous routes. Hormonal synchronization into diestrus was
203 achieved by subcutaneous injection of Depo-Provera (Depo). In agreement with
204 published data (9, 32-34), WT mice were more resistant to ZIKV infection than *Ifnar1*^{-/-}
205 mice regardless of the route of infection (**Figure 4A**). In contrast, *Ifnε*^{-/-} mice were more
206 susceptible to ZIKV infection than WT mice only when challenged via the vaginal route
207 but not when challenged via the subcutaneous route (**Figure 4A**), supporting our
208 hypothesis that IFNε provides specific protection against vaginal ZIKV transmission.
209 Notably, increased viral loads in vaginally-infected *Ifnε*^{-/-} mice were only observed in the
210 CVT, whereas ZIKV mRNAs were similarly undetectable in the uteri and spleen of both
211 *Ifnε*^{-/-} and WT mice (**Figure 4B**). This finding contrasted with the high viral loads in all
212 analyzed tissues from infected *Ifnar1*^{-/-} mice (**Figure S2**). Viral RNAs were not detected
213 in male *Ifnε*^{-/-} mice or in non-Depo-treated female mice with subcutaneous ZIKV
214 infection (**Figure S3**), indicating that the absence of detectable virus in subcutaneously-
215 challenged *Ifnε*^{-/-} mice was not an artifact of Depo treatment. Collectively, these findings
216 highlight a specific role for IFNε in mediating protection against ZIKV when infection
217 occurs via the vaginal route.

218 To understand how IFNε signaling impacts the kinetics of ZIKV infection, we
219 assessed viral loads in the CVT of vaginally-challenged WT and *Ifnε*^{-/-} mice at different
220 time points after infection. In WT mice, ZIKV RNAs were detectable in the CVT on day
221 1 and 2 p.i., but undetectable after day 3 p.i. (**Figure 4C**). In contrast, ZIKV RNA
222 abundance was not only higher in the CVT of *Ifnε*^{-/-} mice as early as day 1 p.i., but
223 remained detectable until day 8 p.i. (**Figure 4C**).

224 We next used single molecule *in situ* hybridization (smFISH) to define the spatial
225 parameters of ZIKV infection within the context of the architecture of the CVT on day 2
226 p.i. via the vaginal route. Although ZIKV RNA was readily evident in the mid-cervix in
227 both WT and *Ifnε*^{-/-} mice, it was only detected in the proximal cervix in *Ifnε*^{-/-} mice but not
228 WT mice (**Figures 5A-C**). In both the mid and proximal cervix of infected *Ifnε*^{-/-} mice,
229 ZIKV RNA was detected throughout the lamina propria and stroma. These findings
230 suggest that IFNε may play a specific role in limiting the extent of viral spread in the
231 FRT.

232 A role for IFNε in limiting the ascension of ZIKV toward the upper FRT was
233 further supported by our observation that, while vaginal challenge caused mild genital
234 erythema and inflammation of the CVT in both WT and *Ifnε*^{-/-} mice (**Figures S4A-B**),
235 tissue edema in the uterus was only observed in *Ifnε*^{-/-} mice but not WT mice (**Figure**
236 **S5**). Collectively, our findings highlight a specific function for IFNε in mediating
237 protection against acute ZIKV infection via the vaginal route, and suggest that IFNε may
238 act to restrict viral spread beyond the lower CVT.

239 To determine whether the increased susceptibility of *Ifnε*^{-/-} mice to ZIKV was due
240 to impaired antiviral responses, we assessed the expression of IFN-stimulated genes
241 (ISGs) in the CVT from infected mice. ISGs including genes encoding IFNα and 2'5'
242 oligoadenylate synthetase (OAS) were upregulated to a comparable extent in the CVT
243 of ZIKV-infected WT and *Ifnε*^{-/-} mice (**Figure S6**). We also observed similar expression
244 of *Ifnβ* transcripts in both cohorts, although total abundance at day 2 p.i was not
245 significantly different from day 0. *Mx1* and *Isg15* were not induced. Taken together,

246 these findings suggest that the increased susceptibility of IFN ϵ mice to ZIKV is unlikely
247 to be due to impaired ISG expression during acute infection.

248

249 ***Recombinant mouse IFN ϵ protein protects *Ifnar1*^{-/-} mice against ZIKV infection.***

250 Recombinant IFN ϵ proteins have been shown to protect mice against intravaginal HSV2
251 and *chlamydia muridarum* infection (16). We therefore tested whether exogenous IFN ϵ
252 could protect mice against ZIKV infection. Vaginal administration of recombinant mouse
253 IFN ϵ protein protected *Ifn ϵ* ^{-/-} mice against a subsequent intravaginal challenge with ZIKV
254 (**Figure 6A**). Importantly, vaginal administration of recombinant IFN ϵ , but not control
255 linearized IFN ϵ protein, was also sufficient to protect highly susceptible *Ifnar1*^{-/-} mice
256 from intravaginal ZIKV infection (**Figures 6B-C**), indicating that IFN ϵ mediates
257 protective effects through IFNAR1-independent mechanisms and is sufficient for
258 protection even when signals from other Type 1 IFNs are absent. IFN ϵ -mediated host
259 protection was specific to vaginal infection because subcutaneous administration of
260 recombinant IFN ϵ did not protect *Ifnar1*^{-/-} mice against subcutaneous ZIKV infection
261 (**Figure 6C**). Additionally, IFN ϵ proteins did not protect mice when administrated to
262 ZIKV-infected mice on day 1 p.i. (**Figure 6D**). In summary, our data demonstrate that
263 exogenous IFN ϵ is sufficient to provide FRT-specific and IFNAR1-independent
264 protection against ZIKV infection when administered prior to infection, even in highly
265 susceptible *Ifnar1*^{-/-} mice.

266

267 **Discussion**

268 IFN ϵ was previously reported to protect mice against HSV2 and *Chlamydia*
269 *muridarum* infection in the FRT but its mechanisms of action have remained
270 incompletely understood (16). Our data suggest that IFN ϵ may contribute to defense
271 against microbial invasion in the FRT by ensuring maintenance of the epithelial barrier
272 and tissue architecture in the CVT. Loss of IFN ϵ disrupts this architecture and renders
273 mice specifically susceptible to vaginal, but not subcutaneous, infection with ZIKV. In
274 the context of vaginal infection, IFN ϵ signaling not only limits the magnitude of ZIKV
275 infection in the CVT, but also restricts viral persistence and dissemination beyond the
276 lower FRT. Critically, exogenous IFN ϵ is sufficient to protect not only *Ifn ϵ* ^{-/-} mice but also
277 highly susceptible *Ifnar1*^{-/-} mice from intravaginal ZIKV infection. Thus, IFN ϵ is sufficient
278 to protect against vaginal ZIKV infection even when signals from other Type I
279 interferons are absent. Taken together, our data suggest that IFN ϵ serves as a critical
280 gate keeper against ZIKV infection in the FRT, acting to prevent ascension of the virus
281 into deeper tissue compartments that are critical for reproduction.

282 Our findings have direct relevance to ZIKV infections transmitted through sexual
283 contact as opposed to transmission via mosquitoes. Within this context, *Ifn ϵ* ^{-/-} mice
284 represent a useful model for studying ZIKV transmission and pathogenesis in the CVT.
285 Because of the CVT-specific role of IFN ϵ in host defense, it will be possible to study
286 early and local aspects of ZIKV pathogenesis that can be difficult to study in *Ifnar1*^{-/-}
287 mice, which are highly immunodeficient and susceptible to uncontrolled viral replication
288 and systemic dissemination (9, 32, 33).

289 A very recent report confirmed our findings of increased susceptibility of *Ifn ϵ* ^{-/-}
290 mice to intravaginal ZIKA infection (20). In this report, ZIKV was detected in vaginal

291 wash but not vaginal tissues in ZIKV-infected *Ifnε*^{-/-} mice at day 5 p.i. However, ZIKV
292 was detected in uteri and ovaries (20). In our study, ZIKV was detected in the CVT but
293 not tissues from upper FRT at day 3 p.i. The discrepancies may be due to differences in
294 *Ifnε*^{-/-} mouse lines, housing locations, duration of Depo-Provera treatment and ZIKV
295 infection, and tissue preparation. A kinetic study on ZIKV signals of different regions of
296 the FRT may provide insights into viral trafficking and clearance during the course of
297 infection.

298 IFNε-mediated protection against viral infection *in vitro* is associated with
299 induction of ISGs (21, 22). However, ISG expression in the CVT was similar in ZIKV-
300 infected *Ifnε*^{-/-} and WT mice, suggesting that ISG induction may not be required for the
301 protective functions of IFNε in this setting, at least at early time points. Instead, our data
302 suggest a novel function for IFNε in maintaining barrier integrity in the CVT. We found
303 that IFNε-deficiency was associated with dysregulated expression of genes implicated
304 in wound healing and epithelial barrier function in the CVT of naïve *Ifnε*^{-/-}. These
305 perturbations in gene expression were associated with abnormal collagen deposition
306 and epithelial border structure in vaginal tissue nearest to the cervix. Taken together
307 with our finding of exacerbated viral spread in the CVT of *Ifnε*^{-/-} mice, these data
308 suggest that IFNε may restrict viral dissemination by maintaining proper barrier function
309 in the FRT.

310 The mechanisms by which IFNε modulates collagen and epithelial homeostasis
311 in the FRT is unknown. Various cytokines, including Type I and II IFNs, TGF-β, and IL-
312 1β, are known to modulate the synthesis of collagens required for maintenance of tissue
313 integrity at steady state and during infection (35, 36). Other IFNs have been shown to

314 regulate epithelial barrier function, including through effects on Wnt signaling (37-39).
315 For example, IFNλ is constitutively expressed in gut and lung epithelial cells, where it
316 regulates barrier integrity and mitigates inflammation-associated tissue damage during
317 infection (40-43). We speculate that IFNε may exert similar functions in the epithelial
318 and/or submucosal tissues of the FRT, and future studies on this topic are likely to
319 deepen our understanding of the mechanisms by which IFNε protects against ZIKV and
320 other sexually transmitted pathogens.

