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ABSTRACT

Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications.
Modification-free transcripts are a practical and targeted control for DRS, providing a
baseline measurement for canonical nucleotides within a matched and biologically
derived sequence context. However, these controls can be challenging to generate and
carry nanopore-specific nuances that can impact analysis. We produced DRS datasets
using modification-free transcripts from in vitro transcription (IVT) of cDNA from six
immortalized human cell lines. We characterized variation across cell lines and
demonstrated how these may be interpreted. These data will serve as a versatile
control and resource to the community for RNA modification analysis of human

transcripts.

RESEARCH AREA: Genetics and Genomics

CLASSIFICATIONS: Transcriptomics; Bioinformatics

DATA DESCRIPTION

Context

Nanopore Direct RNA sequencing (DRS) has emerged as a method for analyzing native
RNA strands based on ionic current disruptions during translocation through a
biological pore. Deviations in the ionic current disruptions may be attributed to RNA
modifications[1], such as pseudouridine(¥)[2], N°-methyladenosine (m°A)[3], and
inosine (I)[4]. Oxford Nanopore Technologies has developed basecallers capable of

identifying modifications in RNA and DNA but are limited in scope. Out of the 170+
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known RNA modifications[5], only m°A can be identified de novo with a basecaller[6].
For other modifications, negative controls and additional bioinformatic tooling are
necessary. These negative controls include but are not limited to enzymatic knockouts
of RNA modification machinery[7], synthetic RNA controls[8-10], expected
distribution pore models for computational analysis[11,12], and genomic and
transcriptomic templates for in vitro transcription (IVT)-based negative controls (i.e.,

unmodified transcriptomes)[2,13].

IVT-derived, unmodified transcriptomes[13,14] are an attractive option for analyzing
modifications using DRS[2,13,15—-17]. Currently, m°A is the only exception with
several signal-focused tools, including Dorado[18], the Oxford Nanopore RNA base
caller, and m6anet[6], a multiple instances learning-based neural network. To
generate these IVT datasets, polyadenylated (poly-A) RNA strands are reverse
transcribed to cDNA, PCR amplified, and then in-vitro transcribed into RNA using
canonical nucleotides. This process maintains the sequence context of the initial
poly(A) RNA sample while “erasing” the RNA modifications, providing a baseline to
compare putative modification sites. However, IVT RNA derived from a single cell line
may not comprehensively capture the landscape of expressed genes in the human
transcriptome, for example, if applied to a different cell line. IVT RNA derived from
multiple human cell lines could better capture these differences and be applied

broadly.

We present a long-read, multicellular, poly-A RNA-based, IVT-derived, unmodified
transcriptome dataset for DRS modification analysis. We identified and flagged

positions where the IVT data set differs from the GRCh38 reference, which could
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result in the false identification of modification sites. We also propose a strategy for
filtering out these sites. This includes several mismatch tolerance levels that an end
user can select. We also created a pooled version of this IVT dataset for increased
representation of genes and positions of interest at the cost of cell line specificity.
Finally, we computed ionic current-level alignments for each cell line, allowing users

to apply this dataset without additional preprocessing steps.

This publicly available dataset will be a resource to the direct RNA analysis community
and help reduce the need for expensive IVT library preparation and sequencing for
human samples. This strategy will serve as a framework for RNA modification

analysis in other organisms.

Methods

Cell culture

HeLa, HepG2, A549, and NTERA-2 cells were cultured in Dulbecco’s modified Eagle’s
medium (Gibco, 10566024) as a base; SH-SY5Y cells were cultured in a base of 1:1
EMEM:F12; Jurkat cells were cultured in RPMI (SH30027FS, FisherScientific). All
media was supplemented with 10% Fetal Bovine Serum (FB12999102, FisherScientific)
and 1% Penicillin-Streptomycin (Lonza,17602E). Cells were cultured at 37°C with 5%

CO, in 10 cm tissue culture dishes until confluent.

