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Abstract 
Splicing quantitative trait loci (QTLs) have been implicated as a common mechanism underlying 
complex trait associations. However, utilising splicing QTLs in target discovery and prioritisation 
has been challenging due to extensive data normalisation which often renders the direction of 
the genetic effect as well as its magnitude difficult to interpret. This is further complicated by the 
fact that strong expression QTLs often manifest as weak splicing QTLs and vice versa, making 
it difficult to uniquely identify the underlying molecular mechanism at each locus. We find that 
these ambiguities can be mitigated by visualising the association between the genotype and 
average RNA sequencing read coverage in the region. Here, we generate these QTL coverage 
plots for 1.7 million molecular QTL associations in the eQTL Catalogue identified with five 
quantification methods. We illustrate the utility of these QTL coverage plots by performing 
colocalisation between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL 
Catalogue. We find that while visually confirmed splicing QTLs explain just 6/53 of the 
colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised 
causal gene in 4/6 cases. All our association summary statistics and QTL coverage plots are 
freely available at https://www.ebi.ac.uk/eqtl/.  
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Introduction 
Most genetic variants associated with complex traits are in the non-coding regions of the 
genome (Maurano et al., 2012). More than a decade of molecular quantitative trait locus (QTL) 
studies has revealed that these variants regulate either the expression level (Kerimov et al., 
2021; The GTEx Consortium, 2020), splicing (Li et al., 2016), promoter usage (Alasoo et al., 
2019; Garieri et al., 2017) or alternative polyadenylation (Mittleman et al., 2020; Yoon et al., 
2012) of their target genes. Although the eQTL Catalogue has contained transcript-level QTL 
summary statistics from the beginning, characterising the exact mechanism of action of each 
molecular QTL has remained challenging due to considerable overlap between QTLs detected 
by different RNA-seq quantification methods (Kerimov et al., 2021), technical biases in read 
alignment (van de Geijn et al., 2015), and a large number of alternative transcripts or splice 
junctions to be considered for each gene. Furthermore, because the usage of each transcript or 
splice junction is quantified relative to all other transcripts, the magnitude and direction of the 
genetic effect, the part of the gene affected, as well as the absolute expression of the affected 
transcript is often difficult to assess from summary statistics alone. 

This ambiguity can be reduced by visualising the change in the average RNA-seq read 
coverage in the gene region associated with each additional copy of the alternative allele. We 
and other have used these QTL coverage plots to characterise chromatin QTLs (Alasoo et al., 
2018; Degner et al., 2012; Kumasaka et al., 2018) as well as to confirm promoter usage and 
splicing QTLs (Alasoo et al., 2019). However, previous studies have visualised individual 
molecular QTLs in a setting where access to individual-level genotype and read coverage data 
is available. It has not been done systematically in large molecular QTL compendia such as the 
GTEx project (The GTEx Consortium, 2020) and the eQTL Catalogue, because in a naive 
implementation the read coverage stratification by genotype needs to be performed separately 
for each significant genetic variant and molecular trait pair of interest. Since transcript and exon-
level analyses profile hundreds of thousands of correlated molecular traits in a single dataset, 
this means that the number of QTL coverage plots required can quickly become intractable. 

In this update to the eQTL Catalogue, we present an approach to generate QTL coverage plots 
for all independent genetic signals and their associated molecular traits. First, we have updated 
our data processing workflows to improve promoter usage and splicing QTL discovery and to 
generate read coverage signals for all 25,724 RNA-seq samples. We have also adopted fine-
mapping-based filtering to identify all independent genetic signals and associated molecular 
traits for each gene while reducing the size of the summary statistics files by 98%. Finally, to 
support new colocalisation methods that can account for multiple independent causal variants 
(Wallace, 2021), we have computed signal-level log Bayes factors for all independent signals 
(Wang et al., 2020). This approach has enabled us to predefine tag variants for all independent 
genetic associations identified in 127 eQTL datasets and generate QTL coverage plots that can 
be used to interpret almost all colocalising signals detected in the eQTL Catalogue. 
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Results 
Updates to the eQTL Catalogue resource 
The aim of the eQTL Catalogue is to provide a public resource of uniformly processed molecular 
QTL summary statistics and continuously update this resource as new studies, reference 
annotations and quantification methods become available. Here, we present the updates to the 
eQTL Catalogue release 6 that we have made since the publication of the original paper 
(release 3).      

Newly added datasets 
We have added nine new RNA-seq studies and one microarray study to the eQTL Catalogue. 
This has increased the total number of studies in the resource to 31, the total number of 
datasets to 127 and the cumulative number of donors and samples to 7,526 and 30,602, 
respectively (Figure 1A). Newly added datasets include additional datasets from tissues and cell 
types already present in the eQTL Catalogue (e.g. various brain regions (Guelfi et al., 2020; 
Hoffman et al., 2019), immune cells (Bossini-Castillo et al., 2022; Gilchrist et al., 2022; Kim-
Hellmuth et al., 2017; Theusch et al., 2020) and induced pluripotent stem cells (DeBoever et al., 
2017; Pashos et al., 2017)) as well as previously missing microglia (Young et al., 2021), 
placenta (Peng et al., 2018), hepatocytes (Pashos et al., 2017), and cartilage and synovium 
tissues (Steinberg et al., 2021). Complete summary of the datasets present in the eQTL 
Catalogue is shown in Supplementary Table 1. 
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Figure 1. Uniform re-processing of all datasets. (A), The number of studies, datasets, donors, 
and samples in the previous publication (R3) and current version of the eQTL Catalogue (R6). 
(B), Number of genes with at least one significant eQTL (‘eGenes’) on the X chromosome as a 
function of dataset sample size. Red points indicate datasets for which the X chromosome 
genotypes were unavailable. (C), The number of eGenes identified in each dataset for the five 
molecular traits (gene expression, exon expression, transcript usage, txrevise event usage, and 
Leafcutter splice-junction usage). Datasets newly added since release 3 have been highlighted. 

