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Abstract

Microbiome sequencing data normalization is crucial for eliminating technical bias
and ensuring accurate downstream analysis. However, this process can be challenging
due to the high frequency of zero counts in microbiome data. We propose a novel
reference-based normalization method called normalization via rank similarity (RSim)
that corrects sample-specific biases, even in the presence of many zero counts. Un-
like other normalization methods, RSim does not require additional assumptions or
treatments for the high prevalence of zero counts. This makes it robust and minimizes
potential bias resulting from procedures that address zero counts, such as pseudo-
counts. Our numerical experiments demonstrate that RSim reduces false discoveries,
improves detection power, and reveals true biological signals in downstream tasks such
as PCoA plotting, association analysis, and differential abundance analysis.
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1 Introduction

High-throughput sequencing technology has revolutionized the study of microbiome com-
munities, providing biologists with a powerful tool to investigate and understand biological
events and mechanisms. However, analyzing and interpreting the data generated by high-
throughput sequencing can be challenging due to technical factors that can confound results
(Vallejos et al., 2017; Weiss et al., 2017 |Lin and Peddadal 2020). One major limitation of
high-throughput sequencing is that the observed sequencing count data can only reflect the
relative abundance of taxa rather than their absolute abundance, as the observed sequenc-
ing depth can vary significantly across samples and is unrelated to the absolute abundance
(Robinson and Oshlack, 2010 [Young et al., 2010; |Conesa et al) 2016). In mathematical
terms, the observed sequencing count data can be expressed as:
Nij = ¢,

where N; ; and A, ; are the observed count and absolute abundance of taxon j in the ¢th sam-
ple, and ¢; is the unobserved sampling fraction of the ith sample. The unobserved sampling
fraction is typically sample-specific and can vary due to technical factors such as sequenc-
ing depth and capture efficiency. Because of this unobserved sampling fraction, applying
classical statistical methods to the observed count data can result in false-positive scientific
discoveries and invalid analysis results (Vandeputte et al., 2017; Weiss et al., 2017)). This
paper refers to the bias resulting from the unobserved sampling fraction as compositional
bias.

Normalizing the observed sequencing count data is a critical step in removing composi-
tional bias and ensuring accurate and reliable downstream analysis. To this end, many nor-
malization methods have been proposed for different types of sequencing data sets (Hughes
and Hellmann| 2005; Robinson and Oshlack, 2010; Anders and Huber}, 2010} |Bullard et al.,
2010; Dillies et al. 2013} [Paulson et al., 2013; [Lun et al., 2016; Bacher et al. 2017} Kumar
et al., 2018; [Hafemeister and Satija, 2019). These methods can be broadly classified into
three computational frameworks: rarefying, scaling, and log-ratio based methods (Weiss
et al) 2017; Lin and Peddada) 2020). The rarefying method subsamples the taxa of each
sample to ensure that all samples have the same sequencing depth. Although this method is
popular in practice, it may lead to a loss of statistical power in downstream analysis and does
not correct compositional bias (McMurdie and Holmes|, |2014)). Besides rarefying method, the
scaling method is another widely used normalization strategy that estimates the unobserved
sampling fraction and scales the observed count by this estimated sampling fraction. Scal-
ing methods include Cumulative-Sum Scaling (CSS) (Paulson et al., [2013), Median (MED)
(Love et al., [2014)), Upper Quartile (UQ) (Bullard et al., 2010), Trimmed Mean of M-values
(TMM) (Robinson and Oshlackl, 2010), and Total-Sum Scaling (T'SS) normalization. How-
ever, accurately estimating the sampling fraction can be challenging when prevalent zero
counts exist in the microbiome data (Weiss et al., 2017)). Finally, log-ratio based methods,
which are motivated by classical compositional data analysis (Aitchison, [1982; Pawlowsky-
Glahn and Buccianti, 2011)), have been proposed. Although log-ratio transformation can
alleviate the compositional effect, it is still unclear how to apply log-ratio transformation
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when zero counts are present and how to interpret the results (Greenacre, 2021; Brill et al.l
2022; |Wang), 2023b). These challenges lead us to question whether a new normalization
method can be developed that is both robust to the prevalent zero counts and corrects the
compositional bias.

Here, we introduce a novel normalization method, which we call RSim (normalization via
Rank Similarity), to correct the compositional bias in the sequencing data set. The RSim
normalization is a scaling method motivated by the normalization method in the experiment
with spike-in bacteria. Instead of estimating sampling fraction directly, RSim first identifies
a set of non-differential abundant taxa via the pairwise rank similarity of taxa and then
scales the counts to ensure that the total sum of coverage in this estimated set is the same
across samples. To accurately identify non-differential abundant taxa, RSim employs a new
empirical Bayes approach to control the misclassification rate. Unlike existing methods,
RSim does not need any assumption or extra treatment to the prevalent zero counts because
the Spearman’s rank correlation coefficient used for measuring rank similarity is robust to
zero counts. Besides being robust to zero, RSim outperforms existing methods in estimating
the sampling fraction and correcting the compositional bias. We demonstrate the efficacy
of RSim by comparing it with several state-of-the-art methods using synthetic and real
data sets. Our results show that RSim can help reduce false discoveries, improve detection
power, and reveal true biological signals in various downstream analyses, such as PCoA
plotting, association analysis, and differential abundance analysis. RSim normalization is
implemented in an R package, freely available at https://github.com/BoYuan07/RSimNorm.

2 Results

2.1 Overview of RSim Normalization

We present a concise summary of the RSim normalization method, with a more detailed
explanation provided in the Method section. While we focus on the microbiome data in this
paper, it is worth noting that RSim may be applicable to other sequencing data, such as
bulk RNA-seq and single-cell RNA-seq (Vallejos et al., 2017)). The RSim method is inspired
by the normalization approach used in experiments with spike-in bacteria (Stammler et al.|
2016; Tourlousse et al.| 2017; Tkacz et al., |2018; |Hardwick et al) 2018). When spike-in
bacteria are available, the count of each taxon is rescaled by the reciprocal of the count of
the spike-in taxa, as follows:
~ NZ.’ j

N;i = —=——>—.
" Zjej « N 2%

Here, N; ; represents the observed count of taxon j in the 7th sample, and J* is the set of

spike-in taxa. We refer to this method as reference-based normalization since it treats J*

as a reference set. The reference-based method can correct compositional bias when spike-in

bacteria are available (Stammler et al., 2016). The efficacy of the reference-based method

is contingent on the assumption that the absolute abundance of spike-in taxa is identical
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across samples, as expressed by the equation:

Z Ail,j - Z Aig,ja 2.1 7é ig.

