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ABSTRACT

The plasma cell cancer multiple myeloma (MM) varies significantly in genomic characteristics,
response to therapy, and long-term prognosis. To investigate global interactions in MM, we
combined a known protein interaction network with a large clinically annotated MM dataset. We
hypothesized that an unbiased network analysis method based on large-scale similarities in gene
expression, copy number aberration, and protein interactions may provide novel biological
insights. Applying a novel measure of network robustness, Ollivier-Ricci Curvature, we examined
patterns in the RNA-Seq gene expression and CNA data and how they relate to clinical outcomes.
Hierarchical clustering using ORC differentiated high-risk subtypes with low progression free
survival. Differential gene expression analysis defined 118 genes with significantly aberrant
expression. These genes, while not previously associated with MM, were associated with DNA
repair, apoptosis, and the immune system. Univariate analysis identified 8/118 to be prognostic
genes; all associated with the immune system. A network topology analysis identified both hub
and bridge genes which connect known genes of biological significance of MM. Taken together,
gene interaction network analysis in MM uses a novel method of global assessment to demonstrate

complex immune dysregulation associated with shorter survival.

STATEMENT OF SIGNIFICANCE

Multiple myeloma has heterogenous clinical outcomes which are not well predicted by current
prognostic scoring systems. Global assessment of gene-protein interactions using Ollivier-Ricci
Curvature produces clusters of patients with defined prognostic significance, with high-risk groups

harboring complex gene dysregulation impacting immune function.
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INTRODUCTION

The plasma cell cancer multiple myeloma (MM) has highly heterogenous clinical outcomes, with
a key determinant of response to treatment being genomic driver events. The most common
recurrent genomic events are hyperdiploidy, with a predominance of gains in chromosomes 3, 5,
7,9, 11, 15, 19, and 21, and canonical chromosomal translocations affecting the immunoglobulin
heavy chain on chromosome 14 (1). MM harbors relatively few recurrent point mutations
compared with many other cancers, with only NRAS, KRAS, TP53, FAM46C and DIS3 having a

prevalence above 10% (2).

Prognostic scoring updates have expanded the International Staging System (ISS) to incorporate
several chromosomal translocations [t(4;14), t(14;16)] and copy number aberrations (CNA;
deletion17p, gain/amplificationlq), with each feature being considered as an individual event
(3,4). It has been recognized, however, that neither these features nor somatic mutations are
sufficient to define prognosis, with more extensive genomic assessments required to accurately

predict biological behavior.

Previous studies have described various genomic subtypes of MM using RNA-sequencing (RNA-
Seq) and/or CNA data (5-10). The subtypes identified by these methods tend to be dominated by
a single genomic event (i.e., hyperdiploidy, t(11;14), t(4;14), high proliferation index) or a
combination of previously described events (i.e., complex hyperdiploidy with gainlq and

monosomy 13) (9).
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Here, we consider that integrating data from a comprehensive systems view, incorporating
complex interactions between multiple genes in a network, may define patterns of biological
behavior not captured by individual genomic events. Recently, a novel measure of network
robustness, Ollivier Ricci curvature (ORC), has been used to characterize breast and ovarian
cancers (11,12) and other pathological states (13). ORC measures the ability of a given connection
or interaction, between a pair of nodes — here being genes — to withstand perturbation,
considering both local and global connectivity in assessing the robustness of each pathway (see
Methods for a detailed description). In the context of cancer genomics, positive curvature implies
that there are multiple, robust active pathways for communication between the two genes. This
edge, or connection, can be described as “hub-like”. Negative curvature implies that if the
connection between two genes is impacted, the effect is relatively greater because of lack of direct
feedback controls; this edge can be considered “bridge-like”. Therefore, ORC analysis predicts the

effect of changes in gene expression within a wider network as opposed to just the individual gene.

