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Abstract— What is the optimal way to harvest an ecological
population sustainably is a fundamental problem in natural
resource management. Here we use the framework of the
stochastic logistic model which captures random birth-death of
individuals to determine the optimal harvesting strategy that
maximizes the integrated yield over time. Harvesting is assumed
to occur at either a constant or state-dependent rate, and
individuals are harvested with a certain probability whenever
a harvesting event occurs. A special case of state-dependent
harvesting is a threshold-based strategy, where harvesting is
done when the population crosses a threshold. We use moment
closure schemes to develop analytical formulas quantifying the
mean and optimal yield. Moreover, as populations are suscep-
tible to extinction at high harvesting rates, the Finite State
Projection (FSP) method is used to estimate the probabilities
of extinction across strategies and parameter regimes. Our
results show that the threshold-based strategy is most effective
in maximizing the yield as it suppresses population fluctuations
and minimizes extinction events.

I. INTRODUCTION

The problem of determining the optimal time to harvest
a population that is growing dynamically is a common
challenge in ecology and resource management [1]–[3]. To
obtain an effective harvesting strategy, it is crucial to consider
not only the economic benefits of the harvest but also the eco-
logical sustainability of the population being harvested [4].
Over-harvesting can result in natural resource depletion,
environmental degradation, and a loss of biodiversity [5].
In contrast, under-harvesting can lead to missed economic
opportunities and reduced food security [6].

Modeling the population dynamics has been part of the
challenge in the current approach to the problem. Previous
contributions to the literature have focused on analyzing
the optimal harvesting strategies for populations with de-
terministic continuous growth [7], [8]. Other approaches
have considered stochasticity in population dynamics as a
diffusive process [9]–[13]. However, these approaches have
not considered the possibility of population extinction since
they take the population as a continuous variable that can
take any arbitrary small amount and almost never reaches
zero [14]. As a result, such models have a limited approach to
the problem of extinction from an ecological standpoint [15].

The harvesting process is an additional challenge in the
problem description. Some approaches consider harvesting
as a perturbative process where the population can be ap-
proximated as continuous [9], [10]. A more accurate model
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should take harvesting as a non-continuous jump where a
large amount of resources can be collected [16], [17]. The
amount of harvested resource is also subject to random
variability since each individual has some probability of not
being caught. Therefore, there is a need for more sophis-
ticated models that can consider the complex dynamics of
population growth, harvesting, and extinction risk, which can
have significant implications for conservation and sustainable
resource management.

This article studies different harvesting strategies for an
integer-valued population with demographic stochasticity.
For modeling the population dynamics, we use the discrete
logistic growth model with intrinsic random fluctuations
given by stochastic birth and death events [18]. While the
rate of birth is proportional to the population count, the
death rate is a quadratic function of the population. In the
stochastic model, extinction is a certain outcome. However,
the time to extinction can be significantly long for many
specific parameter regimes [15], [19].

The harvesting process is modeled as a jump process
where each individual has a certain probability of being
caught. Different strategies can be distinguished by the
frequency of the harvest. In this study, we focus on three
strategies. The constant Poisson rate technique involves
harvesting as a stochastic process with Poisson arrivals.
The state-dependent rate strategy takes the probability of
harvesting over a time interval increasing with the population
count, while the threshold-based strategy triggers harvesting
only once the population reaches a critical level.

The constant harvesting rate strategy is revisited from [20]
providing analytical approximations to the maximum total
yield and the optimum harvest rate. For state-dependent har-
vesting, we derive formulas for the optimal rate and yield us-
ing the moment dynamics approach, as previously described
in the literature [21]–[25], by applying closure schemes to
simplify the differential equations of the statistical moments
[26]–[34]. For threshold-based harvesting, due to singular-
ities in the moments dynamics, we use the time-averaging
method. We should note that in our analytical approaches,
we assumed a negligible probability of population extinction.
To assess the validity of these analytical approximations, we
numerically solved numerically the system while considering
a non-zero probability of extinction. To do this, we used the
finite state projection (FSP) method [35].

The article is structured as follows: In Section II, we
present the problem formally and discuss the results for
a constant harvesting rate. In Section III, we explore the
state-dependent harvesting strategy and how to maximize
the yield by optimizing the harvesting rate. Next, in Section
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IV, we explain the threshold-based strategy and optimize the
threshold for maximizing the yield. Finally, we compare the
different strategies and show that the threshold-based strategy
is the most effective as it minimizes population fluctuations
and extinction events, leading to maximum yield.