Total RNA extraction and Poly(A) selection

Total RNA extraction from cells and Poly(A) selection was performed using the

protocol outlined previously[2]. Six 10 cm cell culture dishes with confluent cells were
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washed with ice-cold PBS and lysed with TRIzol (Invitrogen,15596026) at room
temperature and transferred to an RNAse-free microcentrifuge tube. Chloroform was
added to separate the total RNA in the aqueous supernatant from the organic phase
containing DNA and cell debris below following centrifugation. The aqueous
supernatant was then transferred to a fresh RNAse-free microcentrifuge tube, and an
equal volume of 70% absolute ethanol was added. PureLink RNA Mini Kit (Invitrogen,
12183025) was used to purify the extracted total RNA in accordance with the
Manufacturer's protocol. Total RNA concentration was measured using the Qubit™

RNA High Sensitivity (HS) assay (Thermo Fisher, Q32852).

Poly(A) selection was performed using NEBNext Poly(A) mRNA Magnetic Isolation
Module (NEB, E7490L) according to the Manufacturer’s protocol. The isolated Poly(A)
selected RNA was eluted from the beads using Tris buffer. The poly(A) selected RNA

concentration was measured using the same Qubit™ assay listed above.

In vitro transcription and polyadenylation

The protocol for IVT, capping, and polyadenylation is described previously[2]. Briefly,
the cDNA-PCR Sequencing Kit (SQK-PCS109) kit facilitated the reverse transcription
(RT) and strand switching (SS). VN and Strand-Switching primers were added to 100
ng of poly(A) selected RNA from the abovementioned step. cDNA was produced by
Maxima H Minus Reverse Transcriptase (Thermo Scientific, EP0751). Using a
thermocycler, the reaction protocol is as follows: RT and SS for 90 minutes at 42°C (1
cycle), Heat inactivation for 5 mins at 85°C (1 cycle), and hold at 4°C (o). PCR

amplification was performed using LongAmp Taq 2X Master Mix (NEB, M0287S) and
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the Nanopore_ T7_IVT_ Forward and Reverse primers. The thermocycling conditions
are as follows: initial denaturation for 30 seconds at 95°C (1 cycle), denaturation for 15
seconds at 95°C (11 cycles), annealing for 15 seconds at 62°C (11 cycles), extension for
15 minutes at 65°C (11 cycles), a final extension for 15 minutes at 65°C (1 cycle), and
then an indefinite hold at 4°C. The PCR products were treated with Exonuclease 1
(NEB, M0293S) to digest single-stranded products. The resulting product was purified
using Sera-Mag Select beads (Cytiva, 29343045) according to the Manufacturer’s
protocol. IVT was performed on the purified PCR product using a HiScribe T7 High
yield RNA Synthesis Kit (NEB, E2040S) and purified using a Monarch RNA Cleanup Kit
(NEB, T2040S), both according to the Manufacturer's protocols. Polyadenylation was
performed using E. coli Poly(A) Polymerase (NEB, M0276S) using 12 pg of input RNA,
and EDTA was added to halt the reaction. The product was purified again using a
Monarch RNA Cleanup Kit with a final elution volume of 12 pL. Concentration was
taken using the Qubit™ RNA HS assay. All primers are listed in Supplementary Table

S1.

Sequencing, Basecalling, and Alignment Procedure

Each cell line was sequenced individually using Nanopore Direct RNA sequencing
(DRS) on R9 flow cells with sequencing chemistry SQK002. DRS runs were base called
with Guppy v6.4.2 using the high accuracy model using the default basecalling quality
score filter of Q 27[19]. Basecalled reads were aligned with minimap2(v2.24 [20];
RRID:SCR__018550) to the GRCh38.p10 reference genome and Gencode.v45 transcript

sequences:
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Gencode.v45: minimap2 -ax map-ont

GRCh38.p10: minimap2 -ax map-ont -uf -k 14

SAMs were filtered to include only primary alignments for downstream analysis:

samtools view -h -F 4 -F 256 -F 2048

NanoPlot[21]

Nanoplot was used to generate sequencing and gencode alignment stats:

NanoPlot --raw

NanoCount[22]

