

1 ***Vibrio aestuarianus* Clade A and Clade B isolates are 2 associated with Pacific oyster (*Crassostrea gigas*) 3 disease outbreaks across Ireland**

4 **1.1 Author names**

5 Nicola M. Coyle^{1,4}, Ciar O'Toole², Jennifer C.L. Thomas^{1,4}, David Ryder¹, Edward J. Feil⁴, Michelle
6 Geary², Timothy P. Bean³, Andrew Wokorac Joseph¹, Ava Waine^{1,5}, Deborah Cheslett^{2*}, David W.
7 Verner-Jeffreys^{1*}

9 **1.2 Affiliation(s)**

10 ¹ Centre for Environment Fisheries and Aquaculture, Weymouth, United Kingdom, DT4 8UB

11 ² Marine Institute, Oranmore, Co. Galway, Ireland, H91 R673

12 ³ The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United
13 Kingdom, EH25 9RG

14 ⁴ The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United
15 Kingdom, BA2 7AY

16 ⁵ Newcastle University, School of Natural and Environmental Sciences, Newcastle Upon Tyne, NE1
17 7RU

19 **1.3 Corresponding author and email address**

20 Deborah Cheslett, deborah.cheslett@marine.ie

21 David W. Verner-Jeffreys, david.verner-jeffreys@cefas.co.uk

23 **1.4 Keywords**

24 *Vibrio aestuarianus*, *Vibrio splendidus*, Summer Mortality Syndrome, Ireland, Aquaculture,
25 Transmission

27 **1.5 Repositories:**

28 Sequences were deposited on the NCBI. Accession number: PRJNA797364

30 **2. Abstract**

31 Bacteria from the Vibrionaceae family have been implicated in mass mortalities of farmed Pacific
32 oysters (*Crassostrea gigas*) in multiple countries, leading to substantial impairment for growth in the

33 sector. In Ireland there has been concern that *Vibrio* have been involved in serious summer
34 outbreaks. There is evidence that *Vibrio aestuarianus* is increasingly becoming the main pathogen of
35 concern for the Pacific Oyster industry in Ireland. While bacteria belonging to the *Vibrio splendidus*
36 clade are also detected frequently in mortality episodes, their role in the outbreaks of summer
37 mortality are not well understood. To identify and characterise strains involved in these outbreaks,
38 43 *Vibrio* isolates were recovered from Pacific oyster summer mass mortality episodes in Ireland
39 from 2008-2015 and these were whole genome sequenced. Among these, 25 were found to be *V.*
40 *aestuarianus* (implicated in disease) and 18 *V. splendidus sensu lato* (role in disease undetermined).
41 Two distinct clades of *V. aestuarianus* – Clade A and Clade B – were found that had previously been
42 described as circulating within French oyster culture. The high degree of similarity between the Irish
43 and French *V. aestuarianus* isolates points to translocation of the pathogen between Europe's two
44 major oyster producing countries, probably via trade in spat and other age classes. *V. splendidus*
45 isolates were more diverse, but the data reveal a single clone of this species that has spread across
46 oyster farms in Ireland. This underscores that *Vibrio* could be transmitted readily across oyster
47 farms. The presence of *V. aestuarianus* Clades A and B in not only France but also Ireland adds
48 weight to growing concern that this pathogen is spreading and impacting Pacific oyster production
49 within Europe.

50 3. Outcome

51 Pacific oyster culture in Ireland has increasingly suffered from summer mass mortality events. Many
52 of these mortalities in recent years have been associated with *Vibrio aestuarianus*; the role of
53 another pathogen, *Vibrio splendidus* has, so far, remained inconclusive. Here we show that two
54 clades of *V. aestuarianus* are circulating in Ireland, and that these are members of two clades that
55 have previously caused extensive oyster die offs in France. Their discovery in Ireland is consistent
56 with transport of infected oyster stock between the two countries. Although *V. splendidus*-like
57 strains in Ireland were highly diverse, a small clonal group was detected that appears to have spread
58 rapidly from a single source to disparate locations in Ireland. Combined, these findings highlight the
59 appearance of a highly pathogenic *Vibrio* in Ireland, and the risk of transmission between
60 interconnected oyster production industries in Europe.

61 4. Data summary

62 Sequences generated in this study were deposited on the NCBI. Accession number: PRJNA797364.
63 Publicly accessed genomes are listed in Table S2.

64

65 **66 The authors confirm all supporting data, code and protocols have been provided within the article
or through supplementary data files.**

67 5. Introduction

68 While the aquaculture industry has expanded rapidly in the past 50 years, oyster production has
69 struggled to keep pace with other aquaculture products [1]. One of the significant factors
70 constraining the development of oyster aquaculture has been infectious disease [1,2]. Pacific oysters
71 are an important farmed species [3], with 620,000 tonnes produced on average each year worldwide
72 between 2010 to 2019, worth an estimated US\$1.29 billion a year [4]. France is the major European
73 producer (84,760 tonnes in 2019), although there are significant industries in other European
74 countries, including Ireland (10,460 tonnes in 2019). In France and elsewhere, there have been
75 increased reports of disease outbreaks responsible for the depletion of oyster stocks over the last
76 decade [3]. These present major socioeconomic consequences for the future of the oyster farming
77 industry [5].

78 Episodes of abnormal mortality of Pacific oysters affecting all age classes have been described
79 globally since the 1950s. Mortality of larvae and spat has been linked to the presence of a number
80 of pathogenic agents including Ostreid herpes virus 1 (OsHV-1), whilst the term summer mortality
81 syndrome has been coined to describe those events of mixed aetiology in the summer months
82 affecting older oysters where gonad maturation is present [6]. Studies have shown that the causes of
83 summer mortality syndrome are complex, often involving a combination of physiological and
84 environmental stress, alongside the presence of pathogens [7], particularly bacteria belonging to the
85 genus *Vibrio* including *V. aestuarianus* and *V. splendidus* [8].

86 In the summer of 2008, abnormally high mortality episodes of the Pacific oyster were reported both
87 in France and Ireland. The losses were linked to the emergence of a new variant of OsHV-1, termed
88 Ostreid herpes virus 1 μVar (OsHV-1 μVar) [9]. Both *V. splendidus* and *V. aestuarianus* were also
89 detected during a number of these events [6]. Since then, mortality outbreaks have continued to
90 spread and affect oyster farms across various parts of Europe. The frequency of detection of *V.*
91 *aestuarianus* in cases of adult mortality increased significantly between 2011 and 2013, becoming
92 the principle pathogen detected during summer mortality episodes in adult oysters in France in 2013
93 [10].

94 The Pacific oyster industry in Ireland is heavily dependent on the importation of spat which is
95 predominantly sourced from France (Collins et al 2008). Hence, following the reports of increased
96 detections of *V. aestuarianus* in cases of adult mortality in France, a monitoring programme and a
97 retrospective study were instigated to determine the extent of its distribution in Ireland. In this
98 study, we characterise and compare 43 *Vibrio* isolates recovered from diseased Irish oysters from
99 2008 to 2015 using whole genome sequencing.

100 We show, firstly, a high proportion of these oyster die-offs are associated with the presence of *V.*
101 *aestuarianus* isolates from two oyster-associated *V. aestuarianus* subsp. *francensis* clades, Clade A
102 and Clade B previously shown to be a major cause of summer mortality syndrome in France [11].
103 Secondly, we showcase differences in gene content diversity in these clades. Thirdly we show that *V.*
104 *splendidus* strains present in Irish oysters are diverse, but a small clonal group was detected in 2009
105 in multiple locations.

106 **6. Methods**

107 **6.1 Bacterial isolation and initial characterisation**

108 43 *Vibrio* isolates obtained from oysters of varying age classes (Figure 1 and Table 1) were collected
109 from 22 sites around the Republic of Ireland between 2008 and 2015. Isolates were recovered from
110 either haemolymph or crushed gill tissues and characterised. In most cases, isolates were recovered
111 from sites where there were significant ongoing mortalities taking place (Table 1). They were then
112 stored at -80°C on cryovials using the protect™ storage system following manufacturer's
113 instructions.

