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2. Abstract

Bacteria from the Vibrionaceae family have been implicated in mass mortalities of farmed Pacific
oysters (Crassostrea gigas) in multiple countries, leading to substantial impairment for growth in the
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sector. In Ireland there has been concern that Vibrio have been involved in serious summer
outbreaks. There is evidence that Vibrio aestuarianus is increasingly becoming the main pathogen of
concern for the Pacific Oyster industry in Ireland. While bacteria belonging to the Vibrio splendidus
clade are also detected frequently in mortality episodes, their role in the outbreaks of summer
mortality are not well understood. To identify and characterise strains involved in these outbreaks,
43 Vibrio isolates were recovered from Pacific oyster summer mass mortality episodes in Ireland
from 2008-2015 and these were whole genome sequenced. Among these, 25 were found to be V.
aestuarianus (implicated in disease) and 18 V. splendidus sensu lato (role in disease undetermined).
Two distinct clades of V. aestuarianus — Clade A and Clade B — were found that had previously been
described as circulating within French oyster culture. The high degree of similarity between the Irish
and French V. aestuarianus isolates points to translocation of the pathogen between Europe’s two
major oyster producing countries, probably via trade in spat and other age classes. V. splendidus
isolates were more diverse, but the data reveal a single clone of this species that has spread across
oyster farms in Ireland. This underscores that Vibrio could be transmitted readily across oyster
farms. The presence of V. aestuarianus Clades A and B in not only France but also Ireland adds
weight to growing concern that this pathogen is spreading and impacting Pacific oyster production
within Europe.

3. Outcome

Pacific oyster culture in Ireland has increasingly suffered from summer mass mortality events. Many
of these mortalities in recent years have been associated with Vibrio aestuarianus; the role of
another pathogen, Vibrio splendidus has, so far, remained inconclusive. Here we show that two
clades of V. aestuarianus are circulating in Ireland, and that these are members of two clades that
have previously caused extensive oyster die offs in France. Their discovery in Ireland is consistent
with transport of infected oyster stock between the two countries. Although V. splendidus-like
strains in Ireland were highly diverse, a small clonal group was detected that appears to have spread
rapidly from a single source to disparate locations in Ireland. Combined, these findings highlight the
appearance of a highly pathogenic Vibrio in Ireland, and the risk of transmission between
interconnected oyster production industries in Europe.

4, Data summary

Sequences generated in this study were deposited on the NCBI. Accession number: PRINA797364.
Publicly accessed genomes are listed in Table S2.

The authors confirm all supporting data, code and protocols have been provided within the article
or through supplementary data files.
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67 5. Introduction

68 While the aquaculture industry has expanded rapidly in the past 50 years, oyster production has

69 struggled to keep pace with other aquaculture products [1]. One of the significant factors

70  constraining the development of oyster aquaculture has been infectious disease [1,2]. Pacific oysters
71 are an important farmed species [3], with 620,000 tonnes produced on average each year worldwide
72 between 2010 to 2019, worth an estimated US$1.29 billion a year [4]. France is the major European
73 producer (84,760 tonnes in 2019), although there are significant industries in other European

74  countries, including Ireland (10,460 tonnes in 2019). In France and elsewhere, there have been

75 increased reports of disease outbreaks responsible for the depletion of oyster stocks over the last

76 decade [3]. These present major socioeconomic consequences for the future of the oyster farming
77 industry [5].

78 Episodes of abnormal mortality of Pacific oysters affecting all age classes have been described

79  globally since the 1950s. Mortality of larvae and spat has been linked to the presence of a number
80  of pathogenic agents including Ostreid herpes virus 1 (OsHV-1), whilst the term summer mortality

81  syndrome has been coined to describe those events of mixed aetiology in the summer months

82  affecting older oysters where gonad maturation is present [6]. Studies have shown that the causes of
83  summer mortality syndrome are complex, often involving a combination of physiological and

84 environmental stress, alongside the presence of pathogens [7], particularly bacteria belonging to the
85  genus Vibrio including V. aestuarianus and V. splendidus [8].

86 In the summer of 2008, abnormally high mortality episodes of the Pacific oyster were reported both
87 in France and Ireland. The losses were linked to the emergence of a new variant of OsHV-1, termed
88 Ostreid herpes virus 1 uVar (OsHV-1 puVar) [9]. Both V. splendidus and V. aestuarianus were also

89  detected during a number of these events [6]. Since then, mortality outbreaks have continued to

90 spread and affect oyster farms across various parts of Europe. The frequency of detection of V.

