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41 Abstract

42  Background:

43 Spatial transcriptomic technologies are powerful tools for resolving the spatial
44  heterogeneity of gene expression in tissue samples. However, little evidence exists
45  on relative strengths and weaknesses of the various available technologies for

46  profiling human tumour tissue. In this study, we aimed to provide an objective

47  assessment of two common spatial transcriptomics platforms, 10X Genomics’ Visium

48  and Nanostring’s GeoMx DSP.

49 Method:

50 The abilities of the DSP and Visium platforms to profile transcriptomic features
51  were compared using matching cell line and primary breast cancer tissue samples. A

52  head-to-head comparison was conducted using data generated from matching
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samples and synthetic tissue references. Platform specific features were also
assessed according to manufacturers’ recommendations to evaluate the optimal

usage of the two technologies.
Results:

We identified substantial variations in assay design between the DSP and
Visium assays such as transcriptomic coverage and composition of the transcripts
detected. When the data was standardised according to manufacturers’
recommendations, the DSP platform was more sensitive in gene expression
detection. However, its specificity was diminished by the presence of non-specific
detection. Our results also confirmed the strength and weakness of each platform in
characterising spatial transcriptomic features of tissue samples, in particular their

application to hypothesis generation versus hypothesis testing.
Conclusion:

In this study, we share our experience on both DSP and Visium technologies
as end users. We hope this can guide future users to choose the most suitable
platform for their research. In addition, this dataset can be used as an important

resource for the development of new analysis tools.

Key words

Spatial transcriptomic technologies, digital spatial profiling, Visium, breast

cancer, technical evaluation
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Background

Tumours are cellular ecosystems composed of a multitude of cellular
subtypes or states. The spatial organisation of cells in tumours is not only a
projection of the molecular nature of cancer but also an important predictor for the
progression of the tumour and response to treatments [1]. However, previous
attempts to characterise the spatial molecular profiles of tumours have been limited
by the availability of technology. Conventional spatial molecular technologies, such
as multiplexed immunofluorescence, can only examine a handful of markers at a
time, restricting our ability to comprehensively map the cellular and molecular

features of tumours in tissue [2].

The field of spatial omics technologies has recently expanded rapidly. Novel
technologies have encouraged us to revaluate challenges that we were unable to
tackle previously. Among these technologies, the GeoMx Digital Spatial Profiling
(DSP) platform from Nanostring and the Visium platform from 10X Genomics have
emerged as two powerful spatial transcriptomic tools with high data dimensionality

and relatively high throughput [2].

DSP is a targeted technology. Instead of profiling the mRNA transcripts
themselves, the DSP platform utilises in situ hybridisation probes to detect gene
expression and later correlate the gene expression profiles with an
immunofluorescence image obtained from the same sample [3]. More importantly,
the DSP assay allows users to zoom into a specific region of the sample and
generate enriched gene expression profiles guided by morphology marker antibodies.

This enables deep characterisation of targeted hypotheses in tissues [4].
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99 The Visium assay provides a picture of the global transcriptomic landscape,
100  with a large number (~5000 for Visium slides with 6.5x6.5mm capture areas and
101  ~14000 for slides with 11mm x 11mm capture areas) of densely organised capture
102  spots that are designed to generate a map of gene expression, at relatively high
103  spatial resolution, for evaluation of global localisation and interaction between
104 different cell types [2,5]. It is worth noting that while the Visium frozen tissue assay
105 employs a polyA-based capturing method for fresh frozen samples to directly profile
106 mMRNA transcripts, targeted probes are used for formalin-fixed paraffin embedded
107 (FFPE) samples to overcome low RNA quality. Therefore, Visium assays for fresh
108  frozen samples embedded in optimal cutting temperature compound (OCT samples)
109 and FFPE samples should be considered as two independent assays, with

110  potentially different detection capacities.

111 Previous comparisons between the DSP and Visium platforms generally

112 focused on platform-specific features between the two technologies. These

113 comparisons have comprehensively evaluated the technical specifications provided
114 by the manufacturers and aimed to provide potential users a taste of the best

115  practice for applying these assays to their research [2,6,7,8]. However, given that
116  previous datasets were generated from unmatched samples and often from samples
117  collected under physiological conditions such as normal mouse brain, a thorough
118 comparison on the performance of gene detection and application between the two
119  platform on more challenging sample types such as cancer samples is still missing.
120  In addition, little published data exists for the FFPE Visium assay and how it differs

121 from the OCT Visium assay.

122 Here, we aim to provide a well-controlled direct comparison between the DSP

123 and Visium technologies. Using preserved cell line samples and primary breast
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cancer tissue samples, we collected DSP and Visium data from serial sections from
the same samples with matched tissue morphologies and cell populations. We
started by asking whether there is any fundamental difference between the DSP and
Visium platforms in terms of characterising spatial transcriptomic profiles, before
going on to assess platform-specific factors. Importantly, we identified several
challenges in implementing the DSP and Visium technologies. With these datasets
and analyses, we provide a guide to prospective users of these technologies with
technical comparisons and insights on experimental workflow design and data
processing to assist in decision-making when considering spatial transcriptomic

experiments.

Methods

Sample collection

Surgical specimens were assessed and sampled by a pathologist with
specialist experience in breast cancer to ensure the tumour area was collected.
Tumour samples were trimmed of excess fat and macroscopic necrosis and then cut
to size. For samples 4747, 4754 and 4806, tissues were sliced in the middle to form
two pieces with mirrored morphology and preserved as FFPE or OCT samples
respectively. For sample 4766, the tissue was thin and only adjacent pieces were
preserved as FFPE or OCT samples. For FFPE samples, tissues were fixed in 10%
neutral buffered formalin (NBF) for 24 hours before changing to 70% ethanol prior to
processing and embedding. For OCT samples, tissues were placed mirrored face-

down onto a flat metal spatula. Tissues were submerged in an isopentane bath in a
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metal beaker surrounded by dry ice until frozen through. Frozen tissues were gently
removed from the spatula and submerged into precooled OCT and then frozen by
surrounding the mould with crushed dry ice. All OCT tissue samples have a RIN

value of at least 7.

To create ‘synthetic tissue’ references, cultured Jurkat and SKBR3 cells were
collected as single-cell suspension and washed twice using 1x PBS. Jurkat and
SKBR3 cells were then counted and mixed at 6 different ratios (0:100, 5:95, 30:70,
70:30, 95:5 and 100:0) to create a gradient. The prepared cell mixes were then
converted into OCT or FFPE blocks. For OCT cell array samples, an OCT mould
was made by incubating OCT with 6 small metal pillars on dry ice. The OCT were
given time to solidify but not fully set to avoid attachment to the metal pillars. Once
the metal pillars were removed, the OCT mould was given extra time to fully solidify
resulting in 6 holes in the mould. The mixed Jurkat and SKBR3 cells were then
pelleted at 300g for 5min at 4 degrees and the supernatant was removed. The rest of
the cells and buffer were then mixed by gentle flicking. 10ul of the cells from each
mixing ratio was transferred to a corresponding hole in the OCT mould and frozen on
dry ice. For FFPE cell array samples, mixed Jurkat and SKBR3 cells were firstly
resuspended in 10% NBF. The resuspended cells were then pelleted immediately at
700g for 10min to remove the NBF in the supernatant. The cell pellets were then
mixed with equal volume of warm 3% agarose and transferred to the lids of PCR
tubes. Once solidified, the cell pellet samples were retrieved from the lids using a
metal scalpel with care. The resulting cell pellets were stored in 70% ethanol for 24

hours before being processed into FFPE blocks.

Before sectioning for gene expression experiments, an H&E stained section

was obtained from each FFPE or OCT sample to evaluate the morphological
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features of the sample and to guide the selection of DSP regions of interest (ROIs).
For both DSP and Visium assays involving FFPE samples, closest possible 5um
thick sections were used. For DSP experiments, the first 2 sections were discarded
before collecting the samples for DSP experiments. The prepared sections were
stored at -20°C. For OCT samples, serial sections were prepared at the thickness of
7 or 10um for the DSP or Visium experiments respectively. 10um thick sections were

used for Visium tissue optimisation experiments.

