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ABSTRACT 

Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. 

Modification-free transcripts are a practical and targeted control for DRS, providing a 

baseline measurement for canonical nucleotides within a matched and biologically 

derived sequence context.  However, these controls can be challenging to generate and 

carry nanopore-specific nuances that can impact analysis. We produced DRS datasets 

using modification-free transcripts from in vitro transcription (IVT) of cDNA from six 

immortalized human cell lines. We characterized variation across cell lines and 

demonstrated how these may be interpreted. These data will serve as a versatile 

control and resource to the community for RNA modification analysis of human 

transcripts.  

RESEARCH AREA: Genetics and Genomics 

CLASSIFICATIONS: Transcriptomics; Bioinformatics 

DATA DESCRIPTION 

Context 

Nanopore Direct RNA sequencing (DRS) has emerged as a method for analyzing native 

RNA strands based on ionic current disruptions during translocation through a 

biological pore. Deviations in the ionic current disruptions may be attributed to RNA 

modifications[1], such as pseudouridine(Ѱ)[2], N6-methyladenosine (m6A)[3], and 

inosine (I)[4]. Oxford Nanopore Technologies has developed basecallers capable of 

identifying modifications in RNA and DNA but are limited in scope. Out of the 170+ 
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known RNA modifications[5], only m6A can be identified de novo with a basecaller[6]. 

For other modifications, negative controls and additional bioinformatic tooling are 

necessary. These negative controls include but are not limited to enzymatic knockouts 

of RNA modification machinery[7], synthetic RNA controls[8–10], expected 

distribution pore models for computational analysis[11,12], and genomic and 

transcriptomic templates for in vitro transcription (IVT)-based negative controls (i.e., 

unmodified transcriptomes)[2,13]. 

IVT-derived, unmodified transcriptomes[13,14] are an attractive option for analyzing 

modifications using DRS[2,13,15–17]. Currently, m6A is the only exception with 

several signal-focused tools, including Dorado[18], the Oxford Nanopore RNA base 

caller, and m6anet[6], a multiple instances learning-based neural network. To 

generate these IVT datasets, polyadenylated (poly-A) RNA strands are reverse 

transcribed to cDNA, PCR amplified, and then in-vitro transcribed into RNA using 

canonical nucleotides. This process maintains the sequence context of the initial 

poly(A) RNA sample while “erasing” the RNA modifications, providing a baseline to 

compare putative modification sites. However, IVT RNA derived from a single cell line 

may not comprehensively capture the landscape of expressed genes in the human 

transcriptome, for example, if applied to a different cell line. IVT RNA derived from 

multiple human cell lines could better capture these differences and be applied 

broadly.   

We present a long-read, multicellular, poly-A RNA-based, IVT-derived, unmodified 

transcriptome dataset for DRS modification analysis. We identified and flagged 

positions where the IVT data set differs from the GRCh38 reference, which could 
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result in the false identification of modification sites. We also propose a strategy for 

filtering out these sites. This includes several mismatch tolerance levels that an end 

user can select. We also created a pooled version of this IVT dataset for increased 

representation of genes and positions of interest at the cost of cell line specificity. 

Finally, we computed ionic current-level alignments for each cell line, allowing users 

to apply this dataset without additional preprocessing steps. 

This publicly available dataset will be a resource to the direct RNA analysis community 

and help reduce the need for expensive IVT library preparation and sequencing for 

human samples. This strategy will serve as a framework for RNA modification 

analysis in other organisms. 

Methods 

Cell culture 

HeLa, HepG2, A549, and NTERA-2 cells were cultured in Dulbecco’s modified Eagle’s 

medium (Gibco, 10566024) as a base; SH-SY5Y cells were cultured in a base of 1:1 

EMEM:F12; Jurkat cells were cultured in RPMI (SH30027FS, FisherScientific). All 

media was supplemented with 10% Fetal Bovine Serum (FB12999102, FisherScientific) 

and 1% Penicillin-Streptomycin (Lonza,17602E). Cells were cultured at 37℃ with 5% 

CO2 in 10 cm tissue culture dishes until confluent.  