91 aestuarianus in cases of adult mortality increased significantly between 2011 and 2013, becoming
92  the principle pathogen detected during summer mortality episodes in adult oysters in France in 2013

93  [10].

94  The Pacific oyster industry in Ireland is heavily dependent on the importation of spat which is

95 predominantly sourced from France (Collins et al 2008). Hence, following the reports of increased
96 detections of V. aestuarianus in cases of adult mortality in France, a monitoring programme and a
97  retrospective study were instigated to determine the extent of its distribution in Ireland. In this
98  study, we characterise and compare 43 Vibrio isolates recovered from diseased Irish oysters from
99 2008 to 2015 using whole genome sequencing.

100  We show, firstly, a high proportion of these oyster die-offs are associated with the presence of V.
101  aestuarianus isolates from two oyster-associated V. aestuarianus subsp. francensis clades, Clade A
102  and Clade B previously shown to be a major cause of summer mortality syndrome in France [11].
103  Secondly, we showcase differences in gene content diversity in these clades. Thirdly we show that V.
104  splendidus strains present in Irish oysters are diverse, but a small clonal group was detected in 2009
105 in multiple locations.
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106 6. Methods

107 6.1 Bacterial isolation and initial characterisation

108 43 Vibrio isolates obtained from oysters of varying age classes (Figure 1 and Table 1) were collected
109  from 22 sites around the Republic of Ireland between 2008 and 2015. Isolates were recovered from
110  either haemolymph or crushed gill tissues and characterised. In most cases, isolates were recovered
111 from sites where there were significant ongoing mortalities taking place (Table 1). They were then
112 stored at -80°C on cryovials using the protect™ storage system following manufacturer’s

113 instructions.

114 6.2 DNA extraction and quantification

115 DNA was extracted from the isolates using the MasterPure™ Gram positive DNA extraction kit (Cat.
116 No. MGP04100; Epicentre®). The standard protocol was modified slightly to accommodate for the
117 isolates being Gram negative organisms. In summary, a 1 ul loopful of bacteria (previously sub-

118  cultured onto seawater agar (SWA) was placed into a 1.5 ml Eppendorf tube containing 1 ml 0.9%
119  saline. The solution was centrifuged at 1500 rpm, supernatant was removed and 150 ul TE buffer
120  was added. Samples were vortexed to re-suspend the pellet. 150 pl of a premade dilution of

121 proteinase K in Gram-positive lysis solution was added to each sample, at a concentration of 1 pl
122 Proteinase K per 150 ul of Gram-positive lysis solution. The samples were vortexed and subsequently
123 incubated at 65-70°C for 15 min which included vortexing every 5 min. Samples were cooled to 37°C
124  then put on ice for 3-5 minutes, following which 175 ul of MPC Protein Precipitation Reagent was
125 added to each sample. Samples were vortexed and centrifuged at 1500 rpm at 4°C for 10 min. The
126  supernatant was collected (pellets discarded) and 500 pl of isopropanol was added, samples

127  inverted 30-40 times and centrifuged again at 1500 rpm at 4°C for 10 min. The supernatant was

128 removed, 70% ethanol was added, and samples centrifuged for a final time at 1500 rpm at 4°C for 5
129  min. Finally, the supernatant was removed, and samples were re-suspended in 100 pl of molecular
130  grade water and stored at -80°C until future use. The extracted DNA was quantified using a

131  Quantus™ fluorometer (Promega), and quality assessed using NanoDrop™ ND-1000

132  Spectrophotometer (Thermo). Only those samples that passed the quality check were selected for
133  high-throughput (lllumina) sequencing.

134 6.3 Illlumina Sequencing

135 Isolates were sequenced using an lllumina Miseq according to the standard protocols produced by
136  the manufacturer. In brief, the DNA quantities were checked by fluorescence, diluted and prepared
137  for sequencing with the lllumina Nextera XT library preparation kit, including optional 96-barcode
138  adapters. Cleaned libraries were then sized-checked with an Agilent Technology 2100 Bioanalyzer
139  using a High sensitivity DNA chip and quantified by Promega Quantus™ fluorometer using OneDNA
140  protocol. Finally, libraries were normalised, pooled and sequenced on the Miseq with lllumina V3
141 600 chemistry.