We utilize the ongoing Multiple Myeloma Research Foundation (MMRF) multi-site longitudinal
clinical registry study, which follows patients newly diagnosed with MM and collects both clinical
and genomic information periodically (9,14). The project, entitled CoMMpass (Relating Clinical
Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile), has over a thousand
patients enrolled in the latest interim analysis (IA19), and represents the largest publicly available
MM genomic data repository. The dataset includes clinical information, RNA sequencing (RNA-
Seq) information, copy number aberration (CNA), among others. To understand the relationship
between genes, we used a gene interactome derived from the Human Protein Reference Database

(HPRD) (15).
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In this study, we apply an innovative geometric network analysis that integrates complex gene-
product interactions to characterize global patterns of MM biological behavior. Hierarchical
clustering defined groups of patients having different survival times, despite similar ISS
distributions. We identified 118 genes having significantly aberrant expression, most of which are
previously unassociated with MM, and 8 genes with prognostic capabilities which are part of the
immune system. These genes are not just hub genes, but bridge genes which help modulate
connections between two larger hub genes. Here, we demonstrate that protein-gene interaction
network analysis in MM demonstrates complex immune dysregulation which associates with

shorter survival.

METHODS

In this study, we perform a comprehensive geometric network analysis that integrates complex
gene-product interactions to characterize patterns in biological states. The methodology is
mathematically well-defined and has no fitting parameters, with an outline of the process

illustrated in Figure 1.
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i Genomic profiles of 659 patients with MM + HPRD gene interaction information
nput RNA-seq, CNA, clinical information Genes: 8,468; Interactions: 33,695
Geometric Combine HPRD network and genomic Compute robustness between genes
network information via the invariant measure ‘ using Ollivier-Ricci curvature
analysis to get edge weights

. Cluster subjects using the computed Optimal number of clusters (N=6 for
Clustering -

X edge ORC values separately for RNA- » RNA-seq, N=8 for CNA) determined by
analysis .

seq & CNA silhouette score
Gene Differential gene expression analysis GSEA pathway analysis of the 118
Expression of the best & worst clusters identifies » genes imp“cates the immune system
Analysis 118 key genes
Proanosis 8 out of 118 genes show a prognostic 5 out of 8 genes identified show a
9 . effect when looking only at RNA-seq » prognostic effect when looking at CNA
Analysis
data data

Network . . .
Topol 118 key genes fall into multiple - Of the 8 prognostic genes, 4 are
At:::;y‘;?sy categories including bridge and hub bridge genes, and 1 is a hub gene

Figure 1. Overview of the data processing pipeline. This study uses a novel measure of network
robustness, Ollivier-Ricci curvature, to examine genes associated with shorter progression free
survival in multiple myeloma. RNA-Seq: RNA-sequencing; HPRD: Human Protein Reference
Database; CNA: copy number aberration; ORC: Ollivier-Ricci curvature; GSEA: gene set
enrichment analysis.

Genomic data

The MMRF CoMMpass dataset (release iteration: [A19), available to all researchers at
www.research.mmrf.org, includes clinical information, RNA-Seq gene expression, and CNA data
collected over time. Further information on the data collection and curation methods has
previously been published (9). For inclusion in this study, subjects must have RNA-Seq and CNA
data extracted from the bone marrow prior to the start of treatment and both demographic and
survival information. For the RNA-Seq data, the data provided by the MMRF was preprocessed
using the SALMON toolbox (16), included filtering unstranded immunoglobulin values, and was

normalized as transcripts per million (TPM) and log-transformed. For the CNA data, the data

provided by the MMRF was preprocessed using GATK (9).
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Hyperdiploidy defined by more than 2 gains involving >60% of the chromosome affecting
chromosomes 3, 5, 7, 9, 11, 19 or 21. Mutational signatures were assessed using mmsig
(https://github.com/UM-Myeloma-Genomics/mmsig), a fitting algorithm designed specifically for
MM, to estimate the contribution of each mutational signature in each sample. APOBEC-
mutational activity was calculated by combining SBS2 and SBS13, with the top 10% being defined
as hyper-APOBEC (https://cancer.sanger.ac.uk/signatures/sbs/). The complex structural variant

chromothripsis was defined by manual curation according to previously published criteria (17).

Gene-product interaction data

For network analysis on gene-product interactions, we used the curated network given by the
Human Protein Reference Database (HPRD) (15). The database consists of 9,600 genes and
notates 36,822 interaction pairs. We used the largest connected component of shared information

among the HPRD, RNA-Seq, and CNA data sets, which included 8427 of 9600 potential genes.