II. STOCHASTIC MODEL FORMULATION OF HARVESTING

Let the integer-valued random process x(t) ∈ {0, 1, 2, . . .}
represent the population count of the harvested species at
time t. As explained in the schematic model in Fig. 1, our
model considers the population count to evolve as a random
birth-death process. The overall stochastic dynamics of x(t)
is represented by the following resets that occur at random
times, and when the reset occurs the corresponding rest map
is activated

x
rx−→ x+ 1 Birth event

x
rx2

K−−→ x− 1 Death event

x
H(x)−−−→ x− ϕ Harvest.

(1)

The first reset in (1) is the birth of an individual that occurs
probabilistically with rate rx, where r is the exponential
growth rate. Similarly, the death of an individual (a transition
from x → x − 1) occurs at a rate rx2/K with K being
the carrying capacity. Finally, the last event corresponds
to harvesting occurring with a state-dependent rate H(x).
During each harvest, ϕ individuals are removed from the
population. If each individual has a probability f of being
harvested, then ϕ is a binomially-distributed random variable
with parameters x and f . These individuals are added to
the yield y(t) that is a positive real-valued random process.
Between two consecutive harvesting events, the yield is
assumed to decay as per first-order kinetics that captures its
consumption

dy

dt
= −λy, (2)

where λ is the consumption rate. Additionally the harvest
reset map can be shown as

x
H(x)−−−→ x− ϕ , y

H(x)−−−→ y + ϕ. (3)

Note that in the absence of harvesting and assuming no
population extinction, demographic stochasticity arising from
random birth-death will cause x(t) to fluctuate around its
carrying capacity.

In (1) and (2), the particular definition of the harvesting
rate H(x) defines different harvesting strategies. In this
article, we adopt the power-law function

H (x) = h

(
x

xh

)α

, (4)

that is defined by three parameters - the exponent α ≥ 0,
harvesting rate constant h > 0, and the harvesting threshold
0 < xh < K. We will investigate three particular cases:

• A constant harvesting rate (α = 0).

• A harvesting rate that linearly increases with population
size (α = 1).

• A threshold-based strategy of harvesting every time the
population exceeds the threshold xh (α → ∞) [36].

Ignoring stochasticity, in the simple deterministic limit of
population counts evolving as per an ordinary differential
equation, the maximum yield y∗det and its corresponding
population density x∗

det are as follows (see [20] for details)

y∗det =
rK

4λ
, x∗

det =
K

2
. (5)

However, in practice, the population is subject to perturba-
tions, some intrinsic, coming from individual birth and death,
and others extrinsic, from the harvesting events. To determine
the optimal yields in the stochastic formulation we first start
by ignoring the effects of extinction by assuming a large
population size. Using the Dynkin’s formula [37] for the
Stochastic Hybrid System defined by (1)-(2), the mean yield
⟨y⟩ evolves as

d ⟨y⟩
dt

= −λ ⟨y⟩+ f ⟨H(x) x⟩ . (6)

Throughout this manuscript we use angular notation ⟨ ⟩ for
taking averages of random variables and processes. From
(6), and assuming no population extinction, the steady-state
mean yield ⟨y⟩ is given by

⟨y⟩ = f

λ
⟨H(x) x⟩. (7)

In the following sections, we investigate the population
statistics and optimal yield for different harvesting strategies.
We start with the the case of constant harvesting rate (α =
0).

A. Constant harvesting rate (α = 0)
In this case, the harvesting rate is constant H(x) = h.

This means that the harvesting events occur according to
a Poisson process with a rate h. In the previous work [20],
we presented moment dynamics for this case using Dynkin’s
formula [37].

d ⟨x⟩
dt

= r ⟨x⟩ − hf⟨x⟩ − r

K

〈
x2
〉

d
〈
x2
〉

dt
= r ⟨x⟩+ 2r

〈
x2
〉
− 2r

K

〈
x3
〉

+
r

K

〈
x2
〉
− 2hf

〈
x2
〉

+h
(
f (1− f) ⟨x⟩+ f2⟨x2⟩

)
.

(8)

The high-order moments on the right-hand side of the above
equation have led to an unclosed system of moment dynam-
ics. This is because the dynamics of second-order moment
⟨x2⟩ depends on third-order moment ⟨x3⟩. To overcome this
issue, the derivative matching moment closure scheme was
proposed in a previous study [38], which approximates

〈
x3
〉
≈

(〈
x2
〉

⟨x⟩

)3

. (9)
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Then the steady-state population statistics can be approxi-
mated as the following formulas.

