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 2 

Abstract 23 

Background 24 

Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers, 25 

are characterised by stratified water columns with complex physicochemical profiles. These 26 

environments, also known as subterranean estuaries, support an abundance of endemic macro 27 

and microorganisms. There is now growing interest in characterising the metabolisms of 28 

anchialine microbial communities, which is essential for understanding how complex 29 

ecosystems are supported in extreme environments, and assessing their vulnerability to 30 

environmental change. However, the diversity of metabolic strategies that are utilised in 31 

anchialine ecosystems remains poorly understood.  32 

Results 33 

Here, we employ shotgun metagenomics to elucidate the key microorganisms and their 34 

dominant metabolisms along a physicochemical profile in Bundera Sinkhole, the only known 35 

continental subterranean estuary in the Southern Hemisphere. Genome-resolved 36 

metagenomics suggests that the communities are largely represented by novel taxonomic 37 

lineages, with 75% of metagenome-assembled genomes assigned to entirely new or 38 

uncharacterised families. These diverse and novel taxa displayed depth-dependent 39 

metabolisms, reflecting distinct phases along dissolved oxygen and salinity gradients. In 40 

particular, the communities appear to drive nutrient feedback loops involving nitrification, 41 

nitrate ammonification, and sulphate cycling. Genomic analysis of the most highly abundant 42 

members in this system suggests that an important source of chemotrophic energy is 43 

generated via the metabolic coupling of nitrogen and sulphur cycling.  44 

Conclusion 45 

These findings substantially contribute to our understanding of the novel and specialised 46 

microbial communities in anchialine ecosystems, and highlight key chemosynthetic pathways 47 
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 3 

that appear to be important in these energy-limited environments. Such knowledge is 48 

essential for the conservation of anchialine ecosystems, and sheds light on adaptive processes 49 

in extreme environments.  50 
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 4 

Introduction 51 

 52 

The microbial communities of stratified aquatic systems serve as useful models for studying 53 

the relationships between metabolic strategies, water column depth, and physicochemistry. 54 

Stratified water columns, characterised by physical and chemical gradients, provide distinct 55 

niches for diverse assemblages of microbes, which, in turn, can support complex food webs 56 

in relatively extreme environments. Thus, unravelling the network of microbial metabolic 57 

strategies that link biogeochemical processes and trophic webs is important for understanding 58 

ecosystem functioning as well as evaluating ecosystem vulnerability [1]. 59 

Subterranean estuaries are stratified aquatic systems in which marine-derived 60 

groundwater mixes with meteoric freshwater in coastal aquifers [2]. These systems are 61 

globally distributed, and most commonly form in the porous limestone of karst coastlines [3]. 62 

They are characterised by water columns that exhibit stratified physicochemical profiles and 63 

low dissolved oxygen content [4]. Although they represent low-energy and extreme 64 

environments, subterranean estuaries can support complex ecosystems, which have been 65 

termed ‘anchialine’ [4]. The higher trophic levels of anchialine ecosystems largely comprise 66 

cave-adapted invertebrates with high rates of endemism [5, 6]. Earlier investigations into 67 

these anchialine food webs indicated that they may be supported, at least in part, by 68 

chemosynthetic microbes [7-9]. There is now growing interest in surveying the microbial 69 

communities that inhabit subterranean estuaries, and in particular, characterising their niche-70 

adaptive metabolisms [1, 10]. Such endeavours are critical for assessing the vulnerability of 71 

anchialine ecosystems to environmental change. 72 

Microbial ecology studies have revealed that anchialine ecosystems harbour highly 73 

diverse microbial assemblages. Examination of the prokaryotic community structure using 74 

16S rRNA gene amplicon sequencing has been undertaken for several anchialine systems, 75 
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 5 

including those found in Eastern Adriatic Sea Islands [11], Sansha Yongle Blue Hole in the 76 

South China Sea [12], Indonesian anchialine lakes [13], Blackwood Sinkhole in the Bahamas 77 