114 **6.2 DNA extraction and quantification**

115 DNA was extracted from the isolates using the MasterPure™ Gram positive DNA extraction kit (Cat.
116 No. MGP04100; Epicentre®). The standard protocol was modified slightly to accommodate for the
117 isolates being Gram negative organisms. In summary, a 1 µl loopful of bacteria (previously sub-
118 cultured onto seawater agar (SWA) was placed into a 1.5 ml Eppendorf tube containing 1 ml 0.9%
119 saline. The solution was centrifuged at 1500 rpm, supernatant was removed and 150 µl TE buffer
120 was added. Samples were vortexed to re-suspend the pellet. 150 µl of a premade dilution of
121 proteinase K in Gram-positive lysis solution was added to each sample, at a concentration of 1 µl
122 Proteinase K per 150 µl of Gram-positive lysis solution. The samples were vortexed and subsequently
123 incubated at 65-70°C for 15 min which included vortexing every 5 min. Samples were cooled to 37°C
124 then put on ice for 3-5 minutes, following which 175 µl of MPC Protein Precipitation Reagent was
125 added to each sample. Samples were vortexed and centrifuged at 1500 rpm at 4°C for 10 min. The
126 supernatant was collected (pellets discarded) and 500 µl of isopropanol was added, samples
127 inverted 30-40 times and centrifuged again at 1500 rpm at 4°C for 10 min. The supernatant was
128 removed, 70% ethanol was added, and samples centrifuged for a final time at 1500 rpm at 4°C for 5
129 min. Finally, the supernatant was removed, and samples were re-suspended in 100 µl of molecular
130 grade water and stored at -80°C until future use. The extracted DNA was quantified using a
131 Quantus™ fluorometer (Promega), and quality assessed using NanoDrop™ ND-1000
132 Spectrophotometer (Thermo). Only those samples that passed the quality check were selected for
133 high-throughput (Illumina) sequencing.

134 **6.3 Illumina Sequencing**

135 Isolates were sequenced using an Illumina Miseq according to the standard protocols produced by
136 the manufacturer. In brief, the DNA quantities were checked by fluorescence, diluted and prepared
137 for sequencing with the Illumina Nextera XT library preparation kit, including optional 96-barcode
138 adapters. Cleaned libraries were then sized-checked with an Agilent Technology 2100 Bioanalyzer
139 using a High sensitivity DNA chip and quantified by Promega Quantus™ fluorometer using OneDNA
140 protocol. Finally, libraries were normalised, pooled and sequenced on the Miseq with Illumina V3
141 600 chemistry.

142 **6.4 Quality Check**

143 Sequences were trimmed using version 0.36 of Trimmomatic, with parameters
144 :ILLUMINACLIP:*:2:30:10 MINLEN:36 SLIDINGWINDOW:4:20 TOPHRED64 [\[12\]](#). FastQC version 0.11.7

145 was used to check the quality of trimmed reads, and to ensure there were no significant
146 contaminants [\[13\]](#).

147 **6.5 Assembly and Identifying Open Reading Frames**

148 Spades version 3.13.1 was used for assembly, with parameters: –careful –only assembler [\[14\]](#).
149 Contigs less than 500bp were removed and coverage less than 5 calculated using bwa and SAMtools
150 v1.8 [\[15\]](#). Assembled genomes were annotated using version 1.13 of Prokka, with options: –
151 addgenes –centre XXX –mincontiglen 200 –cdsrnaolap [\[16\]](#)). Quality assessment of assemblies was
152 carried out using QUAST v4.6.3 [\[17\]](#). QC scores for all reads and assemblies are provided in Table S1.

153 **6.6 Accessing public genomes of *V. splendidus* and *V. aestuarianus***

154 We obtained publicly available WGS data for *V. splendidus* and *V. aestuarianus* in order to place the
155 isolates from Irish oysters into broader phylogenetic contexts. Thirteen *V. aestuarianus* genomes
156 were contributed by Goudénèg et al., 2015. Assembled genomes of 102 isolates previously
157 characterised as *V. splendidus* were downloaded from the NCBI database [\[18\]](#). Information on each
158 of these isolates can be found in Table S2. All subsequent genomic analysis was done using datasets
159 of 38 *V. aestuarianus* and 120 *V. splendidus* genomes.

160 **6.7 Pangenome construction**

161 A comprehensive pangenome of each species was constructed for both species using PIRATE [\[19\]](#), a
162 toolbox for bacterial pangenomics analysis. We used Phandango version 1.3.0 [\[20\]](#) to visualise the
163 distribution of gene families within each population. Core genome alignments were built using
164 PIRATE. We used R version 3.2.3 [\[21\]](#) for statistical analysis and data visualisation.

165 **6.8 Core genome phylogeny**

166 Based on a 2.56 Mb core genome alignment we constructed a bootstrapped phylogenetic tree using
167 RAxML-NG v. 0.9.0 [\[22\]](#) of the 38 *V. aestuarianus* isolates. For the larger *V. splendidus* dataset, we
168 constructed a neighbour joining tree using RapidNJ [\[23\]](#) using a core genome of 2.97-Mb.
169 Phylogenies were visualised using Microreact [\[24\]](#). The project URLs are
170 <https://microreact.org/project/gfAsh7KuduL4xuSTDaVU5r-vibrio-aestuarianus> (*V. aestuarianus*) and
171 <https://microreact.org/project/eMABqKLAPcn2QG5NEnCVor-vibrio-splendidus> (*V. splendidus*). SNP
172 distances between isolates were calculated using Disty McMatrixface 0.1.0 [\[25\]](#).

173 **6.9 Phage prediction**

174 We used PHAge Search Tool (PHAST) [\[26\]](#) to identify potential phages in Clade A isolate 12142, and
175 Clade B isolates 01308 and 16060. Fasta assembly files were assessed using default PHAST
176 parameters.

177 All Bioinformatics was carried out using resources provided by MRC-CLIMB [\[27\]](#).

178 **7. Results**

179 **7.1 *Vibrio aestuarianus*: Presence of two clades in Ireland**

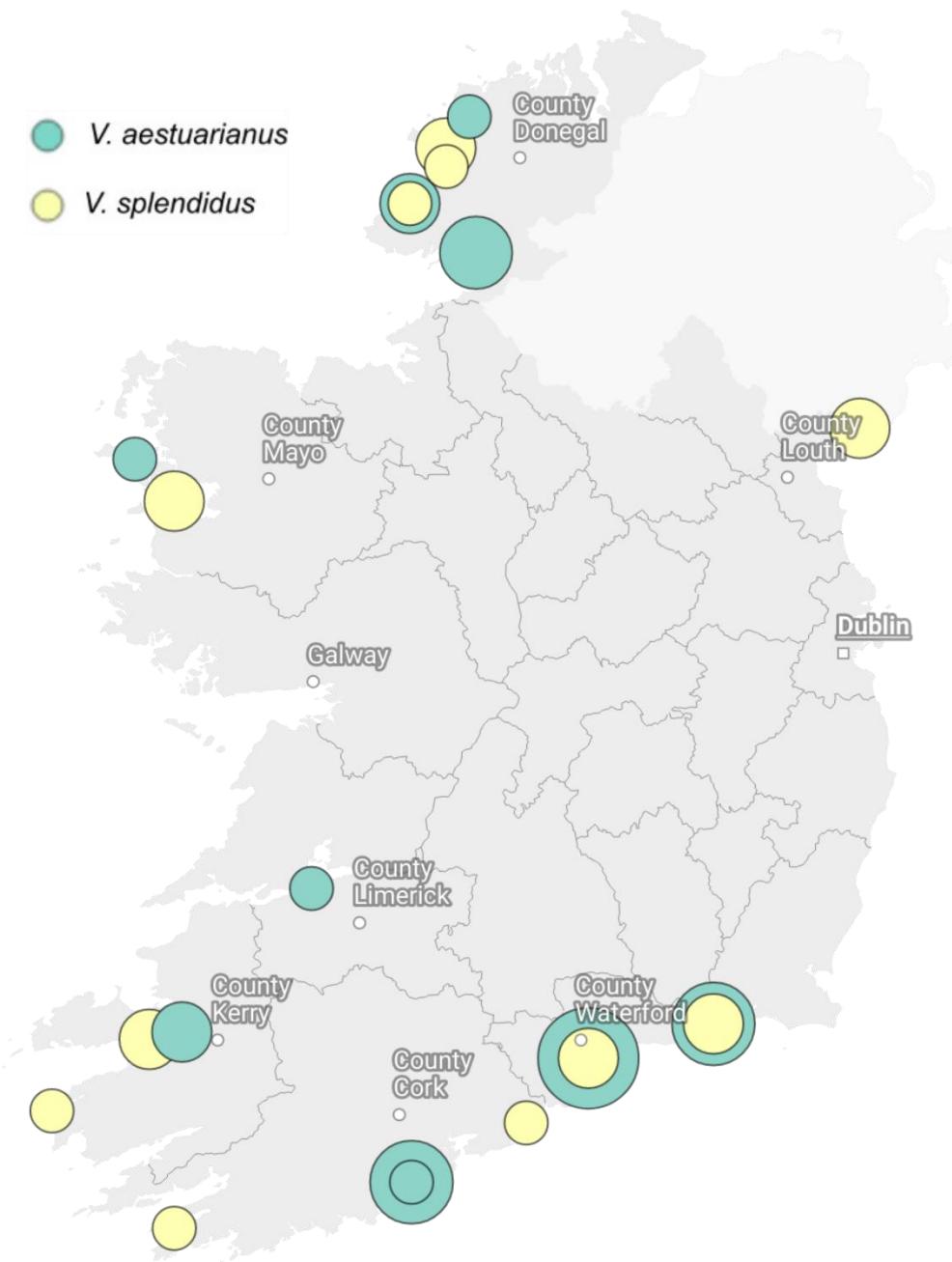
180 The core genome phylogeny of *V. aestuarianus* (Figure 2) revealed that the French and Irish isolates
181 were highly similar. The Irish isolates were resolved into the same two clades, A and B, previously
182 reported to be circulating in French oyster culture [11]. In each clade, French isolates occur closer to
183 the root of the tree than the Irish isolates. Strains isolated from these two countries differ by 50
184 SNPs on average in Clade A and 416 SNPs in Clade B.