Ollivier Ricci curvature

ORC integrates both local and global connectivity in assessing the robustness of each interaction
as characterized by the numerous feedback loops in a network modeled by a weighted graph or
Markov chain (18). Robustness, in this context, is defined as the ability of a system to return to its
original state following a perturbation. The ORC calculation is based on the ratio of an intrinsic
graph distance, capturing the metric properties of the network, to a distance defined via optimal
transport theory between the distributions of neighboring genomic values connected to a given

node. Capturing the sample-dependent pattern of curvature weighted edges provides a powerful
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network-wide signature that integrates non-local information; illustrated in Figure 2, examples

zero, positive and negative curvature. ORC was calculated as per previous descriptions (11) and is

defined below.

Formally, ORC is defined as follows:

Wi, 1)
d(i, j)

where W1 is the Wasserstein distance, also known as the Earth Mover’s distance (EMD), between

KOR(isj) = 1 -

the probability distributions, pi, p;. The probability distribution around a given node (gene), i ,

is defined by the edge weights originating from the given node i to adjacent nodes as follows:

pilh) = § Sewire
0 koA
Where 7, indicates either RNA-Seq or CNA values in node & connected to node i. The
denominator d(i, j) is the weighted shortest path between the two nodes, where the edge weights
of the weighted graph are derived from nodal values (RNA-Seq or CNA) quantifying the
information between two nodes and is formally defined below.

(i, j) = Zﬁ

i~J
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Zero Curvature Positive Curvature  Negative Curvature

Figure 2. Ollivier Ricci curvature on example networks. Gray edges indicate zero curvature
between nodes, blue edges indicate positive curvature, and red edges indicate negative curvature.
In the center image, there are multiple paths that can be traced out between any pair of nodes;
therefore, the curvature is positive. Conversely, the red edges in the right-most figure show
negative curvature values since the removal of any edge would bisect the graph.

Clustering analysis

To explore the potential subtypes in the cohort, we used a hierarchical agglomerative clustering
method. For each data type, the RNA-Seq, CNA, and ORC matrices were separately clustered.
The number of clusters was determined by the silhouette score (19), a measure which takes into
account both the average intra-cluster distance and average nearest-cluster distance to determine
the optimal number of clusters. Survival analysis for progression free survival (PFS) was
performed using the Kaplan-Meier method and log-rank tests were used to determine statistical

significance. Multiple comparisons were corrected using the Benjamini Hochberg false discovery

rate (BH-FDR) (20).

Differential gene expression analysis
To investigate biological differences between the identified subtypes, we conducted a differential
gene expression analysis between high and low-risk groups, as identified in prior steps, using RNA

sequencing read counts with DESeq2 (21). The p-values from this analysis were then BH-FDR

10
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corrected. Genes with a corrected p-value less than 0.05 and an absolute log2 fold change greater

than 3.5 were considered significant.

Pathway analysis

Pathway analysis was performed using the Broad Institute’s Gene Set Enrichment Analysis
(GSEA) tool (22,23). The utilized pathways are from the hallmark gene set collection from the
human molecular signatures database (MSigDB) (24). The fifty gene sets present different
biological states and processes identified using manual curation. Gene association with the
immune system was determined using ImmuneSigDB, an immune system pathways database

provided by GSEA (25).

Prognosis analysis

To test whether or not an individual gene was prognostic, we used a Cox’s proportional hazards
model (26) with the RNA-Seq data. The p-values from this analysis were corrected for multiple
hypothesis testing using BH-FDR. For genes that were significant with RNA-Seq, we repeated the

modeling analysis using CNA data.

Network topology analysis

To understand how genes are connected to each other, a given gene’s immediate neighbors are
visualized as a ‘1-hop plot.” Furthermore, a ‘2-hop plot’ shows not only a gene’s immediate
neighbors but also the nearest neighbors of the immediate neighbor genes, in order to contextualize

the relative portion of the overall network a given gene occupies. Bridge genes connect with

11
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relatively few genes in the network, while hub genes form many connections relative to the rest of

the genes in the network.