[14], and coastal aquifers of the Yucatán Peninsula, Mexico [10, 15]. These sites all revealed 78 

a high degree of taxonomic richness spanning functionally diverse microbial groups. 79 

Brankovits D, et al. [10] combined 16S rRNA gene sequencing with respiratory quinone 80 

biomarker analysis to infer the metabolic phenotypes of an anchialine water column, which 81 

contained a mixture of methanotrophs, heterotrophs, photoautotrophs, and nitrogen and 82 

sulphur cycling chemolithotrophs. They identified methane and dissolved organic carbon as 83 

key microbial energy sources that support higher trophic levels of the anchialine food web. 84 

Though, comparison between the microbial communities within coastal and in-land sinkholes 85 

of the same region (Yucatán Peninsula) show that the dominant metabolic strategies can 86 

differ significantly between different sinkholes along the same aquifer network [15]. 87 

 Bundera Sinkhole, located in the karstic coast of Cape Range Peninsula in north-88 

western Australia, is the only known continental anchialine system in the Southern 89 

Hemisphere. The sinkhole, which is the only opening to the subterranean estuary, is located 90 

1.7 km inland from the Indian Ocean. The water column exhibits strong vertical stratification 91 

in its physicochemical profile, with decreasing dissolved oxygen and increasing salinity with 92 

depth, and polymodal peaks of inorganic nitrogen and sulphur compounds [16-18]. A range 93 

of endemic eukaryotes have been discovered in Bundera Sinkhole, including copepods, 94 

remipeds, and polychaetes [19-22]. Chemical profiling suggests that this trophic web may be 95 

supported by microbial chemosynthesis [16].  96 

Microbial studies of Bundera Sinkhole using flow cytometry and 16S rRNA gene 97 

sequencing have shown the microbial communities to be stratified along the depth profile 98 

[17, 18, 23]. A diverse range of prokaryotes have been identified in the water column, 99 

comprising 67 identifiable bacterial and archaeal phyla [18]. Although community profiling 100 
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 6 

suggests that a range of chemolithotrophic metabolisms are present throughout the water 101 

column, the high level of taxonomic novelty has made it difficult to infer the metabolic 102 

functions of many of the most abundant members [18]. Here, we employed shotgun 103 

metagenomic sequencing across a depth profile in Bundera Sinkhole to elucidate the 104 

metabolisms of these novel microbial communities. We identified key depth-dependent 105 

chemotrophic metabolic pathways, including coupled nitrogen-sulphur cycling, that may be 106 

driving nutrient feedback loops in this system. To the best of our knowledge, this is the first 107 

whole metagenomic sequencing approach of any anchialine ecosystem, and represents 108 

important findings that can help us to better understand microbial metabolic and 109 

biogeochemical processes in these unique environments. 110 

 111 

Methods 112 

 113 

Sample collection, DNA extraction and sequencing 114 

 115 

Water samples were collected from Bundera Sinkhole as previously described [18]. Briefly, 116 

this involved pumping water samples from depths of 2, 8, 17, 18, 22, and 28 m between the 117 

29th of June and the 1st of July 2015 for metagenomic analysis. For depths of 8 m and below, 118 

samples were collected using four previously installed boreholes (Fig. 1b). Physicochemical 119 

data, including salinity, dissolved oxygen (DO), dissolved organic carbon (DOC), ammonia 120 

(NH3), nitrate (NO3
−), and sulphate (SO4

2−) measurements were obtained from our previous 121 

study [18]. For metagenomic analysis, ~4 L water samples were pre-filtered using 60 µm 122 

filters (Millipore Type NY60), and then passed through 0.2 μm SterivexTM filters. The 0.2 μm 123 

filters with captured microbial cells were cut from their casing, and DNA extractions carried 124 

out using the PowerWater® DNA Isolation kit (MO BIO Laboratories, Inc., Carlsbad, USA), 125 
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 7 

according to the manufacturer’s protocol. Metagenomic libraries were prepared for duplicate 126 

biological replicates from each depth using the Illumina TruSeq DNA Library Preparation 127 