185 **7.2 *Vibrio aestuarianus*: Gene content variation in each clade**

186 The pangenome of *V. aestuarianus* consists of 5,650 gene families (Figure 3). This includes 2,746
187 core gene families present in at least 95% of isolates, 1,150 shared by 10%-95% isolates, and 1,754
188 shared by a single isolate up to 10% of isolates. Isolates 01151 and 01032 are missing many core
189 genes due to poor quality assemblies: these were excluded from further pangenome analyses.

190 A set of 215 gene families present in all Clade A isolates are absent in Clade B isolates (Figure 3).
191 These genes are likely to have been horizontally acquired as mobile genetic elements (MGEs). To
192 examine this, we checked the locations of these genes on the genome of the Clade A isolate 12142
193 and compared the GC content of these genes to the rest of the genome. The 215 genes resolved into
194 19 clusters, each with at least two genes (Table S3). The largest of these clusters contains 48 genes
195 and has a GC content of 45.56%, much higher than the genome average of 42.65%. Another 13.5-Kb
196 region with 15 genes and a GC content of 43% can be found 866-Kb away from this region on the
197 same contig. These two large gene clusters have been identified as phages using PHAST (Table S4).
198 The remaining clusters of genes are distributed across 11 contigs and contain mostly hypothetical
199 proteins (108 of 130 genes). The presence of antitoxin and phage related proteins (YafN and IntA)
200 suggests that many of these genes may lie on other uncharacterised mobile elements or plasmids.

201 Clade B isolates contain 92 gene families which are not shared with Clade A, and the location of
202 these genes was checked in Clade B isolate 16060. These are also largely hypothetical proteins (63 of
203 92) and are spread across 32 contigs in isolate 16060, each carrying between one and nine of these
204 genes (Table S5). Genes related to two citrate fermentation operons which allow citrate to be used
205 as an energy source in *V. cholerae*, *citCDEFXG* and *citS-oadGAB-citAB* [28], are only present in Clade
206 B isolates. *citD-G* and *citX* are all colocalised with *citB* and *citA* (also known as *dpiA* and *dpiB*). Genes
207 *oadA*, *oadB* and *oadG* are found with *citC* and copies of *citA* and *citX*. No *citS* genes were detected in
208 this species. Genes *citA*, *citG*, and one copy of *citX* are also found in one Clade A genome: 12142.
209 *vspR*, a virulence gene repressor in *Vibrio cholera* [29], is also only found in Irish Clade B genomes.

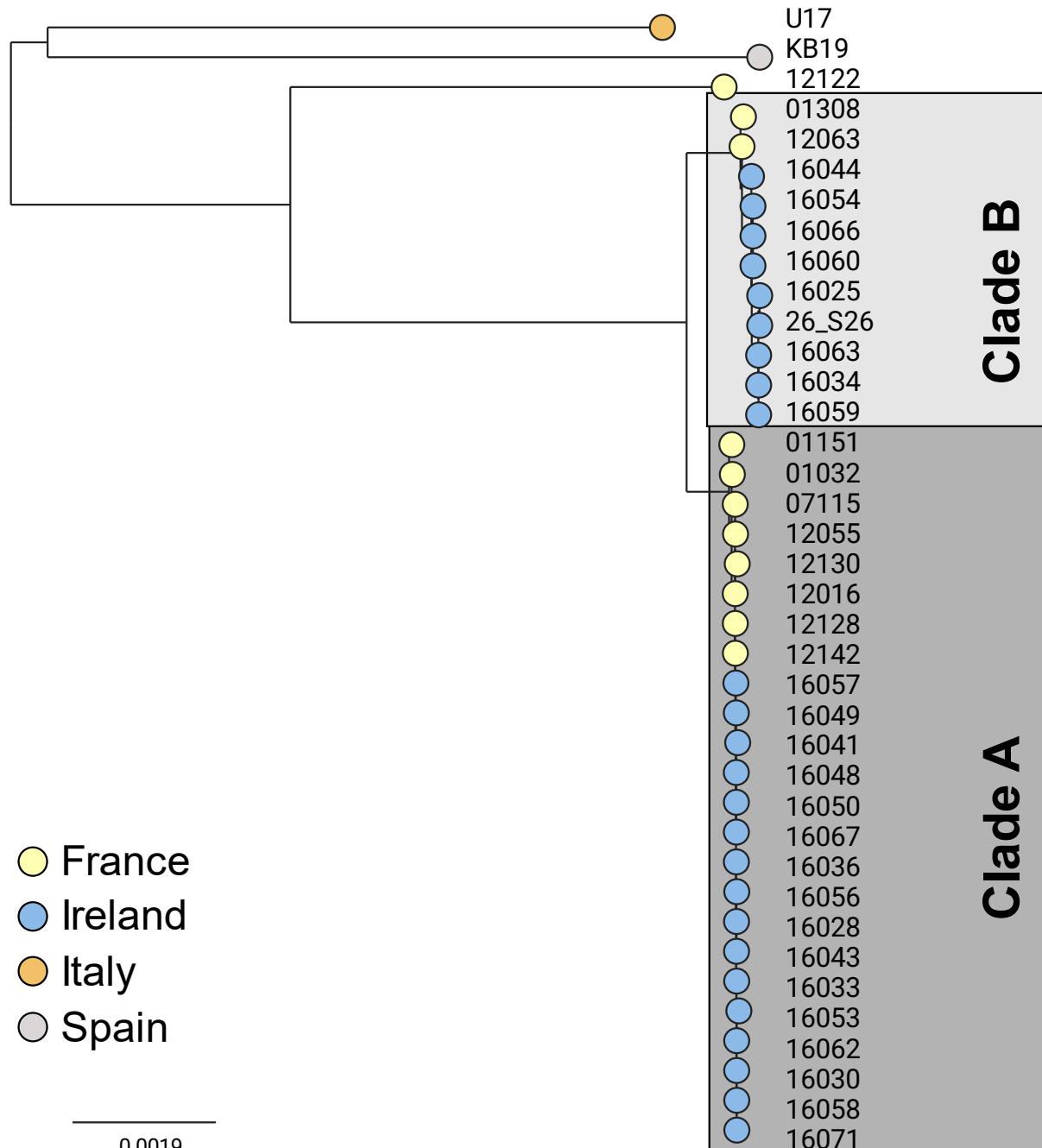

210 We also note that Clade B strains isolated in France harbour both sets of genes, the 92 Clade B
211 genes, and the 215 genes that are otherwise unique to Clade A. This indicates that the Clade B
212 strains from Ireland included in this study have experienced extensive gene loss.