142 6.4 Quality Check

143 Sequences were trimmed using version 0.36 of Trimmomatic, with parameters
144 (ILLUMINACLIP:*:2:30:10 MINLEN:36 SLIDINGWINDOW:4:20 TOPHRED®64 [12]. FastQC version 0.11.7
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145 was used to check the quality of trimmed reads, and to ensure there were no significant
146 contaminants [13].

147 6.5 Assembly and Identifying Open Reading Frames

148 Spades version 3.13.1 was used for assembly, with parameters: — careful —only assembler [14].

149  Contigs less than 500bp were removed and coverage less than 5 calculated using bwa and SAMtools
150 v1.8 [15]. Assembled genomes were annotated using version 1.13 of Prokka, with options: —

151 addgenes —centre XXX —mincontiglen 200 —cdsrnaolap [16]). Quality assessment of assemblies was
152  carried out using QUAST v4.6.3 [17]. QC scores for all reads and assemblies are provided in Table S1.

153 6.6 Accessing public genomes of V. splendidus and V. aestuarianus

154  We obtained publicly available WGS data for V. splendidus and V. aestuarianus in order to place the
155 isolates from Irish oysters into broader phylogenetic contexts. Thirteen V. gestuarianus genomes
156  were contributed by Goudenege et al., 2015. Assembled genomes of 102 isolates previously

157  characterised as V. splendidus were downloaded from the NCBI database [18]. Information on each
158  of these isolates can be found in Table S2. All subsequent genomic analysis was done using datasets
159 of 38 V. aestuarianus and 120 V. splendidus genomes.

160 6.7 Pangenome construction

161 A comprehensive pangenome of each species was constructed for both species using PIRATE [19], a
162 toolbox for bacterial pangenomics analysis. We used Phandango version 1.3.0 [20] to visualise the
163  distribution of gene families within each population. Core genome alignments were built using

164  PIRATE. We used R version 3.2.3 [21] for statistical analysis and data visualisation.

165 6.8 Core genome phylogeny

166 Based on a 2.56 Mb core genome alignment we constructed a bootstrapped phylogenetic tree using
167 RAXML-NG v. 0.9.0 [22] of the 38 V. aestuarianus isolates. For the larger V. splendidus dataset, we
168  constructed a neighbour joining tree using RapidNJ [23] using a core genome of 2.97-Mb.

169 Phylogenies were visualised using Microreact [24]. The project URLS are

170  https://microreact.org/project/gfAsh7Kudul4xuSTDaVU5r-vibrio-aestuarianus (V. aestuarianus) and
171 https://microreact.org/project/eMABgKLAPcn2QG5NENnCVor-vibrio-splendidus (V. splendidus). SNP
172  distances between isolates were calculated using Disty McMatrixface 0.1.0 [25].

173 6.9 Phage prediction

174  We used PHAge Search Tool (PHAST) [26] to identify potential phages in Clade A isolate 12142, and
175  Clade B isolates 01308 and 16060. Fasta assembly files were assessed using default PHAST
176 parameters.

177  All Bioinformatics was carried out using resources provided by MRC-CLIMB [27].
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178 7. Results

179 7.1 Vibrio aestuarianus: Presence of two clades in Ireland

180  The core genome phylogeny of V. aestuarianus (Figure 2) revealed that the French and Irish isolates
181 were highly similar. The Irish isolates were resolved into the same two clades, A and B, previously
182 reported to be circulating in French oyster culture [11]. In each clade, French isolates occur closer to
183 the root of the tree than the Irish isolates. Strains isolated from these two countries differ by 50
184 SNPs on average in Clade A and 416 SNPs in Clade B.

185 7.2 Vibrio aestuarianus: Gene content variation in each clade

186  The pangenome of V. aestuarianus consists of 5,650 gene families (Figure 3). This includes 2,746
187 core gene families present in at least 95% of isolates, 1,150 shared by 10%-95% isolates, and 1,754
188  shared by a single isolate up to 10% of isolates. Isolates 01151 and 01032 are missing many core
189  genes due to poor quality assemblies: these were excluded from further pangenome analyses.

