

1 **Early-life environmental effects on mitochondrial aerobic**
2 **metabolism: an experimental brood size manipulation in wild great**
3 **tit**

4 Nina Cossin-Sevrin^{1,4}, Antoine Stier^{1,2,4}, Mikaela Hukkanen³, Sandrine Zahn⁴, Vincent A.
5 Viblanc⁴, Katja Anttila¹ & Sivi Ruuskanen^{1,5}

7 ¹ Department of Biology, University of Turku, Turku, Finland

8 ² Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622,
9 Villeurbanne, France

10 ³ Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland

11 ⁴ Université de Strasbourg, Centre National de la Recherche Scientifique, Institut
12 Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France

13 ⁵ Department of Biological and Environmental Sciences, University of Jyväskylä, Finland

14

15 **Corresponding author**

16 Nina Cossin-Sevrin, Department of Biology, 20014 University of Turku, Finland

17 ninacossinsevrin@gmail.com

18

19 **Abstract**

20 Parental care (including postnatal provisioning) is a major component of the offspring's early-
21 life environment. In avian species, the number of chicks in the nest and subsequent sibling
22 competition for food are known to affect chick's growth, leading in some cases to long-lasting
23 effects for the offspring. Because of its central role in converting energy, variation in the
24 offspring's mitochondrial metabolism could be an important pathway underlying variation in
25 growth patterns. Here, we performed a brood size manipulation in great tits (*Parus major*) to
26 unravel its impact on offspring's mitochondrial metabolism and reactive oxygen species
27 (ROS) production in red blood cells. We investigated the effects of brood size on chicks'
28 growth and survival, and tested for long-lasting effects on juvenile mitochondrial metabolism
29 and phenotype. As expected, chicks raised in reduced broods had a higher body mass
30 compared to enlarged and control groups. However, mitochondrial metabolism and ROS
31 production were not significantly affected by the treatment either at chick or juvenile stages.

32 Chicks in very small broods were smaller in size and had higher mitochondrial metabolic
33 rates. The nest of rearing has a significant effect on nestling mitochondrial metabolism, yet
34 variation in mitochondrial metabolism at the early-life stages are not associated with survival
35 chances. The contribution of the rearing environment in determining offspring mitochondrial
36 metabolism emphasizes the plasticity of mitochondrial metabolism in changing
37 environments. Further studies would be needed to closely investigate what are the major
38 environmental cues affecting the offspring mitochondrial metabolism during the growth
39 period.

40

41 **Key words:** Animal performance, brood size, cellular metabolism, oxidative stress, *Parus*
42 *major*

43

44 **Introduction**

45 Parents may have the capacity to shape offspring phenotypes by influencing the
46 offspring's environment during development. This phenomenon, referred to as parental
47 effects, is an important influence on offspring phenotype (Badyaev & Uller, 2009; Mousseau
48 & Fox, 1998; Wolf & Wade, 2009). From an evolutionary perspective, parental effects, in
49 general, are thought to improve offspring survival, growth and / or quality, hence improving
50 parental fitness (Bonduriansky & Crean, 2018; Mousseau & Fox, 1998; Yin et al., 2019).
51 However, it is unclear whether parental effects are always adaptive (Bonduriansky & Crean,
52 2018; Burgess & Marshall, 2014; Marshall & Uller, 2007; Sánchez-Tójar et al., 2020; Uller,
53 2008; Uller et al., 2013; Yin et al., 2019).

54 Parental care (e.g., postnatal provisioning) is an important early-life influence
55 affecting offspring phenotype (Uller, 2008). For dependent offspring relying on parents to
56 survive, it is now well established that a deficit in parental care can lead to detrimental long-
57 term consequences (e.g., Developmental Origins of Health and Disease hypothesis), but the

58 mechanism underlying long-lasting effects of early-life environmental conditions on offspring
59 phenotype are not well understood (Gluckman et al., 2007; Hoogland & Ploeger, 2022;
60 Meunier et al., 2022; Rogers & Bales, 2019).

61 In avian species, variation in early-life nutritional conditions and sibling competition
62 have been widely tested by manipulating brood size (enlarging or reducing brood size) with
63 the aim to simulate increased or reduced parental effort, thereby modulating postnatal
64 parental care and assessing the consequences on offspring phenotype and survival. In great
65 tits (*Parus major*), offspring from enlarged broods exhibit decreased body mass and size
66 (wing or tarsus length) at fledging, and decreased recapture probability over the long-term,
67 i.e. a few months after fledging (in zebra finches: De Kogel, 1997; in great tits: Hörak, 2003;
68 Rytkönen & Orell, 2001; Smith et al., 1989). Studies on zebra finches (*Taeniopygia guttata*)
69 reported long-lasting effects of early-life nutritional deficits on fitness related traits, including
70 laying initiation and breaks, hatching success, plasma antioxidant levels and flight
71 performances (Blount et al., 2003, 2006; Criscuolo et al., 2011). Yet, the mechanisms driving
72 the effects of early-life environmental variation (including postnatal provisioning) on the
73 offspring phenotype and survival remain poorly understood.

74 Variation in metabolic rate represents one important candidate pathway underlying
75 variation in growth patterns as it could be involved in energy allocation processes and is
76 thought to be associated with individual fitness (Brown et al., 2018; Burger et al., 2019,
77 2021). Beside nestling body mass and size, several studies examined the impacts of brood
78 size on offspring metabolic rate. In tree swallows (*Tachycineta bicolor*), nestlings from
79 enlarged broods had 15% lower resting metabolic rate compared to individuals from reduced
80 broods (Burness et al., 2000). On the contrary, zebra finches raised in large broods had a
81 9% higher standard metabolic rate at 1-year old compared to birds reared in small broods
82 (Verhulst et al., 2006). While the association between whole-organism metabolic rate has
83 been extensively studied to test the association between a physiological trait and fitness (or
84 proximate traits when fitness cannot be assessed directly, see precautions here: Arnold et
85 al., 2021; Pettersen et al., 2018), only more recently studies have focused on mitochondrial

86 aerobic metabolism (Ballard & Pichaud, 2014; Heine & Hood, 2020; Koch et al., 2021).
87 Studying mitochondrial respiration could reveal the cellular metabolic consequences of
88 brood size manipulation (and thus, how variation of nutritional conditions and sibling
89 competition influence offspring). Increased competition might have significant effect on
90 mitochondria since organisms relying on aerobic metabolism use nutrients and oxygen for
91 producing ATP via a set of metabolic reactions, part of them occurring within mitochondria.
92 ATP production in mitochondria is also associated with constitutive release of damaging sub-
93 products (e.g., reactive oxygen species, ROS), which may lead to oxidative damage that
94 impair protein and lipid structures and promote DNA mutations (Lane, 2011; Mazat et al.,
95 2020; Monaghan et al., 2009; Sastre et al., 2003). Thus, measuring both oxidative
96 phosphorylation (leading to ATP synthesis) and mitochondrial ROS production (byproducts
97 of cellular respiration) allows us to evaluate metabolic constraints and trade-offs at the
98 cellular level (Koch et al., 2021). The efficiency by which mitochondria are able to convert
99 ATP from a fixed amount of substrates and the determinants of this efficiency are
100 challenging to understand as the efficiency varies between species, but also within
101 individuals of the same species, according to age, condition and tissue (Cossin-Sevrin et al.,
102 2022; Koch et al., 2021; Salmón et al., 2022; Stier et al., 2019, 2022).

103 Recent studies have found that early-life environmental stressors might impair
104 mitochondrial function (Gyllenhammer et al., 2020; Zitkovsky et al., 2021). For example food
105 restriction was shown to decrease basal metabolic rate in adult chinese bulbul (*Pycnonotus*
106 *sinensis*) and silky starlings (*Sturnus sericeus*), and to decrease levels of mitochondrial state
107 4 respiration in the liver for both species (Mao et al., 2019; Zhang et al., 2018). Yet, the
108 impact of early-life conditions on mitochondrial function and the long-lasting effects remain
109 poorly understood.

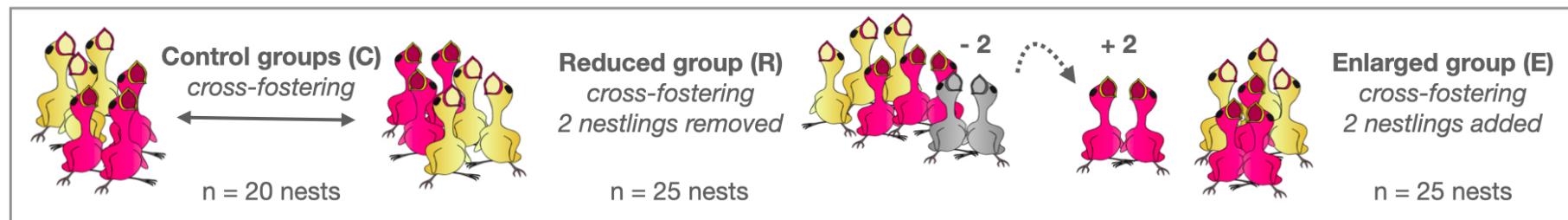
110 Here, we experimentally manipulated brood size in wild great tits to test how rearing
111 conditions (altered sibling competition for food and potential change in food
112 availability/quality) affect nestling red blood cell mitochondrial metabolic phenotype: a
113 promising proxy of individual performance. We aimed to test i) if brood size was important in

114 determining nestling mitochondrial metabolism traits and associated ROS production, ii)
115 differences in nestling growth trajectories, and if these were associated with differences in
116 mitochondrial metabolic rates; iii) if differences in mitochondrial metabolic rates affected
117 offspring future survival. We further iv) tested if early-life determination of mitochondrial
118 aerobic metabolism could affect adult phenotype with potential medium-term costs (e.g.,
119 consequences on juvenile mitochondrial metabolic rates and ROS production). Finally, our
120 experimental design allowed assessing v) the relative contributions of the foster rearing
121 environment (from 2 to 14 days post-hatching) vs. the combination of genetic background,
122 prenatal effects and early-stage rearing conditions (until 2 days post-hatching) on offspring
123 mitochondrial metabolism. To test the impact of brood size manipulation treatment on
124 postnatal parental care, we recorded parental feeding rates on a subsample of nests. We
125 predicted nestlings raised in enlarged broods to have a lower body mass and size compared
126 to control and reduced brood size. According to prior literature, the offspring mitochondrial
127 function is sensitive to postnatal environmental conditions. In rodent models, chronic stress
128 exposure and separation from mother during lactation led in most of the cases to a decrease
129 in mitochondrial complexes activities and increase of ROS production (Picard & McEwen,
130 2018; Zitkovsky et al., 2021). We may therefore expect an enlargement of the brood size
131 and its associated consequences, such as a decreased in parental feeding rates, to create a
132 stressful environment leading to a general decrease of the offspring mitochondrial
133 metabolism and increase of ROS production. Nevertheless, most of the work assessing how
134 stressful early-life environment may impair mitochondrial function have been so far realized
135 on mammals and the consequences in avian species and long-term effects remain elusive.
136 Here we test the importance of brood size as a proxy to early-life environmental rearing
137 conditions in shaping nestling mitochondrial metabolic rates, associated ROS production and
138 later growth and survival patterns.

