

1 **Methotriimeprazine exerts antiviral and neuroprotective effects in Japanese**
2 **encephalitis virus infection through activation of adaptive ER stress and**
3 **autophagy**

4

5 Surendra K. Prajapat¹, Laxmi Mishra¹, Sakshi Khera¹, Shadrack D. Owusu^{1,5}, Kriti Ahuja², Puja
6 Sharma¹, Rajan Singh^{3,6}, Dinesh Mahajan⁴, Arup Banerjee¹, Rajender K. Motiani², Sudhanshu
7 Vrati¹, Manjula Kalia*¹

8

9 ¹ *Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster,*
10 *Faridabad, 121001, India*

11 ² *Laboratory of Calcioromics and Systemic Pathophysiology, Regional Centre for Biotechnology,*
12 *NCR Biotech Science Cluster, Faridabad, 121001, India*

13 ³ *Advanced Technology Platform Centre, Regional Centre for Biotechnology, NCR Biotech*
14 *Science Cluster, Faridabad, 121001, India*

15 ⁴ *Chemistry and Pharmacology Lab, Centre for Drug Design and Discovery, Translational*
16 *Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001,*
17 *India*

18 ⁵ *Present address: Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de*
19 *Strasbourg, 67000 Strasbourg, France*

20 ⁶ *Present address: Department of Life Sciences, Shiv Nadar University, Greater Noida,*
21 *201314, India*

22 * Corresponding author. E-mail; manjula@rcb.res.in

23

24 **Running title:** Nozinan as a therapeutic antiviral for JE

25

26 **Keywords:** Antipsychotic/ Interferon/ Microglia/ Neuroinflammation/ Phenothiazines/
27 SERCA/ Trifluoperazine/ Unfolded protein response

28 **Abstract**

29 Japanese encephalitis virus (JEV) is the leading global cause of virus-induced encephalitis. Its
30 pathogenesis is driven by a combination of neuronal cell death and neuroinflammation. We
31 hypothesized that pharmacological upregulation of autophagy could exert a
32 neuroprotective antiviral effect, and tested a panel of forty-two FDA-approved drugs that
33 were shown to induce autophagy. Four drugs were tested in the JE mouse model based on
34 *in vitro* protective effects on neuronal cell death, inhibition of viral replication, and anti-
35 inflammatory effects in microglial cells. The antipsychotic phenothiazines
36 Methotriimeprazine (MTP) and Trifluoperazine (TFP) showed a significant survival benefit
37 with reduced virus titers in the brain, prevention of blood-brain barrier (BBB) breach, and
38 inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy
39 flux inducers. Mechanistically MTP inhibited SERCA channel functioning, thereby resulting in
40 rise in cytosolic calcium levels, and induction of a unique adaptive ER stress response. In
41 virus infected drug treated cells, there was a strong transcriptional downregulation of type I
42 interferon and interferon-stimulated genes and upregulation of cholesterol metabolic
43 pathway genes. The drugs exerted an autophagy-dependent antiviral effect at the level of
44 JEV protein translation/replication complex formation in diverse cell types. Inhibition of
45 inflammatory cytokine/chemokine release from mouse microglial cells was partly
46 autophagy-dependent. Our study suggests that MTP exerts a combined antiviral and anti-
47 inflammatory effect in JEV infection, and has therapeutic potential to be repurposed for JE
48 treatment.

49 **Introduction**

50 Japanese encephalitis virus (JEV) belongs to the *Flaviviridae* family that includes several
51 pathogenic arboviruses such as West Nile virus (WNV), Yellow fever virus and Dengue virus
52 (DENV). JEV is transmitted by infected *Culex* mosquitoes and is maintained through an
53 enzootic cycle between birds, pigs and other vertebrate hosts. The disease is endemic in
54 south-east Asian countries including India, with both epidemic and sporadic occurrences [1].
55 Over the years the virus has shown significant geographical expansion into regions not
56 previously reported to have JE [2].

57 JEV is neurotropic, and its clinical manifestations range from mild febrile illness to
58 encephalitis and death [3]. The pediatric population is most severely affected, and
59 treatment is mostly supportive with no effective antiviral therapy available [4]. Virus
60 induced perivascular and central nervous system (CNS) inflammation is linked to elevated
61 intracranial pressure, seizures, movement disorders and flaccid paralysis [1, 5, 6]. Neuronal
62 damage to the thalamus and brain stem often results in permanent neurological sequelae
63 among the survivors [7].

64 Following inoculation through a mosquito bite, the virus first replicates in the local dermal
65 cells such as fibroblasts, endothelial cells and tissue-resident dendritic cells (DCs), and
66 spreads to local lymph nodes and other organs [1, 8]. The virus also replicates in
67 monocytes/macrophages and in most cases, is cleared by an effective peripheral immune
68 response [9-11]. The virus can invade the CNS either through basolateral release from
69 infected brain microvascular endothelial cells (BMECs), or diapedesis of infected peripheral
70 immune cells. JEV replicates efficiently in neurons, microglia and astrocytes. Production of
71 inflammatory cytokines and metalloproteases by JEV infected BMECs, microglia, and
72 astrocytes triggers the degradation of tight junction proteins leading to loss of brain
73 endothelial barrier permeability. Studies have shown that blood-brain barrier (BBB) breach
74 is not a cause, but a consequence of virus infection of the CNS and neuroinflammation [12].
75 Neuronal cell death, which is augmented by neuroinflammation is the major driver of
76 pathogenesis [13].

77 JEV being an RNA virus, replicates in close association with ER derived membranes, and
78 results in the activation of stress responses such as the unfolded protein response (UPR), ER
79 stress, generation of ROS, and upregulation of autophagy [14-18]. In the context of JEV,
80 cellular autophagy is upregulated through the activation of ER and oxidative stress, and

81 functions primarily as an antiviral mechanism by restricting virus replication and cell death
82 [16-18]. At later time points of infection, autophagy dysregulation is observed, which
83 enhances virus induced neuronal death. This lead us to hypothesize that autophagy
84 upregulation could inhibit virus replication, neuronal cell death and neuroinflammation, and
85 is thus likely to be neuroprotective.

86 Established defects in autophagy in conditions such as cancer, neurodegeneration,
87 inflammation and metabolic disorders have lead researchers to focus on the discovery of
88 novel drugs/compounds that can modulate autophagy. Autophagy upregulation has also
89 been shown to have therapeutic potential for neurodegenerative diseases [19, 20]. Several
90 FDA-approved drugs have been shown to enhance autophagy. Therefore, they have the
91 potential to be repurposed in disease conditions where autophagy upregulation is likely to
92 be beneficial.

93 Here we have examined FDA-approved drugs with autophagy inducing potential for their
94 effect on JEV infection *in vitro* and in mouse model of disease. The typical antipsychotic
95 drugs of the phenothiazine family Methotrimeprazine (MTP) and Trifluoperazine (TFP)
96 showed strong inhibition of virus replication, and microglial inflammation, along with
97 significant protection in the mouse model of disease. These drugs induced mTOR-
98 independent functional autophagy flux, and their antiviral activity was observed to be
99 autophagy dependent. MTP treatment resulted in calcium dysregulation, eIF2 α
100 phosphorylation and a unique adaptive ER stress gene signature. There was a strong
101 downmodulation of type I interferon (IFN) and upregulation of cholesterol metabolic genes.
102 The inhibition of proinflammatory cytokine secretion from microglial cells was partly Atg5
103 dependent. Our study suggests that MTP induces autophagy and adaptive ER stress in
104 diverse cell types creating an antiviral and neuroprotective environment during JEV
105 infection.

106 **Results**

107 **Primary screening of autophagy inducing FDA approved drugs for antiviral and anti-**
108 **inflammatory effects *in vitro***

109 Studies from our laboratory have shown that JEV infection induced cellular stress responses
110 such as ER and oxidative stress, result in the activation of the UPR and autophagy, that play
111 crucial roles in regulating JEV replication and cell death [16-18]. Since autophagy
112 upregulation has potential neuroprotective roles, we tested a panel of FDA-approved drugs
113 that have been documented as autophagy-inducers, for any anti-JEV effect. The study was
114 initiated with forty-two drugs (Table S1), and all were tested at a concentration of 10 μ M
115 which was established as non-cytotoxic in the mouse Neuro2a cell line (Fig S1A). A primary
116 screening was performed using virus induced neuronal cell death assay. JEV infection of
117 Neuro2a cells results in MOI and time-dependent cell death. A 5 MOI infection for 48 h,
118 which results in \sim 80% cell death was chosen for the assay (Fig S1B). From the panel ten
119 drugs: Bromhexine, Clonidine, Flubendazole, Fluoxetine, Lithium chloride, Memantine,
120 Metformin, MTP, Rilmenidine and Sodium valproate showed reduction in JEV-induced cell
121 death (Fig S1C), and were shortlisted for further studies. All drugs resulted in a significant
122 reduction in JEV RNA levels (Fig 1A), and four drugs: Clonidine, Fluoxetine, Metformin and
123 MTP significantly reduced virus titers in Neuro2a cells (Fig 1B).

124 As previously reported [13], we observed that JEV infects microglial cells efficiently (Fig S2A)
125 and results in robust secretion of pro-inflammatory cytokines such as IL-6, RANTES, TNF- α
126 and MCP-1 (Fig S2B-E). After establishing non-cytotoxic concentrations (Fig S2F), the ten
127 short-listed drugs were checked for their effect on JEV replication (Fig S2G), and inhibition
128 of pro-inflammatory cytokine release from infected N9 microglial cells (Fig 1C-F).

129 Based on observations from both neuronal and microglial cells, five drugs appeared as
130 promising antivirals: Flubendazole, Fluoxetine, Memantine, MTP and Rilmenidine. These
131 drugs were further tested for their effect on JEV protein translation/replication complex
132 formation (Fig 1G-H), and ROS production (Fig 1I) in Neuro2a cells and a significant
133 inhibition was observed. MTP treatment also showed a significant inhibition of cytokine
134 release from LPS treated microglial cells (Fig S2H).

135 **Phenothiazines exert an antiviral and anti-inflammatory effect and show protection in JEV**
136 **mouse model**

137 We next tested Flubendazole, Fluoxetine, MTP and Rilmenidine in a JEV infected C57BL/6
138 mouse survival assay (Fig S3). A mouse adapted isolate JEV-S3 was used, which results in
139 development of typical encephalitis symptoms: loss of weight, body stiffening, piloerection,
140 hind limb paralysis by 5-6 days post-infection (dpi), and death within 2-3 days of symptom
141 onset [21]. The JEV infected mice developed typical disease symptoms and showed a
142 median survival time (MST) of 8-9 days (Fig S3, 2A-B). Brain viremia was detectable by 3 dpi
143 and increased rapidly thereafter till 6 dpi indicative of active infection (Fig 2C). The Evans
144 Blue (EB) leakage test showed that the BBB was intact at 3 dpi, clearly indicating that the
145 breach is not required for virus neuroinvasion. The infected mice showed barrier
146 permeability by 6 dpi (Fig 2D-E). Strikingly, the MTP treated mice showed a significant
147 survival benefit (Fig S3, 2A-B), with delayed virus invasion into the brain, and significantly
148 lower viremia (Fig 2C). The drug treated mice also showed complete protection of the
149 barrier that was comparable to control uninfected mice (Fig 2D-E). These data demonstrate
150 that MTP exerted a significant neuroprotective effect in the JE mouse model.

151 Since the BBB breach is linked to virus induced neuroinflammation, we tested the levels of
152 several cytokines, chemokines, and interferons in the brains of infected and drug treated
153 mice (Fig 2F). JEV infected mice showed very high levels of proinflammatory cytokines and
154 chemokines: IL-6, TNF- α , RANTES, MCP-1, CXCL-1, CXCL-10, GM-CSF, IL1- β and IFN- β starting
155 at 3 dpi and these increased rapidly peaking at 6-7 dpi (Fig 2F). The anti-inflammatory
156 cytokines IL-10 and IL-12p70 along with IFN- γ were also secreted at high levels in the
157 infected mice, indicative of active T cell infiltration in the brain during infection. Importantly,
158 these effects were completely ameliorated in the drug treated mice indicative of a
159 significant protection from neuroinflammation (Fig 2F).

160 Reduced neuroinvasion in drug treated mice suggested that some protection was also
161 conferred at the periphery. We tested different doses of MTP for toxicity on bone-marrow
162 derived macrophages (BMDMs) (Fig 3A). Drug treatment of JEV-infected BMDMs resulted in
163 a significant reduction of both virus replication (Fig 3B) and production of several
164 inflammatory cytokines and interferons (Fig 3C). This reduction cannot be attributed
165 entirely to reduced virus replication as a similar inhibition of pro-inflammatory cytokine
166 release was also observed from LPS treated BMDMs (Fig S4), indicating a strong anti-
167 inflammatory effect of MTP.

168 MTP is a widely used FDA-approved antipsychotic that belongs to the phenothiazine class of
169 drugs (Fig 4A). MTP showed an IC₅₀ in the range of 3-3.4 μ M in mouse neuronal cells and
170 primary cortical neurons, indicating a strong antiviral response at low doses (Fig 4B-C).
171 Encouraged by our observations, we tested another FDA-approved and widely used
172 phenothiazine drug- Trifluoperazine (TFP) (Fig 4A). This drug also showed robust inhibition
173 of JEV replication with an IC₅₀ of 2 μ M (Fig 4D), and a very significant block in viral protein
174 translation/replication complex formation (Fig 4E-F), and production of infectious virus
175 particles (Fig 4G). This drug also exerted a potent anti-inflammatory effect and significantly
176 blocked the release of inflammatory cytokines from virus infected microglial cells (Fig 4H).
177 The drug was also tested in the JE mouse model using a sublethal dose of JEV, and similar to
178 MTP a significant survival benefit was observed (Fig 4I). Collectively these data indicate that
179 phenothiazines exert strong antiviral and anti-inflammatory effect for JEV infection both *in*
180 *vitro* and *in vivo*.

181 **Phenothiazines are mTOR independent autophagy inducers**

182 There is evidence in literature that phenothiazines are autophagy inducers [22, 23]. We also
183 assessed autophagy induction by MTP and TFP in our experimental setup, and observed that
184 these drugs lead to rapid accumulation of lipidated LC3 in Neuro2a cells (Fig 5A-B, S5A-B),
185 and primary cortical neurons (Fig 5C-D), at levels comparable to the autophagy inducer
186 Torin1. Bafilomycin (Baf) A1 treatment in drug treated cells led to further increase of LC3-II
187 levels indicative of functional autophagy flux (Fig 5E-F). This was also confirmed using GFP-
188 LC3-RFP- Δ G expressing reporter MEFs which enable high throughput measurement of
189 GFP/RFP ratio as an indicator of autophagy flux (Fig S5C-D). While high autophagy flux
190 results in low GFP/RFP ratio as seen with Torin1 treatment, a block in flux results in a higher
191 ratio as seen with BafA1. The GFP/RFP ratios indicated that both the drugs were inducing
192 high autophagy flux (Fig S5C-D). Levels of p62 also showed a reduction similar to Torin1 (Fig
193 5G, H). LysotrackerRed staining distribution and intensity in drug treated cells was also
194 similar to Torin1 treatment (Fig S5E-F), and the Lysosensor Yellow-Blue assay showed no
195 change in lysosome acidification (Fig S5G-H).

196 A few studies have suggested that another widely used phenothiazine, chlorpromazine
197 (CPZ) inhibits Akt/mTOR [24], and stimulates TFEB nuclear translocation and expression of
198 autophagy-lysosomal target genes [25]. However, we did not observe any mTOR
199 inactivation, as the phosphorylation of mTOR (Fig 5G, I), and its downstream targets

200 p70S6Kinase (Fig 5J, K) and 4EBP (Fig 5L, M), remained unaffected. These drugs also did not
201 lead to any significant TFEB nuclear translocation as was observed with Torin1 treatment
202 (Fig 5N-O). These data suggested that MTP and TFP induce autophagy through an mTOR
203 independent mechanism. We also checked if MTP induced any changes in the transcript
204 levels of autophagy genes, and observed enhanced levels of Atg12, Atg16L1, LC3A, & LC3B
205 in neuronal cells. MEFs also showed a similar transcriptional upregulation of these genes,
206 along with Bcl2 (Fig 5P). Interestingly, both cell types showed downregulation of Atg13,
207 Atg14, Atg3, Atg4a, Atg4b & Atg9 (Fig 5P). Transcriptional upregulation of Atg12 and LC3 has
208 been reported to specifically occur through activated PERK/ATF4, hinting that autophagy
209 activation by MTP could be a result of ER stress activation [26, 27].

210 **Phenothiazines induce adaptive ER stress and dysregulation of intracellular calcium
211 signaling**

212 MTP treatment resulted in transcriptional changes of autophagy genes that were
213 reminiscent of the PERK/ATF4 pathway activation in response to ER stress [26]. We thus
214 tested other parameters of the UPR in drug treated neuronal cells and MEFs. A primary
215 response is the PERK mediated phosphorylation of eIF2 α , that inhibits ribosome ternary
216 complex recycling and attenuates protein translation. Thapsigargin-treated Neuro2a cells
217 showed very rapid and robust eIF2 α phosphorylation starting at 1 h of treatment, which
218 was sustained at 3 h, but declined thereafter and returned to baseline by 12 h (Fig 6A).
219 These cells also showed PERK phosphorylation (indicated by mobility shift of PERK) till 6 h
220 (Fig 6A). PERK activation also results in enhanced ATF4 levels that activate a transcriptional
221 response program that can either be adaptive (through autophagy induction) or apoptotic
222 (through production of CHOP and activation of pro-apoptotic proteins) [28, 29]. The other
223 two ER stress sensors are IRE1 α that activates XBP1 through an unconventional splicing
224 (XBP1 spl), and ATF6 that is cleaved in the Golgi to generate the ATF6 (N) transcriptional
225 factor. In Thapsigargin treated Neuro2a cells we observed significant transcriptional
226 activation of ATF4, CHOP, GRP78, XBP1, XBP1(s) & ATF6 (Fig 6B), and CHOP protein levels
227 were detectable by 12 h (Fig 6A).

228 MTP treated Neuro2a cells showed a modest enhancement of eIF2 α phosphorylation which
229 was consistent till 12 h (Fig 6A). These cells also showed activation of ATF4, CHOP, XBP1(s)
230 and ATF6, but no activation of DNAJC, GRP78 & XBP1 at 6 h of treatment and

231 downregulation of these transcripts by 12 h (Fig 6B). No CHOP protein expression was
232 observed on MTP treatment (Fig 6A). The modest transcriptional activation of CHOP and
233 absence of its protein expression on MTP treatment suggested the activation of an adaptive
234 vs pro-apoptotic pathway of UPR induction.

235 Thapsigargin treated MEFs showed similar enhanced phosphorylation of eIF2 α which
236 attained baseline by 12 h (Fig 6C), and high transcriptional activation of the other ER stress
237 reporter genes (Fig 6D). On the other hand, MTP treated MEFs showed marginal eIF2 α
238 phosphorylation, no detectable CHOP protein, and comparatively low transcriptional
239 activation of the other genes (Fig 6C, D).