⟨x⟩ = 2K(r − hf)2

r (2r + hf (f − 2))
; ⟨y⟩ = 2hfK(r − hf)2

rλ (2r + hf (f − 2))
.

(10)
Figs. 1B and 1C show the trends of ⟨x⟩ and ⟨y⟩, respectively,
for a fixed f and an increasing h. The significance of
extinction becomes evident when comparing the results in
(10) with the numerical solution obtained using the finite
state projection algorithm (will be discussed in the next
section).
The optimal harvesting rate h∗ and the corresponding max-
imum yield ⟨y⟩

∗
can be achieved as follows.

h∗|α=0=
r(3− f1)

2f(2− f)
, (11)

⟨y⟩
∗
|α=0= K

r (3− f1) (1− 2f + f1)
2

2λ (2− f)
3
(1 + f1)

, (12)

where f1 =
√
(1 + 4f) (see [20] for details).

Observe how, at the limit of the very low harvest proba-
bility f → 0, the optimal harvest frequency

lim
f→0

h∗|α=0=
r

2f
, (13)

diverges by maintaining fh∗ = r/2. In this limit, the optimal
populations ⟨y⟩

∗
→ y∗det and ⟨x⟩

∗
→ x∗

det converge to their
deterministic counterparts (5).

III. STATE-DEPENDENT HARVESTING RATE (α = 1)

This section presents the solution for the simplest state-
dependent harvesting strategy α = 1 in (4). Therefore, the
harvest rate can be written as H(x) = h

(
x
xh

)
. Following

this strategy, harvesting is a random process with a rate that
grows with the population.

A. Analytical Approximation

To find the population statistics, we write the moment
dynamics using Dynkin’s formula.



d ⟨x⟩
dt

= r ⟨x⟩ − r

K

〈
x2
〉
− hf

xh

〈
x2
〉
,

d
〈
x2
〉

dt
= r ⟨x⟩+ 2r

〈
x2
〉

+
r

K

〈
x2
〉
− 2r

K

〈
x3
〉
− 2hf

xh

〈
x3
〉

+
h

xh

(
f (1− f)

〈
x2
〉
+ f2

〈
x3
〉)

(14)

We use moment closure approximation (9) to get a closed
system. On the other hand, for analytical tractability, we
approximate the statistics at the limit of large population
sizes, which leads to ⟨x2⟩ ≫ ⟨x⟩. Then, we can use

the approximation below to simplify the moment dynamics
in (14).

2r⟨x2⟩ ≫ r

K
⟨x2⟩+ h

xh
f (1− f) ⟨x2⟩+ r⟨x⟩. (15)

Consequently, the following steady-state moments for x are
achieved.

⟨x⟩|α=1 =
rxhK (2rxh − hfK (f − 2))

2(rxh + hfK)2
,

⟨x2⟩|α=1 =
(rxhK)

2
(2rxh − hfK (f − 2))

2(rxh + hfK)3
, (16)

which give the steady-state mean yield from (7).

⟨y⟩|α=1 =
hfxh (rK)

2
(2rxh − hfK (f − 2))

2λ(rxh + hfK)3
. (17)

Fig. 1 shows the comparison between the mean yield ob-
tained with the constant harvest rate (10) and the state-
dependent rate (17). Observe how the mean yield is also
a concave function of h. Hence, given f , it is possible to
find the optimal harvesting rate h∗ and the corresponding
maximum mean yield ⟨y⟩∗ in steady state is calculated.

h∗|α=1 = r
xh (f − f2)

fK (f − 2)
≈ r

xh

fK
, (18)

⟨y⟩
∗
|α=1 = K

r (f − 2)
2
(f − f2) (f − f2 − 2)

2λ (2− 2f + f2)
3 , (19)

where f2 =
√
(4 + f(f − 2)).

Two main findings can be highlighted. First, as Fig. 1C
shows, the expected yield for α = 1 is always greater than
the one for α = 0 with the same parameters. Second, at the
limit of perturbative harvest (f → 0)

lim
f→0

h∗|α=1= r
xh

Kf
, (20)

which diverges similarly as (11). This time, the optimum
harvesting frequency scales with f such as fh∗ = rxh/K.
With this optimal rate, ⟨y⟩

∗
→ y∗det and ⟨x⟩

∗
→ x∗

det

converge to their deterministic counterparts (5). Next, we
will solve the system numerically using the Finite-State
Projection algorithm to estimate the validity of the analytical
approximations.