Data and code availability
The methods and instructions for how to use them are available for download at
www.github.com/aksimhal/mm-orc-subtypes. All data is available for download at

www.research.mmrf.org.

RESULTS

Patient cohort

CoMMpass IA19 RNA-Seq and CNA data were available for 659 patients. The mean age in the
dataset was 62.5 + 10.7 years; 60% were male, and the ISS distribution was 35% stage I, 35%
stage 11, and 30% stage III. For the cohort, the five-year PFS rate was approximately 32%, with
the longest survival time listed at eight years. An overview is presented in Supplementary Table

1.

Hierarchical clustering using Ollivier-Ricci curvature differentiates subtypes with low

progression-free survival rates

The largest connected network component from shared information between the HPRD, RNA-
Seq, and CNA data consisted of 8,468 nodes and 33,695 edges. ORC, a correlate for robustness of
strength between gene interaction pairs, was computed for each of the 33,695 interaction pairs in

each individual patient. Hierarchical clustering of the resultant ORC matrix together with CNA

12
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data produced 8 clusters (Supplementary Figure 1A, Figure 3A), while clustering based on
RNA-Seq produced 6 clusters (Supplementary Figure 1B, Figure 3B); both methods being
significant for PFS (CNA; p=0.0082, RNA-Seq; p=0.0016, log-rank test). Interestingly, the
clustering appears to be defining biological differences not captured by the ISS prognostic score,

with a relatively even distribution of ISS stages in each cluster.

Considering the dominant impact of hyperdiploidy on CNA analyses, we repeated hierarchical
clustering on the non-hyperdiploid samples and found PFS prediction remained significant
(p=0.0002, log-rank test). Of note, analyzing CNA via ORC produced a cluster representing 10%
of patients with a markedly inferior PFS when compared to the remaining clusters (Figures 3A,
3C); median PFS was 1.7 years, despite only 35% of patients being ISS III. When assessing
previously described copy number risk factors (Supplementary Table 2), patients in this cluster
almost universally contain aberration in chrlq (gain; 57%, amplification; 29%, diploid 3%), while
also harboring the highest proportion of the complex structural variant chromothripsis (43% of
patients, p<0.0001 compared with the remaining clusters, Fisher’s exact test). This finding is
congruent with previously published data demonstrating chromothripsis to be an independent
prognostic factor in MM (17), and with an increasing body of knowledge demonstrating that

multiple genomic insults compound to worse survival (17,27).

13


https://doi.org/10.1101/2023.04.05.535155
http://creativecommons.org/licenses/by-nc/4.0/

S OO0 JN Nk~ Wi

— —
—

—
\]

13

14

15

16

17

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.05.535155; this version posted April 7, 2023. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A KM PFS survival curves, p=0.0082 B KM PFS curves, p=0.00161
1.0 —— Cluster 1 (192) 10 —— Cluster 1 (263)
Cluster 2 (78) Cluster 2 (108)
—— Cluster 3 (47) —— Cluster 3 (98)
0.8 —— Cluster 4 (90) 0.8 —— Cluster 4 (70)
—— Cluster 5 (98) —— Cluster 5 (84)
—— Cluster 6 (41) —— Cluster 6 (36)
~—— Cluster 7 (69)
0.6 o 0.6
Cluster 8 (44)

Probability
Probability

o

IS
o
IS

02
02{ = e

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Years Years
c KM PFS survival curves, p=0.0082 D KM PFS survival curves, p=3e-05
1.0 —— High Risk Group (69) 1.0 —— High Risk Group (106)
—— Low Risk Group (590) —— Low Risk Group (361)

0.8 0.8

o

o
o
o

Probability
Probability

e

IS
o
i

i 0.2

0.2

Years Years

Figure 3. Hierarchical clustering using Ollivier Ricci Curvature (ORC) predicts progression-
free survival (PFS) in multiple myeloma. Kaplan-Meier analysis of PFS based on ORC
according to (A) copy number aberration, and (B) RNA sequencing. To better understand the
differences between the high risk and low risk cohorts, clusters with similar outcomes were
grouped. C) For CNA based clustering, clusters 1-6 and 8 were combined into the low-risk group.
Cluster 7 was the high-risk group. D) For RNA-sequencing data, clusters 4 and 6 were combined
into a high-risk group. Clusters 1 and 3 were combined into a low-risk group.

