

1 Global Marine Cold Seep Metagenomes Reveal Diversity of

2 Taxonomy, Metabolic Function, and Natural Products

3

4 Tao Yu^{1,2,†}, Yingfeng Luo^{1,2,†}, Xinyu Tan^{1,2}, Dahe Zhao^{1,2}, Xiaochun Bi^{1,2}, Chenji Li^{1,2},
5 Yanning Zheng^{1,2}, Hua Xiang^{1,2,*}, Songnian Hu^{1,2,*}

6

7 ¹ State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese
8 Academy of Sciences, Beijing 100101, China

9 ² University of Chinese Academy of Sciences, Beijing 100039, China

10

11 [#] Equal contribution.

12 * Corresponding authors.

13 E-mail: husn@im.ac.cn (Hu S), xiangh@im.ac.cn (Xiang H).

14

15 **Running title:** Yu T et al / Diversity of Cold Seep Microbiome

16

17 The total number of words: 5361.

18 The total number of letters in the article title: 93.

19 The total number of letters in the running title: 29.

20 The total number of words for abstract: 195.

21 The total number of words for KEYWORDS: 4.

22 The total number of figures: 6.

23 The total number of supplementary figures: 5.

24 The total number of tables: 12.

25 The total number of references: 79.

26 Abstract

27 Cold seeps in the deep sea are closely linked to energy exploration as well as global
28 climate change. The alkane-dominated chemical energy-driven model makes cold seeps
29 an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic
30 diversity. By analyzing 113 metagenomes collected from 14 global sites across 5 cold
31 seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to
32 archive the genomic and functional diversity of cold seep microbiome. The CSMD
33 includes over 49 million non-redundant genes and 3175 metagenome-assembled genomes
34 (MAGs), which represent 1897 species spanning 106 phyla. In addition, beta diversity
35 analysis indicates that both sampling site and cold seep type have substantial impact on
36 the prokaryotic microbiome community composition. Heterotrophic and anaerobic
37 metabolisms are prevalent in microbial communities, accompanied by considerable
38 mixotrophs and facultative anaerobes, indicating the versatile metabolic potential in cold
39 seeps. Furthermore, secondary metabolic gene cluster analysis indicates that at least 98.81%
40 of the sequences encode potentially novel natural products. These natural products are
41 dominated by ribosomal processing peptides, which are widely distributed in archaea and
42 bacteria. Overall, the CSMD represents a valuable resource which would enhance the
43 understanding and utilization of global cold seep microbiomes.

44

45 **KEYWORDS:** Global marine cold seep; Metagenome; Metabolic function; Natural
46 products

47 Introduction

48 Marine cold seep is a special chemoenergetic trophic ecosystem driven by gaseous and
49 liquid hydrocarbon from deep geologic sources [1,2]. Despite such extreme environment
50 of low oxygen and temperature, high pressure, and absence of light [3], the anaerobic
51 methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB), which are
52 dominated by the utilization of methane and other alkanes [4–7]. Methane-dominated
53 short-chain alkanes released from cold seep may enter the atmosphere and thus affect the
54 global climate, accompanied by natural leakage processes and human mining activities
55 [8]. In addition, mining activities may negatively affect the biodiversity at regional and
56 global scales by disrupting the original microbial communities of cold seep [9]. Therefore,
57 understanding the microbiome composition associated with cold seeps is critical for
58 addressing the global energy crisis and climate change, as well as for utilizing the
59 microbial resources of cold seep.

60 In recent years, with advances in high-throughput sequencing technologies and
61 computational methods, several comprehensive metagenomic databases have been
62 constructed, including glacier [10], marine [11], human [12], and Earth microbiomes [13].
63 These studies have promoted substantial understanding of microbial community
64 composition, and the metabolic properties of microbiome in specific habitats. Although,
65 for cold seep, there are studies related to microbial community composition [2,14,15],
66 carbon cycling [5,7,16–18], and nitrogen cycling [19,20], a comprehensive and complete
67 database integrating all known global cold seep samples is still lacking. This inevitably
68 limits the systematic understanding of cold seep microbiome.

69 Furthermore, because cold seeps possess a rich species diversity and the vast
70 majority of species are uncultured, they may harbor tremendous phylogenetic, metabolic,
71 and functional diversity. Natural products produced by diverse secondary metabolite
72 biosynthetic gene clusters (BGCs) mainly include non-ribosomal peptide synthases
73 (NRPSs), polyketide synthases and their derivatives (PKSI and PKS other), PKS-NRPS
74 hybrids, ribosomal processing peptides (RiPPs), and terpenes [21]. It has been widely

75 demonstrated to have substantial value in medicine, agriculture, and biotechnology
76 [22,23]. For example, from 1981 to 2019, 36.3% of new drugs approved by the US Food
77 and Drug Administration were natural products or their derivatives [22]. Numerous
78 studies have shown that a large number of uncultured microbiome encoding BGCs in land
79 [13], marine [11,13] and glacier [10]. However, the biosynthetic potential of cold seep
80 microbiome remains largely unexplored.

81 Currently, scattered and non-uniform metagenomic studies limit the understanding
82 of the microbial diversity of the global cold seep ecosystem. Accordingly, we performed
83 an integrative analysis of 113 metagenomes from 14 global sites covering five cold seep
84 types. Here, we present the prokaryote-focused Cold Seep Microbiomic Database
85 (CSMD). The catalog includes 1897 potential species-level prokaryotic genomes derived
86 from 3175 metagenome-assembled genomes (MAGs), 27 M contigs, and over 49 M non-
87 redundant genes, thus facilitating the exploration of global cold seep microbial
88 composition and metabolic diversity, as well as the assessment of natural product
89 synthetic potential in particular.

90 **Results**

91 **Construction of CSMD**

92 We obtained a total of 113 metagenomic samples from 14 cold seep sites globally,
93 comprising 101 publicly available samples and 12 samples we collected. These sites
94 encompassed five distinct types of seepage: methane seep, oil and gas seep, gas hydrate,
95 asphalt volcano, and mud volcano (Figure 1A; Table S1). Metagenomic assembly and
96 binning produced 4335 MAGs, which were combined and de-redundant with publicly
97 available 1688 MAGs to finally obtain 3175 MAGs (Figure 1B and Table S2). All of them
98 meet the medium and above quality level of the Minimum Information about a
99 Metagenome-Assembled Genome (MIMAG) criteria (completeness \geq 50%,
100 contamination $< 10\%$) [24] with a mean completeness of 71.24% ($\pm 13.45\%$) and a mean
101 contamination rate of 3.77% ($\pm 2.78\%$) (Figure 1C). The microbial genomes of cold seep
102 harbor diverse genome size (0.50 Mb to 9.26 Mb) and GC content (23.14 % to 72.66%).

103 In addition, 49.87 % and 99.94 % of total genomes were identified at least one ribosomal
104 RNA (rRNA) and transfer RNA (tRNA) gene fragments (Table S2).

105 Additionally, 113 assembled metagenomes were merged and de-redundant, resulting
106 in a 56 Gb non-redundant contigs of the cold seep microbiome after removing eukaryotic
107 contigs annotated by CAT [25]. A total of 27,599,955 contigs with a mean length of 2.03
108 kb and a N50 size of 2.08 kb were comprised in this catalog. Among these 56 Gb non-
109 redundant contigs, 73.88%, 13.64% and 0.24% were taxonomically annotated as bacteria,
110 archaea and viruses respectively (**Figure 2A–C**) via CAT annotation [25] based on NCBI
111 non-redundant protein database. Proteobacteria, Chloroflexi, Bacteroidetes,
112 Planctomycetes, and Acidobacteria were the top 5 most abundant phyla among bacteria,
113 accounting for 39.74% of total contigs (Figure 2A). Euryarchaeota, Candidatus
114 Lokiarchaeota, Candidatus Bathyarchaeota, Candidatus Thorarchaeota, and Candidatus
115 Heimdallarchaeota were the top five most abundant archaea, accounting for 5.49% of total
116 contigs, while Uroviricota, Nucleocytoviricota, Cressdnnaviricota, Preplasmiviricota, and
117 Phixviricota were the top five most abundant viruses, accounting for 0.13% of total
118 contigs (Figure 2B and C).

119 The self-mapping analysis showed that a range of 4.92% to 89.23% of reads could
120 be mapped to the respective assembly, with an average mapping rate of $51.14 \pm 20.40\%$
121 (Figure 1D and Table S3). Nevertheless, when using the 56 Gb non-redundant contigs as
122 the reference, the average mapping rate increased to $74.05 \pm 15.45\%$ (15% to 96%),
123 representing a 23% improvement in mapping rate on average. Therefore, the catalog could
124 be a fundamental reference to facilitate cold seep metagenomic analysis in the future.

125 Furthermore, a non-redundant protein-coding gene catalog of 49,223,463 gene
126 clusters representing 71,499,869 full or partial length genes was compiled with an
127 alignment percentage threshold of 80% and a nucleotide identity threshold of 95% [10],
128 with 18.69% gene cluster containing at least two members. The gene representatives of
129 33.55% cluster were complete based on Prodigal [26] prediction. With increasing depth
130 of sampling, the number of non-redundant genes increased steadily and didn't reach a
131 plateau even at 50% nucleotide identity threshold (Figure 1E). This implies that the cold
132 seeps harbor a substantial genetic diversity, necessitating further sequencing efforts to

133 comprehensively capture its functional diversity. Swiss-Prot [27], UniRef50 [28] and NR
134 databases were used to annotate the functions of de-replicated gene clusters, 33.28%,
135 79.15% and 80.26% of genes were hit, respectively. These results suggest that the cold
136 seep microbiome has the potential to encode numerous novel proteins.

137 **Overview of microbiome composition in cold seeps**

138 By combining an average nucleotide identity (ANI) threshold of 95% with an alignment
139 coverage threshold of 30%, 3175 MAGs were clustered into 1897 operational taxonomic
140 units (OTUs) at species level (Table S2). The 1897 OTUs exhibited low sequence
141 identities with genomes from other environmental bacterial and archaeal genomic
142 databases according to the threshold of 95 % ANI, including Tibetan Glacier Genomes
143 (TGG) (100% novelty) [10], the TaraOcean genomes (100% novelty) [20], the Ocean
144 Microbiomics Database (OMD) (99.21% novelty) [11], Genomes from Earth's
145 Microbiomes (GEM) (97.79% novelty) [13], and Genome Taxonomy Database (GTDB)
146 (94.41% novelty) [29] (Table S4). Approximately 90% (1707 OTUs, 89.98%) of the
147 OTUs were present in only one cold seep type, 8.75% (166 OTUs) in two types, and only
148 1.27% (24 OTUs) in three or more types (Figure 2D and Table S5). Similarly, the
149 abundance of OTUs showed a high degree of niche specialization of cold seep (Figure S1
150 and Table S6). Thus, further investigation of cold seep microbial diversity is necessary.

151 According to the GTDB (release R06-R202) [30] annotation, the cold seep genomic
152 dataset shows a substantial taxonomic diversity. The 1897 OTUs span across 106 phyla,
153 173 classes, 308 orders, 433 families and 407 genera (Table S2). In addition, the number
154 of species in 17 under-represented phyla were expanded for 1.25-4 times compared to
155 GTDB R202 [29] (Table S7). For example, uncultured UBP7_A was increased to 4-fold,
156 Krumholzibacteriota was increased to 2.1-fold, and Asgardarchaeota was increased to
157 1.28-fold (Table S7). Further, 46 classes, 130 orders, 297 families, 960 genera, and 1790
158 species represent potential novel lineages compared to the GTDB. Chloroflexota (200
159 OTUs, 10.06%), Proteobacteria (197 OTUs, 9.91%), Desulfobacterota (145 OTUs,
160 7.29%), Planctomycetota (106 OTUs, 5.33%) and Patescibacteria (106 OTUs, 5.33%)
161 were the five phyla of bacteria that contain a relatively high number of species, while
162 Halobacteriota (75 OTUs, 3.77%), Asgardarchaeota (74 OTUs, 3.72%),

163 Thermoplasmatota (68 OTUs, 3.42%), Thermoproteota (52 OTUs, 2.62%) and
164 Nanoarchaeota (40 OTUs, 2.01%) were the phyla of archaea that contain a relatively high
165 number of species (Table S2). Even with 296 high quality OTUs (completeness > 90%),
166 10 classes, 21 orders, 38 families, 124 genera and 254 species represented potential novel
167 lineages (Table S2).