321 Prior studies reported high IFNε expression in epithelial cells and tissues in
322 mouse and human FRT (16). Our data corroborate these findings, but further
323 demonstrate IFNε expression by immune cells in the FRT of naïve mice, and by human
324 peripheral blood immune cells activated with specific viruses or TLR ligands. In
325 particular, Sendai virus strongly induced, and HSV1 moderately induced, IFNε
326 expression in human pDCs from all donors, whereas influenza virus and HIV did not.
327 Likewise, TLR 3 and 4 agonists, but not TLR 2, 5, 7, or 9 agonists, induced significant
328 upregulation of IFNε expression in PBMCs. Our findings contrast with a prior work
329 showing that TLR agonists do not induce IFNε in primary BMDMs, mouse embryonic
330 fibroblasts, or a mouse macrophage cell line RAW264.7 (16). This same study reported
331 that neither HSV2 nor *Chlamydial muridarum* infection drive increased IFNε expression
332 in mouse uteri (16), whereas we found a significant increase in IFNε expression in CVT
333 tissue in ZIKV-infected mice. The differences across studies suggest that IFNε
334 expression is both cell type- and stimulus-specific. Moreover, the ability of certain
335 viruses, but not others, to induce IFNε expression may depend on which pathogen-
336 sensing pathway is engaged. In support of this, HSV1 induces IFNα expression through

337 the TLR9-MyD88 pathway (44), while Sendai virus induces IFN α expression in pDCs via
338 PKR-, TLR7/8-, and TLR9-independent pathways (45). The specific TLRs or pathogen-
339 sensing pathways involved in Sendai- and HSV1-induced expression of IFN ϵ in human
340 pDCs or in ZIKV-induced mouse CVT remain to be determined.

341 Future studies are needed to determine whether IFN ϵ produced by or acting on
342 immune cells contributes to host protection in the FRT. However, IFN ϵ has been shown
343 to exert potent immunomodulatory effects on primary macrophages *in vitro* (22); to
344 promote lymphocyte recruitment and protective CD8+ T cell responses in the lung
345 during vaccinia virus infection (24); and to support NK cell recruitment in the FRT during
346 chlamydia infection in mice (16). We speculate that IFN ϵ signaling also regulates FRT
347 immune responses to ZIKV infection. In support of this, our RNAseq data demonstrated
348 altered chemokine and chemokine receptor expression in the CVT of naïve *Ifn ϵ* ^{-/-} mice,
349 highlighting a potential role for IFN ϵ in regulating immune cell recruitment in the FRT
350 even at steady state.

351 Although IFN ϵ was previously reported to signal through IFNAR1 and IFNAR2 in
352 BMDMs (16), we show here that exogenous mouse IFN ϵ was sufficient to protect *Ifnar1*^{-/-}
353 mice against vaginal ZIKV infection, indicating that at least some anti-viral activities of
354 IFN ϵ in this setting are IFNAR1-independent. Moreover, these activities are structure-
355 dependent as linearized IFN ϵ protein failed to mediate protection.

356 In summary, we describe a novel role for IFN ϵ in restricting viral replication and
357 spread in the lower FRT during vaginal ZIKV infection in mice. We also demonstrate an
358 FRT-specific role for IFN ϵ in host defense against ZIKV infection, which is independent
359 of IFNAR1 signaling, and we identify new cell and tissue type- and stimulus-specific

360 features of IFN ϵ expression in FRT and peripheral blood. Our findings offer insights into
361 the potential use of IFN ϵ to harness mucosal immunity for prevention of STIs.

362

363 **Methods**

364 **Reagents**

365 Histopaque®-1077, FBS, RPMI-1640, DMEM, and PBS were from Sigma-Aldrich
366 (St. Louis, MO). Human IFN α 2 α was purchased from PBL Assay Science (Piscataway,
367 NJ). Recombinant human IFN- λ 1, IL-3, and IL-10 were purchased from PeproTech
368 (Rocky Hill, NJ). Human IL-2 was from R&D Systems (Minneapolis, MN). Vero E6 cells
369 were purchased from ATCC. Zika virus (PRVABC59 strain) was obtained through NIH
370 Biodefense and Emerging Infections Research Resources Repository, NIAID, NIH. Zika
371 virus was propagated in Vero E6 cells, and the virus titer was determined by plaque
372 assays.

373 Murine IFN ϵ proteins have three cysteine residues (C52, C162, C174), which can
374 contribute to different disulfide linkages. Recombinant mIFN ϵ with mutation of C174 to
375 serine, a less conserved residue, had an improved capacity to induce ISGs (**Fig S7**)
376 and was used in the studies. The DNA constructs used to express recombinant murine
377 IFN ϵ and IFN ϵ analog with the C174S replacement in *E. coli* were synthesized and
378 verified by Genescrypt (Piscataway, NJ). For bacterial expression, a codon-optimized
379 IFN ϵ cDNA was cloned into pET28. Inclusion bodies of IFN ϵ expressed in *E. coli* BL21,
380 prepared by Shenandoah Biotechnology, Inc. (Warminster, PA), were dissolved in 8 M
381 GuHCl in the presence of DTT, purified by reversed-phase HPLC, lyophilized, folded,
382 and verified by electrospray ionization mass spectrometry as described previously (22).

383 Linear alkylated IFN ϵ proteins were also prepared and verified by mass spectrometry as
384 described previously (22). The endotoxin level in IFN ϵ was below 0.01 ng/mL as
385 determined by Pierce LAL Chromogenic Endotoxin Quantitation Kit (Thermo Fisher
386 Scientific).

387 Rabbit polyclonal antibodies against human or murine IFN ϵ proteins were
388 generated by using peptides derived from IFN ϵ protein sequences (Lampire Biological
389 Laboratories (Pipersville, PA). The specificity of antibodies was determined by western
390 blot analysis. Pre-immune sera were included as a control.

391

392 **Human cell isolation and cervical tissue collection**

393 PBMCs were isolated from the blood of healthy human donors obtained from the
394 New York Blood Center by Histopaque®-1077 gradient centrifugation. Plasmacytoid
395 dendritic cells were isolated by negative selection from prepared PBMCs with the
396 Human Plasmacytoid Dendritic Cell Isolation Kit-II from Miltenyi Biotec (Auburn, CA)
397 according to the manufacturer's instructions. The purity of enriched pDC (90-99%) was
398 determined by flow cytometry (CD123 and BDCA-2 double positive). Stimulation of
399 pDCs with viruses or cytokines were performed as described previously (46). IFN α 2
400 (1000 IU/ml), IFN- λ 1 (25 ng/ml), IL-3 (10 ng/ml), IL-10 (10 ng/ml), HSV-1 strain 2931 at
401 a multiplicity of infection (MOI) of 1, influenza A virus PR/8/34 (4 hemagglutination
402 U/ml), Sendai virus VR907 (16 hemagglutination U/ml), and (HIV-MN at 500 ng of
403 p24/ml) were used to stimulate pDCs for 4 h.

404 Cervical tissues without gross pathology were obtained from women undergoing
405 therapeutic hysterectomy. The study (Pro20140000108) was approved by Rutgers, New

406 Jersey Medical School (NJMS) Institutional Review Board. Primary cervical epithelial
407 cells were prepared as described previously (47).

408

409 **Mice**

410 The protocols for animal handling were approved by the Institutional Animal Care and
411 Use Committee at Rutgers, New Jersey Medical School (PROTO999900732). Animals
412 were housed in individually ventilated and filtered cages under positive pressure in an
413 SPF facility. C57BL/6J (WT) and *Ifnar1*^{-/-} mice on the same background were purchased
414 from Jackson Laboratory (Bar Harbor, MA). *Ifne*^{-/-} mice were generated on the C57BL/6J
415 background by direct microinjection of CRISPR-Cas9 reagents into one-cell embryos.
416 Founder 1 and 2 (**Figure S1**) were generated using 30 ng/μl Cas9 protein (PNABio),
417 with 0.15 μM each of the crRNAs C110 CCTTGTACCACTCCAGTTCT and C112
418 ACTGAGAAGCAAGAGCCAAC along with 0.3 μM tracer RNA (Millipore-Sigma). Two
419 founders were used to avoid confounding effects of disrupted gene sequences from
420 CRISPR-Cas9. Both founders exhibited the same phenotypes. Founder 1 had a 373 bp
421 deletion removing the sequence from 49 bp upstream of the initiating methionine to
422 codon 109, eliminating 2/3 of the IFNε coding sequence. Translation of the recombinant
423 resulted in a C-terminal 54 AA peptide. Founder 1 also had a 12 bp deletion in the
424 3'UTR. Founder 2 had a 588 bp deletion removing the entirety of the IFNε coding
425 sequence from 48 bp upstream of the initiating methionine to 22 bp downstream of the
426 stop codon. A 107 bp segment containing the coding sequence of the first 32 AA was
427 inserted at the deletion site in an inverted orientation. No open reading frames
428 containing any part of IFNε were present. Primers used to genotype Founders 1 and 2
429 were IFNEE 5'-CTGGAATGGGAACCAGAAAACCTAAG-3' and IFNEF 5'-

430 CTAGCCATCTTAGAACACAGTTAAC-3'. Founders were confirmed by Sanger
431 sequencing of PCR fragments cloned into pCRTopo2.1 (Invitrogen). Transmitted alleles
432 were confirmed in the F1 generation after crossing to C57BL/6J mice by Sanger
433 sequencing.

434 To determine the effect of IFN ϵ on host defense against Zika viruses, 8-12-week-
435 old female mice were treated with 2 mg Depo-Provera (Depo) subcutaneously.

436 Synchronization at the diestrus stage was confirmed on day 12-14 after Depo treatment.
437 Mice were infected with 8×10^3 - 1.5×10^4 PFU of Zika virus through an intravaginal or
438 subcutaneous route. Clinical scores were assessed based on the following criteria: 0,
439 no apparent signs of disease; 1, genital erythema; 2, moderate genital inflammation and
440 swelling; 3, mucus, swelling, and redness with presence of genital lesions; 4, severe
441 genital lesions and/or hind limb paralysis as described by Fung et al (16). Fat tissues
442 associated with the FRT were removed physically and the specific regions of FRT were
443 harvested at indicated time points for RT-qPCR, smFISH, IHC, and collagen assays.

444 To determine IFN ϵ expression in different cell types at the FRT, single-cell
445 suspensions were generated as previously described (48). Briefly, the CVT, uteri, and
446 ovaries were separated and minced with scissors, and then digested with 1 mg/mL
447 collagenase A (Sigma-Aldrich) and 0.1 mg/mL DNase (Roche) in RPMI-1640 (Gibco)
448 with shaking at 250 rpm at 37°C twice for 15 min. Tissues were mechanically
449 dissociated by passage through an 18- or 20-gauge needle after each shaking cycle.