JET* JjeT*

Here, A; ; represents the absolute abundance of taxon j in the ¢th sample. Given the success
of the spike-in based normalization, one might wonder whether it is feasible to identify a
reference set of taxa that satisfies the above equality and use it to correct compositional
bias without employing spike-in bacteria. Our paper shows that this is possible when we
can identify a set of non-differential abundant taxa, denoted by jo, and replace the spike-in

taxa with these estimated non-differential abundant taxa.
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Figure 1: Illustration demonstrating the procedure of RSim normalization. Step 1: median of
pairwise rank similarity of taxa is evaluated to construct the statistics for the differential abundance level
of each taxon. Step 2: a new empirical Bayes method provides misclassification rate control in identifying

non-differential abundant taxa. Estimated non-differential abundant taxa are used as the reference set in
reference-based normalization.

The RSim normalization method is primarily aimed at identifying a set of non-differential
abundant taxa in microbiome data, even in the presence of zero counts. This identification
process has two steps: first, we construct statistics for the differential abundance level of
each taxon by using pairwise rank similarity of taxa; second, we use a new empirical Bayes
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method to identify non-differential abundant taxa based on the statistics obtained in the first
step (see Figure . To explain the intuition behind the first step, we note that the count of
a non-differential abundant taxon is approximately proportional to the unknown sampling
fraction, whereas the count of a differential abundant taxon lacks this correspondence to the
sampling fraction. Thus, the rank correlation between two non-differential abundant taxa
should be higher than between a non-differential abundant taxon and a differential abundant
taxon. Assuming that the majority of taxa are non-differential abundant, we use the median
of rank correlation coefficients between a taxon and other taxa as the statistics for the level
of differential abundance. In the second step, we use an empirical Bayes method to identify
non-differential abundant taxa based on the statistics obtained in the first step. The new
empirical Bayes method allows choosing a threshold to control the misclassification error.
Since most identified taxa are non-differential abundant, they can serve as the reference
set for the reference-based normalization in RSim. Notably, the RSim procedure treats zero
entries the same way as non-zero entries, allowing it to work consistently with zero counts. In
the following sections, we demonstrate the effectiveness of RSim normalization in correcting
compositional bias, even in the presence of many zeros in the data set.

2.2 Correcting Compositional Bias via RSim Normalization

This section presents a series of numerical experiments to assess the ability of RSim normal-
ization to correct compositional bias. We generate synthetic data using a microbiome dataset
collected in [He et al.| (2018)), where 97% of entries are zeros. We first investigate whether
the taxa in the estimated reference set of RSim normalization are mostly non-differentially
abundant. Specifically, we design several numerical experiments to determine if the empirical
Bayes method in RSim can control the misclassification rate in the estimated reference set at
a desired level. Figure |[S1|shows that RSim successfully controls the empirical misclassifica-
tion rate at the target level for different levels of misclassification rate. We further evaluate
the robustness of the estimated reference set by varying the signal strength of differential
abundant taxa, the balance of group size in differential abundant taxa, the proportion of
differential abundant taxa, and sample size change (Figure . Our experiments demon-
strate that RSim can robustly identify a reference set that consists mostly of non-differential
abundant taxa.

The next set of numerical experiments aims to investigate whether RSim normalization
can recover the sampling fraction of each sample via reference-based normalization. To this
end, we compare RSim normalization with five state-of-art normalization methods, including
TSS, UQ implemented in edgeR, CSS implemented in metagenomeSeq, MED implemented
in DESeq2, and TMM implemented in edgeR. We also include an oracle reference-based
normalization where the reference set consists of true non-differential abundant taxa. Using
synthetic data generated from a microbiome dataset collected in [He et al. (2018), we ran-
domly divided the samples into two groups and inserted signals to the differential abundant
taxa of one group. We then estimated the sampling fraction of each sample using the seven
normalization methods and compared their performance. Figure [2| presents the results of
these experiments. We found that when the signal strength of differential abundant taxa is
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Figure 2: Comparisons of normalization methods in estimating sampling fraction. The numerical
experiments are performed when the signal strength of differential abundant taxa is (a) weak, (b) moderate,
and (c) strong. In (a), (b), and (c), the z-axis represents true sampling fractions, while the y-axis represents
the estimated sampling fraction from normalization methods. We scale the estimated sampling fractions so
that their average is the same as the average of true sampling fractions. The black line in these figures rep-
resents equality between the estimated and true sampling fractions and the color of points represent which
group the differential abundant taxa belong to. The bias in sampling fraction estimation by different normal-
ization methods is compared in (d) when the signal strength and proportion (p = 0.1,0.2,0.3) of differential
abundant taxa vary. It is clear that the reference-based method can better correct the compositional bias
than existing methods, especially when there is a large proportion of strong differential abundant taxa.

weak, most normalization methods can recover the sampling fraction well and do not exhibit
significant bias in their estimates. However, in the presence of strong differential abun-
dant taxa, existing normalization methods suffer from a systematic bias in sampling fraction
estimation, while reference-based normalization is robust to this bias. Notably, RSim nor-
malization performs similarly to the oracle method, indicating that the reference set selected
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by RSim contains mostly non-differential abundant taxa and can effectively normalize the
data. Overall, our numerical experiments demonstrate that RSim normalization corrects
the sample-specific bias resulting from technical variations in the sequencing process. In
the next three sections, we investigate how RSim normalization improves the performance
of commonly used downstream analyses, including PCoA plotting, association analysis, and
differential abundance analysis.

