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Abstract 41 

Background:  42 

Spatial transcriptomic technologies are powerful tools for resolving the spatial 43 

heterogeneity of gene expression in tissue samples. However, little evidence exists 44 

on relative strengths and weaknesses of the various available technologies for 45 

profiling human tumour tissue. In this study, we aimed to provide an objective 46 

assessment of two common spatial transcriptomics platforms, 10X Genomics’ Visium 47 

and Nanostring’s GeoMx DSP. 48 

Method: 49 

The abilities of the DSP and Visium platforms to profile transcriptomic features 50 

were compared using matching cell line and primary breast cancer tissue samples. A 51 

head-to-head comparison was conducted using data generated from matching 52 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.06.535805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535805
http://creativecommons.org/licenses/by/4.0/


 3

samples and synthetic tissue references. Platform specific features were also 53 

assessed according to manufacturers’ recommendations to evaluate the optimal 54 

usage of the two technologies. 55 

Results: 56 

We identified substantial variations in assay design between the DSP and 57 

Visium assays such as transcriptomic coverage and composition of the transcripts 58 

detected. When the data was standardised according to manufacturers’ 59 

recommendations, the DSP platform was more sensitive in gene expression 60 

detection. However, its specificity was diminished by the presence of non-specific 61 

detection. Our results also confirmed the strength and weakness of each platform in 62 

characterising spatial transcriptomic features of tissue samples, in particular their 63 

application to hypothesis generation versus hypothesis testing. 64 

Conclusion: 65 

In this study, we share our experience on both DSP and Visium technologies 66 

as end users. We hope this can guide future users to choose the most suitable 67 

platform for their research. In addition, this dataset can be used as an important 68 

resource for the development of new analysis tools. 69 

 70 

 71 

Key words 72 

Spatial transcriptomic technologies, digital spatial profiling, Visium, breast 73 

cancer, technical evaluation 74 
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Background 76 

Tumours are cellular ecosystems composed of a multitude of cellular 77 

subtypes or states. The spatial organisation of cells in tumours is not only a 78 

projection of the molecular nature of cancer but also an important predictor for the 79 

progression of the tumour and response to treatments [1]. However, previous 80 

attempts to characterise the spatial molecular profiles of tumours have been limited 81 

by the availability of technology. Conventional spatial molecular technologies, such 82 

as multiplexed immunofluorescence, can only examine a handful of markers at a 83 

time, restricting our ability to comprehensively map the cellular and molecular 84 

features of tumours in tissue [2].  85 

The field of spatial omics technologies has recently expanded rapidly. Novel 86 

technologies have encouraged us to revaluate challenges that we were unable to 87 

tackle previously. Among these technologies, the GeoMx Digital Spatial Profiling 88 

(DSP) platform from Nanostring and the Visium platform from 10X Genomics have 89 

emerged as two powerful spatial transcriptomic tools with high data dimensionality 90 

and relatively high throughput [2]. 91 

DSP is a targeted technology. Instead of profiling the mRNA transcripts 92 

themselves, the DSP platform utilises in situ hybridisation probes to detect gene 93 

expression and later correlate the gene expression profiles with an 94 

immunofluorescence image obtained from the same sample [3]. More importantly, 95 

the DSP assay allows users to zoom into a specific region of the sample and 96 

generate enriched gene expression profiles guided by morphology marker antibodies. 97 

This enables deep characterisation of targeted hypotheses in tissues [4]. 98 
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The Visium assay provides a picture of the global transcriptomic landscape, 99 

with a large number (~5000 for Visium slides with 6.5x6.5mm capture areas and 100 

~14000 for slides with 11mm x 11mm capture areas) of densely organised capture 101 

spots that are designed to generate a map of gene expression, at relatively high 102 

spatial resolution, for evaluation of global localisation and interaction between 103 

different cell types [2,5]. It is worth noting that while the Visium frozen tissue assay 104 

employs a polyA-based capturing method for fresh frozen samples to directly profile 105 

mRNA transcripts, targeted probes are used for formalin-fixed paraffin embedded 106 

(FFPE) samples to overcome low RNA quality. Therefore, Visium assays for fresh 107 

frozen samples embedded in optimal cutting temperature compound (OCT samples) 108 

and FFPE samples should be considered as two independent assays, with 109 

potentially different detection capacities. 110 

Previous comparisons between the DSP and Visium platforms generally 111 

focused on platform-specific features between the two technologies. These 112 

comparisons have comprehensively evaluated the technical specifications provided 113 

by the manufacturers and aimed to provide potential users a taste of the best 114 

practice for applying these assays to their research [2,6,7,8]. However, given that 115 

previous datasets were generated from unmatched samples and often from samples 116 

collected under physiological conditions such as normal mouse brain, a thorough 117 

comparison on the performance of gene detection and application between the two 118 

platform on more challenging sample types such as cancer samples is still missing. 119 

In addition, little published data exists for the FFPE Visium assay and how it differs 120 

from the OCT Visium assay. 121 

Here, we aim to provide a well-controlled direct comparison between the DSP 122 

and Visium technologies. Using preserved cell line samples and primary breast 123 
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cancer tissue samples, we collected DSP and Visium data from serial sections from 124 

the same samples with matched tissue morphologies and cell populations. We 125 

started by asking whether there is any fundamental difference between the DSP and 126 

Visium platforms in terms of characterising spatial transcriptomic profiles, before 127 

going on to assess platform-specific factors. Importantly, we identified several 128 

challenges in implementing the DSP and Visium technologies. With these datasets 129 

and analyses, we provide a guide to prospective users of these technologies with 130 

technical comparisons and insights on experimental workflow design and data 131 

processing to assist in decision-making when considering spatial transcriptomic 132 

experiments. 133 

 134 

 135 

Methods 136 

Sample collection 137 

Surgical specimens were assessed and sampled by a pathologist with 138 

specialist experience in breast cancer to ensure the tumour area was collected. 139 

Tumour samples were trimmed of excess fat and macroscopic necrosis and then cut 140 

to size. For samples 4747, 4754 and 4806, tissues were sliced in the middle to form 141 

two pieces with mirrored morphology and preserved as FFPE or OCT samples 142 

respectively. For sample 4766, the tissue was thin and only adjacent pieces were 143 

preserved as FFPE or OCT samples. For FFPE samples, tissues were fixed in 10% 144 

neutral buffered formalin (NBF) for 24 hours before changing to 70% ethanol prior to 145 

processing and embedding. For OCT samples, tissues were placed mirrored face-146 

down onto a flat metal spatula. Tissues were submerged in an isopentane bath in a 147 
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metal beaker surrounded by dry ice until frozen through. Frozen tissues were gently 148 

removed from the spatula and submerged into precooled OCT and then frozen by 149 

surrounding the mould with crushed dry ice. All OCT tissue samples have a RIN 150 

value of at least 7.  151 

To create ‘synthetic tissue’ references, cultured Jurkat and SKBR3 cells were 152 

collected as single-cell suspension and washed twice using 1x PBS. Jurkat and 153 

SKBR3 cells were then counted and mixed at 6 different ratios (0:100, 5:95, 30:70, 154 

70:30, 95:5 and 100:0) to create a gradient. The prepared cell mixes were then 155 

converted into OCT or FFPE blocks. For OCT cell array samples, an OCT mould 156 

was made by incubating OCT with 6 small metal pillars on dry ice. The OCT were 157 

given time to solidify but not fully set to avoid attachment to the metal pillars. Once 158 

the metal pillars were removed, the OCT mould was given extra time to fully solidify 159 

resulting in 6 holes in the mould. The mixed Jurkat and SKBR3 cells were then 160 

pelleted at 300g for 5min at 4 degrees and the supernatant was removed. The rest of 161 

the cells and buffer were then mixed by gentle flicking. 10µl of the cells from each 162 

mixing ratio was transferred to a corresponding hole in the OCT mould and frozen on 163 

dry ice. For FFPE cell array samples, mixed Jurkat and SKBR3 cells were firstly 164 

resuspended in 10% NBF. The resuspended cells were then pelleted immediately at 165 

700g for 10min to remove the NBF in the supernatant. The cell pellets were then 166 

mixed with equal volume of warm 3% agarose and transferred to the lids of PCR 167 

tubes. Once solidified, the cell pellet samples were retrieved from the lids using a 168 

metal scalpel with care. The resulting cell pellets were stored in 70% ethanol for 24 169 

hours before being processed into FFPE blocks. 170 

Before sectioning for gene expression experiments, an H&E stained section 171 

was obtained from each FFPE or OCT sample to evaluate the morphological 172 
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features of the sample and to guide the selection of DSP regions of interest (ROIs). 173 

For both DSP and Visium assays involving FFPE samples, closest possible 5μm 174 

thick sections were used. For DSP experiments, the first 2 sections were discarded 175 

before collecting the samples for DSP experiments. The prepared sections were 176 

stored at -20°C. For OCT samples, serial sections were prepared at the thickness of 177 