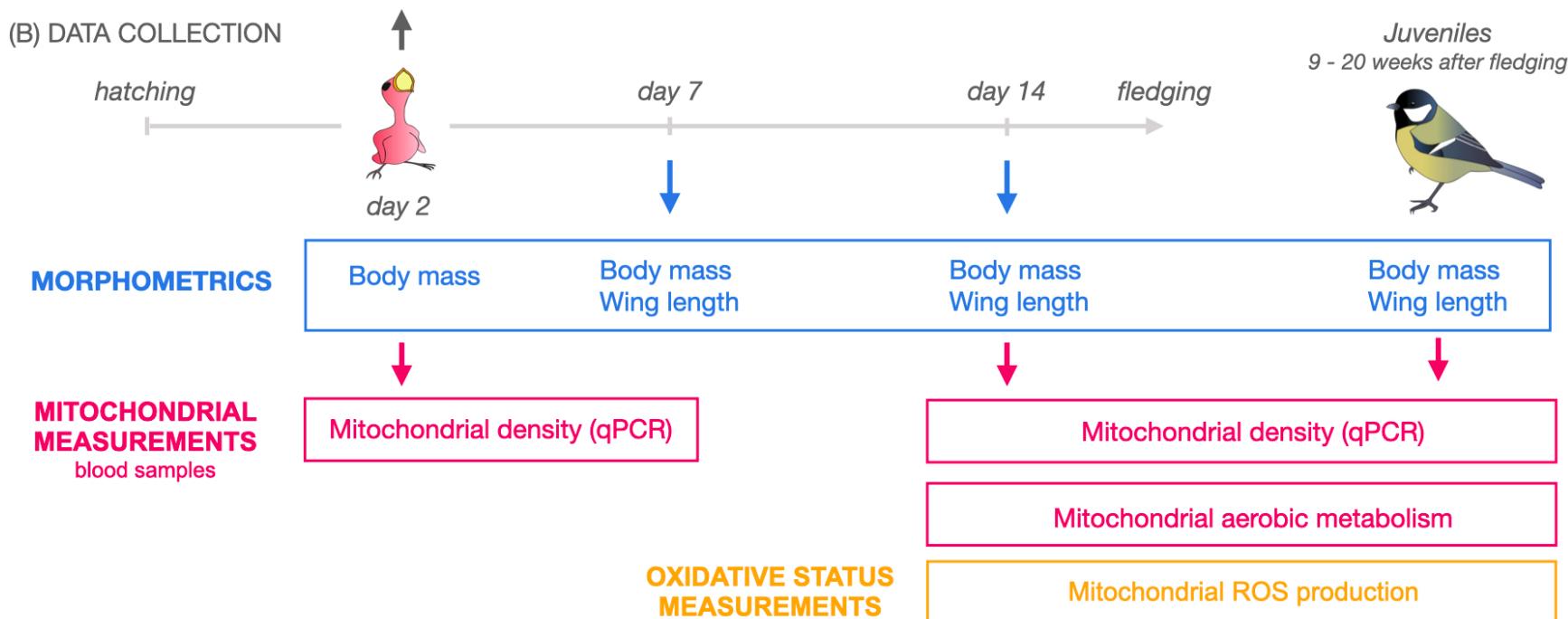
139 **Material and Methods**

140 a) Field site and population monitoring

141 This study was conducted on Ruissalo Island, Finland ($60^{\circ}26.055' N$, $22^{\circ}10.391' E$), in a
142 Great tit population (*Parus major* Linnaeus 1758) breeding in artificial nest boxes ($n = 588$
143 nest boxes). In Great tit, the average clutch size varies from 7 to 12 eggs (Perrins and
144 McCleery, 1989) and the nestling period lasts from 16 to 22 days. Data for our experiment
145 were collected during the 2020 breeding season (April to July) and during the autumn of
146 2020 (October to November). We monitored the breeding season progress by checking the
147 occupation of nest boxes by great tits once a week. Clutch size, hatching date ($\pm 24h$) and
148 fledging success were recorded.


149 b) Experimental manipulation of brood size

150 To investigate the effects of the brood size on nestling mitochondrial function, growth pattern
151 and subsequent survival, we performed a brood size manipulation experiment, including
152 cross-fostering (Fig.1). We selected two nests (nest-pairs) having the same hatching date (\pm
153 24h) and conducted the brood size manipulation and cross-fostering 2 days after hatching.
154 The initial brood size (i.e., before the manipulation) of each nest was recorded, with an
155 average (\pm SEM) of 7.98 ± 0.07 nestlings per nest (ranging from 4 to 11 nestlings, $n = 70$
156 nests). Approximately half of the brood was cross-fostered between nest-pairs in order to
157 assess the influence of the nest of origin (representing the contribution of genetic
158 background, prenatal and early postnatal parental effects) vs. the nest of experimental
159 cross-fostering (i.e., nest of rearing). The nest of rearing here reflects postnatal
160 environmental conditions and parental effects from 2 days after hatching until fledging. The
161 experimental design consisted of 3 treatment groups: i) a control group (C) where half of the
162 brood was cross-fostered between nest-pairs without modifying brood size ($n = 20$ nests), ii)
163 a reduced group (R) where half of the brood was cross-fostered between nest-pairs and 2


164 nestlings were removed from the brood ($n = 25$ nests), and iii) an enlarged group (E) where
165 half of the brood was cross-fostered between nest-pairs and 2 nestlings were added to the
166 brood ($n = 25$ nests) (Fig.1).

167 In total, this study included 70 great tit nests resulting in 540 nestlings monitored (n_C
168 = 150, $n_E = 236$, $n_R = 154$), of which 227 individuals were cross-fostered and 399 fledged (n_C
169 = 98, $n_E = 188$, $n_R = 113$) (see sample sizes for different measurements in Table 1).

170
171 (A) BROOD SIZE MANIPULATION

173 (B) DATA COLLECTION

170

171

172

173

174 **Fig. 1. Experimental design of the study presenting the brood size manipulation (A) and collection of the data (B).** Sample sizes are presented according to treatment groups: control (C), reduced (R), and enlarged broods (E). The timing of different measurements and analyses are indicated below the time-line (see Methods for details).

174 Before the brood size manipulation, nestlings from nest-pairs were weighed on an
175 electronic scale (body mass \pm 0.1g) and individually marked (nail-clipping). We performed
176 blood sampling on a subsample of nestlings 2 days after hatching (1 - 10 μ L from the tarsus
177 vein using heparinized capillaries, 2-4 nestlings/nest, see Table 1.). When performing the
178 brood size manipulation and cross-fostering we avoided moving the smallest or biggest
179 nestlings to minimize sibling competition that could have significantly decreased nestlings'
180 survival chances after the manipulation. Body mass of nestlings swapped between nests
181 was as similar as possible and cross-fostered individuals were kept in a warm box during the
182 transfer (using heating pads). Nestlings were ringed 7 days after hatching, weighed and
183 measured with a metal ruler (wing length \pm 1mm) at days 7 and 14 (Table 1). Nestlings were
184 blood sampled at day 14 (~30-75 μ L from the brachial vein using heparinized capillaries).
185 Blood samples were used to (1) evaluate mitochondrial aerobic metabolism (fresh samples
186 kept on ice collected on 14-day-old as nestlings and juveniles, Table 1), to (2) measure
187 mitochondrial DNA copy number (i.e., mtDNAcn), a proxy of mitochondrial density
188 (measured on frozen blood samples on 2 and 14-day-old nestlings and as juveniles when
189 samples were available), and to (3) measure mitochondrial reactive oxygen species (ROS)
190 measured in 14-day-old nestlings and juveniles from the same samples as the mitochondrial
191 aerobic metabolism assay (see below for detailed protocol).

192 Previous data on this population (Ruuskanen, *unpublished data*) showed that
193 dispersion of great tits after fledging is almost entirely limited in this study area as none of
194 the birds ringed as nestlings were recaptured outside of the study area. Thus, we were able
195 to use the recapture probability of nestlings the following autumn (as juveniles, between 9 to
196 20 weeks after fledging) as a proxy of medium-term apparent survival. We conducted mist-
197 nesting with playback at 6 feeding stations inside the study area (3 sessions of ca 2-4h /
198 feeding station over October/November summing up to a total of 14 days and 69 hours of
199 mist-nesting). Juveniles were visually sexed. In total, we recaptured 67 individuals from 34
200 nests: (juveniles/nests) $n_c = 22/9$; $n_E = 31/15$; $n_R = 14/10$, Table 1).

201
202
203
204
205

Table 1. Sample-sizes according to nestling age, treatment group (C: control broods, E: enlarged broods, R: reduced broods) and the different traits measured throughout this study. The number of nests is indicated in brackets.

Measurements	Day 2	Day 7	Day 14	Juveniles
Body mass/size	$n_R = 154$ (25)	$n_R = 121$ (21)	$n_R = 115$ (21)	$n_R = 14$ (10)
	$n_C = 150$ (20)	$n_C = 105$ (16)	$n_C = 99$ (16)	$n_C = 22$ (9)
	$n_E = 236$ (25)	$n_E = 194$ (21)	$n_E = 189$ (21)	$n_E = 31$ (15)
Mitochondrial DNA copy number (i.e. proxy of mitochondrial density)	$n_R = 17$ (6)		$n_R = 48$ (20)	$n_R = 12$ (8)
	$n_C = 38$ (10)		$n_C = 46$ (16)	$n_C = 16$ (9)
	$n_E = 16$ (5)		$n_E = 55$ (21)	$n_E = 28$ (15)
Mitochondrial aerobic metabolism			$n_R = 35$ (19)	$n_R = 12$ (8)
			$n_C = 26$ (14)	$n_C = 16$ (9)
			$n_E = 41$ (21)	$n_E = 26$ (15)
ROS production measurements			$n_R = 34$ (18)	$n_R = 11$ (8)
			$n_C = 23$ (14)	$n_C = 16$ (9)
			$n_E = 37$ (20)	$n_E = 26$ (15)

206

207 c) Mitochondrial DNA copy number

208 We randomly selected a minimum of 2 nestlings per nest (one original and one
209 cross-fostered nestling). Genomic DNA was extracted from 1 to 5 μ L of frozen blood samples
210 (stored at -80°C) using a salt extraction procedure adapted from Aljabani and Martinez
211 (1997). Due to small volumes, some of the blood samples collected on day 2 could not be
212 analysed. When data were available (see Table 1), we measured mtDNAcn on the same
213 individuals at day 2, day 14 and as juvenile (i.e., recaptured in autumn 2020). DNA quantity
214 and purity were estimated using a *NanoDrop ND-1000* spectrophotometer. Samples were
215 re-extracted if needed ([DNA] < 50ng/ μ L, 260/280 ratio < 1.80 or 260/230 < 2). Samples
216 were then diluted to 1.2ng/ μ L in sterile H₂O and stored at -80°C until qPCR assays. We

217 quantified mtDNAcn using real-time quantitative PCR assays (qPCR) from a protocol
218 described in Cossin-Sevrin et al. (2022). We made some adjustments to the original
219 protocol: samples were automatically pipetted (epMotion® 5070, Eppendorf, Hamburg,
220 Germany) in duplicates in 384-qPCR plates (n = 5 plates) and qPCR were performed with a
221 Biorad instrument (CFX-384, Biorad, Hercules, USA). We used Recombination Activating
222 Gene 1 (*RAG1*) as a single control gene and cytochrome oxidase subunit 2 (*COI2*) as
223 specific mitochondrial gene (sequences and procedure of verification are described in
224 Cossin-Sevrin et al., 2022). qPCR reactions were conducted in a total volume of 12µL,
225 including 6ng of DNA samples, primers at a final concentration of 300nM and 6µL of
226 GoTaq® qPCR Mix (Promega, Madison, USA). qPCR conditions were the following : 3min at
227 95°C (polymerase activation), followed by 40 cycles of 10s at 95°C, 15s at 58°C, 10s at
228 72°C. Melting curve program was 5s at 65°C, and 0.5°C/s increased until 95°C. A pooled
229 DNA sample from 14 adult individuals was used as a reference sample (i.e., ratio = 1.0 for
230 mtDNAcn) and was included in duplicate on every plate. qPCR efficiencies of *RAG1* and
231 *COI2* genes were respectively (mean ± SEM): 99.14 ± 1.17% and 95.74 ± 0.11%.
232 Repeatability of mtDNAcn between sample-duplicates was R = 0.90 (CI 95% = [0.88, 0.92]).
233 The samples were distributed randomly on different plates and in order to control for
234 interplate variability, qPCR plate number was included as a random intercept in our
235 statistical analysis (see details below). DNA integrity of 46 randomly selected samples was
236 evaluated and deemed satisfactory using gel electrophoresis (100ng of DNA, 0.8% agarose
237 gel at 100mV for 1 hour).