2.3 RSim Normalization Reveals Biological Pattern in PCoA Plot

This section aims to investigate the effects of different normalization methods on the PCoA
plots. Specifically, we compare the PCoA plots on the normalized data after applying six
normalization methods, namely TSS, UQ, CSS, MED, TMM, and RSim, to a microbiome
data set collected in [He et al.| (2018). The compositional bias can create false clusters or
patterns in the PCoA plot if the count data is not appropriately normalized. We randomly
split the samples into two groups, and no cluster structure is observed in the PCoA plots,
regardless of the normalization method used (Figure [3a). However, when we rarefy the count
data of one group of samples through subsampling, the difference in the sequencing depth
results in two clusters in some of the PCoA plots (Figure [3b). In particular, RSim, TMM,
and TSS can remove such false clusters through normalization, while CSS, MED, and UQ
cannot. We also conduct a similar numerical experiment on another dataset collected in
Vangay et al. (2018)). The samples in the KarenThai category are divided into two groups
based on the sequencing depth (>10000 belongs to the first group, and <5000 belongs to
the second group). The two clusters separated by sequencing depth are present in the PCoA
plots of all normalization methods except RSim normalization (Figure [3k). Through these
two examples, we conclude that RSim normalization is more effective in mitigating the issue
of false clusters or patterns in PCoA plots than existing normalization methods.

The presence of false patterns resulting from compositional bias can lead to erroneous
interpretations of data, highlighting the importance of proper normalization. Figure
shows the PCoA plots of right palm samples in a data set collected in (Caporaso et al.
(2011)), colored by days since the experiment started. The PCoA plot exhibits a clear time-
related pattern in the raw data, implying a possible shift in microbial abundance during
the 15-month study period. Similar patterns are also observed in the PCoA plots after
applying all normalization methods except RSim. However, further examination reveals a
strong correlation between time and sequencing depth (Figure ), and a similar pattern
is also present in the PCoA plots colored by sequencing depth (Figure ) This suggests
that sequencing depth is a confounding factor and is likely responsible for the observed
time-related pattern. RSim normalization can effectively remove this false pattern, and as a
result, the pattern of time and sequencing depth in the PCoA plots is no longer apparent,
demonstrating the effectiveness of RSim normalization in removing confounding effects.

Appropriate normalization not only helps avoid false clusters but also aids in detecting
true biological patterns resulting from microbial abundance shifts. Following a similar ap-
proach as in Section [2.2] we generated data with differentially abundant taxa from a data
set in [He et al.| (2018). The absolute abundance of these taxa depends on a latent variable
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Figure 3: Compositional bias can create false clusters in PCoA plots. In (a) and (b), samples are
randomly divided into two groups. No modification is applied to (a), while the count data in group 1 is
rarefied in (b). In (c¢), samples are divided into two groups based on the sequencing depth (>10000 belongs
to the first group, and <5000 belongs to the second group). In these figures, RSim normalization can help
remove the false clusters resulting from compositional bias. Euclidean distance with log transformation is
used in all PCoA plots.

characterizing the biological structure. When this latent variable is binary, a two-cluster
structure is expected in the PCoA plot, but compositional bias confounds such a structure
(Figure ) After applying normalization methods, only RSim normalization helps detect
a two-cluster structure in the PCoA plot. We observed a similar phenomenon in the numeri-
cal experiment when the latent variable is continuous (Figure ) These examples suggest
that compositional bias can obscure biological signals of interest, and RSim normalization
can help reveal the true biological pattern in the data set.

2.4 RSim Normalization Increases Efficiency of Association Anal-
ysis

This section investigates the impact of normalization on association analysis, which aims
to detect an association between microbiome data and a specific outcome, such as age or
BMI. To compare the performance of different normalization methods, we consider two com-
monly used association analysis methods, PERMANOVA (McArdle and Anderson, 2001}
Wang et al. 2021) and MiRKAT (Zhao et al.) 2015)). Similar to the previous sections, we
generate synthetic data from the microbiome data set in He et al.| (2018). In the first set
of experiments, we examine the effect of normalization on the type I error of association
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analysis. We randomly divide samples into two groups and rarefy the first group via sub-
sampling. The type I error is highly inflated when we directly apply association analysis to
the unnormalized count data due to the difference in sequencing depth. After applying six
different normalization methods, only TSS and RSim normalization can effectively control
the type I error. We also apply PERMANOVA to samples of Karen individuals living in
Thailand, as collected in [Vangay et al.| (2018]), using the same experiment settings as in the
previous section. The P-values are reported in Figure 3. PERMANOVA finds a significant
association between the microbiome data and the group defined by the sequencing depth
when the count data is normalized by the existing normalization method. However, the as-
sociation is no longer significant when we apply RSim normalization, indicating that RSim
normalization can correct the compositional bias resulting from the confounding sequencing
depth. These results further confirm that RSim normalization can reduce false discoveries
in association analysis.
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Figure 4: Normalization can reduce false discovery and improve the power of association anal-
ysis. In (a), the samples are randomly divided into two groups, and the count data in the first group is
rarefied. In (b), the synthetic data include differential abundant taxa. The significance level is 0.05 in both
(a) and (b). Normalization is an essential step to avoid false discovery and improve power.

The second set of numerical experiments investigates the effect of different normalization
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Unnormalized RSim CSS MED TMM TSS UQ
PERMANOVA 0.376 0.021 0.205 0.296 0.607 0.122 0.176
MiRKAT 0.359 0.022 0.193 0.270 0.581 0.132 0.167

Table 1: Normalization can make more scientific discoveries through improving the power of
association analysis. P-values of PERMANOVA and MiRKAT are reported in the study of association
between the gut microbiome and BMI.

methods on the power of association analysis. As in the previous two sections, we generated
synthetic data with differential abundant taxa from the microbiome data set in |[He et al.
(2018). Applying PERMANOVA and MiRKAT directly to the unnormalized data resulted
in power loss, while RSim normalization improved their power more effectively than existing
methods in most settings (see Figures and . In addition to the synthetic data, we
also compared different normalization methods using the data set collected in [Vangay et al.
(2018). Specifically, we applied PERMANOVA and MiRKAT to examine the global associ-
ation between BMI and the human gut microbiome in Karen individuals living in Thailand.
When the microbiome data was normalized using RSim, we observed a significant association
with P-values smaller than 0.05. However, when other existing normalization methods were
used, no significant discovery was reported (see Table . This discovery aligns with previous
literature that shows the significant impact of gut microbiota on nutrient metabolism and
energy expenditure (Aoun et al.,; 2020). These findings highlight the importance of appro-
priate normalization in association analysis to avoid false discoveries and improve power,
and RSim normalization is a superior choice to existing methods.