7 or 10μm for the DSP or Visium experiments respectively. 10μm thick sections were 178 

used for Visium tissue optimisation experiments. 179 

 180 

 181 

Nanostring morphology marker antibody conjugation 182 

CD8 antibody (Clone AMC908, ThermoFisher) was conjugated using Alexa 183 

Fluor™ 647 Antibody Labelling Kit (ThermoFisher). 100mg of CD8 antibody at a 184 

concentration of 1mg/mL was cleaned twice using the Zeba™ Spin Desalting 185 

Columns, 7K MWCO (ThermoFisher). The filtered antibody was then mixed with 1M 186 

sodium bicarbonate (pH 8.5) at a ratio of 10:1 by volume. The primed antibody was 187 

then transferred immediately to the tube with fluorescent dye supplied by the kit. The 188 

antibody-fluorophore mixture was homogenised by pipetting and incubated at room 189 

temperature for 1 hour in dark. During incubation, the antibody-fluorophore mix was 190 

mixed every 15min by gentle flaking on the tube. After incubation, the antibody-191 

fluorophore mix was filtered twice with the Zeba Spin columns. The conjugated 192 

antibody was stored at 4°C until use. 193 

 194 

 195 

 196 
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DSP experiment 197 

DSP experiments were conducted according to manufacturer’s instructions 198 

(Slide prep manual version: MAN-10115-04; DSP instrument operation manual 199 

version: MAN-10116-04; Library prep manual version: MAN-10117-04) with minor 200 

adjustments. Briefly, sectioned FFPE slides were firstly baked for 60 minutes at 65°C 201 

followed by dewaxing and antigen retrieval. For OCT sections, samples were firstly 202 

thawed and fixed in 10% NBF for 16 hours at room temperature. The fixed samples 203 

were then washed 3 times in 1x PBS followed by antigen retrieval. From antigen 204 

retrieval, the FFPE and OCT samples were treated with the same conditions. Both 205 

FFPE and OCT cell array samples were incubated for 5min at 100°C in 1x Antigen 206 

Retrieval Solution (ThermoFisher, 00-4956-58) using a pressure cooker. For tissue 207 

samples, samples were incubated for 20min at the same temperature. For 208 

proteinase K digestion, samples were incubated with 0.1μg/mL proteinase K 209 

(ThermoFisher, AM2546) in a in a 37°C water bath. The cell array samples were 210 

incubated for 5min while the tissue samples were digested for 15min. For in situ 211 

hybridisation, 240μL of diluted DSP probe mix was added to each slide and 212 

incubated at 37°C in a hybridisation oven for 18 hours over night. The processed 213 

slides were then labelled with morphology marker antibodies. For cell array samples, 214 

SYTO13, anti-pan-cytokeratin-AF532 antibody (Nanostring) and anti-CD45-AF594 215 

antibody (BioLegend, 103144) were used. For tissue samples, SYTO13, anti-pan-216 

cytokeratin antibody and the anti-CD45 antibody from the Nanostring solid tumour 217 

morphology marker kit were used in conjugation with the conjugated anti-CD8 218 

antibody as mentioned above to illustrate tissue morphology. Areas of illumination 219 

(AOIs) were collected using a range of shapes and sizes, as appropriate to the 220 

experiment. In some cases, to allow direct comparison with the Visium platform, 221 
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~55μm diameter non-segmented AOIs were captured to ‘mimic’ the data generated 222 

by the Visium platform. 223 

After DSP collection, samples were dehydrated at 65°C for 1.5 hours in a 224 

thermo-cycler with the lid kept open. Samples were then rehydrated and subjected to 225 

sequencing library preparation. During the experiment, we noticed that the volume of 226 

the primers in wells A1, H1, A12 and H12 from SeqCode plate B, well E1 from 227 

SeqCode plate F and well H1 from SeqCode plate G was lower than the volume in 228 

the other wells. Instead, libraries for samples in these wells were synthesised using 229 

primer from well C1-C6 from SeqCode plate H. After library synthesis, 4μL of PCR 230 

products from each well were firstly pooled together by type i.e. Visium-mimic AOIs, 231 

segmented AOIs, size gradation AOIs and biological AOIs (Fig. 1c-d). The resulting 232 

pools of PCR products were then merged together adjusting for the total area size of 233 

all AOIs in each pool to guarantee a comprehensive sampling of smaller AOIs. The 234 

pooled sequencing library was then quality controlled and sequenced on a NovaSeq 235 

6000 instrument (Illumina). Paired-end and dual-indexed reads were generated in 236 

the format of 2 x 28bp with an additional 2 x 8bp for index sequences. 237 

RNAse free or buffer was used throughout the experiment except for xylene 238 

and ethanol for histology. All surfaces were decontaminated using RNAse ZAP. 239 

 240 

 241 

Visium experiment 242 

OCT Visium experiments were conducted according to the manufacturer’s 243 

protocol. The optimal tissue permeabilisation time for each sample was determined 244 
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using the Visium tissue optimisation kit. The resulting RNA footprint fluorescence 245 

images were reviewed and 17, 16 and 12 min were used for gene expression 246 

experiments for the cell array sample, 4747, 4754 and 4806 respectively. The rest of 247 

the procedures were conducted according to the Visium protocol. The generated 248 

cDNA library was then sequenced on a NovaSeq 6000 instrument (Illumina). 249 

 FFPE Visium data was generated by 10X Genomics with no deviation from 250 

the protocol. The H&E images were taken using a Metafer slide scanning system 251 

(Metasystems) with a Zeiss Plan-Apochromat 10x/NA 0.45 objective lens. The 252 

resulting cDNA libraries were sequenced on a NovaSeq 6000 system (Illumina). 253 

 254 

 255 

FASTQ file processing 256 

For Visium data, demultiplexed FASTQ files were converted to count matrices 257 

using SpaceRanger 1.3.1 (10X Genomics). OCT and FFPE Visium data were 258 

mapped to refdata-gex-GRCh38-2020-A (10X Genomics). Visium Human 259 

Transcriptome Probe Set v1.0 GRCh38-2020-A (10X Genomics) was also provided 260 

for processing the FFPE Visium data. Spot annotation was conducted in loupe 261 

browser 5 (10X Genomics). A Seurat object (Seurat V4) was then constructed for 262 

each sample using deduplicated count matrices and spot annotations [9]. 263 

For DSP data, raw reads from FASTQ files were mapped to the 264 

Hs_R_NGS_WTA_v1.0 reference (Nanostring) using the GeoMx NGS pipeline 265 

software V2.2 (Nanostring) and saved as Digital Count Conversion (DCC) files. The 266 

DCC files were then used to construct a gene expression count matrix using the 267 

GeomxTools package V3.0.1 [10]. 268 
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  DSP and Visium data was also down sampled to account for technical 269 

variations in direct DSP and Visium comparison. FASTQ files from samples used for 270 

direct DSP and Visium comparison were selected and down sampled in a per 271 

sample manner. Raw reads were down sampled so as to not exceed the minimum 272 

recommended levels (100 reads/µm2 for DSP; 25,000 reads/spot for FFPE Visium; 273 

and 50,000 reads/spot for OCT Visium) for each platform using seqtk 1.3 [11]. For 274 

samples whose sequencing depths are below the recommendations, raw data was 275 

kept as is. The resulting down sampled FASTQ files were aligned to the references 276 

using the same tools and references as mentioned above. 277 

 278 

 279 

Data quality control (QC) and filtering  280 

For Visium data, spots with less than 1000 unique molecular identifiers (UMIs) 281 

detected were considered low-quality and excluded from the data. In addition, spots 282 

underneath regions with tissue processing artefacts were manually annotated and 283 

excluded as well. 284 

 For DSP data, data were quality controlled per individual AOI. AOIs were 285 

excluded from the dataset if they met any of the following conditions: less than 80% 286 

of reads aligned to the reference, less than 40% sequencing saturation, or less than 287 

1000 UMI. After QC and filtering, DSP count matrix and annotation were saved as 288 

Seurat objects for more consistent accessing and analysis. 289 

 290 

 291 
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Data normalisation and differential expression (DE) analysis 292 

For gene expression visualisation, DSP and Visium data were normalised 293 

respectively using the “NormalizeData” function with default settings in the Seurat 294 

package. For DE analysis in DSP and Visium comparison, DSP visium mimic AOIs 295 

and Visium spots from matching regions were selected. For Visium data, data was 296 

normalised on a per sample basis using the same “NormalizeData” function in the 297 

Seurat package. For DSP data, AOIs collected from the cell array samples and 298 

tissue samples were grouped separately to minimise the impact of tissue 299 

composition on data normalisation. AOIs in each group were then normalised using 300 

the Q3 method per manufacturer’s recommendation. Briefly, a 3rd quantile threshold 301 

was calculated for each AOI for the estimation of normalisation factors across AOIs 302 

within the same group. The data was then normalised using the normalisation factors. 303 