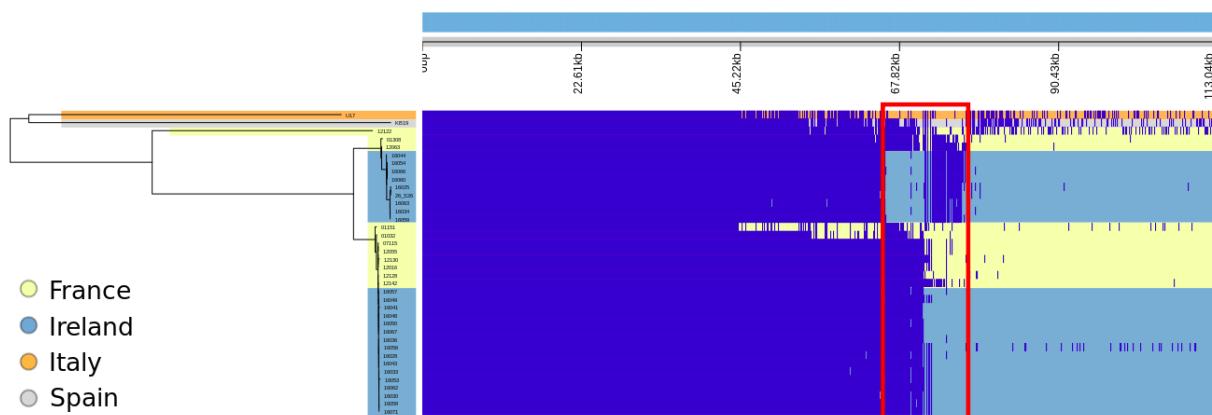
213 **7.3 *V. splendidus*: Widespread clonal group uncovered**

214 To place *V. splendidus* isolates appearing in Irish oysters within the population structure of this
215 species, we compared these 18 strains to 102 *V. splendidus* publicly available genomes. The
216 phylogeny of *V. splendidus*-like isolates revealed a large cluster of 95 isolates with a bush-like
217 population structure, accompanied by multiple more diverse lineages (Figure 4). Of the newly

218 sequenced strains, 15 are found within the large cluster, while three strains lie within the broader
219 population. Although publicly accessed genomes were all classified as *V. splendidus* species, a
220 phylogenetic comparison with reference genomes within *V. splendidus* clade has shown that many
221 of the more diverse isolates in this dataset are likely to have been misclassified (Figure 5). Instead,
222 these isolates are expected to represent other species from the *V. splendidus* family. Thus, we have
223 designated isolates 16040, 16042, and 16075 as *V. splendidus*-like isolates. A cluster of five isolates
224 recovered from four separate locations in Ireland show high similarity within this population (Figure
225 6). These isolates differ by 28 SNPs on average across the core genome alignment, whereas the
226 remaining 10 Irish isolates within the *V. Splendidus* sensu stricto cluster differ by 83, on average.
227 The pangenome of this species contains 18,891 gene families, with a core genome of 3,513 genes
228 (95-100% of isolates) and 13,270 rare accessory genes (0-10% of isolates) (Figure S1). 42 gene
229 families are unique to the five Irish clonal group isolates. These include 18 genes dispersed within a
230 35.6-Kb region include a trio of resistance related genes: cobalt-zinc-cadmium resistance protein,
231 *czcA*; multidrug resistance protein, *mdtA*; and outer membrane protein *oprM*. Multiple genes
232 related to stress response and signalling are also found in this region including *nreB* oxygen sensor
233 histidine kinase; *cmpR* a transcriptional activator involved in CO2 stress [30]; *htpG* a chaperone
234 protein involved in general stress responses [31]; a putative signalling protein; and *pdeB* a gene
235 implicated in biofilm formation [32].