NanoCount (no options) was used to calculate transcript abundance. Basecalled reads
were aligned to Gencode.v45 transcript sequences similarly as above with the
additional option (-N 1) and not filtered further. HeLa biological DRS raw data was

sourced from NIH NCBI-SRA BioProject: PRINA777450

Genomic DNA Extraction and Sanger Sequencing

We performed Sanger sequencing on HeLa genomic DNA (gDNA) to analyze putative
mismatches. gDNA extraction was performed using a Monarch Genomic DNA
Purification Kit (NEB, T3010S) following the Manufacturer’s protocol for cultured
cells with an input of 5e6 HeLa cells. PCR primers to amplify ~200 nt regions
surrounding the mismatches were designed using Primer-BLAST with default

settings and checking primer specificity against the Homo Sapiens genome. These
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primers are listed in Supplementary Table S1. Using the Manufacturer's protocol, the
PCR reaction was set up with Q5 polymerase (NEB, M0491L). Thermocycling
conditions were as follows: initial denaturation at 98 °C for 30 seconds, 25 cycles of 98
°C for 10 seconds, then 63 °C for 20 seconds and 72 °C for 15 seconds, final extension at
72 °C for 2 minutes, and holding at 10 °C. PCR products were purified using a Monarch
PCR & DNA Cleanup Kit (NEB, T1030S) following the Manufacturer’s protocol. The
concentration of eluted DNA was determined using a Nanodrop. The purified PCR
products were imaged on a 2% agarose TBE gel to confirm specific amplification.

Samples were sent to Quintara Biosciences for SimpliSeq™ Sanger sequencing.

Mismatch Analysis Methods

To identify the scope of mismatches in the sequenced IVT data (Supplementary Fig.
S1), we followed an align, pileup, and compare strategy. We used the alignments to the

GRCh38.p10 reference genome.

A positional pileup for each IVT replicate was created with pysamstats.

pysamstats (--t variation)

The initial variant calling process documented every location with a minimum of 10x
coverage in the pooled cell line data set with at least one called nucleotide differing
from the reference. Subsequent filtering removed variants based on the number of
occurrences of a given variant in relation to the number of canonical bases and
deletions present at a location. We sequentially applied a filter of 30%, 40%, 50%,

60%, 70%, 80%, and 95% to the data.
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Each set of variants was divided into three distinct bins: variants previously
documented in Ensembl, variants that occurred in low-confidence 9mers, and novel

variants for the IVT replicate set.

The final data set consisted of 3 compartments for each variant presence threshold: a
set of potentially novel IVT variants, variants with known documentation in Ensembl,

and variants that occurred in low-confidence 9mers (Supplementary Table S2).

Round Robin Gene Coverage Saturation

To calculate the degree to which 5 of our cell lines (representative population) could
approximate the observed gene set of the 6th, we subsampled 1,000,000 reads from
the 6th cell line (target cell line) to create a representation of which that cell line
covered genes. For each of the 5 other cell lines, we iteratively subsampled between 0
and 1,000,000 reads in increments of 100,000, for a combined total of 0 to 5,000,000
reads, and created a set of observed genes from those reads. At each iteration, we
divided the cardinality of the union of our representative population with the target
population by the cardinality of our target population to yield a proportion of the
covered value. We repeated our sampling of the representative population 100 times
and averaged the results for each sample interval. We repeated this process with each
cell line acting as the target cell line. The iterative process was performed 500 times,

yielding 6 saturation curves.

Nanopolish Eventalign

Eventalign data for each dataset was computed with the following options
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nanopolish eventalign --print-read-names --scale-events --samples

Data Validation and quality control

Generation and characterization of panIVT

We extracted RNA from 6 immortalized human cell lines: A549, HeLa, HepG2, Jurkat,
NTERA, and SH-SY5Y cells and selected polyadenylated transcripts. These transcripts
were reverse transcribed to cDNA, then in vitro transcribed back into RNA using
canonical rNTPs according to Tavakoli et al. (see Methods). Each library was prepared
for sequencing using an ONT Direct RNA Sequencing kit and sequenced on a MinION
or PromethION flow cell. The throughput for these data ranged from 1.3 million to 4.9
million primary aligned reads per cell line (Table 1). Basecalling was performed using
Guppy 6.4.2 and alignment using minimap2 to Gencode v.45 human reference

transcripts (Fig. 1A)(Table 1).