2.5 RSim Normalization Improves Accuracy of Differential Abun-
dance Analysis

This section focuses on the effect of normalization on differential abundance analysis, which
aims to identify taxa with different abundances across conditions. Classical tests, such as the
two-sample t-test and Pearson correlation test, are commonly used for this analysis, but ap-
plying them directly to unnormalized count data can lead to inflated false discoveries. Proper
normalization is, therefore, essential to mitigate this issue. We conducted experiments on
synthetic data generated from the dataset in He et al.| (2018) to study how the normalization
impacts differential abundance analysis. Specifically, we apply six normalization methods
(TSS, UQ, CSS, MED, TMM, and RSim) and conduct differential abundance analysis us-
ing the two-sample t-test for binary outcomes and Pearson correlation test for continuous
outcomes. The results in Figure |5 showed that inappropriate normalization could introduce
bias, resulting in an inflated false discovery rate (FDR) and reduced power. However, RSim
normalization was effective in controlling FDR and maintaining sufficient power, thereby
mitigating compositional bias. These results confirm the importance of appropriate normal-
ization for differential abundance analysis and suggest that RSim normalization is a reliable
choice.

In addition to the synthetic data, we also applied RSim normalization to real datasets
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Figure 5: Comparison of different normalization methods’ effect on the differential abundance
analysis. (a) and (b) are the FDR and sensitivity plots of the t¢-test after applying six normalization
methods. (c) and (d) are the FDR and sensitivity plots of the Pearson correlation test after applying six
normalization methods. The x-axis is the signal strength of differential abundant taxa. RSim can help t-test
and Pearson correlation test control FDR and maintain detection power.

to further elucidate the effect of normalization on differential abundance analysis. First, we
used the dataset from Caporaso et al.| (2011) to compare the six normalization methods.
The samples were divided into two groups based on sequencing depth, and we applied the
two-sample t-test equipped with six normalization methods as well as four state-of-the-art
differential abundance tests designed for compositional data: ANCOM (Mandal et al., 2015)),
edgeR (Robinson et al| 2010, LinDA (Zhou et all 2022), and RDB (Wang| 2023D)). The
results, as summarized in Figure [6] showed that inappropriate normalization could lead to
inflated FDR when the sequencing count data is analyzed. However, RSim normalization
successfully corrected for compositional bias and improved the two-sample t-test to control
FDR and detect significant differences.

We also applied RSim normalization and the two-sample t-test to a gut microbiome data
set from an immigration effect study (Vangay et al. 2018)). This analysis compared two
groups: Karen (Karen female individuals living in Thailand) vs. Karenlst (Karen female
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Figure 6: RSim normalization helps two-sample t-test control false discovery. Samples are
divided into two groups based on the sequencing depth (<10000 belongs to the first group, and >20000
belongs to the second group), and the FDR is shown when the different significance levels are used. In (a),
six normalization methods are compared. In (b), a two-sample t-test equipped with RSim normalization is
compared with state-of-art differential abundance tests.

individuals born in Southeast Asia and moved to the US). We detected six significant phyla in
the comparison (Table . It is noteworthy that the RDB test, which is designed to remove
compositional bias and has the best false discovery control in the previous experiment, also
detected these six phyla. However, applying the two-sample t-test to the unnormalized data
led to the detection of three different phyla. This discovery is consistent with previous results
indicating that Bacteroidota, Firmicutes, Actinobacteriota, and Fusobacteriota are associated
with obesity and that the obesity rate is significantly higher for immigrants than for people
living in Thailand (Ley et al.,|2006; [ Turnbaugh et al., 2009;|Andoh et al.,2016). Furthermore,
Desulfobacterota is shown to be related to inflammatory bowel diseases (Loubinoux et al.
2002)), and the incidence of these diseases is much higher in Western countries compared
to Asian countries, especially Thailand (Riansuwan and Limsrivilai, [2021)), which is also
consistent with our findings. These results again suggest that RSim normalization can
improve the ability of differential abundance tests to control false discoveries and detect
significant differences more effectively than existing normalization methods.

3 Discussion

In this study, we present RSim, a novel normalization method that corrects sample-specific
bias in microbiome data with many zeros. RSim normalization is robust to the prevalent ze-
ros because each step can work with zeros without making extra assumptions or treatments.
RSim first identifies a set of non-differential abundant taxa by evaluating the pairwise rank
similarity of taxa, then uses the estimated set as a reference set in reference-based normal-
ization. This approach effectively corrects the compositional bias, even when microbiome
data consists of many zero counts. Furthermore, while our discussion primarily focused
on microbiome sequencing data, the ideas in this algorithm could potentially be applied to
single-cell RNA sequencing data, where one major obstacle in normalization is also the zero
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counts problem.

Our comprehensive investigation into how normalization results can affect downstream
analysis shows that the unobserved sampling fraction is a common confounder in high
throughput sequencing data analysis. Compositional bias may confound the results of al-
most all types of downstream analysis, ranging from data visualization to statistical testing.
This confounding factor creates false clusters or discoveries and obscure signals of interest
in data analysis and interpretation. Our numerical experiments demonstrate that RSim
normalization can eliminate compositional bias better than existing methods, reducing false
discovery and increasing detection power in downstream analysis, including PCoA plotting,
association analysis, and differential abundance analysis. We hope this new normalization
method can improve the current data analysis pipeline and enable biological researchers to
make more scientific discoveries.

One major assumption of RSim normalization is that more than half of the taxa are
non-differential abundant, which is also used in developing differential abundance analysis
in compositional data. This assumption may appear strong, but it is necessary for model
identification when the sampling fraction is not observed (Wang, 2023b)). In other words, the
set of non-differential abundant taxa cannot be determined from the observed sequencing
count when less than half are non-differential abundant. We recommend applying RSim
normalization on high-resolution data, such as at ASV or OTU level, to satisfy this assump-
tion. When ASVs/OTUs are aggregated into taxa at a higher taxonomic level, like class or
order level, there could be much fewer non-differential abundant taxa because aggregation of
non-differential and differential abundant ASVs results in differential abundant taxa (Wangj,
2023a).