Total RNA extraction and Poly(A) selection 

Total RNA extraction from cells and Poly(A) selection was performed using the 

protocol outlined previously[2]. Six 10 cm cell culture dishes with confluent cells were 
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washed with ice-cold PBS and lysed with TRIzol (Invitrogen,15596026) at room 

temperature and transferred to an RNAse-free microcentrifuge tube. Chloroform was 

added to separate the total RNA in the aqueous supernatant from the organic phase 

containing DNA and cell debris below following centrifugation. The aqueous 

supernatant was then transferred to a fresh RNAse-free microcentrifuge tube, and an 

equal volume of 70% absolute ethanol was added. PureLink RNA Mini Kit (Invitrogen, 

12183025) was used to purify the extracted total RNA in accordance with the 

Manufacturer's protocol. Total RNA concentration was measured using the Qubit™ 

RNA High Sensitivity (HS) assay (Thermo Fisher, Q32852).  

Poly(A) selection was performed using NEBNext Poly(A) mRNA Magnetic Isolation 

Module (NEB, E7490L) according to the Manufacturer’s protocol. The isolated Poly(A) 

selected RNA was eluted from the beads using Tris buffer. The poly(A) selected RNA 

concentration was measured using the same Qubit™ assay listed above.  

In vitro transcription and polyadenylation 

The protocol for IVT, capping, and polyadenylation is described previously[2]. Briefly, 

the cDNA-PCR Sequencing Kit (SQK-PCS109) kit facilitated the reverse transcription 

(RT) and strand switching (SS). VN and Strand-Switching primers were added to 100 

ng of poly(A) selected RNA from the abovementioned step. cDNA was produced by 

Maxima H Minus Reverse Transcriptase (Thermo Scientific, EP0751). Using a 

thermocycler, the reaction protocol is as follows: RT and SS for 90 minutes at 42°C (1 

cycle), Heat inactivation for 5 mins at 85°C (1 cycle), and hold at 4°C (∞). PCR 

amplification was performed using LongAmp Taq 2X Master Mix (NEB, M0287S) and 
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the Nanopore_T7_IVT_Forward and Reverse primers. The thermocycling conditions 

are as follows: initial denaturation for 30 seconds at 95°C (1 cycle), denaturation for 15 

seconds at 95°C (11 cycles), annealing for 15 seconds at 62°C (11 cycles), extension for 

15 minutes at 65°C (11 cycles), a final extension for 15 minutes at 65°C (1 cycle), and 

then an indefinite hold at 4°C. The PCR products were treated with Exonuclease 1 

(NEB, M0293S) to digest single-stranded products. The resulting product was purified 

using Sera-Mag Select beads (Cytiva, 29343045) according to the Manufacturer’s 

protocol. IVT was performed on the purified PCR product using a HiScribe T7 High 

yield RNA Synthesis Kit (NEB, E2040S) and purified using a Monarch RNA Cleanup Kit 

(NEB, T2040S), both according to the Manufacturer's protocols. Polyadenylation was 

performed using E. coli Poly(A) Polymerase (NEB, M0276S) using 12 μg of input RNA, 

and EDTA was added to halt the reaction. The product was purified again using a 

Monarch RNA Cleanup Kit with a final elution volume of 12 μL. Concentration was 

taken using the Qubit™ RNA HS assay. All primers are listed in Supplementary Table 

S1.  

Sequencing, Basecalling, and Alignment Procedure 

Each cell line was sequenced individually using Nanopore Direct RNA sequencing 

(DRS) on R9 flow cells with sequencing chemistry SQK002. DRS runs were base called 

with Guppy v6.4.2 using the high accuracy model using the default basecalling quality 

score filter of Q ≥7[19]. Basecalled reads were aligned with minimap2(v2.24 [20]; 

RRID:SCR_018550) to the GRCh38.p10 reference genome and Gencode.v45 transcript 

sequences: 
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Gencode.v45: minimap2 -ax map-ont 

GRCh38.p10: minimap2 -ax map-ont -uf -k 14 

SAMs were filtered to include only primary alignments for downstream analysis:  

samtools view -h -F 4 -F 256 -F 2048 

NanoPlot[21]  

Nanoplot was used to generate sequencing and gencode alignment stats: 

 NanoPlot --raw 

NanoCount[22] 