Clustering of the ORC matrix with RNA-Seq data produced more variation in PFS between
clusters (Figure 3B). Of note, clusters 2 and 3 contain the majority of t(11;14) patients
(Supplementary Table 3). Considering the dominant role of CCNDI in MM pathophysiology,
we repeated hierarchical clustering in the non-t(11;14) samples, which remained significant for
PFS-prediction (p=0.0002, log-rank test). When clustering with all patients; 98% of those in cluster
4 harbor t(4;14), and 81% of those in cluster 6 have a translocation affecting MAF,MAFA or
MAFB, with 72% having increased APOBEC-mutational activity. Clusters 1 and 5 are more

heterogenous, with a combination of hyperdiploidy, canonical translocations, gain/amplq, 7P53

14
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aberration and chromothripsis. While a high proportion of patients in the 2 clusters with the
shortest PFS (4 and 6) carry a previously described genomic risk factor, the other clusters (1 and
3) demonstrate a longer PFS despite 29.2% being ISS 111, and 34% harboring a risk factor included
in R-ISS / R2-ISS. Given that clustering with ORC using RNA-Seq demonstrated better
discrimination of PFS compared with CNA, we have elected to focus on RNA-Seq for the
remainder of the current study. We hypothesized that expanding on the ORC analysis with gene
set enrichment analysis (GSEA), prognostic modeling, and network topology analysis will provide

further biological insights.

Expression analysis using ORC-based risk groups demonstrates differential DNA damage and

immune system signaling

Differential gene expression analysis was conducted comparing high-risk (clusters 4 and 6) and
low-risk (clusters 1 and 3) as defined by ORC analysis of RNA-Seq data. Gene sets enriched in
the high-risk group includes inflammatory response, IL-6/JAK/STAT3 signaling and DNA
damage response (DDR) signaling (P53 pathway, DNA repair and apoptosis, Table 1). Of note,
there was no significant difference between the groups in p53 function by traditional methods
(TP53 mutations and dell7p), therefore our methods are capturing more global dysregulation in

DNA damage signaling than is evident by standard mutation and copy number analysis.
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Table 1. Differential gene expression analysis according to ORC-based risk groups.
Directionality indicates the gene-set expression in the high-risk group compared with the low-
risk group, with risk being defined by ORC of RNA-Seq data.

Mitotic spindle BINI1, GEMIN4, LATS1 5.15e-3 Underexpressed

DNA repair ADA, CCNO, ERCC4, GTF2HS, 9.16e-5 Overexpressed
NFXI1, DCTN4

IL6 JAK STAT3 CCL7, JUN, IFNGRI, IL2RA 1.52¢-3 Overexpressed

signaling

Inflammatory response ~ CCL7, KIFIB, MEP1A, PDPN, 1.62e-3 Overexpressed
KCNJ2

P53 pathway ADA, JUN, SATI, PLK2, NOLS 1.62e-3 Overexpressed

Apoptosis JUN, IFNGRI, SATI, PAK1 6.44e-3 Overexpressed

Within these differentially expressed pathways, 118 genes were selected for further pathway
analysis (having absolute log fold change > 3.5 and corrected p-value < 0.05, Supplementary
Table 4). Of these 118 genes, 19 were under-expressed and 99 were overexpressed in the short
survival group compared to the longer survival group in the poor survival group. In univariate
analysis, 8/118 genes were predictors of PFS (BUBI, MCM1, NOSTRIN, PAM, RNF115, SNCAIP,
SPRR2A and WEEI, Table 2), with 5 of these also being significant when analyzing based on
CNA (NOSTRIN, PAM, RNF115, SNCAIP and SPRR2A). Interestingly, none of these genes feature
in previously described lists of MM driver genes (27,28), suggesting that we are capturing novel
aspects of MM biology. In addition to differential expression in the inflammatory response and
IL-6/JAK/STAT3 signaling gene sets, interrogation of the ImmuneSigDB database demonstrated
110 /118 genes to overlap with ImmuneSigDB pathways, including all 8 of the independently
prognostic genes (Table 2). Taken together, these findings suggest that global assessment of gene

interactions can detect complex immune dysregulation.
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Table 2. Gene expression in 8 novel immune-network genes associate with survival.
Coefficients less than 1 indicate a protective effect — associated with longer PFS. Coefficients
3 greater than 1 indicate a detrimental effect — associated with a shorter PFS.