Nanostring morphology marker antibody conjugation

CD8 antibody (Clone AMC908, ThermoFisher) was conjugated using Alexa
Fluor™ 647 Antibody Labelling Kit (ThermoFisher). 100mg of CD8 antibody at a
concentration of Img/mL was cleaned twice using the Zeba™ Spin Desalting
Columns, 7K MWCO (ThermoFisher). The filtered antibody was then mixed with 1M
sodium bicarbonate (pH 8.5) at a ratio of 10:1 by volume. The primed antibody was
then transferred immediately to the tube with fluorescent dye supplied by the kit. The
antibody-fluorophore mixture was homogenised by pipetting and incubated at room
temperature for 1 hour in dark. During incubation, the antibody-fluorophore mix was
mixed every 15min by gentle flaking on the tube. After incubation, the antibody-
fluorophore mix was filtered twice with the Zeba Spin columns. The conjugated

antibody was stored at 4°C until use.
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DSP experiment

DSP experiments were conducted according to manufacturer’s instructions
(Slide prep manual version: MAN-10115-04; DSP instrument operation manual
version: MAN-10116-04; Library prep manual version: MAN-10117-04) with minor
adjustments. Briefly, sectioned FFPE slides were firstly baked for 60 minutes at 65°C
followed by dewaxing and antigen retrieval. For OCT sections, samples were firstly
thawed and fixed in 10% NBF for 16 hours at room temperature. The fixed samples
were then washed 3 times in 1x PBS followed by antigen retrieval. From antigen
retrieval, the FFPE and OCT samples were treated with the same conditions. Both
FFPE and OCT cell array samples were incubated for 5min at 100°C in 1x Antigen
Retrieval Solution (ThermoFisher, 00-4956-58) using a pressure cooker. For tissue
samples, samples were incubated for 20min at the same temperature. For
proteinase K digestion, samples were incubated with 0.1ug/mL proteinase K
(ThermoFisher, AM2546) in a in a 37°C water bath. The cell array samples were
incubated for 5min while the tissue samples were digested for 15min. For in situ
hybridisation, 240uL of diluted DSP probe mix was added to each slide and
incubated at 37°C in a hybridisation oven for 18 hours over night. The processed
slides were then labelled with morphology marker antibodies. For cell array samples,
SYTOL13, anti-pan-cytokeratin-AF532 antibody (Nanostring) and anti-CD45-AF594
antibody (BioLegend, 103144) were used. For tissue samples, SYTO13, anti-pan-
cytokeratin antibody and the anti-CD45 antibody from the Nanostring solid tumour
morphology marker kit were used in conjugation with the conjugated anti-CD8
antibody as mentioned above to illustrate tissue morphology. Areas of illumination
(AOIs) were collected using a range of shapes and sizes, as appropriate to the

experiment. In some cases, to allow direct comparison with the Visium platform,
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~55um diameter non-segmented AOIs were captured to ‘mimic’ the data generated

by the Visium platform.

After DSP collection, samples were dehydrated at 65°C for 1.5 hours in a
thermo-cycler with the lid kept open. Samples were then rehydrated and subjected to
sequencing library preparation. During the experiment, we noticed that the volume of
the primers in wells A1, H1, A12 and H12 from SeqCode plate B, well E1 from
SeqCode plate F and well H1 from SeqCode plate G was lower than the volume in
the other wells. Instead, libraries for samples in these wells were synthesised using
primer from well C1-C6 from SeqCode plate H. After library synthesis, 4uL of PCR
products from each well were firstly pooled together by type i.e. Visium-mimic AOls,
segmented AOISs, size gradation AOIs and biological AOIs (Fig. 1c-d). The resulting
pools of PCR products were then merged together adjusting for the total area size of
all AOlIs in each pool to guarantee a comprehensive sampling of smaller AOls. The
pooled sequencing library was then quality controlled and sequenced on a NovaSeq
6000 instrument (lllumina). Paired-end and dual-indexed reads were generated in

the format of 2 x 28bp with an additional 2 x 8bp for index sequences.

RNAse free or buffer was used throughout the experiment except for xylene

and ethanol for histology. All surfaces were decontaminated using RNAse ZAP.

Visium experiment

OCT Visium experiments were conducted according to the manufacturer’s

protocol. The optimal tissue permeabilisation time for each sample was determined

10
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using the Visium tissue optimisation kit. The resulting RNA footprint fluorescence
images were reviewed and 17, 16 and 12 min were used for gene expression
experiments for the cell array sample, 4747, 4754 and 4806 respectively. The rest of
the procedures were conducted according to the Visium protocol. The generated

cDNA library was then sequenced on a NovaSeq 6000 instrument (Illumina).

FFPE Visium data was generated by 10X Genomics with no deviation from
the protocol. The H&E images were taken using a Metafer slide scanning system
(Metasystems) with a Zeiss Plan-Apochromat 10x/NA 0.45 objective lens. The

resulting cDNA libraries were sequenced on a NovaSeq 6000 system (lllumina).

FASTQ file processing

For Visium data, demultiplexed FASTQ files were converted to count matrices
using SpaceRanger 1.3.1 (10X Genomics). OCT and FFPE Visium data were
mapped to refdata-gex-GRCh38-2020-A (10X Genomics). Visium Human
Transcriptome Probe Set v1.0 GRCh38-2020-A (10X Genomics) was also provided
for processing the FFPE Visium data. Spot annotation was conducted in loupe
browser 5 (10X Genomics). A Seurat object (Seurat V4) was then constructed for

each sample using deduplicated count matrices and spot annotations [9].

For DSP data, raw reads from FASTQ files were mapped to the
Hs_R_NGS_WTA _v1.0 reference (Nanostring) using the GeoMx NGS pipeline
software V2.2 (Nanostring) and saved as Digital Count Conversion (DCC) files. The
DCC files were then used to construct a gene expression count matrix using the

GeomxTools package V3.0.1 [10].

11
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DSP and Visium data was also down sampled to account for technical
variations in direct DSP and Visium comparison. FASTQ files from samples used for
direct DSP and Visium comparison were selected and down sampled in a per
sample manner. Raw reads were down sampled so as to not exceed the minimum
recommended levels (100 reads/um? for DSP; 25,000 reads/spot for FFPE Visium;
and 50,000 reads/spot for OCT Visium) for each platform using seqtk 1.3 [11]. For
samples whose sequencing depths are below the recommendations, raw data was
kept as is. The resulting down sampled FASTQ files were aligned to the references

using the same tools and references as mentioned above.

Data quality control (QC) and filtering

For Visium data, spots with less than 1000 unique molecular identifiers (UMIS)
detected were considered low-quality and excluded from the data. In addition, spots
underneath regions with tissue processing artefacts were manually annotated and

excluded as well.

For DSP data, data were quality controlled per individual AOI. AOIs were
excluded from the dataset if they met any of the following conditions: less than 80%
of reads aligned to the reference, less than 40% sequencing saturation, or less than
1000 UMI. After QC and filtering, DSP count matrix and annotation were saved as

Seurat objects for more consistent accessing and analysis.