240 One of the most critical contributors to ER stress induction is dysregulated ER Ca²⁺
241 homeostasis. It is important to note that perturbations in ER Ca²⁺ signaling can lead to a
242 variety of viral pathogenesis and therefore, it is emerging as a potential therapeutic target
243 [30, 31]. Since MTP induces ER stress response, we examined if it can modulate ER Ca²⁺
244 signaling. We performed live cell Ca²⁺ imaging using ratiometric FURA-2AM dye in MEFs. The
245 fluorescence intensity of FURA-2AM corresponds to cytosolic Ca²⁺ levels. We first performed
246 a dose response assay with increasing concentration of MTP in absence of extracellular Ca²⁺.
247 We observed that 10 μ M MTP can induce an increase in cytosolic Ca²⁺ levels and 100 μ M
248 MTP completely depletes Thapsigargin (Tg) sensitive Ca²⁺ stores (Fig 6E). As these imaging
249 assays were performed without Ca²⁺ in the extracellular bath, it suggests that the source of
250 this rise in cytosolic Ca²⁺ levels is intracellular stores. ER is the major source of intracellular
251 Ca²⁺ stores. Therefore, we examined if MTP is driving ER Ca²⁺ release to cytosol. We
252 repeated the live cell Ca²⁺ imaging experiments with 10 μ M MTP in absence of extracellular
253 Ca²⁺ and observed a rise in cytosolic Ca²⁺ levels. In the same experiments, we then added Tg
254 to block SERCA channels present on the ER, which led to further increase in cytosolic Ca²⁺
255 levels (Fig 6F). This suggests that MTP can only partially mobilize ER Ca²⁺ levels. We next
256 performed opposite experiments wherein we first stimulated ER Ca²⁺ release with Tg and
257 then gave MTP treatment (Fig 6G). If MTP induces Ca²⁺ movement from ER, then amplitude
258 of this Ca²⁺ mobilization should be substantially decreased after Tg stimulation. Indeed, we
259 observed that post Tg stimulation, MTP mediated cytosolic Ca²⁺ rise was significantly
260 decreased (Fig 6G & H). Likewise, Tg induced ER Ca²⁺ release was drastically reduced upon
261 pre-stimulation with MTP (Fig 6F & I). Taken together, these experiments demonstrate that
262 MTP and Tg mobilize Ca²⁺ from same intracellular stores i.e. ER; most likely by acting over

263 same target viz. SERCA channels. Further, these experiments establish MTP as a potent ER
264 Ca²⁺ release inducer and that in turn at least partially explain the molecular mechanism
265 connecting MTP treatment and induction of ER stress.

266 **MTP induces ER stress and negatively regulates type I interferon signaling in virus infected
267 cells**

268 Since MTP was a potent inducer of ER stress, we also examined the ER stress signatures in
269 virus infected and drug treated cells. In agreement with our earlier study [17], JEV infected
270 cells showed detectable eIF2α phosphorylation (Fig 7A), and upregulation of CHOP, GRP78,
271 DNAJC3, ATF4, XBP1 & XBP1 spl. at 12 h of infection (Fig 7B). This corresponds to a stage
272 where viral protein translation is well established in the cell. A combination of MTP
273 treatment in JEV infected cells resulted in eIF2α activation at 6 h, a time point where virus
274 replication complex biogenesis initiates, suggesting that MTP potentially exerts an inhibitory
275 effect on early viral protein translation (Fig 7A). Also, ER stress transcripts were high in these
276 cells at 3 hpi and persisted till later time points of infection. This suggests that the drug
277 induces the activation of an adaptive ER stress response in these cells before infection is
278 established. MTP treatment in LPS stimulated MEFs resulted in transcriptional activation of
279 only ATF4, indicating an adaptive ER stress response (Fig S6A).

280 Next, we examined the effect of MTP on type I interferon and inflammatory signaling in
281 MEFs. MTP treatment of 3 h resulted in significant downregulation of basal transcript levels
282 of IFIH1, IFIT1, IRF7, IFN-β, IL-6 and TNF-α (Fig 7C). Interestingly, a highly significant
283 reduction in transcript levels of cholesterol 25-hydroxylase (CH25H) were also observed
284 starting at 3 h (Fig 7C). In JEV infected MEFs, innate immune and inflammatory transcripts
285 showed upregulation starting 6 hpi, and were highly upregulated by 12 hpi (Fig 7C). In the
286 virus and drug treatment group these were significantly reduced at all time points indicating
287 that MTP exerts a strong negative impact on type I IFN and inflammatory responses in JEV
288 infected cells (Fig 7C). A similar down-modulation was also observed in LPS+MTP treated
289 MEFs suggesting that MTP treatment negatively regulates innate immune and inflammatory
290 responses (Fig S6B).

291 CH25H is an IFN stimulated gene (ISG), that is upregulated in virus infection and is inversely
292 related to cholesterol metabolic pathways in the cell. Further, the phenothiazines: clozapine
293 and chlorpromazine have been shown to upregulate several genes of cholesterol and fatty
294 biosynthesis, increase enzymatic activity of HMGCR, and enhance cholesterol and

295 triglyceride levels in human glioma cells [32, 33]. We then checked the effect of MTP on
296 genes of cholesterol metabolic pathways, and observed a significant upregulation of - Sqle,
297 Cyp51A, SREBP, Hmgcr, Fas1, Msmo1, Scd2 (Fig 7D).

298 In JEV infected cells, no major effect on transcript levels of genes involved in cholesterol and
299 lipid metabolic pathways was seen till 12 hpi, except for a slight downregulation of - Ech1 &
300 Fads1 at 12 hpi. Interestingly, virus-infected drug-treated cells, showed higher transcript
301 levels of SQLE, CYP51A, SREBP, Hmgcr, Msmo1, Fas1, Dhcr7, etc. suggesting that
302 lipid/cholesterol metabolic pathways are highly upregulated in these cells (Fig 7F). Genes of
303 lipid metabolic pathways were also significantly upregulated in LPS + drug treated cells (Fig
304 S6C). It is possible that the observed downregulation of type I IFN and ISGs in MTP treated
305 condition is directly linked to the activation of cholesterol metabolic pathways.

306 **Antiviral effect of phenothiazines is autophagy-dependent**

307 We next attempted to elucidate which step of the virus life-cycle was being targeted by
308 phenothiazines. We performed a time course analysis of virus infection in control and
309 MTP/TFP treated Neuro2a cells (Fig 8A-B), and MTP treated MEFs (Fig 8C) and HeLa cells (Fig
310 8D). JEV life-cycle begins with a low endosomal pH mediated uncoating of the virus
311 envelope, followed by nucleocapsid release into the cytosol, capsid dissociation, and
312 translation of the plus-strand viral RNA into a single polyprotein that subsequently gives rise
313 to virus structural and nonstructural proteins. Depending on the MOI and cell type this
314 process takes 3-6 h, during which time the viral RNA levels decrease compared to 1 hpi,
315 likely due to degradation of a fraction of the endocytosed virus in the endosomal system
316 (Fig 8A-D). Once the viral RNA is translated, the virus replication complex is established on
317 ER-derived membranes, and a rapid increase in virus replication is seen [34, 35]. A
318 comparison of virus replication kinetics between control and drug treated cells clearly
319 showed that the anti-viral effect was exerted at the level of viral protein
320 translation/replication complex formation which was severely compromised in drug treated
321 Neuro2a (Fig 8A-B), MEFs (Fig 8C) and HeLa cells (Fig 8D). Drug treatment also resulted in
322 reduced transcript levels of various inflammation/cell death markers (Fig S7A), consistent
323 with reduced cell death in drug treated infected cells.

324 We next examined if the observed anti-viral effect of these drugs was autophagy
325 dependent. siRNA-mediated depletion of Atg5 in Neuro2a cells (Fig 8E-F), and Atg7 in MEFs
326 (Fig 8G-H) resulted in a complete loss of MTP anti-viral activity. Similar results were seen in

327 ATG5 KO MEFs (Fig S7B-E) and ATG5 KO HeLa cells (Fig S7F-G). These data clearly indicated
328 that the antiviral effect of the phenothiazines in diverse cell lines was mediated through
329 autophagy.

330 JEV targets the dopaminergic neuron rich regions in the brain, and a D2R agonist has been
331 shown to enhance infection, while the antagonists such as prochlorperazine, haloperidol
332 and risperidone have been shown to suppress infection in neuronal cells [36, 37]. Both MTP
333 and TFP did not lead to any reduction in virus entry (1 hpi) as measured through JEV RNA
334 levels (Fig 8I), and through a quantitative immunofluorescence assay of JEV envelope
335 antibody labelled virus particles in control and MTP treated cells (Fig 8J-K). As expected, the
336 number of GFP-LC3 puncta were significantly increased in drug treated cells, however, no
337 overlap of labelled virus particles with any autophagosome was observed (Fig 8J-L). These
338 data suggested that the drug treatment does not inhibit virus entry, and the endocytosed
339 virus particles do not appear to be targeted for virophagy.

340 **Anti-inflammatory effect of MTP in microglial cells is partially autophagy dependent**

341 Microglial cells are crucial to modulate neuroinflammation through secretion of
342 proinflammatory cytokines. We next checked if this process was autophagy dependent in
343 the context of JEV infection (Fig S8). Secretion of proinflammatory cytokines IL-6, TNF- α ,
344 RANTES and MCP-1 from JEV infected microglial cells increased with increasing MOI (Fig
345 S8B). Depletion of Atg5 in these cells resulted in significantly higher levels of cytokine
346 secretion, indicating a crucial role of autophagy in mediating neuroinflammation (Fig S8A-B,
347 9A-B). Autophagy deficient microglial cells also displayed significantly enhanced JEV induced
348 cell death (Fig S8C), however the JEV titers between autophagy competent and deficient
349 microglial cells was not significantly different (Fig S8D).

350 We then checked if the anti-inflammatory effect exerted by MTP in microglial cells was
351 autophagy dependent (Fig 9A). As shown earlier (Fig 1C-F, Fig 3D), MTP treatment resulted
352 in significantly reduced levels of cytokine release from JEV infected cells (Fig 9B). MTP
353 treatment of Atg5 depleted N9 cells resulted in reduced cytokine release however these
354 levels were still significantly higher compared to MTP treated wild-type cells. These
355 observations suggest that the anti-inflammatory effect of MTP on microglial cells cannot be
356 attributed entirely to autophagy upregulation, and maybe mediated in part by MTP induced
357 ER stress. A similar enhancement of ER stress (Fig S9A), and activation of lipid metabolic
358 pathways (Fig S9B) was also seen in microglial cells. Collectively, these data indicate that

359 MTP treatment displays an adaptive ER stress signature in microglial cells and exerts an anti-
360 inflammatory effect that is partly autophagy dependent.

361 **Discussion**

362 One-third of JE infections are fatal, and one-third develop permanent cognitive and/or
363 motor defects due to severe neurological damage. The disease is acute and its pathogenesis
364 is a combination of direct virus induced neuronal cell death and a massive
365 neuroinflammatory response. Suppression of neuroinflammation in the patient is likely to
366 be critical to improving prognosis, and this necessitates the need for development of
367 effective therapies.

368 Our studies on JEV-host interactions have shown that infection-induced ER stress and
369 autophagy are closely linked to virus replication and neuronal death [16, 17]. Several FDA
370 approved drugs have been shown to enhance autophagy, and this provides a strong
371 rationale for repurposing these drugs for treatment of diseases where autophagy
372 upregulation could potentially provide a therapeutic benefit.

373 Based on published literature we curated a pool of FDA-approved drugs with autophagy-
374 inducing potential and tested these for both antiviral and anti-inflammatory effects *in vitro*.
375 Further, we investigated promising *in vitro* leads in the JE mouse model, at oral doses
376 equivalent to the recommended human dose. The antipsychotic phenothiazine drug MTP
377 showed significantly improved survival, reduced neuroinvasion and complete protection
378 against BBB breach and neuroinflammation. MTP also known as Levomepromazine (brand
379 name Nozinan) is prescribed for relief of moderate to severe pain and anxiety. Another
380 widely prescribed antipsychotic phenothiazine, TFP showed similar antiviral and
381 neuroprotective effects *in vitro* and *in vivo*. Our studies suggest that the antiviral and
382 neuroprotective mechanism is likely to be a complex interplay of drug-induced
383 dysregulation of Ca^{2+} homeostasis, adaptive ER stress, autophagy, downregulation of
384 IFN/inflammatory response, and activation of cholesterol metabolic pathways. Indeed, it is
385 challenging to establish a single/critical drug target, and establish a linear relationship in the
386 sequence of events.

387 Drugs of the phenothiazine family are typical antipsychotics that are widely used in clinical
388 practice for the treatment of bipolar disorders, psychosis and schizophrenia. The
389 antipsychotic effect is attributed to the blockage of dopamine D2 receptors in the brain. The
390 neuroprotective effects of these drugs *in vitro* and rodent models of Alzheimer's,
391 Parkinson's, and Huntington's disease are well documented [38-43], and has also been
392 linked to autophagy induction [44]. Phenothiazine hydrochloride was first identified as an

393 autophagy inducer in a high-throughput drug screening assay using a *C. elegans* model of
394 protein aggregation [45]. Stress-dependent pharmacological activation of autophagy
395 through TFP has been shown to have neuroprotective effects under conditions of α -
396 synuclein accumulation in human dopaminergic neurons [46], and in Pink1 deficient
397 zebrafish model and human cells [25].
398 Phenothiazines show diverse biological effects ranging from anti-cancer to anti-pathogen
399 (virus, bacteria, fungus, protozoa) [47-50]. CPZ has shown antiviral effects against several
400 viruses, including SARS-CoV-2 and flaviviruses such as JEV, DENV and WNV.
401 Prochlorperazine has also shown antiviral activities against JEV, DENV, HCV and EBOV [36,
402 49, 51]. These drugs have been shown to alter cellular lipid dynamics [52], or obstruct
403 endocytic pathways [53-56]. Besides acting as host-directed antivirals, phenothiazines have
404 also been shown to directly interact with and destabilize the EBOV glycoprotein [57].
405 We observe that phenothiazines exert a strong antiviral effect at the level of viral protein
406 translation/replication complex formation, which is dependent upon autophagy induction.
407 While we observe no evidence of virophagy, the inhibition of virus replication could be
408 either mediated by inhibition of viral protein translation or degradation of viral proteins in
409 autolysosomes. MTP and TFP were potent autophagy inducers in several cell types and
410 resulted in the activation of functional autophagy flux. Autophagy induction was observed
411 to be mTOR independent and there was no TFEB translocation into the nucleus. MTP
412 treatment also resulted in the transcriptional activation of genes involved in
413 autophagosome expansion and formation (Atg12, Atg16l1, LC3A, LC3B).
414 The autophagy inducing properties of phenothiazines are documented though the
415 mechanistic details lack clarity [22-24]. Studies in different cancer lines have shown both
416 autophagy induction [24, 58-62], and autophagy flux inhibition [63-66]. CPZ is known to
417 inhibit PI3K/Akt/mTOR in glioma and oral cancer cells [24, 62], and also induce ER stress in
418 glioblastoma cell lines [60]. However, most studies showing phenothiazine induced mTOR
419 inhibition and cancer cell cytotoxicity have used high drug doses in the range of 20-50 μ M
420 and beyond [24, 62, 67]. A structure-function relationship study identified a pharmacore
421 that could induce neuronal autophagy in an Akt-and mTOR-independent manner. This was
422 defined as the N^{10} -substituted phenoxazine/phenothiazine, whereas the non-substituted
423 phenoxazine and phenothiazine did not stimulate autophagy [68].

424 Our results demonstrate that phenothiazine induces adaptive ER stress and autophagy. One
425 of the most critical signaling events that regulates both ER stress and autophagy is increase
426 in intracellular Ca^{2+} levels [69, 70]. Therefore, we examined the role of MTP on cellular Ca^{2+}
427 signaling and indeed, we found that MTP treatment results in rise in cytosolic Ca^{2+} levels.
428 Our detailed live cell Ca^{2+} imaging experiments showed that the source of this increase in
429 cytosolic Ca^{2+} is ER Ca^{2+} release. Since Tg (SERCA inhibitor) and MTP treatment showed a
430 non-additive rise in Ca^{2+} levels, it suggests that they are mobilizing Ca^{2+} from same
431 intracellular pools and most likely they act on same Ca^{2+} handling channel/pump. Indeed,
432 literature suggests that a variety of phenothiazines including TFP can directly inhibit SERCA
433 pump [71]. Taken together, our data suggests that similar to many other phenothiazines,
434 MTP inhibits SERCA pump and induces an increase in cytosolic Ca^{2+} levels. Further, this rise
435 in intracellular Ca^{2+} concentration can activate adaptive ER stress and autophagy. In future,
436 it would be interesting to investigate precise molecular mechanism through which
437 phenothiazines inhibit SERCA pumps as it would be relevant for several other disorders
438 associated with SERCA hyperactivity.

439 MTP treatment resulted in rapid eIF2 α phosphorylation and transcriptional activation of
440 ATF4, CHOP, ATF6, Xbp1 and Xbp(s) indicating activation of ER stress. However, no CHOP
441 protein was detectable in drug treated cells suggesting that the stress was primarily
442 adaptive and not apoptotic. In cells exposed to ER stress, autophagy is transcriptionally
443 activated as a survival response [27, 29, 72, 73]. Activation of CHOP is mediated by ATF4 and
444 ATF6 [74, 75] and generally leads the cells towards apoptosis through upregulation of BH3
445 only proteins and downregulation of Bcl2 [28, 29]. CHOP also drives inflammation through
446 secretion of IL-1 β through caspase-11/caspase-1 [76], and activation of NFkB [77], and can
447 negatively impact cholesterol and lipid biosynthesis pathways [78]. Studies have shown that
448 in response to aa starvation/tunicamycin treatment, the autophagy genes Atg16l1,
449 Map1lc3b, Atg12, Atg3, Beclin1 and Gabarapl2, can be activated by ATF4 independently of
450 CHOP [26, 79]. The autophagy gene activation profile induced by MTP in our study was also
451 similar, along with upregulation of the pro-survival gene Bcl2. Our data indicates that MTP
452 induces a unique chronic/adaptive ER stress with gene expression profiles that are
453 qualitatively distinct from those induced by severe stress such as Thapsigargin. This unique
454 adaptive ER stress signature that also includes transient phosphorylation of eIF2 α , is likely
455 to contribute to an antiviral state.