236 **8. Figures and tables**

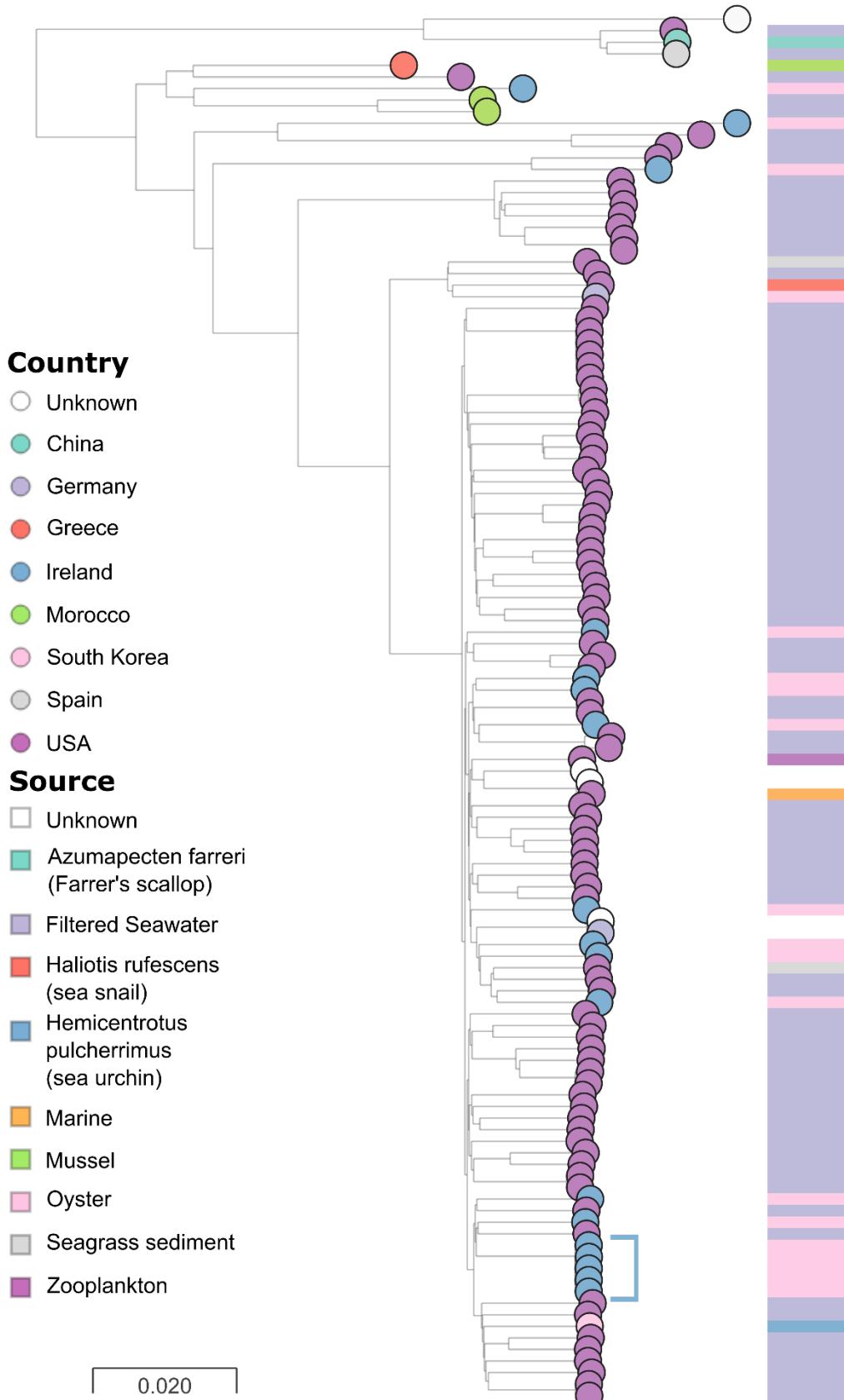



237

238 **Figure 1: Map of 43 strains sampled across Ireland.**

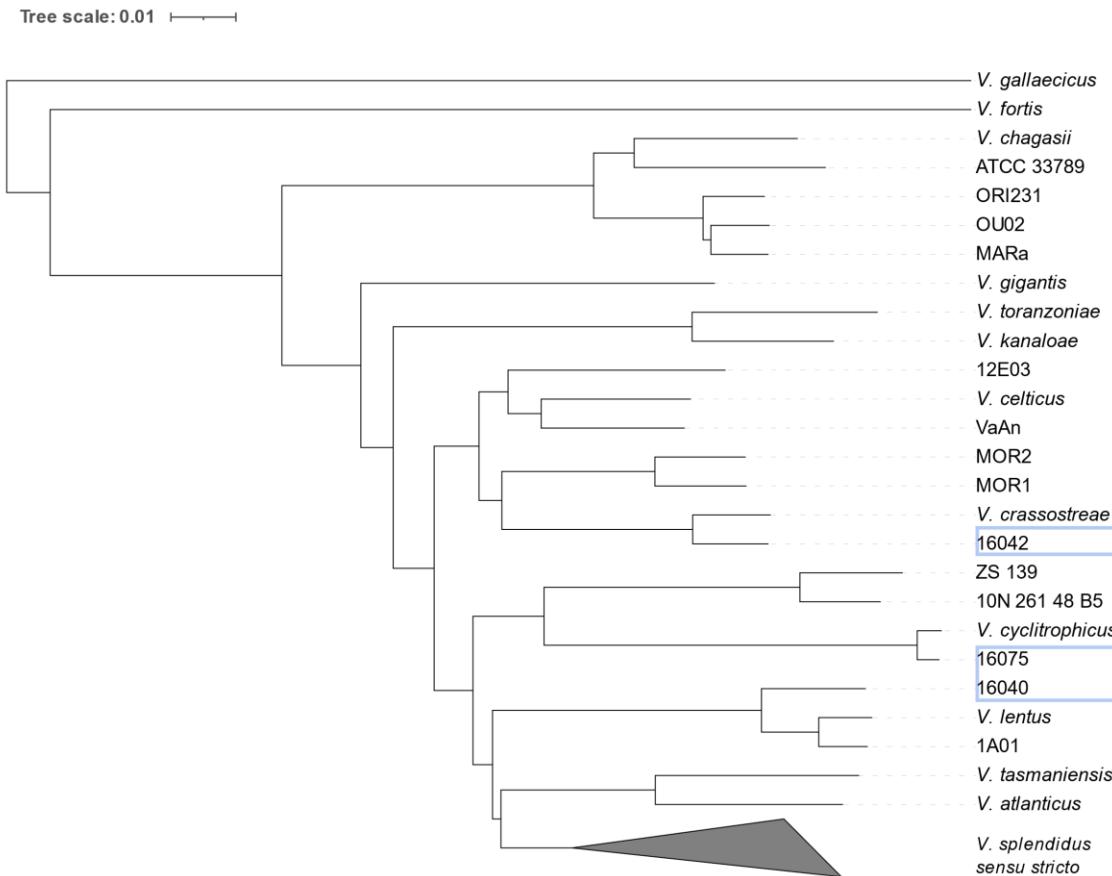
239 24 *V. splendidus* and 18 *V. aestuarianus* isolates were collected from 23 locations. Pie charts indicate
240 the proportion of each species sequenced from each location. These nodes are weighted by the
241 number of isolates (scale = 1 to 6).

242



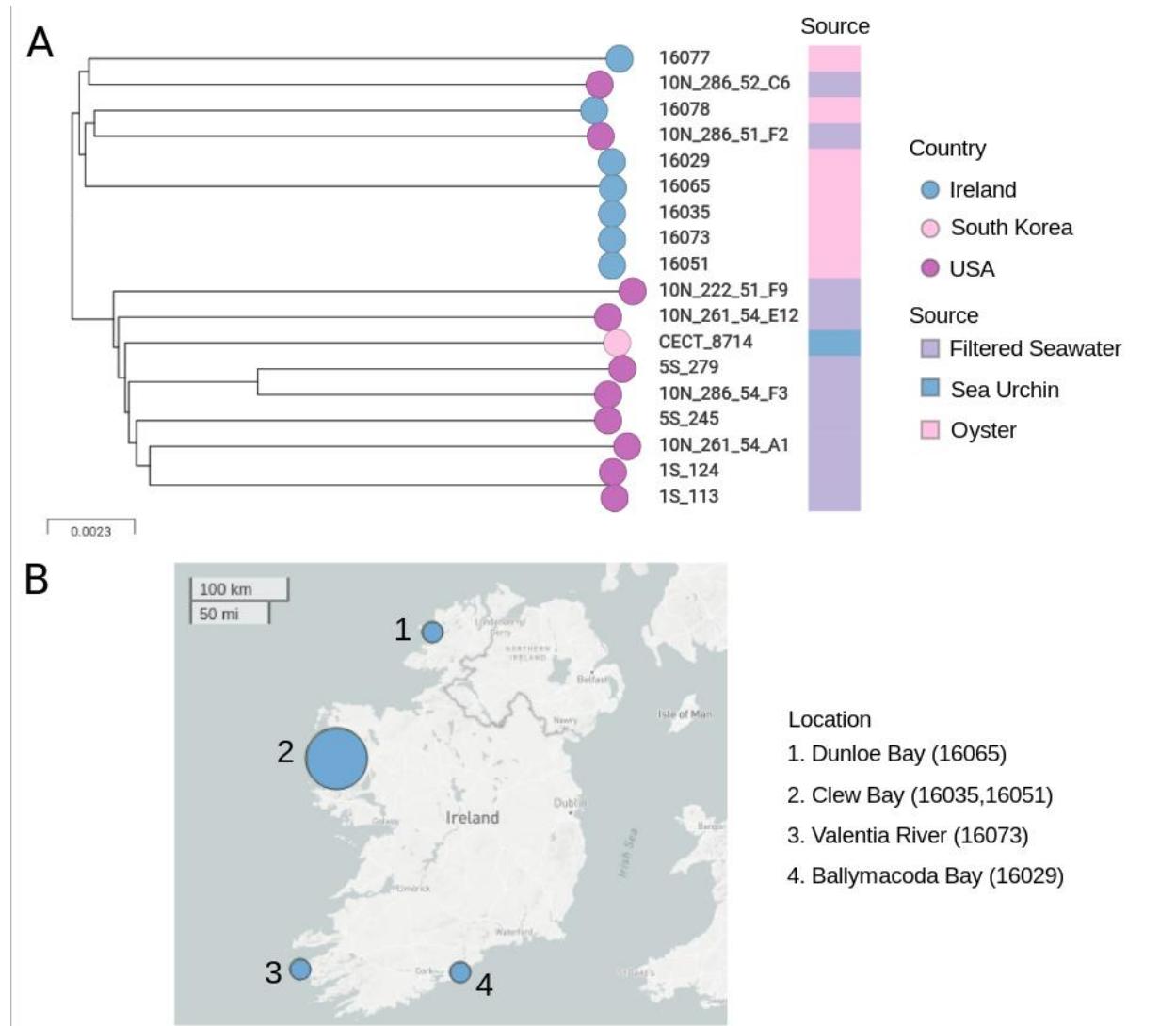
248

249 **Figure 3: Gene presence-absence of 38 *V. aestuarianus*.**


250 Presence-absence heatmap of the pangenome of 38 *V. aestuarianus* genomes generated by
251 Phandango [20]. Dark blue blocks indicate the presence of a gene family. Tree branches and
252 heatmap rows are coloured by country of isolation. Indicated in a red box are multiple genes that
253 differ between Clade A and Clade B. Isolates 01151 and 01032, French Clade B isolates, notably
254 contain most of these genes.

255

256 **Figure 4: *V. splendidus* core-genome phylogeny.**


257 Neighbour-joining core-genome phylogeny of 120 *V. splendidus*-like isolates coloured by country of
258 isolation. The tree is annotated with the source of isolation. Publicly available samples largely come
259 from America and were sampled in seawater. The population structure of the dataset includes a
260 large cluster of 95 genomes with a bush-like appearance. Isolates from Ireland are distributed
261 throughout this population. However, one cluster of five highly similar isolates can be identified.

262

263 **Figure 5: Phylogeny of *V. splendidus* species complex.**

264 The reference genomes of thirteen species belonging to the *V. splendidus* complex were combined
265 with the 120 *V. splendidus* genomes used previously. Above is a neighbour-joining tree constructed
266 using a core genome alignment of these genomes. *V. splendidus* *sensu stricto*, containing the *V.*
267 *splendidus* reference strain, is collapsed and represents 107 isolates. Eleven isolates identified as *V.*
268 *splendidus* species in the NCBI, that do not fall within *V. splendidus* *sensu stricto*, are more similar to
269 *V. splendidus*-like reference genomes. Similarly, three genomes isolated in Ireland — 16075, 16040
270 and 16042 — are not found within *V. splendidus* *sensu stricto*.