Finally, the development of RSim normalization shows that reference-based normalization
can successfully correct compositional bias when identifying a set of non-differential abundant
taxa. While RSim normalization only suggests one way to detect a set of non-differential
abundant taxa, there could be alternative approaches to achieve the same goal. For example,
Spearman’s rank correlation coefficient can be replaced by other correlation coefficients, such
as the Pearson and Kendall rank correlation coefficients. It would also be interesting to
explore if there is a better way to control the misclassification rate than our empirical Bayes
method.

4 Methods

4.1 Reference-Based Normalization

In order to correct for compositional bias in sequencing data, various methods have been
proposed in the literature for experiments both with and without spike-in bacteria. One
of the most commonly used approaches is to calibrate the count data using the count of
a control sequence, in cases where spike-in bacteria are available (Stammler et al., 2016;
Tourlousse et al., 2017; Tkacz et al., 2018; Hardwick et al., 2018). In experiments with
spike-in bacteria, exogenous taxa of known concentration are introduced to each sample in
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equal amounts, and the count data is then rescaled using the count of these exogenous taxa.
Specifically, suppose we have n samples and each sample has d taxa. Let A;; be the true
absolute abundance of taxon j of the ith sample, and let V; ; be the corresponding observed
sequence counts. If we denote the collection of spike-in taxa as J*, then we can rescale the

count data as follows:
N Ni;

N;i= —=——>—.
" Zjej « N 12
The aim of this scaling is to convert relative abundance to absolute abundance by ensur-
ing that the rescaled count of the spike-in taxa is the same across samples. Experiments
have shown that this scaling can successfully recover absolute abundance, with the error
in recovery reduced by using multiple spike-in taxa (i.e., a larger J*) (Stammler et al.,
2016)). However, using spike-in bacteria can be limited by the availability of reliable taxa,
as well as potential amplification biases (Suzuki and Giovannoni, 1996; Brankatschk et al.,
2012)). Given these challenges, it is natural to ask whether this idea can be generalized to
experiments without spike-in bacteria.

A new computational normalization method can be inferred from the way of scaling
in experiments with spike-in taxa: first, we identify a data-driven reference set 7, whose
absolute abundance remains stable across samples, and then normalize the count data with
respect to this set:

Ny = i
Zjejo N i,J
In the experiment with spike-in bacteria, the reference set is simply the set of spike-in taxa
with the same absolute abundance across different samples. This normalization method
is referred to as reference-based normalization in this paper. A reference-based approach
is also widely employed in compositional data analysis (Aitchison) 1982; |Pawlowsky-Glahn
and Buccianti, 2011). For instance, the additive log-ratio transformation uses the last taxon
as the reference set, while the centered log-ratio transformation uses the geometric mean of
all taxa as the reference set. The reference-based hypothesis is also employed in differential
abundance analysis of compositional data (Brill et al.| 2022; |Wang;, |2023blja)). Unlike standard
compositional data analysis, we utilize the sum of abundance in a set as the reference.

To perform efficient normalization in the absence of prior knowledge of spike-in taxa, we
need to select an appropriate reference set, denoted by Jy. In the presence of spike-in taxa,
the reference set is simply the set of taxa with known absolute abundance that is constant
across samples. However, for experiments without spike-in taxa, we can instead use a large
set of non-differentially abundant taxa as the reference set. We assume that there exists
a set of non-differentially abundant taxa called 7y, such that their absolute abundance is
similar across samples. When this is the case, the sum of the absolute abundance of these
taxa is also similar across samples

Z Ailyj ~ Z Ai2,j> Vi 7é i2,
J€Jo JEJo

making the sum of abundance a suitable reference for normalization. Moreover, the sum
of abundance of many taxa is generally more stable than that of a single taxon, due to
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the concentration of measure phenomenon (Talagrand} 1996; |Boucheron et al., 2013). This
observation suggests that normalization based on the set of non-differential abundant taxa
can be effective in recovering the absolute abundance. In the next section, we will discuss
how we estimate the reference set J, from the data.

4.2 Reference Set Identification by Rank Similarity

In the previous section, we proposed using reference-based normalization to convert relative
abundance to absolute abundance by identifying a large set of non-differential abundant taxa.
In this section, we introduce a new method for detecting this set by comparing the count
similarity between pairs of taxa. Before we present the method, we introduce some notation
and assumptions. We partition the taxa into two groups based on absolute abundance: the
collection of differential abundant taxa, denoted by 77, and the collection of non-differential
abundant taxa, denoted by [Jy. To simplify the analysis, we assume that the absolute
abundance of non-differential abundant taxa is the same across samples

Aihj = Aiz,jv i 7é iz, J€ Jos
while the absolute abundance of differential abundant taxa varies between samples
Aiyj # A i1 #i2, JET.

This model is only for illustrative purposes, but the method we introduce here can work in
a more general setting, as long as the variance of absolute abundance for non-differential
abundant taxa is much smaller than that for differential abundant taxa. In practice, we
observe the count of each taxon, which only reflects relative abundance, and assume that it
is drawn from a multinomial distribution

(Nm, e 7Ni,d) ~ Multinomial <Ni*’ ( i1 d )) ’

AT A

where N} is the total sequence number in the ith sample. A similar model is also considered
in Brill et al.| (2022)); Wang (2023a). Equivalently, we assume that the observed count of taxa
is approximately equal to the absolute abundance multiplied by some unobserved sampling
fraction ¢;

Ni;~cA 1<i<n, 1<75<d.

2,7
To make the model identifiable, we assume that |Jy| > d/2, where d is the number of

taxa. See more discussion on model identification in Wang (2023b). After introducing these
notations and assumptions, we present a two-step method for identifying the reference set.