456 The phenothiazines have been shown to inhibit cytokine secretion from microglial cells in
457 animal models of traumatic brain injury, subarachnoid/intracerebral hemorrhage, hypoxia-
458 ischemic recovery etc. [80-87]. Patients with schizophrenia and first episode psychosis (FEP)
459 display abnormal profiles of proinflammatory cytokines (especially IL-6 and TNF- α) prior to
460 start of treatment. In these individuals, antipsychotic treatment resulted in decreased
461 serum concentrations of IL-1 β , IL-6, IFN- γ , TNF- α , and showed therapeutic effects by
462 reducing microglial inflammation comparable to levels in healthy controls [88]. Indeed, we
463 observed a similar effect of the drugs in inflammatory cytokine release from both microglial
464 cells and BMDMs. This effect was partially reversed by autophagy inhibition, suggesting that
465 mechanisms other than autophagy could also be contributing to the anti-inflammatory
466 effect of the phenothiazines.

467 TFP and fluphenazine have been shown to be direct inhibitors of TLR3-IRF3 signaling
468 pathway [89]. In our study MTP also caused significant inhibition of type I IFN and several
469 other ISGs, indicating suppression of innate immune responses. This was not due to reduced
470 virus replication, as a similar inhibition was also seen in response to LPS treatment. While
471 type I IFN is primarily antiviral in nature, it might also exert a proinflammatory function.
472 Interestingly, we also observed significant downregulation of CH25H gene, which links lipid
473 and cholesterol homeostasis to inflammation and immune response [90, 91]. While the
474 CH25H gene product, 25-hydroxycholesterol, has primarily an antiviral function [92], it also
475 acts as an amplifier of inflammatory signaling in macrophages and enhances tissue damage
476 [91].

477 It is also well established that several antipsychotics can cause metabolic disorders such as
478 hypertriglyceridemia, glucose dysregulation and elevated cholesterol levels, which is
479 attributed to transcriptional activation of cholesterol and fatty acid biosynthetic genes via
480 SREBP1 and SREBP2 [32, 33, 93, 94]. We too observed that MTP treatment resulted in
481 transcriptional upregulation of several cholesterol biosynthetic genes in divergent cell types.
482 An inverse relation between type I IFN response and flux through the mevalonate pathway
483 has been reported earlier [95, 96]. MTP mediated enhancement of sterol biosynthesis could
484 be directly responsible for the observed downmodulation of type I IFN and inflammation,
485 however this requires further validation.

486 In conclusion, our study provides evidence that the phenothiazines MTP and TFP have
487 robust antiviral and neuroprotective effects in JE disease condition and have the potential

488 to be repurposed for treatment. These drugs are approved for chronic use and have a high
489 therapeutic index. As a future scope of this work, a small investigator-initiated clinical trial
490 of this drug in JEV patients can test the findings of this pre-clinical study and establish proof
491 of concept in humans.

492 **Materials and Methods**

493 **Ethics Statement**

494 All animal experiments were approved by the Institutional Animal Ethics Committee of the
495 Regional Centre for Biotechnology (RCB/IAEC/2018/039). Experiments were performed as
496 per the guidelines of the Committee for the Purpose of Control and Supervision of
497 Experiments on Animals (CPCSEA), Government of India.

498 **Cell lines and virus**

499 Neuro2a (mouse neuroblastoma), C6/36 (insect), and Vero cell lines were obtained from the
500 cell repository at the National Centre for Cell Sciences Pune, India. WT and atg5^{-/-} Mouse
501 embryonic fibroblasts (MEFs) were obtained through the RIKEN Bio-Resource Cell Bank
502 (RCB2710 and RCB2711). WT and atg5^{-/-} HeLa cell lines were a kind gift from Dr. Richard J.
503 Youle (NIH, USA); and mouse microglia N9 cell line was a gift from Prof. Anirban Basu (NBRC,
504 India).

505 Neuro2a cells stably expressing EGFP-TFEB/EGFP-LC3 were generated through plasmid
506 transfection, growth in G418 selection media followed by single cell isolation through FACS.
507 MEFs stably expressing GFP-LC3-RFP-LC3 Δ G [97], were generated through retroviral
508 transduction as described earlier [98].

509 Dulbecco's modified Eagle's medium (DMEM) was used to culture Neuro2a, MEFs and HeLa
510 cells, Eagle's minimal essential medium (MEM) for Vero cells, RPMI for N9 cells, and
511 Leibovitz's (L-15) medium was used to culture C6/36 cells. All media were additionally
512 supplemented with 10% fetal bovine serum (FBS), 100 μ g/ml penicillin-streptomycin, and 2
513 mM L-glutamine.

514 JEV isolate Vellore P20778 strain (GenBank accession no. AF080251) was generated in C6/36
515 cell line. UV-inactivated JEV was generated by exposure of virus to UV (1600 x 100 μ J/cm²)
516 for 20 min on ice. For animal experiments the mouse-adapted JEV-S3 strain was used [21].
517 Virus titration was performed in Vero cells using plaque assays as described earlier [35].

518 All reagents, antibodies and plasmids used in the study are listed in Table S2.

519 **Primary cell culture**

520 *Bone marrow-derived macrophage (BMDMs)*

521 BMDMs were isolated from 6-7 weeks old C57BL/6 mice. Briefly, mice were euthanized and
522 femurs were dissected, washed with PBS and RPMI media, and flushed with L929-
523 conditioned medium to extrude bone marrow. After RBC lysis, cells were cultured in RPMI

524 complete media supplemented with L929-conditioned media for 7 days. BMDMs were
525 detached using 10 mM EDTA and seeded in 24 well plates for virus infection and drug
526 treatment experiments.

527 *Embryonic cortical neurons*

528 Mouse primary cortical neuronal cells were isolated from pregnant mice at embryonic day
529 16.5 (E16.5). Briefly, embryos were collected by decapitation from pregnant mice, the
530 cortices were dissected from isolated embryonic brains and collected in dissociation media,
531 HBSS (1X sodium pyruvate, 20% glucose, 1 M HEPES, pH 7.3). Tissues were digested with
532 trypsin and DNase I to make single-cell suspensions. Cells were washed, centrifuged, and
533 resuspended in complete neurobasal medium supplemented with 10% FBS, 20% glucose, 1X
534 Sodium pyruvate, and antibiotics. Finally, cortical neuronal cells were plated on poly-L-lysine
535 coated plates, and media was changed with maintenance media (neurobasal B-27, 1X
536 glutamine, penicillin-streptomycin solution) after every 2 days by adding half new
537 maintenance media.

538 **Virus infection and cell treatment**

539 All virus infection studies were performed by giving mock/JEV infection at indicated MOI for
540 1 h. Cells were then washed and complete medium was added. Drug treatment was given
541 by adding 10 μ M drug/DMSO (control) to mock/JEV-infected cells, which was maintained till
542 the end of the experiment as indicated. Cells were harvested for cell viability assays, RNA
543 isolation or western blotting. Culture supernatants were used for quantitative estimation of
544 cytokines using Cytokines bead array (CBA), or virus titers through plaque assay. For
545 autophagy flux and lysosome pH assays, cells were treated with DMSO/Torin1 (1 μ M)/MTP
546 (10 μ M) /TFP (10 μ M) for 6 h. siRNA treatment was performed using mouse-specific
547 Atg5/Atg7/non-targeting (NT) siRNA (50 nM, ON-TARGET plus SMART pool) using the
548 transfection reagent Dharmafect 2 for Neuro2a cells, and LipofectamineTM RNAiMax for
549 MEFs and N9 cells. At 48 h post-transfection, cells were harvested and the knockdown
550 efficiency was measured using western blotting or qRT-PCR. LPS treatment was given at 1
551 μ g/ml for indicated times. Every experiment had biological triplicates and was performed
552 two or more times.

553 **RNA isolation and Quantitative Real Time (qRT)-PCR**

554 RNA was extracted using Trizol reagent. cDNA was prepared using ImProm-IITM Reverse
555 Transcription System kit, and used to set up qRT-PCR on the QuantStudio 6 (Applied

556 Biosystems). JEV RNA level was determined by specific Taqman probes, and GAPDH was
557 used as an internal control. The gene expression for autophagy, UPR, innate immunity, and
558 lipid/cholesterol biosynthesis was performed with SYBR green reagents. The expression of
559 each gene was calculated by normalization to respective mock/DMSO controls. Each
560 experiment had biological triplicates, and qPCR for each sample was done in technical
561 triplicates. The primer sequences for all the genes tested in the study are listed in Table S3.

562 **Western blotting**

563 Cells were lysed in cell lysis buffer (150 mM NaCl, 1% Triton X-100, 50 mM Tris-HCl pH 7.5, 1
564 mM PMSF, and protease inhibitor cocktail) for 45 min at 4°C. The supernatant was used for
565 the estimation of protein concentration using BCA assay kit. Cell lysates were mixed with 4X
566 Laemmli buffer (40% glycerol, 20% β-mercaptoethanol, 0.04% bromophenol blue, 6% SDS,
567 0.25 M Tris-HCl pH 6.8) and boiled at 95°C for 10 min to denature proteins. Equal
568 concentrations of cell lysates were separated by SDS-PAGE and transferred to PVDF
569 membranes for immunoblotting. The blots were visualized using a Gel Doc XR+ gel
570 documentation system (Bio-Rad) and the expression of proteins was calculated by
571 measuring the intensity of bands using ImageJ (NIH, USA) software. The fold change was
572 calculated after normalization with respective loading controls. All western blotting
573 experiments were performed three or more times, and representative blots are shown.

574 **Cytokines bead array (CBA)**

575 Mouse microglia N9 cells (biological triplicates) were mock/JEV-infected at indicated MOIs
576 for 1 h. At 12 hpi, cells were treated with DMSO/drugs for 24 h. Alternately N9 cells were
577 treated with 1 µg/ml LPS for 24 h. Supernatants were harvested and used to quantitate the
578 levels of cytokine IL-6, TNF-α, MCP-1, RANTES, IL-1β, and IL-1α using CBA assay as per
579 manufacturer's instruction. The analysis was performed with FCPA array software and the
580 concentration of each cytokine was determined based on their standard curve. All CBA
581 assays were performed two or more times, and representative data from one experiment is
582 shown.

583 **Animal experiments**

584 The mouse adapted strain JEV-S3 was generated in 3-4 day old C57BL/6 mice pups as
585 described earlier [21]. Briefly, pups were infected with JEV (10^5 PFU) by an intracranial
586 route. By 3-4 dpi, symptoms of JEV infection such as movement impairment and constant
587 shivering/body tremors were observed. The pups were sacrificed, and the brain tissues were

588 harvested, homogenized in incomplete MEM media, and the supernatant containing
589 infectious virus was titrated by plaque assay.

590 For JEV survival and other experiments, 3-week-old C57BL/6 mice of either sex were
591 weighed and randomly divided into mock/drug/JEV/JEV+drug groups. Mice were infected
592 intraperitoneally with 10^7 PFU JEV, while the mock-infected group received equal volume of
593 incomplete DMEM media by intraperitoneal injection. At 4 hpi, mice were treated with
594 vehicle control (PEG 400) or the drugs MTP (2 mg/kg)/Flubendazole (5 mg/kg)/Fluoxetine (5
595 mg/kg)/Rilmenidine (5 mg/kg)/TFP (1 mg/kg) in PEG 400 formulations by oral route every 24
596 h till 15 days. Mice were monitored for symptoms of JEV infection such as change in body
597 weight, movement restrictions, piloerection, tremor, body stiffening, hind limb paralysis,
598 and mortality.

599 To determine cytokine levels in brain, mice (n=3) were sacrificed from each group on days 3,
600 4, 5, 6, and 7, and brain tissues were collected. These were homogenized in lysis buffer, and
601 30 μ g of protein from each sample was used for quantitation of cytokines using
602 LEGENDPLEX MU anti-virus response panel 13-plex assay kit as per manufacturer's
603 instructions. Data was analyzed with LEGENDplex™ Multiplex assay software and the
604 concentration of each cytokine was calculated based on their standard curve.

605 *Evans blue leakage assay*

606 Mice were intra-peritoneally injected with 100 μ l of 2% Evans blue at 3 and 6 dpi. After 45
607 min they were sacrificed and brains were harvested. Images were captured to visualize the
608 distribution of dye in the brain. For dye quantification, the tissues were weighed and
609 homogenized in dimethylfumarate (DMF) (200 mg/500 μ l DMF). The homogenate was
610 heated at 60°C overnight to ensure complete extraction of the dye. The samples were then
611 centrifuged and absorbance of each sample was measured at 620 nm. Evans blue content
612 was quantitated using a standard curve.

613 **Cell viability assays**

614 Cell viability assays were performed using the CellTiter-Glo® assay kit as per manufacturer's
615 instructions. The percentage of cell viability was calculated as: [(ATP luminescence for
616 experimental condition) / (ATP luminescence for untreated condition)] X 100 and
617 normalized to mock-infected/untreated DMSO treated control. MTT assay was performed
618 as described earlier [35]. LDH assay using culture supernatant from siNT/Atg5 treated
619 microglial cells was performed using CyQUANT™ LDH Cytotoxicity Assay kit as per

620 manufacturer's instructions. The percentage cell death was normalized to siNT mock-
621 infected control.

622 **Immunofluorescence studies**

623 *Image-based high content screening for virus replication complex*

624 Neuro2a cells were seeded in 96 well-black polystyrene microplates (Corning, CLS3603), and
625 infected with JEV at MOI 5. At 1 hpi cells were treated with DMSO/drugs for 24 h, fixed with
626 4% paraformaldehyde (PFA) and permeabilized with 0.3% Tween-20 for 30 min at RT. After
627 blocking with 5% BSA, JEV-NS1 primary antibody was added (1 h), followed by Alexa Fluor-
628 labelled specific secondary antibody (1 h), and final incubation with DAPI (0.5 μ g/ml) for 15
629 min. Images were acquired from the entire well area (16 fields per well) on ImageXpress
630 Micro Confocal High-Content Imaging System (Molecular Devices, USA) using FITC and DAPI
631 channels with a 10 X objective lens. The percentage of JEV-NS1 positive cells was calculated
632 using the multi-wavelength cell scoring module of the MetaXpress software.

633 *TFEB nuclear translocation assay*

634 EGFP-TFEB stable Neu02a cells were treated with DMSO/Torin1 (1 μ M)/MTP (10 μ M) /TFP
635 (10 μ M) for 6 h, fixed, and stained with DAPI, and images were acquired as described above.
636 The Pearson coefficient between GFP and DAPI was calculated using the translocation
637 module of the MetaXpress software (cut off =0.5). The percentage of EGFP-TFEB nuclear
638 translocation per well was calculated using Torin1 as a positive control.

639 *Autophagy flux assay*

640 The flux assay was performed as described earlier [98]. MEFs stably expressing GFP-LC3-
641 RFP-LC3 Δ G were seeded at a density of 10,000 cells/well in 96-well black polystyrene
642 microplates, followed by treatment of DMSO/Torin1 (1 μ M)/Baf A1 (100 nM)/MTP (10
643 μ M)/TFP (10 μ M) for 6 h. Cells were fixed with 4% PFA and stained with DAPI. Images were
644 recorded from 16 fields per well that covered the entire well area, on ImageXpress Micro
645 Confocal High-Content Imaging System using DAPI, FITC, and Texas red channels with a 10 X
646 objective lens. Analysis of images was performed using multi-wavelength cell scoring
647 module of the MetaXpress software, that calculates the integral intensity of GFP and RFP
648 from triple positive (DAPI, GFP, RFP) cells. GFP/RFP ratio was estimated and normalized to
649 DMSO-treated control. For autophagy flux inducer, the cut-off value of GFP/RFP was set to <
650 0.8, while GFP/RFP > 1.2 was considered for autophagy flux inhibitors. Torin1 (GFP/RFP=
651 0.59) and BafA1 (GFP/RFP= 1.25) were used as positive and negative controls respectively.

652 *GFP-LC3 puncta formation*

653 Neuro2a cells stably expressing EGFP-LC3 were grown on glass coverslips. These were
654 treated with DMSO/Torin1 (1 μ M)/ MTP (10 μ M) /TFP (10 μ M) for 6 h, fixed with 4% PFA
655 and mounted using ProLong Gold anti-fade reagent with DAPI. Images were acquired by
656 Elyra PS1 (Carl Zeiss Super-resolution microscope) with 60X objective (lasers 405, 488 nm).
657 LC3 puncta were counted from 20 cells acquired from two independent coverslips using
658 'Analyse particles' plugin algorithm of ImageJ (Fiji).

659 ***Endosome Acidification Assay***

660 Lysotracker Red and Lysosensor Yellow-Blue assays were performed as described earlier
661 [98, 99] Briefly, Neuro2a cells were grown on glass coverslips, and treated with DMSO
662 (control)/Torin1 (1 μ M)/ BafA1 (100 nM) or MTP/TFP (10 μ M) for 6 h, followed by
663 incubation with 10 μ M Lysotracker red (40 min), or 10 μ M Lysosensor Yellow-Blue (5 min).
664 Cells were then washed with ice-cold PBS three times and fixed using 4% PFA. Imaging was
665 done on LSM 880 microscope, Carl Zeiss. Lysosensor Yellow-Blue imaging was done using
666 the excitation wavelength range of 371-405 nm and emission wavelength range of 420-650
667 nm. The Lysosensor dye has dual-emission peaks of 440 nm (blue in less acidic organelles)
668 and 540 nm (yellow in more acidic organelles). The analysis of Lysotracker red, and
669 Lysosensor Yellow-Blue (yellow) fluorescence intensities were performed using ImageJ (Fiji)
670 and normalized to DMSO-treated control, from 50 cells across two independent coverslips.

671 **Measurement of oxidative stress**

672 Neuro2a cells were mock/JEV (MOI 5) infected for 1 h, followed by DMSO/FDA drug (10 μ M)
673 treatment till 24 hpi. DMF (70 μ M) and NAC (3 mM) were added at 16 hpi and maintained
674 till 24 hpi. Post-treatment, cells were incubated with 5 mM of oxidative stress indicator CM-
675 H2DCFDA in incomplete media for 15 min. Cells were washed with PBS and fluorescence
676 intensity was measured using flow cytometry BD FACS Verse (BD Biosciences, USA). All FCS
677 files were analysed via FlowJo software and represented as mean fluorescence intensity.

678 **Virus entry assay through qRT-PCR**

679 JEV entry can be quantitatively measured by estimating endocytosed virus levels through
680 qRT-PCR at 1 hpi as described previously [35]. Briefly, Neuro2a cells were pre-treated with
681 DMSO/MTP (10 μ M) /TFP (10 μ M) for 1 h, and then infected with JEV (MOI 5) for 1 h in the
682 presence of the drug. Cells were harvested by washing, and trypsin treatment was given to

683 remove any extracellular attached virus. qRT-PCR was done to measure the levels of
684 internalized viral RNA relative to the GAPDH transcript.

685 **Immunofluorescence based virus entry assay**

686 Neuro2a cells stably expressing EGFP-LC3 were grown on glass coverslips. These were
687 mock/JEV (MOI 50) infected, and DMSO/MTP (10 μ M) was added at 1 hpi and maintained
688 for another 1 h. The cells were then fixed with 4% PFA and immunostained for the JEV
689 envelope antibody. Coverslips were mounted using ProLong Gold anti-fade reagent with
690 DAPI, and images were acquired by Elyra PS1 (Carl Zeiss Super-resolution microscope) with
691 63 X objective (lasers 405, 488 and 561nm). Colocalization between EGFP-LC3 and JEV-
692 envelope was calculated by individual Spots and Spot to Spot colocalization per cell using
693 Imaris 8 software.