450 Cells were filtered through 100 μ m mesh and washed once with cold RPMI with 3% fetal
451 bovine serum (FBS) (Fisher Scientific). Red blood cells were lysed with RBC lysis buffer
452 (Tonbo Biosciences). Epithelial cells, CD45+ cells, and cells without either EpCam or

453 CD45 markers were sorted using antibodies against EpCam (clone G8.8, Biolegend,
454 San Diego, CA) or CD45 (clone 30-F11, eBiosciences) directly conjugated to a
455 fluorophore for epithelial cells or hematopoietic cells, respectively, in a FACSaria II
456 sorter (BD Biosciences). Cell purity was greater than 95%.

457 To prepare bone marrow-derived macrophages (BMDMs) from mice for testing
458 murine IFN ϵ activities, femurs were obtained from 8–12-week-old C57BL/6 mice. After
459 euthanasia using CO₂, the femurs were dissected using scissors, cutting through the
460 tibia below the knee joints as well as through the pelvic bone close to the hip joint. After
461 removing muscles connected to the bone, and the femurs were rinsed in ice-cold 70%
462 ethanol for 1 min, washed with PBS, and then both epiphyses were removed. The
463 bones were flushed with a 10mL syringe and a 27½ gauge needle with RPMI 1640 plus
464 10% FBS to extrude bone marrow, which was then homogenized by pipetting. Bone
465 marrow cells were then collected by centrifugation and incubated in red blood cell lysis
466 buffer at room temperature for 5 min. Cells (1x10⁶) were cultured in RPMI 1640 with
467 10% FBS, gentamicin, amphotericin, and murine M-CSF at 40 ng/ml in a 10 cm dish for
468 5-6 days to obtain BMDMs.

469

470 **Immunohistochemistry**

471 Tissue sections of formalin-fixed, paraffin-embedded tissues were deparaffinized in
472 xylene and rehydrated in a standard series of descending alcohol immersions. After
473 antigen retrieval, sections were stained with antibodies (Abs) against IFN ϵ (Rabbit anti-
474 mouse IFN ϵ , #24864) at a 1:400 dilution and incubated at room temperature for 50 min,

475 according to the immunohistochemistry protocol provided in the Dako Envision Kit
476 (Aligent). The images were taken using an ECHO microscope.

477

478 **Immunofluorescence microscopy**

479 Tissue was mounted on slides, deparaffinized, and rehydrated. For antigen retrieval,
480 tissue was brought to 90°C in 10 mM sodium citrate (pH 6.0) for 10 minutes. Slides
481 were allowed to cool, then placed in PBS for 10 minutes. Tissue was blocked in 5%
482 FBS for 30 minutes, then washed three times in PBS, 0.05% Triton for 5 min/wash.
483 Primary antibody was diluted in SuperBlock (ThermoFisher) and applied to tissue
484 overnight. Tissue was washed three times in PBS, 0.05% Triton for 5 min/wash.
485 Secondary Alexa Fluor F(ab')2 fragment antibody was diluted 1:1000 in Superblock and
486 applied to tissue for 2 hours. Tissues were counterstained with DAPI and mounted
487 using Vectashield mounting medium (Vector Labs, Burlingame, CA). Images were
488 acquired on a Nikon Eclipse Ti confocal microscope and analyzed by NIS-Elements
489 software.

490

491 **Collagen staining**

492 Collagen assays were performed using tissues from WT and *Ifnε*^{-/-} mice from the same
493 experiment, which were stained at the same time to reduce variability. Tissue sections
494 were deparaffinized using xylene, hydrated through graded ethanol, and washed with
495 distilled Mili-Q water. Tissue slides were then incubated with Picro Sirius Red Stain Kit
496 (ab150681, Abcam, Cambridge, UK) for 60 min at room temperature according to the
497 manufacturer's instructions. Slides were rinsed in Acetic Acid Solution twice, dehydrated

498 with 100% ethanol, and then mounted using glycerol. Images were captured on an
499 ECHO Revolve Microscope.

500

501 **Single molecule fluorescence in situ hybridization (smFISH)**

502 Serial 4 μ m sections of formalin-fixed, paraffin-embedded tissue were prepared by
503 Nationwide Histology (Missoula, MT). smFISH for Zika virus RNA was performed
504 following procedures described previously (49). A total of 48 3'-amino labeled
505 oligonucleotide probes for the NS1 region of Zika virus strain PRVABC59 were designed
506 using Stellaris Probe Designer with the highest stringency settings for human host and
507 then synthesized by LGC Biosearch Technologies. Probes were pooled, labeled with Cy5,
508 and purified by HPLC (50). The sequences of the probes are listed in Supplementary
509 Table 2. Tissue slides were equilibrated in 2XSSC, 10% formamide in wash buffer and
510 then hybridized in 50 μ l hybridization buffer containing 25 ng of pooled probes overnight
511 at 37°C in a humid chamber. The coverslips were washed twice for 5 min with wash
512 buffer, equilibrated with 2XSSC supplemented with 0.4% glucose, and mounted using
513 deoxygenated mounting medium supplemented with DAPI (49). Images were acquired
514 using a Zeiss Axiovert M200 microscope.

515

516 **Real-time RT-qPCR**

517 Mouse tissues were homogenized using soft tissue homogenizing beads (VWR ,
518 Radnor, PA). Total RNA was isolated using TRIzol® (Life Technologies, Carlsbad, CA).
519 First-strand cDNA was synthesized by incubating 1000 ng total RNA with oligo(dT)₁₂₋₁₈
520 (25 μ g/ml) or random primers (2.5 μ M), and dNTPs (0.5 mM) at 65°C for 5 min followed

521 by quick-chilling on ice. Reverse transcription was performed at 42°C for 50 min and
522 70°C for 15 min using SuperScript III Reverse Transcriptase. The PCR reaction
523 contained cDNA equivalent to 50 ng of RNA input, 200 nM primer sets, and SYBR
524 Green Master Mix (QIAGEN, Valencia, CA), and was run on a StepOnePlus real-time
525 PCR system (Life Technologies, Carlsbad, CA). PCR conditions were 95°C
526 denaturation for 10 minutes, 40 cycles of 95°C for 15 seconds, 60°C for 60 seconds.
527 PCR products were quantified and normalized relative to the amount of GAPDH cDNA
528 amplified in the same tube. Relative quantification of gene expression was calculated
529 using the $2^{-\Delta\Delta Ct}$ (C_t, threshold cycle of real-time PCR) method according to the formula:
530 $\Delta Ct = Ct_{GAPDH} - Ct_{target}$, $\Delta\Delta Ct = \Delta Ct_{control} - \Delta Ct_{target}$. Primer sequences are listed in
531 Supplementary Table 3.