N =

Gene Coefficient 95% - 105% Range Q-value Gene description Number of

ImmunoSigDB
gene sets

BUBI 1.36 £ 0.05 1.22-1.51 1.71e-8  BUBI mitotic checkpoint 5
serine/threonine kinase

MCM6 1.45£0.07 1.27-1.66 6.19¢-8  Minichromosome 4
maintenance complex
component 6

NOSTRIN 1.58 +£0.11 1.27-1.98 4.49¢-5  Nitric oxide synthase 1
trafficking
PAM 0.72 £0.08 0.62-0.83 1.34e-5  Peptidylglycine alpha- 7
amidating monooxygenase
RNFI115 1.42+0.11 1.14-1.77 1.72e-3  Ring finger protein 115 6
SNCAIP 1.40 +0.09 1.17-1.67 2.03e-4  Synuclein alpha interacting 1
protein
SPRR24 1.34 £ 0.05 1.22-1.46 1.43e-10  Small proline rich protein 3
2A
WEEI 1.32 £ 0.04 1.23-1.41 6.19¢e-15  WEE1 G2 checkpoint 9
kinase
4
5

6  Local neighborhood 1-hop and 2-hop gene networks demonstrate differential DNA damage

7  and immune system signaling

9 A key feature of gene network analysis is the ability to capture a wide range of gene-pair
10  interactions, above and beyond the expression levels of a single gene. While this analysis may be
11 difficult to interpret in the context of highly connected genes, it can detect complex patterns (i.e.,
12 an overall increase or decrease in network robustness) or specific individual interactions (i.e., a
13 gene-pair demonstrating an increase in robustness while all other local connections become more

14 fragile).
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Comparing high-risk and low-risk clusters as defined by ORC analysis of RNA-Seq data, we note
several interesting network expression patterns. Within DDR-signaling, 7P53 and ATM signaling
pathways overwhelming become more robust in the high-risk group (Figures 4A, 4B), with more
robust pathways generally expected to exert increased effects. While we typically associate loss of
p53 function with poor prognosis in cancer, global network analysis is detecting global changes in
expression that may not fully capture functional protein levels. The same analysis performed on
the basis of CNA demonstrates a mixture of 7P53 connections becoming more robust and more

fragile, possibly reflecting the impact of del17p (Supplementary Figure 2A).

In addition to DDR-signaling, networks centered on CCNDI and MYC become more robust overall
(Figures 4C, 4D), which suggests these signaling and transcriptional hubs remain dominant in the
context of high-risk disease. In contrast to the above networks showing a clear signal of robustness,
the effect on RAF / RAS / MAPK and NFKB signaling are more heterogenous (Supplementary
Figure 2B-D), suggesting that some parts of this network may play an oversized role in MM

biology compared with the other interactions.

Considering the immune dysregulation observed on GSEA analysis, signaling through some
cytokines and receptors become more fragile (i.e., IL-6, IFNg; Figures 4E, 4F), while others
demonstrate a more heterogenous effect (i.e., TNF, IFNa; Supplementary Figures 2F, 2G). In
this context, pathways becoming more fragile would be expected to exert less than normal control.
Interestingly, multiple networks involving therapeutic targets for MM immune-based therapies

become more fragile, suggesting potential therapeutic vulnerabilities. This included TNFRSF17
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(encoding for BCMA, a cellular-therapy target), CD38 (the target of monoclonal antibody

daratumumab), IZKF3 (a target of immunomodulatory agent lenalidomide) and SLAMF7 (the