Imputation of the X chromosome genotypes  
In addition to integrating new datasets, we also made two major changes to our genotype 
imputation workflow. First, we migrated to the new 1000 Genomes 30x of GRCh38 reference 
panel (Byrska-Bishop et al., 2022). This allowed us to impute genotypes directly to the GRCh38 
build and avoid errors caused by the genomic coordinate lift over process. Secondly, our 
imputation workflow now also supports the X chromosome. As a result, summary statistics for 
18 of the 31 studies now also contain variants from the X chromosome. Across these 18 
datasets, we detected at least one significant eQTL (FDR <1%) for 853 unique genes on the X 
chromosome (Figure 1B). These X chromosome eQTLs account for ~1.6% of all significant 
eQTLs (FDR <= 1%). Ten of the other 13 studies are missing the X chromosome QTLs because 
X chromosome genotypes were not deposited with data. Exceptions are male only studies (n = 
3) that did not pass our genotype QC criteria (Supplementary Table 2).  

Improved quantification of splicing and promoter usage QTLs 
The previous release of the eQTL Catalogue included four molecular trait quantification 
methods to measure transcriptional changes from RNA-seq data: gene expression (ge), exon 
expression (exon), transcript usage (tx) and transcriptional event usage (txrevise). In addition to 
these four, we have now also implemented LeafCutter (Li et al., 2018) to directly quantify the 
usage of splice junctions (Supplementary Figure 1). We have also augmented the txrevise 
promoter annotations with experimentally determined promoters from the FANTOM5 project 
(Vija and Alasoo, 2022). Finally, we have updated the reference transcriptome annotations to 
Ensembl version 105 and GENCODE version 39. We observed a clear linear relationship 
between the number of significant associations detected with each quantification method and 
the dataset sample size, with gene expression, exon expression and txrevise detecting, on 
average, slightly more associations than transcript usage and Leafcutter (Figure 1C). 

Fine-mapping-based filtering of transcript-level summary statistics  
A major challenge in working with exon- and transcript-level (transcript usage, txrevise, 
leafcutter) associations is the large number of correlated traits being tested that result in very 
large summary statistics files. For example, typical summary statistics for exon and txrevise 
QTLs are 15-20 times larger than the corresponding files for gene expression QTLs. In addition 
to complicating our data release and archival procedures, these large file sizes meant that 
performing comprehensive colocalisation analysis against the eQTL Catalogue required the 
downloading and processing of >15Tb of data. To reduce the size of these files, we have now 
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implemented fine-mapping-based filtering. Briefly, we are using fine mapped credible sets to 
identify all independent signals at the gene level. We then filter the summary statistics files to 
only retain the most strongly associated molecular trait (exon, transcript, txrevise event or 
Leafcutter splice junction) for each signal. This filtering reduces the size of the summary 
statistics files for those quantification methods by ~98% while retaining almost all significant 
associations for colocalisation purposes. Reducing the size of the univariate summary statistics 
files has also allowed us to export SuSiE log Bayes factors for each fine mapped signal and all 
tested variants (Wang et al., 2020). As illustrated below, these log Bayes factors can be directly 
used in the new coloc.susie method to perform colocalisation analysis between all pairs of 
independent signals (Wallace, 2021). 

Visualisation of transcript-level associations 
Another benefit of fine-mapping-based filtering is that we now have a tractable set of 
independent lead variants and associated molecular traits across all datasets and quantification 
methods that we can visualise using static QTL coverage plots. These plots display normalised 
RNA-seq read coverage across all exons of the gene (Figure 2A), exon-level QTL effect sizes 
and standard errors (Figure 2B), as well as the alternative transcripts or splice junctions used in 
association testing (Figure 2C). As an example, we are highlighting the association between 
chr11_14855172_G_A and alternative splicing of exon four of the CYP2R1 gene (Figure 2). The 
static QTL coverage plots for all 1,716,482 independent signals are now available via the eQTL 
Catalogue FTP server.  
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Figure 2. Visualisation of a splicing QTL detected in the CYP2R1 gene. (A) RNA-seq read 
coverage across the CYP2R1 gene in GTEx transverse colon tissue stratified by the genotype 
of the lead sQTL variant (chr11_14855172_G_A). All introns have been shortened to 50 nt with 
wiggleplotr (Alasoo, 2017) to make variation in exonic read coverage easier to see. (B) Effect 
sizes and 95% confidence intervals of the lead sQTL variant on the expression level of 
individual exons (or exonic parts) of CYP2R1. Associations significant at FDR <= 1% are shown 
in dark blue. (C) The top two rows show the MANE Select (Morales et al., 2022) reference 
transcript and all annotated exons of CYP2R1, respectively. The remaining rows show the 
txrevise (Alasoo et al., 2019) event annotations used for sQTL mapping. The short version of 
exon 4 (between dashed lines) is only present in annotated nonsense-mediated decay (NMD) 
transcripts. 