190  Asetof 215 gene families present in all Clade A isolates are absent in Clade B isolates (Figure 3).
191  These genes are likely to have been horizontally acquired as mobile genetic elements (MGEs). To
192  examine this, we checked the locations of these genes on the genome of the Clade A isolate 12142
193 and compared the GC content of these genes to the rest of the genome. The 215 genes resolved into
194 19 clusters, each with at least two genes (Table S3). The largest of these clusters contains 48 genes
195  and has a GC content of 45.56%, much higher than the genome average of 42.65%. Another 13.5-Kb
196  region with 15 genes and a GC content of 43% can be found 866-Kb away from this region on the
197  same contig. These two large gene clusters have been identified as phages using PHAST (Table S4).
198  The remaining clusters of genes are distributed across 11 contigs and contain mostly hypothetical
199 proteins (108 of 130 genes). The presence of antitoxin and phage related proteins (YafN and IntA)
200  suggests that many of these genes may lie on other uncharacterised mobile elements or plasmids.

201 Clade B isolates contain 92 gene families which are not shared with Clade A, and the location of

202  these genes was checked in Clade B isolate 16060. These are also largely hypothetical proteins (63 of
203  92)and are spread across 32 contigs in isolate 16060, each carrying between one and nine of these
204  genes (Table S5). Genes related to two citrate fermentation operons which allow citrate to be used
205  as an energy source in V. cholerae, citCDEFXG and citS-oadGAB-citAB [28], are only present in Clade
206 B isolates. citD-G and citX are all colocalised with citB and citA (also known as dpiA and dpiB). Genes
207 oadA, oadB and oadG are found with citC and copies of citA and citX. No citS genes were detected in
208  this species. Genes citA, citG, and one copy of citX are also found in one Clade A genome: 12142.
209  vspR, avirulence gene repressor in Vibrio cholera [29], is also only found in Irish Clade B genomes.

210  We also note that Clade B strains isolated in France harbour both sets of genes, the 92 Clade B
211  genes, and the 215 genes that are otherwise unique to Clade A. This indicates that the Clade B
212 strains from Ireland included in this study have experienced extensive gene loss.

213 7.3 V. splendidus: Widespread clonal group uncovered

214  To place V. splendidus isolates appearing in Irish oysters within the population structure of this
215 species, we compared these 18 strains to 102 V. splendidus publicly available genomes. The
216  phylogeny of V. splendidus-like isolates revealed a large cluster of 95 isolates with a bush-like
217 population structure, accompanied by multiple more diverse lineages (Figure 4). Of the newly
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218 sequenced strains, 15 are found within the large cluster, while three strains lie within the broader
219  population. Although publicly accessed genomes were all classified as V. splendidus species, a

220  phylogenetic comparison with reference genomes within V. splendidus clade has shown that many
221 of the more diverse isolates in this dataset are likely to have been misclassified (Figure 5). Instead,
222  these isolates are expected to represent other species from the V. splendidus family. Thus, we have
223 designated isolates 16040, 16042, and 16075 as V. splendidus-like isolates. A cluster of five isolates
224 recovered from four separate locations in Ireland show high similarity within this population (Figure
225  6). These isolates differ by 28 SNPs on average across the core genome alighment, whereas the

226 remaining 10 Irish isolates within the V. Splendidus sensu stricto cluster differ by 83, on average.

227  The pangenome of this species contains 18,891 gene families, with a core genome of 3,513 genes
228  (95-100% of isolates) and 13,270 rare accessory genes (0-10% of isolates) (Figure S1). 42 gene

229  families are unique to the five Irish clonal group isolates. These include 18 genes dispersed within a
230 35.6-Kb region include a trio of resistance related genes: cobalt-zinc-cadmium resistance protein,
231 czcA; multidrug resistance protein, mdtA; and outer membrane protein oprM. Multiple genes

232 related to stress response and signalling are also found in this region including nreB oxygen sensor
233 histidine kinase; cmpR a transcriptional activator involved in CO2 stress [30]; htpG a chaperone
234 protein involved in general stress responses [31]; a putative signalling protein; and pdeB a gene
235 implicated in biofilm formation [32].
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236 8. Figures and tables
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238  Figure 1: Map of 43 strains sampled across Ireland.

239 24 V. splendidus and 18 V. aestuarianus isolates were collected from 23 locations. Pie charts indicate
240  the proportion of each species sequenced from each location. These nodes are weighted by the

241 number of isolates (scale = 1 to 6).

242
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244  Figure 2: Core genome phylogeny of 38 V. aestuarianus isolates reveal two clades circulating in
245 Ireland and France.