Table 1. Cell Type Alignment Statistics

Median
Human Aligned Read [|Alignment | Aligned Genes (2

Cell Line Approximation [Reads N50 Identity 10 reads)

A549 Lung Tissue 1,464,177 (922 89.9 8,133

HeLa Cervical 3,868,608 [983 90.6 10,002

HepG2 Liver Tissue 1,790,636 (1197 90.7 8,812

Jurkat T Lymphocytes (4,872,485 [1112 91.4 10,380

NTERA Testes 2,351,140 935 90.1 10,308

SH-SY5Y Neurons 1,340,875 (1084 90.1 8,873

10


https://doi.org/10.1101/2023.04.06.535889
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.06.535889; this version posted May 28, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We pooled the aligned IVT reads from each cell line (“panIVT”). We observed 17,038
unique genes aligned with at least one DRS read from the panIVT comprising 85.69%
of all human protein-coding genes in Gencode v45. As the read count cutoff increased,
the human protein-coding gene coverage decreased (Fig. 1B). As the panIVT
comprises all six cell lines, it maximizes coverage and provides a more comprehensive
representation of human protein-coding genes. We tested the ability of the five cell
lines to capture the gene level diversity of the sixth cell line for increasing subsample
sizes (Fig. 1C). NTERA has the lowest proportion of observed genes represented in the
sample population at ~90%. Combining different cell lines captured most of the

observed gene level diversity for a cell line of interest.
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Figure 1. Alignment performance and coverage comparison. (A) Average percent identity of aligned DRS
reads to Gencode.v38 Transcript sequences against read length (nts); data generated with Nanoplot[21].
(B) Percent of observed protein-coding transcripts (out of total protein-coding transcripts) against
transcript minimum read count cut-off for each cell line. pan-IVT is the additive combination of all cell
line coverage (C) Target cell line gene representation as a function of reads sampled from five sample
population cell lines. Each cell line was used as the target cell line; the line on the graph corresponds to the
representation of the target cell line listed in the legend.
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Cataloging sequence variation in IVT data using the GRCh38 reference

For RNA modification analysis, it is essential to distinguish systematic and spurious
mismatches in IVT data. Systematic mismatches could be caused by genomic
variation, IVT errors (i.e., due to reverse transcriptase or polymerase), sequencing-
related errors, basecalling errors, or alignment errors. The sites that show these types
of systematic errors in the IVT dataset should be omitted from RNA modification
analysis. For each cell line, we identified positions with a mismatch percentage of 30%
or higher from the GRCh38 reference genome. We further separated mismatches into
one of three categories; known variants according to Ensembl[23], mismatches
occurring in low confidence 9-mers (i.e., 9-mer regions where the basecaller is
systematically less confident), and a combination of remaining mismatches
(Supplementary Fig. S1; Table S2). The low confidence 9-mer set was curated by
taking the average phred score base quality measure of all 9-mers in an independent
biological DRS dataset[13] and selecting the lowest quartile. From our HeLa dataset
with a minimum read count of 10 and mismatch occurrence threshold of 30%, we
identified 62,708 mismatches. Of these 24,879 known variants, 8,930 originated in
low-confidence 9-mers, leaving the remaining 28,899 mismatches (Supplementary
Table S2). Without further orthogonal investigation, we recommend excluding all
positions with a mismatch percentage at the preselected threshold, regardless of
mismatch category. A tabulated version of the mismatch analysis findings for each
cell line in our IVT dataset, as well as a pooled version, is publicly available on GitHub

in conjunction with BED (Browser Extensible Data) files for each variance threshold
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for integrated genome viewing (IGV). The overlap of mismatches between each of the

cell lines for the 30% cutoff threshold can be found in Supplementary Table S3.

Re-use potential

Application of IVT dataset for downstream RNA modification analysis

We intend these data to be a negative control for biological DRS modification analysis.
Transcript coverage and abundance correlation between a paired IVT mRNAs and its
corresponding biological mRNA can assess the quality of the IVT as a negative control.
For example, we compared the transcripts per million (TPM)[22] of IVT RNA from
HelLa cells to biological mRNA from HeLa cells for aligned transcripts[2]. The TPMs
were positively correlated (r> = 0.83) indicating the IVT is representative of the
biological data (Supplementary Fig. S2). Figure 2A details an example decision process
to determine whether a candidate DRS site should be included in the downstream
analysis using this IVT dataset. The mismatched BED files can serve as a first filtration
point for sites where modification analysis is not recommended. These sites could
include RNA editing sites, kmers that cause uncertainty in basecalling, or genetic
variation that can’t be confirmed in the target sample. A stringent analysis would
eliminate sites by using the 30% IVT mismatch filter. However, individual
experiments may benefit from raising the occurrence threshold. We examined HeLa
biological DRS data and BED files for 30%, 60%, and 95% occurrence thresholds in
IGV (Supplementary Fig. S3A). Here, we can visualize positional nucleotide anomalies
in HeLa biological DRS data. We can then refine the modification candidate sites list

by excluding positions where an IVT mismatch occurs at a given occurrence threshold