Both DSP and Visium data was filtered for outlier genes before DE analysis. For 304 

Visium data, genes detected with equal or more than 1 count in at least 3 technical 305 

replicates were kept for DE analysis. For DSP data, a limit of quantification (LOQ) 306 

was estimated for each AOI. The LOQ was calculated using the following formula 307 

with raw counts of negative control probes: 308 

��� � �����	
 � ����
^2 

Only genes with expression above LOQ in at least 3 technical replicates were 309 

included in the DE analysis. The normalised and filtered DSP and Visium data was 310 

then fitted to a linear model on a per sample basis using the limma package (version 311 

3.52.2) and t-statistics were calculated using the “eBayes” function in limma [12].  312 
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For DE analysis between CD8 AOIs and non-CD8 AOIs, DSP data was 313 

grouped according to pathology annotation. DE analysis was conducted in a similar 314 

way as mentioned above. 315 

Genes with an adjusted P value (Benjamini-Hochberg method) less than 0.05 316 

were considered to be differentially expressed. DE results were visualised using 317 

barplots (ggplot), correlation heatmap (ComplexHeatmap v2.12.0) [13]. Top DEGs 318 

were selected based on the absolute value of the t statistics in DE analysis results. 319 

 320 

   321 

Cell type deconvolution 322 

 The cellular composition of each Visium spot and DSP AOI was predicted 323 

using published single-cell transcriptomic signatures [5]. Both the “major” and “minor” 324 

level cell type signatures were used for deconvolution.  325 

For Visium data, cell type deconvolution was conducted using Stereoscope 326 

v0.3.1 [14] based on the top 2000 highly variable genes as defined by scanpy v1.7.2 327 

[15] using the “Seurat” flavoured method [16].  328 

For DSP data, deconvolution was conducted using all genes with the 329 

SpatialDecon package [17]. The Q3 normalised, log2-scaled gene expression matrix 330 

was used as the input for the analysis. All other parameters were kept as default.  331 

  332 

 333 

Pre-ranked GSEA analysis 334 
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Genes were ranked based on t statistics from DE analysis. Pre-ranked GSEA 335 

analysis was then conducted using the GSEA software (linux, v4.2.2) [18,19]. Genes 336 

were mapped to gene ontology biological processes pathways (v7.5.1) obtained from 337 

the Molecular Signatures Database (MSigDB)[20]. The results of pathway analysis 338 

were then visualised using the ComplexHeatmap package in R. 339 

 340 

 341 

Visium data dimension reduction, clustering and over-representation analysis 342 

(ORA) 343 

 Dimensionality reduction was conducted on Visium data for each individual 344 

sample using the Seurat package. Original datasets (without down-sampling) were 345 

used for this analysis. Gene expression data was normalised using the ScTransform 346 

method (V1) [21]. Dimension reduction was conducted using PCA and UMAP 347 

methods. A total of 30 principal components were used for dimension reduction 348 

through UMAP method. Visium spots were then clustered using the Seurat package. 349 

The optimal clustering resolution was selected based on the spatial distribution of 350 

common cell type marker genes. The clustree package (v0.5.0) was also used to 351 

evaluate the relationship between clusters at different clustering resolution [22]. The 352 

clustering resolution that provides relatively high clustering stability but also reflects 353 

the biological complexity of the tissue was selected as the optimal clustering 354 

resolution for each sample. 355 

 Clusters predominantly containing cancer cells were identified based on the 356 

proportion of cancer cells predicated by deconvolution as well as the tissue 357 

morphology underneath the spots in each cluster. Differential gene expression 358 
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analysis between the identified cancer clusters was then conducted using the 359 

“FindAllMarkers” function in the Seurat package. Default parameters for Seurat v4 360 

were used. All genes with an adjusted P value less than 0.05 were considered 361 

significantly differentially expressed and passed to the downstream ORA analysis 362 

using the clusterProfiler package (v4.4.4) [23]. Enriched hallmark pathways were 363 

calculated using “compareCluster”. The top 10 pathways upregulated in each cluster 364 

were then visualised using the “dotplot” function in the clusterProfiler package. 365 

 366 

 367 

 368 

 369 

Results 370 

Experimental design 371 

In total, 4 primary breast cancer tissue samples and 2 cultured cell lines were 372 

preserved for DSP and Visium comparison. Patient 4747 was diagnosed with ER+ 373 

breast cancer while 4754, 4766 and 4806 were all diagnosed with triple negative 374 

breast cancer (TNBC) by clinical examination. All tissue samples were sliced in the 375 

middle to form 2 pieces of tissue with mirrored morphology except for 4766 from 376 

which adjacent pieces were taken (Fig. 1a). The resulting two pieces were then 377 

preserved as FFPE or OCT blocks respectively (Fig. 1b). To permit more direct 378 

quantitative comparisons between platforms, cultured cell lines were mixed to create 379 

‘synthetic tissues’ with controlled cellular proportions. We selected Jurkat (T 380 

lymphoma) and SKBR3 (breast cancer) cell lines as representations of immune and 381 
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epithelial malignant cell types, respectively. Jurkat and SKBR3 cells were mixed at 6 382 

ratios: 100-0, 95-5, 70-30, 30-70, 5-95 and 0-100. The mixed cell samples were then 383 

divided into two aliquots for FFPE and OCT sample preservation. Cell samples with 384 

different mixing ratios were arrayed together to generate a cell microarray block for 385 

FFPE or OCT samples respectively. Serial sections were then cut for DSP and 386 

Visium assays. 387 

The DSP and Visium platforms collect spatial transcriptomic data in a very 388 

different manner. The Visium platform generates a uniformed array of ~5000-14000 389 

spots per sample depending on the size of the capture area, while the DSP AOIs are 390 

manually selected in locations of interest and can have different sizes or 391 

segmentation based on morphology and marker expression. To facilitate a direct 392 

comparison between DSP and Visium assays, 4 types of DSP AOIs were collected: 393 

1) Visium-mimic AOIs, 2) segmented AOIs, 3) size gradation AOIs, and 4) biological 394 

AOIs. These AOI types are defined as follows. 1) Visium-mimic AOIs are circular 395 

AOIs 55μm in diameter aiming to mimic data collection of visium spots. 4 Visium 396 

mimic AOIs were selected in each cell pellet with a different SKBR3 / Jurkat mixing 397 

ratio, and 28 Visium-mimic AOIs were selected in tissue samples 4747, 4754 and 398 

4806 (Fig. 1c i-ii). 2) Segmented AOIs are circular AOIs, 200μm in diameter, 399 

segmented into epithelial and non-epithelial compartments using 400 

immunofluorescence-guided masks (Fig. 1c iii). 3) Size gradation AOIs are circular 401 

AOIs varying in size from 20μm in diameter to 200μm in diameter and used to 402 

evaluate the impact of AOI size on DSP transcriptomic data collected (Fig. 1d). 4) 403 

“Biological AOIs” are circular AOIs collected around biological structures annotated 404 

by pathology, such as immune clusters adjacent to the tumour. Depending on the 405 
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cellular composition in each location, epithelial, non-epithelial and CD8 segments 406 

were collected (Fig. 1e).  407 

 408 

 409 

Comparison of the transcriptomic coverage and detection sensitivity of the 410 

DSP and Visium platforms 411 

To compare the performance of the DSP and the Visium platforms under 412 

more compatible conditions, we evaluated the impact of two major technical factors 413 

on the performance of the two platforms: AOI size (DSP) and sequencing depth. 414 

For DSP assays, the size of each AOI can be manually adjusted, allowing 415 

sampling of different numbers of cells per AOI. To test the impact of AOI size, we 416 

focused on size gradation AOIs (Fig. 1d). In line with the previous literature [3,24], 417 

we observed a positive correlation between the size of AOI and the number of genes 418 

with at least 1 UMI detected per AOI (Fig. S1). While more than 5000 genes were 419 

detected in 20um spots, sensitivity increased markedly between the 20um and 55um 420 

spot size. Therefore we mainly focused on 55um AOIs that are of comparable size to 421 

Visium spots (Fig. 1c i-ii). 422 

Sequencing comprises a substantial component of the total cost in spatial 423 

transcriptomics, and sequencing depth affects sensitivity of detection [25]. To 424 

address the optimal sequencing needs of each platform, we firstly compared the 425 

performance of each platform as a function of sequencing depth. For DSP WTA 426 

assays, a minimum of 100 reads per μm2 is recommended [26]. Most of the DSP 427 

samples processed were able to reach and surpass this threshold (Fig. S2a). We did 428 
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observe a few outlier samples. However, the sequencing saturation of all DSP 429 

samples have surpassed 50% indicating proper profiling of the sequencing libraries 430 