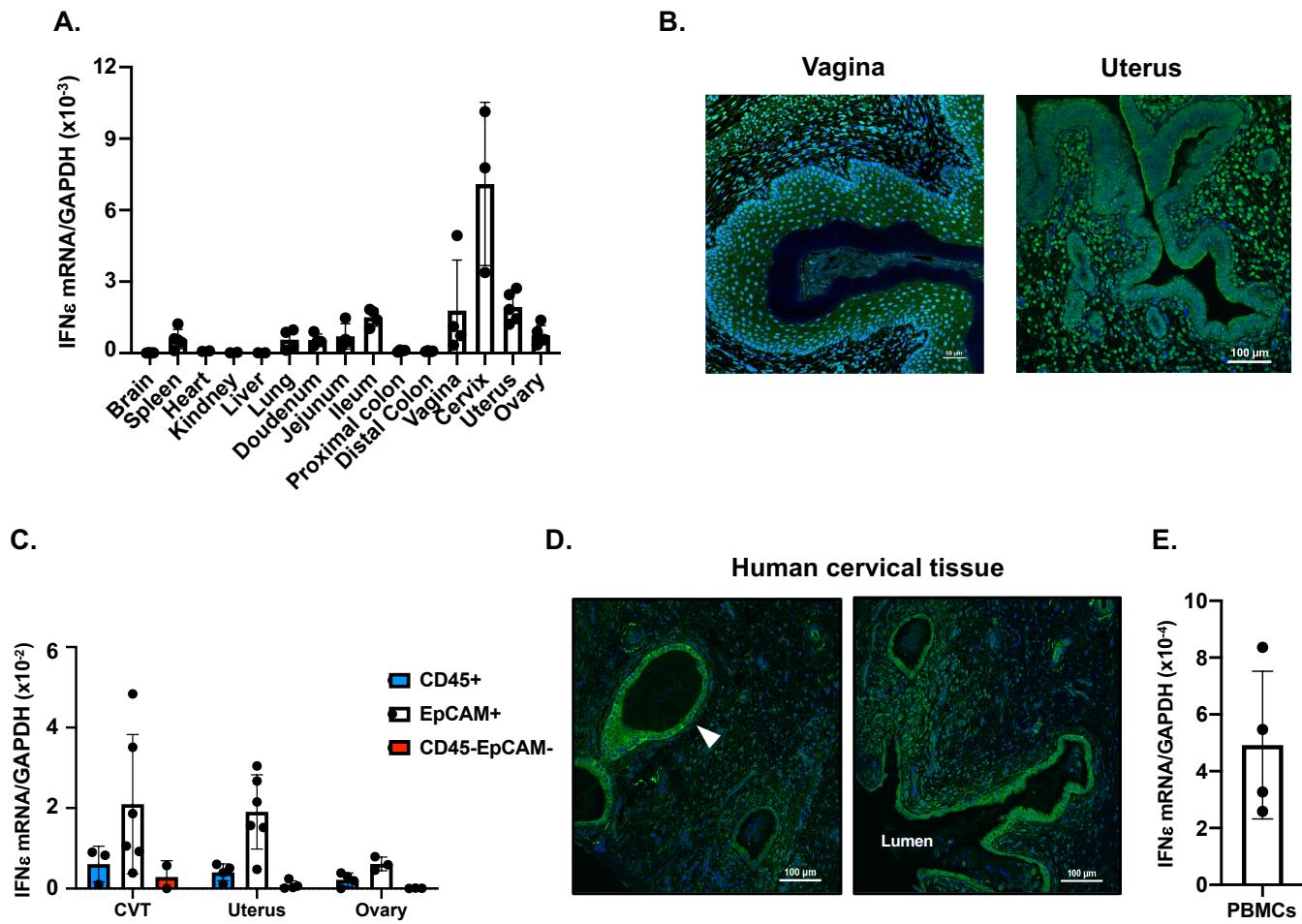
532

533 **RNA sequencing analysis**

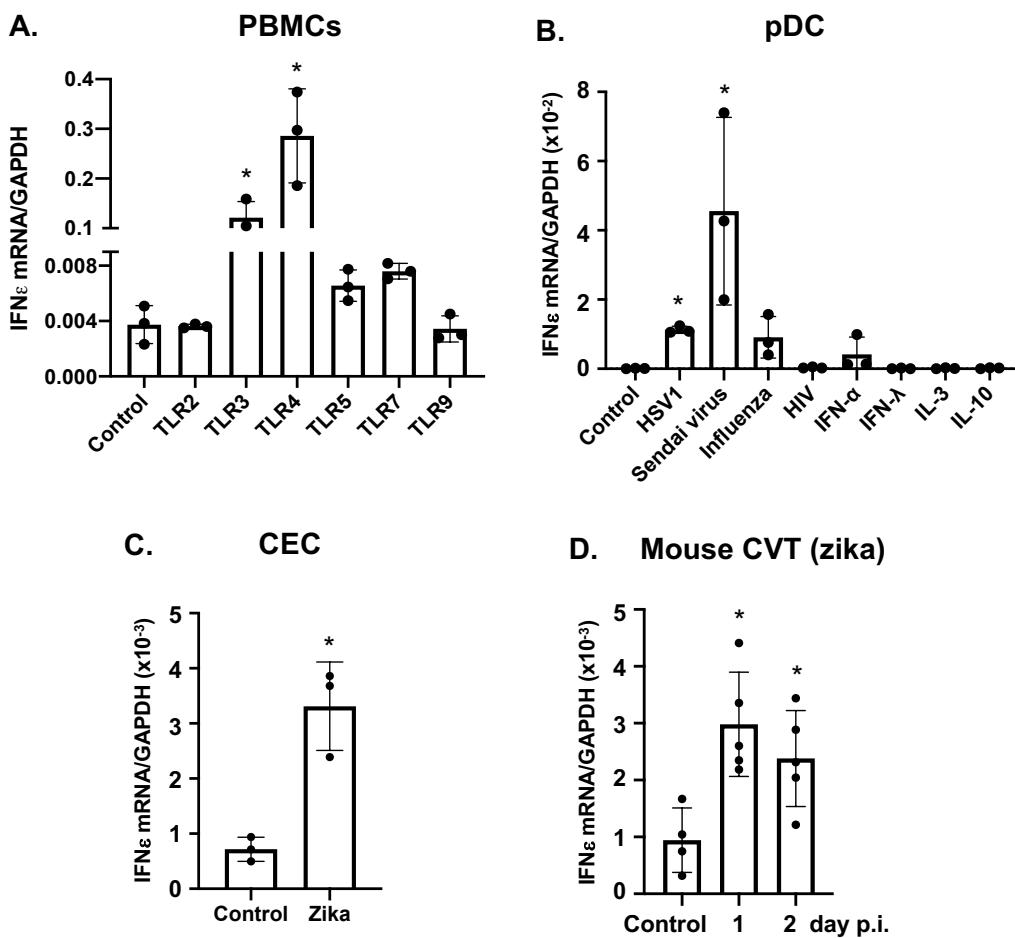
534 RNA sequencing from WT and *Ifnε*^{-/-} mice were performed by Azenta using an Illumina
535 sequencer. Analysis was performed in accordance with the nf-core RNA-sequencing
536 guidelines (version 1.4.2). Briefly, the output reads were aligned to the GRCm38
537 genome using STAR (version 2.6.1d), followed by hit count generation using
538 featureCounts (version 1.6.4) and StringTie (version 2.0). Read counts were normalized
539 and compared for differential gene expression using DESeq2 (version 3.10) with
540 significance at False Discovery Rate (FDR) adjusted p-value < 0.05. RNAseq data has
541 been submitted to GEO (Accession number: GSE228359). To identify the
542 pathways/networks and biological functions perturbed in *Ifnε*^{-/-} mice compared to WT
543 mice, the significant differentially expressed genes were analyzed using Ingenuity

544 Pathway Analysis (IPA, INGENUITY, Qiagen, Redwood City, CA) as described (51).
545 Fisher's exact test was used to calculate p-values used to rank networks of SDEG; $p <$
546 0.05 was considered statistically significant.