168 The fluid systems of cold seeps are usually classified as mineral-prone systems (*e.g.*,
169 methane seep, oil and gas seep, and gas hydrates) with low discharge and mud-prone
170 systems (*e.g.*, mud volcano and asphalt volcano) with high discharge, according to the
171 fluid flow regime [1]. Simpson and Shannon diversity of the cold seeps microbiome were
172 significantly higher in mineral-prone systems than in mud-prone seep systems based on
173 OTUs (Figure S2B and Figure S3). Furthermore, we investigated the microbial
174 composition across sampling sites and cold seep types based on the relative abundance of
175 OTUs. In terms of the average relative abundance, Halobacteriota (18.74%),
176 Desulfobacterota (15.2%), Chloroflexota (12.07%), Caldtribacteriota (9.47%), and
177 Proteobacteria (8.48%) represented the most abundant phyla (Figure S2A). Meanwhile,
178 PCoA analysis of microbial communities using Bray-Curtis distance, showed that
179 sampling sites had greater impacts on the distribution of microbiome communities than
180 that in cold seep types at the phylum level of MAGs (Figure S1C) and 16S (Figure S4 and
181 Table S8).

182 **Versatile metabolic potential of the CSMD**

183 To study the metabolic potential of cold seep microbiome, 1897 OTUs were functionally
184 annotated based on kyoto encyclopedia of genes and genomes (KEGG) database. We first
185 investigated Anaerobic Oxidation of Methane (AOM), a metabolic process which is a
186 primitive driver of the cold seep ecosystem. We found that 30 OTUs contained the marker
187 genes of AOM pathway. Among them, 13 of which had the complete genes involved in
188 the oxidation of methane to CO₂, 29 had the complete genes from methane to acetate, and
189 12 had both metabolic steps (Figure 3 and Table S9). All these 30 OTUs were affiliated
190 to ANME, and 22 of which represented novel genera or species. Additionally, we also
191 found that 1163 OTUs (61.31%; 90 phyla) contained at least one of five pathways for CO₂
192 fixation (Figure 3 and Table S9). Among them, the Wood-Ljungdahl pathway (WL

193 pathway) (636 OTUs) was the most prevalent, followed by the Calvin-Benson-Bessham
194 cycle (CBB) (402 OTUs), the 3-hydroxypropionate bi-cycle (3-HP) (170 OTUs), reverse
195 tricarboxylic acid cycle (rTCA) (107 OTUs), 3-hydroxypropionate-4-hydroxybutyric acid
196 cycle (3-HP/4-HB cycle) (240 OTUs) (Figure 3 and Table S9). The top 5 most widely
197 distributed phyla harboring WL pathway were Chloroflexota, Desulfobacterota,
198 Planctomycetota, Thermoplasmatota, and Halobacteriota. The WL pathway in bacteria
199 has been widely discovered, with experimental validation or computational inference in
200 Chloroflexota [31] and Desulfobacterota [32] in the ocean. Compared to other organisms,
201 the WL pathway in archaea is poorly understood [33]. A recent study has shown that
202 Thermoplasmatota have the ability to perform autotrophic growth via the WL pathway
203 [34], and we have also identified 27 OTUs belonging to Thermoplasmatota that possess
204 this pathway. Interestingly, we found that 22 OTUs belonging to Halobacteriota possess
205 key enzymes for the WL pathway, which has not been reported before. Further
206 experiments are required to confirm this *in silico* observation. To explore the
207 heterotrophic potential of the cold seep microbiome, we investigated the genes involved
208 in carbohydrate degradation, and we found that 1887 OTUs may perform heterotrophic
209 metabolism (Figure 3 and Table S9). A novel species from Planctomycetota
210 (SRR13892593_me2_bin.111) possessed the most numerous genes (145 genes) for
211 carbohydrates degradation. Totally, 1163 OTUs (61.31%) belonging to 90 phyla that
212 encoded both the carbohydrate-degrading enzymes and any of the inorganic carbon
213 fixation pathway were considered as potential mixotrophs [35], albeit not rigorously so.

214 Oxygen requirement analysis revealed that all OTUs had at least one anaerobic
215 respiratory pathway. As an illustration, our analysis found the presence of 1296 OTUs
216 with formate metabolism, 582 OTUs with lactate dehydrogenase, 752 OTUs with alcohol
217 dehydrogenase, 1583 OTUs with acetate metabolism, and 1116 OTUs with
218 aminobenzoate degradation (Figure 3 and Table S9). Furthermore, we investigated the
219 potential of the cold seep microbiome to perform aerobic respiration. In total, 736 OTUs
220 (38.79%) were found to contain aerobic respiration genes, such as cytochrome c oxidases
221 (Cox/Cyd/Qox/cco/Cyo) genes (Figure 3 and Table S9). These OTUs are associated with
222 44 phyla such as Proteobacteria, Asgardarchaeota, Halobacteriota, Chloroflexota, and

223 Nanoarchaeota. All 736 OTUs may perform aerobic respiration using at least one of the
224 anaerobic respiration pathways, indicating potential facultative anaerobic capabilities.
225 These species span 55 phyla, primarily including Proteobacteria (181 OTUs),
226 Chloroflexota (101 OTUs), Bacteroidota (78 OTUs), and Desulfobacterota (54 OTUs).
227 Taking together, cold seep microorganisms was prevalent for anaerobic respiration, and
228 accompanied with substantial genes involved in aerobic respiration.

229 **Biosynthetic potential of the CSMD**

230 To explore the value of the CSMD, we analyzed the potential of synthesizing natural
231 products. We identified 17,968 putative BGCs with an average length of 7.85 k (± 6.96 k)
232 from the cold seep assemblies using AntiSMASH (version 5.1) [36] (Table S10). To
233 reduce the effect of incomplete and redundant BGCs, these BGCs were clustered into
234 9390 gene cluster families (GCFs) with an average length of 8.54k (± 7.63 k). This was
235 nearly 3.75 times of function-known BGCs within Minimum Information about a
236 Biosynthetic Gene (MIBiG) (<https://mibig.secondarymetabolites.org/stats>) [37],
237 demonstrating the high diversity of BGCs in the cold seep microbiome. 29.61% of the
238 GCFs had 2 or more members (Table S10). A total of 3112 (33.14%) GCFs containing
239 NRPSs and PKSs were identified from 70 phyla (Table S10 and Figure S5). 3082 (32.82%)
240 GCFs containing RiPPs were identified from 17 phyla, and 845 (8.99%) GCFs containing
241 terpenoids were identified from 10 phyla, with the above total accounting for 75% (Table
242 S10 and Figure S5). This may be due to the fact that among these types, RiPP-like,
243 ranthipeptide, and thiopeptide BGCs may be widely involved in quorum sensing, osmotic
244 stress, and the regulation of cellular metabolism in cold seep microorganisms [11,38]. It
245 is noteworthy that BGC types show substantial variation among different phyla, but their
246 distribution across cold seep types appears to be relatively consistent (**Figure 4A**). This
247 could be attributed to the fact that different phyla commonly carry genes that encode
248 particular natural products. For instance, Chloroflexota and Planctomycetota frequently
249 possess genes that encode genes involved with terpene [10,13], whereas Firmicutes
250 typically harbor genes that encode genes associated with NRPS [11,39].

251 To assess the novelty of the BGCs identified in this study, we compared
252 representative GCFs to MIBiG and OMD. By using 80% query coverage and 75% identity

253 via BLASTN [40], only 2 GCFs were identified in MIBiG and 98.81 % (9278) of the
254 GCFs were considered as novel BGCs compared to OMD (Figure 4B), which may encode
255 novel chemical components. For example, one PKS-NRP hybrids clusters of 84,733 bp
256 comprising 10 core modules was identified from a MAG (SRR13892603_vb_S1C4173)
257 classified as novel genus in family UBA2199 (Figure S5A) showed the most similar (71%
258 Amino Acid Identity (AAI)) to the antibiotic sevadycin biosynthesis gene cluster of
259 *Paenibacillus larvae*. Another RiPPs cluster of 44,319 bp comprising 4 core modules was
260 identified from a MAG (SRR13892601_vb_S1C33830) classified as novel species of
261 Omnitrophota (Figure S5B) showed the most similar (28% AAI) to the antibiotic
262 ranthipeptide of *Streptococcus mutans* UA159. In addition, as sampling BGCs increased,
263 the number of GCF was steadily increased, whether originating from MAGs or contigs
264 (Figure 4C), suggesting that BGCs in cold seep were subject to further exploration, which
265 was in line with the trend of the taxonomic exploration.

266 **Phylogenetic distribution of BGC-rich clades**

267 To better reveal the relationship between cold seep microbial taxonomy and natural
268 products, we mapped the phylogenetic distribution of BGC-rich clades. For this purpose,
269 3175 MAGs were placed in GTDB's standardized bacterial and archaeal phylogenetic
270 trees and overlaid the number of BGCs types (Figure 5A and B; Table S11). Totally,
271 45.92 % (1458) of MAGs contained at least one BGCs with an average length of 9.8 k (\pm
272 8.8 k). Overall, bacteria (2.38 ± 1.94) had a higher BGC count per genome than archaea
273 (1.28 ± 0.62) ($P < 0.001$, Mann–Whitney test, Table S11). Furthermore, even after
274 normalizing for genome size, bacteria had a higher BGC count per Mb (1.01 ± 0.7) than
275 archaea (0.78 ± 0.39) ($P < 0.00001$, Mann–Whitney test, Table S10). The results indicate
276 that bacteria have a greater potential for synthesizing natural products than archaea.
277 MAGs with Proteobacteria, Desulfobacterota, Bacteroidota, Chloroflexota, and
278 Planctomycetota are the bacterial phyla with the highest number of BGCs, consistent with
279 the predictions based on all contigs (Figure 4A). In addition, 238 BGCs were detected
280 within Halobacteriota (110 BGCs), Thermoplasmatota (45 BGCs), Asgardarchaeota (36
281 BGCs), Thermoproteota (34 BGCs), and Nanoarchaeota (13 BGCs), dominant by RiPPS,

282 NRPS and PKS group (Table S11). Overall, the CSMD provides access to novel lineages,
283 including microbial resources for the discovery of novel natural products.

284 Afterwards, to investigate the overlap of the natural products among different phyla
285 and cold seep types, we examined the distribution of GCFs within each phylum and cold
286 seep types (**Figure 6A** and B). In most phyla, the majority ($73.81\% \pm 20.35\%$) of GCFs
287 appeared to be phylum-unique (Figure 6A). Likewise, the shared GCFs are rarely
288 observed among cold seep types, with the majority of GCFs were detected in only one
289 type (Figure 6B). Exceptionally, there are a few shared GCFs between methane seep and
290 oil/gas seep, which are observed in MAGs (Figure 6B) and samples (Figure 6C). This
291 may be due to that these two types have similar environmental factors [1,2].

292 **Discussion**

293 Although prior investigations [2,15,41–44] have focused on cold seep communities and
294 metabolic research, a dearth of a comprehensive metagenomic-based dataset on a global
295 scale still persists. Here, we present a specialized and fully integrated microbiome genome
296 and gene catalogue for the global cold seep ecosystems. Compared to the previously
297 published 1688 MAGs [15,16,19,43,44], CSMD has added 65% more genomes at the 99%
298 ANI level, including 33 new phyla, 105 new classes, 247 new orders, 360 new families,
299 380 new genera, and 1094 new species (Table S11). Apart from MAGs, we also acquired
300 un-binned contigs and integrated them with all MAGs to create a 56 Gb non-redundant
301 contigs, a resource that has been neglected in past investigations [19,44]. This dataset is
302 expected to be a fundament for the further exploration of evolution and gene function like
303 glacier [10], marine [11], and human gut [12] databases.

304 We observed that Halobacteriota and Desulfobacterota were the dominant phyla in
305 terms of relative abundance in cold seeps globally, which is not surprising given that they
306 include typical ANME/SRB consortia in the cold seep [45]. Interestingly, a high
307 abundance of Caldribacteria was exclusively distributed in gas hydrate type, which is
308 consistent with previous 16S-based study [5]. A recent study from the species within
309 Caldribacteria isolated from gas hydrates indicated environmental adaptation may link

310 to its cell membrane structure [46]. However, whether Caldatrtribacteria dominates in gas
311 hydrate type remains to be explored [5]. In addition, we found that mineral-prone systems
312 exhibit higher alpha diversity than mud-prone systems, which is consistent with previous
313 studies focused on viral communities [15]. This may be attributed to the longer geological
314 history and slower fluid discharge of mineral-prone systems, providing a more stable
315 living environment for microorganisms compared to young and fast mud-prone systems
316 [1]. Additionally, previous studies based on 16S sequencing have shown that both
317 sampling site and cold seep type significantly affect microbial community composition
318 [47], and our results confirm this. Our results also indicate that sampling site has a stronger
319 effect than cold seep type, which is not surprising considering the strong influence of
320 environmental heterogeneity on microorganisms (small-scale spatial variation in
321 centimeter or micrometer range may lead to dramatic changes in nutrient conditions) [48].