target of monoclonal antibody elotuzumab) (Figures 4G-1, Supplementary Figures 2H, 2I).
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Figure 4. Local neighborhood of selected genes relevant to MM biology and the immune
system. Each line or edge represents the interaction between a gene-pair in a network, comparing
the median interactions observed in the high-risk group compared with those in the low-risk group.
Blue edges indicate that the connections are more robust in the high-risk group, while orange edges
are more fragile, risk being defined by the RNA-Seq-based clustering analysis. Higher resolution
images are available at www.github.com/aksimhal/mm-orc-subtypes.
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From the list of 8 novel genes having expression associated with PFS in MM, all have a recognized
role in immune regulation (Table 2). In contrast with the other genes, only WEEI, (encoding for
a tyrosine kinase which affects G2-M transition), has been previously implicated in MM biology
(29). In the HPRD, WEEI acts as a hub gene, forming an above average number of connections
with its immediate neighbors (18 versus 8.4 for the whole graph). Interestingly, within the 8
prognostic genes, BUBI and WEEI connect to each other in a 2-hop analysis via PLK1, CDKI,
and CRK. From the genes with significantly different expression between risk groups, 24/118

(20.3%) connect to the 8 prognostic genes within the two-hop analysis.

The 8 genes identified play different roles in their local neighborhoods (Figure 5); NOSTRIN, (a
nitric oxide synthase trafficker), RNF115, (an E3 ubiquitin ligase), and SPRR2A4 (induced by type-
2 cytokines in response to infection) form bridge-like connections to a single other gene. NOSTRIN
connects to another nitric oxide gene, NOS3, RNF115 to the RAS oncogene family member
RAB7A4, while SPRR2A connects with EVPL (associated with squamous cell cancer and
autoimmune disease). Four genes act as bridges for their local neighborhood: BUBI, MCM6, PAM,
and SNCAIP (Figures 5, 6). While these genes are not hub genes per se, they connect to multiple

hub genes and could therefore play a modulating role.
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BUB1 NOSTRIN RNF115 SPRR2A
ARIH2  ap31 NOS3 RAB7A EVPL

NOSTRIN RNE115 SPRR2A

MCM6 PAM SNCAIP

MCM7  scnm1 UHMK1

Figure 5. Local neighborhood of the eight genes identified as being predictive of PFS. Each
line or edge represents the interaction between a gene-pair in a network, comparing the median
interactions observed in the high-risk group compared with those in the low-risk group. Blue edges
indicate that the connections are more robust in the high-risk group, while orange edges are more
fragile, risk being defined by the RNA-Seq-based clustering analysis.
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Figure 6. ‘Two-hop’ neighborhood of the eight genes identified as being predictive of PFS.
Each line or edge represents the interaction between a gene-pair in a network, comparing the
median interactions observed in the high-risk group compared with those in the low-risk group.
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Blue edges indicate that the connections are more robust in the high-risk group, while orange edges
are more fragile, risk being defined by the RNA-Seq-based clustering analysis. Higher resolution
images are available at www.github.com/aksimhal/mm-orc-subtypes.

For example, in the 2-hop analysis, the mitotic checkpoint kinase BUBI connects to HDACI
(Figure 6A), a histone deacetylase commonly upregulated in MM cells with a well-defined impact
on prognosis (30). We note multiple network connections between BUBI and HDACI, as well as
connections between BUBI and each of CDK/ (cell-cycle transition regulator) and APC (a tumor-
suppressor protein within the Wnt signaling pathway). PAM, encoding for a protein with multiple
functions described, connects to PRKCA, a protein kinase involved in regulation of proliferation,
tumorigenesis, and inflammation. Interestingly, the network connections around PRKCA are
predominantly more robust in the high-risk group. SNCAIP, (which inhibits ubiquitin ligase
activity), connects with PTN (Figure 6F; a hub gene encoding for a protein having a role in cell
survival, angiogenesis and tumorigenesis), previously noted to be elevated in MM patients (31).
Our analysis finds that the connection between SNCAIP and PTN becomes more robust in the high-
risk group. Interestingly, when comparing the 1- and 2-hop networks between RNA-Seq and CNA
data, several gene networks were highly analogous between the two methods (Supplementary

Figure 3).