B. Numerical Solution

The birth-death process described in (1) can be modeled
using the forward Chapman-Kolmogorov formulation [39],
also known as the Master equation. In this framework,
the probability vector P (t) with components pi, i ∈
{0, 1, 2, · · · } represents the probability of existing i indi-
viduals at time t. To approximate a numerical solution,
we propose to use the Finite State Projection (FSP) algo-
rithm [35], which truncates infinite number of equations in
the Master equation. Considering the first I elements of
P (t) = [ p0(t) p1(t) . . . pi(t) . . . pI(t) ]

T gives the
Master equation as follows.
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Fig. 1: Harvesting at a state-dependent rate (α = 1) leads to a higher yield than harvesting at a constant rate (α = 0). A. In the proposed model,
population x follows a logistic stochastic discrete dynamics. The yield y decreases exponentially over time due to consumption at an exponential rate
λ. Each harvest occurs at a state-dependent rate of H(x) = h (x/xh)

α and results in a decrease/increase in population/yield by a random variable ϕ.
B. Normalized mean population ⟨x⟩/K as a function of the harvesting rate constant h. C. Normalized mean yield ⟨y⟩/K as a function of harvesting
rate constant h. The results are represented for both constant Poisson harvesting rate (α = 0, green) and state-dependent rate (α = 1, orange). Analytic
approximations correspond to the analytical results explained in Section III, while numerical results are obtained by numerically solving the system using
the finite-state projection (FSP) algorithm for tmax = 400/r and I = 1200. The values of ⟨x⟩ and ⟨y⟩ are normalized to the carrying capacity K. The
rest of the parameters are taken as r = 10,K = 103, xh = 0.5× 103, f = 0.2, λ = 2.



dp0
dt

=
r

K
p1 +

∑I
i′=1 P (0, i′, f)

h

xh
i′ pi′

dpi
dt

= r (i− 1) pi−1 −
(
ri+

r

K
i2 +

h

xh
i

)
pi

+
r

K
pi+1 (i+ 1)

2
+
∑I

i′=i P (i, i′, f)
h

xh
i pi′

...

dpI
dt

= r (I − 1) pI−1

−
(

r

K
I2 +

h

xh
I − h

xh
IP (I, I, f)

)
pI

(21)
P(m,n, f) in the above equations represents the probability
mass function of the Binomial distribution, i.e., the probabil-
ity of obtaining a specific number of successes m, in a series
of independent Bernoulli trials n, where the probability of
success in each trial is denoted as f .

P(m,n, f) :=

(
n

m

)
fm(1− f)n−m (22)

From (21), the dynamics of P (t) can be written as a linear
system

dP (t)

dt
= AP (t), (23)

where A is an (I + 1) dimensional matrix. Consequently,
P (t) is achieved as

P (t) = P (0) exp(At), (24)

where P (0) = [0 0 . . . 1 . . . 0 0] is the vector of proba-
bilities at time t = 0. We assume that the population starts
in the state x = K. Now, the n − th order moment of x
denoted by ⟨xn⟩ can be calculated from ⟨xn⟩ =

∑
i x

n
i pi.

Fig. 1 shows the comparison between the statistics esti-
mated from analytical formulas (10) and (17) along with the
optimal value of h∗ and ⟨y⟩

∗
. We also represent the results

of the FSP to investigate the effects of extinction. It can be
seen in Fig. 1B and 1C that analytical estimations provide
an accurate approximation of the model with extinction for
the given parameters during the studied time-scale (tmax <
400/r), where tmax is the time at which the statistics were
calculated. The deviations between the numerical result and
the analytical approximation can be attributed to extinction.
The reason behind the fact that the state-dependent rate is
more accurate is that in this case harvests occur rarely at
small population numbers, which decreases the probability
of extinction. In the next section, we consider the threshold-
based harvest strategy, where the probability of harvest
depends strongly on the population level.

IV. THRESHOLD-BASED STRATEGY (α → ∞)
As shown in Fig. 2A, in the threshold-based strategy, the

harvest occurs whenever the population exceeds the threshold
population xh. During each harvest, the population decreases
by the amount of ϕ, drawn from a binomial distribution with
parameters x and f .

A. Analytical Approximation
As we discussed earlier, this case is equivalent to consid-

ering the limit value of α → ∞ in the general harvesting rate
defined in (4). The moment dynamics approach we used to
solve the system in the two previous cases is not applicable
here due to the singularities in (4) at this limit. Therefore, we
estimate the moments of the population taking the average
over the time for a single trajectory. The steady-state mean
population follows (see the Appendix for details and the
explicit expression).