Kit, according to the manufacturer’s protocol, and sequenced on the Illumina HiSeq 2000 128 

platform (High-Output v4).  129 

 130 

Metagenomic assembly and functional annotation 131 

 132 

Raw reads were trimmed and quality filtered using Trimmomatic v 0.38 [24], and assembled 133 

with metaSPAdes v 3.13.0 [25] with default parameters. Quality of the assembly for each 134 

sample was assessed with QUAST v 5.0.2 using the metaQUAST option [26], and contigs 135 

shorter than 1 kb were removed from the assemblies. Open reading frames (ORFs) and 136 

translated protein sequences were predicted using Prodigal v2.6.3 [27] in metagenomic mode 137 

[parameter: -p meta]. ORFs from all samples were pooled and dereplicated at 98% nucleotide 138 

identity using CD-HIT v4.8.1 [28, 29] [parameters: -c 0.98 -n 10 -d 0 -t 0 -M 0]. The relative 139 

abundance of ORFs in each sample was calculated using the transcripts per million (TPM) 140 

method with CoverM v0.6.1 (https://github.com/wwood/CoverM) in contig mode 141 

[parameters: contig -t 24 --coupled -m TPM].  142 

Translated protein sequences of the dereplicated ORFs were functionally annotated 143 

using METABOLIC v4.0 [30], by implementing the METABOLIC-G workflow with default 144 

parameters. The METABOLIC software identifies metabolic and biogeochemical traits by 145 

integrating several hidden Markov model (HMM) databases, comprising KOfam [31] 146 

(containing KEGG HMMs [32]), TIGRfam [33], Pfam [34], and custom [35] HMM 147 

databases. 148 

 149 

MAG binning and quality control 150 
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 151 

To improve sequencing depth, the replicate metagenome samples were co-assembled using 152 

MEGAHIT v1.2.9 [36, 37], with contig coverage calculated using Bowtie 2 v2.3.2 [38]. Co-153 

assembled contigs were then binned using METABAT 2 v2.2.15 [39] with default parameters 154 

within Anvi’o v6.2 [40]. The resulting MAGs were then manually refined in Anvi’o. The 155 

completion and contamination of MAGs were estimated with CheckM v1.2.1 [41] using 156 

lineage-specific marker sets [parameters: lineage_wf -t 24]. MAG chimerism was assessed 157 

using GUNC v1.0.5 [42] with default parameters. Only MAGs that passed the GUNC 158 

chimerism check, had an estimated completion greater than 50%, and had an estimated 159 

contamination less than 10% were retained for further analysis. These represent the 160 

completion and contamination MIMAG criteria for high- and medium-quality MAGs [43]. 161 

 162 

MAGs taxonomy and functional annotation 163 

 164 

MAG taxonomy was assigned using GTDB-Tk v2.1.1 [44, 45] [parameters: classify_wf --165 

cpus 24] with release R207_v2 of the Genome Taxonomy Database (GTDB) [46-49]. We 166 

inferred domain-specific phylogenies using concatenated protein alignments generated by 167 

GTDB-Tk, which were based on the BAC120 [50] and AR53 [51] protein marker sets. The 168 

phylogenies were inferred from the alignments using a maximum-likelihood approximation 169 

employed by FastTree v2.1.10 [52, 53]. We applied a WAG substitution model with branch 170 

lengths rescaled to optimise the Gamma20 likelihood, and 1,000 resamples [parameters: -171 

gamma -wag]. The inferred phylogenies were visualised using the ggtree v2.4.2 [54] and 172 

ggtreeExtra v1.7.0.990 [55] R packages. 173 

MAGs were functionally annotated using METABOLIC v4.0 [30], by implementing 174 

the METABOLIC-C workflow with default parameters. The relative abundance of MAGs in 175 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.03.535450doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

each sample was calculated using the TPM method with CoverM v0.6.1 176 

(https://github.com/wwood/CoverM) in genome mode [parameters: genome -t 24 --coupled -177 

m TPM]. Four MAGs that were highly abundant, having TPM values greater than 50 in at 178 

least one sample, were further profiled for nitrogen cycling genes using the NCycDB [56]. 179 