694 **Calcium Imaging**

695 Calcium imaging was performed as reported earlier [100, 101]. MEFs were cultured on
696 confocal dishes (SPL life sciences, 200350) to attain 60-80% confluence. Cells were
697 incubated in culture medium containing 4 μ M fura-2AM for 45 min at 37°C. Post-
698 incubations, cells were washed 3 times and bathed in HEPES-buffered saline solution (2 mM
699 CaCl₂, 1.13 mM MgCl₂, 140 mM NaCl, 10 mM D-glucose, 4.7 mM KCl and 10 mM HEPES; pH
700 7.4) for 5 min. Further, 3 washes were given and cells were bathed in HEPES-buffered saline
701 solution without 2 mM CaCl₂ to ensure removal of extracellular Ca²⁺ before starting the
702 measurements. A digital fluorescence imaging system (Nikon Eclipse Ti2 microscope coupled
703 with CoolLED pE-340 Fura light source and a high-speed PCO camera) was used, and
704 fluorescence images of several cells were recorded and analyzed. Excitation wavelengths-
705 340nm and 380nm were used alternately for Fura-2AM and emission signal was recorded at
706 510nm. Ca²⁺ traces represent average data from multiple cells from a single imaging dish
707 (number of cells is denoted by “n” on the graphs). Bar graphs represent data from multiple
708 imaging experiments. The number of cells and traces for different conditions are specified
709 on the respective bars as n=x, y where x stands total number of cells imaged and y means
710 total number of independent experiments performed.

711 **Statistical analysis**

712 Statistical analysis was performed using paired/unpaired Student's t-test, one/two-way
713 ANOVA test, and Log-rank (Matel-Cox) test. Differences were considered significant at P
714 values of *p <0.05, **p <0.01, ***p <0.001, and ****p <0.0001, as indicated in the figures.

715 Error bar indicates means \pm SD/SEM. All graphs were plotted and analysed using GraphPad

716 Prism 8.

717 **Data Availability Statement**

718 This study includes no data deposited in external repositories.

719 **Funding Information**

720 This work was supported by DBT grant BT/PR27875/Med/29/1302/2018 to MK. RKM is
721 supported by the DBT/Wellcome Trust India Alliance Intermediate Fellowship
722 (IA/I/19/2/504651). The Small Animal Facility is supported by DBT grant
723 BT/PR5480/INF/158/2012. The funders had no role in the study design, data collection, and
724 interpretation, or the decision to submit the work for publication. SKP, LM & KA are
725 supported by DBT fellowship, SK & PS are supported by UGC fellowship.

726

727 **Acknowledgements**

728 We thank Padmakar Tambare and the staff of the Small Animal Facility for their help with
729 animal experiments. We also acknowledge facilities and staff of Advanced Technology
730 Platform Centre. We are grateful to Dr. Kiran Bala Sharma for critical inputs on the
731 manuscript. All Virology lab members are acknowledged for useful discussions and support.

732

733 **Disclosure Statement**

734 The authors have no conflict of interest to declare

735

736 **Author contributions**

737 Experiments & data analysis (SKP, LM, SK, SO, KA, PS, RS); methodology (SKP, LM, SK, KA, PS,
738 AB, RKM, SV, MK); formal analysis (SKP, LM, KA, DM, AB, RKM, SV, MK); resources (AB, RM,
739 SV, MK); writing (SKP, LM, KA, RKM, MK); funding & project administration (MK).

740 **References**

741

- 742 1. Sharma, K.B., S. Vrati, and M. Kalia, *Pathobiology of Japanese encephalitis virus*
743 *infection*. Mol Aspects Med, 2021. **81**: p. 100994.
- 744 2. Mulvey, P., et al., *The Ecology and Evolution of Japanese Encephalitis Virus*.
745 Pathogens, 2021. **10**(12).
- 746 3. Sips, G.J., J. Wilschut, and J.M. Smit, *Neuroinvasive flavivirus infections*. Rev Med
747 Virol, 2012. **22**(2): p. 69-87.
- 748 4. Turtle, L. and T. Solomon, *Japanese encephalitis - the prospects for new treatments*.
749 Nat Rev Neurol, 2018. **14**(5): p. 298-313.
- 750 5. Solomon, T., et al., *Seizures and raised intracranial pressure in Vietnamese patients*
751 *with Japanese encephalitis*. Brain, 2002. **125**(Pt 5): p. 1084-93.
- 752 6. Salimi, H., M.D. Cain, and R.S. Klein, *Encephalitic Arboviruses: Emergence, Clinical*
753 *Presentation, and Neuropathogenesis*. Neurotherapeutics, 2016. **13**(3): p. 514-34.
- 754 7. Misra, U.K. and J. Kalita, *Overview: Japanese encephalitis*. Prog Neurobiol, 2010.
755 **91**(2): p. 108-20.
- 756 8. Filgueira, L. and N. Lannes, *Review of Emerging Japanese Encephalitis Virus: New*
757 *Aspects and Concepts about Entry into the Brain and Inter-Cellular Spreading*.
758 Pathogens, 2019. **8**(3).
- 759 9. Choi, J.Y., et al., *Indispensable Role of CX(3)CR1(+) Dendritic Cells in Regulation of*
760 *Virus-Induced Neuroinflammation Through Rapid Development of Antiviral Immunity*
761 *in Peripheral Lymphoid Tissues*. Front Immunol, 2019. **10**: p. 1467.
- 762 10. Aleyas, A.G., et al., *Functional modulation of dendritic cells and macrophages by*
763 *Japanese encephalitis virus through MyD88 adaptor molecule-dependent and -*
764 *independent pathways*. J Immunol, 2009. **183**(4): p. 2462-74.
- 765 11. Chauhan, S., et al., *Japanese Encephalitis Virus Infected Human Monocyte-Derived*
766 *Dendritic Cells Activate a Transcriptional Network Leading to an Antiviral*
767 *Inflammatory Response*. Front Immunol, 2021. **12**: p. 638694.
- 768 12. Li, F., et al., *Viral Infection of the Central Nervous System and Neuroinflammation*
769 *Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection*. J
770 Virol, 2015. **89**(10): p. 5602-14.
- 771 13. Chen, C.J., et al., *Glial activation involvement in neuronal death by Japanese*
772 *encephalitis virus infection*. J Gen Virol, 2010. **91**(Pt 4): p. 1028-37.
- 773 14. Su, H.L., C.L. Liao, and Y.L. Lin, *Japanese encephalitis virus infection initiates*
774 *endoplasmic reticulum stress and an unfolded protein response*. J Virol, 2002. **76**(9):
775 p. 4162-71.
- 776 15. Yu, C.Y., et al., *Flavivirus infection activates the XBP1 pathway of the unfolded*
777 *protein response to cope with endoplasmic reticulum stress*. J Virol, 2006. **80**(23): p.
778 11868-80.
- 779 16. Sharma, M., et al., *Japanese encephalitis virus replication is negatively regulated by*
780 *autophagy and occurs on LC3-I- and EDEM1-containing membranes*. Autophagy,
781 2014. **10**(9): p. 1637-51.
- 782 17. Sharma, M., et al., *Japanese encephalitis virus activates autophagy through XBP1*
783 *and ATF6 ER stress sensors in neuronal cells*. J Gen Virol, 2017. **98**(5): p. 1027-1039.

784 18. Sharma, M., et al., *Diphenyleneiodonium enhances oxidative stress and inhibits*
785 *Japanese encephalitis virus induced autophagy and ER stress pathways*. *Biochem*
786 *Biophys Res Commun*, 2018. **502**(2): p. 232-237.

787 19. Rubinsztein, D.C., P. Codogno, and B. Levine, *Autophagy modulation as a potential*
788 *therapeutic target for diverse diseases*. *Nat Rev Drug Discov*, 2012. **11**(9): p. 709-30.

789 20. Park, H., J.H. Kang, and S. Lee, *Autophagy in Neurodegenerative Diseases: A Hunter*
790 *for Aggregates*. *Int J Mol Sci*, 2020. **21**(9).

791 21. Tripathi, A., A. Banerjee, and S. Vrati, *Development and characterization of an animal*
792 *model of Japanese encephalitis virus infection in adolescent C57BL/6 mouse*. *Dis*
793 *Model Mech*, 2021. **14**(10).

794 22. Zhang, L., et al., *Small molecule regulators of autophagy identified by an image-*
795 *based high-throughput screen*. *Proc Natl Acad Sci U S A*, 2007. **104**(48): p. 19023-8.

796 23. Williams, A., et al., *Novel targets for Huntington's disease in an mTOR-independent*
797 *autophagy pathway*. *Nat Chem Biol*, 2008. **4**(5): p. 295-305.

798 24. Shin, S.Y., et al., *The antipsychotic agent chlorpromazine induces autophagic cell*
799 *death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells*.
800 *Carcinogenesis*, 2013. **34**(9): p. 2080-9.

801 25. Zhang, Y., et al., *Rescue of Pink1 Deficiency by Stress-Dependent Activation of*
802 *Autophagy*. *Cell Chem Biol*, 2017. **24**(4): p. 471-480 e4.

803 26. B'Chir, W., et al., *The eIF2alpha/ATF4 pathway is essential for stress-induced*
804 *autophagy gene expression*. *Nucleic Acids Res*, 2013. **41**(16): p. 7683-99.

805 27. Kroemer, G., G. Marino, and B. Levine, *Autophagy and the integrated stress*
806 *response*. *Mol Cell*, 2010. **40**(2): p. 280-93.

807 28. McCullough, K.D., et al., *Gadd153 sensitizes cells to endoplasmic reticulum stress by*
808 *down-regulating Bcl2 and perturbing the cellular redox state*. *Mol Cell Biol*, 2001.
809 **21**(4): p. 1249-59.

810 29. Matsumoto, H., et al., *Selection of autophagy or apoptosis in cells exposed to ER-*
811 *stress depends on ATF4 expression pattern with or without CHOP expression*. *Biol*
812 *Open*, 2013. **2**(10): p. 1084-90.

813 30. Saurav, S., et al., *Dysregulation of host cell calcium signaling during viral infections:*
814 *Emerging paradigm with high clinical relevance*. *Mol Aspects Med*, 2021. **81**: p.
815 101004.

816 31. Sultan, F., K. Ahuja, and R.K. Motiani, *Potential of targeting host cell calcium*
817 *dynamics to curtail SARS-CoV-2 infection and COVID-19 pathogenesis*. *Cell Calcium*,
818 2022. **106**: p. 102637.

819 32. Ferno, J., et al., *Antipsychotic drugs activate SREBP-regulated expression of lipid*
820 *biosynthetic genes in cultured human glioma cells: a novel mechanism of action?*
821 *Pharmacogenomics J*, 2005. **5**(5): p. 298-304.

822 33. Ferno, J., et al., *Drug-induced activation of SREBP-controlled lipogenic gene*
823 *expression in CNS-related cell lines: marked differences between various*
824 *antipsychotic drugs*. *BMC Neurosci*, 2006. **7**: p. 69.

825 34. Nain, M., et al., *GRP78 Is an Important Host Factor for Japanese Encephalitis Virus*
826 *Entry and Replication in Mammalian Cells*. *J Virol*, 2017. **91**(6).

827 35. Sehrawat, S., et al., *Valosin-containing protein/p97 plays critical roles in the Japanese*
828 *encephalitis virus life cycle*. *J Virol*, 2021. **95**(11).

829 36. Simanjuntak, Y., et al., *Repurposing of prochlorperazine for use against dengue virus*
830 *infection*. *J Infect Dis*, 2015. **211**(3): p. 394-404.

831 37. Simanjuntak, Y., et al., *Japanese Encephalitis Virus Exploits Dopamine D2 Receptor-*
832 *phospholipase C to Target Dopaminergic Human Neuronal Cells*. *Front Microbiol*,
833 2017. **8**: p. 651.

834 38. Hasegawa, M., *Biochemistry and molecular biology of tauopathies*. *Neuropathology*,
835 2006. **26**(5): p. 484-90.

836 39. Sontag, E.M., et al., *Methylene blue modulates huntingtin aggregation intermediates*
837 *and is protective in Huntington's disease models*. *J Neurosci*, 2012. **32**(32): p. 11109-
838 19.

839 40. Yang, S.H., et al., *Alternative mitochondrial electron transfer for the treatment of*
840 *neurodegenerative diseases and cancers: Methylene blue connects the dots*. *Prog*
841 *Neurobiol*, 2017. **157**: p. 273-291.

842 41. Tucker, D., Y. Lu, and Q. Zhang, *From Mitochondrial Function to Neuroprotection-an*
843 *Emerging Role for Methylene Blue*. *Mol Neurobiol*, 2018. **55**(6): p. 5137-5153.

844 42. Varga, B., et al., *Possible Biological and Clinical Applications of Phenothiazines*.
845 *Anticancer Res*, 2017. **37**(11): p. 5983-5993.

846 43. Makhaeva, G.F., et al., *Overview of novel multifunctional agents based on conjugates*
847 *of gamma-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and*
848 *aminoadamantanes for treatment of Alzheimer's disease*. *Chem Biol Interact*, 2019.
849 **308**: p. 224-234.

850 44. Congdon, E.E., et al., *Methylthioninium chloride (methylene blue) induces autophagy*
851 *and attenuates tauopathy in vitro and in vivo*. *Autophagy*, 2012. **8**(4): p. 609-22.

852 45. Gosai, S.J., et al., *Automated high-content live animal drug screening using C. elegans*
853 *expressing the aggregation prone serpin alpha1-antitrypsin Z*. *PLoS One*, 2010. **5**(11):
854 p. e15460.

855 46. Hollerage, M., et al., *Trifluoperazine rescues human dopaminergic cells from wild-*
856 *type alpha-synuclein-induced toxicity*. *Neurobiol Aging*, 2014. **35**(7): p. 1700-11.

857 47. Choudhary, S., O. Silakari, and P.K. Singh, *Key Updates on the Chemistry and*
858 *Biological Roles of Thiazine Scaffold: A Review*. *Mini Rev Med Chem*, 2018. **18**(17): p.
859 1452-1478.

860 48. Walsh, M.E., et al., *Identification of clinically approved small molecules that inhibit*
861 *growth and affect transcript levels of developmentally regulated genes in the African*
862 *trypanosome*. *PLoS Negl Trop Dis*, 2020. **14**(3): p. e0007790.

863 49. Otreba, M., L. Kosmider, and A. Rzepecka-Stojko, *Antiviral activity of chlorpromazine,*
864 *fluphenazine, perphenazine, prochlorperazine, and thioridazine towards RNA-viruses*.
865 *A review*. *Eur J Pharmacol*, 2020. **887**: p. 173553.

866 50. Golden, S.R., et al., *Repurposing Psychotropic Agents for Viral Disorders: Beyond*
867 *Covid*. *Assay Drug Dev Technol*, 2021. **19**(6): p. 373-385.

868 51. Madrid, P.B., et al., *Evaluation of Ebola Virus Inhibitors for Drug Repurposing*. *ACS*
869 *Infect Dis*, 2015. **1**(7): p. 317-26.

870 52. Chamoun-Emanuelli, A.M., et al., *Phenothiazines inhibit hepatitis C virus entry, likely*
871 *by increasing the fluidity of cholesterol-rich membranes*. *Antimicrob Agents*
872 *Chemother*, 2013. **57**(6): p. 2571-81.

873 53. Gao, J., et al., *Entry of Challenge Virus Standard (CVS) -11 into N2a cells via a*
874 *clathrin-mediated, cholesterol-, dynamin-, pH-dependent endocytic pathway*. *Virol J*,
875 2019. **16**(1): p. 80.

876 54. Nemerow, G.R. and N.R. Cooper, *Infection of B lymphocytes by a human herpesvirus,*
877 *Epstein-Barr virus, is blocked by calmodulin antagonists.* Proc Natl Acad Sci U S A,
878 1984. **81**(15): p. 4955-9.

879 55. Nawa, M., et al., *Interference in Japanese encephalitis virus infection of Vero cells by*
880 *a cationic amphiphilic drug, chlorpromazine.* J Gen Virol, 2003. **84**(Pt 7): p. 1737-
881 1741.

882 56. Hashizume, M., et al., *Phenothiazines inhibit SARS-CoV-2 cell entry via a blockade of*
883 *spike protein binding to neuropilin-1.* Antiviral Res, 2023. **209**: p. 105481.

884 57. Zhao, Y., et al., *Structures of Ebola Virus Glycoprotein Complexes with Tricyclic*
885 *Antidepressant and Antipsychotic Drugs.* J Med Chem, 2018. **61**(11): p. 4938-4945.

886 58. Wu, C.H., et al., *Pharmacological exploitation of the phenothiazine antipsychotics to*
887 *develop novel antitumor agents-A drug repurposing strategy.* Sci Rep, 2016. **6**: p.
888 27540.

889 59. Chu, C.W., et al., *Thioridazine Enhances P62-Mediated Autophagy and Apoptosis*
890 *Through Wnt/beta-Catenin Signaling Pathway in Glioma Cells.* Int J Mol Sci, 2019.
891 **20**(3).

892 60. Matteoni, S., et al., *Chlorpromazine induces cytotoxic autophagy in glioblastoma cells*
893 *via endoplasmic reticulum stress and unfolded protein response.* J Exp Clin Cancer
894 Res, 2021. **40**(1): p. 347.

895 61. Qian, K., et al., *Trifluoperazine as an alternative strategy for the inhibition of tumor*
896 *growth of colorectal cancer.* J Cell Biochem, 2019. **120**(9): p. 15756-15765.

897 62. Jhou, A.J., et al., *Chlorpromazine, an antipsychotic agent, induces G2/M phase arrest*
898 *and apoptosis via regulation of the PI3K/AKT/mTOR-mediated autophagy pathways*
899 *in human oral cancer.* Biochem Pharmacol, 2021. **184**: p. 114403.

900 63. Xia, Y., et al., *Repurposing of antipsychotic trifluoperazine for treating brain*
901 *metastasis, lung metastasis and bone metastasis of melanoma by disrupting*
902 *autophagy flux.* Pharmacol Res, 2021. **163**: p. 105295.

903 64. Zhang, X., et al., *Trifluoperazine, a novel autophagy inhibitor, increases*
904 *radiosensitivity in glioblastoma by impairing homologous recombination.* J Exp Clin
905 Cancer Res, 2017. **36**(1): p. 118.

906 65. Li, A., et al., *Trifluoperazine induces cellular apoptosis by inhibiting autophagy and*
907 *targeting NUPR1 in multiple myeloma.* FEBS Open Bio, 2020. **10**(10): p. 2097-2106.