246  Tree tips are coloured by country of isolation. Isolates recovered in Ireland fall within two previously
247  identified clades circulating in France.
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Presence-absence heatmap of the pangenome of 38 V. aestuarianus genomes generated by
Phandango [20]. Dark blue blocks indicate the presence of a gene family. Tree branches and
heatmap rows are coloured by country of isolation. Indicated in a red box are multiple genes that
differ between Clade A and Clade B. Isolates 01151 and 01032, French Clade B isolates, notably
contain most of these genes.
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Figure 4: V. splendidus core-genome phylogeny.

Neighbour-joining core-genome phylogeny of 120 V. splendidus-like isolates coloured by country of
isolation. The tree is annotated with the source of isolation. Publicly available samples largely come
from America and were sampled in seawater. The population structure of the dataset includes a
large cluster of 95 genomes with a bush-like appearance. Isolates from Ireland are distributed
throughout this population. However, one cluster of five highly similar isolates can be identified.
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Figure 5: Phylogeny of V. splendidus species complex.

The reference genomes of thirteen species belonging to the V. splendidus complex were combined
with the 120 V. splendidus genomes used previously. Above is a neighbour-joining tree constructed
using a core genome alignment of these genomes. V. splendidus sensu stricto, containing the V.
splendidus reference strain, is collapsed and represents 107 isolates. Eleven isolates identified as V.
splendidus species in the NCBI, that do not fall within V. splendidus sensu stricto, are more similar to
V. splendidus-like reference genomes. Similarly, three genomes isolated in Ireland — 16075, 16040
and 16042 — are not found within V. splendidus sensu stricto.
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Figure 6: Subtree of V. splendidus reveals a cluster of five highly similar isolates in Ireland.
A. Subtree of 19 V. splendidus isolates including five isolates with high similarity. Tree tips are
coloured by country and annotated with the source of isolation.

B. Map of the five related V. splendidus strains shows these isolates were not recovered in the
same locations. Nodes are weighted by the number of isolates per location.
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Figure S1: V. splendidus on gene presence-absence.

uup
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226.72kb _|

. 302.29kb |

- 377.86kb

Gene presence-absence for 120 V. splendidus-like isolates. Dark blue indicates the presence of a
gene family.

Table 1: Vibrio strains selected for sequencing from Irish oysters

ID Year of Freezer Ref.|FHU bacterial |Site of Sample Tissue sample |Reported |Age |Species
extraction ref. extraction type was extracted |Mortality |[class
from rate %