12
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Data normalisation and differential expression (DE) analysis

For gene expression visualisation, DSP and Visium data were normalised
respectively using the “NormalizeData” function with default settings in the Seurat
package. For DE analysis in DSP and Visium comparison, DSP visium mimic AOIs
and Visium spots from matching regions were selected. For Visium data, data was
normalised on a per sample basis using the same “NormalizeData” function in the
Seurat package. For DSP data, AOIs collected from the cell array samples and
tissue samples were grouped separately to minimise the impact of tissue
composition on data normalisation. AOIs in each group were then normalised using
the Q3 method per manufacturer’s recommendation. Briefly, a 3" quantile threshold
was calculated for each AQOI for the estimation of normalisation factors across AOIs
within the same group. The data was then normalised using the normalisation factors.
Both DSP and Visium data was filtered for outlier genes before DE analysis. For
Visium data, genes detected with equal or more than 1 count in at least 3 technical
replicates were kept for DE analysis. For DSP data, a limit of quantification (LOQ)
was estimated for each AOI. The LOQ was calculated using the following formula

with raw counts of negative control probes:
LOQ = GeoMean *» GeoSD"2

Only genes with expression above LOQ in at least 3 technical replicates were
included in the DE analysis. The normalised and filtered DSP and Visium data was
then fitted to a linear model on a per sample basis using the limma package (version

3.52.2) and t-statistics were calculated using the “eBayes” function in limma [12].

13
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For DE analysis between CD8 AQOIs and non-CD8 AOIs, DSP data was
grouped according to pathology annotation. DE analysis was conducted in a similar

way as mentioned above.

Genes with an adjusted P value (Benjamini-Hochberg method) less than 0.05
were considered to be differentially expressed. DE results were visualised using
barplots (ggplot), correlation heatmap (ComplexHeatmap v2.12.0) [13]. Top DEGs

were selected based on the absolute value of the t statistics in DE analysis results.

Cell type deconvolution

The cellular composition of each Visium spot and DSP AOI was predicted
using published single-cell transcriptomic signatures [5]. Both the “major” and “minor”

level cell type signatures were used for deconvolution.

For Visium data, cell type deconvolution was conducted using Stereoscope
v0.3.1 [14] based on the top 2000 highly variable genes as defined by scanpy v1.7.2

[15] using the “Seurat” flavoured method [16].

For DSP data, deconvolution was conducted using all genes with the
SpatialDecon package [17]. The Q3 normalised, log2-scaled gene expression matrix

was used as the input for the analysis. All other parameters were kept as default.

Pre-ranked GSEA analysis

14
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Genes were ranked based on t statistics from DE analysis. Pre-ranked GSEA
analysis was then conducted using the GSEA software (linux, v4.2.2) [18,19]. Genes
were mapped to gene ontology biological processes pathways (v7.5.1) obtained from
the Molecular Signatures Database (MSigDB)[20]. The results of pathway analysis

were then visualised using the ComplexHeatmap package in R.

Visium data dimension reduction, clustering and over-representation analysis

(ORA)

Dimensionality reduction was conducted on Visium data for each individual
sample using the Seurat package. Original datasets (without down-sampling) were
used for this analysis. Gene expression data was normalised using the ScTransform
method (V1) [21]. Dimension reduction was conducted using PCA and UMAP
methods. A total of 30 principal components were used for dimension reduction
through UMAP method. Visium spots were then clustered using the Seurat package.
The optimal clustering resolution was selected based on the spatial distribution of
common cell type marker genes. The clustree package (v0.5.0) was also used to
evaluate the relationship between clusters at different clustering resolution [22]. The
clustering resolution that provides relatively high clustering stability but also reflects
the biological complexity of the tissue was selected as the optimal clustering

resolution for each sample.

Clusters predominantly containing cancer cells were identified based on the
proportion of cancer cells predicated by deconvolution as well as the tissue

morphology underneath the spots in each cluster. Differential gene expression
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analysis between the identified cancer clusters was then conducted using the
“FindAllMarkers” function in the Seurat package. Default parameters for Seurat v4
were used. All genes with an adjusted P value less than 0.05 were considered
significantly differentially expressed and passed to the downstream ORA analysis
using the clusterProfiler package (v4.4.4) [23]. Enriched hallmark pathways were
calculated using “compareCluster”. The top 10 pathways upregulated in each cluster

were then visualised using the “dotplot” function in the clusterProfiler package.

Results

Experimental design

In total, 4 primary breast cancer tissue samples and 2 cultured cell lines were
preserved for DSP and Visium comparison. Patient 4747 was diagnosed with ER+
breast cancer while 4754, 4766 and 4806 were all diagnosed with triple negative
breast cancer (TNBC) by clinical examination. All tissue samples were sliced in the
middle to form 2 pieces of tissue with mirrored morphology except for 4766 from
which adjacent pieces were taken (Fig. 1a). The resulting two pieces were then
preserved as FFPE or OCT blocks respectively (Fig. 1b). To permit more direct
guantitative comparisons between platforms, cultured cell lines were mixed to create
‘synthetic tissues’ with controlled cellular proportions. We selected Jurkat (T

lymphoma) and SKBR3 (breast cancer) cell lines as representations of immune and
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epithelial malignant cell types, respectively. Jurkat and SKBR3 cells were mixed at 6
ratios: 100-0, 95-5, 70-30, 30-70, 5-95 and 0-100. The mixed cell samples were then
divided into two aliquots for FFPE and OCT sample preservation. Cell samples with
different mixing ratios were arrayed together to generate a cell microarray block for
FFPE or OCT samples respectively. Serial sections were then cut for DSP and

Visium assays.

The DSP and Visium platforms collect spatial transcriptomic data in a very
different manner. The Visium platform generates a uniformed array of ~5000-14000
spots per sample depending on the size of the capture area, while the DSP AOIs are
manually selected in locations of interest and can have different sizes or
segmentation based on morphology and marker expression. To facilitate a direct
comparison between DSP and Visium assays, 4 types of DSP AOIs were collected:
1) Visium-mimic AQIs, 2) segmented AOIs, 3) size gradation AOIs, and 4) biological
AQIs. These AOI types are defined as follows. 1) Visium-mimic AOIs are circular
AQIs 55um in diameter aiming to mimic data collection of visium spots. 4 Visium
mimic AOIs were selected in each cell pellet with a different SKBR3 / Jurkat mixing
ratio, and 28 Visium-mimic AOIs were selected in tissue samples 4747, 4754 and
4806 (Fig. 1c i-ii). 2) Segmented AQIs are circular AOIs, 200um in diameter,
segmented into epithelial and non-epithelial compartments using
immunofluorescence-guided masks (Fig. 1c iii). 3) Size gradation AOIs are circular
AOQIs varying in size from 20um in diameter to 200um in diameter and used to
evaluate the impact of AOI size on DSP transcriptomic data collected (Fig. 1d). 4)
“Biological AQOIs” are circular AOIs collected around biological structures annotated

by pathology, such as immune clusters adjacent to the tumour. Depending on the
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cellular composition in each location, epithelial, non-epithelial and CD8 segments

were collected (Fig. 1e).

Comparison of the transcriptomic coverage and detection sensitivity of the

DSP and Visium platforms

To compare the performance of the DSP and the Visium platforms under
more compatible conditions, we evaluated the impact of two major technical factors

on the performance of the two platforms: AOI size (DSP) and sequencing depth.

For DSP assays, the size of each AOI can be manually adjusted, allowing
sampling of different numbers of cells per AOI. To test the impact of AOI size, we
focused on size gradation AOIs (Fig. 1d). In line with the previous literature [3,24],
we observed a positive correlation between the size of AOI and the number of genes
with at least 1 UMI detected per AOI (Fig. S1). While more than 5000 genes were
detected in 20um spots, sensitivity increased markedly between the 20um and 55um
spot size. Therefore we mainly focused on 55um AOlIs that are of comparable size to

Visium spots (Fig. 1c i-ii).