908 66. Johannessen, T.C., et al., *Thioridazine inhibits autophagy and sensitizes glioblastoma*
909 *cells to temozolomide.* Int J Cancer, 2019. **144**(7): p. 1735-1745.

910 67. Medeiros, H.C.D., et al., *AMPK activation induced by promethazine increases NOXA*
911 *expression and Beclin-1 phosphorylation and drives autophagy-associated apoptosis*
912 *in chronic myeloid leukemia.* Chem Biol Interact, 2020. **315**: p. 108888.

913 68. Tsvetkov, A.S., et al., *A small-molecule scaffold induces autophagy in primary*
914 *neurons and protects against toxicity in a Huntington disease model.* Proc Natl Acad
915 Sci U S A, 2010. **107**(39): p. 16982-7.

916 69. Lim, D., et al., *The endoplasmic reticulum stress and unfolded protein response in*
917 *Alzheimer's disease: A calcium dyshomeostasis perspective.* Ageing Res Rev, 2023.
918 **87**: p. 101914.

919 70. Hoyer-Hansen, M., et al., *Control of macroautophagy by calcium, calmodulin-*
920 *dependent kinase kinase-beta, and Bcl-2.* Mol Cell, 2007. **25**(2): p. 193-205.

921 71. Khan, S.Z., C.L. Longland, and F. Michelangeli, *The effects of phenothiazines and*
922 *other calmodulin antagonists on the sarcoplasmic and endoplasmic reticulum Ca(2+)*
923 *pumps*. Biochem Pharmacol, 2000. **60**(12): p. 1797-806.

924 72. Ogata, M., et al., *Autophagy is activated for cell survival after endoplasmic reticulum*
925 *stress*. Mol Cell Biol, 2006. **26**(24): p. 9220-31.

926 73. Avivar-Valderas, A., et al., *PERK integrates autophagy and oxidative stress responses*
927 *to promote survival during extracellular matrix detachment*. Mol Cell Biol, 2011.
928 **31**(17): p. 3616-29.

929 74. Okada, T., et al., *Distinct roles of activating transcription factor 6 (ATF6) and double-*
930 *stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in*
931 *transcription during the mammalian unfolded protein response*. Biochem J, 2002.
932 **366**(Pt 2): p. 585-94.

933 75. Fusakio, M.E., et al., *Transcription factor ATF4 directs basal and stress-induced gene*
934 *expression in the unfolded protein response and cholesterol metabolism in the liver*.
935 Mol Biol Cell, 2016. **27**(9): p. 1536-51.

936 76. Endo, M., et al., *C/EBP homologous protein (CHOP) is crucial for the induction of*
937 *caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation*. J
938 Immunol, 2006. **176**(10): p. 6245-53.

939 77. Willy, J.A., et al., *CHOP links endoplasmic reticulum stress to NF-kappaB activation in*
940 *the pathogenesis of nonalcoholic steatohepatitis*. Mol Biol Cell, 2015. **26**(12): p.
941 2190-204.

942 78. Chikka, M.R., et al., *C/EBP homologous protein (CHOP) contributes to suppression of*
943 *metabolic genes during endoplasmic reticulum stress in the liver*. J Biol Chem, 2013.
944 **288**(6): p. 4405-15.

945 79. Rouschop, K.M., et al., *The unfolded protein response protects human tumor cells*
946 *during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5*. J
947 Clin Invest, 2010. **120**(1): p. 127-41.

948 80. Labuzek, K., et al., *Chlorpromazine and loxapine reduce interleukin-1beta and*
949 *interleukin-2 release by rat mixed glial and microglial cell cultures*. Eur
950 Neuropsychopharmacol, 2005. **15**(1): p. 23-30.

951 81. Dibaj, P., et al., *Influence of methylene blue on microglia-induced inflammation and*
952 *motor neuron degeneration in the SOD1(G93A) model for ALS*. PLoS One, 2012. **7**(8):
953 p. e43963.

954 82. Fenn, A.M., et al., *Methylene blue attenuates traumatic brain injury-associated*
955 *neuroinflammation and acute depressive-like behavior in mice*. J Neurotrauma, 2015.
956 **32**(2): p. 127-38.

957 83. Zhao, M., et al., *Methylene blue exerts a neuroprotective effect against traumatic*
958 *brain injury by promoting autophagy and inhibiting microglial activation*. Mol Med
959 Rep, 2016. **13**(1): p. 13-20.

960 84. Xu, H., et al., *Methylene blue attenuates neuroinflammation after subarachnoid*
961 *hemorrhage in rats through the Akt/GSK-3beta/MEF2D signaling pathway*. Brain
962 Behav Immun, 2017. **65**: p. 125-139.

963 85. Chen, C., et al., *Methylene blue offers neuroprotection after intracerebral*
964 *hemorrhage in rats through the PI3K/Akt/GSK3beta signaling pathway*. J Cell Physiol,
965 2019. **234**(4): p. 5304-5318.

966 86. Zhou, L., et al., *Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-*
967 *induced cognitive impairment and neuroinflammation in aged mice.* Acta
968 *Neuropathol Commun, 2019. 7(1): p. 210.*

969 87. Zhang, G., et al., *Methylene blue post-treatment improves hypoxia-ischemic recovery*
970 *in a neonatal rat model.* Neurochem Int, 2020. **139**: p. 104782.

971 88. Marcinowicz, P., et al., *A Meta-Analysis of the Influence of Antipsychotics on*
972 *Cytokines Levels in First Episode Psychosis.* J Clin Med, 2021. **10**(11).

973 89. Zhu, J., et al., *High-throughput screening for TLR3-IFN regulatory factor 3 signaling*
974 *pathway modulators identifies several antipsychotic drugs as TLR inhibitors.* J
975 *Immunol, 2010. 184*(10): p. 5768-76.

976 90. Blanc, M., et al., *The transcription factor STAT-1 couples macrophage synthesis of 25-*
977 *hydroxycholesterol to the interferon antiviral response.* Immunity, 2013. **38**(1): p.
978 106-18.

979 91. Gold, E.S., et al., *25-Hydroxycholesterol acts as an amplifier of inflammatory*
980 *signaling.* Proc Natl Acad Sci U S A, 2014. **111**(29): p. 10666-71.

981 92. Lembo, D., et al., *Oxysterols: An emerging class of broad spectrum antiviral effectors.*
982 *Mol Aspects Med, 2016. 49*: p. 23-30.

983 93. Cai, H.L., et al., *A potential mechanism underlying atypical antipsychotics-induced*
984 *lipid disturbances.* Transl Psychiatry, 2015. **5**(10): p. e661.

985 94. Pillinger, T., et al., *Comparative effects of 18 antipsychotics on metabolic function in*
986 *patients with schizophrenia, predictors of metabolic dysregulation, and association*
987 *with psychopathology: a systematic review and network meta-analysis.* Lancet
988 *Psychiatry, 2020. 7*(1): p. 64-77.

989 95. Blanc, M., et al., *Host defense against viral infection involves interferon mediated*
990 *down-regulation of sterol biosynthesis.* PLoS Biol, 2011. **9**(3): p. e1000598.

991 96. York, A.G., et al., *Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I*
992 *IFN Signaling.* Cell, 2015. **163**(7): p. 1716-29.

993 97. Kaizuka, T., et al., *An Autophagic Flux Probe that Releases an Internal Control.* Mol
994 *Cell, 2016. 64*(4): p. 835-849.

995 98. Prajapat, S.K., et al., *Avobenzone, Guaiazulene and Tioxolone identified as potent*
996 *autophagy inducers in a high-throughput image based screen for autophagy flux.*
997 *Autophagy Reports, 2022. 1*(1): p. 523-536.

998 99. Albrecht, L.V., N. Tejeda-Munoz, and E.M. De Robertis, *Protocol for Probing*
999 *Regulated Lysosomal Activity and Function in Living Cells.* STAR Protoc, 2020. **1**(3): p.
1000 100132.

1001 100. Tanwar, J., et al., *MITF is a novel transcriptional regulator of the calcium sensor*
1002 *STIM1: Significance in physiological melanogenesis.* J Biol Chem, 2022. **298**(12): p.
1003 102681.

1004 101. Arora, S., et al., *Orai3 Regulates Pancreatic Cancer Metastasis by Encoding a*
1005 *Functional Store Operated Calcium Entry Channel.* Cancers (Basel), 2021. **13**(23).

1006

1007 **Figure Legends**

1008 **Fig 1: Antiviral and anti-inflammatory effect of FDA-approved drugs against JEV infection.**

1009 (A-B) Neuro2a cells were infected with JEV (MOI 1), and at 1 hpi treated with DMSO/drugs
1010 (10 μ M). (A) Cells were harvested at 24 hpi and viral RNA levels were quantified using qRT-
1011 PCR. Graph shows the relative expression levels of JEV RNA normalized to DMSO-treated
1012 control. (B) Culture supernatant was collected to determine extracellular virus titer using
1013 plaque assays. Data represents values obtained from three independent experiments. (C-F)
1014 N9 cells were mock/JEV-infected (MOI 1), and at 12 hpi treated with DMSO/ drugs (10 μ M)
1015 for 24 h. Cytokine concentrations (pg/ml) were quantified from the culture supernatant
1016 using CBA assay. Data shows values from one representative experiment with biological
1017 triplicates. (G-H) Neuro2a cells were mock/JEV (MOI 5) infected, and at 1 hpi were treated
1018 with DMSO/ drugs (10 μ M) till 24 hpi. (G) Cells were immunostained for JEV NS1 (green)
1019 and images were acquired on high-content imaging system. Scale bar, 10 μ m. (H) Bar-graph
1020 showing percentage of NS1 positive cells. (I) Neuro2a cells were mock/JEV (MOI 5) infected,
1021 and at 1 hpi were treated with DMSO/ FDA-drugs (10 μ M); or at 16 hpi treated with DMF
1022 (70 μ M)/ NAC (3 mM), and maintained till 24 hpi. Post-treatment, cells were stained with
1023 oxidative stress indicator CM-H2DCFDA and fluorescence intensity was measured using flow
1024 cytometry. The graph represents mean fluorescence intensity values. All data are expressed
1025 as means \pm SD, statistical significance was determined using one-way ANOVA. *, P<0.05; **,
1026 P<0.01; ***, P<0.001; ****, P<0.0001.

1027

1028 **Fig2: Efficacy of MTP in JEV-mouse model.** 3 week old C57BL/6 mice were mock/ JEV-S3
1029 (10^7 pfu) infected through an i.p. injection, and at 4 hpi were treated with vehicle control
1030 (PEG400) or MTP (2mg/kg) by oral gavage at an interval of 24 h for 15 days. All mice were
1031 monitored for the appearance of encephalitis symptoms until death. (A) Survival curve of
1032 mock (n=4)/MTP (n=4)/JEV (n=6)/JEV+MTP (n=6) was plotted, a Log-rank (Mantel-Cox) test
1033 was used to determine the statistical significance comparing JEV and JEV+MTP mice group.
1034 (B) Graph representing the change in body weight of vehicle/MTP-treated infected mice
1035 group normalized to mock-infected mice group, compared by paired student t-test. (C)
1036 Mock or Vehicle/MTP treated infected mice (n=3 /time point from each group) were
1037 sacrificed at indicated time points. Brain tissues were homogenized and the supernatant
1038 was used for JEV titration using plaque assay. Each data point denotes one mouse, and the

1039 virus titer between JEV and JEV+MTP group was compared by paired student t-test. (D-E)
1040 Mock or Vehicle/MTP treated infected mice received an i.p. injection of 2% Evans blue dye
1041 (100 μ l). Mice were sacrificed at 3 and 6 dpi. (D) Representative images showing Evans blue
1042 dye distribution in the brain (n=3). (E) The brain tissues were homogenized in DMF (200
1043 mg/500 μ l DMF) and absorbance was measured at 620nm. The concentration of Evans
1044 blue was quantitated according to standard curve and significance was compared by two-
1045 way ANOVA test. (F) Brain tissue was collected at indicated time points, and an equal
1046 amount of protein (30 μ g) from each sample was used for the quantitation of cytokine levels
1047 using CBA. Data were analyzed with LEGENDplexTM Multiplex assay software, and
1048 significance was compared by one-way ANOVA test. All data expressed as means \pm SD. *,
1049 P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.

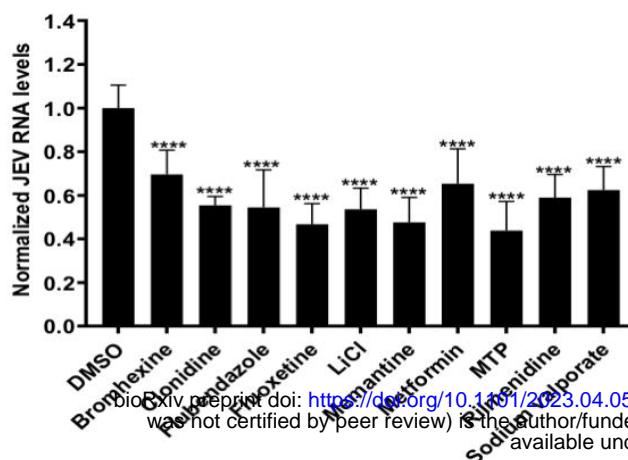
1050 **Fig3: MTP inhibits the secretion of proinflammatory cytokines from JEV infected BMDMs.**
1051 (A) BMDMs were treated with DMSO/MTP at indicated concentration for 24 h, MTT assay
1052 was used to calculate % cell viability. (B-C) BMDMs were mock/JEV (MOI 2) infected for 1 h,
1053 followed by DMSO/MTP (10 μ M) treatment till 24 hpi. (B) Viral transcript levels from were
1054 measured using qRT-PCR and normalized to DMSO-treated infected control, (n=6). (C)
1055 Culture supernatant was used for the quantitation of cytokine levels by flow cytometry-
1056 based CBA assay (n=3). Similar trends were seen in two independent experiments. All data
1057 were expressed as means \pm SD and one-way ANOVA test was used for the determination of
1058 statistical significance, *, P<0.05; **, P<0.01; ***, P<0.001; **** P < 0.0001, ns; non-
1059 significant.

1060 **Fig4: Phenothiazines exert antiviral and anti-inflammatory effects.** (A) Chemical structure
1061 of the phenothiazine ring and its derivates Methotriimeprazine and Trifluoperazine. (B-C)
1062 Primary cortical neurons (B), and Neuro2a cells (C), were mock/JEV (MOI 1) infected, and at
1063 1 hpi were treated with DMSO/MTP at indicated concentrations till 24 hpi. Cells were
1064 harvested, qRT-PCR was performed for the quantitation of JEV RNA levels, and % cell
1065 viability was measured using MTT assay. Data were normalized to DMSO control, and
1066 compared between DMSO and MTP treated JEV-infected cells using unpaired student t-test.
1067 Graphs represent the CC50 and IC50 values. (D) Neuro2a cells were mock/JEV (MOI 1)
1068 infected and treated with DMSO/TFP at the indicated concentrations till 24 hpi. CC50 and
1069 IC50 were calculated as described for panel C. (E-F) Neuro2a cells were mock/JEV (MOI 5)
1070 infected, and at 1 hpi treated with 10 μ M TFP till 24 hpi. Cells were immunostained with JEV