Case study: target gene prioritisation for vitamin D GWAS 
To test the utility of the new QTL coverage plots, we performed a proof-of-concept colocalisation 
analysis between all molecular traits in the eQTL Catalogue and vitamin D levels in the UK 
Biobank. We chose this phenotype, because the vitamin D biosynthesis pathway is well 
understood and many causal genes underlying GWAS associations for vitamin D are already 
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known (Hyppönen et al., 2022; Manousaki et al., 2020). At a stringent threshold of PP4 > 0.9, 
we found that 53/83 signals from 34/48 regions colocalised with 81 protein coding genes (Figure 
3A). Although colocalisation with total gene expression was most common, there was 
considerable overlap between colocalisations detected with the five different quantification 
methods (Figure 3A).  

Figure 3. Sharing of significantly colocalised signals with vitamin D (A) Number of colocalised 
signals detected by the different molecular QTL quantification methods and sharing between 
them. (B) Number of colocalised signals assigned to empirical functional consequence (eQTL, 
sQTL, puQTL, apaQTL or ambiguous) and sharing structure between them. (C) Number of 
independent colocalised signals associated with either a single target gene or multiple target 
genes in each functional consequences group. eQTL - expression QTL, sQTL - splicing QTL, 
puQTL - promoter usage QTL, apaQTL - alternative polyadenylation QTL.   

We extracted QTL coverage plots for all 816 colocalising molecular QTL signals. We then 
manually reviewed the plots to classify each signal into one of five categories: expression QTLs, 
promoter usage QTLs (puQTLs), splicing QTLs (sQTLs), alternative polyadenylation QTLs 
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(apaQTLs) and ambiguous (Figure 3B). As an example, we detected a splicing QTL affecting 
the length of exon 4 of CYP2R1 (Figure 2). CYP2R1 is highly likely to be the causal gene at this 
locus as it codes the Cytochrome P450 2R1 microsomal vitamin D 25-hydroxylase (Cheng et 
al., 2003). We found that although transcript-level methods (tx, txrevise and leafcutter) detected 
at least one colocalisation for 37/53 independent signals, only 14 of those (7 puQTLs, 6 sQTLs 
and 1 apaQTL) could be classified as primary transcript-level QTLs (Figure 3B). Other 23 cases 
were either ambiguous or could be better explained by strong primary eQTL effects that led to 
small downstream changes in splicing or transcript usage (Supplementary Table 3). 

Even though Leafcutter detected all seven visually confirmed sQTLs and 5/7 puQTLs, it also 
detected 11 additional signals, nine of which would be better explained by a strong eQTL effects 
(e.g. CELSR2 eQTL at the SORT1 locus (Supplementary Figure 2)). Thus, the fact that 
colocalisation is detected by one of the transcript-level methods (tx, txrevise or leafcutter) does 
not reliably indicate that the underlying signal is driven by a splicing mechanism. The 
visualisations also helped us to detect three likely cases of reference mapping bias at the 
DHCR7, NUDT9 and JUND genes (Supplementary Figures 3-5). For discussion of why we 
opted not to correct for reference mapping bias during molecular trait quantification, see 
Supplementary Note.  

We also noticed that 15/32 confirmed eQTL colocalised with more than one gene (Figure 3C). In 
contrast, only one of seven puQTLs and one of six sQTLs colocalised with multiple genes, 
suggesting that sQTLs and puQTLs might be less pleiotropic than eQTLs. To evaluate if lower 
pleiotropy also translated into more accurate causal gene prioritisation, we manually reviewed 
all of the 53 GWAS signals to identify the most likely causal genes. We integrated information 
about missense variant associations, gene presence in the vitamin D synthesis pathway and 
other literature evidence to prioritise the most likely causal gene for 28/53 GWAS signals 
(Supplementary Table 3). For four of the six sQTL signals, the colocalising gene overlapped the 
prioritised causal gene (CYP2R1, HAL, GC and SDR42E1) and for two signals we could not 
prioritise the causal gene. For eQTLs, we prioritise the most likely causal gene at 19/32 loci. In 
11/19 cases (3 shared with sQTLs, Figure 3B) the colocalising eQTL genes completely 
overlapped the prioritised genes. In four cases the prioritised gene (SORT1, FLG, HAL, CETP) 
was one of multiple co-localizing genes. Finally, at four additional signals, the prioritised gene 
was different from the one that had eQTL colocalisation evidence (Supplementary Table 3). 
Interestingly, in three of the four cases the GWAS lead variant was a missense (SEC23A, 
PLA2G3) or a synonymous variant (CYP2R1) in the prioritised gene. While the number of loci 
observed here is small, these results suggest that while visually confirmed sQTLs colocalise 
with a smaller fraction of GWAS loci than eQTLs (6 vs 32), they are also less pleiotropic and 
thus more likely to identify the correct causal gene. 
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Discussion 
We have made three major changes to the eQTL Catalogue in release 6. First, we have 
integrated data from ten additional eQTL studies bringing the total number of unique eQTL 
datasets to 127. These datasets contain uniformly processed results from 30,602 samples from 
7,526 individuals. We have also updated our genotype imputation, RNA-seq analysis and QTL 
mapping workflows to add support for the X chromosome, added Leafcutter as a splicing 
quantification method and added support for fine mapping-based colocalisation analysis with 
coloc.susie (Wallace, 2021). Finally, we have developed static QTL coverage plots to visualise 
molecular QTL associations at the level of RNA-seq read alignments. All our results and data 
are available on the eQTL Catalogue FTP server and REST API.  