238 d) Mitochondrial aerobic metabolism

239 In order to test the impact of brood size on nestling mitochondrial respiration, we
240 measured mitochondrial aerobic metabolism in a subsample (1 to 3 nestlings per nest), 14
241 days after hatching (individuals/nest: $n_C = 26/14$, $n_E = 41/21$, $n_R = 35/19$) and in the same
242 individuals as juveniles (recaptured in autumn 2020), when samples were available (N = 14
243 individuals). We additionally measured mitochondrial aerobic metabolism from the majority

244 of juveniles recaptured that participated in the manipulation (as nestlings) (in total,
245 juvenile/nest: $n_C = 16/9$, $n_E = 26/15$, $n_R = 12/8$). Blood sample volumes collected on 2-day-old
246 nestlings were unfortunately not large enough for measuring mitochondrial aerobic
247 metabolism at this stage (i.e., 1-10 μ L of blood). Mitochondrial respiration was analyzed
248 using high-resolution respirometry (3 Orobos Instruments, Innsbruck, Austria) at 40°C
249 adapted from a protocol described in Stier et al., (2019): digitonin (20 μ g/mL), pyruvate
250 (5mM), malate (2mM), ADP (1.25mM), succinate (10mM), oligomycin (2.5 μ M), antimycin A
251 (2.5 μ M). We used 20 μ L (nestlings) to 30 μ L (juveniles) of fresh blood when available,
252 suspended in Mir05 buffer. Five distinct respiration rates were analysed: 1) the endogenous
253 cellular respiration rate before permeabilization (*ROUTINE*), 2) the maximum respiration rate
254 fueled with exogenous substrates of complex I, as well as ADP (CI), 3) the maximum
255 respiration rate fueled with exogenous substrates of complexes I and II, as well as ADP
256 (CI+II), 4) the respiration rate contributing to the proton leak (*LEAK*), 5) the respiration rate
257 supporting ATP synthesis through oxidative phosphorylation (*OXPHOS*). We also calculated
258 three mitochondrial flux ratios (FCR): 1) *OXPHOS* coupling efficiency ($OxCE = (CI+CII -$
259 $LEAK)/CI+II$), 2) the proportion of maximal respiration capacity being used under
260 endogenous cellular condition (i.e., $FCR_{ROUTINE/CI+II}$) and 3) the ratio between the maximal
261 respiration rate of complex I and the maximal respiration capacity (i.e., $FCR_{CI/CI+II}$). *OXPHOS*
262 coupling efficiency FCR provides an index of mitochondrial efficiency in producing ATP,
263 whereas $FCR_{ROUTINE/CI+II}$ reflects the cellular control of mitochondrial respiration by
264 endogenous ADP/ATP turnover and substrate availability. Respiration rates were
265 standardized by the number of cells in each sample, measured by *BIO-RAD TC20*
266 automated cell counter. The technical repeatability of mitochondrial aerobic metabolism
267 measurements was high: *ROUTINE*: $R = 0.985$ (CI 95% = [0.936, 0.997]); *CI+II*: $R = 0.98$ (CI
268 95% = [0.912, 0.995]); *LEAK*: $R = 0.979$ (CI 95% = [0.916, 0.995]); *OXPHOS*: $R = 0.977$ (CI
269 95% = [0.898, 0.995]) based on 9 duplicates.

270 e) Reactive oxygen species measurements

271 Reactive oxygen species (ROS) were measured in 14-day-old nestlings and juveniles
272 from the same samples as the mitochondrial aerobic metabolism assay (i.e., red blood cells
273 suspended in MiR05 buffer) (see Table 1 for sample sizes). The relative amount of ROS was
274 estimated by fluorescence, using MitoSOX™ Red kit (MitoSOX™ red mitochondrial
275 superoxide indicator, Thermo Fisher) that specifically measures mitochondrial superoxide
276 (i.e., the primary mitochondrial ROS) in live cells. Samples were supplemented with 4µL of
277 MitoSOX™ (final concentration 4µM) and incubated for 30 min at 40°C protected from light.
278 After being cooled down (5 min on ice) and centrifuged (2 min, 1000g at 4°C), samples were
279 re-suspended in 250µL Mir05 buffer added with 5mM pyruvate, 2.5mM malate, 10mM
280 succinate and 1.25mM ADP. 100µL of samples were loaded on a white 96-well plate (n =
281 43) with a transparent bottom. Kinetics of fluorescence were read for 30 min (emission 510
282 nm/ excitation 580 nm) in EnSpire® 2300 Multilabel Reader (PerkinElmer) set at 40°C.
283 Samples were analyzed in duplicates. The slope of relative fluorescence (RFU/min) was
284 then extracted and normalized by the internal control present on each plate (dry
285 *Saccharomyces cerevisiae* diluted at 10mg/mL in Mir05). As a positive control (for
286 mitochondrial ROS production) diluted *Saccharomyces cerevisiae* supplemented with
287 antimycin A was included in each plate. Relative mitochondrial ROS results were
288 standardized by the number of cells present in each well, taking into account dilution factor
289 (cell count estimated with the *BIO-RAD* TC20 automated cell counter). Repeatability of the
290 ROS production measurements between sample-duplicates was R = 0.924 (CI 95% = [0.9,
291 0.941]).

292 f) Parental feeding rates

293 In order to test if parental feeding rates changed following the brood size
294 manipulation, we video-recorded a subsample of nest boxes ($n_C = 8$, $n_E = 15$, $n_R = 14$ nest
295 boxes) 8 days after hatching. The cameras were concealed at ca. 2 m distance from the nest

296 boxes. Videos were recorded for approximately 2h (mean \pm SD = 137.58 \pm 25.19 min)
297 between 7 and 12 am. Standardized parental feeding rate differences (number of nest visits
298 divided by the total length of the video starting from the first visit) was quantified using
299 *BORIS* software (Olivier Friard & Marco Gamba, 2016), by a single observer blind to the
300 experimental treatment.

301 g) Statistical analysis

302 Statistical analyses were conducted using R v.4.0.2 (R core team, 2020) and
303 performed using linear mixed models (LMMs) or general linear mixed models (GLMMs). Pre-
304 treatment clutch sizes (raw data mean \pm SEM: R = 9.24 \pm 0.26, C = 8.65 \pm 0.28, E = 8.48 \pm
305 0.17 eggs; ANOVA: $F = 2.97$, $P = 0.06$) and hatching date (C = 58.70 \pm 1.21, E & R = 60.16
306 \pm 1.06 days; ANOVA: $F = 0.54$, $P = 0.59$) were relatively balanced between treatment
307 groups. Initial brood sizes on day 2 post-hatching per treatment groups were the following:
308 (raw data mean \pm SEM [range]) R = 8.00 \pm 0.32 [5;11] chicks, C = 7.50 \pm 0.44 [4;10] chicks
309 and E = 7.68 \pm 0.28 [4;9] chicks and were not statistically different between treatment groups
310 before the manipulation (ANOVA: $F = 0.55$, $P = 0.57$).

311 *Experimental approach*

312 To investigate the experimental effect of brood size manipulation on response
313 variables (i.e., body mass, wing length, mtDNAcn, mitochondrial aerobic metabolism,
314 mitochondrial ROS production), we always included in our models the treatment as a 3-level
315 fixed factor (R,C,E) and the initial brood size as a continuous variable to account for initial
316 differences in brood size across nests. These analyses are referred to “*experimental
317 approach*” in the text. To test for potential different effects of the treatment according to the
318 initial number of nestlings in the nest, we always tested the interaction between the
319 treatment and initial brood size in our models. Non-significant interaction (treatment* initial
320 brood size) and cross-fostering status (i.e., cross-fostered or not, included as main effect in

321 models) were dropped (starting from the interaction) from the models in a backward-
322 stepwise procedure to obtain the lowest Akaike Information Criterion (AIC) value. When AIC
323 were similar between models (differences between AIC less than 2), we chose the simplest
324 model (with the lowest degree of freedom). For models that included repeated measures
325 across time (i.e., see below body mass), we initially included the age, treatment, initial brood
326 size and their interaction and removed non-significant interactions following a backward-
327 stepwise procedure. For changes in mtDNAcn with time (from day 2 to 14), we present
328 results from the treatment and age interaction (although non-significant), as we predicted an
329 effect of the treatment with time. However, the initial brood size could not be included as a
330 fixed factor in the model because of convergence issues. We also included bird ID as a
331 random intercept to take into account the non-independence of measures from the same
332 individual. Unfortunately, only a few nestlings measured at day 14 for mitochondrial
333 respiration rates were recaptured as juveniles, thus we could not add the bird ID as a
334 random intercept for mitochondrial respiration traits in our models (convergence issues).

335 *Correlative approach*

336 To explore the associations between number of nestlings and the measured traits
337 (focusing on the ecological aspect of the brood size rather than experimental), we used
338 another set of models including the actual number of nestlings (on the day of data collection)
339 as a continuous variable. These analyses are referred to “*correlative approach*” in the text.
340 As the number of nestlings per nest nests varied substantially across and within treatment
341 groups (e.g., at day 14 brood size ranged from 2 to 11 nestlings), this analysis reflects the
342 associations between a given brood size and trait of interest. However, given that the
343 dataset using brood size as a continuous variable includes both experimentally manipulated
344 (E, R) and non-manipulated nests (C) we also analyzed the associations between the
345 number of nestlings and target variables using only the non-manipulated nests (C) group to
346 check if patterns might have been confounded by including experimental nests (see ESM.A).
347 As results were similar (ESM.B Table 2), we report results of the full dataset in the main text.

348 In both analyses, we included hatching date as a continuous variable and the IDs of both
349 original and rearing nest boxes as random intercepts. qPCR plate ID could not be included in
350 the model only including the control group because of convergence issues.

351 Standardized parental feeding rate differences were tested according to treatment
352 groups and the initial brood size, but also according to the number of nestlings at day 7,
353 using in both cases a linear model without random effects (LM). We included the starting
354 time of the video recordings as a covariate in models to account for differences in feeding
355 rates during the day.

356 Nestling growth metrics (i.e., postnatal body mass and wing length) were analyzed
357 using LMMs with both the original nest box ID and the nest box of rearing ID as random
358 intercepts. For longitudinal measurements, we included bird ID as a random intercept.

359 mtDNAcn data distribution did not fulfill the criteria of normality according to a Cullen
360 and Frey plot (*fitdistrplus* package; Delignette-Muller and Dutang, 2015); therefore, we
361 analyzed the effects of the treatment and the number of nestlings on mtDNAcn using a
362 GLMM (gamma error distribution, log link). We included the qPCR plate ID as a random
363 intercept. For juveniles, we tested the association between mtDNAcn and the number of
364 nestlings in the nest a few days before fledging, by adding the brood size at day 14 as
365 explanatory factor in our model (GLM, gamma error distribution, log link). All mitochondrial
366 respiration rates (recorded on 14-day-old nestlings and juveniles, including *ROUTINE*, *CI*,
367 *CI+II*, *LEAK*, *OXPHOS*) were tested with LMMs. We analyzed mitochondrial respiration rates
368 at the mitochondrial level (i.e., respiration measurements controlled for mitochondrial density
369 by inclusion of mtDNAcn as a covariate), which indicates the respiration rate per unit of
370 mitochondria. For mitochondrial respiration rates measured at day 14, we further quantified
371 the variance explained by the random intercepts (i.e., both original nest box ID and nest box
372 of rearing ID included as random intercepts, while treatment, initial brood size, hatching date
373 and mtDNAcn were included as fixed factors), using *RptR* package (gaussian distribution, N

374 bootstraps = 1000) (Nakagawa & Schielzeth, 2010; Stoffel et al, 2017). Mitochondrial ROS
375 production in nestlings (day 14) and juveniles was analyzed according to the treatment and
376 the initial brood size, but also according to the number of nestlings at day 14 using a LMM.

377 The effect of the brood size manipulation and the number of nestlings on survival
378 metrics (fledging success and recapture probability as juveniles) were estimated with
379 GLMMs (logistic binary distribution of dependent variables: 0 = dead, 1 = alive). We included
380 hatching date as covariate, while both original nest box ID and nest box of rearing ID were
381 included as random intercepts. In case of convergence issues with the models, we only
382 included the nest of rearing ID as a random intercept and removed the hatching date from
383 covariates if needed.

384 For investigating the contribution of mitochondrial respiration rates at day 14 on
385 juvenile apparent survival (i.e., recapture probability), we performed GLM on survival (logistic
386 binary distribution of dependent variables: 0 = dead, 1 = alive) and included mitochondrial
387 respiration rates or FCR(s) and hatching date as explanatory factors. As the number of
388 individuals recaptured was less than 2 individuals for several nests, we could not include the
389 nest of rearing ID as a random intercept in our models (convergence issues).

390 All models were performed using *lme4* package (Bates et al., 2015). Results from
391 type III ANOVA tables with *F* values and *P* values (i.e., testing the main effect of each factor
392 and interaction) were calculated based on Satterthwaite's method and are presented in the
393 text. Results from GLMMs (logistic binary distribution) were calculated based on Wald
394 Chisquare tests (type II ANOVA). Model estimates and Odds Ratios (with associated 95% CI
395 and *P* values) are reported in tables. *emmeans* package was used for conducting multiple
396 *post hoc* comparisons (adjusted with Tukey honest significant differences correction). Effect-
397 sizes (Cohen's D) were estimated using *effsize* package (Ben-Shachar et al., 2020). Values
398 were considered as statistically significant for *P* < 0.05.