322 We discovered a rich repertoire of metabolic pathways in the cold seeps. Firstly, we
323 found that the WL pathway is the most common carbon fixation pathway among cold
324 seep microorganisms. Compared to the CBB and rTCA cycles, the WL pathway was
325 lower demand for ATP, higher efficiency and faster rate [49], making it possibly the most
326 economical choice for cold seep microorganisms. Secondly, we found that 90% of the
327 OTUs may have the potential to degrade organic compounds based on the genes involved
328 in carbohydrate degradation [35]. The organic compounds, including carbohydrate, were
329 produced by AOM and settled from the upper layers of the ocean, providing a substantial
330 nutritional status for the cold seep microbiome [1,45]. Additionally, compared to the 39%
331 (69 out of 178 MAGs) mixotrophic ratio of microorganisms in the Challenger Deep [35],
332 the proportion of mixotrophic microorganisms in cold seeps has increased to 61%, which
333 may be due to the richer availability of inorganic and organic carbon sources in cold seeps
334 [1]. Although the strict definition of mixotrophic ability is complex and usually requires
335 experimental verification using microbial isolates, our results can be regarded as a rough,
336 preliminary exploration.

337 Due to the limited availability of oxygen within a few millimeters to centimeters of
338 the sediment surface, cold seep sediments are typically hypoxic [1]. As expected, we
339 observed that almost all of OTUs contained at least one anaerobic metabolism pathway,

340 indicating that anaerobic metabolism dominates in cold seeps, consistent with previous
341 reports based on experimental and computational approaches [6,50]. Interestingly, we
342 found that up to 39% of OTUs had the potential for facultative anaerobic respiratory
343 capabilities. Similar results have been reported in studies with Challenger Deep [35],
344 which may be due to the high pressure, absence of light, and low oxygen in both
345 environments. Although more experiments are needed to verify, these results suggest that
346 the facultative anaerobic respiratory capabilities in cold seep microbiome may have been
347 underestimated.

348 The high novelty of BGCs has also been observed in marine [11] and glacier [10]
349 environments, indicating a widespread potential for environmental microorganisms to
350 synthesize novel natural products, which is consistent with the high novelty of
351 environmental microbial genomes. Given that the majority of natural products currently
352 derive from a few cultivable microbial groups [37], the high novelty of BGCs in
353 environments such as cold seeps, which harbor a large proportion of uncultivated
354 microorganisms, does not seem surprising. Interestingly, we found that Desulfobacterota
355 possessed considerable biosynthetic potential, which was also observed in
356 microorganisms from the permanently anoxic Cariaco Basin [51], suggesting that
357 Desulfobacterota may be a lineage with unique biosynthetic encoding potential in anoxic
358 environments. The biosynthetic potential of archaea has recently received attention [51],
359 and we found that > 27% of archaea MAGs encoded BGCs. We anticipate that the archaea
360 provide an even more extensive potential for novel natural products.

361 In summary, the CSMD provides a database and platform for archiving, analyzing,
362 and comparing the cold seep microbiome at the genomic and genetic levels. Here, we
363 demonstrate its unique value in exploring microbial taxonomic and functional diversity.
364 This comprehensive work not only fills the knowledge gap in the understanding of
365 microbial diversity and function in global cold seep ecosystems, but also provides a rich
366 resource for natural product bioprospecting. We expect that the catalog would facilitate
367 the research of global cold seep microbiome as more cold seep microbiome studies
368 become available.

369 **Materials and methods**

370 **Metagenomic sample collection**

371 Overall, 113 own and public metagenomic samples were collected from different sites
372 around the world, covering 5 different cold seep types (Figure 1A and Table S1). Among
373 them, the SCS_HM2 dataset of 12 samples was obtained from the active Haima cold seep
374 of South China Sea (22° 07' N, 119° 17' E) (Table S1) at water depth of 1100 meters
375 during scientific cruises conducted by the research vessel "KEXUE" in 2017. Haima seeps
376 are characterized by abundant carbonate rocks, and accompanied by a large number of
377 living and dead bivalves [52]. Seven samples (HTR2, HTR3, HTR4, HTR5, HTR7,
378 HTR11, and HTR12) were collected by grab sampler from the sediment surface
379 (approximately 0–0.02 meters below seafloor (mbsf)), while three samples (HTR8, HTR9,
380 and HTR10) were collected by Remotely Operated Vehicle (ROV) push cores from soil
381 depths of approximately 0.02–0.2 mbsf. The remaining two samples (HTR1 and HTR6)
382 were collected by gravity corer from soil depths of 0–1.6 mbsf. The uppermost layer
383 impacted by seawater was discarded, and the sediment located at the core of each section
384 was collected and stored in anaerobic biobags at –80 °C for future utilization. The
385 remaining 101 samples were downloaded from NCBI's Sequence Read Archive (Table
386 S1) [4–7,14,16–19,41–43].

387

388 **SCS_HM2 samples DNA extraction and metagenomic sequencing**

389 Total DNA for SCS_HM2 sediments (~0.5 g) were extracted using the PowerSoil DNA
390 Isolation Kit (Catalog No. 12888-50, Qiagen, Germantown, MD) following the user's
391 instructions. Genomic libraries were constructed and sequenced on the Beijing Genomics
392 Institute (BGI) MGISEQ-2000RS platform at the National Microbiology Data Center,
393 Institute of Microbiology, Chinese Academy of Sciences (Beijing, China) with 150 bp
394 paired-end model, followed by data processing with standard protocols.

395

396 **Metagenomic quality control and assembly**

397 A quality control of the raw reads was performed via Trim Galore (v0.5.0)
398 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Only paired-reads
399 with sequence lengths \geq 100 bp were retained after adapter sequences were removed, and
400 low quality reads were trimmed from the 3'-primer end via the Phred quality score (Q)
401 threshold of 30. The 113 metagenomes were assembled with MEGAHIT (v1.1.3) [53]
402 using the default k-mer parameters (--k-list 21, 29, 39, 59, 79, 99, 119, 141), retaining
403 contigs great than 1000 bp in length. Overall mapping rate of each sample was calculated
404 by Bowtie 2 (v2.3.5) [54] with default parameters.

405

406 **Construction of non-redundant genome and contig taxonomic annotation**

407 The contigs derived from 113 metagenomes and public MAGs with length over 1 kb were
408 de-replicated at 90% aligned region with 95% nucleotide identity using MMseqs2 [55]
409 with the parameters “easy-linclust -e 0.001, -min-seq-id 0.95 and -c 0.9” [56].
410 Subsequently, all contigs were taxonomically annotated by CAT (v 5.2.3) [25] with
411 default parameters based on NCBI non-redundant protein database (version 2021-01-07).
412 The 56 Gb non-redundant contigs of the cold seep microbiome were obtained after
413 removing eukaryotic sequences (mainly *Mytilus galloprovincialis* and *Pomacea*
414 *canaliculata* that commonly accompany the Mollusca phylum in cold seep).

415

416 **Metagenome binning and genome quality control**

417 Metagenomic assemblies were binned using MetaBAT2 (v2.12.1) [57], MaxBin2 (v2.2.7)
418 [58] and CONCOCT [59] wrapped in MetaWRAP (v1.3.2) [60] with default parameters
419 for each sample. In addition, VAMB (v2.0.1) [61] was also used for binning based on
420 deep variational autoencoders. Consequently, the completeness and contamination of bins
421 were calculated using the “lineage_wf” module of the CheckM (v1.0.12) [62]. tRNA
422 genes were identified using the aragorn [63] and rRNA genes were identified using
423 Barrnap (v0.9) (<https://github.com/tseemann/barrnap>) . Finally, 4335 MAGs meeting the
424 medium and above quality of MIMAG [24] were retained for subsequent analysis.

425

426 **Genome de-redundancy and generation of species-level OTUs**

427 A total of 3246 previously public MAGs [15,16,19,43,44] were collected and de-
428 redundant to 1688 genomes by dRep (v3.2.0) [64] based on genome-wide ANI percentage
429 threshold of 99 % with parameters: -comp 50, -con 10 and -sa 0.99. Consequently, 3175
430 non-redundant genomes were obtained by dRep with ANI 99% combined with the
431 previous 4335 MAGs. Finally, 1897 representative species-level OTUs were clustered
432 using dRep based on > 30% aligned coverage, and ANI threshold of 95% (-nc 0.3, -sa
433 0.95) [10,13].

434

435 **MAG abundance, alpha, and beta diversity analysis**

436 Quality-controlled reads were mapped to MAGs using minimap2-sr [65] with default
437 parameters. The abundance of MAGs was calculated using CoverM (version 0.6.0)
438 (<https://github.com/wwood/CoverM>) with parameters: --min-read-aligned-percent 0.75, -
439 -min-read-percent-identity 0.95, --proper-pairs-only, --methods tpm. Transcripts Per
440 Million (TPM) was used to eliminate the effects of sample sequencing depth and genome
441 length [10,66]. In addition, PhyloFlash (v3.4.1) [67] was used for extracting 16S miTags
442 from clean metagenomic data using parameters “-almosteverything”, and classifying via
443 SILVA database (v138.1) [68]. Subsequently, the “rarecurve” function in the vegan
444 package (<https://github.com/vegandevelopers/vegan/>) of R was used to assess sample
445 sequencing saturation to remove samples with low sequencing depth. Taxonomic
446 structure plot, alpha, and beta diversity analyses were performed using the R package
447 EasyMicroPlot [69]. Mann-Whitney test was used for two groups of Shannon as well as
448 Simpson indices, and one-way analysis of variance (ANOVA) and Tukey HSD post-hoc
449 tests were used among groups [70]. For beta diversity analysis, Bray-Curtis distances were
450 measured, and PERMANOVA analysis was used to test for statistical significance among
451 different independent variables with the default settings (999 permutations).

452

453 **Comparison MAGs to genomes of public databases**

454 The species-level representative OTUs were compared to 103,722 publicly available
455 reference genomes, including 968 genomes from the TGG [10], 957 MAGs from the
456 TaraOceans [20], 8304 MAGs from the OMD [11], 45,599 MAGs from the GEM [13],

457 and 47,894 MAGs from the GTDB [29]. Each reference dataset was compared with 1897
458 OTUs using dRep. A cold seep OTUs was designated as novel species which exhibit an
459 ANI less than 95% with other reference genomes [10].

460

461 **Metabolic pathway analysis of MAGs**

462 Genes were predicted for MAGs using Prokka (v1.14.6) [71] with single genome model.
463 KEGG pathway was then annotated by eggNOG-mapper (v2.1.6) [72] based on eggNOG
464 Orthologous Groups database (version 5.0) [73]. To elucidate an overview of the specific
465 metabolic modules of each MAGs, the key enzymes of the metabolic pathway are
466 summarized and visualized follow the method of Chen et al [35]. The module
467 completeness of a given metabolic pathway can be quantified as the percentage of
468 identified key marker genes present in the corresponding pathway. For example, a module
469 completeness value of 50 indicates that the MAG contains 50% of the marker genes in
470 the complete pathway [35].

471

472 **Taxonomic annotation and phylogenetic tree inference**

473 The taxonomic annotation of the 3175 MAGs were performed using the Genome
474 Taxonomy Database Toolkit (GTDB-Tk, v0.3.2) [30] with the GTDB database release
475 R06-R202 [47]. MAGs were classified at the species level if the ANI to the closest GTDB-
476 Tk representative genome was $\geq 95\%$ and the aligned coverage was $\geq 60\%$. Finally, the
477 phylogenetic tree was inferred by IQ-TREE (v2.2.0-beta) [74] with parameters: -B 1000,
478 -m LG + G, -wbtl, based on the concatenated multiple sequence alignments of 122
479 archaeal, or 120 bacterial universal marker genes generated by GTDB-Tk after trimming
480 sequence gaps via trimAl (v1.4.rev15) [75]. iTOL [76] was used to visualized
481 phylogenetic trees.

482

483 **Gene function annotation**

484 The prediction of open reading frames (ORFs) in metagenomic assemblies was carried
485 out using Prodigal [49]. The resulting ORFs were then dereplicated by clustering at 80%
486 aligned region with 95% nucleotide identity, employing MMseqs2 [50] with the

487 parameters: easy-linclust -e 0.001, --min-seq-id 0.95, -c 0.80 [10]. The gene rarefaction
488 analysis was performed using an in-house python script, based on the gene cluster result
489 of MMseqs2 with identity thresholds of 95%, 75%, and 50% (easy-linclust -e 0.001 -c
490 0.80) [10]. The analysis was repeated 100 times with a 5% sampling step. Further, the
491 function of the non-redundant gene catalog was annotated to the Swiss-Prot [27], Uniref
492 50 [28], and NR (<ftp://ftp.ncbi.nlm.nih.gov/blast/db>) databases via MMseqs2 [55] with
493 parameters: easy-search -e 0.01, --min-seq-id 0.3, --cov-mode 2 -c 0.8.