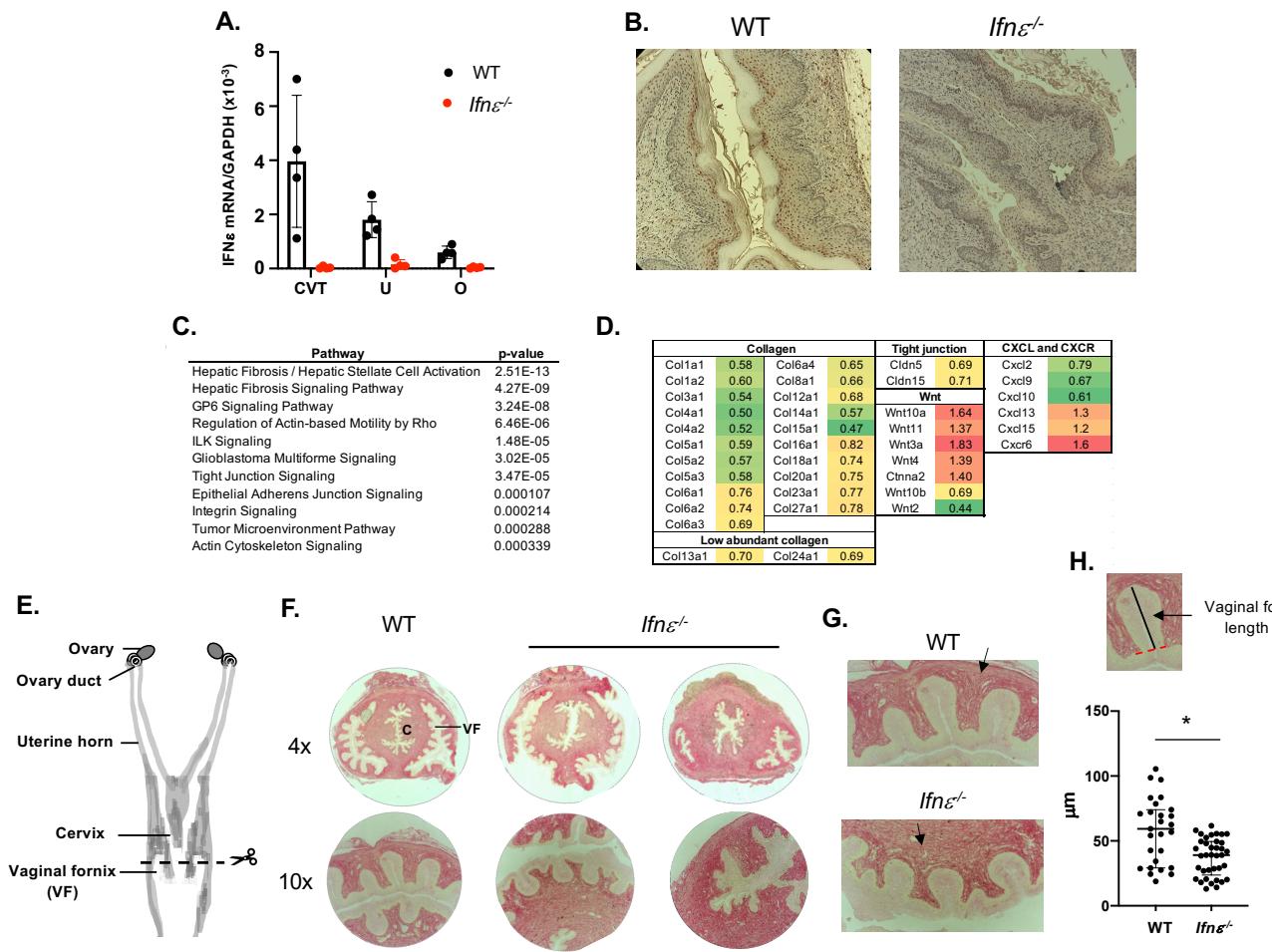
547

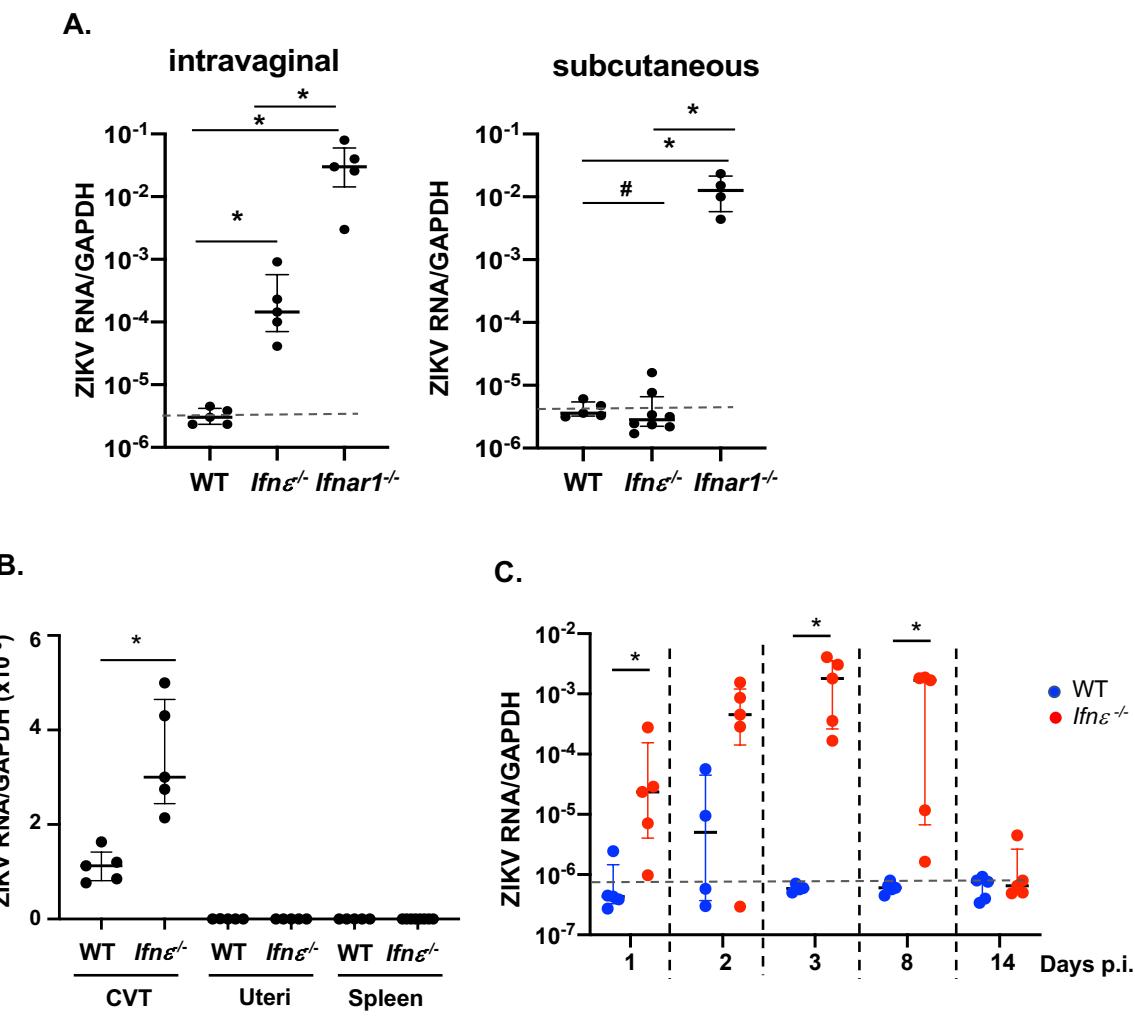

548 **Statistical analysis**

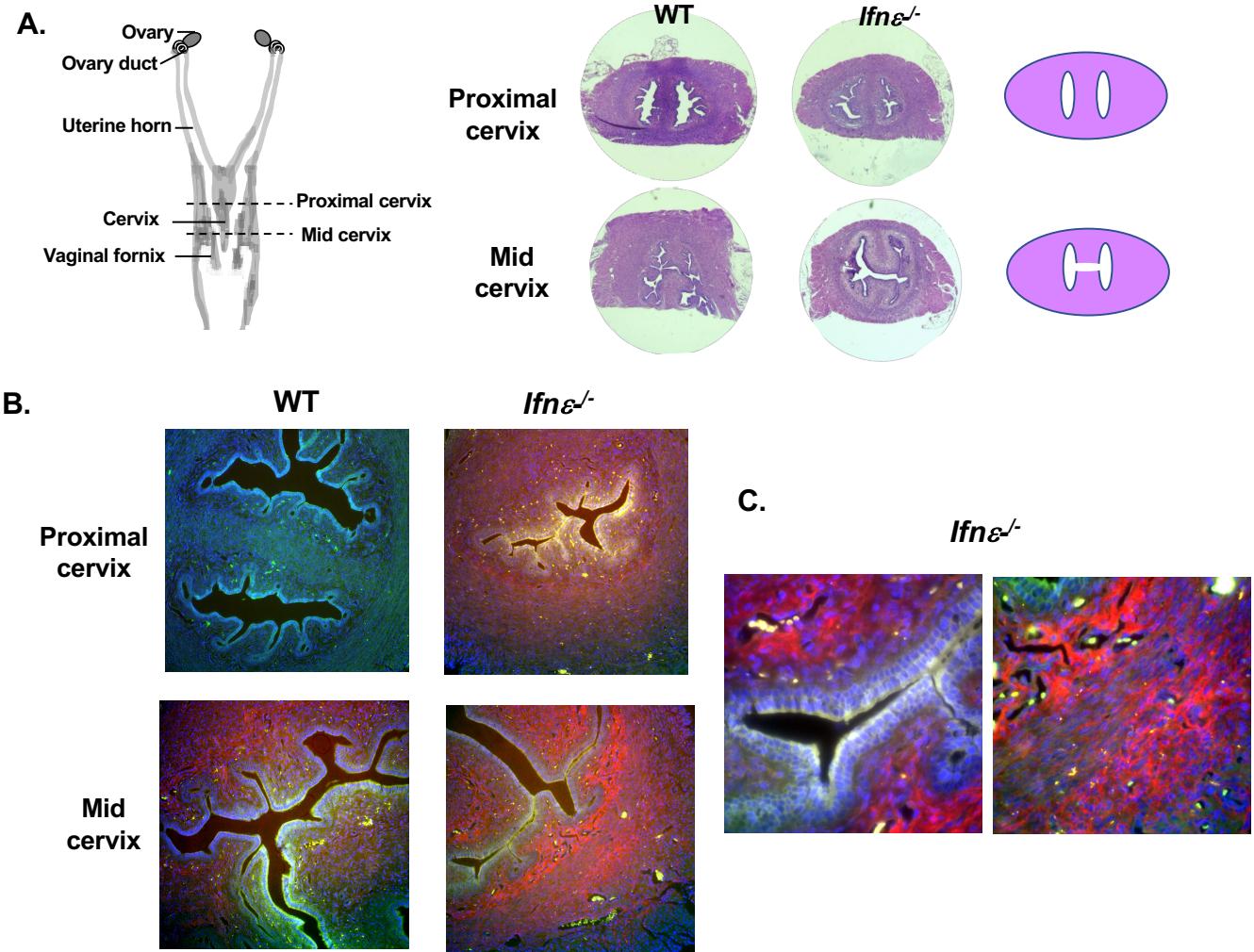
549 Statistical comparisons were performed using Mann Whitney U test or one-way
550 ANOVA with Tukey's post hoc tests; $p < 0.05$ was considered significant.


551

552 **Acknowledgements**


553 We thank Amy Rosenfeld and Vincent Racaniello for the technical support on Zika viral
554 infection assay, Pierre Lespinasse and Debra Heller for their support on acquiring human
555 cervical tissues, Pam De Lacy and her team at Shenandoah Biotechnology, Inc. for
556 production of IFN ϵ proteins in *E. coli*, Peter Romanienko at Rutgers, genomic editing core
557 facility for generating *Ifn ϵ* ^{-/-} mice, Heather Marlatt at Nationwide histology for preparation
558 of tissue sections, and Eric Milner for editing the manuscript. This work was supported by
559 NIH grants R01AI36948 to T.L.C, and R01 CA227291 to S.T.


Figure 1. IFN ϵ is expressed in epithelial and non-epithelial cells at the female reproductive tract. (A) Total RNAs were extracted from different tissues of wild-type (WT) mice. IFN ϵ mRNA levels were quantified by RT-qPCR and normalized by GAPDH using the $2^{-\Delta\Delta CT}$ method. Each point represents one animal. (B) Expression of IFN ϵ protein (Green) in vaginal (left) and uterus (right) tissue. Nuclei were stained with DAPI (blue). (C) IFN ϵ mRNA levels were quantified by RT-qPCR of total RNA from sorted CD45+ cells, epithelial cells (EpCAM), and CD45-EpCAM- cells from cervicovaginal tissue (CVT), uterus, and ovary. (D) Detection of human IFN ϵ proteins in human cervical tissues by immunofluorescence staining. The arrow indicates glandular epithelial cells expressing IFN ϵ proteins. (E) Total RNAs were extracted from freshly isolated PBMCs from different donors. IFN ϵ mRNA levels were quantified by RT-qPCR .


Figure 2. IFNε is induced in response to viral infection and TLR activation. (A) Freshly isolated PBMCs from different donors were stimulated with agonists for TLR2 (Pam3CSK4, 100 ng/ml), TLR3 (poly (I:C), 1 µg/ml), TLR4 (LPS, 10 ng/ml), TLR5 (FLA-ST, 50 ng/ml), TLR7 (Imiquimod, 500 ng/ml), or TLR9 (ODN2006, 5 µM) for 6 h. Total RNAs were prepared and IFNε gene expression was quantified by RT-qPCR. (B) Plasmacytoid dendritic cells (pDCs) from different donors were purified using a negative selection pDC isolation kit. Purified pDCs were untreated (control) or treated with HSV1 2931, Sendai VR 907, influenza virus PR/8/34, HIV MN, rIFNα, IFNλ, IL-3, or IL-10 for 4 h. Total RNAs were prepared, and IFNε mRNA levels were quantified by RT-qPCR. (C) IFNε was determined by RT-qPCR in primary cervical epithelial cells (CEC) 24 h after ZIKV infection. (D) Induction of IFNε gene expression in the cervicovaginal tract of WT mice in response to ZIKV infection. *p<0.5, treated vs untreated controls.