(Fig. S2c). On the other hand, a minimum of 25,000 or 50,000 reads per spot was 431 

recommended for the FFPE and OCT Visium assays, respectively [27,28]. The 432 

current FFPE Visium datasets were extensively sequenced exceeding the threshold 433 

by at least 1-fold (Fig. S2b). Samples processed using the OCT Visium assays were 434 

at or slightly below the required sequencing depth (Fig. S2b). Interestingly, while the 435 

FFPE Visium samples were sequenced deeper as compared to OCT Visium 436 

samples, we observed an inverse trend in sequencing saturation (Fig. S2c), 437 

indicating a higher library diversity of the FFPE Visium samples as compared to the 438 

OCT Visium samples. 439 

To account for the variations in sequencing depth between DSP and Visium, 440 

as well as between individual samples processed using the same platform, we down-441 

sampled the gene expression data from AOIs/spots used for direct comparison to the 442 

recommended read depths at a per-sample level (Fig. S2d-f). Datasets already 443 

below the recommendations were kept as is (Fig. S2d-f). As expected, we observed 444 

a decrease in sequencing saturation for all samples after down-sampling. Most 445 

impacted was the FFPE Visium data which exceeded the recommendation by the 446 

greatest extent. All FFPE Visium samples only achieved around 10-20% sequencing 447 

saturation after down-sampling, whereas minimal impact was observed for DSP and 448 

OCT Visium data (Fig. S2f). This suggests that sequencing Visium FFPE libraries 449 

above the recommended depth is necessary to achieve saturation >50% in human 450 

cancer studies. 451 

Using these standardised gene expression datasets, containing the same 452 

number of DSP Visium-mimic AOIs and Visium spots, we examined transcriptomic 453 
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coverage provided by the DSP and Visium assays. The biotype of transcripts 454 

detected were annotated using the GRCh38 reference and briefly summarised into 5 455 

groups: 1) mitochondrial RNA (MT); 2) RNA for ribosomal proteins (RP); 3) RNA for 456 

T cell receptors (TCR) or B cell receptors (BCR); 4) RNA for other proteins and 5) 457 

non-coding RNA (ncRNA). As expected, the OCT Visium assay is the only assay 458 

detecting mitochondrial RNA and the main assay detecting non-coding RNA due to 459 

the non-targeted capturing using poly(T) capture handles (Fig. 2a). The DSP 460 

platform contains probes targeting genes coding for ribosomal proteins (see column 461 

“DSP_panel”, Fig. 2a), which are also detected by the OCT Visium, but mostly 462 

absent from the FFPE Visium probe-set. In contrast, the FFPE Visium assay 463 

includes many more probes against TCRs and BCR gene segments than the 464 

standard DSP probe set (Fig. 2a), which will be valuable in the investigation of 465 

tumour immunology. 466 

We also evaluated the number of molecules, also known as unique molecular 467 

indices (UMIs), from each type of RNA transcript detected by the DSP and Visium 468 

platforms. The majority of the counts in each assay were related to protein-coding 469 

genes (Fig. 2b). Around 30-40% of UMIs collected by the OCT Visium assay were 470 

related to transcripts for mitochondrial or ribosomal proteins. In addition, all assays 471 

seem to detect substantial amount of UMIs in samples from patient 4754 for TCR or 472 

BCR transcripts, potentially reflecting variations in tissue immune cell composition 473 

between the samples (Fig. 2b). 474 

The results above suggested that both the DSP and Visium platform can 475 

provide an overall good transcriptomic coverage of the samples profiled, but that 476 

coverage for specific applications varies by platform. We next aimed to evaluate the 477 

sensitivity of gene expression detection per spot level. Using genes with at least 1 478 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.06.535805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535805
http://creativecommons.org/licenses/by/4.0/


 21

count detected as threshold, the DSP assays in general detected many more genes 479 

per spot than the Visium assays (Fig. 2c). As a consequence, the DSP data had less 480 

zero observations in the gene expression matrix as reflected by the overall low 481 

matrix sparsity (Fig. 2d). In line with this observation, UMIs are more evenly 482 

distributed across genes in DSP assays with ~6000 – 10000 genes contributing to 75% 483 

of all UMIs collected (Fig. 2e; Fig. S3). On the other hand, the counts collected in 484 

Visium datasets are concentrated among a smaller group of genes with ~3000 and 485 

~1000 genes occupying 75% of all UMIs in the FFPE or OCT Visium data, 486 

respectively (Fig. 2e; Fig. S3). Therefore, these results suggest that the DSP assays 487 

are more sensitive than the Visium assays given more genes were detected with 488 

counts and the UMI distribution is more even across the transcriptome. 489 

However, DSP assays are known to contain noise due to non-specific probe 490 

binding [3]. Non-targeting control probes are included in the probe panel in order to 491 

model the level of non-specific binding in each AOI. A LOQ threshold is often applied 492 

to evaluate if a gene is considered to be detected or not in the DSP datasets. Genes 493 

recurrently below the LOQ threshold can then be excluded from analysis to highlight 494 

the key biology of the samples [3]. Targeted probes were also used in the FFPE 495 

Visium assays. However, the probes are designed to contain a left-hand side and a 496 

right-hand side so that only reads from both probe pairs are included in the final 497 

count matrix. This potentially allows the exclusion of some non-specific readings 498 

from the dataset. In contrast, the Visium OCT assay employs an unbiased polyA-499 

based capturing approach and is free from the bias due to variations in probe 500 

sequences. 501 

We then evaluated the specificity of detection in both DSP and Visium data. 502 

Given that the cell array samples only contain Jurkat (T-cell lymphoma) and SKBR3 503 
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(breast cancer) cell-lines, we reasoned that immunoglobulin heavy chain genes 504 

should not be detected in this sample. Indeed, no reads from immunoglobulin heavy 505 

chain genes were detected by the FFPE or OCT Visium assays (Fig. S4a). However, 506 

unfiltered DSP data did contain non-specific readings for immunoglobulin heavy 507 

chain genes. These results are in line with previous studies, which showed the 508 

presence of non-specific signals in the DSP assays [3]. Non-specific detection in the 509 

DSP data can be reduced by filtering the count matrix with the geometric mean of 510 

non-target probe readings (Fig. S4b) and was completely removed by using LOQ 511 

filtering (Fig. S4c). However, LOQ filtering may also introduce false negatives. For 512 

example, EPCAM is a well-established epithelial cell marker. Filtering of DSP gene 513 

expression data using the LOQ method can lead to exclusion of EPCAM signal in 514 

several AOIs containing almost exclusively SKBR3 cells (Fig. S4c). In addition, we 515 

noticed that the sensitivity of the DSP platform drops after applying additional filtering. 516 

For example, when the raw counts were filtered using the geometric mean of non-517 

target probe readings, we noticed a clear decrease in the numbers of genes 518 

detected per spot (Fig. S5a). Similarly, the sparsity of the gene expression matrix 519 

also increased (Fig. S5b; Fig. 2d). Interestingly, the numbers of genes contributing to 520 

majority of the UMIs collected (75%) in background filtered DSP data are 521 

comparable to that of in the FFPE Visium assay (Fig. S5c-j). Non-surprisingly, the 522 

sensitivity of the DSP assays can drop even further after more stringent filtering is 523 

applied (LOQ filtering) (Fig. S6). 524 

 525 

 526 

 527 
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Comparison of the DSP and Visium platforms on detecting gene expression 528 

changes 529 

 A major application of spatial transcriptomics platforms is in the determination 530 

of the difference in gene expression between cellular compartments, so we asked 531 

how well the DSP and Visium platform capture biological variation within samples. 532 

Using the cell-pellet datasets, we first evaluated the expression of marker genes in 533 

DSP and Visium data. We observed high expression of epithelial markers such as 534 

KRT18 in cell samples containing higher proportions of SKBR3 cells and vice versa 535 

for immune markers in samples with more Jurkat cells, thereby showing good 536 

correlation between gene expression and cellular composition in all datasets (Fig. 3a; 537 

Fig. S7). Turning to tissue samples, a similar trend was observed in most of the 538 

datasets compared. For both FFPE and OCT DSP data, there are clear differences 539 

in epithelial or TME marker gene expression between regions with high epithelial 540 

content and regions with low epithelial content (Fig. 3b; Fig. S8). For FFPE Visium 541 

data, the trend is generally clear for sample 4754 and 4806 but less so for 4747. 542 

While in line with the DSP data showing a significant enrichment of KRT18 543 

expression in the ‘high epithelial’ region as compared to the ‘low epithelial’ region in 544 

4747 (Fig. 3b), no enrichment was observed for KRT8 in FFPE Visium data (Fig. S8). 545 

Also, the difference in marker gene expression between regions with high or low 546 

epithelial content detected by the OCT Visium assay is small (Fig. 3b; Fig. S8).  547 