DIAMOND v2.0.15 [57] was used to query MAG proteins against the NCycDB with a 180 

minimum E-value of 1e-05 [parameters: blastp -p 8 -k 1 -e 1e-5], and filtered using an amino 181 

acid identity cut-off of 70%. 182 

 183 

Statistical analyses 184 

 185 

Beta-diversity analyses of the whole metagenomes, key metabolic genes, and MAG phyla 186 

were assessed using non-metric multidimensional scaling (NMDS) based on Bray-Curtis 187 

distances using the vegdist and metaMDS functions from the vegan v2.5-7 R package [58]. 188 

Groupings inferred from the NMDS ordination were compared with PERMANOVA using 189 

the pairwiseAdonis v0.4 R package [59], which uses the vegan functions, vegdist and adonis, 190 

to calculate inter-group differences in a pairwise fashion. 191 

 192 

Results and Discussion 193 

 194 

Bundera Sinkhole, Australia’s only deep water anchialine system, supports a complex trophic 195 

web with an abundance of endemic micro- and macroorganisms. Previous chemical and 196 

community profiling using 16S rRNA gene sequencing suggest that this ecosystem may be 197 

sustained by microbial chemosynthesis [18, 23]. However, the high degree of taxonomic 198 

novelty, with associated uncertainty of metabolic functions, has limited our understanding of 199 

the dominant metabolic pathways in this system. Here, we employed shotgun metagenomic 200 
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sequencing to investigate the distribution of key metabolic genes and to identify the 201 

biogeochemical cycling potential of the stratified microbial communities in Bundera 202 

Sinkhole. 203 

 204 

Microbial metabolic profiles are associated with water depth and physicochemistry 205 

 206 

Bundera sinkhole exhibited a highly stratified water column with a marked physicochemical 207 

profile (Supplementary Table 1). The only oxic depth sampled was at 2 m, which had a 208 

dissolved oxygen (DO) concentration of 2.75 mg/L, and had the lowest salt concentration, 209 

with a salinity of 18.69 practical salinity units (PSS). The 8 m depth, representing the 210 

sinkhole’s halocline [16, 17], had a DO (0.86 mg/L) relatively higher than the samples from 211 

17-28 m depths, and an intermediate salinity of 25.46 PSS. The lower depths, encompassing 212 

the 17-28 m samples, had lower levels of DO (0.28-0.47 mg/L) and higher salinity (31.41-213 

32.35 PSS). Polymodal peaks of dissolved organic carbon (DOC), ammonia, nitrate and 214 

sulphate were observed along the water column (Supplementary Table 1). 215 

Clear distinctions in microbial metabolic strategies were observed at different depths 216 

(Fig. 2). Microbial communities sampled from the 17, 18, 22, and 28 m depths exhibited 217 

similar metabolic gene diversity profiles, which differed from the 2 m and 8 m communities 218 

(Fig. 2b; PERMANOVA, P=0.04). The 2 m and 8 m metabolic profiles form distinct clusters 219 

based on NMDS analysis (Fig. 2b), although this separation was not determined to be 220 

significantly different (PERMANOVA, p=0.33), likely due to the limited statistical power of 221 

this comparison. The same clustering is observed for the beta-diversity of all genes detected 222 

in the metagenomes (Fig. 2a). Since genes were de-replicated at 98% nucleotide identity, 223 

clustering of all genes is more likely to reflect the taxonomic composition of the samples. 224 

Thus, both taxonomic and functional composition of the sinkhole appear to cluster according 225 
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 11

to salinity and oxygen concentrations. These same depth clusters are observed from16S 226 

rDNA amplicon sequencing of the sinkhole [18]. 227 

Autotrophic CO2 fixation strategies differed by depth (Fig. 2c), likely in response to 228 

oxygen levels and percentage of incident light. The CBB cycle, which utilises the CO2 229 

fixation enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) by photo- and 230 

chemo-autotrophs, was depth-dependent. Two main forms of RuBisCO are known to be 231 

involved in the classical CBB cycle [60]. Surface samples, particularly those from the 2 m 232 

depth, were characterised by a greater relative abundance of the Form I RuBisCO compared 233 

to other depths (and other C-fixation strategies), presumably from a greater abundance of 234 

photoautotrophs. While the relative abundance of form II RuBisCO, which is adapted to low-235 