399 **Results**

400 1. Brood size manipulation
401 Our treatment led to significant differences in brood size between treatment groups (R, C, E)
402 after the manipulation: average (\pm SEM, on raw data) brood sizes were R = 6.00 \pm 0.32
403 (initial 8.00 \pm 0.32), C = 7.50 \pm 0.44 (initial 7.50 \pm 0.44), E = 9.68 \pm 0.28 (initial 7.68 \pm 0.28)
404 nestlings per nest on day 2 (Tukey HSD *post hoc*: all comparisons $P < 0.009$). Brood size
405 remained significantly higher for the E group than C or R during the whole growth period
406 (from day 2 to day 14) (all Cohen's D > 1.50) (Tukey HSD *post hoc*: C vs. E and E vs. R
407 comparisons, all $P < 0.02$), while the differences in brood sizes between C and R groups
408 were not significant at 7 days (Cohen's D with 95% CI = 0.43 [-0.25, 1.11]) and 14 days after
409 hatching (Cohen's D with 95% CI = 0.37 [-0.31, 1.05]) (Tukey HSD *post hoc*: C vs. R
410 comparison, all $P > 0.90$). Averages (\pm SEM, on raw data) for R, C and E groups were
411 respectively: R = 4.84 \pm 0.54, C = 5.25 \pm 0.72, E = 7.88 \pm 0.76 nestlings at day 7 and R =
412 4.60 \pm 0.54, C = 4.95 \pm 0.68, E = 7.56 \pm 0.75 nestlings at day 14.

413 2. Parental feeding rates and nestling growth trajectories

414 2.1. Experimental approach

415 Parental feeding rate (8 days after hatching) was significantly affected by the treatment ($F_{2,32}$
416 = 4.64, $P = 0.02$, see Fig.2A) with higher rates for the E group (raw data mean \pm SE = 41.26
417 \pm 6.03 visits per hour) compared to R group (raw data mean \pm SE = 25.75 \pm 4.05) (Tukey
418 HSD *post hoc* comparison: $P = 0.04$). Differences in parental feeding rate between E and C
419 groups (C: raw data mean \pm SE = 28.49 \pm 5.22) were close to significance (Tukey HSD *post*
420 *hoc* comparison: $P = 0.051$). Parental feeding rate significantly increased with initial brood
421 size (estimate \pm SE = 2.76 \pm 1.55, $F_{1,32} = 7.91$, $P = 0.008$) and significantly decreased with
422 time of day (estimate \pm SE = -2.67 \pm 6.13e-10, $F_{1,32} = 19.01$, $P < 0.001$).

423 Postnatal body mass dynamic (from day 2 to 14) was differentially affected by the
424 treatment depending on offspring age (day 2, day 7 and day 14: age*treatment: $F_{4,930.28} =$
425 5.07, $P < 0.001$, Table 2). Specifically, nestlings from the R group had a higher body mass

426 14 days after hatching than nestlings from C (+3.86%) and E groups (+3.97%) (Tukey HSD
427 *post hoc* R vs. C and R vs. E comparisons: all $t < -2.55$, all $P < 0.03$, see Fig. 2B), while
428 body mass at day 14 from nestlings raised in C and E groups were similar (Tukey HSD *post*
429 *hoc* C vs. E comparison: $t = 0.11$, $P = 0.99$, see Fig. 2B). We did not find any significant
430 difference in body mass 2 and 7 days after hatching (Tukey HSD *post hoc* comparisons: all t
431 < 1.12 , all $P > 0.50$). Body mass significantly increased with hatching date ($F_{1,79,19} = 9.61$, $P =$
432 0.003, see Table 2). The treatment did not significantly impact nestling wing length during
433 the growth period (day 7 and day 14) (all $F < 0.68$, all $P > 0.51$). We found a significant
434 positive correlation of wing length and initial brood size at day 14 (estimate \pm SE = $0.42 \pm$
435 0.18 , $F_{1,41.5} = 5.66$, $P = 0.02$). At both ages (day 7 and 14), wing length significantly
436 increased with hatching date (all $F > 6.57$, all $P < 0.01$). Juvenile body mass and size were
437 not associated with the treatment, the initial brood size nor both in interaction (all $F < 0.62$,
438 all $P > 0.55$).

439

440

441

A)

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

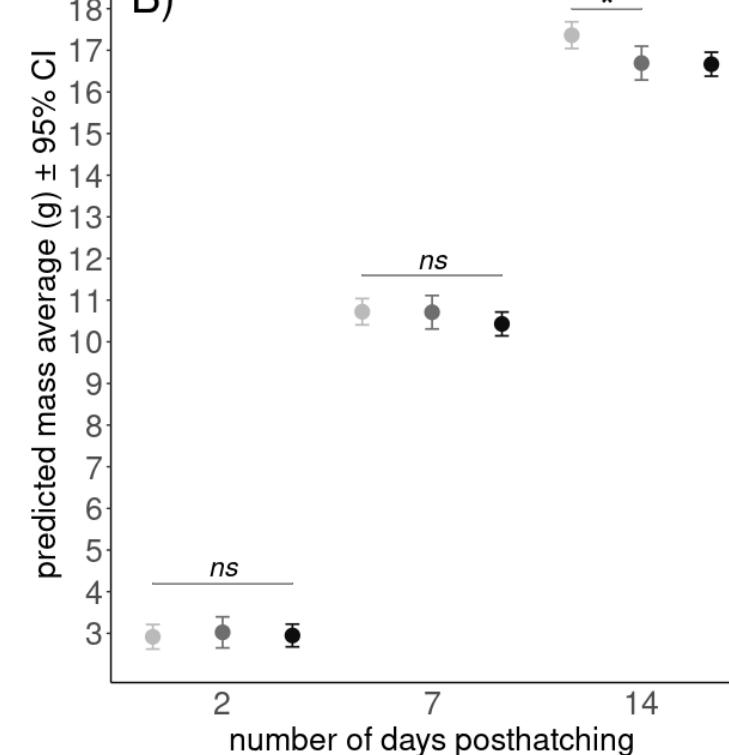

458

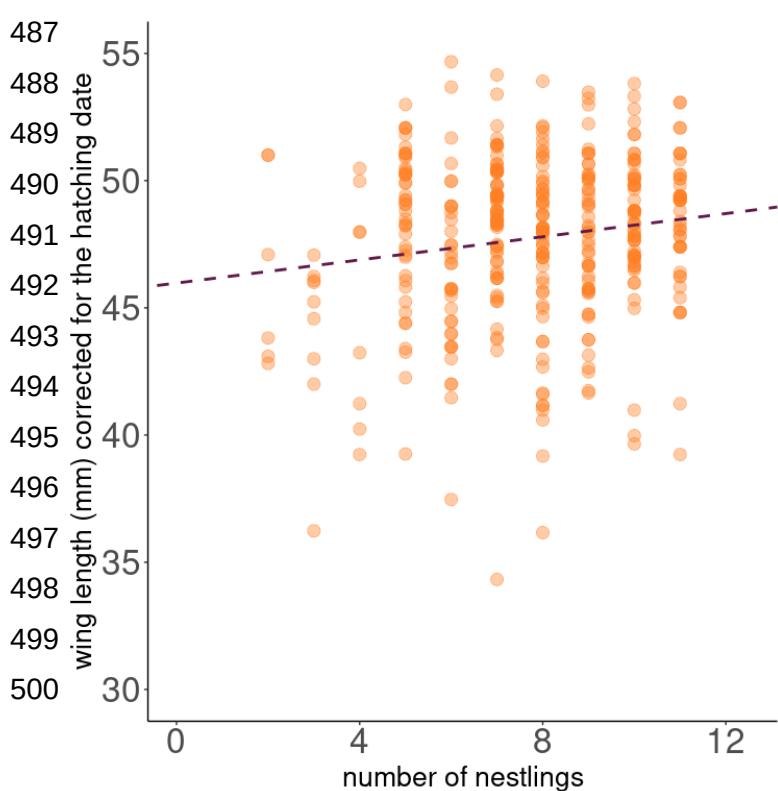
Fig.2: Parental feeding rate (A) and predicted body mass average of nestlings during the growth period (B) according to brood size manipulation treatment groups: reduced (R), control (C), enlarged (E) brood sizes. For A), raw data distribution is presented with boxplots ($n_C = 8$, $n_E = 15$, $n_R = 14$ nest boxes). Stars indicate the significance of Tukey HSD *post hoc* test (**P < 0.001). R2 = 0.53. For B), predicted values with their 95% CI and results from Tukey HSD *post hoc* tests are reported. Stars indicate the significance of the *post hoc* test (**P < 0.001, *P < 0.05). R2 = 0.96. See Table 1 for sample-sizes.

20

442 treatment R C E

B)

464 **Table 2. Results of a LMM testing the effect of age and brood size manipulation**
465 **treatment on nestling body mass.** Day 2: n = 540 observations, day 7: n = 420
466 observations, day 14: n = 403 observations, N = 540 individuals in total. Estimates are
467 reported with their 95% CI. Chick ID (ring), original nest box ID and nest box of rearing ID
468 were included as random intercepts in models. σ^2 , within-group variance; τ_{00} , between-
469 group variance. Sample size (n) along with marginal (fixed effects only) and conditional
470 (fixed and random effects). Bold indicates significance ($P < 0.05$).
471
472


Predictor	Estimate	95% CI	P value
(Intercept)	-0.27	-2.37 – 1.83	0.799
age (day 7)	7.69	7.38 – 7.99	<0.001
age (day 14)	13.67	13.36 – 13.98	<0.001
treatment (E)	-0.08	-0.54 – 0.39	0.748
treatment (R)	-0.11	-0.58 – 0.37	0.659
hatching date	0.05	0.02 – 0.09	0.003
age (day 7) : treatment (E)	-0.21	-0.58 – 0.17	0.288
age (day 14) : treatment (E)	0.05	-0.34 – 0.43	0.806
age (day 7) : treatment (R)	0.12	-0.30 – 0.54	0.577
age (day 14) : treatment (R)	0.78	0.35 – 1.20	<0.001
Random effects			
σ^2	1.35		
τ_{00} ring	0.13		
τ_{00} nest of origin	0.36		
τ_{00} nest of rearing	0.13		
n ring	540		
n nest of origin	70		
n nest of rearing	70		
n observations	1362		
Marginal R ² / Conditional R ²	0.945/0.962		

473

474

475 2.2 Correlative approach

476 Parental feeding rate significantly increased with the number of nestlings recorded 7 days
477 after hatching (estimate \pm SE = 4.28 ± 1.01 , $F_{1, 34} = 22.41$, $P < 0.001$).
478 When analyzing each age separately, in order to account for the number of nestlings in the
479 nest at a given age, nestling body mass at day 7 was negatively associated with the number
480 of nestlings in the nest (estimate \pm SE = -0.16 ± 0.06 , $F_{1, 45.44} = 6.15$, $P = 0.02$), while we did
481 not find an association for the wing length ($F_{1, 31.10} = 0.38$, $P = 0.54$). At day 14, nestling body
482 mass was not significantly associated with the number of nestlings ($F_{1, 52.70} = 0.12$, $P = 0.73$).
483 Nestling wing length at day 14 tended to increase with the number of nestlings (estimate \pm
484 SE: 0.23 ± 0.11 , $F_{1, 35.58} = 4.02$, $P = 0.05$, see Fig.3). Nestling body mass and wing length
485 both significantly increased with the hatching date at day 7 and 14 (all $F > 5.12$, all $P < 0.03$).
486

Fig.3. Predicted values of the wing length of 14-days-old nestlings according to the number of nestlings in the nest at day 14. Predicted values are extracted from linear mixed models (LMMs) and corrected for the average hatching date of the season. Regression line (in dotted line) and results from the models are presented. N = 403 individuals. Conditional R² of the model presented was 0.65.