To investigate why the Visium data did not markedly reflect gene expression 548 

changes between tissue compartments with different cellular composition, we 549 

evaluated the expression of cell lineage specific marker genes in individual Visium 550 

spots in sample 4747 (FFPE). This showed that the expression of these genes are 551 

not completely restricted to the corresponding pathology annotated tissue regions 552 
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(Fig. S9). This is likely due to infiltration of the tumour by immune / stromal cell types 553 

(i.e. PTPRC and COL1A1 expression). However, some expression of epithelial 554 

markers such as KRT8 and KRT18 was also detected in spots annotated as stroma, 555 

despite the limited presence of cancer cells in these spots as revealed by the H&E 556 

image (Fig. S9). While the exact cause of such observation is still unclear, a recent 557 

study has suggested that transcripts or probes in Visium assays might diffuse into 558 

adjacent spots during tissue permeabilization leading to an effect termed as spot 559 

swapping [29]. However, the extent to which this influences the current Visium 560 

datasets remains uncertain. For the Visium OCT data, the overall low detection of 561 

DEGs across tissue samples could be due to the uneven distribution of UMIs across 562 

the genes as observed in Fig. 2c-e.  563 

To more quantitively compare the performance of DSP and Visium in 564 

detecting the difference in gene expression between different regions, we conducted 565 

differential gene expression (DE) analysis between the high epithelial and low 566 

epithelial AOIs/spots collected by each assay. For the cell array samples, only data 567 

collected from 100% SKBR3 and 100% Jurkat cells was used. For tissue samples, 568 

AOIs/spots were manually annotated based on tissue morphology. We first 569 

compared the numbers of differentially expressed genes (DEGs) detected by each 570 

assay, with an adjusted p-value less than 0.05. In general, the DSP platform 571 

generates fairly similar results across all samples tested (Fig. 3c). The number of DE 572 

genes were comparable between the DSP and Visium FFPE solutions for sample 573 

4754, 4806 and the cell array. However, few DEGs were detected with the Visium 574 

FFPE solution for sample 4747 and all tissue samples processed using the OCT 575 

Visium assay (Fig. 3c).  576 
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We then tested the concordance between DSP and Visium DE results by 577 

computing the Pearson’s correlation score between the fold changes of significant 578 

DE genes. This showed high correlation between all platforms on the cell-array 579 

samples (Fig. 3d). We also observed good correlation between DSP data from 580 

matching FFPE and OCT samples in all tissue samples tested. The correlation of 581 

FFPE Visium results with DSP data was also good in samples 4754 and 4806 582 

(above 0.5) but poor in 4747. OCT Visium had poor correlation with all other 583 

datasets in tissue samples (Fig. 3d).  584 

In addition to the overall pattern, we also examined the biology revealed by 585 

the DE analysis. The fold change of the top 10 DEGs identified by each assay in 586 

each sample was plotted as a heatmap. For data generated from samples FFPE 587 

4747, OCT 4747, OCT 4754 and OCT 4806 by the Visium platform, the fold changes 588 

detected appear to be smaller than the fold changes detected by other assays on the 589 

same samples (Fig. 3e). This is in line with the previous analysis results in which 590 

limited numbers of DEGs were confidently detected by the Visium assays in these 591 

samples (Fig. 3c). Nonetheless, the overall fold change pattern is consistent across 592 

all datasets. In the cell-array dataset we observed strong DE of markers related to 593 

Jurkat (CD3D, TRBC1, TMSB4X) or SKBR3 (ERBB2, KRT8, KRT18) cells (Fig. 3e). 594 

Epithelial-depleted tissue regions featured genes encoding immunoglobulin and 595 

collagen genes, consistent with enrichment of fibroblasts and B cells in those regions, 596 

however many genes enriched in SKBR3 were also found to be enriched in regions 597 

with high epithelial content, reflecting the epithelial nature of SKBR3 breast cancer 598 

cells (Fig. 3e). We also identified sample-specific gene clusters. For example, we 599 

observed enrichment of GATA3 and TFF3 in the cancer regions of 4747, consistent 600 

with its clinical classification as a luminal breast cancer. 601 
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 602 

 603 

Comparison of the DSP and Visium platforms on resolving fine tissue 604 

structures 605 

So far, we have focused on unsegmented DSP AOIs when making direct 606 

comparisons between the DSP and Visium assays. However, a unique feature of the 607 

DSP platform is its ability to collect transcriptomic profiles of different cell types 608 

separately based on fluorescence masking. We tested this ability of the DSP 609 

platform using segmented AOIs targeting epithelial or non-epithelial segments based 610 

on the staining of anti-pan-cytokeratin antibody. In comparison to the gene 611 

expression data collected using DSP segmentation, Visium spots located in regions 612 

with matching morphology were manually selected and separated into the epithelial 613 

and non-epithelial group based on cellular composition (Fig. 1c iii-iv).  614 

We first evaluated the purity of DSP segmentation using cell array samples. 615 

As shown previously (Fig. 3a), we observed a good concordance between the 616 

expression of cell markers and the proportion of SKBR3 and Jurkat cells when using 617 

Visium given the expression of both cell lines were captured together using the 618 

Visium assays (Fig. S10). However, on the other hand, we observed enrichment of 619 

cell markers in the corresponding DSP segments irrespective of the mixing 620 

proportion of Jurkat and SKBR3 cells confirming the enrichment of cell type-specific 621 

transcriptomic profile through DSP segmentation (Fig. S10). 622 

To evaluate the purity of DSP segmentation, directly from the whole 623 

transcriptomic profile, rather than relying on a handful of cell type markers, we used 624 

deconvolution to infer the proportion of Jurkat and SKBR3 cells. Encouragingly, we 625 
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observed a similar pattern in deconvolution results, where DSP segments in FFPE 626 

cell array samples were predicted to contain almost exclusively Jurkat or SKBR3 627 

cells in the corresponding segments, whereas the proportion detected using the 628 

Visium assay changes as the mixing proportion changes between Jurkat and SKBR3 629 

cells (Fig. 4a). However, we did notice that the separation is not as clear in data 630 

collected using the DSP OCT assay. As the proportion of SKBR3 and Jurkat 631 

changes, the predicted cell proportion changed correspondingly (Fig. 4a).  632 

The results above seem to indicate that the segmentation works better in 633 

FFPE samples than in the OCT samples for the DSP platform. To better understand 634 

the cause of such observations, we evaluated the immunofluorescence images to 635 

understand the variations in the FFPE and OCT cell array samples. Of note, cells in 636 

the FFPE cell array appear to be forming a relatively uniformed single layer, while 637 

cells in the OCT cell array seem to have aggregated into strips (Fig. 4b). Given that 638 

segmentation was only conducted in two dimensions, it is possible that there are 639 

other cell types above or below the targeted cell type, causing contamination of the 640 

gene expression signal and less clear separation using the IF-based segmentation. 641 

We next extended our comparisons to breast cancer tissue samples. In line 642 

with the results above, we observed enrichment of marker gene expression in 643 

corresponding tumour or non-tumour DSP segments (Fig. S11). In many samples, a 644 

difference can also be observed between Visium spots annotated as epithelial and 645 

non-epithelial (Fig. S11). We also predicted the cellular composition in our spatial 646 

datasets using gene expression signatures defined in our published breast cancer 647 

single cell RNA-Seq dataset [5]. In both OCT and FFPE DSP data, the tumour 648 

segments were predicted to contain almost exclusively epithelial cancer cells, which 649 

were absent in the non-tumour segments (Fig. 4c), whereas Visium spots annotated 650 
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as epithelial or non-epithelial are predicted to contain immune and stromal cell types, 651 

along with epithelial cancer signatures (Fig. 4c), as would be expected in a tumour.   652 

In the analyses above, we profiled regions with well compartmentalised tissue 653 

structures and a clear tumour-stroma interface. We then challenged the DSP 654 

platform by targeting more specific cell types, namely CD8 T cells, in the tumour 655 

microenvironment of two samples. We focused on biological AOIs as shown in Fig. 656 

1d. The transcriptomic profiles of CD8 T cells were collected through segmentation 657 

based on immunofluorescence signal of an anti-CD8 antibody. The transcriptomic 658 

profiles of adjacent tumour cells and non-CD8 TME cell types were also collected.  659 

To test the purity of segmentation, we examined the expression of cell 660 

markers, including CD8A. From this, we observed enriched CD8A gene expression 661 

in CD8 segments as compared to the epithelial segments or non-epithelial-non-CD8 662 

segments collected in the same region (Fig. 4d). We also conducted DE analysis 663 

between CD8 segments and adjacent non-CD8 TME AOIs, which showed significant 664 

enrichment of T cell-related pathway activity (Fig. 4e). However, the expression of 665 

myeloid cell markers CD14 and CD68 as well as B cell marker JCHAIN were also 666 

high in the CD8 segment, at a level comparable to adjacent non-CD8 TME segments 667 