494

495 **The secondary metabolite BGC analysis**

496 The secondary metabolite BGC was predicted for contigs \geq 3 kb in length using
497 AntiSMASH (v5.1) [36] with default settings. Subsequently, the BGCs were categorized
498 into GCFs and labeled with seven categories: 'PKSI', 'PKS-NPR_Hybrids', 'PKSothers',
499 'NRPS', 'RiPPs', 'Terpene', and 'Others', based on the results of the BiG-SCAPE [21]
500 with default parameters.

501

502 **Novelty of GCFs**

503 The novelty of GCFs was estimated based on the result of BLASTN (BLAST 2.2.28+)
504 [40,77] to databases of experimentally validated MIBIG 2.0 [37] and the latest
505 computationally predicted OMD [11]. For the representative BGC of GCFs, we selected
506 the sequence with maximum query coverage and identity to the respective database as the
507 best hit. A GCF was deemed novel if the best hit to the reference was below 80% query
508 coverage and 75% identity following the threshold of GEM [13].

509 **Data availability**

510 Raw reads of 12 samples in this study are deposited in the NCBI Sequence Read Archive
511 (SRA) under accession PRJNA916811, the National Microbiology Data Center (NMDC,
512 <https://nmdc.cn/>) under accession number NMDC10018281, and also available from
513 Genome Sequence Archive [78] in National Genomics Data Center (NGDC), China
514 National Center for Bioinformation/Beijing Institute of Genomics (BIG), Chinese

515 Academy of Sciences under accession CRA010074 that are publicly accessible at
516 <https://ngdc.cncb.ac.cn/gsa>. The genome sequences of 3175 MAGs and 54 Gb non-
517 redundant contigs of CSMD are deposited in Genome Warehouse (GWH) [79] in NGDC
518 under accession PRJCA015385, and also available from
519 <https://doi.org/10.6084/m9.figshare.21731330>.

520 **CRediT authorship contribution statement**

521 **Tao Yu:** Conceptualization, Methodology, Investigation, Formal analysis, Writing -
522 original draft. **Yingfeng Luo:** Conceptualization, Writing - review & editing. **Xinyu Tan:**
523 Methodology. **Dahe Zhao:** Methodology. **Xiaochun Bi:** Methodology. **Chenji Li:**
524 Methodology. **Yanning Zheng:** Methodology, Writing - review & editing. **Hua Xiang:**
525 Conceptualization, Writing - review & editing. **Songnian Hu:** Conceptualization, Writing
526 - review & editing, Supervision. All authors have read and approved the final manuscript.

527 **Competing interests**

528 The authors declare no competing interests.

529 **Acknowledgments**

530 We thank the Senior User Project of RV KEXUE (No. KEXUE2019GZ05), and thank the
531 Center for Ocean Mega-Science, Chinese Academy of Sciences. We acknowledge the
532 data and samples collection by RV KEXUE. We also thank the Second Tibetan Plateau
533 Scientific Expedition and Research Program (2021QZKK0100 (Y. Luo and T. Yu) and
534 the National Key Research and Development Plans 2022YFF1002801 (Y. Luo).

535 **ORCID**

536 0000-0002-7034-8710 (Tao Yu)

537 0000-0003-1950-9045 (Yingfeng Luo)
538 0000-0001-9338-6608 (Xinyu Tan)
539 0000-0003-0312-6824 (Dahe Zhao)
540 0000-0001-7155-6426 (Xiaochun Bi)
541 0000-0002-0556-3641 (Chenji Li)
542 0000-0002-2925-283X (Yanning Zheng)
543 0000-0003-0369-1225 (Hua Xiang)
544 0000-0003-3966-3111 (Songnian Hu)
545

546 **References**

547 [1] Joye SB. The geology and biogeochemistry of hydrocarbon seeps. *Annu Rev Earth*
548 *Planet Sci* 2020;48:205–31.

549 [2] Orsi WD. Ecology and evolution of seafloor and subseafloor microbial communities.
550 *Nat Rev Microbiol* 2018;16:671–83.

551 [3] Emmelie KLÅ, Michael LC, William GAJ, Arunima S, Anna S, JoLynn C. Methane
552 cold seeps as biological oases in the high-Arctic deep sea. *Limnol Oceanogr*
553 2017;63:S209–31.

554 [4] Li W, Wu Y, Zhou G, Huang H, Wang Y. Metabolic diversification of anaerobic
555 methanotrophic archaea in a deep-sea cold seep. *Mar Life Sci Technol* 2020;2:431–41.

556 [5] Glass JB, Ranjan P, Kretz CB, Nunn BL, Johnson AM, Xu M, et al. Microbial
557 metabolism and adaptations in Atribacteria-dominated methane hydrate sediments.
558 *Environ Microbiol* 2021;23:4646–60.

559 [6] Li WL, Dong X, Lu R, Zhou YL, Zheng PF, Feng D, et al. Microbial ecology of sulfur
560 cycling near the sulfate-methane transition of deep-sea cold seep sediments. *Environ*
561 *Microbiol* 2021;23:6844–58.

562 [7] Yu H, Skennerton CT, Chadwick GL, Leu AO, Aoki M, Tyson GW, et al. Sulfate
563 differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea.
564 *ISME J* 2022;16:168–77.

565 [8] Dietz S, Rising J, Stoerk T, Wagner G. Economic impacts of tipping points in the
566 climate system. *Proc Natl Acad Sci U S A* 2021;118:e2103081118.

567 [9] Levin LA, Baco AR, Bowden DA, Colaco A, Watling L. Hydrothermal vents and
568 methane seeps: rethinking the sphere of influence. *Front Mar Sci* 2016;3:72.

569 [10] Liu Y, Ji M, Yu T, Zaugg J, Anesio AM, Zhang Z, et al. A genome and gene catalog
570 of glacier microbiomes. *Nat Biotechnol* 2022;40:1341–8.

571 [11] Paoli L, Ruscheweyh HJ, Forneris CC, Hubrich F, Kautsar S, Bhushan A, et al.
572 Biosynthetic potential of the global ocean microbiome. *Nature* 2022;607:111–8.

573 [12] Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified
574 catalog of 204,938 reference genomes from the human gut microbiome. *Nat Biotechnol*
575 2021;39:105–14.

576 [13] Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic
577 catalog of Earth's microbiomes. *Nat Biotechnol* 2021;39:499–509.

578 [14] Zhao R, Summers ZM, Christman GD, Yoshimura KM, Biddle JF. Metagenomic
579 views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf
580 of Mexico. *Sci Rep* 2020;10:5772.

581 [15] Li Z, Pan D, Wei G, Pi W, Zhang C, Wang JH, et al. Deep sea sediments associated
582 with cold seeps are a subsurface reservoir of viral diversity. *ISME J* 2021;15:2366–78.

583 [16] Dong X, Rattray JE, Campbell DC, Webb J, Chakraborty A, Adebayo O, et al.
584 Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial
585 populations at a Scotian Basin cold seep. *Nat Commun* 2020;11:5825.

586 [17] Ruff SE, Felden J, Gruber-Vodicka HR, Marcon Y, Knittel K, Ramette A, et al. In
587 situ development of a methanotrophic microbiome in deep-sea sediments. *ISME J*
588 2019;13:197–213.

589 [18] Li L, Zhang W, Zhang S, Song L, Sun Q, Zhang H, et al. Bacteria and archaea
590 synergistically convert glycine betaine to biogenic methane in the Formosa cold seep of
591 the South China Sea. *mSystems* 2021;6:e00703-21.

592 [19] Dong X, Zhang C, Peng Y, Zhang HX, Shi LD, Wei G, et al. Phylogenetically and
593 catabolically diverse diazotrophs reside in deep-sea cold seep sediments. *Nat Commun*
594 2022;13:4885.

595 [20] Delmont TO, Quince C, Shaiber A, Esen OC, Lee ST, Rappe MS, et al. Nitrogen-
596 fixing populations of planctomycetes and proteobacteria are abundant in surface ocean
597 metagenomes. *Nat Microbiol* 2018;3:804–13.

598 [21] Navarro-Munoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH,
599 Parkinson EI, et al. A computational framework to explore large-scale biosynthetic
600 diversity. *Nat Chem Biol* 2020;16:60–8.

601 [22] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly
602 four decades from 01/1981 to 09/2019. *J Nat Prod* 2020;83:770–803.

603 [23] Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes.
604 *Biomolecules* 2014;4:117–39.

605 [24] Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK,
606 et al. Minimum information about a single amplified genome (MISAG) and a
607 metagenome-assembled genome (MIMAG) of bacteria and archaea. *Nat Biotechnol*
608 2017;35:725–31.

609 [25] von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust
610 taxonomic classification of uncharted microbial sequences and bins with CAT and BAT.
611 *Genome Biol* 2019;20:217.

612 [26] Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:
613 prokaryotic gene recognition and translation initiation site identification. *BMC
614 Bioinformatics* 2010;11:119.

615 [27] Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al.
616 The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. *Nucleic
617 Acids Res* 2003;31:365–70.

618 [28] Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, UniProt C. UniRef clusters:
619 a comprehensive and scalable alternative for improving sequence similarity searches.
620 *Bioinformatics* 2015;31:926–32.

621 [29] Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA, Hugenholtz P. GTDB:
622 an ongoing census of bacterial and archaeal diversity through a phylogenetically
623 consistent, rank normalized and complete genome-based taxonomy. *Nucleic Acids Res*
624 2022;50:D785–94.

625 [30] Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify
626 genomes with the Genome Taxonomy Database. *Bioinformatics* 2019;36:1925–7.

627 [31] Fincker M, Huber JA, Orphan VJ, Rappe MS, Teske A, Spormann AM. Metabolic
628 strategies of marine subseafloor chloroflexi inferred from genome reconstructions.
629 *Environ Microbiol* 2020;22:3188–204.

630 [32] Murphy CL, Biggerstaff J, Eichhorn A, Ewing E, Shahan R, Soriano D, et al.
631 Genomic characterization of three novel desulfobacterota classes expand the metabolic
632 and phylogenetic diversity of the phylum. *Environ Microbiol* 2021;23:4326–43.

633 [33] Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2)
634 fixation. *Biochim Biophys Acta* 2008;1784:1873–98.

635 [34] Sheridan PO, Meng Y, Williams TA, Gubry-Rangin C. Recovery of
636 lutacidiplasmatales archaeal order genomes suggests convergent evolution in
637 thermoplasmatota. *Nat Commun* 2022;13:4110.

638 [35] Chen P, Zhou H, Huang Y, Xie Z, Zhang M, Wei Y, et al. Revealing the full
639 biosphere structure and versatile metabolic functions in the deepest ocean sediment of the
640 Challenger Deep. *Genome Biol* 2021;22:207.

641 [36] Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0:
642 updates to the secondary metabolite genome mining pipeline. *Nucleic Acids Res*
643 2019;47:W81–7.

644 [37] Kautsar SA, Blin K, Shaw S, Navarro-Munoz JC, Terlouw BR, van der Hooft JJJ, et
645 al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. *Nucleic
646 Acids Res* 2020;48:D454–8.

647 [38] Chen Y, Yang Y, Ji X, Zhao R, Li G, Gu Y, et al. The SCIFF-derived ranthipeptides
648 participate in quorum sensing in solventogenic clostridia. *Biotechnol J* 2020;15:e2000136.

649 [39] Gavriilidou A, Mackenzie TA, Sanchez P, Tormo JR, Ingham C, Smidt H, et al.
650 Bioactivity screening and gene-trait matching across marine sponge-associated bacteria.
651 *Mar Drugs* 2021;19:75.

652 [40] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.
653 BLAST+: architecture and applications. *BMC Bioinformatics* 2009;10:421.

654 [41] Laso-Perez R, Hahn C, van Vliet DM, Tegetmeyer HE, Schubotz F, Smit NT, et al.
655 Anaerobic degradation of non-methane alkanes by "candidatus methanoliparia" in
656 hydrocarbon seeps of the gulf of Mexico. *mBio* 2019;10:e01814-19.

657 [42] Lu R, Gao Z, Li W, Wei Z, Wei T, Huang J, et al. Asgard archaea in the haima cold
658 seep: spatial distribution and genomic insights. *Deep Sea Res 1 Oceanogr Res Pap*
659 2021;170:103489.

660 [43] Dong X, Greening C, Rattray JE, Chakraborty A, Chuvochina M, Mayumi D, et al.
661 Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage
662 in deep-sea sediments. *Nat Commun* 2019;10:1816.