Sequencing comprises a substantial component of the total cost in spatial
transcriptomics, and sequencing depth affects sensitivity of detection [25]. To
address the optimal sequencing needs of each platform, we firstly compared the
performance of each platform as a function of sequencing depth. For DSP WTA
assays, a minimum of 100 reads per um?is recommended [26]. Most of the DSP

samples processed were able to reach and surpass this threshold (Fig. S2a). We did
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observe a few outlier samples. However, the sequencing saturation of all DSP
samples have surpassed 50% indicating proper profiling of the sequencing libraries
(Fig. S2c). On the other hand, a minimum of 25,000 or 50,000 reads per spot was
recommended for the FFPE and OCT Visium assays, respectively [27,28]. The
current FFPE Visium datasets were extensively sequenced exceeding the threshold
by at least 1-fold (Fig. S2b). Samples processed using the OCT Visium assays were
at or slightly below the required sequencing depth (Fig. S2b). Interestingly, while the
FFPE Visium samples were sequenced deeper as compared to OCT Visium
samples, we observed an inverse trend in sequencing saturation (Fig. S2c),
indicating a higher library diversity of the FFPE Visium samples as compared to the

OCT Visium samples.

To account for the variations in sequencing depth between DSP and Visium,
as well as between individual samples processed using the same platform, we down-
sampled the gene expression data from AOIs/spots used for direct comparison to the
recommended read depths at a per-sample level (Fig. S2d-f). Datasets already
below the recommendations were kept as is (Fig. S2d-f). As expected, we observed
a decrease in sequencing saturation for all samples after down-sampling. Most
impacted was the FFPE Visium data which exceeded the recommendation by the
greatest extent. All FFPE Visium samples only achieved around 10-20% sequencing
saturation after down-sampling, whereas minimal impact was observed for DSP and
OCT Visium data (Fig. S2f). This suggests that sequencing Visium FFPE libraries
above the recommended depth is necessary to achieve saturation >50% in human

cancer studies.

Using these standardised gene expression datasets, containing the same

number of DSP Visium-mimic AOIs and Visium spots, we examined transcriptomic
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coverage provided by the DSP and Visium assays. The biotype of transcripts
detected were annotated using the GRCh38 reference and briefly summarised into 5
groups: 1) mitochondrial RNA (MT); 2) RNA for ribosomal proteins (RP); 3) RNA for
T cell receptors (TCR) or B cell receptors (BCR); 4) RNA for other proteins and 5)
non-coding RNA (ncRNA). As expected, the OCT Visium assay is the only assay
detecting mitochondrial RNA and the main assay detecting non-coding RNA due to
the non-targeted capturing using poly(T) capture handles (Fig. 2a). The DSP
platform contains probes targeting genes coding for ribosomal proteins (see column
“DSP_panel”, Fig. 2a), which are also detected by the OCT Visium, but mostly
absent from the FFPE Visium probe-set. In contrast, the FFPE Visium assay
includes many more probes against TCRs and BCR gene segments than the
standard DSP probe set (Fig. 2a), which will be valuable in the investigation of

tumour immunology.

We also evaluated the number of molecules, also known as unique molecular
indices (UMIs), from each type of RNA transcript detected by the DSP and Visium
platforms. The majority of the counts in each assay were related to protein-coding
genes (Fig. 2b). Around 30-40% of UMIs collected by the OCT Visium assay were
related to transcripts for mitochondrial or ribosomal proteins. In addition, all assays
seem to detect substantial amount of UMIs in samples from patient 4754 for TCR or
BCR transcripts, potentially reflecting variations in tissue immune cell composition

between the samples (Fig. 2b).

The results above suggested that both the DSP and Visium platform can
provide an overall good transcriptomic coverage of the samples profiled, but that
coverage for specific applications varies by platform. We next aimed to evaluate the

sensitivity of gene expression detection per spot level. Using genes with at least 1
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479  count detected as threshold, the DSP assays in general detected many more genes
480  per spot than the Visium assays (Fig. 2c). As a consequence, the DSP data had less
481  zero observations in the gene expression matrix as reflected by the overall low

482  matrix sparsity (Fig. 2d). In line with this observation, UMIs are more evenly

483  distributed across genes in DSP assays with ~6000 — 10000 genes contributing to 75%
484  of all UMIs collected (Fig. 2e; Fig. S3). On the other hand, the counts collected in

485  Visium datasets are concentrated among a smaller group of genes with ~3000 and

486  ~1000 genes occupying 75% of all UMIs in the FFPE or OCT Visium data,

487  respectively (Fig. 2e; Fig. S3). Therefore, these results suggest that the DSP assays
488  are more sensitive than the Visium assays given more genes were detected with

489  counts and the UMI distribution is more even across the transcriptome.

490 However, DSP assays are known to contain noise due to non-specific probe
491  binding [3]. Non-targeting control probes are included in the probe panel in order to
492  model the level of non-specific binding in each AOI. A LOQ threshold is often applied
493  to evaluate if a gene is considered to be detected or not in the DSP datasets. Genes
494  recurrently below the LOQ threshold can then be excluded from analysis to highlight
495 the key biology of the samples [3]. Targeted probes were also used in the FFPE

496  Visium assays. However, the probes are designed to contain a left-hand side and a
497  right-hand side so that only reads from both probe pairs are included in the final

498  count matrix. This potentially allows the exclusion of some non-specific readings

499 from the dataset. In contrast, the Visium OCT assay employs an unbiased polyA-
500 based capturing approach and is free from the bias due to variations in probe

501 sequences.

502 We then evaluated the specificity of detection in both DSP and Visium data.

503 Given that the cell array samples only contain Jurkat (T-cell ymphoma) and SKBR3
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(breast cancer) cell-lines, we reasoned that immunoglobulin heavy chain genes
should not be detected in this sample. Indeed, no reads from immunoglobulin heavy
chain genes were detected by the FFPE or OCT Visium assays (Fig. S4a). However,
unfiltered DSP data did contain non-specific readings for immunoglobulin heavy
chain genes. These results are in line with previous studies, which showed the
presence of non-specific signals in the DSP assays [3]. Non-specific detection in the
DSP data can be reduced by filtering the count matrix with the geometric mean of
non-target probe readings (Fig. S4b) and was completely removed by using LOQ
filtering (Fig. S4c). However, LOQ filtering may also introduce false negatives. For
example, EPCAM is a well-established epithelial cell marker. Filtering of DSP gene
expression data using the LOQ method can lead to exclusion of EPCAM signal in
several AOIs containing almost exclusively SKBR3 cells (Fig. S4c). In addition, we
noticed that the sensitivity of the DSP platform drops after applying additional filtering.
For example, when the raw counts were filtered using the geometric mean of non-
target probe readings, we noticed a clear decrease in the numbers of genes
detected per spot (Fig. S5a). Similarly, the sparsity of the gene expression matrix
also increased (Fig. S5b; Fig. 2d). Interestingly, the numbers of genes contributing to
majority of the UMIs collected (75%) in background filtered DSP data are
comparable to that of in the FFPE Visium assay (Fig. S5c-j). Non-surprisingly, the
sensitivity of the DSP assays can drop even further after more stringent filtering is

applied (LOQ filtering) (Fig. S6).
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Comparison of the DSP and Visium platforms on detecting gene expression

changes

A major application of spatial transcriptomics platforms is in the determination
of the difference in gene expression between cellular compartments, so we asked
how well the DSP and Visium platform capture biological variation within samples.
Using the cell-pellet datasets, we first evaluated the expression of marker genes in
DSP and Visium data. We observed high expression of epithelial markers such as
KRT18 in cell samples containing higher proportions of SKBR3 cells and vice versa
for immune markers in samples with more Jurkat cells, thereby showing good
correlation between gene expression and cellular composition in all datasets (Fig. 3a;
Fig. S7). Turning to tissue samples, a similar trend was observed in most of the
datasets compared. For both FFPE and OCT DSP data, there are clear differences
in epithelial or TME marker gene expression between regions with high epithelial
content and regions with low epithelial content (Fig. 3b; Fig. S8). For FFPE Visium
data, the trend is generally clear for sample 4754 and 4806 but less so for 4747.
While in line with the DSP data showing a significant enrichment of KRT18
expression in the ‘high epithelial’ region as compared to the ‘low epithelial’ region in
4747 (Fig. 3b), no enrichment was observed for KRT8 in FFPE Visium data (Fig. S8).
Also, the difference in marker gene expression between regions with high or low

epithelial content detected by the OCT Visium assay is small (Fig. 3b; Fig. S8).