Step 1: Differential Abundance Level Statistics In the first step, we use the pairwise
similarity of taxa to construct the statistics for the differential abundance level of each
taxon (i.e., belonging to Jy or J;). The key observation we use in this step is that the
observed count of two non-differential abundant taxa is much more similar than that of a
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non-differential abundant taxon and a differential abundant taxon. We represent the count of
the jth taxon in all samples as ]\7j = (N1, ..., Ny, ) and the sampling fraction of all samples
as € = (c1,...,¢,). Since the absolute abundance of non-differential abundant taxa is stable
across samples, we can expect that the count vectors of two non-differential abundant taxa,
J\_fjl and J\_ij, are almost proportional to the sampling fraction vector ¢, so the correlation
between ]\7j1 and ]\7]»2 is close to 1. However, since the absolute abundance of differential
abundant taxa varies across samples, we can expect the correlation between le and ]\7j2 to
be much smaller than 1 when j; is a non-differential abundant taxon and j, is a differential
abundant taxon. If we use Spearman’s rank correlation coefficient to measure correlation,
then
Tji,ge = T(Njn]\_sz) = {N . j.l’jZ © % )
<1, J1 € Jo,J2 € T1

where 7(-,-) is Spearman’s rank correlation coefficient. How do we use the difference in the
pairwise similarity to distinguish non-differential and differential abundant taxon? Since we
assume that more than half of the taxa are non-differentially abundant, we can look at the
median of the rank correlation coefficients between a taxon and other taxa. More concretely,
if we denote the median as
Mj = Median T
5'=1,...d

we can expect

%17 jej()
<1, jJe€RH

This observation suggests that the median M; can be used to distinguish non-differential
and differential abundant taxa.

Step 2: Taxa Classification The second step of our method uses M; to classify each
taxon based on the empirical Bayes framework. The first step suggests that M; is larger in
non-differential abundant taxa than in differential abundant taxa. A natural classification
rule is that we can choose a threshold 7" such that all taxa with M; > T are classified as non-
differential abundant taxa, i.e., Jp = {j : M; > T} is the estimator for Jy. The threshold T
should help ensure that most taxa in Jo are non-differential abundant, since our goal is to
find a reference set jo that satisfies the condition

Z Aily]' ~ Z AiQ,ja Vi 7é i2,
i€do j€Jo

To achieve this, we choose the threshold T' to control the misclassification error rate in Jo,
ie.,
]P)(j S t71‘M] > T) < m,

where 1 > 0 is the target misclassification rate that users select (e.g., n = 0.01). We estimate
T using the empirical Bayes framework (Robbins, (1951} |[Efron, 2012). To facilitate this, we
write Fj and Fj as the cumulative distribution functions of M; when j is the non-differential
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and differential abundant taxa, respectively, and F' as the cumulative distribution functions
of Mj, i.e.,
F(t) = 7TOF0<t) + (1 - 7T0)F1(t),

where 7 is the proportion of non-differential abundant taxa. Following these notations, we
can rewrite the misclassification error in 7, as
P(M; >T|j € 7)P( € ) 7ol — Fy(T))

P(je I|M;>T)= PO > T) =1 1— F(T)

The idea in the empirical Bayes framework is to estimate 7y, Fp, and F' from observed M;, j =
1,...,d, and then we can estimate the misclassification error by plugging in these estimators.
The cumulative distribution function F' can be naturally estimated by its empirical version

F() = 3 S 100, < ),

=1

where I(-) is an indicator function. Before estimating Fy and 7y, we choose v > 0 such that
P(M; > v|j € J1) = 0, indicating that j is likely a non-differentially abundant taxon when
M; > ~. After choosing v, we adopt a resampling method to estimate Fy: 1) find all taxa
with M; > v and define Jo=1{j: M; > ~}; 2) repeat subsampling the taxa from Jo and
recalculate the median on the subsampled data as in Step 1; 3) the empirical cumulative
distribution function of these resampled medians is our estimator FO. After finding Fy and

A

F', we can estimate my by

Here, we use the fact that 1 — F(t) =~ mo(1 — Fy(t)) when ¢ > ~. With the estimators 7, Fp,
and F' in hand, we choose the threshold T" and estimated reference set as

T:inf{Tzl——Sn} and Jo={j: M; >T}.

Choices of Tuning Parameters RSim normalization has two main parameters: the tar-
get misclassification rate n and the threshold for differential abundance level statistics . The
choice of 7 affects the empirical misclassification rate and the size of the estimated reference
set, which in turn affects the performance of downstream analysis and sampling fraction
recovery. A smaller n leads to a less significant bias but higher variance in sampling fraction
recovery. Therefore, we recommend a smaller 1 for downstream analysis that is sensitive
to sampling fraction recovery bias, such as differential abundance analysis. Conversely, a
larger n is suitable for downstream analysis that requires an estimated sampling fraction
with inflated bias and low variation, such as PCoA plotting.

The threshold ~ should ideally be at the lowest level where statistics of differential abun-
dant taxa cannot achieve. The choice of v depends on the microbiome data characteristics,
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such as taxonomic rank and proportion of differential abundant taxa. Our experience sug-
gests that at an ASV or OTU level, the statistics of at least 90% of non-differential abundant
taxa are greater than 0.8. Therefore, we recommend using 7 = 0.8 and use it in all exper-
iments. As discussed, it is better to apply RSim normalization at an ASV/OTU level and
then convert the data into higher taxonomic ranks, such as genus and family. Finally, note
that RSim normalization performance is more sensitive to n than ~.
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Supplement Material

Numerical Experiment Setup

Summary of notations We denote sample size by n, and the number of taxa by d. J;
represents the set of differential abundant taxa, and Jp represents the rest of the taxa. X ;
is the raw count from the data set. A;; is the simulated absolute abundance. N;; is the
simulated observed count. The parameter of misclassification rate control level is denoted by
1. Z; and Z, represent two different groups of samples defined by the differential abundant
taxa.

Simulation study to assess compositional bias correction
The simulations in this section are conducted on the data set collected in [He et al. (2018)).

We only include samples under the age of 30, so there are 539 samples and 37532 ASVs.

Setting for Figure In subfigure (a), (b), and (c), n = 500 samples are randomly
selected from the data set and randomly divided into two groups Z; and Z, with equal size.
10% taxa are randomly selected to be J;. The idea of our simulation experiments is to
treat the raw count data as the population of absolute abundance. Specifically, absolute
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abundance is generated in the following way:

X; i+ Poisson(\), j €T,

For i € 7, : A= T (A, J€T
Xi,j? J € L70

Fori €Iy : Aij=Xi5, j=1,...d

Given the simulated absolute abundance, observed count in the simulation experiment is
generated in the following way:

N, ; ~ Binomial(4; ;, ¢;), i=1,..,n, j=1,..4d,

where ¢; ~ Unif[0, 1] is the sampling fraction of each sample. A is 1 for the weak signal (a),
10 for the moderate signal (b), and 500 for the strong signal (c).