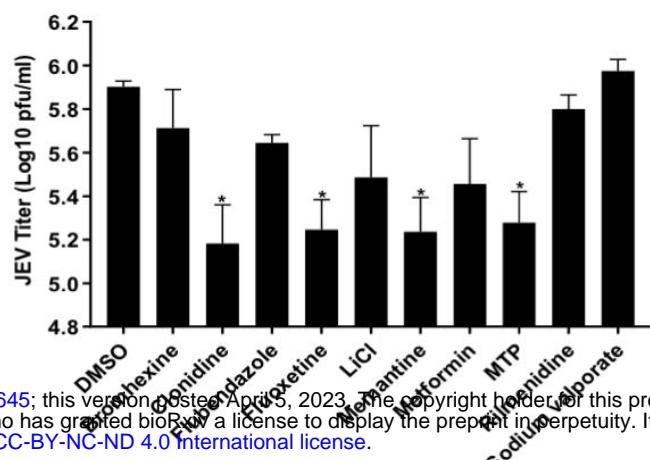
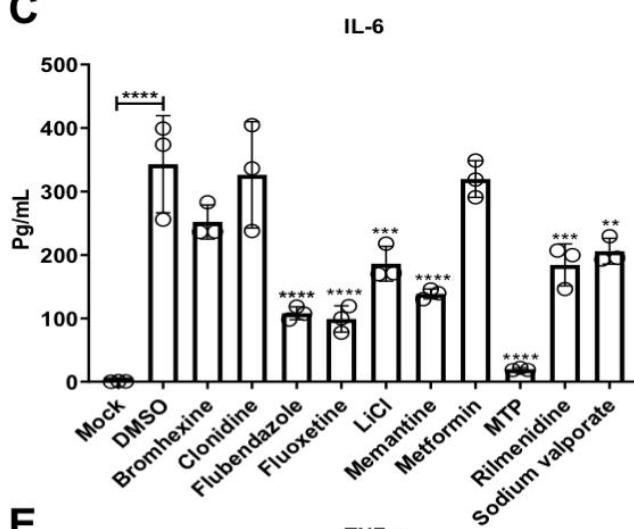
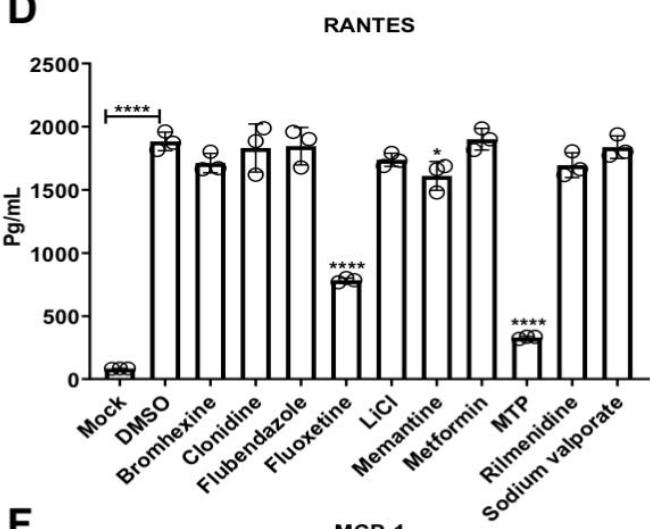
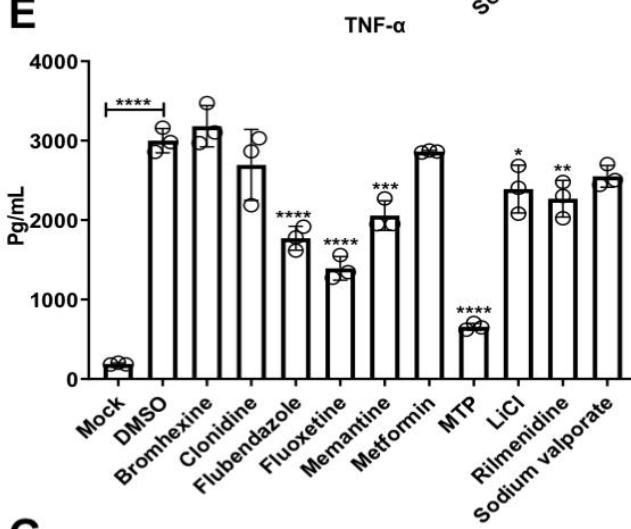
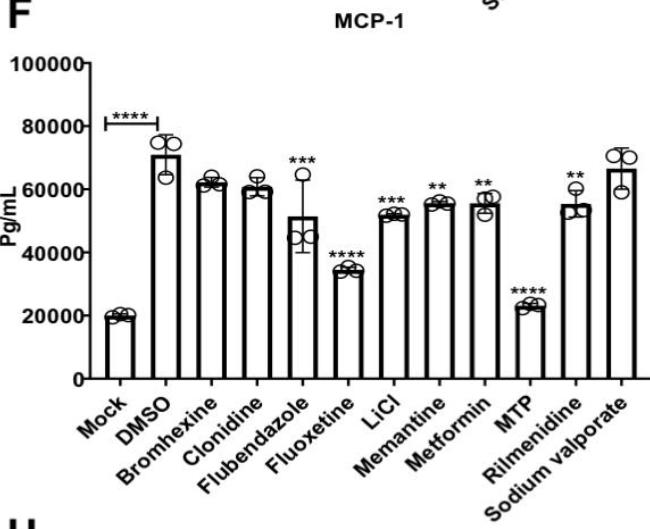
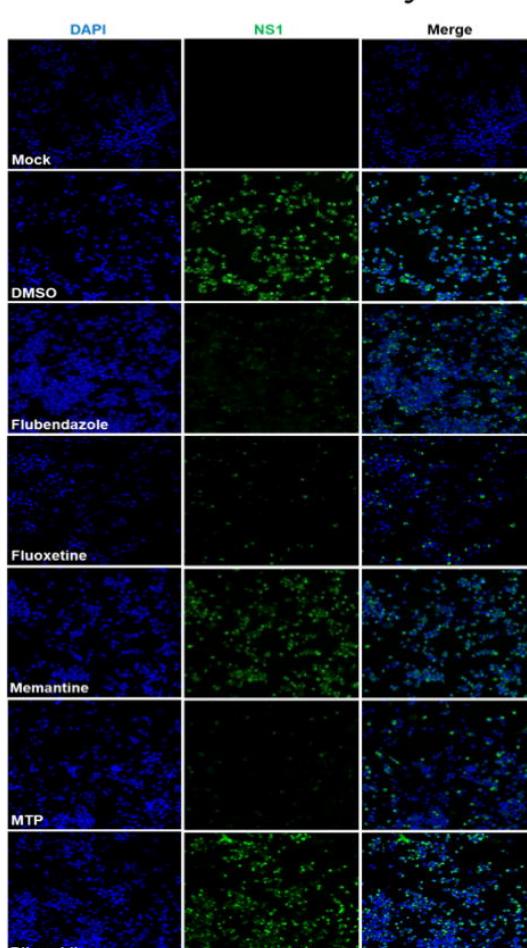
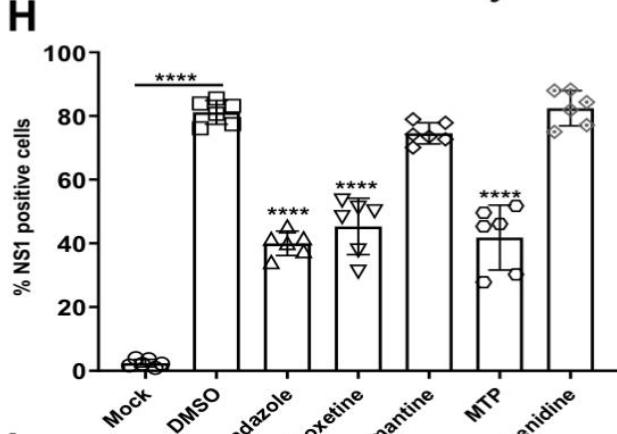
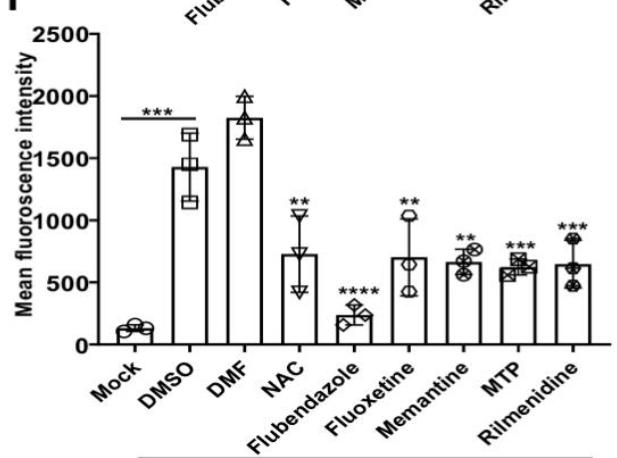
1071 NS1 antibody, and images were visualized by high-content imaging system, representative
1072 images are shown. Scale bar, 10 μ m (E). (F) Graph shows % NS1 positive cells. (n=3), one-
1073 way ANOVA test. (G) Supernatants of DMSO/TFP-treated JEV infected cells was used for the
1074 determination of JEV titer using plaque assay. Data is representative of two independent
1075 experiments and were compared between DMSO and TFP using paired student t-test. (H)
1076 N9 cells were infected with JEV (MOI 1), at 12 hpi cells were treated with TFP (10 μ M) for 24
1077 h. Cytokines were quantified from the soup using CBA. (n=3), one-way ANOVA test. (I)
1078 C57BL/6 (3 week old) mice were infected by i.p. injection of DMEM (mock) or JEV (10^6 pfu),
1079 at 4 hpi, treated with vehicle control (PEG400)/TFP (1 mg/kg) by oral route at an interval of
1080 24 h till 15 days. All mice were monitored for JEV symptoms until death. The survival curve
1081 of mock (n=4)/TFP (n=4)/JEV (n=19)/JEV+TFP (n=19) was plotted from two independent
1082 experiments. Log-rank (Mantel-Cox) test was used to determine the statistical significance
1083 comparing vehicle and drug-treated infected mice group. All data expressed as means \pm SD.
1084 *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.

1085 **Fig5: Phenothiazines are mTOR independent autophagy inducers.** (A-D) Neuro2a (A-B), and
1086 primary cortical neurons (C-D), were treated with DMSO/Torin1 (1 μ M)/MTP (10 μ M) /TFP
1087 (10 μ M) for 6 h. Protein lysates were immunoblotted for LC3 and GAPDH (loading control).
1088 (B & D) Bar-graph shows relative expression of LC3II/GAPDH normalized to DMSO control
1089 from three independent experiments. (E-F) Neuro2a (E), and primary cortical neurons (F),
1090 were treated with DMSO/Torin1 (1 μ M)/MTP (10 μ M) /TFP (10 μ M) for 4 h, followed by
1091 BafA1 (100 nM) treatment for 2 h. The values below the blot show relative levels of
1092 LC3II/GAPDH protein after normalization to DMSO-treated cells. (G-M) Neuro2a cells were
1093 treated with DMSO/Torin1 (1 μ M)/MTP (10 μ M) /TFP (10 μ M) for 6 h, protein lysates were
1094 analyzed by western blotting with P62 (G, H), p-mTOR (S2448), mTOR (G, I) p-P70S6K
1095 (Thr386), p70S6K (J-K) , p-4E-BP (Thr37/46), 4E-BP (L-M) and GAPDH (loading control)
1096 antibodies. (H, I, K, M) Bar-graphs show relative protein expression level calculated after
1097 normalization to DMSO control from three independent experiments. (N-O) EGFP-TFEB
1098 expressing Neuro2a cells were treated with DMSO/Torin1 (1 μ M)/MTP (10 μ M) /TFP (10
1099 μ M) for 6 h. Images were acquired on high content imaging system and representative
1100 images are shown. Scale bar, 10 μ m. (O) Bar-graph showing the percentage EGFP-TFEB
1101 nuclear translocation, (n=3). (P) Neuro2a/MEFs were treated with MTP (10 μ M) for 6 h and
1102 mRNA levels of autophagy genes were determined by qRT-PCR. The heatmap shows relative

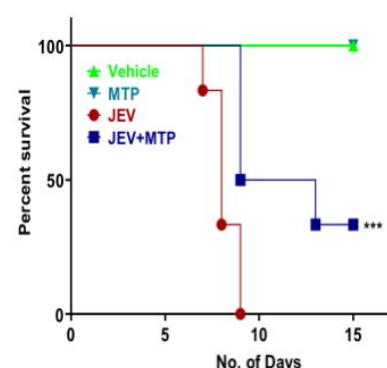
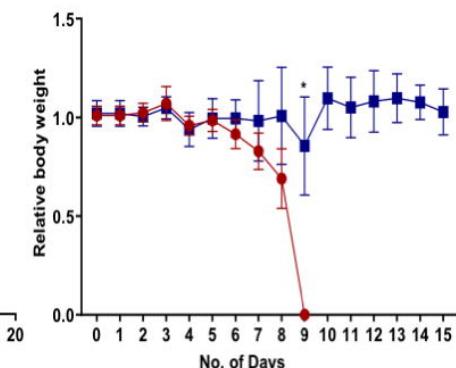
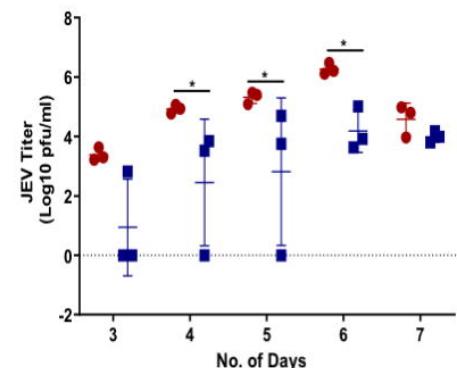
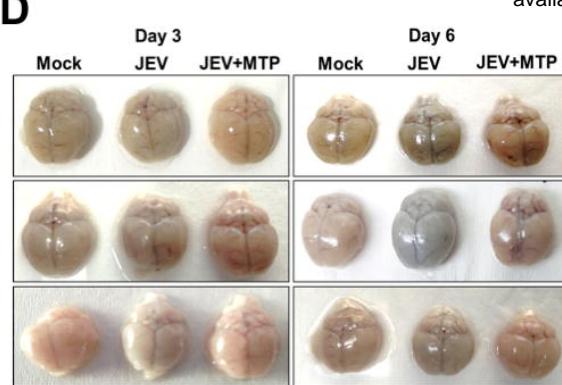
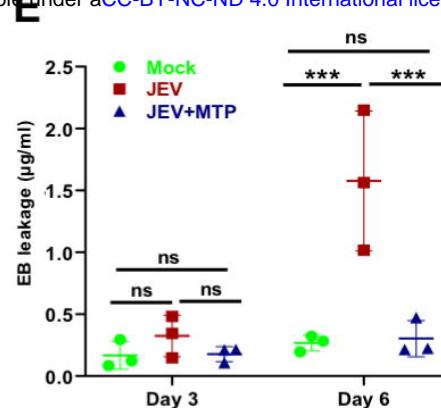
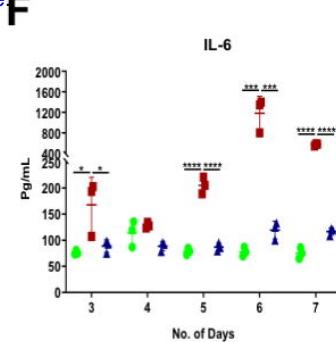
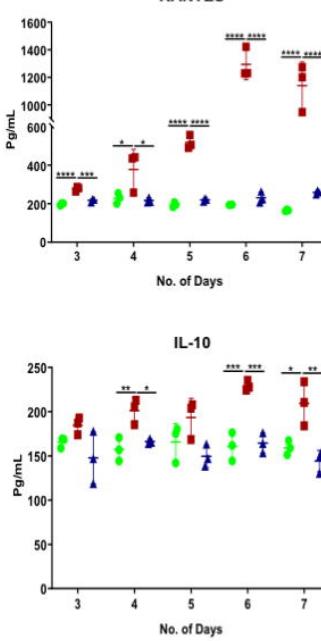
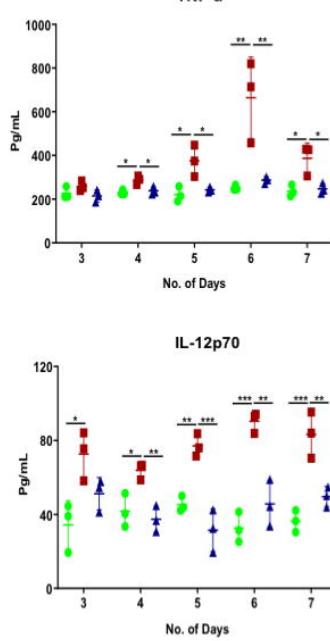
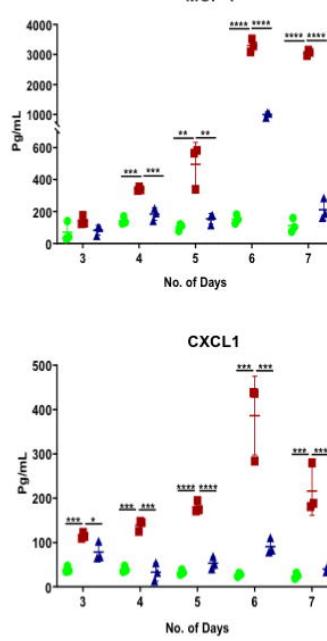
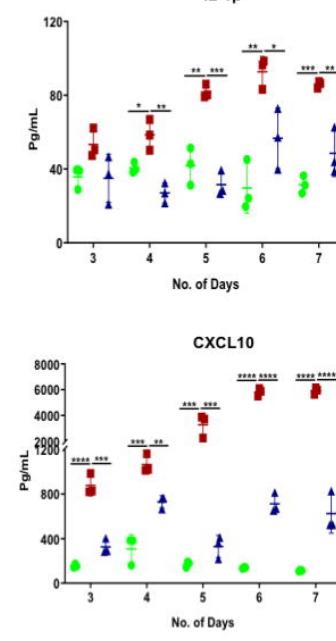
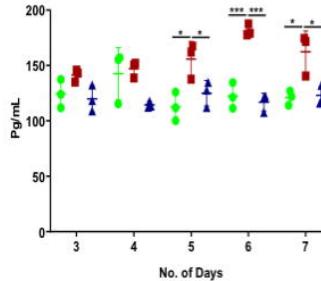
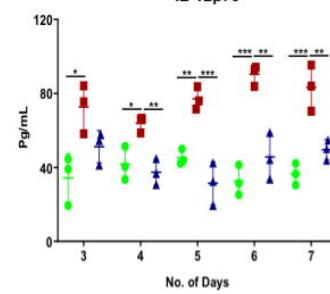
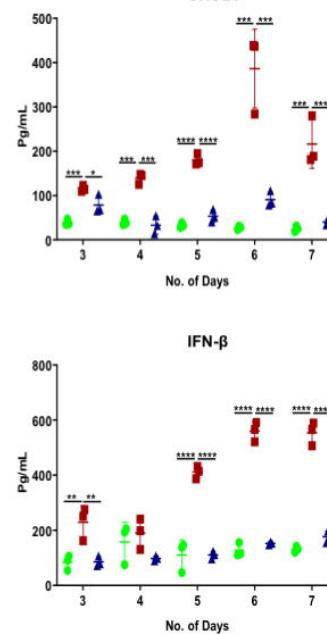
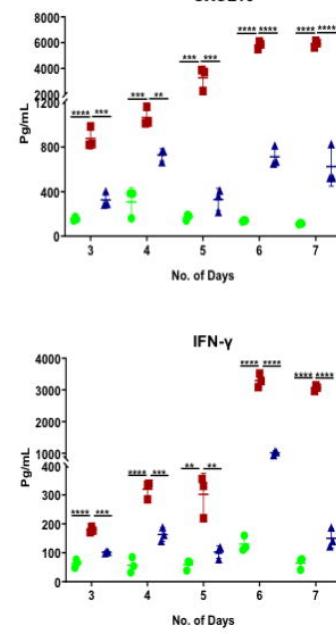
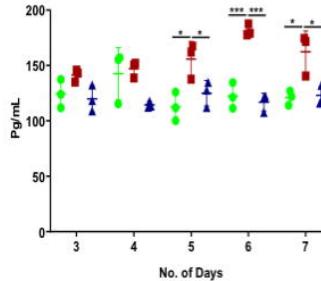
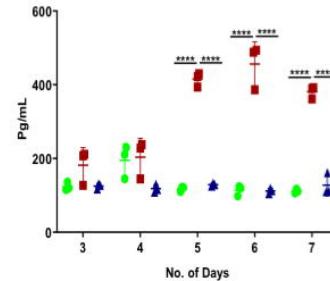
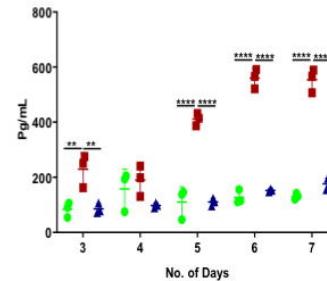
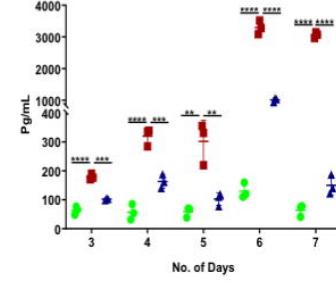
1103 gene expression level after normalization to DMSO treated control. All data were expressed
1104 as means \pm SD, one-way ANOVA test was used to calculate statistical significance *, P<0.05;
1105 **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, not significant.