O2 conditions [61], had an opposite trend, with greater relative abundance at lower depths. 236 

The relative abundance of genes that drive the reverse TCA cycle and Wood-Ljungdahl 237 

pathway increased with depth, which are the hypoxic regions of this system (Supplementary 238 

Table 1). Similar trends have been observed in hypoxic and anoxic zones of stratified water 239 

columns [62, 63].    240 

The relative abundance of marker genes for different pathways involved in carbon 241 

metabolism also corresponded to a depth gradient (Fig. 2c). Methanol and formaldehyde 242 

oxidation (C1 metabolism), decreased with depth, while the methane monooxygenase gene, 243 

mmoB, involved in the first step of methane metabolism, increased with depth. Similar 244 

patterns of carbon metabolism genes have been observed over an oxygen gradient in a 245 

permanently stratified lake [63]. Arsenic and selenium cycling genes also corresponded to a 246 

depth gradient (Fig. 2c). In particular, the abundance of genes involved in dissimilatory 247 

(respiratory) arsenate and selenate reduction increased with depth. Both arsenate and selenate 248 

can be utilised in anerobic respiration for energy production [64, 65], explaining their greater 249 
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relative abundance at hypoxic depths. These elements can thus provide additional energy 250 

sources for facultative or obligate anaerobes at the lower depths of the sinkhole. 251 

Pathways for the complete cycling of nitrogen (N) and sulphur (S) compounds were 252 

observed in the sinkhole (Fig. 2d), with diverse N and S cycling reactions present at different 253 

depths (Fig. 2c). Several key N and S cycling genes were strongly correlated with 254 

concentrations of ammonia, nitrate, and sulphate (Fig. 3; Supplementary Table 3), 255 

highlighting these as key environmental parameters. To infer the direction of these 256 

correlations and to identify nutrient feedback loops, we examined whether the correlated 257 

genes were involved in either the production or substrate utilisation of these chemical 258 

compounds. Marker genes for N cycling that correlated with ammonia concentrations were 259 

all involved in pathways that produced ammonia (Fig. 3a-c; Supplementary Table 3). These 260 

included: napA, encoding a nitrate reductase, involved in the first step of the dissimilatory 261 

nitrate reduction to ammonia (DNRA) pathway, reducing nitrate to nitrite; and nirB and nrfA, 262 

both encoding nitrite reductases, involved in the second step of the DNRA pathway, further 263 

reducing nitrite to ammonia. Similarly, N cycling marker genes that correlated with nitrate 264 

concentrations were all involved in nitrate production (Fig. 3d,e; Supplementary Table 3). 265 

These included amoA, encoding an ammonia monooxygenase, involved in the first step of 266 

nitrification, oxidising ammonia to nitrite; and nxrA, encoding a nitrite oxidoreductase, 267 

involved in the final step of nitrification, oxidising nitrite to nitrate. We also found that the 268 

relative abundance of both amoA and nxrA are negatively correlated with the concentration of 269 

dissolved organic carbon (DOC) (Fig. S1; Supplementary Table 4), suggesting that 270 

chemolithotrophic nitrification is an important metabolic pathway when available organic 271 

carbon is limited. Thus, microbial communities and environmental concentrations of DOC, 272 

ammonia and nitrate are apparently linked in a feedback loop involving nitrification 273 