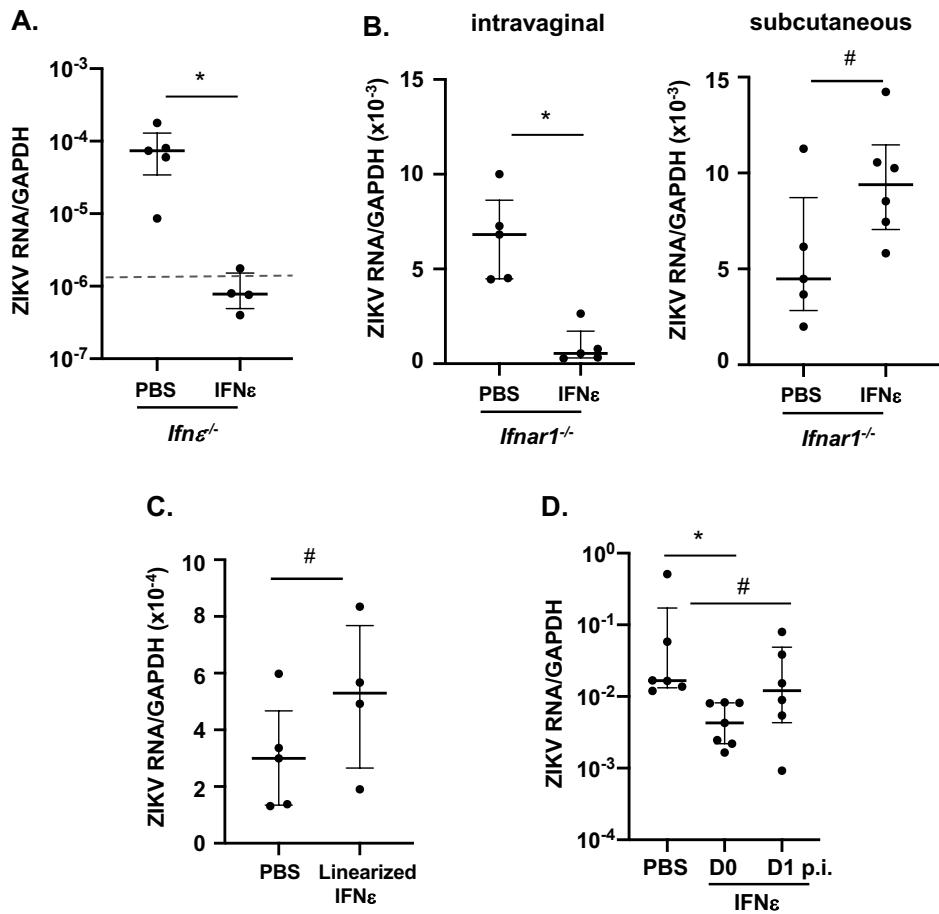

Figure 3. *Ifnε*^{-/-} mice exhibit aberrant epithelial and tissue structure in the cervicovaginal tissue (CVT). (A) *Ifnε*^{-/-} mice were generated using CRISPR/Cas9 technology. Knockdown of IFNε gene expression in CVT, uteri (U), and ovaries (O) of *Ifnε*^{-/-} mice was confirmed by RT-qPCR. (B) IFNε protein expression in WT and *Ifnε*^{-/-} mice was determined by IHC. IFNε proteins (brown) were found in the vaginal tissue of WT mice but not of *Ifnε*^{-/-} mice. (C, D) WT and *Ifnε*^{-/-} mice were synchronized to the diestrus stage by Depo-Provera. Total RNAs from the CVT were collected on day 12 after injection. RNAseq analyses showing pathways (C) and genes (D) involved in epithelial integrity, tissue structure, and wound healing in CVT of *Ifnε*^{-/-} mice. (E) A schematic diagram of murine FRT. The site of sectioning for collagens and epithelial structure examination are indicated. (F) Collagens in the cervix of WT and *Ifnε*^{-/-} mice were stained with Picro Sirius Red. Cervical canal (C) and vaginal fornix (VF) are indicated. (G) Higher power views (20x) of vaginal epithelial folds and surrounding collagen structure. Black arrows show the difference in collagen organization. (H) The length of vaginal epithelial folds in mid regions of vaginal epithelial fornix in WT and *Ifnε*^{-/-} mice.

Figure 4. *Ifnε*^{-/-} mice exhibit increased susceptibility to intravaginal ZIKV infection. (A) Depo-Provera-synchronized WT, *Ifnε*^{-/-}, and *Ifnar1*^{-/-} mice were challenged with ZIKV PRVABC59 through an intravaginal or subcutaneous route. Zika RNA levels at the CVT were determined by RT-qPCR at day 3 p.i. Data represent 5 independent experiments. (B) Depo-Provera-treated WT and *Ifnε*^{-/-} mice were infected by zika virus intravaginally. Total RNAs from CVT, uteri, and spleen were harvested at day 3 p.i. Zika RNA levels were determined by RT-qPCR. Data represent 3 experiments (C) Depo-Provera-treated WT and *Ifnε*^{-/-} mice were challenged with ZIKV intravaginally. Total RNAs of the CVT were prepared at different days p.i. ZIKV signals were determined by RT-qPCR. Data represent 3 experiments. The dash line indicates the background from uninfected mice. * p <0.05; ns, not significant.

Figure 5. Faster dissemination of ZIKV of *Ifnε*^{-/-} mice (A) A serial sections of the CVT from uterus fundus toward the distal cervix. H&E staining of the proximal and mid cervix of WT and of *Ifnε*^{-/-} mice used for smFISH are shown. (B). Adjacent sections to the H&E-stained sections were used for smFISH to detect ZIKV RNAs (red). Images at 20x are shown. Nuclei are in blue and autofluorescence is in green. Identical exposures were used for all images including both WT and *Ifnε*^{-/-} mice. (C). Localization of ZIKA signals in *Ifnε*^{-/-} mice (62x) in lamina propria (*left*) and stroma (*right*).

Figure 6. Intravaginal administration of murine IFN ϵ proteins protect mice against ZIKV infection. (A) Depo-Provera synchronized *Ifn ϵ* ^{-/-} mice were treated with recombinant mIFN ϵ proteins (4 μ g) through an intravaginal route for 6 h followed by ZIKV infection. ZIKV RNA levels at CVT were determined by RT-qPCR at day 3 p.i. The dash line indicates the background from uninfected control. (B) Depo-Provera synchronized *Ifnar1*^{-/-} mice were treated with recombinant mIFN ϵ proteins (4 μ g) through an intravaginal or subcutaneous route for 6 h followed by zika infection via the same route. Zika RNA levels at the CVT and spleen were determined by RT-qPCR at day 3 p.i. (C) Depo-Provera-synchronized *Ifnar1*^{-/-} mice were treated with PBS or linearized mIFN ϵ proteins (4 μ g) for 6 h intravaginally followed by intravaginal ZIKV infection. Viral RNA levels at the CVT were detected by RT-qPCR. (D) Depo-Provera-synchronized *Ifnar1*^{-/-} mice were treated with mIFN ϵ proteins (4 μ g) intravaginally 6 h before or one day after (D1) intravaginal ZIKV infection. Viral RNA levels at the CVT were detected by RT-qPCR. * p <0.05, # p >0.05. The values of the background from uninfected *Ifnar1*^{-/-} mice were 1-3 \times 10 $^{-6}$. Data represent 3-4 independent experiments.

566 **References**

567

568 1. I. Pavlidis *et al.*, Cervical epithelial damage promotes *Ureaplasma parvum*
569 ascending infection, intrauterine inflammation and preterm birth induction in mice.
570 *Nat Commun* **11**, 199 (2020).

571 2. G. Lacroix, V. Gouyer, F. Gottrand, J. L. Desseyn, The Cervicovaginal Mucus
572 Barrier. *Int J Mol Sci* **21** (2020).

573 3. K. Lozenski, R. Ownbey, B. Wigdahl, T. Kish-Catalone, F. C. Krebs, Decreased
574 cervical epithelial sensitivity to nonoxynol-9 (N-9) after four daily applications in a
575 murine model of topical vaginal microbicide safety. *BMC Pharmacol Toxicol* **13**, 9
576 (2012).

577 4. B. J. Catalone *et al.*, Mouse model of cervicovaginal toxicity and inflammation for
578 preclinical evaluation of topical vaginal microbicides. *Antimicrob Agents
579 Chemother* **48**, 1837-1847 (2004).

580 5. R. N. Fichorova, P. J. Desai, F. C. Gibson, 3rd, C. A. Genco, Distinct
581 proinflammatory host responses to *Neisseria gonorrhoeae* infection in
582 immortalized human cervical and vaginal epithelial cells. *Infect Immun* **69**, 5840-
583 5848 (2001).

584 6. L. Van Damme *et al.*, Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on
585 HIV-1 transmission in female sex workers: a randomised controlled trial. *Lancet*
586 **360**, 971-977 (2002).

587 7. T. C. Pierson, M. S. Diamond, The emergence of Zika virus and its new clinical
588 syndromes. *Nature* **560**, 573-581 (2018).

589 8. C. A. Lopez, S. J. Dulson, H. M. Lazear, Zika Virus Replicates in the Vagina of
590 Mice with Intact Interferon Signaling. *J Virol* **96**, e0121922 (2022).

591 9. L. J. Yockey *et al.*, Vaginal Exposure to Zika Virus during Pregnancy Leads to
592 Fetal Brain Infection. *Cell* **166**, 1247-1256.e1244 (2016).

593 10. D. Musso, D. J. Gubler, Zika Virus. *Clin Microbiol Rev* **29**, 487-524 (2016).

594 11. M. J. Counotte *et al.*, Sexual transmission of Zika virus and other flaviviruses: A
595 living systematic review. *PLoS Med* **15**, e1002611 (2018).

596 12. E. C. Chibueze *et al.*, Zika virus infection in pregnancy: a systematic review of
597 disease course and complications. *Reproductive Health* **14**, 28 (2017).

598 13. Y. Rodríguez *et al.*, Guillain-Barré syndrome, transverse myelitis and infectious
599 diseases. *Cell Mol Immunol* **15**, 547-562 (2018).

600 14. Y. Acosta-Ampudia *et al.*, Autoimmune Neurological Conditions Associated With
601 Zika Virus Infection. *Front Mol Neurosci* **11**, 116 (2018).

602 15. M. P. Hardy, C. M. Owczarek, L. S. Jermiin, M. Ejdeback, P. J. Hertzog,
603 Characterization of the type I interferon locus and identification of novel genes.
604 *Genomics* **84**, 331-345 (2004).

605 16. K. Y. Fung *et al.*, Interferon-epsilon protects the female reproductive tract from
606 viral and bacterial infection. *Science* **339**, 1088-1092 (2013).

607 17. Y. Xi, S. L. Day, R. J. Jackson, C. Ranasinghe, Role of novel type I interferon
608 epsilon in viral infection and mucosal immunity. *Mucosal Immunol* **5**, 610-622
609 (2012).

610 18. S. G. Eid, N. E. Mangan, P. J. Hertzog, J. Mak, Blocking HIV-1 transmission in
611 the female reproductive tract: from microbicide development to exploring local
612 antiviral responses. *Clin Transl Immunology* **4**, e43 (2015).

613 19. S. A. Abdulhaqq *et al.*, HIV-1-negative female sex workers sustain high cervical
614 IFNvarepsilon, low immune activation, and low expression of HIV-1-required host
615 genes. *Mucosal Immunol* 10.1038/mi.2015.116 (2015).

616 20. R. C. Coldbeck-Shackley *et al.*, Constitutive expression and distinct properties of
617 IFN-epsilon protect the female reproductive tract from Zika virus infection. *PLOS
618 Pathogens* **19**, e1010843 (2023).