16025 2009 76/09 S/25/09 Loughros Beag |Ab Mort Gill 80-90 0+, 1+ V. aestuarianus
16028 2014 32/14 S/17/14 AB  |Woodstown Ab Mort Haemolymph |60-70 3+ V. aestuarianus
16030 2014 51/14 S/43/14 A Kinsale Ab Mort Haemolymph |90 2+ V. aestuarianus
16033 30/14 S/16/14 A Dungarvan Ab Mort Gill 10-20 0+, 1+|V. aestuarianus
16034 2014 26/14 S/15/14 A Achill Ab Mort Gill 10 0+ V. aestuarianus
16036 2015 47/15 S/38/15 A Castlemaine Ab Mort Haemolymph |40 2+ V. aestuarianus
16041 2015 20/15 S/16/15 B Woodstown Reposus Gill 1 1+ V. aestuarianus
16043 2015 58/15 S/58/15 Donegal Bay Ab Mort Haemolymph |50-90 2+ V. aestuarianus
16044 2015 67/15 S/65/15 B Dungarvan Ab Mort Haemolymph |15-50 2+ V. aestuarianus
16048 2015 14/15 $/10/15 B Dungarvan Reposus Haemolymph |1 2+ V. aestuarianus
16049 2015 21/15 S/17/15 A Dungarvan Reposus Haemolymph |1.5 2+ V. aestuarianus
16050 2015 40/15 S/28/15 B Woodstown Reposus Gill 92 0+ V. aestuarianus
16053 2015 64/15 S/64/15 A Kinsale Ab Mort Haemolymph |70-80 2+ V. aestuarianus
16054 2010 03/10 S/02/10 Poularone Creek Ab Mort Gill 30-40 0+ V. aestuarianus
16056 2015 59/15 S/59/15 Donegal Bay Reposus Haemolymph |20 2+ V. aestuarianus
16057 2015 36/15 S/27/15 A Dungarvan Reposus Haemolymph |5.5 2+ V. aestuarianus
16058 2015 60/15 S/60/15 A Dungarvan Reposus Haemolymph |5 2+ V. aestuarianus
16059 2013 02/13 S/15/13 B Kinsale Ab Mort Gill 15-20 1+ V. aestuarianus
16060 2015 53/15 S/44/15 Donegal Bay Reposus Haemolymph |2 2+ V. aestuarianus
16062 2015 96/15 S/93/15 A Gweedore Ab Mort Haemolymph |43 1+ V. aestuarianus
16063 2014 46/14 S/37/14 A Kinsale Ab Mort Haemolymph |90 1+ V. aestuarianus
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16066 2013 25/13 S/21/13C Oysterhaven Ab Mort Gill 50 0+, V. aestuarianus
1+, 2+
16067 2015 16/15 S/11/15B Woodstown Reposus Haemolymph |0 2+ V. aestuarianus
16070 2014 28/14 S/14/14 B Woodstown Research Haemolymph |60-70 1+ V. aestuarianus
16071 2014 57/14 S/52/14 A Castlemaine Ab Mort Haemolymph 30 2+ V. aestuarianus
16029 2009 68/09 S/31/09A Ballymacoda Ab Mort Haemolymph |20 0+ V. splendidus
Bay sensu stricto
16035 2009 54/09 S/34/09 A Clew Bay Ab Mort Haemolymph |10 0+ V. splendidus
sensu stricto
16037 2013 23/13 S/31/13 A Carlingford FH Directive Gill 50 0+ V. splendidus
Lough sensu stricto
16051 2009 73/09 S/27/09 Clew Bay Ab Mort Haemolymph |75 0+ V. splendidus
sensu stricto
16052 2013 07/13 S/16/13 C Dungloe Bay Ab Mort Haemolymph |20 1+ V. splendidus
sensu stricto
16065 67/09 S/37/09 Dungloe Bay Ab Mort Haemolymph |35 0+ V. splendidus
sensu stricto
16069 31/14 S/17/14 A-A \Woodstown Ab Mort Haemolymph |60 3+ V. splendidus
Strand sensu stricto
16072 2009 79/09 S/21/09 Clew Bay Ab Mort Haemolymph |3-50% 0+ V. splendidus
sensu stricto
16073 2009 66/09 S/40/09 B Valentia River |Ab Mort Haemolymph |45 0+ V. splendidus
sensu stricto
16074 2008 34/08 S/30/08/A Dungarvan Ab Mort Haemolymph |15 1+ V. splendidus
Harbour sensu stricto
16061 2008 35/08 S/30/08/B Dungarvan Ab Mort Haemolymph |15 1+ V. splendidus
Harbour sensu stricto
16077 47/16 S/12/16B V. splendidus
sensu stricto
16078 2008 23/08 $/028/08/B  |Castlemaine Ab Mort Haemolymph |85 1+ V. splendidus
Harbour sensu stricto
16079 2015 63/15 S/63/15B Trawenagh Bay |Ab Mort Haemolymph |70 1+ V. splendidus
sensu stricto
16040 2009 78/09 S/24/098B Loughros Beag |Ab Mort Haemolymph |10 1+ V. splendidus
sensu lato
16042 2013 28/13 S/35/13 A Dunmanus Bay |Ab Mort Haemolymph |40 1+ V. splendidus
sensu lato
16075 2010 16/10 S/42/10 Carlingford Ab Mort Haemolymph (30 0+ V. splendidus
Lough sensu lato
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284 9. Discussion

285 In Ireland, V. aestuarianus has been detected in oyster mortality events reported to the Marine

286 Institute in 2001, 2003, 2006, and 2007 and more frequently in mortality events in spat from 2008
287 onwards, which had previously been attributed to OsHV-1 [33](D. Cheslett per. Comm.) Whilst

288 mortality in adult oysters was only infrequently reported in Ireland prior to 2012, the frequency of
289  reports and the detection of V. aestuarianus increased in line with those seen in France particularly
290 from 2015 onwards following massive mortality events country wide in 2015 [33,34]. The trend of
291 increased detections mirrored that in France; although the timeline of increased detections was later
292  than that reported in France [10,34-36]. The predominant pathogen detected in cases of adult and
293 half-grown mortality was V. aestuarianus whilst that in spat was OsHV-1pVar. However, other

294 bacteria, particularly other Vibrio sp. have also been isolated, mainly in conjunction with OsHV-1 and
295 V. aestuarianus. Here by applying whole genome sequencing we have characterised Vibrio strains
296  that might play a major role in Irish oyster mortality events.