13
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(Supplementary Fig. S3B). If a particular site is being examined where a reference
mismatch occurs (either IVT or biological), we recommend using orthogonal methods
to confirm IVT as an appropriate negative control at this position. This should include
but isn’t limited to sequencing gDNA from the same sample as the direct RNA to
confirm that the IVT identity and the DNA identity are the same. We recommend that
biological conclusions drawn from analyses using these IVT data should include

sufficient additional orthogonal confirmation.

Intersect with Does IVT query position Does orthogonal genomic

Are secondary orthogonal

e S | 7| eerimens easiie? | Y** %] $Ue Posion agree v
No
Accept query Reject query Yes
position for position for No
downstream downstream
analysis analysis
B
GRehasref TTAACCAAT ACACTGTGG GTGTTCGAA
Bio RNA (DRS) TTAAGCAAT ACACAGTGG GTGTCCGAA
IWVTRNADRS) T TAAGCAAT ACACAGTGG GTGTTCGAA
gDNA (Sanger) TTAAGCAAT ACACTGTGG GTGTTCGAA
chr2:117817639 chr1:23792793 chr1:35603333
bio mismatch to ref bio mismaitch to ref bio mismaich to ref
IVT mismatch to ref IVT mismatch to ref IVT aligns to ref
gDNA mismatch to ref gDNA aligns to ref gDNA aligns to ref
exclude exclude include

Figure 2. Recommended Analysis Inclusion Criteria (A) Decision tree to determine if a position should be
considered for downstream analysis. (B) Sanger sequencing for orthogonal support determines suitability
for downstream modification analysis. Comparing HeLa biological RNA (DRS), IVT RNA (DRS), gDNA
(Sanger sequencing), and genome reference (GRCh38). Red bars indicate exclusion from downstream
analysis, and green bars indicate inclusion.
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We selected three example positions, determined their inclusion status (Fig. 2A), and
performed Sanger sequencing[24] as an orthogonal method to confirm our decision
(Fig. 2B). Two positions (chr2:117817639; chr1:23792793) show a mismatch between
the observed IVT sequence and the reference sequence (at 80% occurrence threshold);
we recommend the third position (chr1:35603333) as a candidate site for downstream

modification analysis.

At the first position of interest (chr2:117817639), both the biological RNA and IVT RNA
are mismatched to the reference (GRCh38.p10). Sanger sequencing at chr2:117817639
reveals the gDNA matches the biological and IVT RNA, indicating a single nucleotide
variant (SNV). In this instance, we resolve to exclude this site as the biological RNA
and IVT RNA agree, strongly suggesting the absence of an RNA modification. Again,
the biological and IVT RNA mismatch to the reference nucleotide at the second
position of interest (chr1:23792793). Unlike the preceding example, Sanger
sequencing reveals the gDNA matches the reference, indicating the mismatch arose
from a confounding variable. Therefore, this position is excluded from downstream
analysis. The third position (chr1:35603333) represents a case where the IVT RNA
matches the reference, but the biological RNA mismatches both the IVT RNA and the
reference. Based on this information, we default to include this position for
downstream analysis. Sanger sequencing confirms our decision, where the gDNA
agrees with the IVT RNA and reference, indicating a candidate site for further RNA

modification analysis.