619 21. F. R. Zhao, W. Wang, Q. Zheng, Y. G. Zhang, J. Chen, The regulation of antiviral
620 activity of interferon epsilon. *Front Microbiol* **13**, 1006481 (2022).

621 22. C. Tasker *et al.*, IFN-epsilon protects primary macrophages against HIV infection.
622 *JCI Insight* **1**, e88255 (2016).

623 23. F. W. Peng *et al.*, Purification of recombinant human interferon-epsilon and
624 oligonucleotide microarray analysis of interferon-epsilon-regulated genes. *Protein
625 Expr Purif* **53**, 356-362 (2007).

626 24. S. L. Day, I. A. Ramshaw, A. J. Ramsay, C. Ranasinghe, Differential effects of
627 the type I interferons alpha4, beta, and epsilon on antiviral activity and vaccine
628 efficacy. *Journal of immunology* **180**, 7158-7166 (2008).

629 25. J. W. Mungin, Jr., X. Chen, B. Liu, Interferon Epsilon Signaling Confers
630 Attenuated Zika Replication in Human Vaginal Epithelial Cells. *Pathogens* **11**
631 (2022).

632 26. D. Pinto, A. Gregorieff, H. Begthel, H. Clevers, Canonical Wnt signals are
633 essential for homeostasis of the intestinal epithelium. *Genes Dev* **17**, 1709-1713
634 (2003).

635 27. A. Ali *et al.*, Cell Lineage Tracing Identifies Hormone-Regulated and Wnt-
636 Responsive Vaginal Epithelial Stem Cells. *Cell Rep* **30**, 1463-1477.e1467 (2020).

637 28. A. P. Lam, C. J. Gottardi, β -catenin signaling: a novel mediator of fibrosis and
638 potential therapeutic target. *Curr Opin Rheumatol* **23**, 562-567 (2011).

639 29. P. Astudillo, Extracellular matrix stiffness and Wnt/ β -catenin signaling in
640 physiology and disease. *Biochemical Society Transactions* **48**, 1187-1198
641 (2020).

642 30. D. Wehner *et al.*, Wnt signaling controls pro-regenerative Collagen XII in
643 functional spinal cord regeneration in zebrafish. *Nature Communications* **8**, 126
644 (2017).

645 31. J. Liu *et al.*, Wnt4 negatively regulates the TGF- β 1-induced human dermal
646 fibroblast-to-myofibroblast transition via targeting Smad3 and ERK. *Cell Tissue
647 Res* **379**, 537-548 (2020).

648 32. T. E. Morrison, M. S. Diamond, Animal Models of Zika Virus Infection,
649 Pathogenesis, and Immunity. *J Virol* **91** (2017).

650 33. H. M. Lazear *et al.*, A Mouse Model of Zika Virus Pathogenesis. *Cell Host
651 Microbe* **19**, 720-730 (2016).

652 34. S. Khan *et al.*, Low expression of RNA sensors impacts Zika virus infection in the
653 lower female reproductive tract. *Nat Commun* **10**, 4344 (2019).

654 35. E. van der Zee, V. Everts, W. Beertsen, Cytokines modulate routes of collagen
655 breakdown. Review with special emphasis on mechanisms of collagen

656 degradation in the periodontium and the burst hypothesis of periodontal disease
657 progression. *J Clin Periodontol* **24**, 297-305 (1997).

658 36. R. D. Granstein, T. J. Flotte, E. P. Amento, Interferons and collagen production. *J*
659 *Invest Dermatol* **95**, 75s-80s (1990).

660 37. M. Tschurtschenthaler *et al.*, Type I interferon signalling in the intestinal
661 epithelium affects Paneth cells, microbial ecology and epithelial regeneration.
662 *Gut* **63**, 1921-1931 (2014).

663 38. Y. V. Katlinskaya *et al.*, Type I Interferons Control Proliferation and Function of
664 the Intestinal Epithelium. *Mol Cell Biol* **36**, 1124-1135 (2016).

665 39. K. P. Kotredes, B. Thomas, A. M. Gamero, The Protective Role of Type I
666 Interferons in the Gastrointestinal Tract. *Front Immunol* **8**, 410 (2017).

667 40. H. M. Lazear, T. J. Nice, M. S. Diamond, Interferon-λ: Immune Functions at
668 Barrier Surfaces and Beyond. *Immunity* **43**, 15-28 (2015).

669 41. H. M. Lazear, J. W. Schoggins, M. S. Diamond, Shared and Distinct Functions of
670 Type I and Type III Interferons. *Immunity* **50**, 907-923 (2019).

671 42. M. L. Stanifer, C. Guo, P. Doldan, S. Boulant, Importance of Type I and III
672 Interferons at Respiratory and Intestinal Barrier Surfaces. *Frontiers in*
673 *Immunology* **11** (2020).

674 43. C. Odendall, A. A. Voak, J. C. Kagan, Type III IFNs Are Commonly Induced by
675 Bacteria-Sensing TLRs and Reinforce Epithelial Barriers during Infection. *J*
676 *Immunol* **199**, 3270-3279 (2017).

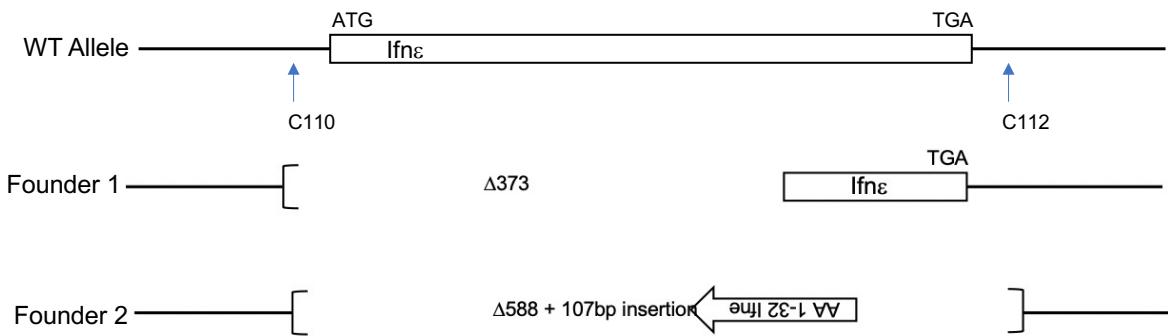
677 44. A. Krug *et al.*, Herpes simplex virus type 1 activates murine natural interferon-
678 producing cells through toll-like receptor 9. *Blood* **103**, 1433-1437 (2004).

679 45. V. Hornung *et al.*, Replication-Dependent Potent IFN-α Induction in Human
680 Plasmacytoid Dendritic Cells by a Single-Stranded RNA Virus1. *The Journal of*
681 *Immunology* **173**, 5935-5943 (2004).

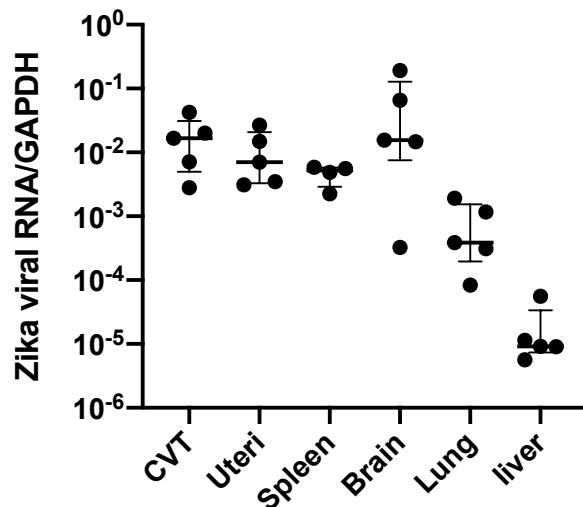
682 46. P. Deb, J. Dai, S. Singh, E. Kalyoussef, P. Fitzgerald-Bocarsly, Triggering of the
683 cGAS-STING Pathway in Human Plasmacytoid Dendritic Cells Inhibits TLR9-
684 Mediated IFN Production. *The Journal of Immunology* **205**, 223-236 (2020).

685 47. J. Couret *et al.*, Differential regulation of IFNalpha, IFNbeta and IFNepsilon gene
686 expression in human cervical epithelial cells. *Cell Biosci* **7**, 57 (2017).

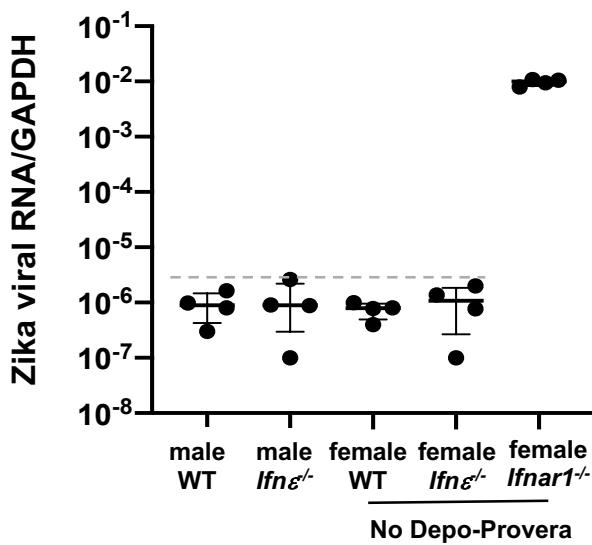
687 48. N. Valero-Pacheco *et al.*, Maternal IL-33 critically regulates tissue remodeling
688 and type 2 immune responses in the uterus during early pregnancy in mice. *Proc*
689 *Natl Acad Sci U S A* **119**, e2123267119 (2022).


690 49. A. Raj, P. van den Bogaard, S. A. Rifkin, A. van Oudenaarden, S. Tyagi, Imaging
691 individual mRNA molecules using multiple singly labeled probes. *Nat Methods* **5**,
692 877-879 (2008).