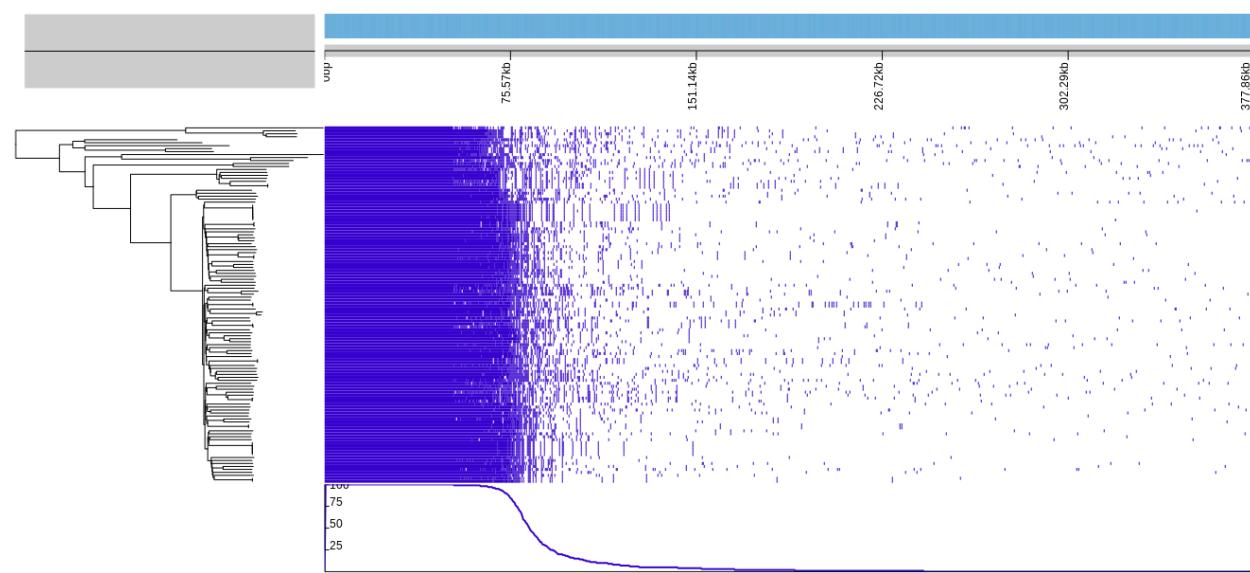
271

272 **Figure 6: Subtree of *V. splendidus* reveals a cluster of five highly similar isolates in Ireland.**

273 A. Subtree of 19 *V. splendidus* isolates including five isolates with high similarity. Tree tips are
274 coloured by country and annotated with the source of isolation.

275 B. Map of the five related *V. splendidus* strains shows these isolates were not recovered in the
276 same locations. Nodes are weighted by the number of isolates per location.

277


278

279 **Figure S1: *V. splendidus* on gene presence-absence.**

280 Gene presence-absence for 120 *V. splendidus*-like isolates. Dark blue indicates the presence of a
281 gene family.

282 **Table 1: Vibrio strains selected for sequencing from Irish oysters**

ID	Year of extraction	Freezer Ref.	FHU bacterial ref.	Site of extraction	Sample type	Tissue sample was extracted from	Reported Mortality rate %	Age class	Species
16025	2009	76/09	S/25/09	Loughros Beag	Ab Mort	Gill	80-90	0+, 1+	<i>V. aestuarianus</i>
16028	2014	32/14	S/17/14 AB	Woodstown	Ab Mort	Haemolymph	60-70	3+	<i>V. aestuarianus</i>
16030	2014	51/14	S/43/14 A	Kinsale	Ab Mort	Haemolymph	90	2+	<i>V. aestuarianus</i>
16033		30/14	S/16/14 A	Dungarvan	Ab Mort	Gill	10-20	0+, 1+	<i>V. aestuarianus</i>
16034	2014	26/14	S/15/14 A	Achill	Ab Mort	Gill	10	0+	<i>V. aestuarianus</i>
16036	2015	47/15	S/38/15 A	Castlemaine	Ab Mort	Haemolymph	40	2+	<i>V. aestuarianus</i>
16041	2015	20/15	S/16/15 B	Woodstown	Reposus	Gill	1	1+	<i>V. aestuarianus</i>
16043	2015	58/15	S/58/15	Donegal Bay	Ab Mort	Haemolymph	50-90	2+	<i>V. aestuarianus</i>
16044	2015	67/15	S/65/15 B	Dungarvan	Ab Mort	Haemolymph	15-50	2+	<i>V. aestuarianus</i>
16048	2015	14/15	S/10/15 B	Dungarvan	Reposus	Haemolymph	1	2+	<i>V. aestuarianus</i>
16049	2015	21/15	S/17/15 A	Dungarvan	Reposus	Haemolymph	1.5	2+	<i>V. aestuarianus</i>
16050	2015	40/15	S/28/15 B	Woodstown	Reposus	Gill	92	0+	<i>V. aestuarianus</i>
16053	2015	64/15	S/64/15 A	Kinsale	Ab Mort	Haemolymph	70-80	2+	<i>V. aestuarianus</i>
16054	2010	03/10	S/02/10	Poularone Creek	Ab Mort	Gill	30-40	0+	<i>V. aestuarianus</i>
16056	2015	59/15	S/59/15	Donegal Bay	Reposus	Haemolymph	20	2+	<i>V. aestuarianus</i>
16057	2015	36/15	S/27/15 A	Dungarvan	Reposus	Haemolymph	5.5	2+	<i>V. aestuarianus</i>
16058	2015	60/15	S/60/15 A	Dungarvan	Reposus	Haemolymph	5	2+	<i>V. aestuarianus</i>
16059	2013	02/13	S/15/13 B	Kinsale	Ab Mort	Gill	15-20	1+	<i>V. aestuarianus</i>
16060	2015	53/15	S/44/15	Donegal Bay	Reposus	Haemolymph	2	2+	<i>V. aestuarianus</i>
16062	2015	96/15	S/93/15 A	Gweedore	Ab Mort	Haemolymph	43	1+	<i>V. aestuarianus</i>
16063	2014	46/14	S/37/14 A	Kinsale	Ab Mort	Haemolymph	90	1+	<i>V. aestuarianus</i>

16066	2013	25/13	S/21/13 C	Oysterhaven	Ab Mort	Gill	50	0+, 1+, 2+	<i>V. aestuarianus</i>
16067	2015	16/15	S/11/15 B	Woodstown	Reposus	Haemolymph	0	2+	<i>V. aestuarianus</i>
16070	2014	28/14	S/14/14 B	Woodstown	Research	Haemolymph	60-70	1+	<i>V. aestuarianus</i>
16071	2014	57/14	S/52/14 A	Castlemaine	Ab Mort	Haemolymph	30	2+	<i>V. aestuarianus</i>
16029	2009	68/09	S/31/09A	Ballymacoda Bay	Ab Mort	Haemolymph	20	0+	<i>V. splendidus sensu stricto</i>
16035	2009	54/09	S/34/09 A	Clew Bay	Ab Mort	Haemolymph	10	0+	<i>V. splendidus sensu stricto</i>
16037	2013	23/13	S/31/13 A	Carlingford Lough	FH Directive	Gill	50	0+	<i>V. splendidus sensu stricto</i>
16051	2009	73/09	S/27/09	Clew Bay	Ab Mort	Haemolymph	75	0+	<i>V. splendidus sensu stricto</i>
16052	2013	07/13	S/16/13 C	Dungloe Bay	Ab Mort	Haemolymph	20	1+	<i>V. splendidus sensu stricto</i>
16065		67/09	S/37/09	Dungloe Bay	Ab Mort	Haemolymph	35	0+	<i>V. splendidus sensu stricto</i>
16069		31/14	S/17/14 A-A	Woodstown Strand	Ab Mort	Haemolymph	60	3+	<i>V. splendidus sensu stricto</i>
16072	2009	79/09	S/21/09	Clew Bay	Ab Mort	Haemolymph	3-50%	0+	<i>V. splendidus sensu stricto</i>
16073	2009	66/09	S/40/09 B	Valentia River	Ab Mort	Haemolymph	45	0+	<i>V. splendidus sensu stricto</i>
16074	2008	34/08	S/30/08/A	Dungarvan Harbour	Ab Mort	Haemolymph	15	1+	<i>V. splendidus sensu stricto</i>
16061	2008	35/08	S/30/08/B	Dungarvan Harbour	Ab Mort	Haemolymph	15	1+	<i>V. splendidus sensu stricto</i>
16077		47/16	S/12/16B						<i>V. splendidus sensu stricto</i>
16078	2008	23/08	S/028/08/B	Castlemaine Harbour	Ab Mort	Haemolymph	85	1+	<i>V. splendidus sensu stricto</i>
16079	2015	63/15	S/63/15 B	Trawenagh Bay	Ab Mort	Haemolymph	70	1+	<i>V. splendidus sensu stricto</i>
16040	2009	78/09	S/24/09B	Loughros Beag	Ab Mort	Haemolymph	10	1+	<i>V. splendidus sensu lato</i>
16042	2013	28/13	S/35/13 A	Dunmanus Bay	Ab Mort	Haemolymph	40	1+	<i>V. splendidus sensu lato</i>
16075	2010	16/10	S/42/10	Carlingford Lough	Ab Mort	Haemolymph	30	0+	<i>V. splendidus sensu lato</i>

284 **9. Discussion**

285 In Ireland, *V. aestuarianus* has been detected in oyster mortality events reported to the Marine
286 Institute in 2001, 2003, 2006, and 2007 and more frequently in mortality events in spat from 2008
287 onwards, which had previously been attributed to OsHV-1 [33](D. Cheslett per. Comm.) Whilst
288 mortality in adult oysters was only infrequently reported in Ireland prior to 2012, the frequency of
289 reports and the detection of *V. aestuarianus* increased in line with those seen in France particularly
290 from 2015 onwards following massive mortality events country wide in 2015 [33,34]. The trend of
291 increased detections mirrored that in France; although the timeline of increased detections was later
292 than that reported in France [10,34–36]. The predominant pathogen detected in cases of adult and
293 half-grown mortality was *V. aestuarianus* whilst that in spat was OsHV-1μVar. However, other
294 bacteria, particularly other *Vibrio* sp. have also been isolated, mainly in conjunction with OsHV-1 and
295 *V. aestuarianus*. Here by applying whole genome sequencing we have characterised *Vibrio* strains
296 that might play a major role in Irish oyster mortality events.