1106 **Fig6: MTP activates adaptive ER stress and dysregulates ER calcium homeostasis.** Neuro2a
1107 (A-B) and MEFs (C-D) were treated with DMSO/Tg (1 μ M)/MTP (10 μ M) for the indicated
1108 time points. (A & C) Protein lysates were immunoblotted for PERK, p-EIF2 α , EIF2 α , CHOP
1109 and GAPDH (loading control). The values below the blot show relative protein levels after
1110 normalization to DMSO controls. (B & D) mRNA levels of ER stress markers and chaperones
1111 were quantified using qRT-PCR. Heatmap depicts relative gene expression normalized to
1112 DMSO control, represented as mean (n=3). (E) Representative Ca^{2+} imaging trace of MTP
1113 dose response assay, where “n=112” denotes the number of cells in that particular trace.
1114 Cells were stimulated with increasing doses of MTP- 1 μ M, 5 μ M, 10 μ M, 20 μ M, 50 μ M and
1115 100 μ M followed by addition of 2 μ M thapsigargin (Tg) in Ca^{2+} -free buffer. (F)
1116 Representative Ca^{2+} imaging trace of experiments where cells were stimulated with 10 μ M
1117 MTP in absence of extracellular Ca^{2+} followed by addition of 2 μ M thapsigargin (Tg). Here,
1118 “n=85” denotes the number of cells in that particular trace. (G) Representative Ca^{2+} imaging
1119 trace of experiments where cells were stimulated first with 2 μ M thapsigargin (Tg) to
1120 deplete ER Ca^{2+} stores, followed by addition of 10 μ M MTP in absence of extracellular Ca^{2+} .
1121 Here, “n=104” denotes the number of cells in that particular trace. (H) Quantitation of MTP
1122 (10 μ M) induced ER Ca^{2+} stores depletion before and after the addition of 2 μ M thapsigargin
1123 (Tg). 620 and 539 cells from 9 and 7 independent imaging dishes were analysed for the two
1124 conditions, respectively. (I) Quantitation of thapsigargin (Tg, 2 μ M) induced ER Ca^{2+} stores
1125 depletion before and after the addition of 10 μ M MTP. 539 and 620 cells from 7 and 9
1126 independent imaging dishes were analysed for the two conditions, respectively. (“n=x, y”
1127 where “x” denotes total number of cells imaged and “y” denotes number of traces
1128 recorded). Data presented are mean \pm S.E.M. Unpaired student’s t test, **, P<0.01; *** P <
1129 0.001

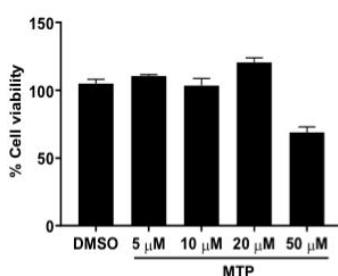
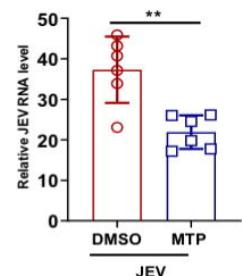
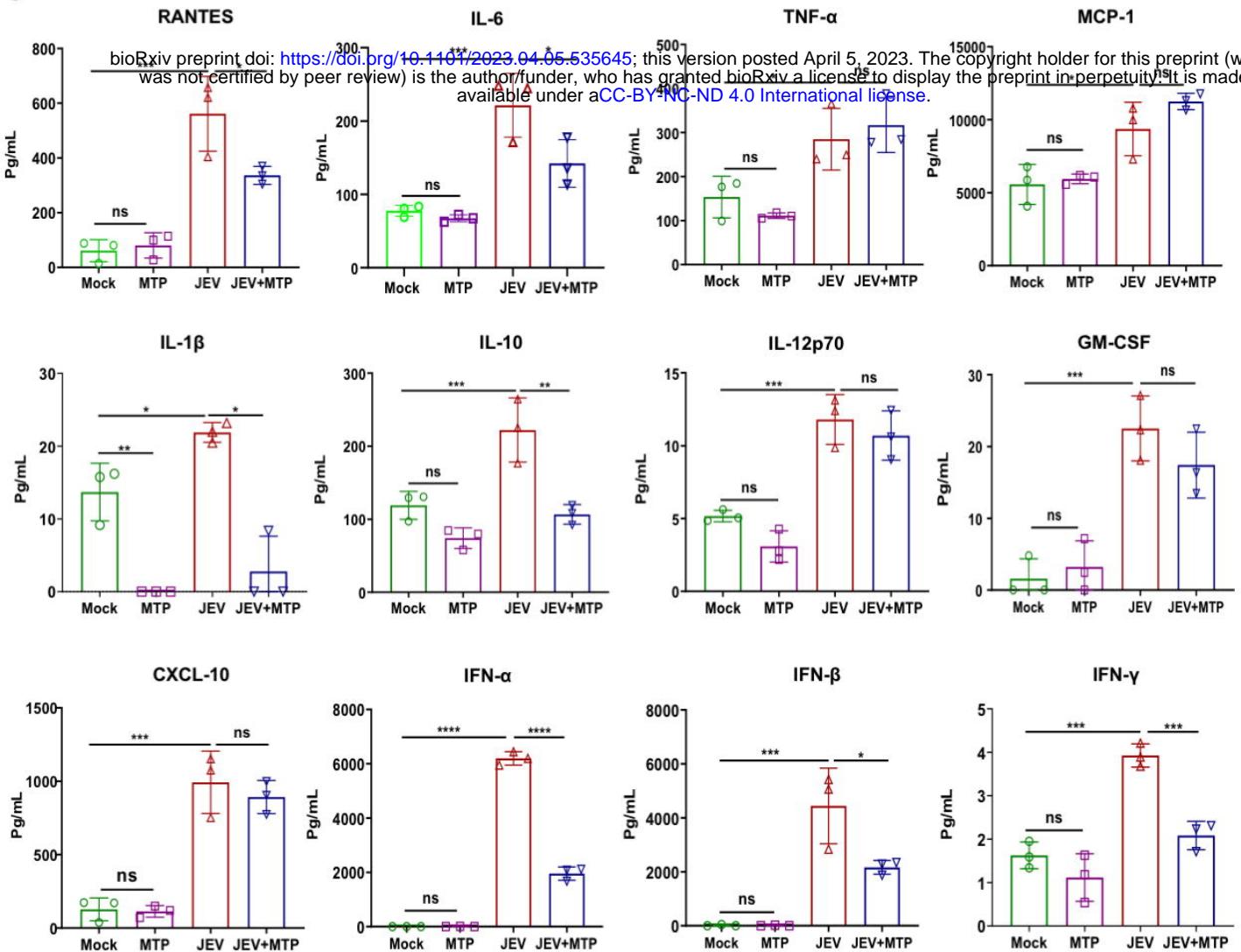
1130 **Fig7: MTP induces adaptive ER stress and negatively regulates type I interferon signaling in**
1131 **virus infected cells.** (A-D) MEFs were infected with JEV at MOI 1, 1 hpi, cells were treated
1132 with DMSO/MTP (10 μ M) for the indicated time points. (A) Protein lysates were analyzed by
1133 immunoblotting using p-elf2 α , elf2 α , and GAPDH (loading control) antibodies. Values
1134 below blot show relative protein expression levels normalized to DMSO controls. (B-D) RNA









1135 was used for the quantitation of ER-stress (B), innate immune/inflammatory pathway (C),
1136 and cholesterol metabolic pathway genes (D). Heatmap showing relative gene expression
1137 levels normalized to DMSO control, represented as mean from two independent
1138 experiments.

1139 **Fig8: Antiviral effect of MTP is autophagy dependent.** (A-D) Neuro2a (MOI 0.1),
1140 MEFs/HeLa (MOI 1) were mock/JEV infected and at 1 hpi, treated with DMSO/MTP (10
1141 μ M)/TFP (10 μ M). Cells were harvested at the indicated hpi and viral RNA levels were
1142 quantified using qRT-PCR. Data represents values obtained from two independent
1143 experiments. (E) Neuro2a cells were transfected with siNT/siATG5 (50 nM) for 48 h, ATG5
1144 RNA levels determined by qRT-PCR. (F) Neuro2a cells were transfected with siNT/ATG5 for
1145 48 h and then infected with JEV (MOI 1). Cells were treated with 10 μ M MTP at 1 hpi and
1146 harvested at 24 hpi to measure JEV RNA levels. Bar-graph shows relative viral RNA levels
1147 after normalization to respective NT transfected DMSO treated control. Data is plotted from
1148 two independent experiments (n=6). (G) MEFs were transfected with siNT/siATG7 (50 nM)
1149 for 48 h, bar-graph shows relative Atg7 RNA levels determined by qRT-PCR. (H) MEFs were
1150 transfected with siNT/ATG5 for 48 h, infected with JEV (MOI 1), and treated with 10 μ M
1151 MTP at 1 hpi. JEV RNA levels were estimated at 24 hpi through qRT-PCR. Bar-graph shows
1152 relative viral RNA levels after normalization to siNT/DMSO control, data is plotted from two
1153 independent experiments (n=6). Data are represented as means \pm SD. (I) Neuro2a cells were
1154 pre-treated with DMSO/MTP (10 μ M)/TFP (10 μ M)/Haloperidol (10 μ M) for 1 h, and then
1155 infected with JEV (MOI 5) for 1 h in the presence of the drug. Cells were given trypsin
1156 treatment to remove dish/cell bound virus particles, and the levels of internalized virus
1157 were measured using qRT-PCR. Data is plotted from two independent experiments and
1158 compared by one-way ANOVA test. (J-L) Neuro2a cells stably expressing EGFP-LC3 were
1159 grown on glass coverslips and were mock/JEV (MOI 50) infected. At 1 hpi, cells were given
1160 DMSO/MTP treatment for 1 h. Cells were immunostained with JEV envelope antibody, and
1161 SIM imaging was performed. The right panel shows magnified view of the region marked by
1162 rectangle. Scale bar, 10 μ m, 5 μ m (inset). Graph shows quantitation of JEV particles (red
1163 dots) per cell (K), and autophagosome number (green puncta) per cell (L), calculated from
1164 15-20 cells across two independent coverslips. Quantification was performed using Imaris 8
1165 software and expressed as \pm SEM. Statistical analysis was performed using unpaired student
1166 t-test, **, P<0.01; ***, P<0.001; **** P < 0.0001, ns; non-significant.



















1167 **Fig9: MTP inhibits inflammatory cytokines secretion from microglial cells partly through**
1168 **autophagy.** N9 cells were transfected with siNT/ATG5 for 48 h, followed by mock/JEV (MOI
1169 3) infection for 1 h and treatment with MTP (10 μ M) till 24 hpi. (A) Cell lysates were
1170 prepared and proteins were analyzed by immunoblotting using ATG5, NS3 (infection
1171 control), and GAPDH (internal control) antibodies. (B) Culture supernatant was used for the
1172 quantitation of cytokine levels using flow cytometry-based CBA assay (n=3). Similar trends
1173 were seen in two independent experiments. All data were expressed as means \pm SD and
1174 one-way ANOVA test was used to determine statistical significance. *, P<0.05; **, P<0.01;
1175 ***, P<0.001; **** P < 0.0001; ns; non-significant.

A




bioRxiv preprint doi: <https://doi.org/10.1101/2023.04.05.535645>; this version posted April 5, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B**C****D****E****F****G****H****I****Fig.1**

JEV

A**B****C****D****E****F****RANTES****TNF-α****MCP-1****IL-1β****IL-10****IL-12p70****CXCL1****CXCL10****GM-CSF****IFN-α****IFN-β****IFN-γ****Fig.2**

bioRxiv preprint doi: <https://doi.org/10.1101/2023.04.05.535645>; this version posted April 5, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A**B****C****Fig.3**

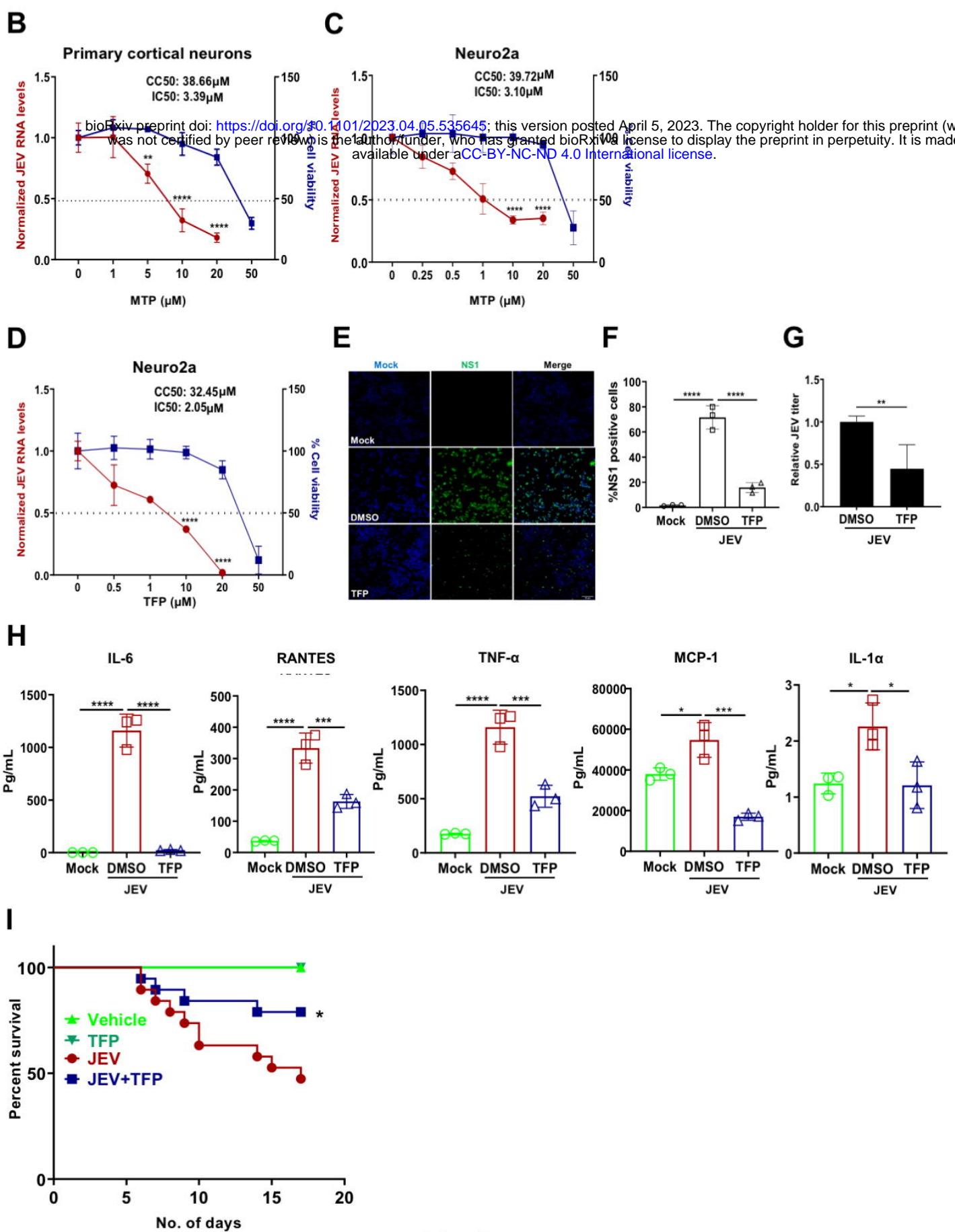
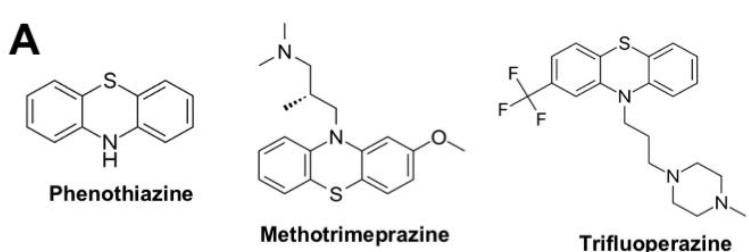