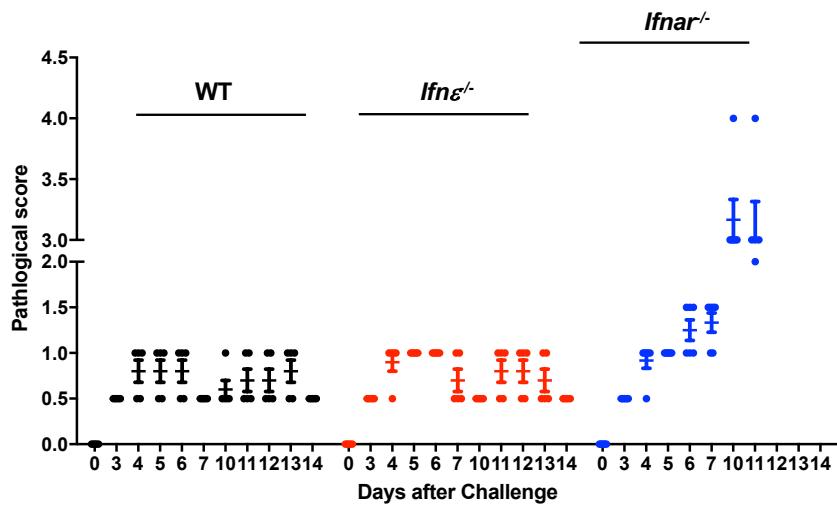
693 50. A. Raj, S. Tyagi, Detection of individual endogenous RNA transcripts in situ using
694 multiple singly labeled probes. *Methods Enzymol* **472**, 365-386 (2010).


695 51. S. Subbian *et al.*, Early innate immunity determines outcome of *Mycobacterium*
696 tuberculosis pulmonary infection in rabbits. *Cell Commun Signal* **11**, 60 (2013).

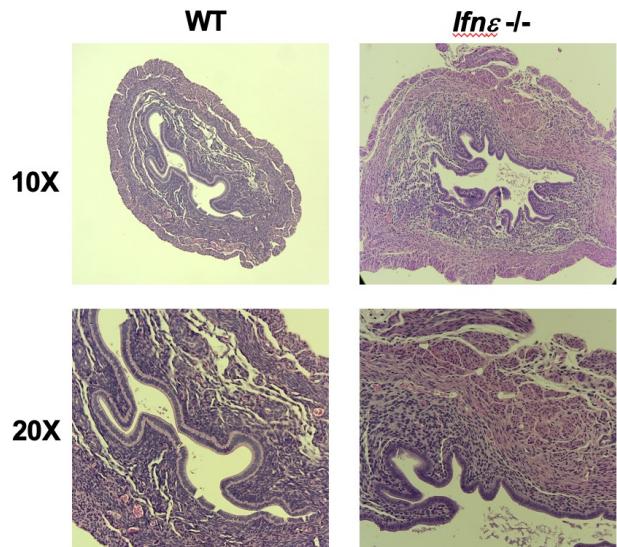
697


698

699
700
701 **Fig S1. A schematic diagram of *Ifnε*^{-/-} mice.** *Ifnε*^{-/-} mice were generated using
702 CRISPR/Cas9 technology. The wild-type allele and the location of the guide RNAs
703 (C110, C112) are shown. Founder 1 had a 373 bp deletion of the sequence from 49 bp
704 upstream of the initiating methionine to AA 109, eliminating 2/3 of the IFNε coding
705 sequence. Founder 1 also had a 12 bp deletion in the 3'UTR. Founder 2 had a 588 bp
706 deletion of the entire IFNε coding sequence from 48 bp upstream of the initiating
707 methionine to 22bp downstream of the stop codon. A 107 bp segment containing the
708 coding sequence of the first 32 AA was inserted at the deletion site in an inverted
709 orientation. No open reading frames containing any part of IFNε were present.
710

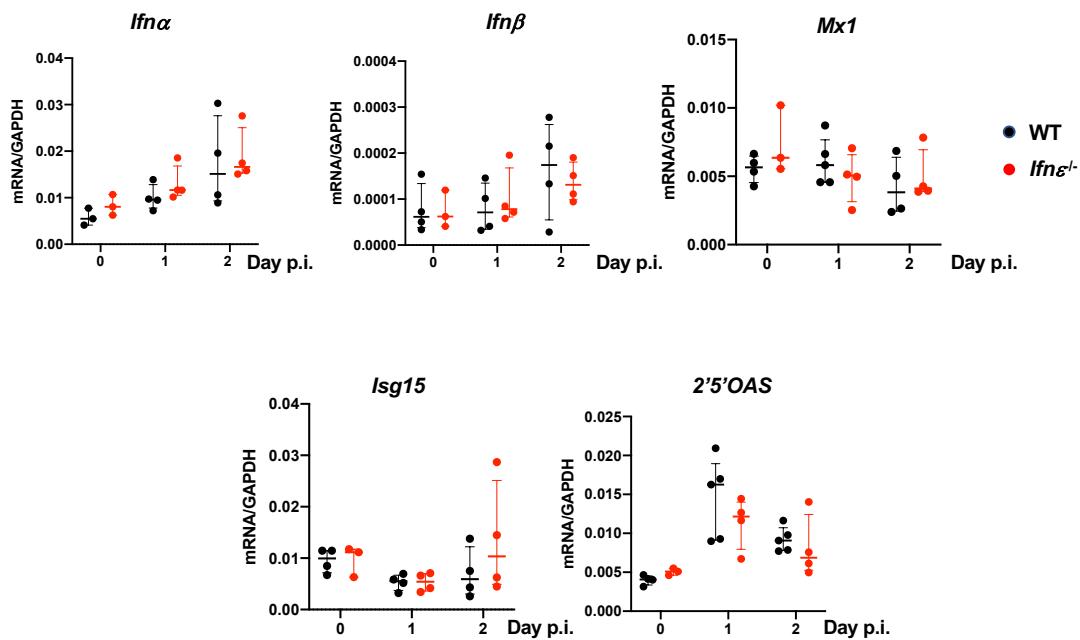


711
712
713 **Fig S2. Zika viral RNAs were detectable in various tissues in *Ifnar1*^{-/-} female mice.**
714 Depo-provera-treated *Ifnar1*^{-/-} mice were infected by ZIKV via an intravaginal route.
715 Various tissues were harvested at day 8 p.i. Total RNAs were prepared and Zika viral
716 RNAs were analyzed by RT-qPCR.
717



721 **Fig S3. Zika viral RNAs were not detectable in the spleens of male or non-Depo-
 722 Provera treated female WT and *Ifnε*^{-/-} mice subcutaneously infected with ZIKV.**

723 Male WT, male *Ifnε*^{-/-}, female WT, female *Ifnε*^{-/-}, and female *Ifnar1*^{-/-} mice without Depo-
 724 Provera treatment were challenged with ZIKV subcutaneously. Spleens were harvested
 725 at day 8 p.i. ZIKV RNA levels were determined by RT-qPCR. (Dashed line indicates
 726 baseline signal from uninfected animals. Viral signals were not detectable in spleens of
 727 male or female WT and *Ifnε*^{-/-} mice, whereas spleens from *Ifnar1*^{-/-} mice harbored
 728 significant levels of ZIKV RNA.



730
 731
 732 **Fig S4. ZIKV-infected *Ifnε⁻/⁻* mice do not exhibit significant changes in clinical**
 733 **scores.** Female WT, *Ifnε⁻/⁻*, and *Ifnar⁻/⁻* mice were treated with Depo-Provera for 12-14
 734 days before intravaginal ZIKV infection. *Ifnar⁻/⁻* mice were included as a comparison.
 735 Clinical scores were recorded. The criteria of clinal score were listed in the method part.
 736 Higher score indicates more severe condition in mice. There were no significant
 737 differences in clinical scores or body weight loss between WT and *Ifnε⁻/⁻* mice. *Ifnar⁻/⁻*
 738 mice exhibited significant pathology.
 739

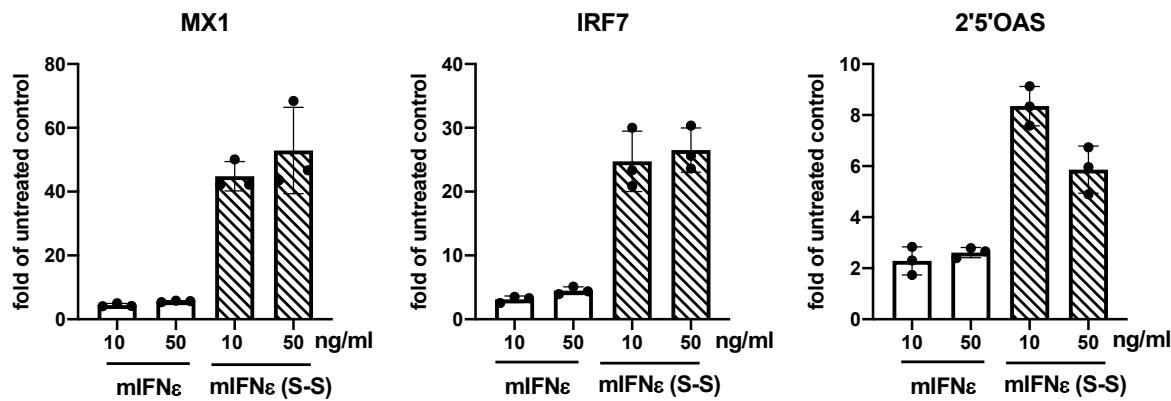

740
741
742
743
744
745
746

Fig S5. ZIKV induce tissue edema in the uterus of *Ifnε*^{-/-} mice. Depo-Provera-synchronized WT and *Ifnε*^{-/-} mice were infected with ZIKV. The FRT was harvested on day 8 p.i. and were examined by H&E staining.

747
748
749 **Fig S6. Induction of ISGs in the CVT of WT and *Ifnε*^{-/-} mice in response to**
750 **intravaginal ZIKV infection.** WT and *Ifnε*^{-/-} mice were infected with ZIKV
751 intravaginally. Total RNAs from the CVT were prepared, and expression of ISGs was
752 determined by RT-qPCR. *p<0.05 between WT and *Ifnε*^{-/-} mice.
753

754
755

756
757 **Fig S7. Recombinant mIFN ϵ (S-S) proteins induce higher levels of ISGs.**
758 Recombinant mIFN ϵ proteins and their analog, mIFN ϵ (S-S) with a replacement of Cys
759 174 with serine to stabilize the protein structure. Bone marrow derived macrophages
760 were treated with mIFN ϵ proteins or mIFN ϵ (S-S) at 10 or 50 ng/ml for 6 h. Total RNAs
761 were prepared and the expression of ISGs including MX1, IRF7, and 2'5'OAS were
762 analyzed by RT-qPCR.
763
764