297 **9.1 Two *V. aestuarianus* clades linked with oyster mortalities in both Ireland and France**

298 Our results show that all *V. aestuarianus* strains detected in oysters in Ireland are members of two *V.*
299 *aestuarianus* subsp. *francensis* clades, A and B, which have been previously detected in France [11].
300 SNP analysis revealed a high level of identity between the Irish and French *V. aestuarianus* isolates,
301 suggesting that the clades causing disease outbreaks in France are also responsible for disease
302 outbreaks across Ireland. There is a significant trade in live oysters between France and Ireland
303 [36,37], which has likely facilitated the movement of pathogens between rearing areas. However,
304 broader genomic surveillance of *V. aestuarianus* associated with oyster mortalities is needed to
305 uncover the exact distribution of each clade outside of these key *C. gigas*-producing countries.

306 A recent study involving the sequencing of *V. aestuarianus* strains across Europe showed that these
307 two oyster-associated clades have now been found in multiple countries within Europe [38]. The
308 authors found low genomic diversity within each clade and suggested that their emergence may
309 have been the result of adaptation to oyster pathogenicity. Thus, the high genetic identity between
310 Irish and French strains does not necessarily indicate a direct transmission chain between these two
311 countries. While the data assessed here cannot be used to evaluate fine-scale transmission events
312 between Ireland and France in *V. aestuarianus*, we advocate for further whole genome sequencing
313 efforts within and across interconnected oyster-producing countries in Europe and elsewhere to
314 help capture the spread and evolution of these emerging infectious clades [39].

315 **9.2 Evidence of gene loss in Irish Clade B strains**

316 Our data revealed a large number of gene families that are found in French but not Irish Clade B
317 isolates. This difference in genome content may suggest that a Clade B strain was introduced once to
318 Ireland, and that the founder population lost or previously lacked those genes. Although some of
319 these genes were revealed to be on phages, the mechanisms of gene loss of the remaining 152 non-
320 consecutive gene families in these otherwise highly related strains has not been determined. It is
321 possible that this rapid genome reduction may have conferred a selective advantage to the Irish
322 strains [40]. Given that these Irish strains are only compared to two strains from France, more
323 extensive sequencing of Clade B isolates across Europe and other affected regions is needed to
324 evaluate the full diversity of the clade and determine if this gene loss is exclusive to Irish strains.

325 **9.3 A single clone of *V. splendidus* highlights transmission potential**

326 *V. splendidus* clade strains were frequently detected in Irish oyster mortalities, although the role
327 they played in disease is uncertain. Here we showed that these isolates were mostly distinct strains
328 within a highly diverse species complex. *V. splendidus* is a highly diverse species and opportunistic
329 pathogen [41,42]. Given this, we would expect isolates associated with disease in Ireland to be
330 largely unrelated, unless they happened to be isolated in the same location at one time or had
331 recently been introduced through a common source. In 2009, a clonal group of highly similar isolates
332 was found in multiple locations across Ireland (Figure 6). In all cases, samples were taken where
333 mortality was occurring in recently introduced French oyster seed. Both OsHV-1 μVar and *V.*
334 *splendidus* were detected, suggesting that these isolates may be linked through the source of oyster
335 seed. While this clonal group may have proliferated across Irish waters in 2009, given that such
336 events have not been described in this species to date, it is much more likely that it was spread to
337 multiple farms through a common source. Indeed, at least four of these isolates were found in sites
338 which at that time contained stock from the same hatchery in France. The occurrence of this highly
339 related clonal group of *V. splendidus* across multiple sites in the same year signifies the presence of
340 transmission routes available to important oyster pathogens between production facilities.

341 **9.4 Perspectives**

342 Pacific oyster summer mortality events in Ireland are shown here to be associated with two *V.*
343 *aestuarianus* clades and a variety of strains within the *V. splendidus* complex. Notably, the two *V.*
344 *aestuarianus* clades in Ireland have been described elsewhere in Europe, as Clade A and B [11,38].
345 Novel lineages where not detected which underscores the importance of these two clades in Pacific
346 oyster summer mortalities. The occurrence of a probable transmission event of *V. splendidus* across
347 Ireland emphasises capacity for spread of potentially pathogenic *Vibrios* within the oyster industry.
348 Further genomic surveillance studies, which can build on this one, are needed within countries
349 experiencing summer mortality syndrome and countries with which they frequently trade. This could
350 lead to a fuller picture of the proliferation and evolution of this emerging pathogen and to better
351 measures to prevent or deal with its future spread.

352 **10. Author statements**

353 **10.1 Author contributions**

354 NC: Formal Analysis, Investigation, Methodology, Software, Visualization, Writing – original draft,
355 Writing – review & editing. COT: Data curation, Investigation, Writing – original draft, Writing –
356 review & editing. JT: Investigation, Methodology, Writing – original draft, Writing – review & editing.
357 DR: Data curation, Formal Analysis, Investigation, Methodology, Visualization, Writing – original
358 draft, Writing – review & editing. MG: Investigation. TB: Conceptualization, Methodology. AWJ:
359 Investigation. AW: Investigation. EF: Conceptualization, Methodology, Supervision, Writing – original
360 draft, Writing – review & editing. DC: Conceptualization, Supervision, Writing – original draft, Writing
361 – review & editing. DVJ: Conceptualization, Funding acquisition, Resources, Supervision, Writing –
362 original draft, Writing – review & editing.

363 **10.2 Conflicts of interest**

364 The author(s) declare that there are no conflicts of interest.

365 **10.3 Funding information**

366 This project was funded by the Department for Environment and Rural Affairs (DEFRA). NMC was
367 funded by the University of Bath and Raoul and Catherine Hughes. JCLT was funded by The
368 University of Bath.

369 **10.4 Acknowledgements**

370 The authors would like to thank Dr Sion Bayliss and Dr Harry Thorpe for their contributions to the
371 bioinformatics scripts used in this study. We would also like to acknowledge the contribution of the
372 staff at the Fish Health Unit, Marine Institute, Ireland. Many thanks to Dr Georg Engelhard for his
373 generous guidance on the manuscript. Finally, the author would like to extend gratitude to Dr Marie-
374 Agnès Travers and colleagues at Ifremer for contributing data to this study.

375 11. References

376 [1] Botta R, Asche F, Borsum JS, Camp EV. A review of global oyster aquaculture production and
377 consumption. *Mar Policy* 2020;117:103952. <https://doi.org/10.1016/j.marpol.2020.103952>.

378 [2] Jennings S, Stentiford GD, Leocadio AM, Jeffery KR, Metcalfe JD, Katsiadaki I, et al. Aquatic food
379 security: insights into challenges and solutions from an analysis of interactions between
380 fisheries, aquaculture, food safety, human health, fish and human welfare, economy and
381 environment. *Fish and Fisheries* 2016;17:893–938. <https://doi.org/10.1111/faf.12152>.

382 [3] Barbosa Solomieu V, Renault T, Travers M-A. Mass mortality in bivalves and the intricate case of
383 the Pacific oyster, *Crassostrea gigas*. *J Invertebr Pathol* 2015;131:2–10.
384 <https://doi.org/10.1016/j.jip.2015.07.011>.

385 [4] Food and Agriculture Organization of the United Nations. FAO Yearbook. Fishery and
386 Aquaculture Statistics 2019/FAO annuaire. Statistiques des pêches et de l'aquaculture
387 2019/FAO anuario. Estadísticas de pesca y acuicultura 2019. Food & Agriculture Org.; 2021.

388 [5] Girard S, Pérez Agúndez JA. The effects of the oyster mortality crisis on the economics of the
389 shellfish farming sector: Preliminary review and prospects from a case study in Marennes-
390 Oleron Bay (France). *Mar Policy* 2014;48:142–51.
391 <https://doi.org/10.1016/j.marpol.2014.03.024>.