Once the candidate positions are identified, various bioinformatic tools exist

that leverage IVT as a negative control. Some tools, such as Mod-p ID[2], compare the

15
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rate of mismatches observed in biological and IVT data; for this application, the
publicly available bam files can be used. Other tools, such as nanocompore[11] and
xPore[12], require nanopolish eventalign data[19] computed from the raw sequencing
files. Since eventalign is a computationally intensive program, we have precomputed
the transcriptomic (gencode.v45) eventalign data and the genomic (GRCh38.p10)
eventalign data and made them publicly available

(https://github.com/RouhanifardLab/PanHumanIVT/tree/main). Figure 3A shows

ionic current distributions for an example of five overlapping 5-mers. Cell lines with

low coverage for the target 5mer had noisier ionic current distributions.
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Figure 3(A). Ionic Current distributions for MCM5 (chr22:35424407 +/- 4) across all 6 cell lines.
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CONCLUSION

Appropriate negative controls are critical for accurately detecting and
characterizing RNA modifications using nanopore DRS. IVT-derived negative controls
provide an unmodified rendition of the transcriptome, allowing for comparative RNA
modification analysis. A single cell line’s IVT transcripts may not fully capture the
diversity of the human transcriptome, but expansion to multiple cell lines provides a
more comprehensive representation.

We created IVT DRS data for six immortalized cell lines. We cataloged sites
where the IVT dataset did not match the human reference genome. With this
information, filtering out sites with potentially confounding underlying sequences
and drawing more robust conclusions during comparative analysis is possible. The
underlying sequence variation can come from several factors, including genomic
variations introduced during the in vitro transcription process. Either source of error
makes the position a poor candidate for comparative modification analysis. Because of
this, we recommend eliminating IVT mismatch sites, regardless of origin, from
comparative analysis.

Once the candidate sites have been selected, bioinformatic tools can be applied
to perform comparative RNA modification analysis. We have precomputed and made
publicly available nanopolish eventalign data to reduce the computational burden for
potential users of this data set. While these tools can have high barriers of entry, we
hope that this data set can help lower the computational burden and make RNA

modification analysis more approachable for the community.
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Availability of source code and requirements

Project name: PanHumanIVT

Project home page: https://github.com/RouhanifardLab/PanHumanIVT
DOI: https://doi.org/10.5281/zenodo.7976171

Operating systems: Linux
Programming language: Python, R

Other requirements: samtools 1.16.1 (using htslib 1.16), python 3.7, R 4.1.1, NanoPlot
1.40.2, Jupyterlab 3.4.4, NanoCount 1.0.0.post6

License: MIT License

ADDITIONAL FILES

Supplementary Fig. S1. IVT to reference mismatch identification workflow.

Supplementary Fig. S2. mRNA coverage (TPM) correlation between HeLa IVT mRNA
and HeLa biological mRNA.

Supplementary Fig. S3. IGV visualization of HeLa DRS and .bed files for 30, 60, and
95% SNV occurrence thresholds (OT). (A) view of chr2 displaying HeLa biological DRS
read count depth (log scale) with corresponding IVT mismatch sites at each
occurrence threshold. colors indicate mismatch presence for respective nucleotide
(red =T, green = A, blue = C, orange = G) b, 100 nucleotide visualization of WDFY1
(chr2:223,877,264-223,877,362) where the reference nucleotide from hg38 genome is
displayed as seq. Alignment mismatches for HeLa biological DRS are visualized
proportionally as nucleotide count for respective colors. Grey indicates no significant
mismatch at that position. Known variants at each occurrence threshold are denoted
using the color of the variant nucleotide at that position.

Supplementary Table. S1. Primers used (See Methods)

Supplementary Table. S2. Cell Line IVT positional binned mismatch stats
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Supplementary Table. S3. Overlapping mismatches between all cell lines for the 30%
occurrence threshold.

DATA AVAILABILITY

The data sets supporting the results of this article are available in the
RouhanifardLab/PanHumanIVT GitHub repository,

DOI: https://doi.org/10.5281/zenodo.7976171

FASTQ files and Fast5 raw data generated in this work have been made publicly

available in NIH NCBI-SRA under the BioProject accession PRINAQ4 7135

Sequences were aligned to genome version hg38.p10 and gencode version 45

transcript sequences available at: https://www.gencodegenes.org/

ABBREVIATIONS

DRS: direct RNA sequencing; IVT: in vitro transcription; W: pseudouridine; m°A: N°-
methyladenosine; I: inosine; poly-A: polyadenylated; gDNA: genomic DNA; panIVT:
pooled aligned IVT reads; BED: Browser Extensible Data; IGV: integrated genome
viewing; SNV: single nucleotide variant;
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