Fig.4

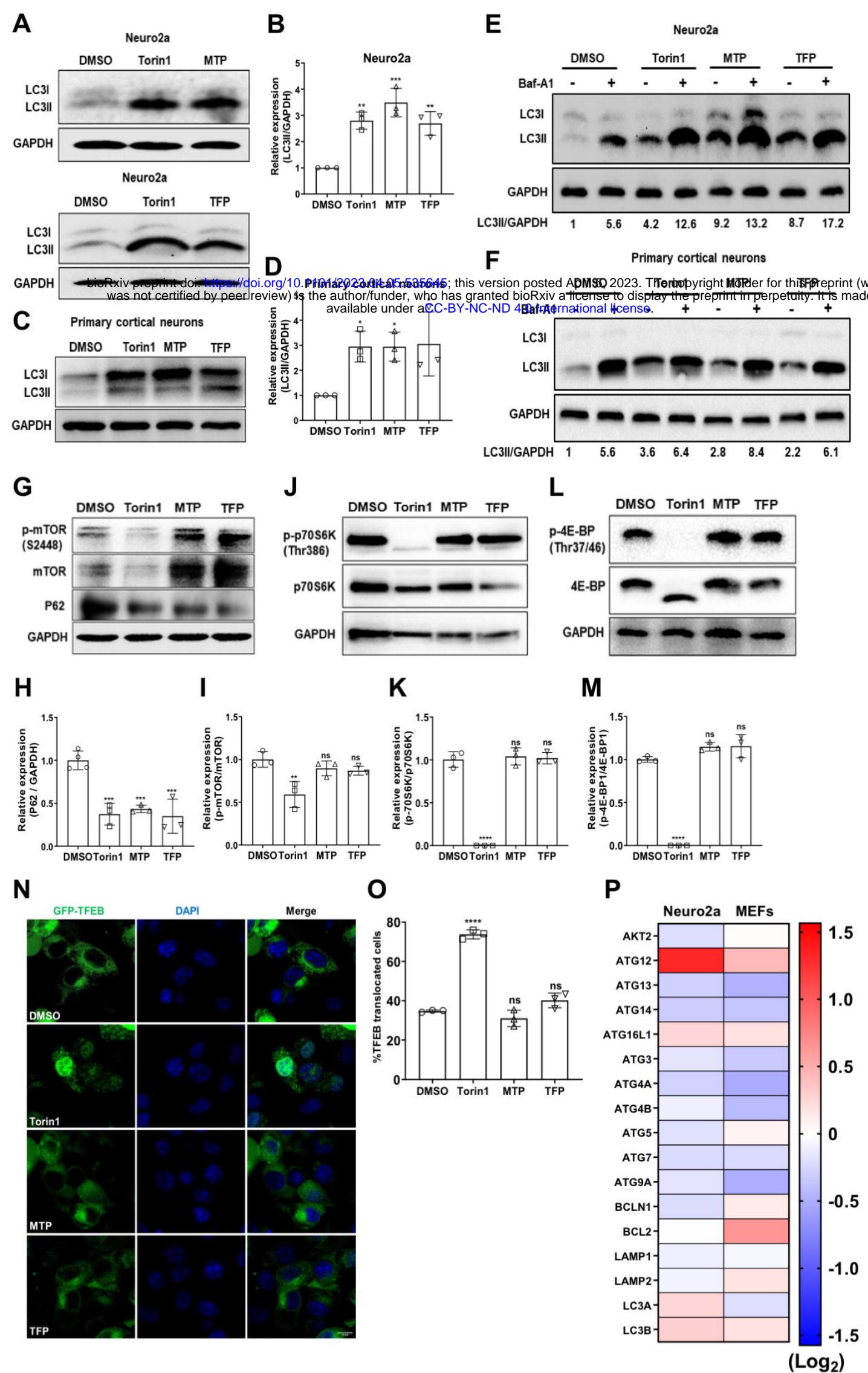
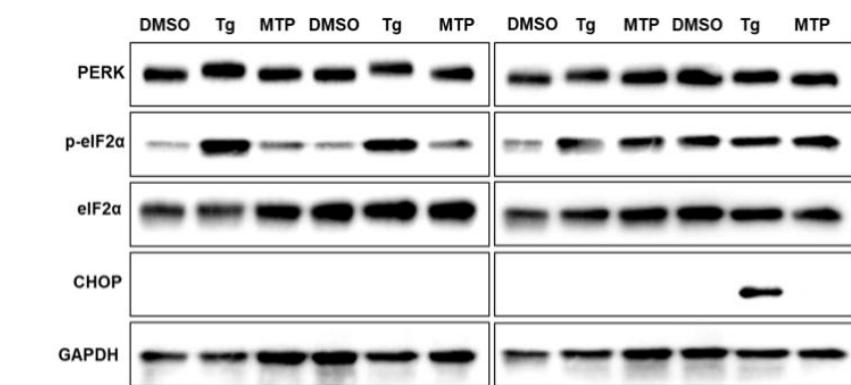
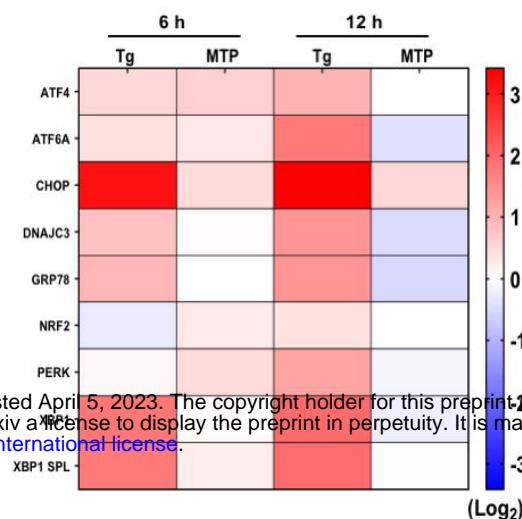
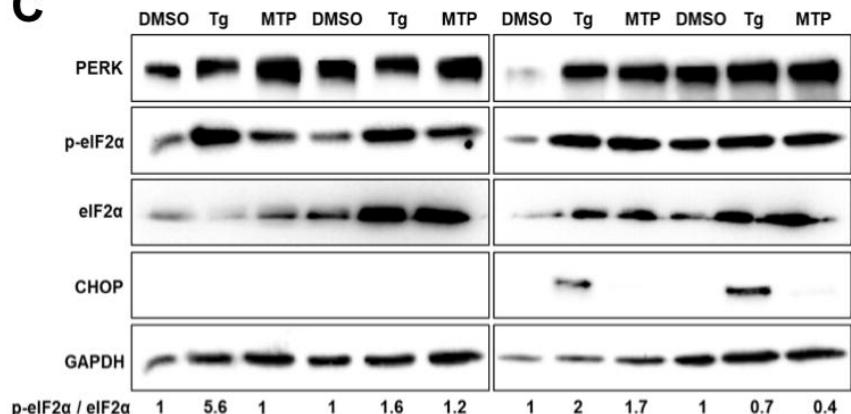
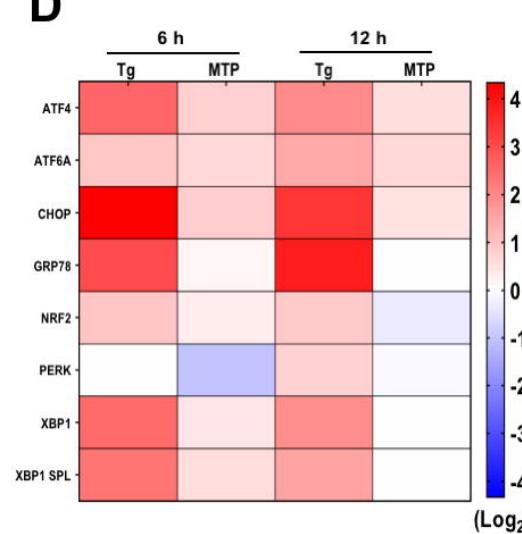
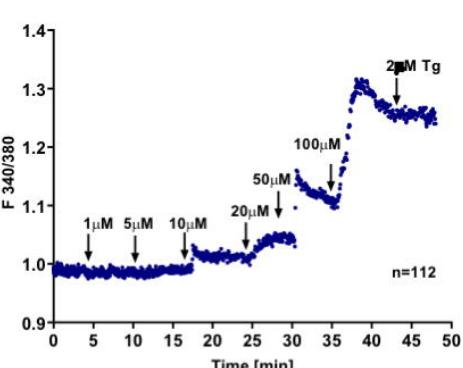
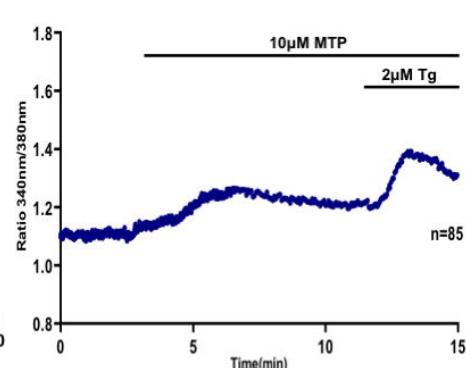
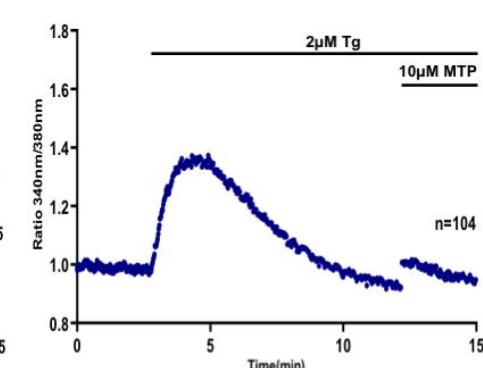
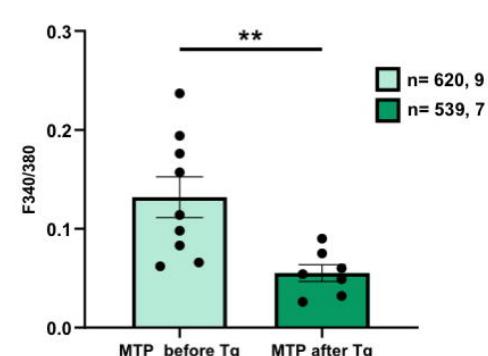
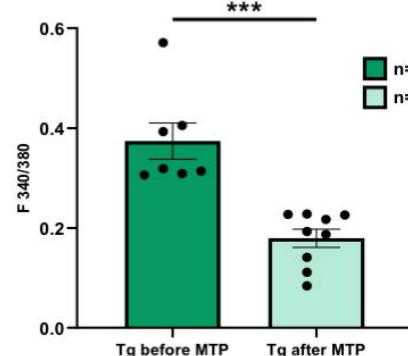
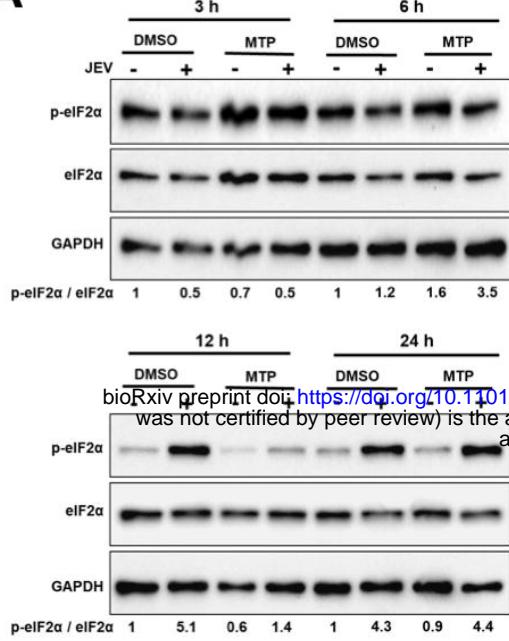
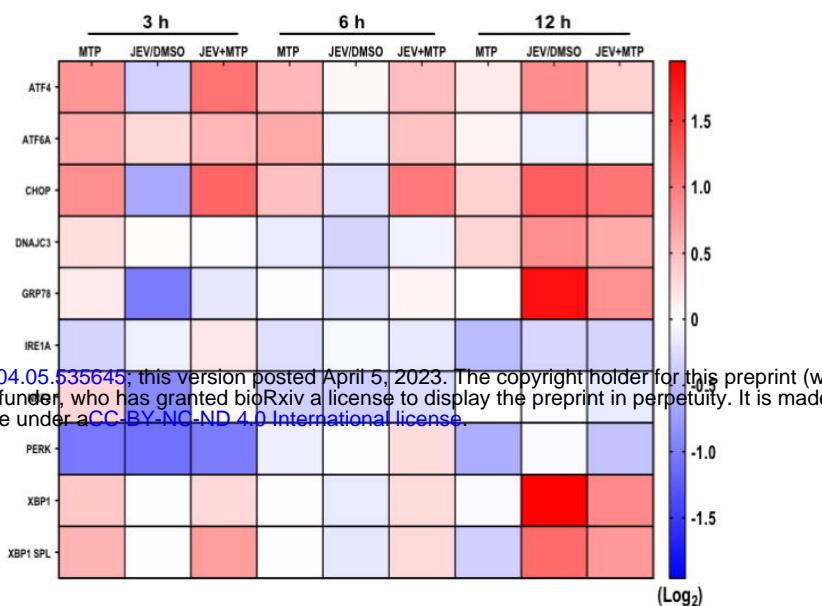
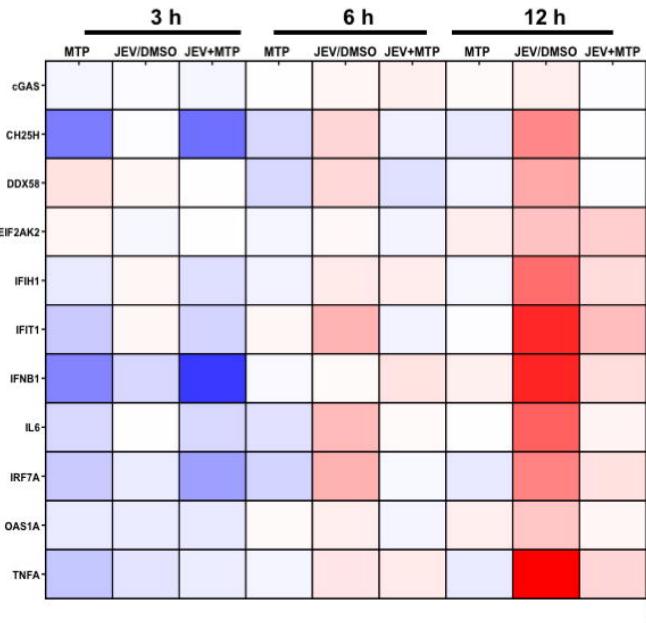
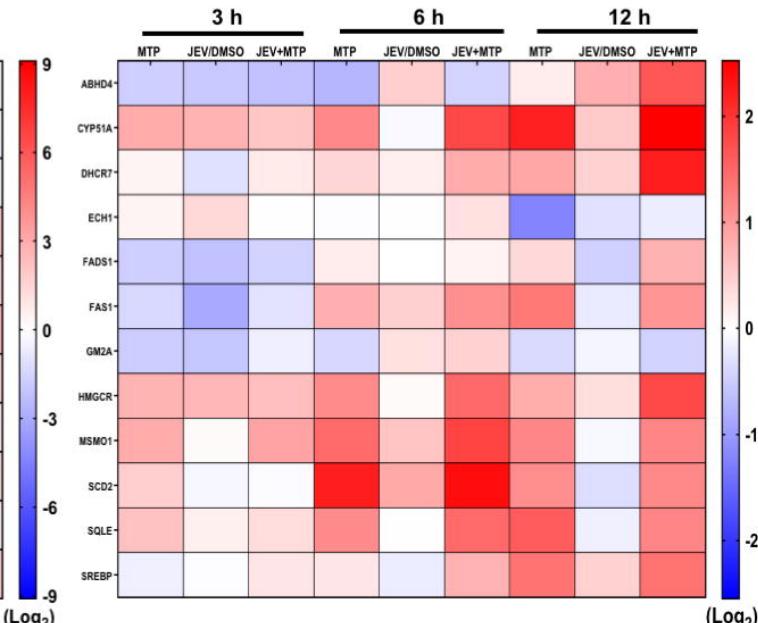















Fig.5

A

bioRxiv preprint doi: <https://doi.org/10.1101/2023.04.05.535645>; this version posted April 5, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B**C****D****E****F****G****H****I****Fig.6**

A**B****C****D****Fig.7**

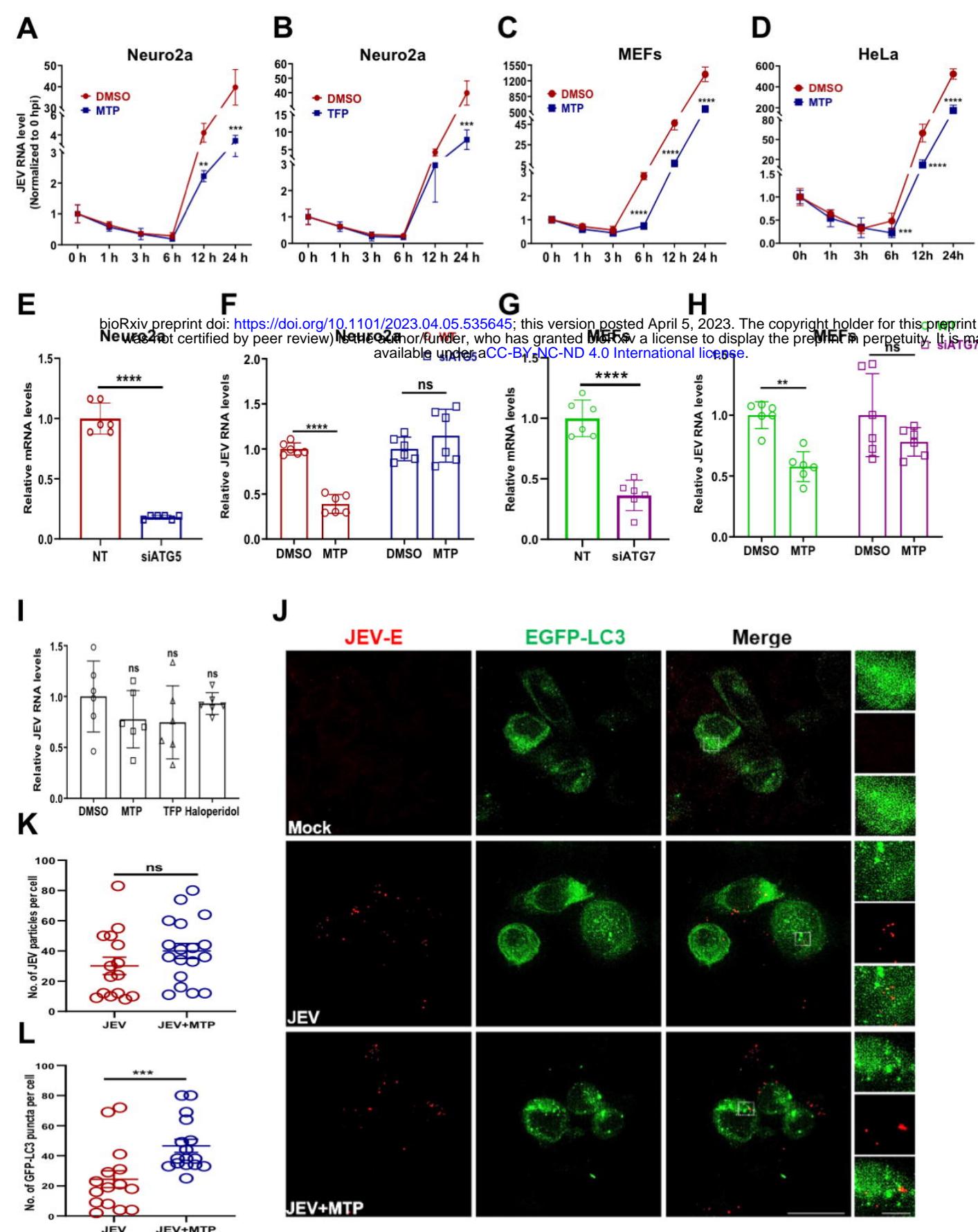
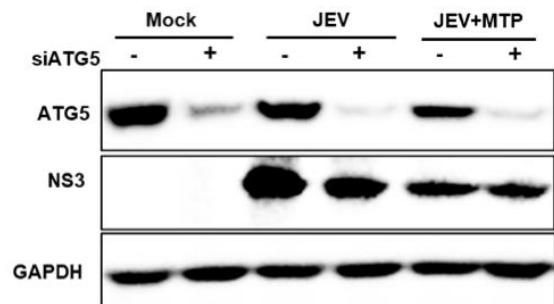
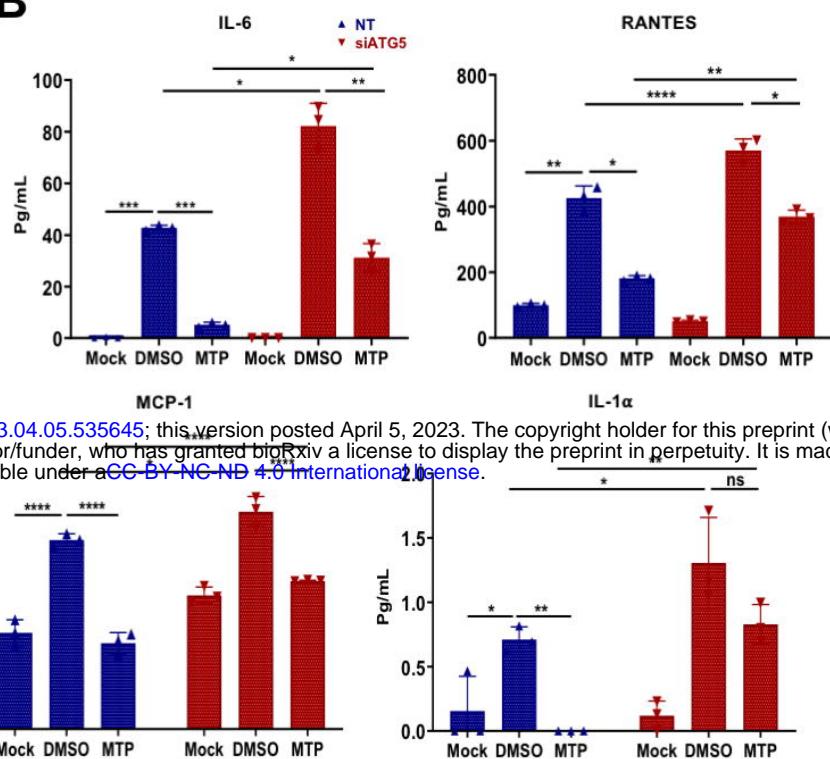




Fig.8

A**B****Fig.9**