NanoCount (no options) was used to calculate transcript abundance. Basecalled reads 

were aligned to Gencode.v45 transcript sequences similarly as above with the 

additional option (-N 1) and not filtered further. HeLa biological DRS raw data was 

sourced from NIH NCBI-SRA BioProject: PRJNA777450 

Genomic DNA Extraction and Sanger Sequencing 

We performed Sanger sequencing on HeLa genomic DNA (gDNA) to analyze putative 

mismatches. gDNA extraction was performed using a Monarch Genomic DNA 

Purification Kit (NEB, T3010S) following the Manufacturer’s protocol for cultured 

cells with an input of 5e6 HeLa cells. PCR primers to amplify ~200 nt regions 

surrounding the mismatches were designed using Primer-BLAST with default 

settings and checking primer specificity against the Homo Sapiens genome. These 
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primers are listed in Supplementary Table S1. Using the Manufacturer's protocol, the 

PCR reaction was set up with Q5 polymerase (NEB, M0491L). Thermocycling 

conditions were as follows: initial denaturation at 98 ℃ for 30 seconds, 25 cycles of 98 

℃ for 10 seconds, then 63 ℃ for 20 seconds and 72 ℃ for 15 seconds, final extension at 

72 ℃ for 2 minutes, and holding at 10 ℃. PCR products were purified using a Monarch 

PCR & DNA Cleanup Kit (NEB, T1030S) following the Manufacturer’s protocol. The 

concentration of eluted DNA was determined using a Nanodrop. The purified PCR 

products were imaged on a 2% agarose TBE gel to confirm specific amplification. 

Samples were sent to Quintara Biosciences for SimpliSeqTM Sanger sequencing.  

Mismatch Analysis Methods 

To identify the scope of mismatches in the sequenced IVT data (Supplementary Fig. 

S1), we followed an align, pileup, and compare strategy. We used the alignments to the 

GRCh38.p10 reference genome. 

A positional pileup for each IVT replicate was created with pysamstats. 

pysamstats  (--t variation) 

The initial variant calling process documented every location with a minimum of 10x 

coverage in the pooled cell line data set with at least one called nucleotide differing 

from the reference. Subsequent filtering removed variants based on the number of 

occurrences of a given variant in relation to the number of canonical bases and 

deletions present at a location. We sequentially applied a filter of 30%, 40%, 50%, 

60%, 70%, 80%, and 95% to the data. 
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Each set of variants was divided into three distinct bins: variants previously 

documented in Ensembl, variants that occurred in low-confidence 9mers, and novel 

variants for the IVT replicate set.  

The final data set consisted of 3 compartments for each variant presence threshold: a 

set of potentially novel IVT variants, variants with known documentation in Ensembl, 

and variants that occurred in low-confidence 9mers (Supplementary Table S2). 

Round Robin Gene Coverage Saturation 

To calculate the degree to which 5 of our cell lines (representative population) could 

approximate the observed gene set of the 6th, we subsampled 1,000,000 reads from 

the 6th cell line (target cell line) to create a representation of which that cell line 

covered genes. For each of the 5 other cell lines, we iteratively subsampled between 0 

and 1,000,000 reads in increments of 100,000, for a combined total of 0 to 5,000,000 

reads, and created a set of observed genes from those reads. At each iteration, we 

divided the cardinality of the union of our representative population with the target 

population by the cardinality of our target population to yield a proportion of the 

covered value. We repeated our sampling of the representative population 100 times 

and averaged the results for each sample interval. We repeated this process with each 

cell line acting as the target cell line. The iterative process was performed 500 times, 

yielding 6 saturation curves. 

Nanopolish Eventalign 

Eventalign data for each dataset was computed with the following options 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2024. ; https://doi.org/10.1101/2023.04.06.535889doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535889
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

 nanopolish eventalign --print-read-names --scale-events --samples  

Data Validation and quality control 

Generation and characterization of panIVT  
 
We extracted RNA from 6 immortalized human cell lines: A549, HeLa, HepG2, Jurkat, 

NTERA, and SH-SY5Y cells and selected polyadenylated transcripts. These transcripts 

were reverse transcribed to cDNA, then in vitro transcribed back into RNA using 

canonical rNTPs according to Tavakoli et al. (see Methods). Each library was prepared 

for sequencing using an ONT Direct RNA Sequencing kit and sequenced on a MinION 

or PromethION flow cell. The throughput for these data ranged from 1.3 million to 4.9 

million primary aligned reads per cell line (Table 1). Basecalling was performed using 

Guppy 6.4.2 and alignment using minimap2 to Gencode v.45 human reference 

transcripts (Fig. 1A)(Table 1).  