To investigate why the Visium data did not markedly reflect gene expression
changes between tissue compartments with different cellular composition, we
evaluated the expression of cell lineage specific marker genes in individual Visium
spots in sample 4747 (FFPE). This showed that the expression of these genes are

not completely restricted to the corresponding pathology annotated tissue regions
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(Fig. S9). This is likely due to infiltration of the tumour by immune / stromal cell types
(i.e. PTPRC and COL1A1 expression). However, some expression of epithelial
markers such as KRT8 and KRT18 was also detected in spots annotated as stroma,
despite the limited presence of cancer cells in these spots as revealed by the H&E
image (Fig. S9). While the exact cause of such observation is still unclear, a recent
study has suggested that transcripts or probes in Visium assays might diffuse into
adjacent spots during tissue permeabilization leading to an effect termed as spot
swapping [29]. However, the extent to which this influences the current Visium
datasets remains uncertain. For the Visium OCT data, the overall low detection of
DEGs across tissue samples could be due to the uneven distribution of UMIs across

the genes as observed in Fig. 2c-e.

To more quantitively compare the performance of DSP and Visium in
detecting the difference in gene expression between different regions, we conducted
differential gene expression (DE) analysis between the high epithelial and low
epithelial AOIs/spots collected by each assay. For the cell array samples, only data
collected from 100% SKBR3 and 100% Jurkat cells was used. For tissue samples,
AOls/spots were manually annotated based on tissue morphology. We first
compared the numbers of differentially expressed genes (DEGSs) detected by each
assay, with an adjusted p-value less than 0.05. In general, the DSP platform
generates fairly similar results across all samples tested (Fig. 3c). The number of DE
genes were comparable between the DSP and Visium FFPE solutions for sample
4754, 4806 and the cell array. However, few DEGs were detected with the Visium
FFPE solution for sample 4747 and all tissue samples processed using the OCT

Visium assay (Fig. 3c).
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We then tested the concordance between DSP and Visium DE results by
computing the Pearson’s correlation score between the fold changes of significant
DE genes. This showed high correlation between all platforms on the cell-array
samples (Fig. 3d). We also observed good correlation between DSP data from
matching FFPE and OCT samples in all tissue samples tested. The correlation of
FFPE Visium results with DSP data was also good in samples 4754 and 4806
(above 0.5) but poor in 4747. OCT Visium had poor correlation with all other

datasets in tissue samples (Fig. 3d).

In addition to the overall pattern, we also examined the biology revealed by
the DE analysis. The fold change of the top 10 DEGs identified by each assay in
each sample was plotted as a heatmap. For data generated from samples FFPE
4747, OCT 4747, OCT 4754 and OCT 4806 by the Visium platform, the fold changes
detected appear to be smaller than the fold changes detected by other assays on the
same samples (Fig. 3e). This is in line with the previous analysis results in which
limited numbers of DEGs were confidently detected by the Visium assays in these
samples (Fig. 3c). Nonetheless, the overall fold change pattern is consistent across
all datasets. In the cell-array dataset we observed strong DE of markers related to
Jurkat (CD3D, TRBC1, TMSB4X) or SKBR3 (ERBB2, KRT8, KRT18) cells (Fig. 3e).
Epithelial-depleted tissue regions featured genes encoding immunoglobulin and
collagen genes, consistent with enrichment of fibroblasts and B cells in those regions,
however many genes enriched in SKBR3 were also found to be enriched in regions
with high epithelial content, reflecting the epithelial nature of SKBR3 breast cancer
cells (Fig. 3e). We also identified sample-specific gene clusters. For example, we
observed enrichment of GATA3 and TFF3 in the cancer regions of 4747, consistent

with its clinical classification as a luminal breast cancer.
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Comparison of the DSP and Visium platforms on resolving fine tissue

structures

So far, we have focused on unsegmented DSP AOIls when making direct
comparisons between the DSP and Visium assays. However, a unique feature of the
DSP platform is its ability to collect transcriptomic profiles of different cell types
separately based on fluorescence masking. We tested this ability of the DSP
platform using segmented AOQIs targeting epithelial or non-epithelial segments based
on the staining of anti-pan-cytokeratin antibody. In comparison to the gene
expression data collected using DSP segmentation, Visium spots located in regions
with matching morphology were manually selected and separated into the epithelial

and non-epithelial group based on cellular composition (Fig. 1c iii-iv).

We first evaluated the purity of DSP segmentation using cell array samples.
As shown previously (Fig. 3a), we observed a good concordance between the
expression of cell markers and the proportion of SKBR3 and Jurkat cells when using
Visium given the expression of both cell lines were captured together using the
Visium assays (Fig. S10). However, on the other hand, we observed enrichment of
cell markers in the corresponding DSP segments irrespective of the mixing
proportion of Jurkat and SKBR3 cells confirming the enrichment of cell type-specific

transcriptomic profile through DSP segmentation (Fig. S10).

To evaluate the purity of DSP segmentation, directly from the whole
transcriptomic profile, rather than relying on a handful of cell type markers, we used

deconvolution to infer the proportion of Jurkat and SKBR3 cells. Encouragingly, we
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observed a similar pattern in deconvolution results, where DSP segments in FFPE
cell array samples were predicted to contain almost exclusively Jurkat or SKBR3
cells in the corresponding segments, whereas the proportion detected using the
Visium assay changes as the mixing proportion changes between Jurkat and SKBR3
cells (Fig. 4a). However, we did notice that the separation is not as clear in data
collected using the DSP OCT assay. As the proportion of SKBR3 and Jurkat

changes, the predicted cell proportion changed correspondingly (Fig. 4a).

The results above seem to indicate that the segmentation works better in
FFPE samples than in the OCT samples for the DSP platform. To better understand
the cause of such observations, we evaluated the immunofluorescence images to
understand the variations in the FFPE and OCT cell array samples. Of note, cells in
the FFPE cell array appear to be forming a relatively uniformed single layer, while
cells in the OCT cell array seem to have aggregated into strips (Fig. 4b). Given that
segmentation was only conducted in two dimensions, it is possible that there are
other cell types above or below the targeted cell type, causing contamination of the

gene expression signal and less clear separation using the IF-based segmentation.

We next extended our comparisons to breast cancer tissue samples. In line
with the results above, we observed enrichment of marker gene expression in
corresponding tumour or non-tumour DSP segments (Fig. S11). In many samples, a
difference can also be observed between Visium spots annotated as epithelial and
non-epithelial (Fig. S11). We also predicted the cellular composition in our spatial
datasets using gene expression signatures defined in our published breast cancer
single cell RNA-Seq dataset [5]. In both OCT and FFPE DSP data, the tumour
segments were predicted to contain almost exclusively epithelial cancer cells, which

were absent in the non-tumour segments (Fig. 4c), whereas Visium spots annotated
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as epithelial or non-epithelial are predicted to contain immune and stromal cell types,

along with epithelial cancer signatures (Fig. 4c), as would be expected in a tumour.

In the analyses above, we profiled regions with well compartmentalised tissue
structures and a clear tumour-stroma interface. We then challenged the DSP
platform by targeting more specific cell types, namely CD8 T cells, in the tumour
microenvironment of two samples. We focused on biological AOIs as shown in Fig.
1d. The transcriptomic profiles of CD8 T cells were collected through segmentation
based on immunofluorescence signal of an anti-CD8 antibody. The transcriptomic

profiles of adjacent tumour cells and non-CD8 TME cell types were also collected.