(ammonia to nitrate) and DNRA (nitrate to ammonia) pathways. 274 
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The S cycling marker genes, sat and sdo, were significantly correlated with sulphate 275 

concentrations (Fig. 3f,g; Supplementary Table 3), and are involved in the utilisation and 276 

production of sulphate, respectively. sat encodes a sulphate adenylyltransferase that coverts 277 

sulphate to adenosine-5′-phosphosulfate (APS) [66]. sdo encodes a sulphur deoxygenase 278 

which oxidises glutathione persulphide (GSSH). Sulphite is the first product of SDO activity 279 

via GSSH oxidation, which then leads to the non-enzymatic production of sulphate (likely 280 

from auto-oxidation of sulphite) [67]. Thus, sulphate concentrations in Bundera Sinkhole are 281 

likely being driven by, as well as shaping, the microbial communities in a sulphate-feedback 282 

loop. 283 

 284 

Taxonomically novel and functionally diverse prokaryotes inhabit the sinkhole  285 

 286 

Bundera Sinkhole harbours considerable microbial diversity, so to gain better insight into the 287 

metabolic potential of the novel and abundant microbial species, we employed genome-288 

resolved metagenomic analysis. We generated 180 medium- to high-quality MAGs from the 289 

twelve co-assembled metagenomes (median completion = 88.75%, median contamination = 290 

0.93%; Supplementary Table 5). These comprised 150 bacterial MAGs from 20 phyla, with 291 

the remaining 30 MAGs from 3 archaeal phyla (Fig. 4). The composition of prokaryotic 292 

phyla differed significantly by water depth, with distinct phyla found at 2 m, 8 m, and 17-28 293 

m depths (Fig. S2; Supplementary Table 6), reflecting the same groupings as the gene-based 294 

clusters. This is supported by 16S rDNA amplicon sequencing of Bundera Sinkhole 295 

communities [18], which suggests similar depth-dependent composition of microbial taxa. 296 

The communities inhabiting Bundera Sinkhole are taxonomically novel, with 75% of 297 

MAGs assigned to entirely new or uncharacterised families that lack cultured representatives. 298 

In the Genome taxonomy Database (GTDB), newly delineated taxa are allocated with 299 
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alphanumeric placeholder labels. Using GTDB nomenclature, we found that 64% of MAGs 300 

were assigned to families with such placeholder labels, and a further 11% of MAGs could not 301 

be assigned to any family (Supplementary Table 5). Even at the class level, almost a quarter 302 

of all MAGs in this system were assigned to placeholder-labelled lineages. Such taxonomic 303 

novelty is likely driven by niche adaptation to the distinctive geomorphological and 304 

physicochemical properties of anchialine ecosystems.  305 

The suite of MAGs assembled from Bundera Sinkhole provides an ideal opportunity 306 

to assess the functional potential of these diverse and novel taxa. The relative abundance of 307 

MAG-related functions associates with water depth (Fig. 5), as observed with the gene-based 308 

functional analysis. We found that the number of MAGs that have the genetic potential for 309 

each key metabolic reaction varied considerably, as does their relative abundance at different 310 

depths.  311 

We found that the taxonomy of carbon metabolism varied based on the carbon 312 

substrate (Fig. 5). For example, one-carbon (C1) molecules (e.g., methanol, formaldehyde, 313 

formate, and carbon monoxide) are largely metabolised by Proteobacteria, while complex 314 

carbon molecules (e.g., cellulose, chitin, starch, and other oligo- and poly-saccharides) are 315 

metabolised by bacteria from a wider range of phyla.  316 

The taxonomy of autotrophic microbes differed based on the CO2 fixation strategy 317 

(Fig. 5). Photo- and chemo-autotrophs that utilise RuBisCO as part of the carbon-fixing CBB 318 

cycle were almost all Proteobacteria (80%). A much more diverse range of bacteria and 319 

archaea had the genetic potential for utilising the reverse TCA (Patescibacteria, 320 

Nanoarchaeota, Campylobacterota, Myxococcota, Bacteroidota) and Wood-Ljungdahl 321 

(Planctomycetota, Desulfobacterota, Chloroflexota, Verrucomicrobiota, Nitrospirota, 322 

Bdellovibrionota) pathways for carbon fixation.  323 
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 For the most part, N and S cycling pathways were performed by Proteobacteria (Fig. 324 