Table 1. Cell Type Alignment Statistics 

 

Cell Line 
Human 
Approximation 

Aligned 
Reads 

Read 
N50 

Median 
Alignment 
Identity 

Aligned Genes (≥ 
10 reads)  

A549 Lung Tissue 1,464,177 922 89.9 8,133  

HeLa Cervical 3,868,698 983 90.6 10,002  

HepG2 Liver Tissue 1,790,636 1197 90.7 8,812  

Jurkat T Lymphocytes 4,872,485 1112 91.4 10,380 

NTERA Testes 2,351,140 935 90.1 10,308  

SH-SY5Y Neurons 1,340,875 1084 90.1 8,873  
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We pooled the aligned IVT reads from each cell line (“panIVT”).  We observed 17,038 

unique genes aligned with at least one DRS read from the panIVT comprising 85.69% 

of all human protein-coding genes in Gencode v45. As the read count cutoff increased, 

the human protein-coding gene coverage decreased (Fig. 1B). As the panIVT 

comprises all six cell lines, it maximizes coverage and provides a more comprehensive 

representation of human protein-coding genes. We tested the ability of the five cell 

lines to capture the gene level diversity of the sixth cell line for increasing subsample 

sizes (Fig. 1C). NTERA has the lowest proportion of observed genes represented in the 

sample population at ~90%. Combining different cell lines captured most of the 

observed gene level diversity for a cell line of interest.  

 

Figure 1. Alignment performance and coverage comparison. (A) Average percent identity of aligned DRS 
reads to Gencode.v38 Transcript sequences against read length (nts); data generated with Nanoplot[21]. 
(B) Percent of observed protein-coding transcripts (out of total protein-coding transcripts) against 
transcript minimum read count cut-off for each cell line. pan-IVT is the additive combination of all cell 
line coverage (C) Target cell line gene representation as a function of reads sampled from five sample 
population cell lines. Each cell line was used as the target cell line; the line on the graph corresponds to the 
representation of the target cell line listed in the legend.        
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Cataloging sequence variation in IVT data using the GRCh38 reference   

For RNA modification analysis, it is essential to distinguish systematic and spurious 

mismatches in IVT data. Systematic mismatches could be caused by genomic 

variation, IVT errors (i.e., due to reverse transcriptase or polymerase), sequencing-

related errors, basecalling errors, or alignment errors. The sites that show these types 

of systematic errors in the IVT dataset should be omitted from RNA modification 

analysis. For each cell line, we identified positions with a mismatch percentage of 30% 

or higher from the GRCh38 reference genome. We further separated mismatches into 

one of three categories; known variants according to Ensembl[23], mismatches 

occurring in low confidence 9-mers (i.e., 9-mer regions where the basecaller is 

systematically less confident), and a combination of remaining mismatches 

(Supplementary Fig. S1; Table S2). The low confidence 9-mer set was curated by 

taking the average phred score base quality measure of all 9-mers in an independent 

biological DRS dataset[13] and selecting the lowest quartile. From our HeLa dataset 

with a minimum read count of 10 and mismatch occurrence threshold of 30%, we 

identified 62,708 mismatches. Of these 24,879 known variants, 8,930 originated in 

low-confidence 9-mers, leaving the remaining 28,899 mismatches (Supplementary 

Table S2). Without further orthogonal investigation, we recommend excluding all 

positions with a mismatch percentage at the preselected threshold, regardless of 

mismatch category.  A tabulated version of the mismatch analysis findings for each 

cell line in our IVT dataset, as well as a pooled version, is publicly available on GitHub 

in conjunction with BED (Browser Extensible Data) files for each variance threshold 
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for integrated genome viewing (IGV). The overlap of mismatches between each of the 

cell lines for the 30% cutoff threshold can be found in Supplementary Table S3. 

Re-use potential 

Application of IVT dataset for downstream RNA modification analysis 

We intend these data to be a negative control for biological DRS modification analysis. 

Transcript coverage and abundance correlation between a paired IVT mRNAs and its 

corresponding biological mRNA can assess the quality of the IVT as a negative control. 