To test the purity of segmentation, we examined the expression of cell
markers, including CD8A. From this, we observed enriched CD8A gene expression
in CD8 segments as compared to the epithelial segments or non-epithelial-non-CD8
segments collected in the same region (Fig. 4d). We also conducted DE analysis
between CD8 segments and adjacent non-CD8 TME AOIs, which showed significant
enrichment of T cell-related pathway activity (Fig. 4e). However, the expression of
myeloid cell markers CD14 and CD68 as well as B cell marker JCHAIN were also
high in the CD8 segment, at a level comparable to adjacent non-CD8 TME segments
(Fig. S12). While the exact cause of the contamination in the CD8 transcriptomic
profile is unclear, it may be caused by interactions between immune and stromal cell
types that cannot be fractionated through segmentation, highlighting a challenge for

DSP segmentation in obtaining pure transcriptomic profiles in complex tissues.
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Comparison of the DSP and Visium platforms in profiling the molecular

landscape of tumours

Previous analyses were mainly focused on certain regions of the tumour
partially due to the nature of the DSP platform which allows the deeper profiling of
specific areas with rich morphological features. In contrast, the Visium platform
requires minimal guidance on area selection and allows non-biased characterisation
of the tissue at relatively high spatial resolution. This potentially provides a data-
driven, hypothesis-generating approach to characterising the molecular landscape of
tissue samples. We examined this feature of the Visium platform to investigate the
spatial heterogeneity of cancer cells in our samples. We selected Visium spots with
high tumour content through pathological evaluation and inferred the cancer cell
composition in these spots using single-cell RNA-Seq transcriptomic signatures [5]
(Fig. 5a). The luminal A/luminal B, HER2E and basal subtypes defined through
single-cell analysis generally correlates with ER+, HER2+ and TNBC breast cancers
in the clinical setting. A proliferating/cycling cancer signature was also defined to
reflect the active proliferating cell state of breast cancer cells in the single-cell
dataset [5]. For direct DSP and Visium comparison, we predicted the cancer cell
proportions in DSP AOQIs and Visium spots from matching regions on each sample.
In addition, results from all Visium spots were included to evaluate the global pattern
of cancer composition across each sample. We observed a good concordance
between the predicted molecular subtypes and the known clinical subtypes for 4747
(ER+) and 4754 (TNBC) (Fig. 5a) whereas, 4806 (TNBC) was predicted to mainly
contain cancer cells of the HER2E subtype when using both DSP and Visium
platforms (Fig. 5a). This is not surprising as discordance between clinical and

molecular subtype is observed in up to 38% of breast cancer cases [30]
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To validate the cell type deconvolution prediction, we examined the
expression of common breast cancer subtype markers [5,31] and observed high
expression of luminal cancer markers ESR1 and TFF1 in the cancer region of
sample 4747 and basal cancer markers KRT6B and EGFR in sample 4754 (Fig.
S13). For sample 4806, we did observed expression of HER2 cancer markers such
as ERBB2 and GRB7 though the expression is not outstanding when comparing to
the other two samples (Fig. S13). However, importantly, only minimal expression of
luminal and basal cancer markers was observed in 4806 (KRT6B expression in 4806
was mainly associated with tissue necrosis) (Fig. S13) suggesting that this sample

should indeed be classified as a breast cancer of HER2 molecular subtype.

While the two platforms were broadly concordant, we observed some
differences in prediction between the DSP and Visium assays. In addition to HER2
breast cancer cells, the Visium platform also predicted sample 4806 to contain
cancer cells of luminal A subtype (Fig. 5a). Indeed, we observed some correlation in
spatial distribution of several luminal cancer markers including KRT8, KRT18 and
TFF3 with the predicted luminal A signatures (Fig. S14). Interestingly, the spatial
distribution of luminal A cancer cells was more heterogeneous (Fig. 5b) than Her2E
cells, with the signature enriched in regions at the top of the tissue. This area was
not sampled by the DSP AOIs, which were in a distant region of this tissue (Fig. 5c¢),
highlighting the strength of the Visium platform to enable more comprehensive,
practical, exploratory sampling of wider tumour regions. However, in regions covered
by both the DSP and Visium data, both platforms demonstrate high concordance in

resolving the molecular profiles of tumour cells.

To better understand the biological nature of the tumour cells in 4806, we then

clustered the Visium spots, in an unsupervised manner, using the spatial gene

30


https://doi.org/10.1101/2023.04.06.535805
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.06.535805; this version posted April 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

available under aCC-BY 4.0 International license.

expression profiles. In total, 15 clusters were identified from all Visium spots on
FFPE 4806 (Fig. 5d). Among these clusters, CO, C3, C5, C10, C11, C12 and C13
were predicted, by deconvolution, to be comprised of over 50% epithelial cells (Fig.
S15). Of these, C3, C10 and C12 were found to be located in regions affected by
necrosis and therefore excluded from the downstream analysis. For the remaining 4
clusters (CO, C5, C11 and C13), CO is located at the edge of the tumour mass,
adjacent to a clustered region with high immune cell composition (C1) (Fig. 5b,d; Fig.
S16), C5 is located in the region predicted to contain the highest luminal A signature
(Fig. 5b,d; Fig. S16). The remaining 2 clusters C11 and C13 are located in regions

with mainly HER2 cancer signatures (Fig. 5b,d; Fig. S16).

We then characterised the biological processes enriched in each cancer
cluster, computing the top differentially expressed genes in each cluster. The top 10
(if available) significantly dysregulated pathways in each cluster were then selected,
which showed a large enrichment of immune related pathways in CO, compared to
the others (Fig. 5e). The spatial proximity of this cluster, to C1, which has high
predicted immune cell composition (Fig. S15) suggests molecular interactions
between tumour and adjacent immune cells. We also observed enrichment of
estrogen related signalling in clusters C5, C11 and C13 which is in line with the
predicted presence of Luminal A cancer cells in these spatial locations (Fig. 5e).
Interestingly, we noticed that both the androgen response and apoptosis gene set
activities were significantly upregulated in C5. Previously literature has suggested
that AR activity may have a tumour-suppressive function in ER positive breast
cancer cells [32]. While the exact molecular mechanism driving AR activation in C5

remains to be further evaluated, our results have demonstrated the capacity of the
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Visium platform in performing non-biased, data driven characterisation of tissue

heterogeneity.

Discussion

The DSP and Visium technologies, along with other platforms such as Slide-
seq [33], MERFISH [34] and Seq-FISH [35], are driving a revolution in our ability to
spatially profile biology at whole transcriptome molecular resolution. Both the DSP
and Visium platforms have sophisticated designs and are leading platforms in the
spatial analysis of heterogeneity in tissue [4,36,37,38]. However, a direct evaluation
of the performance of DSP and Visium platform is still missing, making platform
selection a difficult task for researchers entering this area. In this study, we utilised a
collection of well-controlled cell line and tissue samples to address this gap and
provide a better understanding of the strengths and limitations of these platforms for

spatial transcriptomics and oncology research.

Direct comparison of the DSP and Visium platforms was conducted using
AOls/spots of equivalent size and number. We observed a high correlation in the cell
array samples where the cellular composition was precisely controlled and the
sample structure was relatively simple, but discordance between DSP and Visium
was seen when profiling breast cancer tissues. Most surprising was the discordance
when using Visium on OCT processed samples, where the level of gene detection as
well as the difference in gene expression between distinct cellular regions was
significantly lower. The reason for these discrepancies are unclear as the QC

parameters (such as reads per spot and genes per spot) of the OCT Visium datasets
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are within the expected ranges and established experimental protocols were
followed. While tissue permeabilisation does not appear to be the cause in this study,
effectively evaluating and balancing the strength of the RNA footprint obtained by
imaging is certainly a challenging step in the OCT Visium workflow. In addition, this

is recommended to be performed on a per-sample basis, which increases

experiment cost, time, tissue required, and reduced the throughput of the OCT
Visium workflow. Despite these challenges this is the only platform, among those
compared, that does not require the use of targeted RNA probes, thereby enabling
capture of all intrinsic RNA molecules with poly-A sequences. This can be

particularly valuable for profiling transcripts whose nucleotide sequences are variable,

for example, TCR or BCR [39].