297 9.1 Two V. aestuarianus clades linked with oyster mortalities in both Ireland and France

298  Our results show that all V. aestuarianus strains detected in oysters in Ireland are members of two V.
299 aestuarianus subsp. francensis clades, A and B, which have been previously detected in France [11].
300 SNP analysis revealed a high level of identity between the Irish and French V. aestuarianus isolates,
301  suggesting that the clades causing disease outbreaks in France are also responsible for disease

302 outbreaks across Ireland. There is a significant trade in live oysters between France and Ireland

303 36,37], which has likely facilitated the movement of pathogens between rearing areas. However,
304 broader genomic surveillance of V. aestuarianus associated with oyster mortalities is needed to

305 uncover the exact distribution of each clade outside of these key C. gigas-producing countries.

306  Arecent study involving the sequencing of V. aestuarianus strains across Europe showed that these
307  two oyster-associated clades have now been found in multiple countries within Europe [38]. The
308  authors found low genomic diversity within each clade and suggested that their emergence may
309 have been the result of adaptation to oyster pathogenicity. Thus, the high genetic identity between
310 Irish and French strains does not necessarily indicate a direct transmission chain between these two
311  countries. While the data assessed here cannot be used to evaluate fine-scale transmission events
312  between Ireland and France in V. aestuarianus, we advocate for further whole genome sequencing
313  efforts within and across interconnected oyster-producing countries in Europe and elsewhere to
314  help capture the spread and evolution of these emerging infectious clades [39].

315 9.2 Evidence of gene loss in Irish Clade B strains

316  Our data revealed a large number of gene families that are found in French but not Irish Clade B

317  isolates. This difference in genome content may suggest that a Clade B strain was introduced once to
318 Ireland, and that the founder population lost or previously lacked those genes. Although some of
319 these genes were revealed to be on phages, the mechanisms of gene loss of the remaining 152 non-
320  consecutive gene families in these otherwise highly related strains has not been determined. It is
321 possible that this rapid genome reduction may have conferred a selective advantage to the Irish

322  strains [40]. Given that these Irish strains are only compared to two strains from France, more

323  extensive sequencing of Clade B isolates across Europe and other affected regions is needed to

324  evaluate the full diversity of the clade and determine if this gene loss is exclusive to Irish strains.
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325 9.3 Asingle clone of V. splendidus highlights transmission potential

326 V. splendidus clade strains were frequently detected in Irish oyster mortalities, although the role
327  they played in disease is uncertain. Here we showed that these isolates were mostly distinct strains
328  within a highly diverse species complex. V. splendidus is a highly diverse species and opportunistic
329 pathogen [41,42]. Given this, we would expect isolates associated with disease in Ireland to be

330 largely unrelated, unless they happened to be isolated in the same location at one time or had

331 recently been introduced through a common source. In 2009, a clonal group of highly similar isolates
332 was found in multiple locations across Ireland (Figure 6). In all cases, samples were taken where

333 mortality was occurring in recently introduced French oyster seed. Both OsHV-1 yuVar and V.

334  splendidus were detected, suggesting that these isolates may be linked through the source of oyster
335  seed. While this clonal group may have proliferated across Irish waters in 2009, given that such

336  events have not been described in this species to date, it is much more likely that it was spread to
337  multiple farms through a common source. Indeed, at least four of these isolates were found in sites
338  which at that time contained stock from the same hatchery in France. The occurrence of this highly
339 related clonal group of V. splendidus across multiple sites in the same year signifies the presence of
340 transmission routes available to important oyster pathogens between production facilities.

341 9.4 Perspectives

342 Pacific oyster summer mortality events in Ireland are shown here to be associated with two V.

343 aestuarianus clades and a variety of strains within the V. splendidus complex. Notably, the two V.
344 aestuarianus clades in Ireland have been described elsewhere in Europe, as Clade A and B [11,38].
345 Novel lineages where not detected which underscores the importance of these two clades in Pacific
346 oyster summer mortalities. The occurrence of a probable transmission event of V. splendidus across
347 Ireland emphasises capacity for spread of potentially pathogenic Vibrios within the oyster industry.
348 Further genomic surveillance studies, which can build on this one, are needed within countries

349  experiencing summer mortality syndrome and countries with which they frequently trade. This could
350 lead to a fuller picture of the proliferation and evolution of this emerging pathogen and to better
351 measures to prevent or deal with its future spread.
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