The setting for (d) is the same as (a), (b) and (c), except that we consider the proportion
of differential abundant taxa as p = 0.1,0.2,0.3. The bias is evaluated in the following way:

1 1
Bias = | — log (¢i/ci) — 7= log (¢i/ci)
P> iApS
Here | - | represents the cardinality of a set. The two terms in above equation represent

the average log difference between true and estimated sampling fraction for two groups
respectively. If sampling fractions are correctly estimated for both two groups, the absolute
difference between these two terms should be close to zero. On the other hand, if the
differential abundant taxa lead to a systematic bias in estimated sampling fraction, the bias
can be large. In all above experiments, we choose = 0.2.

Simulation study to assess the misclassification rate control

Similar to the last set of simulation experiments, we still conduct the experiments on data
set collected in [He et al.| (2018). Each set of experiment is repeated 500 times and we use
the average misclassification rate as measure.

Setting for Figure [S1a: n = 500 samples are randomly selected from the data set and
divided into two groups Z; and Z, with equal size. 10% taxa are randomly selected to be
J1. Absolute abundance is generated in the following way:

10X (X;;+1), je
For i € 7, : Aij = ( g ), JE
Foriel,: Aij=10-X;;, j=1,..d

A is the signal strength and set to be 2 in this experiment. Observed count is generated in
the following way:

N; j ~ Binomial(4, ;, ¢;), i=1,.,n, j=1,...4d,

where ¢; ~ Unif|0, 1] is the sampling fraction of each sample.
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Setting for Figure [S1b: n = 500 samples are randomly selected from the data set and
divided into two groups Z; and Z; with equal size. The top 10% abundant taxa are selected
to be J;. Absolute abundance is generated in the following way:

10

— Xij, JE
ForieZ : Ay=4¢3 T

1O.Xi,j7 J€ Do
Forie T Ai;=10- X5, j=1..d

Observed count is generated in the following way:
Nij ~ Binomial(A; ;, ¢;), t=1,..,n, j=1,..,d,

where ¢; ~ Unif[0, 1] is the sampling fraction of each sample.

Setting for Figure [S1c: n = 500 samples are randomly selected from the data set.
The top 10% abundant taxa are selected to be J;. First we generate a random variable
Y = [Y1,..,Y,] and Y;’s are drawn from Unif[1, 100] independently. And absolute abundance
is generated in the following way:

10-Y;- X5, je€h

Fori=1,.,n:A;; = {10'){” e
1,79

Observed count is generated in the following way:
N, ; ~ Binomial(A4; ;, ¢;), i=1,..,n, j=1,..d

where ¢; ~ Unif[0, 1] is the sampling fraction of each sample.

Setting for Figure [S2; All the four subfigures share the same data structure with Figure
[STh. Signal strength A increases from 1 to 10; the ratio between the group sizes increases
from 0.1 to 0.4; the proportion of differential abundant taxa increases from 0.1 to 0.5; sample
size increases from 100 to 500. We choose n = 0.01 in the experiments.

Simulation study for PCoA

The Euclidean distance is used in all the PCoA plots.

Setting for Figure and [3b: The experiment is conducted on data set collected in He
et al. (2018). We only include samples with total counts larger than 30000 in this experiment.
Figure [3p is the result for raw data. For , half of the samples are subsampled to 1/10 of

the original sequencing depth, while the other half of the samples remain the same. 1 = 0.2
in these experiments.
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Setting for Figure [Bc: PCoA performance on the data set collected in [Vangay et al.
(2018)). The setup of this experiment can be found in Section [2.3]

Setting for Figure : All the samples of the data set in [He et al.| (2018) are included
in this experiment. Samples are divided into two groups Z; and Z,. The top 25% abundant
taxa are selected to be [J;. Absolute abundance is generated in the following way:

1000- Xi;, je
For i € I, : = g J Jh
FOI'?;E.’Z:Q: AZ,] :20.)(7:"],7 ]: 17.-.,d

Observed count is generated in the following way:

Fori e Z; : log(¢;) ~ Normal(—3,0.25)
N@j ~ Bil’lOIl’li&l(Ai’j, l'IliIl(Ci, 1)), j = 1, ey d
For 1 € 7, : log(d;) ~ Normal(0, 0.25)

N; j ~ Binomial(A4; ;, min(d;, 1)), j=1,.,d

INE
The sampling fraction of Z; is around ten times of Z,.

Setting for Figure [S3p: All the samples are included in this experiment(n = 539).
The top 1% abundant taxa are selected to be [J;. First we generate a random variable

Y = [V1,..,Y,] and Y;’s are drawn from Unif[5, 500] independently. Absolute abundance is
generated in the following way:

Fori=1,..n:

o Yi- Xs5, 7€
" Xi,ja ]¢\71

Observed abundance is generated in the following way:
N, ; ~ Binomial(4; ;, min(c¢;, 1)), i=1,..,n, j=1,..,d
where 1/¢; ~ N(Y;, 1) and min(¢;, 1) is the sampling fraction for sample i.

Simulation study for association analysis

Simulation experiments is still based on the data set in He et al.| (2018). All the experiments
for the association analysis are repeated 500 times.

Setting for Figure [4a: n = 500 samples are divided into two groups with equal size.
Samples in the first group are subsampled to 1/c¢ of the original sequencing depth, while the
second group keeps the same as the original data set. ¢ increases from 1 to 3. We choose
n = 0.07.
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Setting for Figure [db: We consider sample size n = 100,300, 500. Samples are divided
into two groups Z; and Z, with equal size. The top 10% abundant taxa are selected to be
J1. Absolute abundance is generated in the following way:

AN-Xij, J€
For 7 € Il : Ai,j = 7 . J jl

Xi,ja J € x70
For i € 1-2 : AZJ = Xl’] ] = 17 ,d

Here we choose A = 2. Observed count is generated in the following way:

ForieZ : log(¢;) ~ Normal(—0.7,0.05)
N, ; ~ Binomial(4; ;, min(c;, 1)), j=1,..,d
ForieZ,: log(d;) ~ Normal(0, 0.05)

N, ; ~ Binomial(4; ;, min(d;, 1)), j=1,..,d

The sampling fraction of Z; is around two times of Z,. We choose n = 0.05.