Unlike the OCT Visium datasets, the FFPE Visium datasets detected large
numbers of genes within each spot. In addition, investigation of immunoglobulin
gene expression in the cell array samples revealed essentially no background in the
FFPE Visium assay. In contrast, this experiment did identify non-specific binding of
probes in the DSP assays. Genes with non-specific detection can potentially be
filtered out using the built-in non-targeting control probes. However, this may also
impact true signal with relative weak intensity. More sophisticated background
removal methods have been proposed [24,40], however, the performance of these
algorithms remain to be further tested. It is worth noting that while Visium samples
were sequenced extensively (achieving more than twice the recommended
sequencing depth), the saturation of the gene expression library was only around
40%, indicating the possibility to further improve gene detection with deeper

sequencing.
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796 The FFPE and OCT DSP data demonstrated high consistency in gene

797  detection across all samples. OCT DSP data seems to perform better than FFPE

798 DSP data with more genes detected per AOI and more DEGs detected between high
799  epithelial and low epithelial regions. Given that OCT samples generally have better
800 RNA quality than FFPE samples, this is probably as expected and a reflection of the

801 variations in tissue quality between assays.

802 In addition to a controlled, direct technical comparison between DSP and
803  Visium, we also explored the unique strengths of each platform. For instance, the
804 DSP platform allows the separation of transcriptomic profiles of closely located cell
805 populations using morphology masking. However, the results seem to be more

806  promising in well compartmentalised tissue structures (such as tumour versus non-
807  tumour) compared to regions where the boundaries between different cell

808 populations are less clear (such as between tightly interacting CD8 T cells and

809 myeloid cells). In contrast, the Visium platform averages expression of closely-

810 interacting cells.

811 However, the Visium platform provides good coverage at relatively high

812  resolution across the whole sample in the capture area, making it more suited to
813 unbiased profiling of tumour heterogeneity across larger tissue areas. We suggest
814 these observations highlight the scenarios where the unique strengths of the DSP

815 and Visium assays should be applied.

816 While not the focus of this study, the DSP and Visium platforms also vary in
817  several other features. Firstly, the morphology masking antibodies used in the DSP
818  workflow typically require optimisation prior to the experiment. For example, in the

819  current study, a CD8 antibody was conjugated with fluorescent dye with
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concentration titrated to obtain the optimal image for DSP experiments. In addition, a
different CD45 antibody was used to label Jurkat cells in the cell array samples due
to cross reactivity of the default CD45 antibody from the DSP morphology marker Kit

with SKBR3 cells.

Another variation between the platforms is related to sequencing library
construction. For Visium, samples from different spatial spots are pooled together
prior to library amplification, allowing for easier handling of the samples. These
samples were then amplified together, within the same PCR reaction, minimising
batch effects. In contrast, DSP libraries require more labour-intensive handling of
samples stored in 96-well plates. Several plates are required for large experiments
such as the current study, which may lead to bias or human error (such as pipetting

error) when processing individual samples separately.

Thirdly, the capture areas of the DSP and Visium platforms have different
dimensions. Samples in the current study were intentionally bio-banked to fit the
capture area on Visium slides (6.5mm x 6.5mm). However, common histological
FFPE blocks can reach 2cm x 2cm in size if not bigger or are in specific shapes such
as biopsy samples which are 1-2mm in diameter but 1-2cm in length. It is therefore
impossible to fit all parts of the samples into the capture area on Visium slides.
Additional trimming or handling is required for these samples, increasing the labour-
cost of Visium experiments. On the other hand, the capture area in the DSP platform
is substantially larger (36.2mm x 14.6mm), making it more compatible for this type of

tissue and potentially for TMA samples.

There are some additional caveats of our study. Firstly, the FFPE Visium data

was generated by the manufacturer who developed the technology. Therefore, the
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high data quality of FFPE Visium data in the current study could represent over-
optimised conditions that are challenging to replicate in a typical laboratory.
Secondly, due to unknown reasons, the OCT Visium data appears suboptimal
meaning that the comparisons to these datasets maybe considered less conclusive.
Thirdly, the DSP AOIs studied in this analysis were mainly located in a confined
region of the tissue samples. While this does reflect a common workflow for the DSP
platform, in requiring prior knowledge of the sample to be studied, the low coverage
of DSP AOIs across the tissue samples limited our ability to systematically compare
the two platforms’ ability to detect regional differences in tumour heterogeneity.
Finally, the sample size used in this study is relatively small. While the 3 breast
cancer tissue samples do cover luminal, HER2 and TNBC subtypes of breast cancer,
more samples across more diverse tissue and cancer types will be required to

exhaustively assess whether the current observations are maintained.

Conclusion

In this study, we performed controlled comparisons between the DSP and
Visium platforms to assess their ability to capture spatially resolved transcriptomic
features in breast cancers. We show that the two platform generate broadly
comparable results using carefully controlled conditions and samples. We propose
that the Visium platform is more suitable in generating a non-biased transcriptomic
landscape of the whole tissue. This enables the identification of cell populations
harbouring unique gene expression signatures but with seemingly similar

morphological features to other cells. To complement this, the DSP platforms
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prevails in deep molecular profiling of known regions with prior knowledge of tissue
regions of interest and is more suited to addressing hypothesese. Clearly there are
advantages to combining DSP and Visium assays in the same study, starting with
discovery and hypothesis generation using the Visium platform and followed by

hypotheses testing or validation using the DSP assays.

It's also worth noting that neither DSP nor Visium provides spatially resolution
at the single-cell level. To bridge this gap, new platforms based on optical imaging or
high-density spots or arrays of beads are in development or being commercialised
[33,41,42]. While these technologies promise improved spatial resolution they are
still mostly limited in transcriptomic coverage when compared to the DSP and the
Visium platform. Until a technology is developed that can deliver the trifecta of wide
transcriptomic coverage, single cell resolution and large capture areas the DSP and
Visium platforms look set to remain as two key technologies for generating spatial
whole transcriptomic profiles, furthering our knowledge of the spatial molecular
nature of the tissue samples and fuelling the advancement of research, treatment

and care in various disease settings.

Figure legends

Figure 1. Experiment overview. (a) Schematic illustration of sample preservation
and experiment workflow. Cultured Jurkat and SKBR3 cells were mixed at six
different ratios and preserved as OCT or FFPE samples. Tissue samples were sliced
in the middle and the resulting two pieces were preserved as OCT or FFPE samples

respectively. Closest possible sections were used for DSP and Visium assays. The
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illustration was created with BioRender.com. (b) Example images of tissue
morphology. FFPE and OCT sections from sample 4806 were processed for DSP or
Visium assays. Note the overall matching morphology between FFPE and OCT
samples and between sections used for DSP and Visium assays. Scale bars = 1mm.
(c) Example of DSP AOIs and Visium spots used for direct comparison. (i) Example
of Visium mimic AOIs across the tumour-stroma interface. (ii) Example of Visium
spots across the tumour-stroma interface used for direct DSP and Visium
comparison. (iii) Example of segmented comparison DSP AOIs. Each AOI was
segmented into pan-cytokeratin positive and pan-cytokeratin negative segments
according to the immunofluorescence signal. (iv) Example of Visium spots located in
the matching region where segmented comparison DSP AOIs were collected. Scale

bars = 100um. (d) Example of size gradation and biological DSP AQIs to test the

performance of segmentation of the DSP platform. Scale bars = 100um.

Figure 2: Comparison of the DSP and Visium platform on transcriptomic
coverage and sensitivity. Visium mimic AOIs in DSP data and Visium spots
collected from the same regions were used for the analysis (a) Barplots illustrating
the types of genes with at least 1 UMI detected by the DSP and Visium assays.
Probes included in the whole DSP and FFPE Visium panels were also plotted for
comparison (“DSP_panel” & “Visium_FFPE”). (b) Barplots illustrating the proportion
of counts for each type of genes in each sample detected by the DSP and Visium
assays. (c) Boxplots illustrating the numbers of genes with at least 1 UMI detected
per AOI or spot in DSP or Visium data. (d) Barplots illustrating the sparsity of the

gene expression matrix. The sparsity was calculated as the proportion of zero counts
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in the matrix. (e) Barplots illustrating the ranking of genes and their contribution to

the total counts collected in each dataset.