663 [44] Zhang H, Wang M, Wang H, Chen H, Cao L, Zhong Z, et al. Metagenome sequencing
664 and 768 microbial genomes from cold seep in South China Sea. *Sci Data* 2022;9:480.

665 [45] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown
666 process. *Annu Rev Microbiol* 2009;63:311–34.

667 [46] Katayama T, Nobu MK, Kusada H, Meng XY, Hosogi N, Uematsu K, et al. Isolation
668 of a member of the candidate phylum 'atribacteria' reveals a unique cell membrane
669 structure. *Nat Commun* 2020;11:6381.

670 [47] Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion
671 and local diversification of the methane seep microbiome. *Proc Natl Acad Sci U S A*
672 2015;112:4015–20.

673 [48] Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in
674 microbial ecology. *ISME J* 2019;13:2647–55.

675 [49] Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hugler M, et al.
676 Autotrophic carbon fixation in archaea. *Nat Rev Microbiol* 2010;8:447–60.

677 [50] Vigneron A, Alsop EB, Cruaud P, Philibert G, King B, Baksmaty L, et al. Contrasting
678 pathways for anaerobic methane oxidation in Gulf of Mexico cold seep sediments.
679 *mSystems* 2019;4:e00091-18.

680 [51] Geller-McGrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M. Diverse
681 secondary metabolites are expressed in particle-associated and free-living
682 microorganisms of the permanently anoxic Cariaco Basin. *Nat Commun* 2023;14:656.

683 [52] Liang Q, Hu Y, Feng D, Peckmann J, Chen L, Yang S, et al. Authigenic carbonates
684 from newly discovered active cold seeps on the northwestern slope of the South China
685 Sea: constraints on fluid sources, formation environments, and seepage dynamics. *Deep*
686 *Sea Res* 1 *Oceanogr Res Pap* 2017;124:31–41.

687 [53] Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node
688 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
689 *Bioinformatics* 2015;31:1674–6.

690 [54] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
691 2012;9:357–9.

692 [55] Steinberger M, Soding J. MMseqs2 enables sensitive protein sequence searching for
693 the analysis of massive data sets. *Nat Biotechnol* 2017;35:1026–8.

694 [56] Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of
695 reference genes in the human gut microbiome. *Nat Biotechnol* 2014;32:834–41.

696 [57] Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive
697 binning algorithm for robust and efficient genome reconstruction from metagenome
698 assemblies. *PeerJ* 2019;7:e7359.

699 [58] Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to
700 recover genomes from multiple metagenomic datasets. *Bioinformatics* 2016;32:605–7.

701 [59] Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning
702 metagenomic contigs by coverage and composition. *Nat Methods* 2014;11:1144–6.

703 [60] Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-
704 resolved metagenomic data analysis. *Microbiome* 2018;6:158.

705 [61] Nissen JN, Johansen J, Allesoe RL, Sonderby CK, Armenteros JJA, Gronbech CH,
706 et al. Improved metagenome binning and assembly using deep variational autoencoders.
707 *Nat Biotechnol* 2021;39:555–60.

708 [62] Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
709 assessing the quality of microbial genomes recovered from isolates, single cells, and
710 metagenomes. *Genome Res* 2015;25:1043–55.

711 [63] Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA
712 genes in nucleotide sequences. *Nucleic Acids Res* 2004;32:11–6.

713 [64] Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate
714 genomic comparisons that enables improved genome recovery from metagenomes
715 through de-replication. *ISME J* 2017;11:2864–8.

716 [65] Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*
717 2018;34:3094–100.

718 [66] Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression
719 estimation with read mapping uncertainty. *Bioinformatics* 2010;26:493–500.

720 [67] Gruber-Vodicka HR, Seah BKB, Pruesse E. PhyloFlash: rapid small-subunit rRNA
721 profiling and targeted assembly from metagenomes. *mSystems* 2020;5:e00920-20.

722 [68] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA
723 ribosomal RNA gene database project: improved data processing and web-based tools.
724 *Nucleic Acids Res* 2013;41:D590–6.

725 [69] Liu B, Huang L, Liu Z, Pan X, Cui Z, Pan J, et al. EasyMicroPlot: an efficient and
726 convenient R package in microbiome downstream analysis and visualization for clinical
727 study. *Front Genet* 2021;12:803627.

728 [70] Jin J, Krohn C, Franks AE, Wang X, Wood JL, Petrovski S, et al. Elevated
729 atmospheric CO₂) alters the microbial community composition and metabolic potential
730 to mineralize organic phosphorus in the rhizosphere of wheat. *Microbiome* 2022;10:12.

731 [71] Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*
732 2014;30:2068–9.

733 [72] Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-
734 mapper v2: functional annotation, orthology assignments, and domain prediction at the
735 metagenomic scale. *Mol Biol Evol* 2021;38:5825–9.

736 [73] Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forsslund SK, Cook H,
737 et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology
738 resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res* 2019;47:D309–
739 14.

740 [74] Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective
741 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol*
742 2015;32:268–74.

743 [75] Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated
744 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 2009;25:1972–
745 3.
746 [76] Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
747 developments. *Nucleic Acids Res* 2019;47:W256–9.
748 [77] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search
749 tool. *J Mol Biol* 1990;215:403–10.
750 [78] Chen T, Chen X, Zhang S, Zhu J, Tang B, Wang A, et al. The Genome Sequence
751 Archive Family: toward explosive data growth and diverse data types. *Genomics*
752 *Proteomics Bioinformatics* 2021;19:578–83.
753 [79] Chen M, Ma Y, Wu S, Zheng X, Kang H, Sang J, et al. Genome Warehouse: a public
754 repository housing genome-scale data. *Genomics Proteomics Bioinformatics*
755 2021;19:584–9.
756

757 **Figure legends**

758 **Figure 1 Construction of global CSMD**

759 **A.** Geographic distribution of cold seep metagenomes. **B.** A total of 3175 cold seep
760 genomes were recovered from metagenomes and public MAGs. **C.** Distribution of quality
761 metrics across genomes ($n = 3175$), showing the minimum value, first quartile, median,
762 third quartile and maximum value. **D.** Distribution of sample reads mapping rate against
763 56 Gb non-redundant assembly and self-assembly. Welch's t-test was performed for two
764 groups. **E.** Gene diversity analysis based on 50%, 75%, and 95% nucleotide identity.
765 CSMD, Cold Seep Microbiomic Database; MAGs, metagenome-assembled genomes.
766

767 **Figure 2 Taxonomic annotation of 56 Gb non-redundant contigs and 1897 OTUs 768 distributed across cold seep types**

769 Sankey plot based on assigned taxonomy showing the dominant (left) and novel (right)
770 populations at different phylogenetic levels, with the top 5 taxa shown for each level.

771 Numbers indicate the number of contigs for the lineage. **A.** Bacteria. **B.** Archaea. **C.**
772 Viruses. **D.** OTUs intersections across sample groups. An UpsetPlot illustrates OTUs
773 intersections among cold seep types. OTUs, operational taxonomic units.

774

775 **Figure 3 Heat-map illustration of phylogenomic distribution and metabolic profile**
776 **for 1897 OTUs in the CSMD**

777 The phylogenetic tree was inferred using IQ-TREE from an aligned concatenated set of
778 120 single copy marker proteins for bacteria, and from a concatenated set of 122 marker
779 proteins for archaea. The key genes of the following pathway are displayed in the diagram:
780 Anaerobic Oxidation of Methane (AOM); Carbohydrate Active Enzyme (CAZy),
781 including glycosidases or glycosyl hydrolases (GH), glycosyltransferases (GT),
782 polysaccharide lyases (PL), carbohydrate esterases (CE), auxiliary activities (AA), and
783 carbohydrate-binding modules (CBM); CO₂ fixation, including Wood-Ljungdahl
784 pathway (WL), Calvin-Benson-Bessham cycle (CBB), reverse tricarboxylic acid cycle
785 (rTCA), 3-hydroxypropionate bi-cycle (3-HP), and 3-hydroxypropionate/4-hydroxybuty
786 cycle (3-HP/4-HB); anaerobic respiration; aerobic respiration, and chemolithotrophy
787 (refer to Table S9 for details).

788

789 **Figure 4 The diversity and novelty of BGCs identified in cold seep microbiomes**
790 **A.** The relative frequency of BGC classes across dominant phyla (left) and cold seep types
791 (right). **B.** Comparing GCFs to experimentally validated MIBiG and computationally
792 predicted (OMD) BGCs uncovers the novelty of GCFs. Only results with BLASTN E-
793 value less than 1E-5 were shown. **C.** Rarefaction curves of GCFs derived from all contigs
794 and MAGs. BGCs, biosynthetic gene clusters; MIBiG, minimum information about a
795 biosynthetic gene; OMD, Ocean Microbiomes Database; GCFs, gene cluster families.

796

797 **Figure 5 Illustration of BGC-rich lineages in cold seep microbiomes**

798 The solid square in the innermost circle indicates the representative genome of each OTU.
799 The circle size indicates the number of BGCs for each category. **A.** Archaea. **B.** Bacteria.
800

801 **Figure 6 The distribution of GCFs among phyla and cold seep types**

802 **A.** Shared GCFs within phyla (solid shapes), and with pairwise overlaps across phyla
803 (ribbons). **B.** Shared GCFs within cold seep types. **C.** Log10-normalized pairwise heat-
804 map of shared GCF counts among samples.

805 **Supplementary materials**

806 **Figure S1 Heat-map presentation of relative abundance of CSMD 1897 OTUs among**
807 **samples**

808 The abundance of 1897 OTUs in 113 samples normalized by z-sore, and bi-directional
809 clustering. Cold seep types are shown as column annotation, and each OTU is shown as
810 row annotation.

811

812 **Figure S2 Cold seep microbiome composition barplot, alpha and beta diversity based**
813 **on MAGs abundance at phylum level**

814 **A.** Taxonomic relative abundance barplot of cold seep microbiome. **B.** Simpson and
815 Shannon diversity between mineral-prone system and mud-prone system. Statistics by
816 Mann–Whitney test, ** indicate significance at $P < 0.01$. **C.** Beta diversity difference
817 among cold seep sites and types based on Bray-Curtis dissimilarities. Ellipses represent
818 95% confidence contours of samples grouped by cold seep type. PERMANOVA analysis
819 was used to test for statistical significance for the main effects of cold seep sites and types.

820

821 **Figure S3 Simpson and Shannon diversity among cold seep types**

822 Different letters indicate the values that differ significantly among cold seep types at
823 $P < 0.05$ (one-way analysis of variance (ANOVA), and Tukey HSD post-hoc tests).

824

825 **Figure S4 Cold seep microbiome beta diversity and heat-map based on 16S**
826 **abundance at phylum level**

827 **A.** Beta diversity difference among cold seep sites and types based on Bray-Curtis
828 dissimilarities. Ellipses represent 95% confidence contours of samples grouped by cold
829 seep type. PERMANOVA analysis was used to perform statistical significance for the
830 main effects of cold seep sites and types. **B.** The heat-map of 16S abundance with
831 normalized by z-score, and bi-directional clustering. Cold seep types are shown as column
832 annotation, and each OTU is shown as row annotation.

833

834 **Figure S5 The genomic structures of two identified BGCs**

835 BGCs predicted from a novel genus (SRR13892603_vb_S1C4173) and a species
836 (SRR13892601_vb_S1C33830) encode a PKS-NRP hybrid and a RiPP gene cluster,
837 respectively. **A.** The PKS-NRP hybrid cluster of SRR13892603_vb_S1C4173 comprises
838 10 core modules and spans 84,733 bp. **B.** The RiPP cluster of
839 SRR13892601_vb_S1C33830 comprises 4 core modules and spans 44,319 bp.