To quantify the impact of these updates, we performed colocalisation between all molecular 
QTLs present in the eQTL Catalogue and fine mapped GWAS signals for plasma vitamin D 
levels in the UK Biobank (Kanai et al., 2021). The QTL coverage plots allowed us to assign an 
empirical functional consequence (eQTL, sQTL, puQTL, apaQTL) for 42/53 colocalising loci 
while 11 remained ambiguous. This revealed that while primary sQTLs explained fewer GWAS 
signals than eQTLs, they also appeared to be less pleiotropic and more likely to identify the 
correct target genes. A limitation of our approach is that we used manual visual inspection to 
assign mechanisms to different types of molecular QTLs. Although we tried to be careful, there 
is a small risk that this approach could have introduced inadvertent confirmation bias (e.g. 
classifying less pleiotropic loci as sQTLs). We expect that it might be possible to automate this 
classification in the future by machine learning approaches that consider variant-level 
annotations such as splicing scores (Jaganathan et al., 2019; Zeng and Li, 2022) or distance to 
genomic features. 

We also observed that while most GWAS signals colocalised with an eQTL, approximately 
~50% of the eQTL colocalisations prioritised more than one gene. Similarly in 4/19 cases, the 
colocalising gene was different from the manually prioritised causal gene. This agrees with 
multiple previous observations that eQTL colocalisation alone often achieves low precision in 
causal gene identification (Mountjoy et al., 2021; Nasser et al., 2021). This does not seem to be 
a simple artefact of colocalisation analysis as CRISPR experiments have also revealed that 
targeting a single enhancer often regulates the expression of multiple target genes (Engreitz et 
al., 2016; Fulco et al., 2019; Kasela et al., 2021). We believe that while eQTL colocalisation can 
sometimes reveal trait-relevant tissues or cell types, target gene identification requires 
integration of multiple strands of evidence. Considering variants with potentially less pleiotropic 
effects such as missense and splice variants can also be helpful. 

The systematic re-analysis and visualisation of molecular QTLs presented here would not have 
been possible without the researchers of the 31 original studies making their individual-level 
gene expression and genotype data available for qualified researchers. We are committed to 
sharing all summary statistics and fine mapping results openly and will seek to continuously 
integrate new eQTL datasets as they become available. We are also working on making the 
static QTL coverage plots available via an API and an interactive web interface.  
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Methods 

Data access and informed consent 
For all newly added datasets, we applied for access via the relevant Data Access Committees. 
The database accessions and contact details of the individual Data Access Committees can be 
found on the eQTL Catalogue website (http://www.ebi.ac.uk/eqtl/Studies/). In our applications, 
we explained the project and our intent to share the association summary statistics publicly. 
Ethical approval for the project was obtained from the Research Ethics Committee of the 
University of Tartu (approval 287/T-14). 

Genotype data 
Pre-imputation quality control. We lifted coordinates of the genotyped variants to the 
GRCh38 build with CrossMap v0.4.1 (Zhao et al., 2014). We aligned the strands of the 
genotyped variants to the 1000 Genomes 30x on GRCh38 reference panel (Byrska-Bishop et 
al., 2022) using Genotype Harmonizer (Deelen et al., 2014). We excluded genetic variants with 
Hardy-Weinberg p-value < 10-6, missingness > 0.05 and minor allele frequency < 0.01 from 
further analysis. On the X chromosome, we applied the QC filters to female samples only and 
then retained the same variants also in the male samples. We also excluded samples with more 
than 5% of their genotypes missing. 
 
Genotype imputation and quality control. We pre-phased and imputed the microarray 
genotypes to the 1000 Genomes 30x on GRCh38 reference panel (Byrska-Bishop et al., 2022) 
using Eagle v2.4.1 (Loh et al., 2016) and Minimac4 (Das et al., 2016). On the X chromosome, 
we performed imputation separately for variants located in the pseudoautosomal (PAR) and 
non-PAR regions. After imputation, we multiplied male genotype dosage in the non-PAR region 
by two to ensure that it is on the same scale with the female genotypes. We used bcftools 
v1.9.0 to exclude variants with minor allele frequency (MAF) < 0.01 and imputation quality score 
R2 < 0.4 from downstream analysis. The genotype imputation and quality control steps are 
implemented in eQTL-Catalogue/genimpute (v22.01.1) workflow available from GitHub. 
 
We aligned the low-coverage whole genome sequencing (WGS) data from the BLUEPRINT 
project to the GRCh38 reference genome with bwa v0.7.17 (Li, 2013) and performed imputation 
to the 1000 Genomes 30x on GRCh38 reference panel using GLIMPSE v1.1.1 (Rubinacci et al., 
2021). The low-coverage WGS genotype imputation workflow is available from GitHub: 
https://github.com/peepkolberg/glimpse. 