⟨x⟩ = K

ln

(
K − (1− f)xh

K − xh

)
ln

(
K − (1− f)xh

(1− f)(K − xh)

) (1−O
(

1

K

))
, (25)
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Fig. 2: The mean yield for threshold-based harvest strategy (α → ∞) can be optimized over the threshold xh. A. An example of normalized
population trajectory over time for f = 0.2, xh = 0.8 K. B. Normalized mean population ⟨x⟩/K as a function of threshold xh. C. Normalized mean
yield ⟨y⟩/K as a function of the harvesting rate constant xh. Values are normalized over the carrying capacity K. In the simulation, we considered the
time t in FSP as tmax = 400/r. Other parameters are taken as r = 10,K = 103, λ = 2.

where the effect of randomness on the capture of each
individual is included in O(1/K), with O(x) standing for
order of notation. In the limit of large K, we can neglect this
term as O

(
1
K

)
≪ 1. Finally, the mean yield of the stochastic

system with threshold-based harvesting rate is computed as:

⟨y⟩ = rfxh

λ ln

(
(K − (1− f)xh)

(1− f)(K − xh)

) . (26)

The population statistics for threshold-based harvesting as
a function of threshold xh is presented in Fig. 2B and 2C.
Observe how ⟨y⟩ is a convex function of xh. Hence, given
f , we can obtain numerically the value of x∗

h that maximizes
the mean total yield in steady state ⟨y⟩

∗
(see Fig. 2).

In the limit of perturbative harvest (f → 0), ⟨y⟩ can be
approximated as:

lim
f→0

⟨y⟩ = K
( r
λ

) xh

K

(
1− xh

K

)
, (27)

which is maximized for x∗
h = K/2. In this limit, similar to

the other harvesting strategies, populations ⟨y⟩
∗
→ y∗det and

⟨x⟩
∗
→ x∗

det converge to their deterministic counterparts (5).
To investigate how important the extinction is in this strategy,
we will solve the system using the FSP algorithm.

B. Numerical Solution

To analyze the exact behavior of the system considering
the probability of extinction, we use the FSP method. Ac-
cordingly, we write the chemical Master equations for the
stochastic harvesting model with threshold-based rate.



dp0
dt

=
r

K
p1 + r(xh − 1)P (0, xh, f) pxh−1

dpi
dt

= r (i− 1) pi−1 −
(
ri+

r

K
i2
)
pi

+
r

K
(i+ 1)

2
pi+1 + r(xh − 1)P (i, xh, f) pxh−1

...

dpxh−1

dt
= r (xh − 2) pxh−2 + r(xh − 1)P (i, xh, f) pxh−1

−
(
r (xh − 1) +

r

K
(xh − 1)

2
)
pxh−1

dpxh

dt
= r (xh − 1) pxh−1 − r (xh − 1) pxh

(28)
where 1 ≤ i ≤ xh, and xh is the number of individuals at
which the harvesting takes place. By solving the above set of
equations, as discussed in section III-B, we can find the exact
population statistics of the model, demonstrated in Fig. 2B
and 2C. It is observable that similar to the state-dependent
case, for the range of parameters we work with, the proposed
analytical approximation fits the numerical solution well, and
extinction has a very low probability of occurrence.

V. DISCUSSION

In this contribution, we have used the discrete stochastic
logistic model framework to study the optimal harvesting
problem. The main difference of this approach with previous
works is that the population is taken as discrete and there is a
non-zero probability that the population gets extinct. During
harvest, each individual has a probability f of being caught.
Using the previously developed derivative matching closure
scheme, we obtained analytical approximations for different
harvest strategies.

The harvesting strategies studied were unified as particular
cases of a general harvesting rate H(x) ∝ xα with α ≥ 0
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Fig. 3: Threshold-based harvesting leads to the maximum yield with
lowest probability of extinction comparing to the other two harvesting
strategies. A. Normalized optimal mean yield ⟨y⟩∗/K as a function
of harvesting ratio f for three different harvesting strategies are plotted
using the analytic formulas obtained in (12), (19), (26). The dots show
the numerical solution by using FSP method for tmax = 400/r. The
red line shows the normalized deterministic limit of the maximum yield,
y∗det = rK

4λ
as explained in Section II. Other parameters are taken as

r = 10,K = 103, λ = 2. B, C, D. The probability of extinction for
constant Poisson case increases with the growth of the harvesting ratio
f , while this probability in state-dependent and threshold-based cases is
approximately zero for the given range of parameters. E, F. An example
of trajectories of population and yield for three harvesting strategies, along
with the deterministic limit (f = 0.3).

the control strength and x being the population. α = 0
defines the constant harvest rate strategy, α = 1 is the
state-dependent harvest rate where the harvesting rate is
proportional to x and α → ∞ is the threshold-based strategy
where harvesting is made when x reaches a threshold. Fig. 3
compares the highest achievable mean yield for the different
types of harvesting and reveals that the threshold-based
strategy is optimal.