392 [6] EFSA. Scientific opinion on the increased mortality events in Pacific oysters, *Crassostrea gigas*:
393 Oyster mortality. *EFSA J* 2010;8:1894. <https://doi.org/10.2903/j.efsa.2010.1894>.

394 [7] Wendling CC, Wegner KM. Relative contribution of reproductive investment, thermal stress and
395 *Vibrio* infection to summer mortality phenomena in Pacific oysters. *Aquaculture* 2013;412–
396 413:88–96. <https://doi.org/10.1016/j.aquaculture.2013.07.009>.

397 [8] Lemire A, Goudénèg D, Versigny T, Petton B, Calteau A, Labreuche Y, et al. Populations, not
398 clones, are the unit of *Vibrio* pathogenesis in naturally infected oysters. *ISME J* 2015;9:1523–31.
399 <https://doi.org/10.1038/ismej.2014.233>.

400 [9] Segarra A, Pépin JF, Arzul I, Morgia B, Faury N, Renault T. Detection and description of a
401 particular *Ostreid herpesvirus 1* genotype associated with massive mortality outbreaks of Pacific
402 oysters, *Crassostrea gigas*, in France in 2008. *Virus Res* 2010;153:92–9.
403 <https://doi.org/10.1016/j.virusres.2010.07.011>.

404 [10] European Union Reference Laboratory. 2014 Annual Meeting of the National Reference
405 Laboratories for Mollusc Diseases 2014:25–6.

406 [11] Goudénèg D, Travers MA, Lemire A, Petton B, Haffner P, Labreuche Y, et al. A single regulatory
407 gene is sufficient to alter *Vibrio aestuarianus* pathogenicity in oysters. *Environ Microbiol*
408 2015;17:4189–99. <https://doi.org/10.1111/1462-2920.12699>.

409 [12] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
410 *Bioinformatics* 2014;30:2114–20. <https://doi.org/10.1093/bioinformatics/btu170>.

411 [13] Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham
412 Bioinformatics, Babraham Institute, Cambridge, United Kingdom; 2010.

413 [14] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new
414 genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol*
415 2012;19:455–77. <https://doi.org/10.1089/cmb.2012.0021>.

416 [15] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map
417 format and SAMtools. *Bioinformatics* 2009;25:2078–9.
418 <https://doi.org/10.1093/bioinformatics/btp352>.

419 [16] Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014;30:2068–9.
420 <https://doi.org/10.1093/bioinformatics/btu153>.

421 [17] Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome
422 assemblies. *Bioinformatics* 2013;29:1072–5. <https://doi.org/10.1093/bioinformatics/btt086>.

423 [18] Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-
424 redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Res*
425 2007;35:D61–5. <https://doi.org/10.1093/nar/gkl842>.

426 [19] Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and scalable pangenomics
427 toolbox for clustering diverged orthologues in bacteria. *Gigascience* 2019;8.
428 <https://doi.org/10.1093/gigascience/giz119>.

429 [20] Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR. Phandango: an
430 interactive viewer for bacterial population genomics. *Bioinformatics* 2017.
431 <https://doi.org/10.1093/bioinformatics/btx610>.

432 [21] R Core Team. R: A language and environment for statistical computing 2013.

433 [22] Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-
434 friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* 2019;35:4453–5.
435 <https://doi.org/10.1093/bioinformatics/btz305>.

436 [23] Simonsen M, Mailund T, Pedersen CNS. Rapid Neighbour-Joining. *Algorithms in Bioinformatics*,
437 Springer Berlin Heidelberg; 2008, p. 113–22. https://doi.org/10.1007/978-3-540-87361-7_10.

438 [24] Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact: visualizing
439 and sharing data for genomic epidemiology and phylogeography. *Microb Genom*
440 2016;2:e000093. <https://doi.org/10.1099/mgen.0.000093>.

441 [25] Brinda K. disty 2017. <https://github.com/c2-d2/disty>.

442 [26] Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. *Nucleic Acids*
443 *Res* 2011;39:W347–52. <https://doi.org/10.1093/nar/gkr485>.

444 [27] Connor TR, Loman NJ, Thompson S, Smith A, Southgate J, Poplawski R, et al. CLIMB (the Cloud
445 Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology
446 community. *Microb Genom* 2016;2:e000086. <https://doi.org/10.1099/mgen.0.000086>.

447 [28] Liu M, Hao G, Li Z, Zhou Y, Garcia-Sillas R, Li J, et al. CitAB Two-Component System-Regulated
448 Citrate Utilization Contributes to *Vibrio cholerae* Competitiveness with the Gut Microbiota.
449 *Infect Immun* 2019;87. <https://doi.org/10.1128/IAI.00746-18>.

450 [29] Davies BW, Bogard RW, Young TS, Mekalanos JJ. Coordinated regulation of accessory genetic
451 elements produces cyclic di-nucleotides for *V. cholerae* virulence. *Cell* 2012;149:358–70.
452 <https://doi.org/10.1016/j.cell.2012.01.053>.

453 [30] Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S. Involvement of a CbbR homolog in low CO₂-
454 induced activation of the bicarbonate transporter operon in cyanobacteria. *J Bacteriol*
455 2001;183:1891–8. <https://doi.org/10.1128/JB.183.6.1891-1898.2001>.

456 [31] Grudniak AM, Markowska K, Wolska KI. Interactions of *Escherichia coli* molecular chaperone
457 HtpG with DnaA replication initiator DNA. *Cell Stress Chaperones* 2015;20:951–7.
458 <https://doi.org/10.1007/s12192-015-0623-y>.

459 [32] Chao L, Rakshe S, Leff M, Spormann AM. PdeB, a cyclic Di-GMP-specific phosphodiesterase that
460 regulates *Shewanella oneidensis* MR-1 motility and biofilm formation. *J Bacteriol*
461 2013;195:3827–33. <https://doi.org/10.1128/JB.00498-13>.

462 [33] European Union Reference Laboratory. Annual Meeting and Seventh Combined Technical
463 Workshop of the National Reference Laboratories for Mollusc Diseases,. Ifremer; 2016.

464 [34] European Union Reference Laboratory. Report of the 2020 Annual Meeting of National
465 Reference Laboratories for Mollusc Diseases (IFREMER). Ifremer; 2020.

466 [35] McCleary S, Henshilwood K. Novel quantitative TaqMan® MGB real-time PCR for sensitive
467 detection of *Vibrio aestuarianus* in *Crassostrea gigas*. *Dis Aquat Organ* 2015;114:239–48.
468 <https://doi.org/10.3354/dao02869>.

469 [36] Collins E, McCleary S, Morrissey T, Geary M, Connor C O, Cheslett D. Sporulating
470 *Haplosporidium nelsoni* in *Crassostrea gigas* in a production bay in Ireland. Bulletin of the EAFF
471 38 2018:4–11.

472 [37] Roux FL, Wegner KM, Baker-Austin C. The emergence of *Vibrio* pathogens in Europe: ecology,
473 evolution, and pathogenesis (Paris, 11–12th March 2015). *Frontiers In* 2015.

474 [38] Mesnil A, Jacquot M, Garcia C, Tourbiez D, Canier L, Bidois A, et al. Emergence and clonal
475 expansion of *Vibrio aestuarianus* lineages pathogenic for oysters in Europe. *Mol Ecol* 2023.
476 <https://doi.org/10.1111/mec.16910>.

477 [39] Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, et al. The
478 promise of whole genome pathogen sequencing for the molecular epidemiology of emerging
479 aquaculture pathogens. *Front Microbiol* 2017;8:121.
480 <https://doi.org/10.3389/fmicb.2017.00121>.

481 [40] Koskineni S, Sun S, Berg OG, Andersson DI. Selection-driven gene loss in bacteria. *PLoS Genet*
482 2012;8:e1002787. <https://doi.org/10.1371/journal.pgen.1002787>.

483 [41] Le Roux F, Zouine M, Chakroun N, Binesse J, Saulnier D, Bouchier C, et al. Genome sequence of
484 *Vibrio splendidus*: an abundant planctonic marine species with a large genotypic diversity.
485 *Environ Microbiol* 2009;11:1959–70. <https://doi.org/10.1111/j.1462-2920.2009.01918.x>.

486 [42] Gay M, Renault T, Pons A-M, Le Roux F. Two *Vibrio splendidus* related strains collaborate to kill
487 *Crassostrea gigas*: taxonomy and host alterations. *Dis Aquat Organ* 2004;62:65–74.
488 <https://doi.org/10.3354/dao062065>.