501

502 3. Mitochondrial DNA copy number

503 3.1. Experimental approach

504 While mtDNAcn was not significantly impacted by the interaction of the age and the
505 treatment ($\chi^2 = 0.03$, $P = 0.11$), mtDNAcn significantly decreased during the entire growth
506 period (from day 2 to 14: Cohen's D with 95% CI = 1.88 [1.54, 2.21]) (estimate \pm SE = -0.1 \pm
507 0.01, $P < 0.001$, juveniles not included in the repeated measures analysis because of limited
508 sample size). Juvenile mtDNAcn was not significantly impacted by the treatment or the initial
509 brood size (all $P > 0.6$).

510 3.2. Correlative approach

511 While mtDNAcn at day 14 was not associated with the number of nestlings in the nest ($P =$
512 0.11), larger brood sizes a few days before fledging (i.e., day 14) predicted higher mtDNAcn
513 for juveniles (estimate \pm SE = 0.07 \pm 0.03, $P = 0.04$).

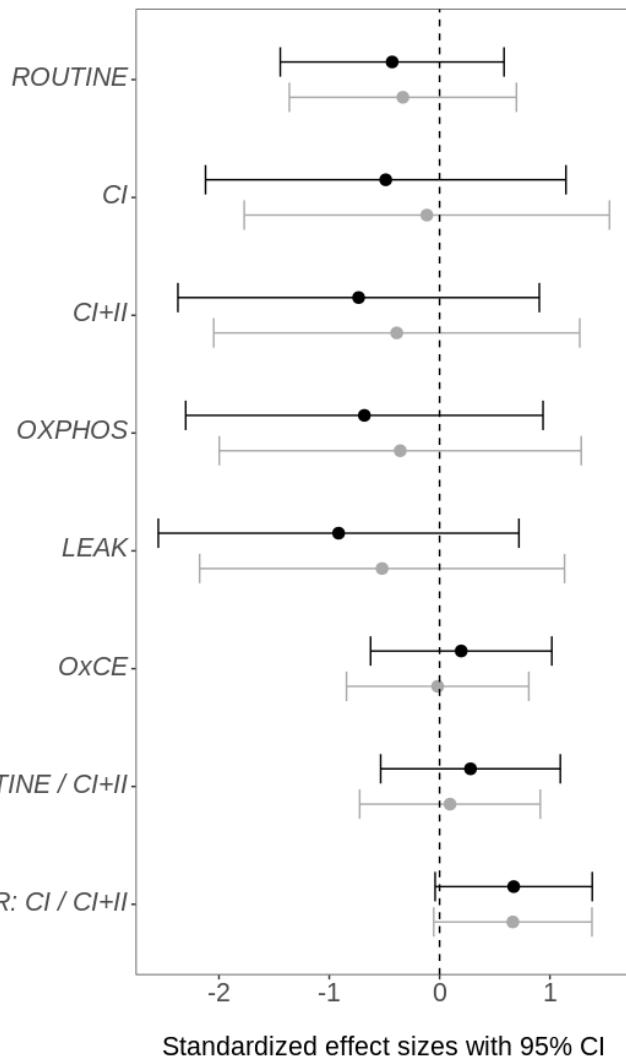
514

515 4. Mitochondrial aerobic metabolism

516 4.1. Experimental approach

517 We did not find any significant effect of the brood size manipulation treatment or of the initial
518 brood size on the different mitochondrial respiration rates and FCR(s) measured at day 14
519 (all $F < 2.17$, all $P > 0.13$, Fig.4). Juvenile mitochondrial respiration rates and FCR(s) were
520 not significantly impacted either by the treatment (all $F < 0.75$, all $P > 0.48$) or the initial
521 brood size (all $F < 2.36$, all $P > 0.13$). All mitochondrial respiration rates increased with
522 mtDNAcn at day 14 (all $F > 65.14$, all $P < 0.001$) and in juveniles (all $F > 5.39$, all $P > 0.02$),
523 except for LEAK (juveniles: $F_{1,49} = 3.07$, $P = 0.09$).

524


525

526

527

528

529

Fig.4: Effect of the brood size manipulation on mitochondrial metabolic rates and flux control ratios. Mitochondrial aerobic metabolism was measured at day 14 between individuals raised in reduced, control and enlarged broods (see sample-sizes Table 1). Standardized effect sizes are based on predicted values of the model and reported with their 95% CI. In black, effect sizes between individuals raised in enlarged vs. control broods. In grey, effect sizes between individuals raised in reduced vs. control broods.

530

531

532

533

534

535

536

537

538

539

540

541

542

543

FCR: ROUTINE / CI+II

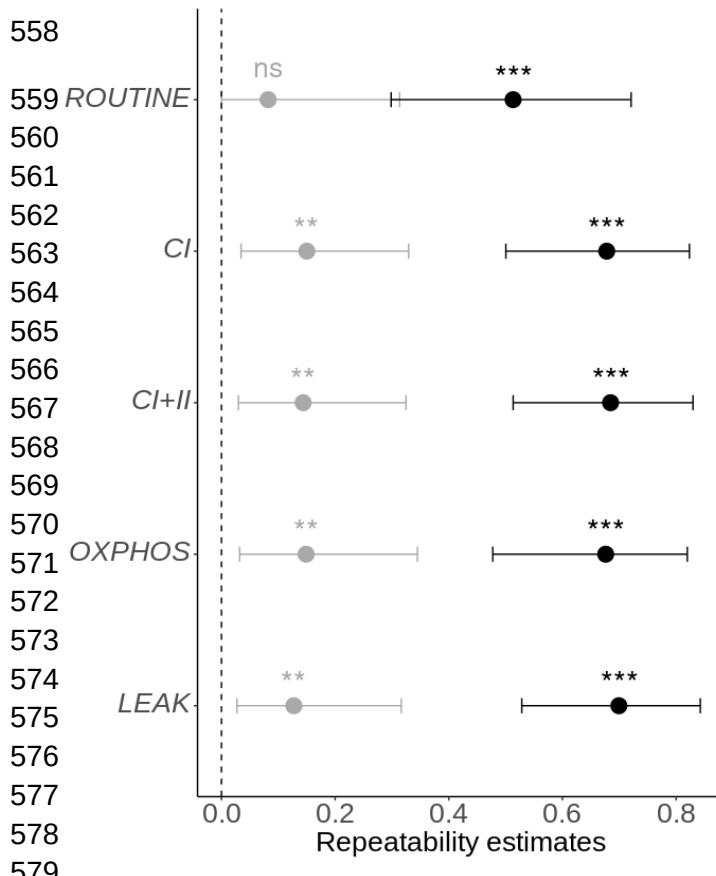
544

545

546

547

548


549 For all mitochondrial respiration rates measured at day 14, the nest of rearing significantly
550 contributed to explain the variance in our models (all repeatabilities > 0.51 , all $P < 0.001$, see
551 Fig.5). Except for *ROUTINE* (repeatability = 0.08, $P = 0.20$), the variance explained by the
552 nest of origin was significantly higher than 0 (all repeatabilities > 0.13 , all $P < 0.02$) but the
553 contribution of the nest of rearing was higher than the nest of origin (Fig.5).

554

555

556

557

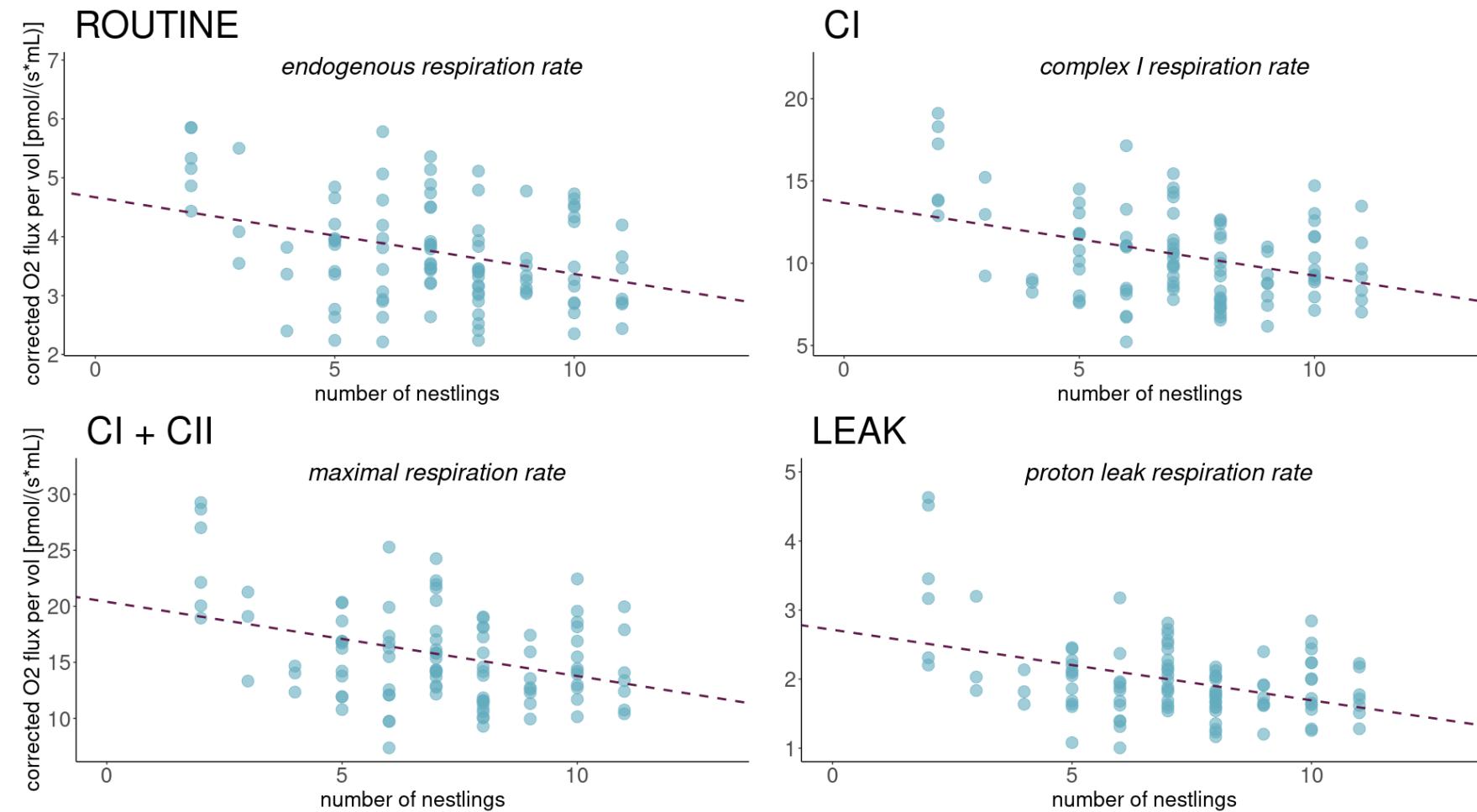
Fig.5: Variance explained by the nest of origin (in grey) and the nest of rearing (in black) in linear mixed models testing mitochondrial respiration rates at day 14 according to the number of nestlings (at day 14). Stars indicate significance to be different from 0 (*** $P < 0.001$, ** $P < 0.01$). Repeatabilities are presented with their 95% CI. ns: non significant. See Table 1 for sample-sizes.

580 4.2. Correlative approach

581 We found a negative association between the number of nestlings at day 14 and
582 mitochondrial respiration rates measured at day 14 (all $F > 8.80$, all $P < 0.005$, see Table 3,
583 Fig.6). OXPHOS coupling efficiency and both FCR_{ROUTINE/CI+II} and FCR_{CI/CI+II} were not
584 significantly associated with the number of nestlings at day 14 (all $F < 1.37$ and all $P > 0.25$,
585 see ESM.A). We found similar results when only including individuals raised in the C group
586 (see ESM.B, Table 2). CI, CI+II, OXPHOS and OXPHOS coupling efficiency all significantly
587 decreased with the hatching date (all $F > 9.58$, all $P < 0.003$). ROUTINE, CI, CI+II, LEAK
588 and OXPHOS significantly increased with mtDNAcn (all $F > 63.49$, all $P < 0.001$, see Table
589 3). Since nestlings from very small brood sizes had higher mitochondrial respiration rates
590 (see Fig.6), which could drive the associations, we performed the same statistical analysis
591 excluding nestlings raised in small broods (less than 5 chicks 14 days post hatching) ($n = 28$

592 nestlings from 12 nests removed from the analysis). In this case, we could not detect any
593 significant associations between the number of nestlings (day 14) on the different
594 mitochondrial respiration rates measured (all $F < 2.23$, all $P > 0.14$, see ESM.B). Juvenile
595 mitochondrial respiration rates (all $F < 0.21$, all $P > 0.65$) or FCRs (all $F < 0.72$, all $P > 0.49$),
596 were not associated with the number of nestlings at day 14, except for FCR_{CI/CI+II} for which
597 we found a negative association (estimate \pm SE = -0.005 ± 0.003 , $F_{1, 62} = 4.36$, $P = 0.04$).
598 *ROUTINE*, *CI*, *CI+II* and *OXPHOS* significantly increased with juvenile mtDNAcn (all $F >$
599 5.26, all $P < 0.03$), while *LEAK* was not significantly associated with mtDNAcn ($F_{1, 51} = 1.95$,
600 $P = 0.17$).