(Fig. S12). While the exact cause of the contamination in the CD8 transcriptomic 668 

profile is unclear, it may be caused by interactions between immune and stromal cell 669 

types that cannot be fractionated through segmentation, highlighting a challenge for 670 

DSP segmentation in obtaining pure transcriptomic profiles in complex tissues. 671 

 672 

 673 
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Comparison of the DSP and Visium platforms in profiling the molecular 674 

landscape of tumours 675 

 Previous analyses were mainly focused on certain regions of the tumour 676 

partially due to the nature of the DSP platform which allows the deeper profiling of 677 

specific areas with rich morphological features. In contrast, the Visium platform 678 

requires minimal guidance on area selection and allows non-biased characterisation 679 

of the tissue at relatively high spatial resolution. This potentially provides a data-680 

driven, hypothesis-generating approach to characterising the molecular landscape of 681 

tissue samples. We examined this feature of the Visium platform to investigate the 682 

spatial heterogeneity of cancer cells in our samples. We selected Visium spots with 683 

high tumour content through pathological evaluation and inferred the cancer cell 684 

composition in these spots using single-cell RNA-Seq transcriptomic signatures [5] 685 

(Fig. 5a). The luminal A/luminal B, HER2E and basal subtypes defined through 686 

single-cell analysis generally correlates with ER+, HER2+ and TNBC breast cancers 687 

in the clinical setting. A proliferating/cycling cancer signature was also defined to 688 

reflect the active proliferating cell state of breast cancer cells in the single-cell 689 

dataset [5]. For direct DSP and Visium comparison, we predicted the cancer cell 690 

proportions in DSP AOIs and Visium spots from matching regions on each sample. 691 

In addition, results from all Visium spots were included to evaluate the global pattern 692 

of cancer composition across each sample. We observed a good concordance 693 

between the predicted molecular subtypes and the known clinical subtypes for 4747 694 

(ER+) and 4754 (TNBC) (Fig. 5a) whereas, 4806 (TNBC) was predicted to mainly 695 

contain cancer cells of the HER2E subtype when using both DSP and Visium 696 

platforms (Fig. 5a). This is not surprising as discordance between clinical and 697 

molecular subtype is observed in up to 38% of breast cancer cases [30] 698 
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To validate the cell type deconvolution prediction, we examined the 699 

expression of common breast cancer subtype markers [5,31] and observed high 700 

expression of luminal cancer markers ESR1 and TFF1 in the cancer region of 701 

sample 4747 and basal cancer markers KRT6B and EGFR in sample 4754 (Fig. 702 

S13). For sample 4806, we did observed expression of HER2 cancer markers such 703 

as ERBB2 and GRB7 though the expression is not outstanding when comparing to 704 

the other two samples (Fig. S13). However, importantly, only minimal expression of 705 

luminal and basal cancer markers was observed in 4806 (KRT6B expression in 4806 706 

was mainly associated with tissue necrosis) (Fig. S13) suggesting that this sample 707 

should indeed be classified as a breast cancer of HER2 molecular subtype.  708 

 While the two platforms were broadly concordant, we observed some 709 

differences in prediction between the DSP and Visium assays. In addition to HER2 710 

breast cancer cells, the Visium platform also predicted sample 4806 to contain 711 

cancer cells of luminal A subtype (Fig. 5a). Indeed, we observed some correlation in 712 

spatial distribution of several luminal cancer markers including KRT8, KRT18 and 713 

TFF3 with the predicted luminal A signatures (Fig. S14). Interestingly, the spatial 714 

distribution of luminal A cancer cells was more heterogeneous (Fig. 5b) than Her2E 715 

cells, with the signature enriched in regions at the top of the tissue. This area was 716 

not sampled by the DSP AOIs, which were in a distant region of this tissue (Fig. 5c), 717 

highlighting the strength of the Visium platform to enable more comprehensive, 718 

practical, exploratory sampling of wider tumour regions. However, in regions covered 719 

by both the DSP and Visium data, both platforms demonstrate high concordance in 720 

resolving the molecular profiles of tumour cells.  721 

To better understand the biological nature of the tumour cells in 4806, we then 722 

clustered the Visium spots, in an unsupervised manner, using the spatial gene 723 
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expression profiles. In total, 15 clusters were identified from all Visium spots on 724 

FFPE 4806 (Fig. 5d). Among these clusters, C0, C3, C5, C10, C11, C12 and C13 725 

were predicted, by deconvolution, to be comprised of over 50% epithelial cells (Fig. 726 

S15). Of these, C3, C10 and C12 were found to be located in regions affected by 727 

necrosis and therefore excluded from the downstream analysis. For the remaining 4 728 

clusters (C0, C5, C11 and C13), C0 is located at the edge of the tumour mass, 729 

adjacent to a clustered region with high immune cell composition (C1) (Fig. 5b,d; Fig. 730 

S16), C5 is located in the region predicted to contain the highest luminal A signature 731 

(Fig. 5b,d; Fig. S16). The remaining 2 clusters C11 and C13 are located in regions 732 

with mainly HER2 cancer signatures (Fig. 5b,d; Fig. S16). 733 

 We then characterised the biological processes enriched in each cancer 734 

cluster, computing the top differentially expressed genes in each cluster. The top 10 735 

(if available) significantly dysregulated pathways in each cluster were then selected, 736 

which showed a large enrichment of immune related pathways in C0, compared to 737 

the others (Fig. 5e). The spatial proximity of this cluster, to C1, which has high 738 

predicted immune cell composition (Fig. S15) suggests molecular interactions 739 

between tumour and adjacent immune cells. We also observed enrichment of 740 

estrogen related signalling in clusters C5, C11 and C13 which is in line with the 741 

predicted presence of Luminal A cancer cells in these spatial locations (Fig. 5e). 742 

Interestingly, we noticed that both the androgen response and apoptosis gene set 743 

activities were significantly upregulated in C5. Previously literature has suggested 744 

that AR activity may have a tumour-suppressive function in ER positive breast 745 

cancer cells [32]. While the exact molecular mechanism driving AR activation in C5 746 

remains to be further evaluated, our results have demonstrated the capacity of the 747 
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Visium platform in performing non-biased, data driven characterisation of tissue 748 

heterogeneity. 749 

 750 

 751 

Discussion 752 

 The DSP and Visium technologies, along with other platforms such as Slide-753 

seq [33], MERFISH [34] and Seq-FISH [35], are driving a revolution in our ability to 754 

spatially profile biology at whole transcriptome molecular resolution. Both the DSP 755 

and Visium platforms have sophisticated designs and are leading platforms in the 756 

spatial analysis of heterogeneity in tissue [4,36,37,38]. However, a direct evaluation 757 

of the performance of DSP and Visium platform is still missing, making platform 758 

selection a difficult task for researchers entering this area. In this study, we utilised a 759 

collection of well-controlled cell line and tissue samples to address this gap and 760 

provide a better understanding of the strengths and limitations of these platforms for 761 

spatial transcriptomics and oncology research.  762 

 Direct comparison of the DSP and Visium platforms was conducted using 763 

AOIs/spots of equivalent size and number. We observed a high correlation in the cell 764 

array samples where the cellular composition was precisely controlled and the 765 

sample structure was relatively simple, but discordance between DSP and Visium 766 

was seen when profiling breast cancer tissues. Most surprising was the discordance 767 

when using Visium on OCT processed samples, where the level of gene detection as 768 

well as the difference in gene expression between distinct cellular regions was 769 

significantly lower. The reason for these discrepancies are unclear as the QC 770 

parameters (such as reads per spot and genes per spot) of the OCT Visium datasets 771 
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are within the expected ranges and established experimental protocols were 772 

followed. While tissue permeabilisation does not appear to be the cause in this study, 773 

effectively evaluating and balancing the strength of the RNA footprint obtained by 774 

imaging is certainly a challenging step in the OCT Visium workflow. In addition, this 775 

is recommended to be performed on a per-sample basis, which increases 776 

experiment cost, time, tissue required, and reduced the throughput of the OCT 777 

Visium workflow. Despite these challenges this is the only platform, among those 778 

compared, that does not require the use of targeted RNA probes, thereby enabling 779 

capture of all intrinsic RNA molecules with poly-A sequences. This can be 780 

particularly valuable for profiling transcripts whose nucleotide sequences are variable, 781 

for example, TCR or BCR [39]. 782 

 Unlike the OCT Visium datasets, the FFPE Visium datasets detected large 783 

numbers of genes within each spot. In addition, investigation of immunoglobulin 784 

gene expression in the cell array samples revealed essentially no background in the 785 