840

841 **Table S1 The global cold seep metagenome and assembly statistics**

842

843 **Table S2 The genomic characteristics of 3175 MAGs**

844

845 **Table S3 The read mapping rate of self-assembly and 56 Gb non-redundant contigs**

846

847 **Table S4 The novelty comparison of CSMD OTUs with public genomes**

848

849 **Table S5 The shared OTU members among cold seep types**

850

851 **Table S6 The OTU abundance among samples**

852

853 **Table S7 Taxonomic expansion of CSMD compared with GTDB-RS202 at the**
854 **phylum level**

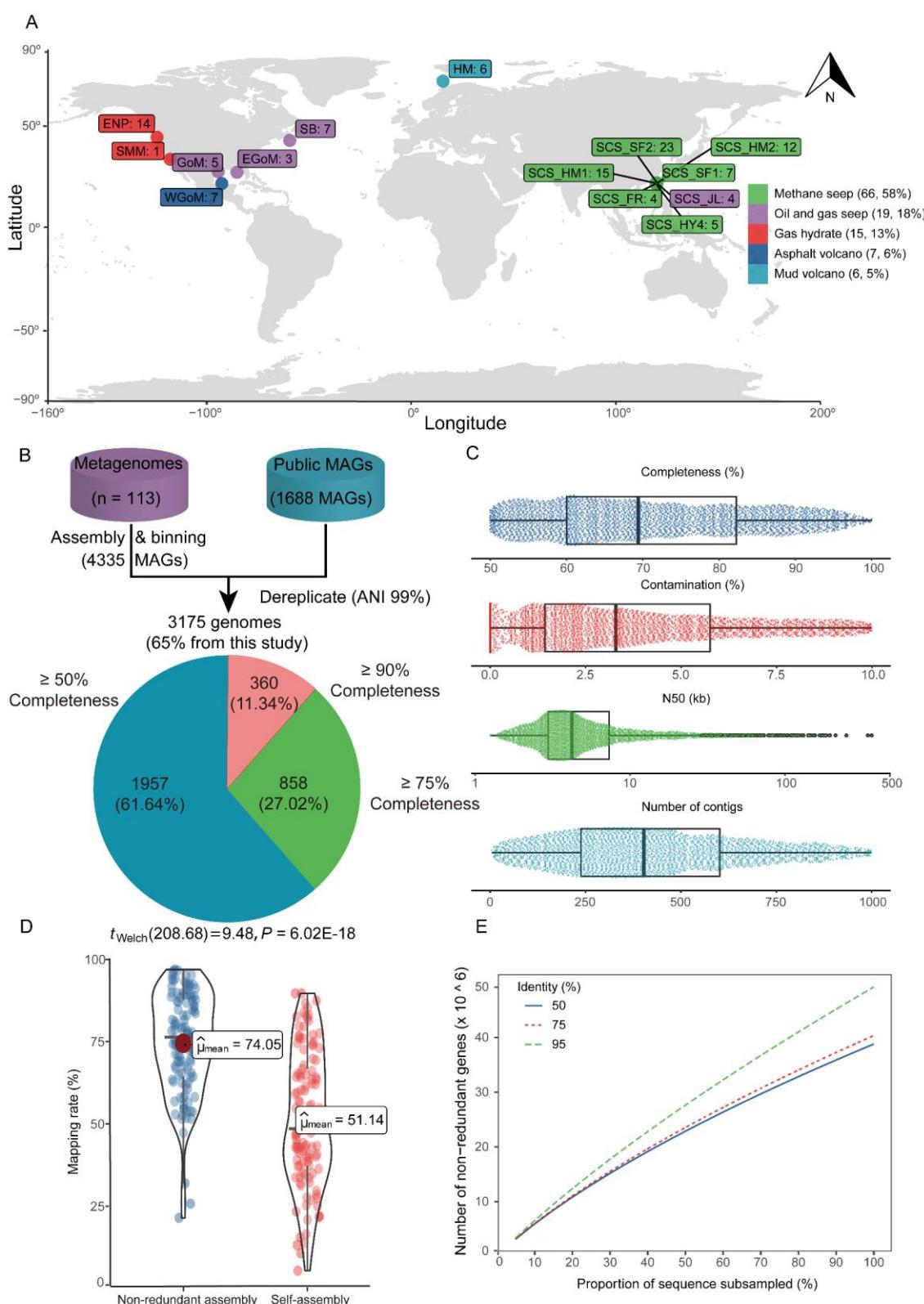
855

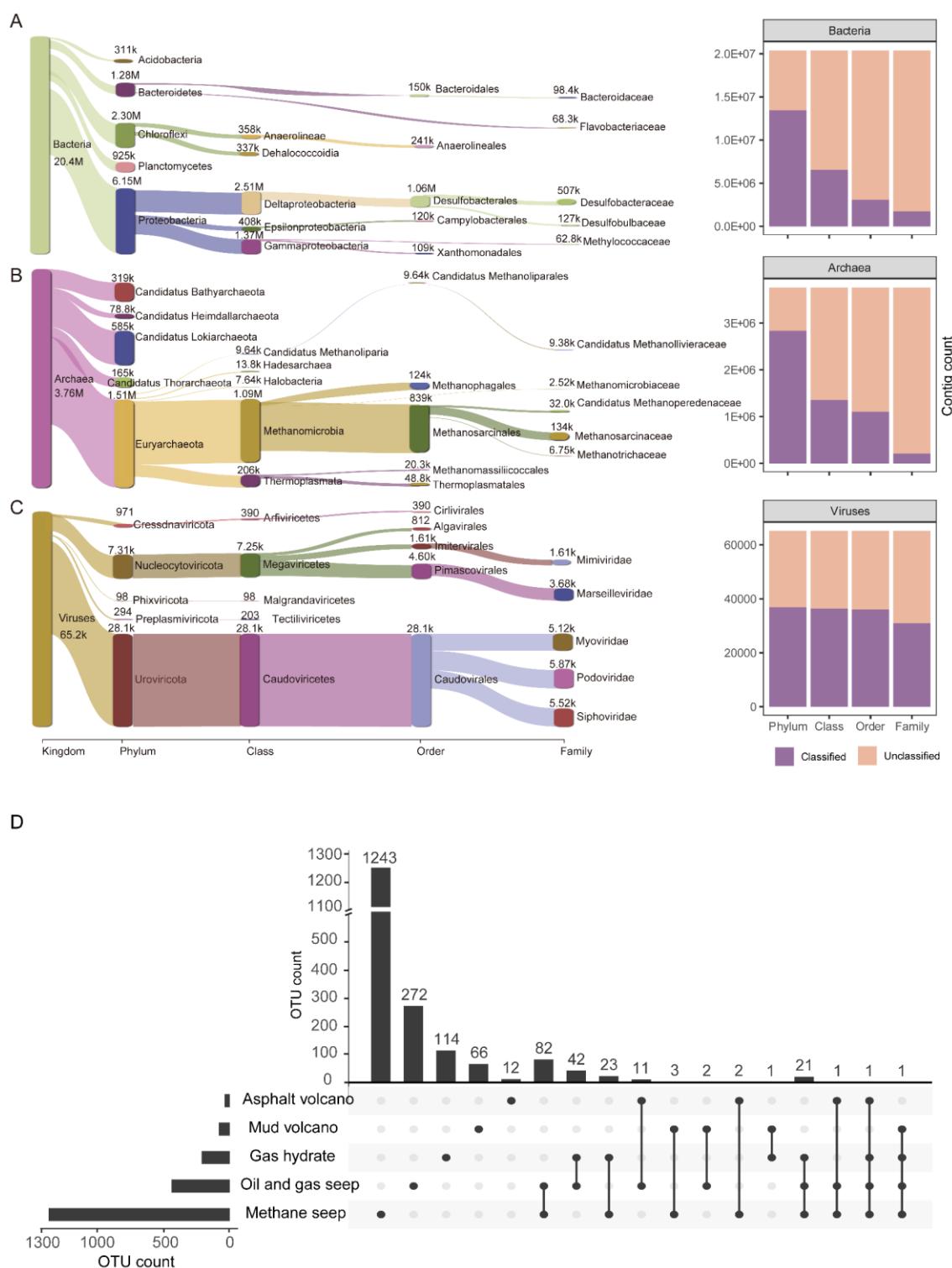
856 **Table S8 Reads count of 16S (miTags) among samples**