Phenotype data 
Studies. eQTL Catalogue release 6 contains phenotype data from the following 25 RNA-seq: 
ROSMAP (Ng et al., 2017), BrainSeq (Jaffe et al., 2018), TwinsUK (Buil et al., 2015), FUSION 
(Taylor et al., 2019), BLUEPRINT (Chen et al., 2016; Kundu et al., 2020), Quach_2016 (Quach 
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et al., 2016), Schmiedel_2018 (Schmiedel et al., 2018), GENCORD (Gutierrez-Arcelus et al., 
2013), GEUVADIS (Lappalainen et al., 2013), Alasoo_2018 (Alasoo et al., 2018), Nedelec_2016 
(Nédélec et al., 2016), Lepik_2017 (Lepik et al., 2017), HipSci (Kilpinen et al., 2017), 
van_de_Bunt_2015 (van de Bunt et al., 2015), Schwartzentruber_2018 (Schwartzentruber et al., 
2018), GTEx v8 (The GTEx Consortium, 2020), CAP (Theusch et al., 2020), Peng_2018 (Peng 
et al., 2018), PhLiPS (Pashos et al., 2017), iPSCORE (Panopoulos et al., 2017), CommonMind 
(Hoffman et al., 2019), Braineac2 (Guelfi et al., 2020), Steinberg_2020 (Steinberg et al., 2021), 
Young_2019 (Young et al., 2021) , Bossini-Castillo_2019 (Bossini-Castillo et al., 2022). It also 
contains data from the following 7 microarray studies: CEDAR (Momozawa et al., 2018), 
Fairfax_2012 (Fairfax et al., 2012), Fairfax_2014 (Fairfax et al., 2014), Kasela_2017 (Kasela et 
al., 2017), Naranbhai_2015 (Naranbhai et al., 2015), Kim-Hellmuth_2017 (Kim-Hellmuth et al., 
2017) and Gilchrist_2021 (Gilchrist et al., 2022). 
 
Quantification. We quantified transcription at five different levels: (1) gene expression, (2) exon 
expression, (3) transcript usage, (4) transcriptional event usage, and (5) splice-junction usage 
(Supplementary Figure 1). Quantification was performed using version v22.05.1 of the eQTL-
Catalogue/rnaseq workflow implemented in Nextflow (Di Tommaso et al., 2017). Before 
quantification, we used Trim Galore v0.5.0 to remove sequencing adapters from the fastq files. 

For gene expression quantification, we used HISAT2 v2.2.1 (Kim et al., 2019) to align reads to 
the GRCh38 reference genome (Homo_sapiens.GRCh38.dna.primary_assembly.fa file 
downloaded from Ensembl). We counted the number of reads overlapping the genes in the 
GENCODE V39 (Harrow et al., 2012) reference transcriptome annotations with featureCounts 
v1.6.4 (Liao et al., 2014). To quantify exon expression, we first created an exon annotation file 
(GFF) using GENCODE V39 reference transcriptome annotations and 
dexseq_prepare_annotation.py script from the DEXSeq (Anders et al., 2012) package. We 
then used the aligned RNA-seq BAM files from the gene expression quantification and 
featureCounts with flags ‘-p -t exonic_part -s ${direction} -f -O’ to count the number 
of reads overlapping each exon. 

We quantified transcript and event expression with Salmon v1.8.0 (Patro et al., 2017). For 
transcript quantification, we used the GENCODE V39 (GRCh38.p13) reference transcript 
sequences (fasta) file to build the Salmon index. For transcriptional event usage, we 
downloaded pre-computed txrevise (Alasoo et al., 2019; Vija and Alasoo, 2022) alternative 
promoter, splicing and alternative 3ʹ end annotations corresponding to Ensembl version 105 
from Zenodo (https://doi.org/10.5281/zenodo.6499127) in GFF format. These annotations had 
been augmented with additional experimentally derived promoter annotations from the 
FANTOM5 consortium (Abugessaisa et al., 2017; FANTOM Consortium and the RIKEN PMI 
and CLST et al., 2014). We then used gffread (Pertea and Pertea, 2020) to generate fasta 
sequences from the event annotations and built Salmon indices for each event set as we did for 
transcript usage. Finally, we quantified transcript and event expression using salmon quant 
with ‘--seqBias --useVBOpt --gcBias --libType’ flags. All expression matrices were 
merged using csvtk v0.17.0. Our reference transcriptome annotations are available from 
Zenodo (https://doi.org/10.5281/zenodo.4715946).  
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For Leafcutter analysis, splice junctions of the aligned reads were extracted using the junctions 
extract command of the regtools v0.5.2 (Cotto et al., 2023) with options ‘-s $strand -a 8 -m 
50 -M 500000’. Then, these splice-junctions were clustered using 
leafcutter_cluster_regtools.py script from LeafCutter v0.2.9 with options ‘-m 50 -o leafcutter 
-l 500000 --checkchrom=True’.  

Normalisation. We normalised the gene and exon-level read counts using the conditional 
quantile normalisation (cqn) R package v1.30.0 (Hansen et al., 2012) with gene or exon GC 
nucleotide content as a covariate. We downloaded the gene GC content estimates from 
Ensembl biomaRt and calculated the exon-level GC content using bedtools v2.19.0 (Quinlan 
and Hall, 2010). We also excluded lowly expressed genes, where 95 per cent of the samples 
within a dataset had transcripts per million (TPM)-normalised expression less than 1. To 
calculate transcript and transcriptional event usage values, we obtained the TPM normalised 
transcript (event) expression estimates from Salmon. We then divided those transcript (event) 
expression estimates by the total expression of all transcripts (events) from the same gene 
(event group). Subsequently, we used the inverse normal transformation to standardise all five 
molecular quantification estimates. Normalisation scripts together with containerised software 
are publicly available at https://github.com/eQTL-Catalogue/qcnorm. 