FFPE Visium assay. In contrast, this experiment did identify non-specific binding of 786 

probes in the DSP assays. Genes with non-specific detection can potentially be 787 

filtered out using the built-in non-targeting control probes. However, this may also 788 

impact true signal with relative weak intensity. More sophisticated background 789 

removal methods have been proposed [24,40], however, the performance of these 790 

algorithms remain to be further tested. It is worth noting that while Visium samples 791 

were sequenced extensively (achieving more than twice the recommended 792 

sequencing depth), the saturation of the gene expression library was only around 793 

40%, indicating the possibility to further improve gene detection with deeper 794 

sequencing. 795 
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The FFPE and OCT DSP data demonstrated high consistency in gene 796 

detection across all samples. OCT DSP data seems to perform better than FFPE 797 

DSP data with more genes detected per AOI and more DEGs detected between high 798 

epithelial and low epithelial regions. Given that OCT samples generally have better 799 

RNA quality than FFPE samples, this is probably as expected and a reflection of the 800 

variations in tissue quality between assays.  801 

 In addition to a controlled, direct technical comparison between DSP and 802 

Visium, we also explored the unique strengths of each platform. For instance, the 803 

DSP platform allows the separation of transcriptomic profiles of closely located cell 804 

populations using morphology masking. However, the results seem to be more 805 

promising in well compartmentalised tissue structures (such as tumour versus non-806 

tumour) compared to regions where the boundaries between different cell 807 

populations are less clear (such as between tightly interacting CD8 T cells and 808 

myeloid cells). In contrast, the Visium platform averages expression of closely-809 

interacting cells.  810 

However, the Visium platform provides good coverage at relatively high 811 

resolution across the whole sample in the capture area, making it more suited to 812 

unbiased profiling of tumour heterogeneity across larger tissue areas. We suggest 813 

these observations highlight the scenarios where the unique strengths of the DSP 814 

and Visium assays should be applied. 815 

 While not the focus of this study, the DSP and Visium platforms also vary in 816 

several other features. Firstly, the morphology masking antibodies used in the DSP 817 

workflow typically require optimisation prior to the experiment. For example, in the 818 

current study, a CD8 antibody was conjugated with fluorescent dye with 819 
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concentration titrated to obtain the optimal image for DSP experiments. In addition, a 820 

different CD45 antibody was used to label Jurkat cells in the cell array samples due 821 

to cross reactivity of the default CD45 antibody from the DSP morphology marker kit 822 

with SKBR3 cells.  823 

 Another variation between the platforms is related to sequencing library 824 

construction. For Visium, samples from different spatial spots are pooled together 825 

prior to library amplification, allowing for easier handling of the samples. These 826 

samples were then amplified together, within the same PCR reaction, minimising 827 

batch effects. In contrast, DSP libraries require more labour-intensive handling of 828 

samples stored in 96-well plates. Several plates are required for large experiments 829 

such as the current study, which may lead to bias or human error (such as pipetting 830 

error) when processing individual samples separately.  831 

 Thirdly, the capture areas of the DSP and Visium platforms have different 832 

dimensions. Samples in the current study were intentionally bio-banked to fit the 833 

capture area on Visium slides (6.5mm x 6.5mm). However, common histological 834 

FFPE blocks can reach 2cm x 2cm in size if not bigger or are in specific shapes such 835 

as biopsy samples which are 1-2mm in diameter but 1-2cm in length. It is therefore 836 

impossible to fit all parts of the samples into the capture area on Visium slides. 837 

Additional trimming or handling is required for these samples, increasing the labour-838 

cost of Visium experiments. On the other hand, the capture area in the DSP platform 839 

is substantially larger (36.2mm x 14.6mm), making it more compatible for this type of 840 

tissue and potentially for TMA samples. 841 

There are some additional caveats of our study. Firstly, the FFPE Visium data 842 

was generated by the manufacturer who developed the technology. Therefore, the 843 
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high data quality of FFPE Visium data in the current study could represent over-844 

optimised conditions that are challenging to replicate in a typical laboratory. 845 

Secondly, due to unknown reasons, the OCT Visium data appears suboptimal 846 

meaning that the comparisons to these datasets maybe considered less conclusive. 847 

Thirdly, the DSP AOIs studied in this analysis were mainly located in a confined 848 

region of the tissue samples. While this does reflect a common workflow for the DSP 849 

platform, in requiring prior knowledge of the sample to be studied, the low coverage 850 

of DSP AOIs across the tissue samples limited our ability to systematically compare 851 

the two platforms’ ability to detect regional differences in tumour heterogeneity. 852 

Finally, the sample size used in this study is relatively small. While the 3 breast 853 

cancer tissue samples do cover luminal, HER2 and TNBC subtypes of breast cancer, 854 

more samples across more diverse tissue and cancer types will be required to 855 

exhaustively assess whether the current observations are maintained. 856 

  857 

 858 

Conclusion 859 

In this study, we performed controlled comparisons between the DSP and 860 

Visium platforms to assess their ability to capture spatially resolved transcriptomic 861 

features in breast cancers. We show that the two platform generate broadly 862 

comparable results using carefully controlled conditions and samples. We propose 863 

that the Visium platform is more suitable in generating a non-biased transcriptomic 864 

landscape of the whole tissue. This enables the identification of cell populations 865 

harbouring unique gene expression signatures but with seemingly similar 866 

morphological features to other cells. To complement this, the DSP platforms 867 
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prevails in deep molecular profiling of known regions with prior knowledge of tissue 868 

regions of interest and is more suited to addressing hypothesese. Clearly there are 869 

advantages to combining DSP and Visium assays in the same study, starting with 870 

discovery and hypothesis generation using the Visium platform and followed by 871 

hypotheses testing or validation using the DSP assays. 872 

 It’s also worth noting that neither DSP nor Visium provides spatially resolution 873 

at the single-cell level. To bridge this gap, new platforms based on optical imaging or 874 

high-density spots or arrays of beads are in development or being commercialised 875 

[33,41,42]. While these technologies promise improved spatial resolution they are 876 

still mostly limited in transcriptomic coverage when compared to the DSP and the 877 

Visium platform. Until a technology is developed that can deliver the trifecta of wide 878 

transcriptomic coverage, single cell resolution and large capture areas the DSP and 879 

Visium platforms look set to remain as two key technologies for generating spatial 880 

whole transcriptomic profiles, furthering our knowledge of the spatial molecular 881 

nature of the tissue samples and fuelling the advancement of research, treatment 882 

and care in various disease settings. 883 

 884 

 885 

Figure legends 886 

Figure 1:  Experiment overview. (a) Schematic illustration of sample preservation 887 

and experiment workflow. Cultured Jurkat and SKBR3 cells were mixed at six 888 

different ratios and preserved as OCT or FFPE samples. Tissue samples were sliced 889 

in the middle and the resulting two pieces were preserved as OCT or FFPE samples 890 

respectively. Closest possible sections were used for DSP and Visium assays. The 891 
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illustration was created with BioRender.com. (b) Example images of tissue 892 

morphology. FFPE and OCT sections from sample 4806 were processed for DSP or 893 

Visium assays. Note the overall matching morphology between FFPE and OCT 894 

samples and between sections used for DSP and Visium assays. Scale bars = 1mm. 895 

(c) Example of DSP AOIs and Visium spots used for direct comparison. (i) Example 896 

of Visium mimic AOIs across the tumour-stroma interface. (ii) Example of Visium 897 

spots across the tumour-stroma interface used for direct DSP and Visium 898 

comparison. (iii) Example of segmented comparison DSP AOIs. Each AOI was 899 

segmented into pan-cytokeratin positive and pan-cytokeratin negative segments 900 

according to the immunofluorescence signal. (iv) Example of Visium spots located in 901 

the matching region where segmented comparison DSP AOIs were collected. Scale 902 

bars = 100μm. (d) Example of size gradation and biological DSP AOIs to test the 903 

performance of segmentation of the DSP platform. Scale bars = 100μm. 904 

 905 

Figure 2: Comparison of the DSP and Visium platform on transcriptomic 906 

coverage and sensitivity. Visium mimic AOIs in DSP data and Visium spots 907 

collected from the same regions were used for the analysis (a) Barplots illustrating 908 

the types of genes with at least 1 UMI detected by the DSP and Visium assays. 909 

Probes included in the whole DSP and FFPE Visium panels were also plotted for 910 

comparison (“DSP_panel” & “Visium_FFPE”). (b) Barplots illustrating the proportion 911 

of counts for each type of genes in each sample detected by the DSP and Visium 912 

assays. (c) Boxplots illustrating the numbers of genes with at least 1 UMI detected 913 

per AOI or spot in DSP or Visium data. (d) Barplots illustrating the sparsity of the 914 

gene expression matrix. The sparsity was calculated as the proportion of zero counts 915 
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in the matrix. (e) Barplots illustrating the ranking of genes and their contribution to 916 

the total counts collected in each dataset. 917 

 918 

Figure 3: Comparison of the DSP and Visium platforms in detecting gene 919 

expression changes. Visium mimic AOIs in DSP data and Visium spots from the 920 

matching region were used for the analyses. All gene expression data was down 921 

sampled to manufacturer’s recommendation at a per sample level. (a) Normalised 922 

expression of cell markers in the cell array samples detected by the DSP or Visium 923 

assays. ns: non-significant. *p<0.05, **p<0.01, ****p<0.0001, student t-test. (b) 924 