601 **Table 3. Results of linear mixed model testing the associations between the number of nestlings in the nest (14 days after hatching)**
 602 **and mitochondrial respiration rates measured on 14-day-old nestlings (N = 102 individuals, n = 55 nest boxes).** Mitochondrial
 603 respiration rates were corrected for the mitochondrial DNA copy number (i.e., proxy of mitochondrial density). Linear mixed models (LMM)
 604 estimates are reported with their 95% CI. Original nest box ID and nest box of rearing ID were included as random intercepts in the models. σ^2 ,
 605 within group variance; τ^2 between-group variance. Bold indicates significance ($P < 0.05$).


606

Predictors	ROUTINE			CI			CI + II			LEAK		
	Estimates	CI 95%	P-value									
(Intercept)	4.55	2.37 – 6.72	<0.001	20.12	12.93 – 27.31	<0.001	29.39	18.21 – 40.57	<0.001	2.70	1.20 – 4.20	<0.001
number of nestlings	-0.13	-0.22 – -0.04	0.005	-0.44	-0.72 – -0.17	0.002	-0.66	-1.09 – -0.23	0.003	-0.10	-0.16 – -0.04	<0.001
mtDNAcn	0.34	0.25 – 0.42	<0.001	0.91	0.69 – 1.12	<0.001	1.44	1.10 – 1.77	<0.001	0.18	0.14 – 0.23	<0.001
hatching date	-0.02	-0.06 – -0.02	0.305	-0.17	-0.29 – -0.04	0.009	-0.24	-0.43 – -0.05	0.013	-0.01	-0.04 – -0.01	0.384
Random effects												
σ^2	0.32			1.31			3.13			0.06		
τ^2 nest of origin	0.05			1.10			2.52			0.04		
τ^2 nest of rearing	0.33			4.21			10.35			0.19		
Observations	102			102			102			102		
Marginal R ² / Conditional R ²	0.488 / 0.767			0.487 / 0.898			0.483 / 0.899			0.454 / 0.889		

607

608

609 |

610

611

612

613

614

615

Fig. 6. Predicted values of mitochondrial respiration rates on 14 days old nestlings according to the number of nestlings at day 14. N = 102 individuals. Predicted values are extracted from linear mixed models (LMMs). Regression lines (in dotted lines) and results from the models are presented. Predicted values are corrected for the average hatching date of the season. Mitochondrial respiration rates were corrected for mitochondrial DNA copy number (i.e., proxy of the mitochondrial density). Original nest box ID and nest box of rearing ID were included as random intercepts in the models. R² of each model are reported in Table 3.

616 5. ROS production

617 5.1. Experimental approach

618 In 14-days-old nestlings, mitochondrial ROS production was not significantly affected by the
619 treatment ($F_{2, 45.7} = 0.62, P = 0.54$, see ESM.D) or the initial brood size ($F_{1, 49.9} = 0.05, P =$
620 0.82, see ESM.D). These results remained consistent in juveniles (treatment: $F_{2, 48} = 1.58, P$
621 = 0.22; initial brood size: $F_{1, 48} = 0.74, P = 0.39$, see ESM.D). While mitochondrial ROS
622 production was not significantly associated with mtDNAcn in nestlings ($F_{1, 83} = 0.48, P =$
623 0.49), juvenile mitochondrial ROS production significantly increased with mtDNAcn
624 measured in autumn (estimate \pm SE = $0.003 \pm 0.001, F_{1, 48} = 4.60, P = 0.04$).

625 5.2. Correlative approach

626 We did not find significant associations between the number of nestlings at day 14 and
627 nestling mitochondrial ROS production (day 14: $F_{1, 53.49} = 0.42, P = 0.52$) or in juveniles ($F_{1, 50}$
628 = 1.08, $P = 0.30$).

629

630 6. Survival metrics

631 6.1. Experimental approach

632 Fledgling success was not significantly affected by the treatment ($\chi^2 = 3.20, P = 0.25$, raw
633 data: R = 75.33%, C = 65.79%, E = 77.78%), neither by the initial brood size ($\chi^2 = 0.006, P$
634 = 0.83) or the hatching date ($\chi^2 = 2.11, P = 0.13$). Juvenile recapture probability was not
635 significantly affected by the treatment ($\chi^2 = 2.27, P = 0.33$, raw data: R = 12.17%, C =
636 22.22%, E = 18.52%) or the initial brood size ($\chi^2 = 0.02, P = 0.87$), but was negatively
637 associated with the hatching date ($\chi^2 = 15.47, P < 0.001$).

638 6.2. Correlative approach

639 Fledgling success was strongly positively associated with the number of nestlings in the nest
640 at day 14 ($\chi^2 = 61.47, P < 0.001$). Juvenile recapture probability was not significantly
641 associated with the number of nestlings day 14 ($\chi^2 = 0.23, P = 0.63$).

642

643 Finally, we did not find any significant associations between juvenile recapture probability,
644 mitochondrial respiration rates and FCR(s) measured at day 14 (all $P > 0.2$, see ESM.E).

645

646 **Discussion**

647 Overall, the experimental brood size manipulation did not significantly affect nestling
648 mitochondrial density, metabolism or ROS production. Despite a mild impact of the treatment
649 on nestling growth trajectories, body mass differences cannot be associated here with
650 variation in mitochondrial metabolism. Furthermore, we did not detect any significant long-
651 lasting effect of the brood size manipulation treatment on juveniles (neither on recapture
652 probability, body mass and size, nor mitochondrial density, metabolism and subsequent
653 ROS production). However, our results emphasized the importance of chick numbers in the
654 nest regardless of experimental manipulation for nestling mitochondrial respiration. Nestling
655 mitochondrial metabolic rates were negatively associated with the number of nestlings in the
656 nest (but see precautions in interpretations below). Our results also provide evidence that
657 environmental conditions during the growth period (nest of rearing) contribute more to
658 explaining variance in red blood cells mitochondrial metabolism than genetic inheritance pre-
659 and early postnatal parental effects (nest of origin) in great tits. Taken together, our results
660 suggest that the actual number of nestlings (rather than the modification of initial brood size)
661 is an important influence on nestling growth pattern and mitochondrial metabolism. The
662 number of siblings in a nest is expected to influence food availability and competition
663 between chicks, as well as early-life conditions critical to nestling growth, such as nest
664 temperature (Andreasson et al., 2016; Hope et al., 2021; Nord & Nilsson, 2011).

665 *Experimental approach*

666 Nestling growth trajectories (postnatal body mass) differed according to nestling age and our
667 treatment. As expected, individuals raised in the R group had a higher body mass a few
668 days before fledging compared to other groups (see also Hörak, 2003). While we expected
669 nestlings raised in E group to have lower body mass (Hörak, 2003; Rytkönen & Orell, 2001;
670 Smith et al., 1989), nestlings raised in E and C groups had similar body masses over the

671 entire growth period. Moreover, nestling wing length did not differ between treatment groups.
672 It is possible that parents managed to compensate for the brood size augmentation by
673 increasing parental effort, as suggested by results on parental feeding rates (measured on a
674 subsample of nests). The number of visits was significantly higher in E group compared to R
675 and tended to be higher compared to C (although non-significant). These results would be
676 supported by prior studies suggesting that parents can rear more nestlings than the number
677 of eggs laid (Casti, 2018; Monaghan & Nager, 1997; Vander Werf, 1992).

678 It is worth noting that in our experiment the difference in nestling number between C
679 and R groups did not remain significant (small effect-sizes between groups) at the end of the
680 growth period (from day 7 to 14). This likely contributes to explain why our experiment failed
681 to demonstrate large differences between treatment groups. It is interesting that even
682 without differences in the number of chicks at the end of the experiment between C and R
683 groups, the R group had larger chicks (see hypothesis below).

684 It has been shown that a brood size enlargement can affect nestling metabolism, as
685 brood size decreases whole animal resting rate of oxygen consumption in the short-term
686 (tree swallow), and increases standard metabolic rate in the a long-term (zebra finches)
687 (Burness et al., 2000; Verhulst et al., 2006). In our case, the brood size manipulation
688 treatment did not have an effect on nestling red blood cell mitochondrial metabolism during
689 the growth period or in a longer-term in juveniles. This lack of effects may be explained by
690 the two reasons mentioned above (i.e., increase of parental feeding rates and no differences
691 in chick number between C and R groups). Nestling ROS production (and juvenile ROS
692 production) were not either impacted by the treatment. This outcome is in accordance with
693 our findings that mitochondrial aerobic metabolism did not differ between treatment groups.
694 Despite the mild effect of brood size manipulation on nestling body mass, nestling fledgling
695 success and apparent medium-term survival (i.e., recapture probability as juvenile) were not
696 significantly impacted by the treatment.

697 *Correlative approach*

698 Whereas the brood size manipulation treatment had only a mild effect on nestling growth
699 pattern, our results suggest that the actual number of offspring in the nest has an important
700 influence on nestling postnatal body mass and structural size. Nestling body mass was
701 negatively associated with the number of nestlings in the nest in the middle of the growth
702 period (day 7), while nestling wing length tended to be positively associated with the number
703 of individuals in the nest at the end of the growth period (day 14). This insight was surprising
704 as the opposite results (i.e., negative association between the wing length and the number of
705 chicks in the nest) have been reported in the literature (Hörak, 2003; Rytkönen & Orell,
706 2001; Smith et al., 1989). Yet, these results from previous studies have been found in the
707 framework of a brood size manipulation and did not strictly focus on the actual number of
708 chicks in the nest.

709 We found a negative association between mitochondrial metabolism (*ROUTINE*, *CI*,
710 *CI+II*, *LEAK* and *OXPHEOS*) and number of nestlings. As both *LEAK* and *OXPHEOS* were
711 negatively correlated with number of nestlings, we did not find an association between
712 *OXPHEOS* coupling efficiency and nestling number. This suggests that higher mitochondrial
713 metabolic rates for nestlings raised in small broods were linked to an increase in oxidative
714 phosphorylation (i.e., a proxy of ATP production) that may reflect higher energetic demands
715 compared to larger nests. While we cannot here strictly test what requires higher energetic
716 demands for the nestlings, it is possible that higher mitochondrial metabolic rates were
717 linked to a higher thermogenesis associated with the small number of chicks in the nest
718 (Bicudo et al., 2001).

719 While these results are in accordance with our predictions (decrease in mitochondrial
720 metabolic rates in larger broods) it is important to note that these negative associations
721 (nestling structural size and mitochondrial metabolism) with the number of nestlings did not
722 remain significant when nestlings from small broods (less than 5 nestlings at day 14) were
723 excluded from the analysis, meaning that those specific broods drove the patterns. Lower
724 mitochondrial metabolic rates in larger broods were probably not associated with a stressful
725 rearing environment in our case. Interestingly, broods with less than 5 nestlings at day 14 (n

726 = 20 nests) had really low survival chances during the growth period (from day 2 to 14)
727 compared to the larger broods (> 4 nestlings, n = 50 nests) (average on raw data: 25.5% vs.
728 92.4% of survival at day 14) and most of the nestlings did not reach day 7 (average at day 7:
729 5.1 nestlings lost in small broods vs. 0.34 in larger broods). We therefore suspect nestling
730 growth and mitochondrial metabolic patterns to rather reflect unusual rearing conditions than
731 being general patterns. Several hypotheses could explain higher mitochondrial metabolic
732 rates for individuals raised in (very) small broods. Our main hypothesis is that these
733 individuals might be at a less-advanced developmental stage. It has been shown in several
734 avian species that mitochondrial quantity and/or respiration decreases during postnatal
735 development (Stier et al. 2020; Stier et al. 2022; Cossin-Sevrin et al. 2022, Hsu et al. 2023;
736 but see: Dawson & Salmón, 2020), and it is thus possible that higher metabolic rates in very
737 small broods reflect that their nestlings are less developed for a given age. This hypothesis
738 is supported by the fact that individuals raised in small broods had a smaller structural size
739 (wing length) than in larger broods.