For example, we compared the transcripts per million (TPM)[22] of IVT RNA from 

HeLa cells to biological mRNA from HeLa cells for aligned transcripts[2]. The TPMs 

were positively correlated (r2 = 0.83) indicating the IVT is representative of the 

biological data (Supplementary Fig. S2). Figure 2A details an example decision process 

to determine whether a candidate DRS site should be included in the downstream 

analysis using this IVT dataset. The mismatched BED files can serve as a first filtration 

point for sites where modification analysis is not recommended. These sites could 

include RNA editing sites, kmers that cause uncertainty in basecalling, or genetic 

variation that can’t be confirmed in the target sample. A stringent analysis would 

eliminate sites by using the 30% IVT mismatch filter. However, individual 

experiments may benefit from raising the occurrence threshold. We examined HeLa 

biological DRS data and BED files for 30%, 60%, and 95% occurrence thresholds in 

IGV (Supplementary Fig. S3A). Here, we can visualize positional nucleotide anomalies 

in HeLa biological DRS data. We can then refine the modification candidate sites list 

by excluding positions where an IVT mismatch occurs at a given occurrence threshold 
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(Supplementary Fig. S3B). If a particular site is being examined where a reference 

mismatch occurs (either IVT or biological), we recommend using orthogonal methods 

to confirm IVT as an appropriate negative control at this position. This should include 

but isn’t limited to sequencing gDNA from the same sample as the direct RNA to 

confirm that the IVT identity and the DNA identity are the same. We recommend that 

biological conclusions drawn from analyses using these IVT data should include 

sufficient additional orthogonal confirmation. 

Figure 2. Recommended Analysis Inclusion Criteria (A) Decision tree to determine if a position should be 
considered for downstream analysis. (B) Sanger sequencing for orthogonal support determines suitability 
for downstream modification analysis. Comparing HeLa biological RNA (DRS), IVT RNA (DRS), gDNA 
(Sanger sequencing), and genome reference (GRCh38). Red bars indicate exclusion from downstream 
analysis, and green bars indicate inclusion.         
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We selected three example positions, determined their inclusion status (Fig. 2A), and 

performed Sanger sequencing[24] as an orthogonal method to confirm our decision 

(Fig. 2B). Two positions (chr2:117817639; chr1:23792793) show a mismatch between 

the observed IVT sequence and the reference sequence (at 80% occurrence threshold); 

we recommend the third position (chr1:35603333) as a candidate site for downstream 

modification analysis.  

At the first position of interest (chr2:117817639), both the biological RNA and IVT RNA 

are mismatched to the reference (GRCh38.p10). Sanger sequencing at chr2:117817639 

reveals the gDNA matches the biological and IVT RNA, indicating a single nucleotide 

variant (SNV). In this instance, we resolve to exclude this site as the biological RNA 

and IVT RNA agree, strongly suggesting the absence of an RNA modification. Again, 

the biological and IVT RNA mismatch to the reference nucleotide at the second 

position of interest (chr1:23792793). Unlike the preceding example, Sanger 

sequencing reveals the gDNA matches the reference, indicating the mismatch arose 

from a confounding variable. Therefore, this position is excluded from downstream 

analysis. The third position (chr1:35603333) represents a case where the IVT RNA 

matches the reference, but the biological RNA mismatches both the IVT RNA and the 

reference. Based on this information, we default to include this position for 

downstream analysis. Sanger sequencing confirms our decision, where the gDNA 

agrees with the IVT RNA and reference, indicating a candidate site for further RNA 

modification analysis.  

 Once the candidate positions are identified, various bioinformatic tools exist 

that leverage IVT as a negative control. Some tools, such as Mod-p ID[2], compare the 
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rate of mismatches observed in biological and IVT data; for this application, the 

publicly available bam files can be used. Other tools, such as nanocompore[11] and 

xPore[12], require nanopolish eventalign data[19] computed from the raw sequencing 

files. Since eventalign is a computationally intensive program, we have precomputed 

the transcriptomic (gencode.v45) eventalign data and the genomic (GRCh38.p10) 

eventalign data and made them publicly available 

(https://github.com/RouhanifardLab/PanHumanIVT/tree/main). Figure 3A shows 

ionic current distributions for an example of five overlapping 5-mers. Cell lines with 

low coverage for the target 5mer had noisier ionic current distributions.  