Setting for Figure [S5h: The setting of Figure is the same as Figure [db except that
A =05

Setting for Figure [S5b: We consider sample size n = 100, 300, 500. The setting is the
same with Figure [STk.

Simulation study for differential abundance test

There are three parts in this section. The first set of experiments is based on the data set
in He et al| (2018), of which results are shown in Figure [5} the second set is based on the
data set in [Caporaso et al| (2011)), of which result is shown on Figure [6} the third set is
based on the data set in [Vangay et al (2018), of which result is shown on Table [S1] We use
Benjamini-Hochberg procedure to adjust the effect of multiple testing.

For the first set of the simulation study, to reduce the computational load, we select the
subtree below Node 351 as our target, which contains 1081 taxa in total. We repeat each
experiment 500 times and consider the average sensitivity rates and false discovery rates.

Setting for Figure [5p and [5b: We consider sample size n = 100,200, 300. Samples are
divided into two groups Z; and Z, with equal size. 10% taxa are randomly selected to be
J1. Absolute abundance is generated in the following way:

A+ (X, ; + Poisson(\)), j €
FOl“ Z - Il . Az,j = ( J . 1 n( )) J jl
/\ . )(7;7]'7 i (= %
ForZ€I2 : AZ7.7 :)\'Xi,j7 j:17...7d,
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Observed count is generated in the following way:

For i e 7, : log(c;) ~ Normal(—log()),0.01)
N, ; ~ Binomial(A; ;, min(c;, 1)), j=1,..,d
ForieZ,: log(d;) ~ Normal(—log(\/10),0.01) '

N, ; ~ Binomial(4; ;, min(d;, 1)), ji=1,..,d

A is chosen to be 50,100,150. Two-sample t-test is applied on the normalized counts. The
significance level is 0.1. We choose n = 0.01.

Setting for Figure [5c and [5d: We consider sample size m = 200, 350, 500. The top 10%
abundant taxa are selected as J;. First we generate a random vector Y = [Y7,..,Y,,] and Y]
are draw from Unif[1, A]. The absolute abundance is generated in the following way:

X + Poisson(Y;), je T

Fori=1,..,n: Ai’j:{X e T
iy J 0

Then we generate the sampling fraction in the following way:

Unif[0.5,1], Y; > mean(Y;)
“7 )\ Unif[0.1,05),  Y; < mean(;)

Observed abundance is generated in the following way:
Ni,j ~ Binomial(Ai,j, Ci), 1= 17 .., n, ] = ]., ey d

A is chosen to be 50, 100, and 150. Pearson correlation test is applied on normalized counts.
The significance level is 0.1 and we choose 1 = 0.01.

Setting for Figure [6f Samples of subject M3’s right palm are selected from data set in
Caporaso et al. (2011)). In total there are 352 samples and 24333 ASVs. Samples with a
sequencing depth of less than 10000 are selected to be the first group, and samples with a
sequencing depth of more than 20000 are another group. ANCOM, EdgeR, LinDA, RDB
and t-test with different normalization methods are considered in the experiment. We use
the detected_0.9 for ANCOM, which is the most conservative setting, and the default setting
for EdgeR, RDB and LinDA.

Setting for Table . Differential abundant test is conducted for group KareThai and
group Karenlst from data set in [Vangay et al. (2018)). For ¢-test with RSim, data is first
normalized at the ASV level, then aggregated to the phylum level. The FDR control level
is 0.1.

Extra Numerical Results and Figures
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Figure S1: Misclassification rate control when the target misclassification rate n varies. In all
figures, the z-axis is the target misclassification rate while the y-axis represents the empirical misclassification
rate of the estimated reference set. Setting 1: 10% taxa are randomly selected as differential abundant taxa,
and the latent variable of differential abundant taxa is binary; Setting 2: the differential abundant taxa are
top 10% most abundant taxa, and the latent variable of differential abundant taxa is binary; Setting 3: the
differential abundant taxa are top 10% most abundant taxa and the latent variable of differential abundant
taxa is continuous. In all settings, the misclassification error rate of the estimated reference set can be well
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Figure S2: Misclassification rate control when the signal strength of differential abundant taxa,
the balance of group size, proportion of differential abundant taxa, and sample size are differ-
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of differential abundant taxa, the balance of group size, proportion of differential abundant taxa, and sample
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Figure S3: Normalization can reveal biological pattern in PCoA plots. In (a), samples are randomly
divided into two groups, and the top 10% most abundant taxa are differential abundant taxa with a binary
latent variable. In (b), the top 10% most abundant taxa are differential abundant taxa with a continuous
latent variable. In these figures, RSim normalization can reveal the structure of the latent variable. Euclidean
distance with log transformation is used in all PCoA plots.

Method Phylum
Cyanobacteria
t-test on unnormalized data Elusimicrobiota
Proteobacteria

Actinobacteriota
Bacteroidota
Desulfobacterota
Firmicutes
Fusobacteriota
Patescibacteria

t-test on data normalized by RSim

Actinobacteriota
Bacteroidota
Desulfobacterota
Firmicutes
Fusobacteriota
Patescibacteria

RDB test on unnormalized data

Table S1: Differential abundant phyla detected by different differential abundance analysis
methods. Three methods are considered: ¢-test on unnormalized data, t-test on data normalized by RSim,
and RDB test on unnormalized data.
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Figure S4: False pattern caused by compositional bias leads to a misleading conclusion. (a)
shows the PCoA plots colored by days after the experiment started. (b) presents the PCoA plots colored
by sequencing depth. (c) show the relationship between time and sequencing depth. The pattern of time
in PCoA plots is highly overlapped with pattern of the sequencing depth, which can be explained by the
deterministic relationship between time and sequencing depth.
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Figure S5: Normalization can improve the power of association analysis. In (a) and (b), samples
are randomly divided into two groups, and the top 25% most abundant taxa are differential abundant taxa
with a binary or continuous latent variable. The significance level is 0.05. RSim can improve the power of
association analysis.
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