740 Then, the high nestling mortality may be an indication of poor rearing conditions (e.g.,
741 food quality, incubation time). It has been previously shown that in some cases
742 environmental stressors may lead to higher metabolic rate (in interaction with glucocorticoid
743 levels in zebra finches) (Jimeno et al., 2017).

744 Finally, these small broods with a high unusual mortality during early-growth may
745 be subject to selective disappearance and nestlings surviving until 14 days after hatching
746 represent a non-random pool of individuals that managed to survive and cope with
747 detrimental conditions during early-growth. This hypothesis would be supported by our
748 results showing that early-life environmental conditions are the major determinant in nestling
749 mitochondrial metabolism in red blood cells. Indeed, our study demonstrates that both
750 genetic inheritance (but also complementary mechanisms, such as parental effects before
751 the cross-fostering) and the rearing environment contribute to variation in offspring
752 mitochondrial traits, but with a larger contribution from the rearing environment. Similar
753 results about lower contribution of familial background have been found for resting metabolic

754 rate in collared flycatcher nestlings (*Ficedula albicollis*) (McFarlane et al., 2021). While the
755 underlying mechanisms of modulation of mitochondria by early-life environmental conditions
756 are unknown, recent research points out that mitochondrial function can respond to
757 environmental cues through changes in gene expression and mitochondrial DNA methylation
758 (Sharma et al., 2019; Wallace, 2016).

759 Despite the negative association between nestling mitochondrial metabolic rates
760 and the number of nestlings, we did not find any association between nestling ROS
761 production and the number of nestlings. This result suggests that higher metabolism did not
762 lead to higher mitochondrial ROS production in red blood cells in our case. Yet, only 13
763 individuals raised in small broods were included in ROS production analysis (out of 52), and
764 only 2 juveniles (out of 32), which may explain the lack of association. Furthermore, an
765 increase of mitochondrial metabolism is not always associated with a higher ROS production
766 (see limitations below).

767 In contrast to our predictions, fledging success was positively associated with the number of
768 nestlings at day 14 (even when excluding the very small broods from the analysis), while we
769 did not find an association of the brood size a few days before fledging with recapture
770 probability as juveniles. One objective of this study was to assess if differences in nestling
771 mitochondrial metabolic phenotype could predict different juvenile recapture probabilities. In
772 our case, we did not find any association of nestling mitochondrial metabolic rates on
773 juvenile apparent survival. We may have expected higher mitochondrial metabolism to lead
774 to detrimental consequences through an increase in ROS release (potentially leading to
775 oxidative stress). However, as previously stated, ROS production did not differ between
776 nestlings and both results are concordant. Furthermore, if nestlings that survived until day 14
777 were subject to selective disappearance, testing for the association between mitochondrial
778 phenotype and survival as juvenile seems challenging.

779 As a limitation in our study, mitochondrial ROS production, substrate preferences
780 and mitochondrial aerobic metabolism are known to vary between tissues (Mailloux, 2020;
781 Salmón et al., 2022). Therefore, one should always be careful when investigating ROS

782 production in a single tissue (Costantini, 2019; Monaghan et al., 2009). However, we
783 focused our study on blood samples to i) estimate nestling survival and potential long-lasting
784 effect of our experiment and ii) since mitochondrial aerobic metabolism measurements in
785 blood samples can be positively associated with other tissues (Koch et al., 2021; Stier et al.,
786 2017). Collecting blood samples allows the use of limited-invasive methods on wild species,
787 and to avoid terminal sampling.

788 Altogether, our results suggest that nestling mitochondrial aerobic metabolism is
789 associated with the actual number of nestlings in the nest, and the contribution of postnatal
790 environmental conditions experienced by the offspring explains a large part of the variation.
791 The effect of rearing conditions on offspring mitochondrial metabolism emphasizes the
792 plasticity of mitochondrial metabolism in changing environments. Further studies would be
793 needed to closely investigate what are the major environmental cues affecting the offspring
794 mitochondrial metabolism during the growth period (e.g., availability of nutrients, ambient
795 temperature) (White & Kearney, 2013), but also to disentangle the role of the brood size in
796 influencing rearing environment (e.g., nest temperature (Andreasson et al., 2016)) and its
797 consequences on nestling physiology and fitness-related traits (e.g., body temperature, DNA
798 methylation, ageing) (Andreasson et al., 2018; Koch et al., 2021; Sheldon et al., 2018).

799

800 **Acknowledgements**

801 We are grateful to Toni Laaksonen, Jorma Nurmi, Robin Cristofari, Natacha Garcin, Ida
802 Penttinen, Bin-Yan Hsu and volunteer bird ringers for their help on the field. We thank Tuija
803 Koivisto for the video analysis. We thank Marine Pery for her involvement in this project.

804

805 **Competing interests**

806 We declare we have no competing interests.

807 **Funding**

808 N.C-S was supported by EDUFI Fellowship (Opetushallitus), Maupertuis Grant and the
809 Biology, Geography and Geology doctoral program of the University of Turku at the time of
810 writing. A.S was funded by the Turku Collegium for Science and Medicine, who contributed
811 to fund the field study. A.S acknowledges funding from the European Commission Marie
812 Skłodowska-Curie Postdoctoral Fellowship (#894963) at the time of writing. S.R and M.H
813 acknowledge support from Academy of Finland (#286278 granted to S.R).

814 **Ethics**

815 All procedures were approved by the Animal Experiment Committee of the State Provincial
816 Office of Southern Finland (license no. ESAVI/5454/2020) and by the Environmental Center
817 of Southwestern Finland (license no. VARELY/890/2020) granted to S.R.

818 **Authors contribution**

819 S.R, A.S had the original idea and designed the study with N.C-S. N.C-S, S.R, A.S, M.H
820 collected the data. N.C-S and A.S collected mitochondrial respiration rates measurements.
821 N.C-S performed DNA extractions and conducted qPCR analysis in collaboration with S.Z.
822 N.C-S conducted statistical analysis and wrote the first version of this manuscript under the
823 supervision of S.R and K.A. All co-authors revised the manuscript. S.R, A.S, V.A-V funded
824 experimental work and data collection.

825

826 **Data available statement**

827 Data are available on Figshare DOI: 10.6084/m9.figshare.22354432 (embargo pending upon
828 publication).

829

830 **References:**

831 Andreasson, F., Nord, A., & Nilsson, J.-Å. (2016). Brood size constrains the development of
832 endothermy in blue tits. *Journal of Experimental Biology*, 219(14), 2212–2219.

833 <https://doi.org/10.1242/jeb.135350>

834 Andreasson, F., Nord, A., & Nilsson, J.-A. (2018). Experimentally increased nest
835 temperature affects body temperature, growth and apparent survival in blue tit
836 nestlings. *Journal of Avian Biology*, 49, jav-01620. <https://doi.org/10.1111/jav.01620>

837 Arnold, P. A., Delean, S., Cassey, P., & White, C. R. (2021). Meta-analysis reveals that
838 resting metabolic rate is not consistently related to fitness and performance in
839 animals. *Journal of Comparative Physiology B*, 191(6), 1097–1110.
840 <https://doi.org/10.1007/s00360-021-01358-w>

841 Badyaev, A. V., & Uller, T. (2009). Parental effects in ecology and evolution: Mechanisms,
842 processes and implications. *Philosophical Transactions of the Royal Society B:
843 Biological Sciences*, 364(1520), 1169–1177. <https://doi.org/10.1098/rstb.2008.0302>

844 Ballard, J. W. O., & Pichaud, N. (2014). Mitochondrial DNA: More than an evolutionary
845 bystander. *Functional Ecology*, 28(1), 218–231. [https://doi.org/10.1111/1365-2435.12177](https://doi.org/10.1111/1365-
846 2435.12177)

847 Bicudo, J. E. P., Vianna, C. R., & Chauí-Berlinck, J. G. (2001). Thermogenesis in birds.
848 *Bioscience Reports*, 21, 181-188. <https://doi.org/10.1023/A:1013648208428>

849 Blount, J. D., Metcalfe, N. B., Arnold, K. E., Surai, P. F., Devevey, G. L., & Monaghan, P.
850 (2003). Neonatal nutrition, adult antioxidant defences and sexual attractiveness in the
851 zebra finch. *Proceedings of the Royal Society of London. Series B: Biological
852 Sciences*, 270(1525), 1691–1696. <https://doi.org/10.1098/rspb.2003.2411>

853 Blount, J. D., Metcalfe, N. B., Arnold, K. E., Surai, P. F., & Monaghan, P. (2006). Effects of
854 neonatal nutrition on adult reproduction in a passerine bird. *Ibis*, 148(3), 509–514.
855 <https://doi.org/10.1111/j.1474-919X.2006.00554.x>

856 Bonduriansky, R., & Crean, A. J. (2018). What are parental condition-transfer effects and
857 how can they be detected? *Methods in Ecology and Evolution*, 9(3), 450–456.
858 <https://doi.org/10.1111/2041-210X.12848>

859 Brown, J. H., Hall, C. A. S., & Sibly, R. M. (2018). Equal fitness paradigm explained by a
860 trade-off between generation time and energy production rate. *Nature Ecology &
861 Evolution*, 2(2), Article 2. <https://doi.org/10.1038/s41559-017-0430-1>

862 Burger, Hou, C., A. S. Hall, C., & Brown, J. H. (2021). Universal rules of life: Metabolic rates,
863 biological times and the equal fitness paradigm. *Ecology Letters*, 24(6), 1262–1281.
864 <https://doi.org/10.1111/ele.13715>

865 Burger, Hou, C., & Brown, J. H. (2019). Toward a metabolic theory of life history.
866 *Proceedings of the National Academy of Sciences*, 116(52), 26653–26661.
867 <https://doi.org/10.1073/pnas.1907702116>

868 Burgess, S. C., & Marshall, D. J. (2014). Adaptive parental effects: The importance of
869 estimating environmental predictability and offspring fitness appropriately. *Oikos*,

870 123(7), 769–776. <https://doi.org/10.1111/oik.01235>

871 Burness, G. P., McClelland, G. B., Wardrop, S. L., & Hochachka, P. W. (2000). Effect of
872 brood size manipulation on offspring physiology: An experiment with passerine birds.
873 *Journal of Experimental Biology*, 203(22), 3513–3520.
874 <https://doi.org/10.1242/jeb.203.22.3513>

875 Casti, J. L. (2018). *Beyond Belief: Randomness, Prediction and Explanation in Science*.
876 CRC Press.

877 Cossin-Sevrin, N., Hsu, B.-Y., Marciau, C., Viblanc, V. A., Ruuskanen, S., & Stier, A. (2022).
878 Effect of prenatal glucocorticoids and thyroid hormones on developmental plasticity
879 of mitochondrial aerobic metabolism, growth and survival: An experimental test in
880 wild great tits. *Journal of Experimental Biology*, 225(9), jeb243414.
881 <https://doi.org/10.1242/jeb.243414>

882 Costantini, D. (2019). Understanding diversity in oxidative status and oxidative stress: The
883 opportunities and challenges ahead. *Journal of Experimental Biology*, 222(13),
884 jeb194688. <https://doi.org/10.1242/jeb.194688>

885 Criscuolo, F., Monaghan, P., Proust, A., Škorpilová, J., Laurie, J., & Metcalfe, N. B. (2011).
886 Costs of compensation: Effect of early life conditions and reproduction on flight
887 performance in zebra finches. *Oecologia*, 167(2), 315–323.
888 <https://doi.org/10.1007/s00442-011-1986-0>

889 Dawson, N. J., & Salmón, P. (2020). Age-related increase in mitochondrial quantity may
890 mitigate a decline in mitochondrial quality in red blood cells from zebra finches
891 (*Taeniopygia guttata*). *Experimental Gerontology*, 133, 110883.
892 <https://doi.org/10.1016/j.exger.2020.110883>

893 De Kogel, C. H. (1997). Long-Term Effects of Brood Size Manipulation on Morphological
894 Development and Sex-Specific Mortality of Offspring. *Journal of Animal Ecology*,
895 66(2), 167–178. <https://doi.org/10.2307/6019>