Normalised expression of cell markers in tissue samples detected by the DSP or 925 

Visium assays. (c) The number of DEGs detected by the DSP and Visium assays in 926 

each sample. A gene is considered to be differentially expressed if adjusted p < 0.05. 927 

(d) Correlation of fold change of DEGs detected by the DSP or Visium platforms in 928 

each sample. (e)  Fold changes of top 10 DEGs detected by the DSP and Visium 929 

platforms in each sample. DEGs considered to be enriched in the non-epithelial AOIs 930 

/ spots were given positive fold changes while DEGs enriched in the epithelial AOIs / 931 

spots have negative fold changes.  932 

 933 

Figure 4: Segmentation by the DSP platform allow profiling of more specific 934 

gene expression features. (a) Predicted proportion of SKBR3 and Jurkat cells in 935 

segmented DSP AOIs and Visium spots in cell array samples. (b) Example of 936 

segmented DSP AOIs on cell array samples. All cells were labelled with SYTO13 for 937 

nuclei stain. Jurkat and SKBR3 cells were labelled with anti-CD45 (red) or pan-938 

cytokeratin (green) antibodies respectively. Epithelial or non-epithelial DSP AOIs 939 
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were then sampled based on the fluorescent signals in a sequential manner. (c) 940 

Predicted proportion of cancer and TME cell types in segmented DSP AOIs and 941 

Visium spots in tissue samples. (d) Normalised expression of CD8A in CD8 and non 942 

CD8 segments in DSP data. (e) NES of top 5 significantly dysregulated GOBP 943 

pathways identified between CD8 segments and adjacent non-CD8 TME segments 944 

by the DSP platform. Significance threshold was set as q < 0.25. 945 

 946 

Figure 5: The Visium platform generates a transcriptomic map facilitating 947 

unbiased heterogeneity exploration. (a) Predicted proportion of breast cancer 948 

subtypes DSP and Visium data. All DSP and Visium AOIs /spots with the same size 949 

were used in the analysis. To account for spatial heterogeneity in the samples, 950 

Visium spots from regions with matching DSP AOIs were annotated and plotted as 951 

the 3rd group. Only AOIs / spots with high cancer proportion by pathology were 952 

included. (b) pathology annotation of FFPE 4806 in Visium data and the spatial 953 

distribution pattern of predicted breast cancer subtypes by deconvolution in this 954 

sample. (c) Illustrative images of the location of DSP AOIs and Visium spots in FFPE 955 

4806. (d) Clustering of Visium spots based on gene expression profiles and spatial 956 

projection of the clustering results. (e) ORA analysis between clusters with high 957 

cancer cell proportion in Visium data. 958 

 959 

Supplementary figure 1: DSP AOI size and gene detection. Only data from DSP 960 

size gradation AOIs were used in the analysis. Boxplot showing changes in the 961 

numbers of genes detected per AOI as the AOI size changes.  962 

 963 
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Supplementary figure 2: QC of data from Visium mimic AOIs (DSP) or Visium 964 

spots (Visium). (a-c) QC of original DSP and Visium datasets. (a) Average number 965 

of raw reads per μm2 collected by the DSP assays in each sample before down 966 

sampling. (b) Average number of raw reads per spot collected by the Visium assays 967 

in each sample before down sampling. (c) Average sequencing saturation of DSP 968 

and Visium data before down sampling. (d-f) QC of down sampled DSP and Visium 969 

datasets. (d) Average number of raw reads per μm2 collected by the DSP assays in 970 

each sample after down sampling. (e) Average number of raw reads per spot 971 

collected by the Visium assays in each sample after down sampling. (f) Average 972 

sequencing saturation of DSP and Visium data after down sampling. 973 

 974 

Supplementary figure 3: Distribution of UMI across all genes detected in each 975 

dataset. Only DSP visium-mimic AOIs and matching visium spots were used for the 976 

plot. All genes with UMI detected in each sample were ranked based on the total 977 

numbers of UMI detected for each gene and plotted on the x axis. The cumulative 978 

proportion of all UMI collected in each sample was plotted on the y axis. Top 5 genes 979 

with the most UMI per gene collected were annotated. The numbers of genes 980 

contributing to 50% and 75% of all UMIs collected were also labelled. 981 

 982 

Supplementary figure 4: non-specific detection. Only data from Visium mimic 983 

AOIs in DSP data from cell array samples and Visium spots in the matching region 984 

was used in this analysis. (a-c) heatmap of counts of immunoglobulin heavy chain 985 

genes and marker genes detected by the DSP and Visium assays. (a) raw counts 986 

from both the DSP and Visium assay were plotted. (b) DSP counts were filtered by 987 
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geometric mean of non-targeting control probes. Raw counts were plotted for Visium 988 

data. (c) DSP counts were filtered by limit of quantitation. The same raw count were 989 

plotted for Visium data. 990 

 991 

Supplementary figure 5: Sensitivity of the DSP platform with background 992 

filtered counts. (a) Numbers of genes detected per AOI / spot. DSP data was 993 

filtered using the geometric mean of all non-targeting probe readings. Any gene with 994 

count above 0 after filtering was considered detected. Raw Visium data was plotted. 995 

(b) DSP matrix sparsity using background filtered counts. (c) UMI distribution plots of 996 

DSP data using background subtracted counts. 997 

 998 

Supplementary figure 6: Sensitivity of the DSP platform with LOQ filtered 999 

counts. (a) Numbers of genes detected per AOI / spot. DSP data was filtered using 1000 

the LOQ threshold. Any gene with count above 0 after filtering was considered 1001 

detected. Raw Visium data was plotted. (b) DSP matrix sparsity using LOQ filtered 1002 

counts. (c) UMI distribution plots of DSP data using LOQ subtracted counts. 1003 

 1004 

Supplementary figure 7: Normalised expression of cell markers in Visium 1005 

mimic AOIs and matching Visium spots from cell array samples. 1006 

 1007 

Supplementary figure 8: Normalised expression of cell markers in Visium 1008 

mimic AOIs and matching Visium spots from tissue samples. ns: non-significant. 1009 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, student t-test. 1010 
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 1011 

Supplementary figure 9: pathology annotation and spatial expression patterns 1012 

of marker genes in FFPE 4747 profiled by the Visium platform. (a) Visium spots 1013 

used for direct DSP and Visium comparison. (b) pathology annotation of the tissue 1014 

sample. (c) Normalised expression of cell markers. 1015 

 1016 

Supplementary figure 10: Normalised expression of cell markers detected 1017 

using segmented DSP AOIs or Visium spots in the matching region in cell 1018 

array samples. 1019 

 1020 

Supplementary figure 11: Normalised expression of cell markers detected 1021 

using segmented DSP AOIs or Visium spots in the matching region in tissue 1022 

samples. 1023 

 1024 

Supplementary figure 12: Normalised expression of cell markers in CD8 1025 

segments and adjacent epithelial and non-CD8 TME segments in DSP data. 1026 

 1027 

Supplementary figure 13: Normalised expression of common breast cancer 1028 

subtype markers in FFPE Visium data. 1029 

 1030 

Supplementary figure 14: Normalised expression of luminal breast cancer 1031 

markers in Visium data from FFPE 4806. 1032 
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 1033 

Supplementary figure 15: Proportion of major cell types predicted in each 1034 

Visium cluster from FFPE 4806. 1035 

 1036 

Supplementary figure 16: Proportion of breast cancer subtypes predicted in 1037 

cancer clusters in Visium data from FFPE 4806. 1038 

 1039 

 1040 

List of abbreviations 1041 

AOI: area of illumination 1042 

BCR: B cell receptor 1043 

DCC: digital count conversion 1044 

DE: differential gene expression 1045 

DEG: differentially expressed gene 1046 

DSP: digital spatial profiling 1047 

FFPE: formalin-fixed paraffin embedded 1048 

HER2E: HER2 enriched 1049 

LOQ: limit of quantification 1050 

NBF: neutral-buffered formalin 1051 

OCT: optimal cutting temperature compound 1052 
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ORA: over-representation analysis 1053 

QC: quality control 1054 

ROI: region of interest 1055 

TCR: T cell receptor 1056 

TME: tumour microenvironment 1057 

TNBC: triple negative breast cancer 1058 

UMAP: uniform manifold approximation and projection 1059 

UMI: unique molecular identifier 1060 

 1061 
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