 

Figure 3(A). Ionic Current distributions for MCM5 (chr22:35424407 +/- 4) across all 6 cell lines. 
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CONCLUSION 

Appropriate negative controls are critical for accurately detecting and 

characterizing RNA modifications using nanopore DRS. IVT-derived negative controls 

provide an unmodified rendition of the transcriptome, allowing for comparative RNA 

modification analysis. A single cell line’s IVT transcripts may not fully capture the 

diversity of the human transcriptome, but expansion to multiple cell lines provides a 

more comprehensive representation. 

We created IVT DRS data for six immortalized cell lines. We cataloged sites 

where the IVT dataset did not match the human reference genome. With this 

information, filtering out sites with potentially confounding underlying sequences 

and drawing more robust conclusions during comparative analysis is possible. The 

underlying sequence variation can come from several factors, including genomic 

variations introduced during the in vitro transcription process. Either source of error 

makes the position a poor candidate for comparative modification analysis. Because of 

this, we recommend eliminating IVT mismatch sites, regardless of origin, from 

comparative analysis.  

 Once the candidate sites have been selected, bioinformatic tools can be applied 

to perform comparative RNA modification analysis. We have precomputed and made 

publicly available nanopolish eventalign data to reduce the computational burden for 

potential users of this data set. While these tools can have high barriers of entry, we 

hope that this data set can help lower the computational burden and make RNA 

modification analysis more approachable for the community. 
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Availability of source code and requirements 

Project name: PanHumanIVT 

Project home page: https://github.com/RouhanifardLab/PanHumanIVT  
DOI: https://doi.org/10.5281/zenodo.7976171 

Operating systems: Linux 

Programming language: Python, R  

Other requirements: samtools 1.16.1 (using htslib 1.16), python 3.7, R 4.1.1, NanoPlot 
1.40.2, Jupyterlab 3.4.4, NanoCount 1.0.0.post6 

License: MIT License 

 

ADDITIONAL FILES 

Supplementary Fig. S1. IVT to reference mismatch identification workflow. 

Supplementary Fig. S2. mRNA coverage (TPM) correlation between HeLa IVT mRNA 
and HeLa biological mRNA. 

Supplementary Fig. S3. IGV visualization of HeLa DRS and .bed files for 30, 60, and 
95% SNV occurrence thresholds (OT). (A) view of chr2 displaying HeLa biological DRS 
read count depth (log scale) with corresponding IVT mismatch sites at each 
occurrence threshold. colors indicate mismatch presence for respective nucleotide 
(red = T, green = A, blue = C, orange = G) b, 100 nucleotide visualization of WDFY1 
(chr2:223,877,264-223,877,362) where the reference nucleotide from hg38 genome is 
displayed as seq. Alignment mismatches for HeLa biological DRS are visualized 
proportionally as nucleotide count for respective colors. Grey indicates no significant 
mismatch at that position. Known variants at each occurrence threshold are denoted 
using the color of the variant nucleotide at that position. 

Supplementary Table. S1. Primers used (See Methods) 

Supplementary Table. S2.  Cell Line IVT positional binned mismatch stats 
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Supplementary Table. S3. Overlapping mismatches between all cell lines for the 30% 
occurrence threshold. 

 
DATA AVAILABILITY   

The data sets supporting the results of this article are available in the 

RouhanifardLab/PanHumanIVT GitHub repository, 

DOI: https://doi.org/10.5281/zenodo.7976171 
 

FASTQ files and Fast5 raw data generated in this work have been made publicly 

available in NIH NCBI-SRA under the BioProject accession PRJNA947135  

Sequences were aligned to genome version hg38.p10 and gencode version 45 

transcript sequences available at: https://www.gencodegenes.org/ 

ABBREVIATIONS 

DRS: direct RNA sequencing; IVT: in vitro transcription; Ψ: pseudouridine; m6A: N6-
methyladenosine; I: inosine; poly-A: polyadenylated; gDNA: genomic DNA; panIVT: 
pooled aligned IVT reads; BED: Browser Extensible Data; IGV: integrated genome 
viewing; SNV: single nucleotide variant;  
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