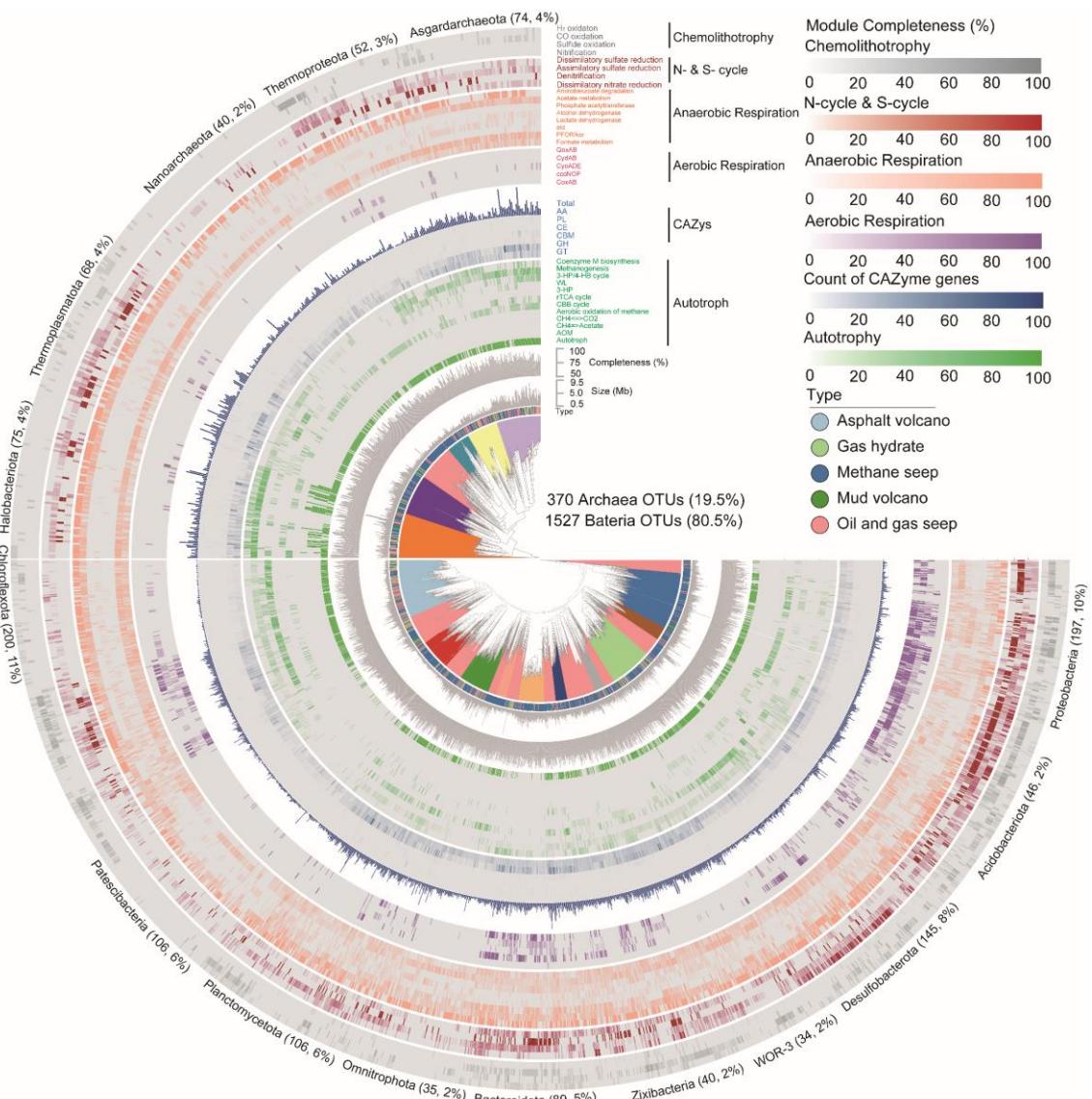
857

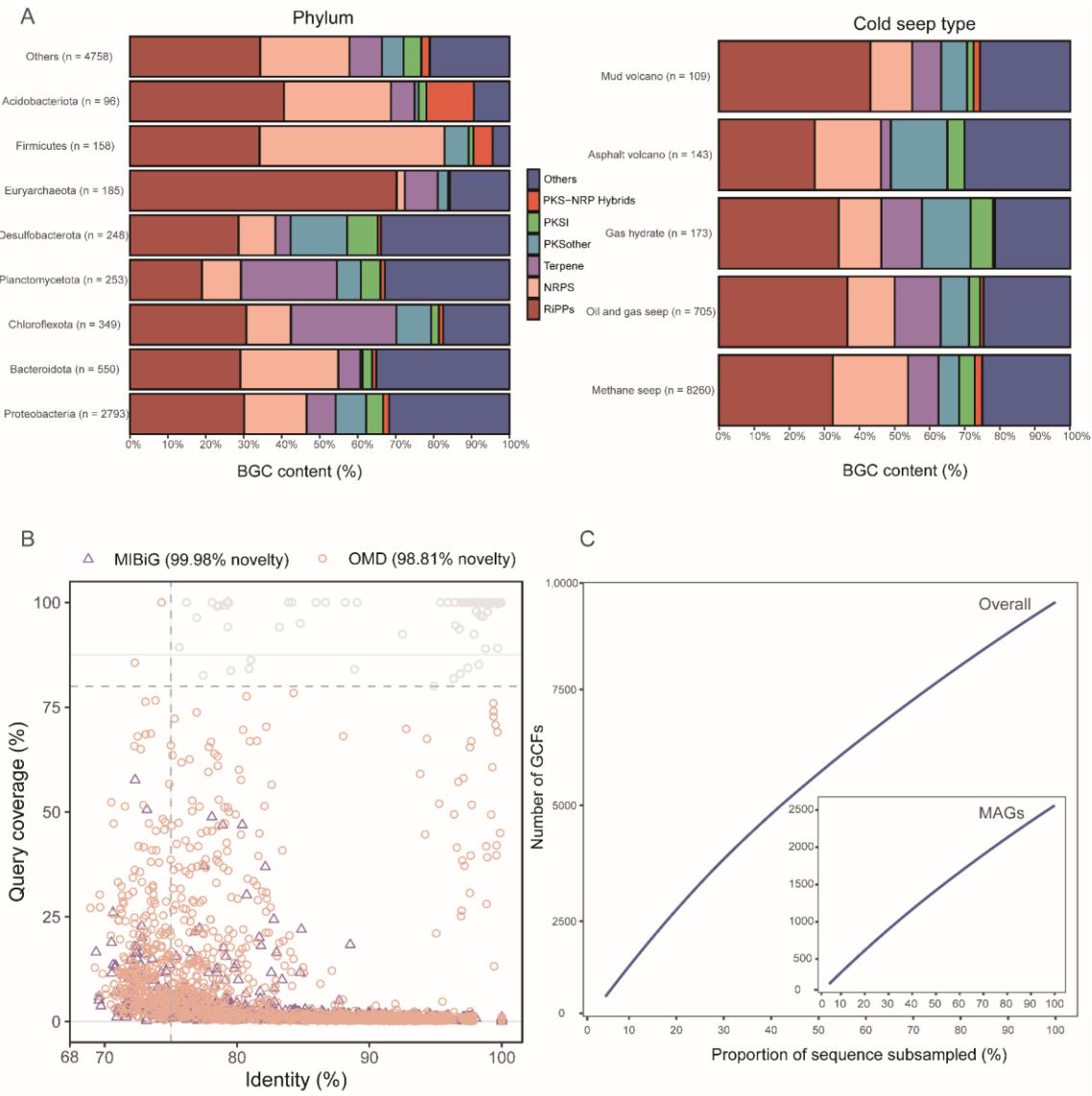
858 **Table S9 The metabolic profile of 1897 OTUs**