Figure 3: Comparison of the DSP and Visium platforms in detecting gene
expression changes. Visium mimic AOIs in DSP data and Visium spots from the
matching region were used for the analyses. All gene expression data was down
sampled to manufacturer’'s recommendation at a per sample level. (2) Normalised
expression of cell markers in the cell array samples detected by the DSP or Visium
assays. ns: non-significant. *p<0.05, **p<0.01, ****p<0.0001, student t-test. (b)
Normalised expression of cell markers in tissue samples detected by the DSP or
Visium assays. (c) The number of DEGs detected by the DSP and Visium assays in
each sample. A gene is considered to be differentially expressed if adjusted p < 0.05.
(d) Correlation of fold change of DEGs detected by the DSP or Visium platforms in
each sample. (e) Fold changes of top 10 DEGs detected by the DSP and Visium
platforms in each sample. DEGs considered to be enriched in the non-epithelial AOIs
/ spots were given positive fold changes while DEGs enriched in the epithelial AOls /

spots have negative fold changes.

Figure 4. Segmentation by the DSP platform allow profiling of more specific
gene expression features. (a) Predicted proportion of SKBR3 and Jurkat cells in
segmented DSP AOIs and Visium spots in cell array samples. (b) Example of
segmented DSP AOIs on cell array samples. All cells were labelled with SYTO13 for
nuclei stain. Jurkat and SKBR3 cells were labelled with anti-CD45 (red) or pan-

cytokeratin (green) antibodies respectively. Epithelial or non-epithelial DSP AOIs
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were then sampled based on the fluorescent signals in a sequential manner. (c)
Predicted proportion of cancer and TME cell types in segmented DSP AOls and
Visium spots in tissue samples. (d) Normalised expression of CD8A in CD8 and non
CD8 segments in DSP data. (e) NES of top 5 significantly dysregulated GOBP
pathways identified between CD8 segments and adjacent non-CD8 TME segments

by the DSP platform. Significance threshold was set as q < 0.25.

Figure 5: The Visium platform generates a transcriptomic map facilitating
unbiased heterogeneity exploration. (a) Predicted proportion of breast cancer
subtypes DSP and Visium data. All DSP and Visium AOIs /spots with the same size
were used in the analysis. To account for spatial heterogeneity in the samples,
Visium spots from regions with matching DSP AOIs were annotated and plotted as
the 3" group. Only AOIs / spots with high cancer proportion by pathology were
included. (b) pathology annotation of FFPE 4806 in Visium data and the spatial
distribution pattern of predicted breast cancer subtypes by deconvolution in this
sample. (c) lllustrative images of the location of DSP AOIs and Visium spots in FFPE
4806. (d) Clustering of Visium spots based on gene expression profiles and spatial
projection of the clustering results. (e) ORA analysis between clusters with high

cancer cell proportion in Visium data.

Supplementary figure 1: DSP AOI size and gene detection. Only data from DSP
size gradation AOIs were used in the analysis. Boxplot showing changes in the

numbers of genes detected per AOI as the AOI size changes.
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Supplementary figure 2: QC of data from Visium mimic AOIs (DSP) or Visium
spots (Visium). (a-c) QC of original DSP and Visium datasets. (a) Average number
of raw reads per um? collected by the DSP assays in each sample before down
sampling. (b) Average number of raw reads per spot collected by the Visium assays
in each sample before down sampling. (c) Average sequencing saturation of DSP
and Visium data before down sampling. (d-f) QC of down sampled DSP and Visium
datasets. (d) Average number of raw reads per um? collected by the DSP assays in
each sample after down sampling. (e) Average number of raw reads per spot
collected by the Visium assays in each sample after down sampling. (f) Average

sequencing saturation of DSP and Visium data after down sampling.

Supplementary figure 3: Distribution of UMI across all genes detected in each
dataset. Only DSP visium-mimic AOIs and matching visium spots were used for the
plot. All genes with UMI detected in each sample were ranked based on the total
numbers of UMI detected for each gene and plotted on the x axis. The cumulative
proportion of all UMI collected in each sample was plotted on the y axis. Top 5 genes
with the most UMI per gene collected were annotated. The numbers of genes

contributing to 50% and 75% of all UMIs collected were also labelled.

Supplementary figure 4: non-specific detection. Only data from Visium mimic
AOIs in DSP data from cell array samples and Visium spots in the matching region
was used in this analysis. (a-c) heatmap of counts of immunoglobulin heavy chain
genes and marker genes detected by the DSP and Visium assays. (a) raw counts

from both the DSP and Visium assay were plotted. (b) DSP counts were filtered by
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geometric mean of non-targeting control probes. Raw counts were plotted for Visium
data. (c) DSP counts were filtered by limit of quantitation. The same raw count were

plotted for Visium data.

Supplementary figure 5: Sensitivity of the DSP platform with background
filtered counts. (a) Numbers of genes detected per AOI / spot. DSP data was
filtered using the geometric mean of all non-targeting probe readings. Any gene with
count above 0 after filtering was considered detected. Raw Visium data was plotted.
(b) DSP matrix sparsity using background filtered counts. (c) UMI distribution plots of

DSP data using background subtracted counts.

Supplementary figure 6: Sensitivity of the DSP platform with LOQ filtered
counts. (a) Numbers of genes detected per AOI / spot. DSP data was filtered using
the LOQ threshold. Any gene with count above 0 after filtering was considered
detected. Raw Visium data was plotted. (b) DSP matrix sparsity using LOQ filtered

counts. (c) UMI distribution plots of DSP data using LOQ subtracted counts.

Supplementary figure 7: Normalised expression of cell markers in Visium

mimic AOIs and matching Visium spots from cell array samples.

Supplementary figure 8: Normalised expression of cell markers in Visium
mimic AOIs and matching Visium spots from tissue samples. ns: non-significant.

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, student t-test.
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Supplementary figure 9: pathology annotation and spatial expression patterns
of marker genes in FFPE 4747 profiled by the Visium platform. (a) Visium spots
used for direct DSP and Visium comparison. (b) pathology annotation of the tissue

sample. (c) Normalised expression of cell markers.

Supplementary figure 10: Normalised expression of cell markers detected
using segmented DSP AOIs or Visium spots in the matching region in cell

array samples.

Supplementary figure 11: Normalised expression of cell markers detected
using segmented DSP AOIs or Visium spots in the matching region in tissue

samples.

Supplementary figure 12: Normalised expression of cell markers in CD8

segments and adjacent epithelial and non-CD8 TME segments in DSP data.

Supplementary figure 13: Normalised expression of common breast cancer

subtype markers in FFPE Visium data.

Supplementary figure 14: Normalised expression of luminal breast cancer

markers in Visium data from FFPE 4806.
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Supplementary figure 15: Proportion of major cell types predicted in each

Visium cluster from FFPE 4806.

Supplementary figure 16: Proportion of breast cancer subtypes predicted in

cancer clusters in Visium data from FFPE 4806.

List of abbreviations

AOI: area of illumination

BCR: B cell receptor

DCC: digital count conversion

DE: differential gene expression

DEG: differentially expressed gene

DSP: digital spatial profiling

FFPE: formalin-fixed paraffin embedded

HERZ2E: HER2 enriched

LOQ: limit of quantification

NBF: neutral-buffered formalin

OCT: optimal cutting temperature compound
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1053  ORA: over-representation analysis

1054  QC: quality control

1055  ROI: region of interest
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1057 TME: tumour microenvironment

1058  TNBC: triple negative breast cancer

1059  UMAP: uniform manifold approximation and projection

1060  UMI: unique molecular identifier
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