Association testing and statistical fine mapping 
We performed association testing separately in each dataset and used a +/- 1 megabase cis 
window centred around the start of each gene. First, we excluded molecular traits with less than 
five genetic variants in their cis window, as these were likely to reside in regions with low 
genotyping coverage. We also excluded molecular traits with zero variance across all samples 
and calculated phenotype principal components using the prcomp R stats package (center = 
true, scale = true). We calculated genotype principal components using plink2 v1.90b3.35. We 
used the first six genotype and molecular trait principal components as covariates in QTL 
mapping. We calculated nominal eQTL summary statistics using the GTEx v6p version of the 
FastQTL (Ongen et al., 2016) software (https://github.com/francois-a/fastqtl) that also estimates 
standard errors of the effect sizes. We used the ‘--window 1000000 --nominal 1’ flags to find 
all associations in 1 Mb cis window. For permutation analysis, we used QTLtools v1.3.1 
(Delaneau et al., 2017) with  ‘--window 1000000 --permute 1000 --grp-best’ flags to 
calculate empirical p-values based on 1000 permutations. The ‘--grp-best’ option ensured 
that the permutations were performed across all molecular traits within the same ‘group’ (e.g. 
multiple probes per gene in microarray data or multiple transcripts or exons per gene in the 
exon-level and transcript-level analysis) and the empirical p-value was calculated at the group 
level.  
 
We performed QTL fine mapping using the Sum of Single Effects Model (SuSiE) (Wang et al., 
2020) implemented in the susieR v0.11.92 R package. We converted the genotypes from VCF 
format to a tabix-indexed dosage matrix with bcftools v1.10.2. We imported the genotype 
dosage matrix into R using the Rsamtools v2.8.0 R package. We used the same normalised 
molecular trait matrix used for QTL mapping. We regressed out the first six phenotype and 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535816doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535816
http://creativecommons.org/licenses/by/4.0/


14 

genotype PCs separately from the phenotype and genotype matrices. We performed fine 
mapping with the following parameters: L = 10, estimate_residual_variance = TRUE, 
estimate_prior_variance = TRUE, scaled_prior_variance = 0.1, compute_univariate_zscore = 
TRUE, min_abs_corr = 0. The steps described above are implemented in the eQTL-
Catalogue/qtlmap v22.04.01 Nextflow workflow available from GitHub. 

Filtering of transcript-level summary statistics 
We filtered transcript-level summary statistics using a connected components approach 
(Kolberg et al., 2020) to select the strongest signals per transcript-level group (gene for 
transcript and exon level, clusters for leafcutter). For each group, first, we filtered out the 
credible sets where maximum absolute z value is lower than 3 and size is bigger than 200 
variants. Then, we found overlapping variants between credible sets, defining these credible 
sets as connected components. For each connected component we selected the molecular trait 
with the highest posterior inclusion probability (PIP) and kept only the summary statistics of 
these selected molecular traits. This approach enabled easier sharing of most significant signals 
per molecular trait group, decreasing the volume of shared data by 98%. 

Colocalisation with vitamin D GWAS 
We used coloc.susie (Wallace, 2021) to perform signal-level colocalisation between all RNA-
seq-based datasets in the eQTL Catalogue and GWAS summary statistics for vitamin D levels 
in the UK Biobank. For all molecular QTLs, we used the log Bayes factors (LBFs) exported by 
our eQTL-Catalogue/qtlmap v22.04.01 workflow. For the vitamin D GWAS, we used published 
SuSiE fine mapping results from a previous study (Kanai et al., 2021) downloaded from Google 
Cloud (link). We performed colocalisation between all pairs of independent fine mapped signals 
(up to 10 per locus) and reported results where PP4 > 0.9. The colocalisation workflows is 
available from GitHub (https://github.com/ralf-tambets/coloc).    

Generation of QTL coverage plots 
We used the bamCoverage command from deepTools v3.2.0 (Ramírez et al., 2016) with bin-
size option ‘-bs 5’ to generate read-coverage (bigwig) files. We then used 
extractCoverageData and plotCoverageData commands of wiggleplotr R v1.13.1 package 
(Alasoo, 2017) to read specific regions of the bigwig files, scale all introns to the length of 50 
nucleotides, and generate the plots as ggplot2 (Wickham, 2016) objects. Finally, we generated 
exon QTL effect-size plots with ggplot2 v3.3.6 and put all the plots together with the cowplot 
v1.1.1 R package (Wilke, 2019).  We used tabix.read.table from seqminer v8.4 package (Zhan 
and Liu, 2015) to extract both genotype and QTL data from indexed files in the regions of 
interest. Coverage plot generation workflow is publicly available at 
https://github.com/kerimoff/leafcutter_plot.  
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between all molecular traits and vitamin D GWAS. A.V. updated the promoter annotations for 
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Data Availability 
The molecular QTL summary statistics, fine mapping results (including SuSiE log Bayes factor) 
and QTL coverage plots are available from the eQTL Catalogue FTP server (see 
https://www.ebi.ac.uk/eqtl/Data_access/). The marginal eQTL summary statistics are also 
available via our REST API (https://wwwdev.ebi.ac.uk/eqtl/api/docs), which we have completely 
re-written for release 6. RNA-seq and genotype data from the CAP (phs000481.v3.p2), 
Peng_2018 (phs001586.v1.p1), PhLiPS (phs001341.v1.p1) and iPSCORE (phs000924.v4.p1) 
studies were downloaded from dbGaP; Steinberg_2020 (EGAD00001005215, 
EGAD00001003355, EGAD00010001746), Young_2019 (EGAD00001005736) and Bossini-
Castillo_2019 (EGAD00001004830, EGAD00010001848) from EGA, and CommonMind 
(syn2759792) from Synapse. Raw genotype data for Gilchrist_2021 (EGAD00010000144, 
EGAD00010000520) was downloaded from EGA. Raw gene expression data from 
Gilchrist_2021 was downloaded from Zenodo (https://doi.org/10.5281/zenodo.6352656). Raw 
RNA-seq and genotype data from Braineac2 were not deposited. 