Overall, the complex gene interactions captured through ORC analysis have the capacity to
significantly improve our understanding of biological differences between patients have short and
long survival, extending on what we understand from traditional mutation and copy number

analysis.
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DISCUSSION

In order to investigate global gene-protein interaction networks in MM and their impact on
prognosis, we combined a known protein interaction network, HPRD, with a large MM dataset;
CoMMpass. We applied a novel measure of network robustness, ORC, to examine patterns in the
RNA-Seq gene expression and CNA data and how they relate to clinical outcomes. Hierarchical
clustering using ORC produced 6 clusters based on RNA-Seq and 8 clusters based on CNA data,
with both data sources predictive of PFS. Previously published genomic classifications in MM
based on RNA-Seq and/or CNA data have defined between four to twelve clusters, depending on
the data and analytical approach (5-10). To date, no study has integrated genomic information
with known protein interaction information in an analysis able to simultaneously integrate local
and global network information. By using techniques previously shown to uncover differences in
network strength in other domains, such as ovarian cancer and autism spectrum disorders (12,13),

we were able to demonstrate a new way of characterizing MM genomic data.

Our results demonstrate fidelity with known genomic risk factors (i.e., t(4;14), gain 1q, TP53
aberration) as well as emerging factors not yet in clinical use (i.e., APOBEC mutational activity
and the complex structural variant chromothripsis (17,32,33). While some genomic subgroups
were defined by a single event (i.e., 98% of RNA-Seq cluster 4 harboring t(4;14), the network
analysis approach produced other groups not previously described, with a combination of genomic
events defining prognostically significant clusters. It is notable that the cluster having the shortest
PFS was defined not by ISS, R-ISS, hyperdiploidy or IgH translocations but associated with the
combination of gain/amp 1q and chromothripsis. This finding supports the hypothesis that more

comprehensive, global genomic characterization is able to better define MM prognosis.
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As ORC measures relative robustness between genes, GSEA analysis comparing high-risk and
low-risk groups as identified by ORC analysis of RNA-Seq data allowed exploration of gene-pair
interaction changes in robustness associated with survival differences between groups. GSEA
located 118 differentially expressed genes associated with six key biological pathways, five of
which were overexpressed in the group with the poor survival. The underexpressed pathway,
mitotic spindle assembly, has previously been reported to be associated with poor prognosis in
MM (34), while the overexpressed pathways were all associated with DNA damage response
(DDR) and acute phase inflammation / immune response. While del 17p is included in the R-ISS
prognostic score, and genomic complexity and instability are recognized features of high-risk MM
biology (35-38), there is not currently any immune component to routine prognostication of
NDMM patients. Furthermore, there is likely a biological link between the pathways we describe,
with an inflammatory hypoxic microenvironment potentially contributing to aberrant DDR (39),
and functional high-risk patients who relapse within 12 months described to harbor both mutations
affecting the IL-6/JAK/STAT pathway and abnormal gene expression associated with mitosis /

DDR (40).

Univariate analysis of the 118 differentially expressed genes identified 8 prognostic genes which
are all associated with immune function according to ImmunoSigDB. Network topology analysis
identified most of these 8 to be bridge genes, connecting to genes known to have biological impact
in MM (i.e., HDACI, CDKI, PRKCA and PTN). The near-neighbor and 2-hop gene topology

networks capture more global gene dysregulation, potentially missed in single-gene expression
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analysis. Our results may also suggest a new set of therapeutic targets to further investigate in

high-risk MM patients.

Considering possible limitations; while CoMMpass represents the largest multi-site, international
genomic MM dataset compiled to date, it does contain patients who received drug regimens no
longer in common usage, and a low proportion of patients receiving the most potent modern
regimens. Ideally our methods would be applied to datasets including daratumumab- based
induction therapy. Considering possible extension of our analytical methods: while the choice of
using the HPRD as the protein interaction network is common in literature (41), other networks,
such as STRING (42), may provide complementary results. Finally, no network analysis method
represents the ‘gold standard’, and it is plausible that other clustering and network analysis
methods may provide alternative results. Future studies may consider whether or not the 118 genes
associated with high-risk individuals are dysregulated at precursor MM stages, and how the

expression of these genes is altered in response to treatment.
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