896 Gluckman, P. D., Hanson, M. A., & Beedle, A. S. (2007). Early life events and their
897 consequences for later disease: A life history and evolutionary perspective. *American
898 Journal of Human Biology*, 19(1), 1–19. <https://doi.org/10.1002/ajhb.20590>

899 Gyllenhammer, L. E., Entringer, S., Buss, C., & Wadhwa, P. D. (2020). Developmental
900 programming of mitochondrial biology: A conceptual framework and review.
901 *Proceedings of the Royal Society B: Biological Sciences*, 287(1926), 20192713.
902 <https://doi.org/10.1098/rspb.2019.2713>

903 Heine, K. B., & Hood, W. R. (2020). Mitochondrial behaviour, morphology, and animal
904 performance. *Biological Reviews*, 95(3), 730–737. <https://doi.org/10.1111/brv.12584>

905 Hoogland, M., & Ploeger, A. (2022). Two Different Mismatches: Integrating the
906 Developmental and the Evolutionary-Mismatch Hypothesis. *Perspectives on*

907 *Psychological Science*, 17456916221078318.
908 <https://doi.org/10.1177/17456916221078318>

909 Hope, S. F., DuRant, S. E., Hallagan, J. J., Beck, M. L., Kennamer, R. A., & Hopkins, W. A.
910 (2021). Incubation temperature as a constraint on clutch size evolution. *Functional
911 Ecology*, 35(4), 909–919. <https://doi.org/10.1111/1365-2435.13764>

912 Hsu B-Y, Cossin-Sevrin N, Stier A, Ruuskanen S. (2023). Prenatal thyroid hormones
913 accelerate postnatal growth and telomere shortening in wild great tits. *Journal of
914 Experimental Biology*. <https://doi:10.1242/jeb.243875>

915 Hörak, P. (2003). When to pay the cost of reproduction? A brood size manipulation
916 experiment in great tits (*Parus major*). *Behavioral Ecology and Sociobiology*, 54(2),
917 105–112. <https://doi.org/10.1007/s00265-003-0608-1>

918 Jimeno, B., Hau, M., & Verhulst, S. (2017). Strong association between corticosterone levels
919 and temperature-dependent metabolic rate in individual zebra finches. *Journal of
920 Experimental Biology*, 220(23), 4426–4431. <https://doi.org/10.1242/jeb.166124>

921 Koch, R. E., Buchanan, K. L., Casagrande, S., Crino, O., Dowling, D. K., Hill, G. E., Hood,
922 W. R., McKenzie, M., Mariette, M. M., Noble, D. W. A., Pavlova, A., Seebacher, F.,
923 Sunnucks, P., Udino, E., White, C. R., Salin, K., & Stier, A. (2021). Integrating
924 Mitochondrial Aerobic Metabolism into Ecology and Evolution. *Trends in Ecology &
925 Evolution*, 36(4), 321–332. <https://doi.org/10.1016/j.tree.2020.12.006>

926 Lane, N. (2011). The Costs of Breathing. *Science*, 334(6053), 184–185.
927 <https://doi.org/10.1126/science.1214012>

928 Mailloux, R. J. (2020). An Update on Mitochondrial Reactive Oxygen Species Production.
929 *Antioxidants*, 9(6), Article 6. <https://doi.org/10.3390/antiox9060472>

930 Mao, L.-Y., Xu, J.-Y., Shi, L., Zheng, W.-H., & Liu, J.-S. (2019). Food restriction decreases
931 thermoregulation in the silky starling *Sturnus sericeus* (Aves: Passeriformes). *The
932 European Zoological Journal*, 86(1), 322–332.
933 <https://doi.org/10.1080/24750263.2019.1665114>

934 Marshall, D. J., & Uller, T. (2007). When is a maternal effect adaptive? *Oikos*, 116(12),
935 1957–1963. <https://doi.org/10.1111/j.2007.0030-1299.16203.x>

936 Mazat, J.-P., Devin, A., & Ransac, S. (2020). Modelling mitochondrial ROS production by the
937 respiratory chain. *Cellular and Molecular Life Sciences*, 77(3), 455–465.
938 <https://doi.org/10.1007/s00018-019-03381-1>

939 McFarlane, S. E., Ålund, M., Sirkiä, P. M., & Qvarnström, A. (2021). Low Heritability but
940 Significant Early Environmental Effects on Resting Metabolic Rate in a Wild
941 Passerine. *The American Naturalist*, 198(4), 551–560. <https://doi.org/10.1086/715842>

942 Meunier, J., Körner, M., & Kramer, J. (2022). Parental Care. In *Reproductive Strategies in
943 Insects*. CRC Press.

944 Monaghan, P., Metcalfe, N. B., & Torres, R. (2009). Oxidative stress as a mediator of life
945 history trade-offs: Mechanisms, measurements and interpretation. *Ecology Letters*,
946 12(1), 75–92. <https://doi.org/10.1111/j.1461-0248.2008.01258.x>

947 Monaghan, P., & Nager, R. G. (1997). Why don't birds lay more eggs? *Trends in Ecology &*
948 *Evolution*, 12(7), 270–274. [https://doi.org/10.1016/S0169-5347\(97\)01094-X](https://doi.org/10.1016/S0169-5347(97)01094-X)

949 Mousseau, T. A., & Fox, C. W. (1998). *Maternal Effects As Adaptations*. Oxford University
950 Press.

951 Nord, A., & Nilsson, J.-Å. (2011). Incubation Temperature Affects Growth and Energy
952 Metabolism in Blue Tit Nestlings. *The American Naturalist*, 178(5), 639–651.
953 <https://doi.org/10.1086/662172>

954 Pettersen, A. K., Marshall, D. J., & White, C. R. (2018). Understanding variation in metabolic
955 rate. *Journal of Experimental Biology*, 221(1), jeb166876.
956 <https://doi.org/10.1242/jeb.166876>

957 Picard, M., & McEwen, B. S. (2018). Psychological stress and mitochondria: a systematic
958 review. *Psychosomatic medicine*, 80(2), 141.
959 <https://doi.org/10.1097/PSY.0000000000000545>

960 Rogers, F. D., & Bales, K. L. (2019). Mothers, Fathers, and Others: Neural Substrates of
961 Parental Care. *Trends in Neurosciences*, 42(8), 552–562.
962 <https://doi.org/10.1016/j.tins.2019.05.008>

963 Rytkönen, S., & Orell, M. (2001). Great tits, *Parus major*, lay too many eggs: Experimental
964 evidence in mid-boreal habitats. *Oikos*, 93(3), 439–450.
965 <https://doi.org/10.1034/j.1600-0706.2001.930309.x>

966 Salmón, P., Millet, C., Selman, C., Monaghan, P., & Dawson, N. J. (2022). Tissue-specific
967 reductions in mitochondrial efficiency and increased ROS release rates during ageing
968 in zebra finches, *Taeniopygia guttata*. *GeroScience*. <https://doi.org/10.1007/s11357-022-00624-1>

970 Sánchez-Tójar, A., Lagisz, M., Moran, N. P., Nakagawa, S., Noble, D. W. A., & Reinhold, K.
971 (2020). The jury is still out regarding the generality of adaptive 'transgenerational'
972 effects. *Ecology Letters*, 23(11), 1715–1718. <https://doi.org/10.1111/ele.13479>

973 Sastre, J., Pallardó, F. V., & Viña, J. (2003). The role of mitochondrial oxidative stress in
974 aging. *Free Radical Biology and Medicine*, 35(1), 1–8. [https://doi.org/10.1016/S0891-5849\(03\)00184-9](https://doi.org/10.1016/S0891-5849(03)00184-9)

976 Sharma, N., Pasala, M. S., & Prakash, A. (2019). Mitochondrial DNA: Epigenetics and
977 environment. *Environmental and Molecular Mutagenesis*, 60(8), 668–682.
978 <https://doi.org/10.1002/em.22319>

979 Sheldon, E. L., Schrey, A. W., Ragsdale, A. K., & Griffith, S. C. (2018). Brood size influences
980 patterns of DNA methylation in wild Zebra Finches (*Taeniopygia guttata*). *The Auk*,

981 135(4), 1113–1122. <https://doi.org/10.1642/AUK-18-61.1>

982 Smith, H. G., Kallander, H., & Nilsson, J.-A. (1989). The Trade-Off Between Offspring

983 Number and Quality in the Great Tit *Parus major*. *Journal of Animal Ecology*, 58(2),

984 383–401. JSTOR. <https://doi.org/10.2307/4837>

985 Stier, A., Romestaing, C., Schull, Q., Lefol, E., Robin, J.-P., Roussel, D., & Bize, P. (2017).

986 How to measure mitochondrial function in birds using red blood cells: A case study in

987 the king penguin and perspectives in ecology and evolution. *Methods in Ecology and*

988 *Evolution*, 8(10), 1172–1182. <https://doi.org/10.1111/2041-210X.12724>

989 Stier, A., Bize, P., Hsu, B. Y., & Ruuskanen, S. (2019). Plastic but repeatable: rapid

990 adjustments of mitochondrial function and density during reproduction in a wild bird

991 species. *Biology Letters*, 15(11), 20190536. <https://doi.org/10.1098/rsbl.2019.0536>

992 Stier A, Hsu B-Y, Marciau C, Doligez B, Gustafsson L, Bize P, Ruuskanen S. (2020). Born

993 to be young? Prenatal thyroid hormones increase early-life telomere length in wild

994 collared flycatchers. *Biology Letters* **16**, 20200364–4.

995 <https://doi:10.1098/rsbl.2020.0364>

996 Stier, A., Monaghan, P., & Metcalfe, N. B. (2022). Experimental demonstration of prenatal

997 programming of mitochondrial aerobic metabolism lasting until adulthood.

998 *Proceedings of the Royal Society B: Biological Sciences*, 289(1970), 20212679.

999 <https://doi.org/10.1098/rspb.2021.2679>

1000 Uller, T. (2008). Developmental plasticity and the evolution of parental effects. *Trends in*

1001 *Ecology & Evolution*, 23(8), 432–438. <https://doi.org/10.1016/j.tree.2008.04.005>

1002 Uller, T., Nakagawa, S., & English, S. (2013). Weak evidence for anticipatory parental

1003 effects in plants and animals. *Journal of Evolutionary Biology*, 26(10), 2161–2170.

1004 <https://doi.org/10.1111/jeb.12212>

1005 Vander Werf, E. (1992). Lack's Clutch Size Hypothesis: An Examination of the Evidence

1006 Using Meta-Analysis. *Ecology*, 73(5), 1699–1705. <https://doi.org/10.2307/1940021>

1007 Verhulst, S., Holveck, M.-J., & Riebel, K. (2006). Long-term effects of manipulated natal

1008 brood size on metabolic rate in zebra finches. *Biology Letters*, 2(3), 478–480.

1009 <https://doi.org/10.1098/rsbl.2006.0496>

1010 Wallace, D. C. (2016). Mitochondrial DNA in evolution and disease. *Nature*, 535(7613),

1011 Article 7613. <https://doi.org/10.1038/nature18902>

1012 White, C. R., & Kearney, M. R. (2013). Determinants of inter-specific variation in basal

1013 metabolic rate. *Journal of Comparative Physiology B*, 183(1), 1–26.

1014 <https://doi.org/10.1007/s00360-012-0676-5>

1015 Wolf, J. B., & Wade, M. J. (2009). What are maternal effects (and what are they not)?

1016 *Philosophical Transactions of the Royal Society B: Biological Sciences*.

1017 <https://doi.org/10.1098/rstb.2008.0238>

1018 Yin, J., Zhou, M., Lin, Z., Li, Q. Q., & Zhang, Y.-Y. (2019). Transgenerational effects benefit
1019 offspring across diverse environments: A meta-analysis in plants and animals.
1020 *Ecology Letters*, 22(11), 1976–1986. <https://doi.org/10.1111/ele.13373>
1021 Zhang, Y., Yang, K., Yang, P., Su, Y., Zheng, W., & Liu, J. (2018). Food restriction
1022 decreases BMR, body and organ mass, and cellular energetics, in the Chinese
1023 Bulbul (*Pycnonotus sinensis*). *Avian Research*, 9(1), 39.
1024 <https://doi.org/10.1186/s40657-018-0131-8>
1025 Zitkovsky, E. K., Daniels, T. E., & Tyrka, A. R. (2021). Mitochondria and early-life adversity.
1026 *Mitochondrion*, 57, 213–221. <https://doi.org/10.1016/j.mito.2021.01.005>