Supplementary Note 
Reference mapping bias is known to induce false positive associations in splicing and allele 
specific expression analysis (Kumasaka et al., 2016; Li et al., 2018; van de Geijn et al., 2015). A 
tool often used to correct for reference mapping bias is WASP (van de Geijn et al., 2015), which 
has also been included in the STAR (Dobin et al., 2013) RNA-seq short read aligner. Although 
the eQTL Catalogue uses HISAT2 (Kim et al., 2019) to perform RNA-seq read alignment, we 
did consider the option to switch to STAR to use WASP read filtering. However, after initial 
benchmarks we opted against it. First, we found that WASP was very conservative and filtered 
out a large proportion of reads form exonic regions. As a result, many well-known true positive 
splicing QTLs were no longer detected and the QTL read coverage plots became noisy due to 
the large number of filtered reads. Secondly, as implemented in STAR, WASP was only able to 
account for single nucleotide variants and did not consider short insertions or deletions that 
have even large potential to cause reference mapping bias. Finally, our transcript usage and 
txrevise quantification uses Salmon (Patro et al., 2017) to pseudoalign reads directly to the 
transcriptome and is thus not compatible with WASP. For example, two of the three suspected 
reference mapping bias cases (DHCR7 and NUDT9) were detected in Salmon transcript usage 
analysis. Finally, switching to STAR+WASP would have significantly increased the runtime of 
our RNA-seq quantification workflow which already took over two months at the University of 
Tartu High Performance Computing Center. For these reasons we decided against directly 
correcting for reference mapping bias in the QTL mapping process. Instead, we opted to provide 
access to pre-generated QTL coverage plots that can be used to visually detect strong cases of 
reference mapping bias. 
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Supplementary Note 2 
Funding statements for the new studies included in the eQTL Catalogue. 

CommonMind. Bio-samples and/or data for this publication were obtained from NIMH 
Repository & Genomics Resource, a centralized national biorepository for genetic studies of 
psychiatric disorders. Data were generated as part of the CommonMind Consortium supported 
by funding from Takeda Pharmaceuticals Company Limited, F. Hoffman-La Roche Ltd and NIH 
grants R01MH085542, R01MH093725, P50MH066392, P50MH080405, R01MH097276, RO1-
MH-075916, P50M096891, P50MH084053S1, R37MH057881, AG02219, AG05138, MH06692, 
R01MH110921, R01MH109677, R01MH109897, U01MH103392, and contract 
HHSN271201300031C through IRP NIMH. Brain tissue for the study was obtained from the 
following brain bank collections: the Mount Sinai NIH Brain and Tissue Repository, the 
University of Pennsylvania Alzheimer’s Disease Core Center, the University of Pittsburgh 
NeuroBioBank and Brain and Tissue Repositories, and the NIMH Human Brain Collection Core. 
CMC Leadership: Panos Roussos, Joseph Buxbaum, Andrew Chess, Schahram Akbarian, 
Vahram Haroutunian (Icahn School of Medicine at Mount Sinai), Bernie Devlin, David Lewis 
(University of Pittsburgh), Raquel Gur, Chang-Gyu Hahn (University of Pennsylvania), Enrico 
Domenici (University of Trento), Mette A. Peters, Solveig Sieberts (Sage Bionetworks), Thomas 
Lehner, Stefano Marenco, Barbara K. Lipska (NIMH). 

CAP. The dataset used for the analyses described in this manuscript was obtained from the 
Cholesterol and Pharmacogenetics (CAP) study through dbGAP (phs000481.v3.p2). Funding 
support for the generation of this dataset was provided by National Heart, Lung, Blood Institute 
(NHLBI) grant U01 HL69757. The manuscript was not prepared in collaboration with CAP 
investigators and does not necessarily reflect the opinions or views of CAP investigators or 
NHLBI. 

Peng_2018. This work was supported by the National Institutes of Health [NIH-NIMH 
R01MH094609, NIH-NIEHS R01ES022223, NIH-NIEHS PO1ES022832, NIH-NIEHS 
R24ES028507, NIH-NIEHS R21ES028226, and NIH-NIEHS R01ES025145. A complete 
description of the cohort can be found in: Appleton AA, Murphy MA, Koestler DC, Lesseur C, 
Paquette AG, Padbury JF, Lester BM, and Marsit CJ. Prenatal Programming of Infant 
Neurobehavior in a Healthy Population. Paediatr Perinat Epidemiol 2016, 30(4): 367-75. 