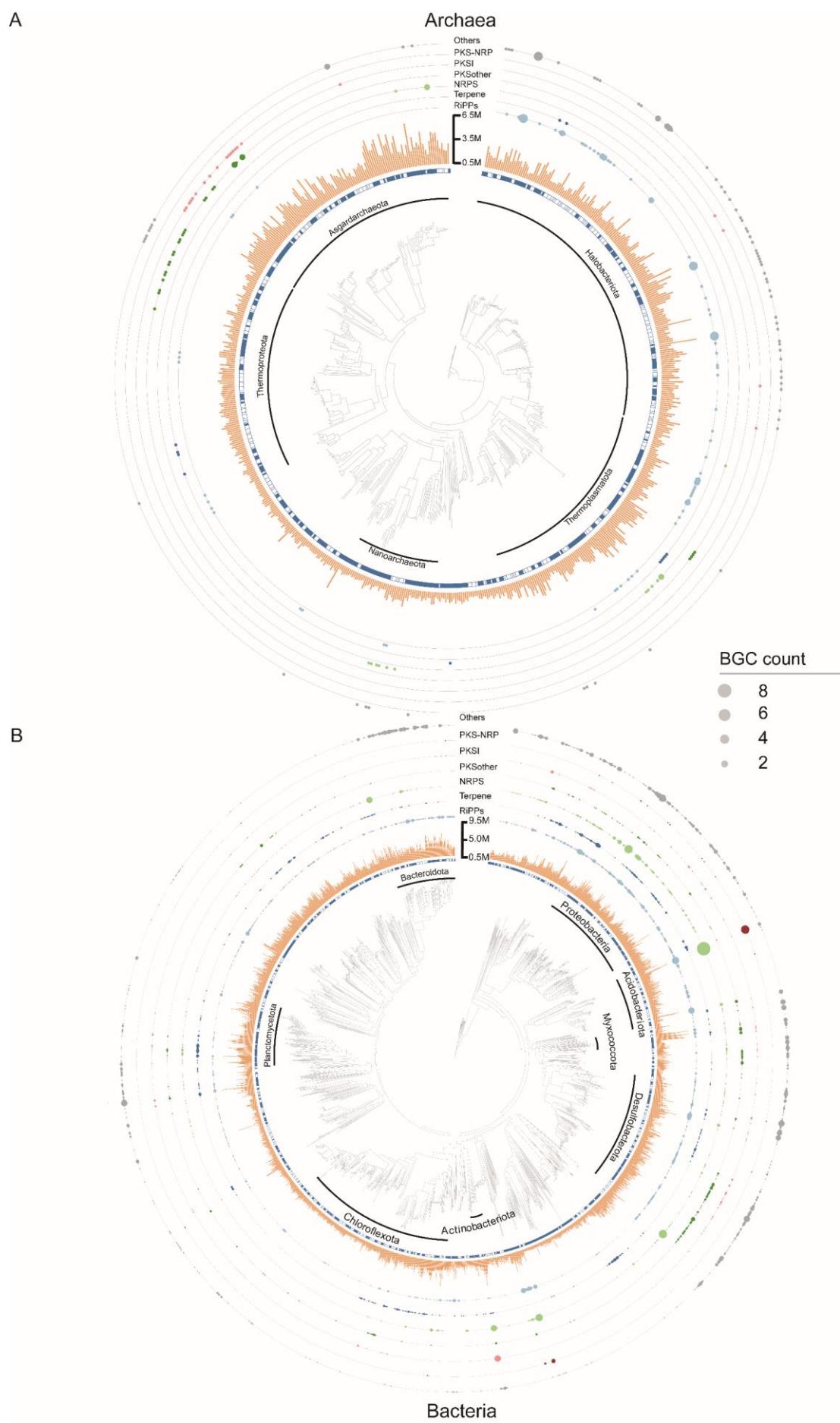
859

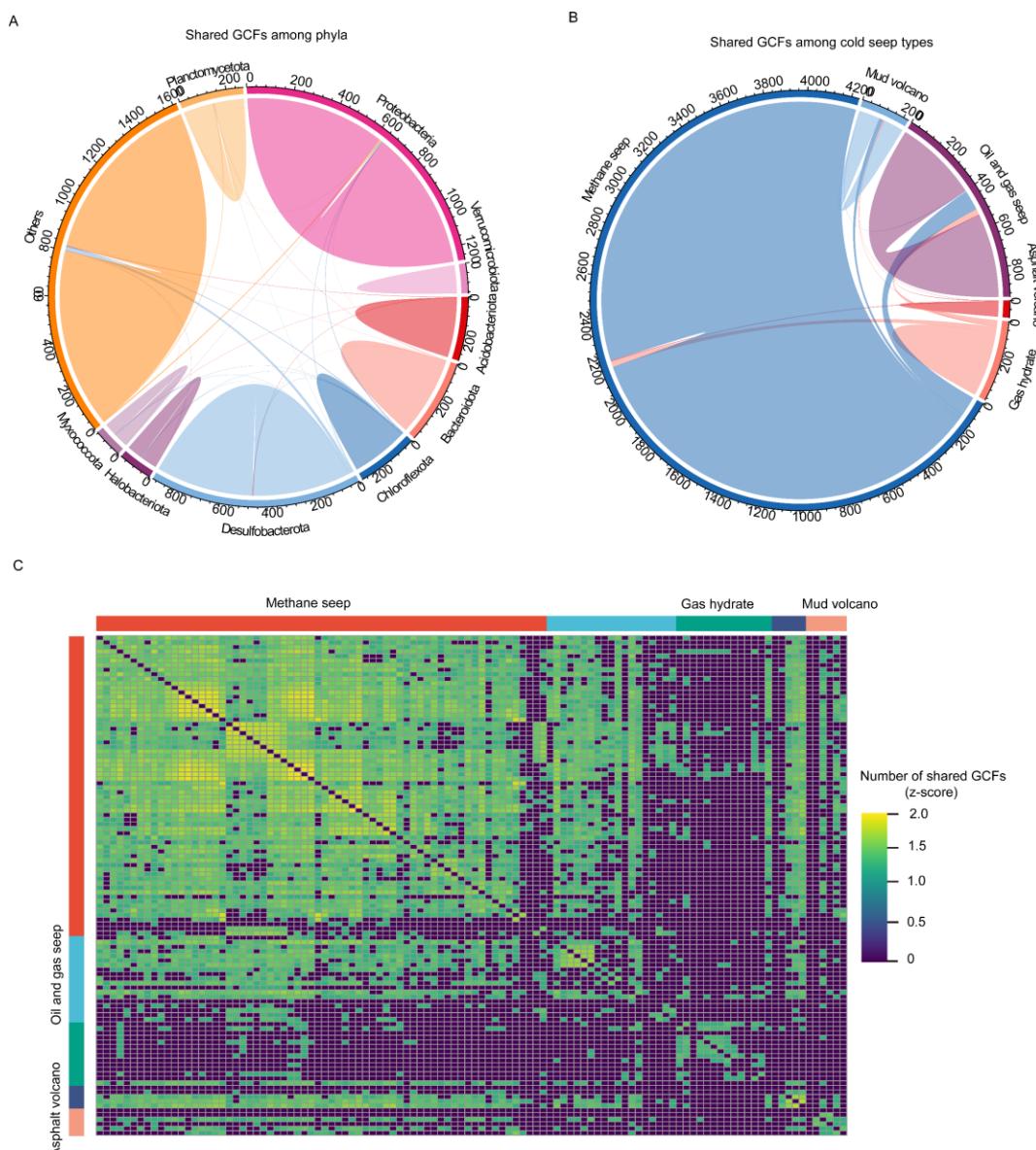

860 **Table S10 A summary of 17,968 BGCs**

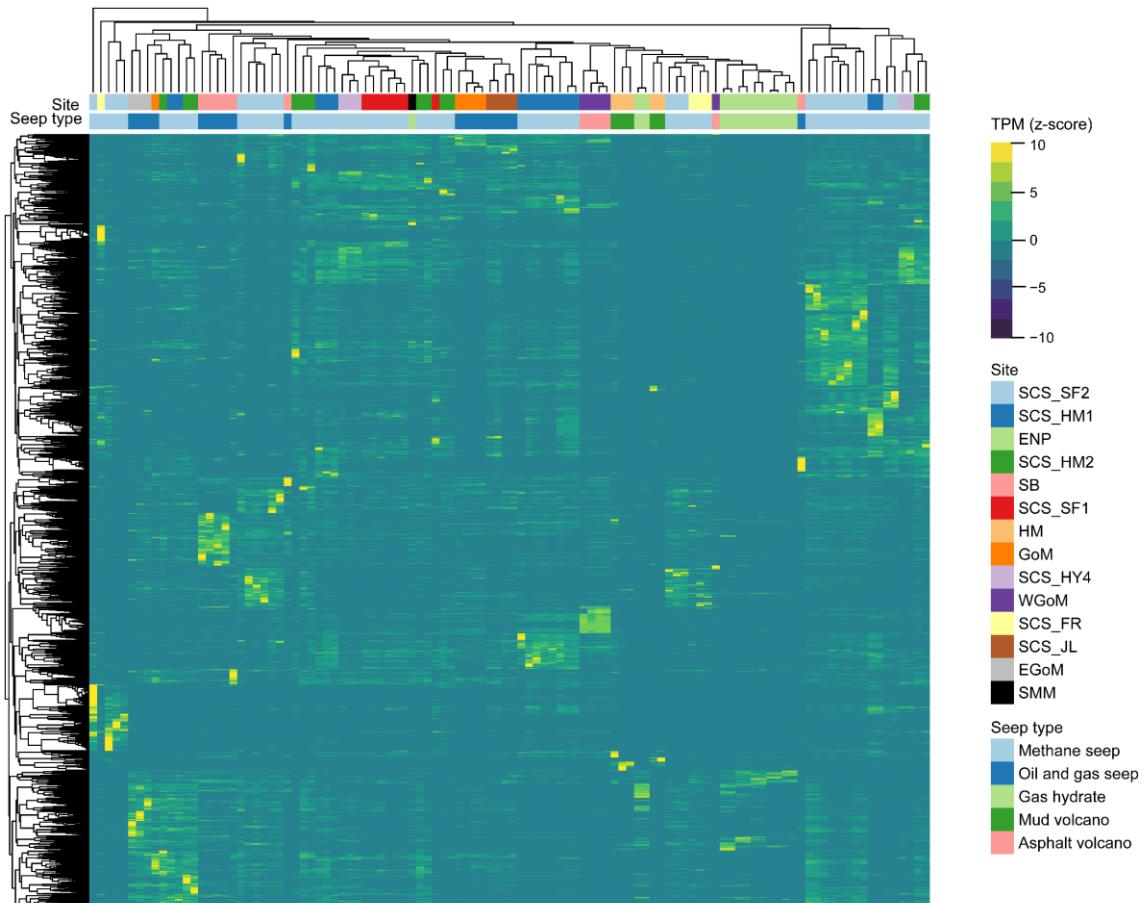

861

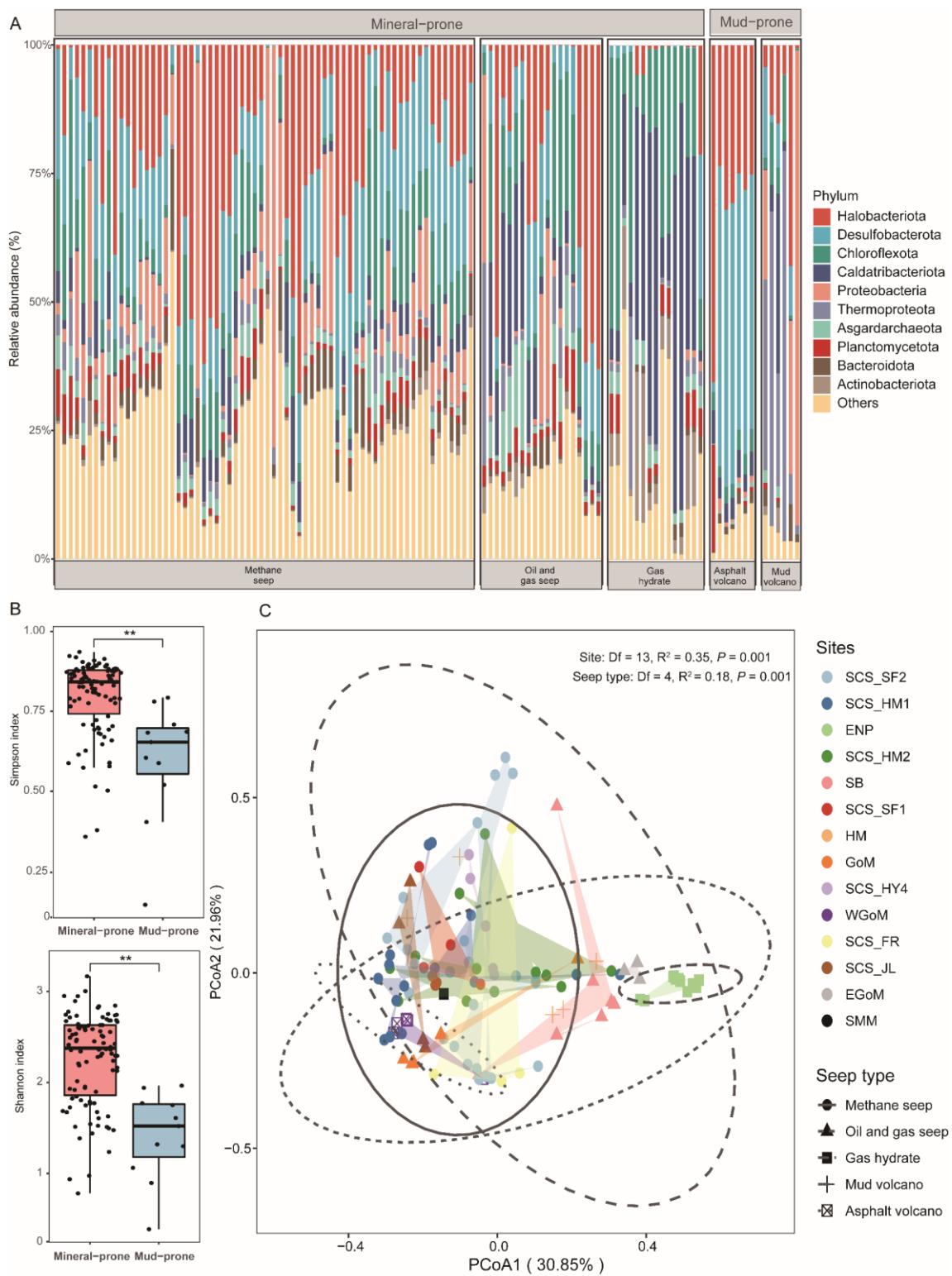

862 **Table S11 The BGC class count of MAGs**

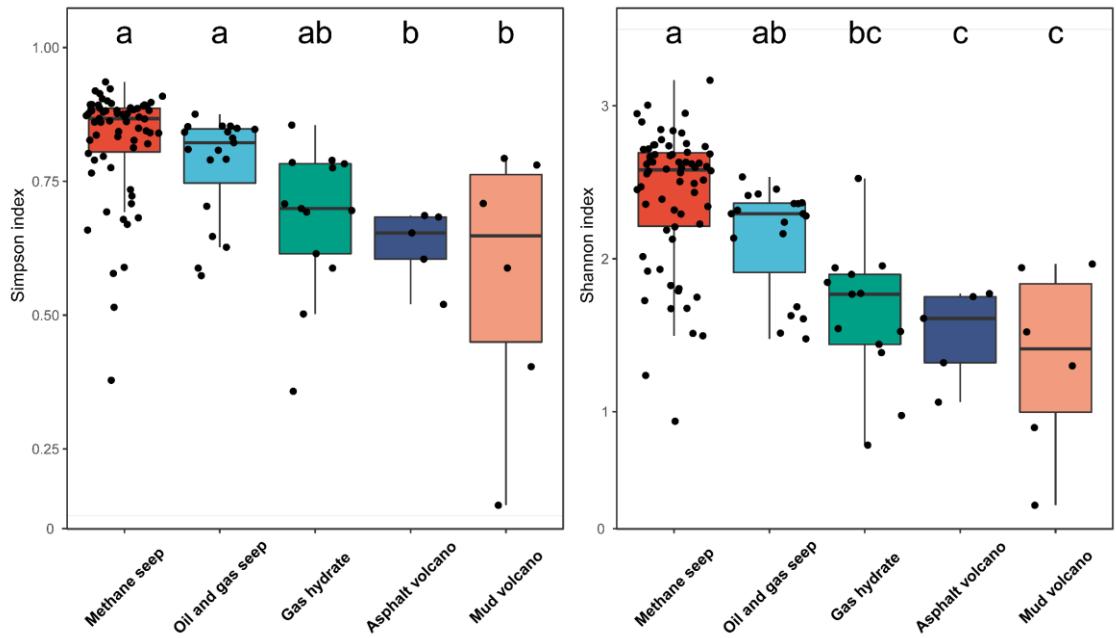

863

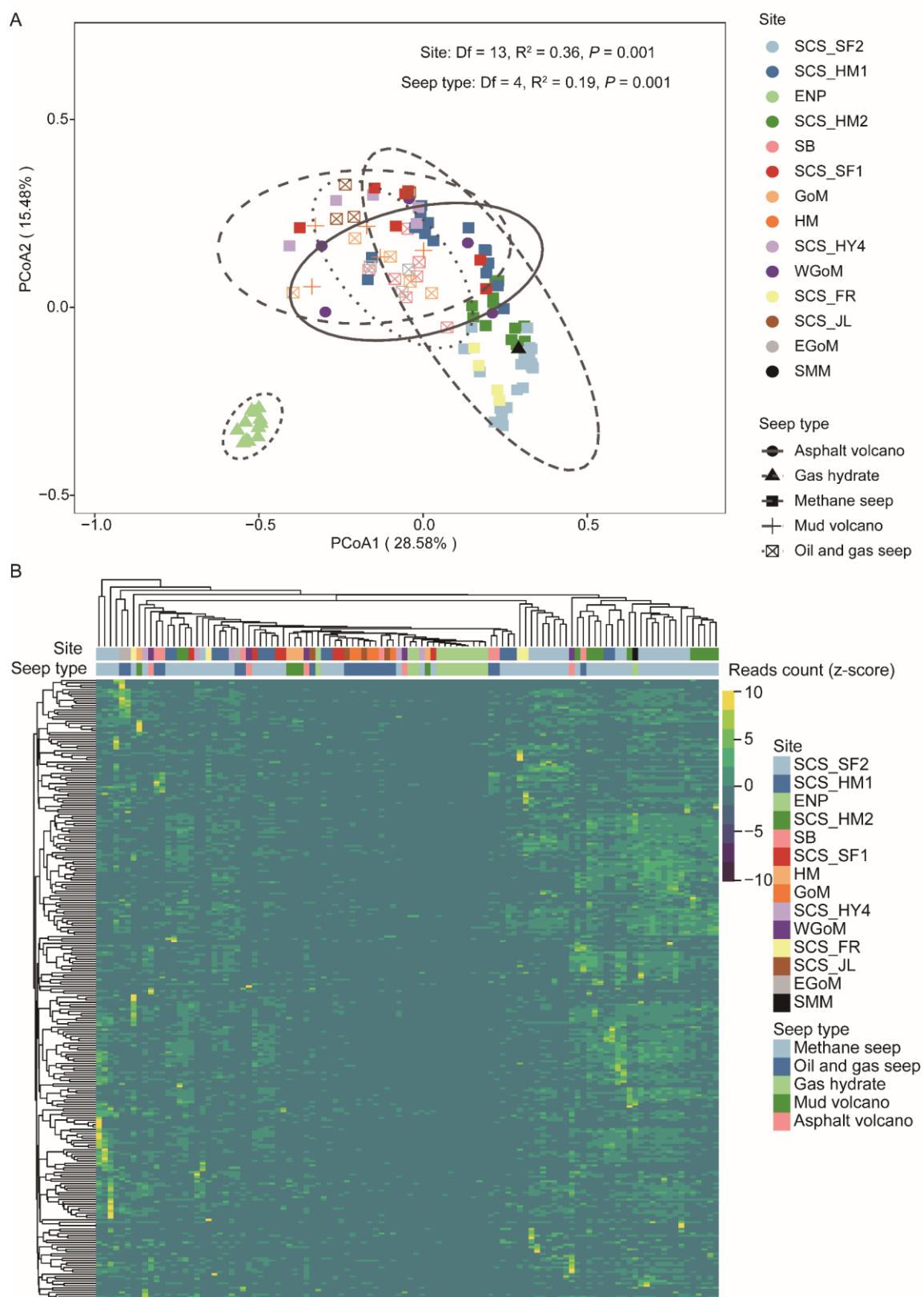

864 **Table S12 Taxonomic expansion of CSMD compared to public MAGs of cold seeps**

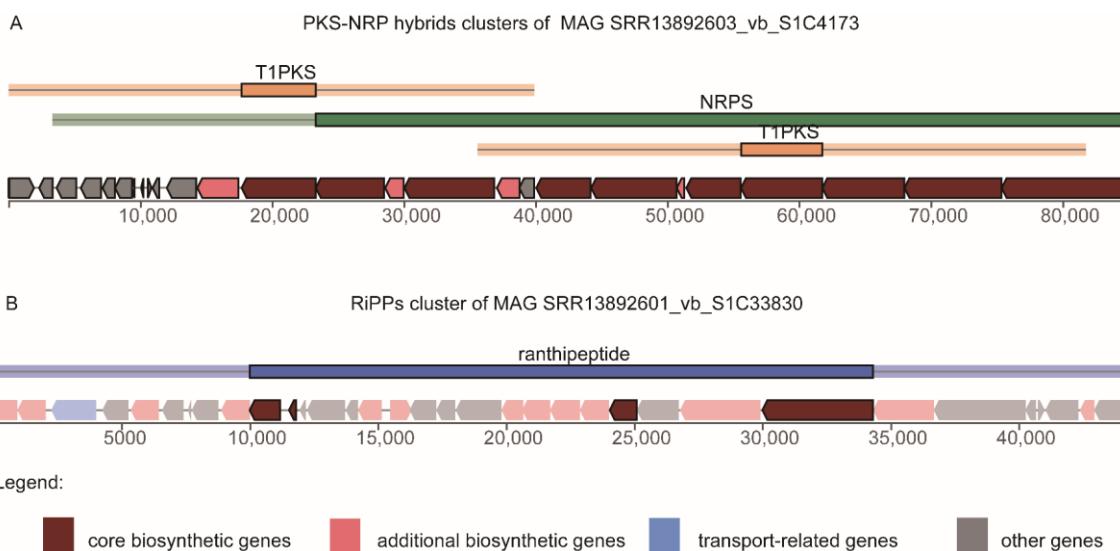












875