In Fig. 3A, we compare the analytical approximations to
the optimal yield ⟨y⟩

∗
(solid line) and the more accurate

numerical solution of the associated Master equation (dots).
To study how much of their differences may be due to

extinction effects, we present the probability of extinction for
the three strategies in Fig. 3B, C, D. For the constant Poisson
rate, the probability of extinction can be as high as 0.03
during the studied time scale (400/r), with r the proliferation
rate. For the state-dependent and threshold-based strategies,
the probability of extinction is practically null, and the
differences between the formula and the numerical result can
be due to the approximations made.

We also observe that at the limit of perturbative harvest
(f → 0), the optimal yield of all strategies converges to
the global maximum yield y∗ = rK

4λ with K being the
carrying capacity, r the exponential proliferation rate, and λ
the exponential rate of consumption. The value of this yield
corresponds to the deterministic limit ydet in (5). In Fig.
3E, F, we present examples of population trajectories for the
three harvesting strategies along with the deterministic limit.

The yield is optimized in the deterministic limit when
the harvest is controlled such that the population is set
to x∗

det = K/2. The reason for this value is that the
population recovery rate (the rate at which the population
grows) is maximized when x has this value. When harvesting
is modeled by non-perturbative jumps f > 0, the threshold-
based strategy allows a maintenance of the population around
x∗ better than the state-dependent strategy, resulting in a
higher optimal yield. The constant Poisson strategy, on the
other hand, does not have population information to decide
when to harvest, leading to a relatively higher probability of
population extinction in most parameter regimes.

VI. APPENDIX

A. Estimation of the formulas of the statistics for the thresh-
old based strategy

In the regime of a high population number, K ≫ 1 we
approximate the dynamics of the population using the logistic
curve:

dx

dt
= rx

(
1− x

K

)
. (29)

Once the population reaches the threshold xh, the population
is reset to a new variable x0. In order to mimic the discrete
stochastic harvesting, we assume that x0 follows a statistic
similar to a binomially distributed variable:

⟨x0⟩ = (1− f)xh, σ2 = xhf(1− f), (30)

with σ2 being the variance. Given x0, the dynamics of the
population follows the solution:

x(t) = K

(
1 +

x0 −K

(K − x0) + x0ert

)
. (31)

Hence, the time τ(x0) for the next harvest is the time needed
to reach xh again:

τ(x0) =
1

r
ln

(
(K − x0)xh

x0(K − xh)

)
(32)

Once x0 is a random variable, it is possible to show that
the average of a multiple harvests can be written as [36]

⟨x⟩ =
⟨
∫ τ

0
x(t′)dt′⟩
⟨τ⟩

. (33)
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with ⟨f⟩ =
∫
ρ(x0)f(x0)dx0 the expected value of a

function f(x0) over the distribution ρ(x0) of x0. Given the
moments of x0, we can simplify the averaging considering
x0 drawn from a uniform distribution with statistical mo-
ments (30).

To simplify the estimation, we assume that σ << K. This,
considering (30), is equivalent to considering xh << K2.
Therefore, the average (33) can be expanded in power series:∫

ρ(x0)f(x0)dx0 ≈ f |x0=x∗
0

(34)

+
1

2

(
d2f

dx2
0

)
|x0=x∗

0

∫
(x0 − x∗

0)
2ρ(x0)dx0.

Where the integration of the first order of the polynomial
expansion is null since the distribution is odd around x∗

0 =
xh(1− f). After these approximations, the mean population
can be approximated as:

⟨x⟩ = K

ln

(
K − (1− f)xh

K − xh

)
ln

(
K − (1− f)xh

(1− f)(K − xh)

) [1−O
(

1

K

)]
(35)

with:

O
(

1

K

)
≈ xhf(1− f)

2[K − xh(1− f)]2 ln
(

K−xh(1−f)
K−xh

) (36)

+
K[K − 2xh(1− f)]f

(1− f)xh(K − x0)2 ln
(

K−xh(1−f)
(K−xh)(1−f)

) .
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