PhLiPS. This work was supported by grant 5U01HG006398. 

iPSCORE. This work was supported in part by a California Institute for Regenerative Medicine 
(CIRM) grant GC1R-06673 and NIH grants EY021237, HG008118, HL107442, DK105541 and 
DK112155. iPSC RNA-seq was performed at the UCSD IGM Genomics Center with support 
from NIH grant P30 CA023100. 

Bossini-Castillo_2019. This research was funded by the Wellcome Trust (grant number 
WT206194). L.B.-C. was supported by the MRC Skills Development Fellowship 
(MR/N014995/1). 
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Steinberg_2020. This work was funded by the Wellcome Trust (206194). M.J.C. was funded 
through a Medical Research Council Centre for Integrated Research into Musculoskeletal 
Ageing grant (148985). R.A.B. and the Human Research Tissue Bank are supported by the 
NIHR Cambridge Biomedical Research Centre. J.H.D.B. and G.R.W. are funded by a Wellcome 
Trust Strategic Award (101123), a Wellcome Trust Joint Investigator Award (110140 and 
110141) and a European Commission Horizon 2020 Grant (666869, THYRAGE). A.W.M. 
receives funding from Versus Arthritis; Tissue Engineering and Regenerative Therapies Centre 
(21156). 

Young_2019. R.F. was supported by funding from the UK Multiple Sclerosis Society (MS50), 
the Adelson Medical Research Foundation and a core support grant from the Wellcome Trust 
and MRC to the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute 
(203151/Z/16/Z). A.Y. is supported by a Wellcome Trust Clinicians PhD Fellowship (RRZD/029). 
All data for this study were generated under Open targets project OTAR039. N.K. and D.J.G. 
were funded by the Wellcome Trust grant WT206194. 

Gilchrist_2021. C.K. was supported by Wellcome Trust Investigator Award [204969/Z/16/Z], 
NIHR Oxford Biomedical Research Centre and Chinese Academy of Medical Sciences (CAMS) 
Innovation 537 Fund for Medical Science (grant number: 2018-I2M-2-002), Wellcome Trust 
Grants 090532/Z/09/Z and 203141/Z/16/Z to core facilities Wellcome Centre for Human 
Genetics, Oxford Biomedical Research Computing (BMRC) facility, a joint development 
between the Wellcome Centre for Human Genetics and the Big Data Institute supported by 
Health Data Research UK and the NIHR Oxford Biomedical Research Centre. The study was 
funded by Wellcome Trust Intermediate Clinical Fellowship to B.P.F. (no. 201488/Z/16/Z). J.J.G. 
is funded by a National Institute for Health Research (NIHR) Clinical Lectureship.  

Braineac2. Mina Ryten, David Zhang, and Karishma D’Sa were supported by the UK Medical 
Research Council (MRC) through the award of Tenure-track Clinician Scientist Fellowship to 
Mina Ryten (MR/N008324/1). Sebastian Guelfi was supported by Alzheimer’s Research UK 
through the award of a PhD Fellowship (ARUK-PhD2014-16). Regina Reynolds was supported 
through the award of a Leonard Wolfson Doctoral Training Fellowship in Neurodegeneration. All 
RNA sequencing data performed as part of this study were generated by the commercial 
company AROS Applied Biotechnology A/S (Denmark). 
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Supplementary figures 

 

Supplementary Figure 1. Overview of the five molecular trait quantification methods used by 
the eQTL Catalogue. Gene expression was quantified by counting the total number of reads 
overlapping annotated exons of the gene. Transcript usage was estimated with Salmon. Exon 
expression was estimated by counting the number of reads overlapping each exon. Splice-
junction usage was quantified with Leafcutter. Txrevise was used to estimate the expression 
levels of three types of transcriptional events (promoter usage, splicing and 3′ end usage).  
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Supplementary Figure 2. QTL coverage plot for CELSR2 gene stratified by the lead Leafcutter 
QTL variant (chr1_109274241_T_TC) in the GTEx muscle tissue. The observed association at 
junction reads in the 3’ end of the gene is likely a consequence of the strong eQTL effect at this 
locus rather than the primary mechanism driving complex trait association. 
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Supplementary Figure 3. QTL coverage plot for NUDT9 stratified by the genotype of the lead 
transcript usage (tx) QTL variant (chr4_87380254_C_T) in the FUSION (Taylor et al., 2019) 
muscle tissue. The ‘bulge’ in read coverage observed at the 5’ end of the gene suggests 
potential reference mapping bias. 
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Supplementary Figure 4. QTL coverage plot for JUND stratified by the genotype of the lead 
gene expression (ge) QTL variant (chr19_18287220_A_C) in the BrainSeq (Jaffe et al., 2018) 
dataset. The drop in read coverage in the middle of the exon suggests potential reference 
mapping bias. 
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Supplementary Figure 5. QTL coverage plot for DHCR7 stratified by the genotype of the lead 
transcript usage (tx) QTL variant (chr11_71458997_T_C) in the GTEx fibroblast dataset. The 
‘bulge’ in read coverage observed at the middle of the last exon of the MANE Select transcript 
(ENST00000355527) suggests that the association is driven by reference mapping bias. 
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