5). As described above, both the DNRA and nitrification processes appear to be important N 325 

cycling pathways that drive a nitrogen-feedback loop in this system. The DNRA pathway, 326 

involving nitrate reduction to nitrite, which is then further reduced to ammonia, is largely 327 

driven by Proteobacteria (Fig. 5). The reverse of this process, nitrification, involves ammonia 328 

oxidation to nitrite, which is further oxidised to nitrate. Here, the final nitrification step 329 

(nitrite oxidation) is predominately driven by Myxococcota, and to a lesser extent, 330 

Planctomycetota, Marinisomatota, and Nitrospinota (Fig. 5). However, the first step in 331 

nitrification (ammonia oxidation), mediated by ammonia monooxygenases, was not detected 332 

in any MAG, despite their presence in the gene-based analysis (Fig. 2c). Therefore, to 333 

identify the taxa involved in ammonia oxidation, we queried the genes annotated as amoA 334 

(encoding the ammonia monooxgenase, alpha subunit) against NCBI’s nr database using 335 

BLASTP. Three amoA genes were detected among the set of de-replicated genes. All three 336 

were identified as archaeal, belonging to the NCBI phylum Thaumarchaeota (classified in the 337 

GTDB as class Nitrososphaeria – phylum Thermoproteota [48]). Thus, the nitrogen-feedback 338 

loop that cycles between ammonia and nitrate is driven by distinct prokaryotes – 339 

predominately those belonging to Proteobacteria, Myxococcota, and Archaea. The 340 

aforementioned sulphate-feedback loop, associated with sulphate reduction (sat) and sulphur 341 

oxidation (sdo) processes, is also largely driven by Proteobacteria (Fig. 5). 342 

 Given the large metabolic contribution of Proteobacteria to this system, we further 343 

investigated their functional potential at lower taxonomic levels (Fig. 6). We found that the 344 

most important contributors to key metabolic reactions (based on read coverage) are species 345 

from less well characterised proteobacterial lineages. In particular, bacteria belonging to the 346 

gammaproteobacterial orders PS1 (n=1) and GCF-002020875 (n=7) were key contributors to 347 

carbon fixation (CBB cycle), and nitrogen and sulphur cycling (Fig. 6). The single PS1 MAG 348 
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belongs to the genus Thioglobus, which encompass members of the sulphur-oxidising marine 349 

SUP05 clade of Gammaproteobacteria. Thioglobus comprises a handful of cultured 350 

representatives which consist of chemoauto- and hetero-trophic bacteria that grow under 351 

aerobic and anaerobic conditions, and are assumed to contribute to denitrification [68-71]. 352 

The seven MAGs assigned to the order GCF-002020875, which lacks any cultured 353 

representatives, all belong to the same family, also designated GCF-002020875. Of these, 354 

four MAGs belong to the genus Thiopontia, while the other three MAGs were unclassified at 355 

the genus level. There are five species representative MAGs for Thiopontia 356 

(GCA_018671205.1, GCA_018658305.1, GCA_018648825.1, GCA_013349825.1, 357 

GCA_014384675.1), all of which were assembled from hypoxic saline water metagenomes 358 

[72-74] (NCBI BioProject Accessions: PRJNA630981, PRJNA632036, and PRJNA649215), 359 

suggesting that these bacteria are specific to this environmental niche. 360 

 361 

Bundera Sinkhole has one to two highly abundant MAGs at each depth 362 

 363 

Four highly abundant MAGs (with TPM values >50 in at least one sample) were dominant at 364 

different depths (Fig. 7). These included two gammaproteobacterial MAGs, one assigned at 365 

the family level (family GCF-002020875), and a Thioglobus sp., which were highly abundant 366 

at the 2 m and 8 m depths, respectively. A Marinisomatota MAG (order Marinisomatales) 367 

was highly abundant across all lower-depth samples (17-28 m). An archaeal MAG, 368 

Nitrosopumilus sp., was also abundant across the lower-depth samples, particularly, at the 22 369 

m depth. 370 

The GCF-002020875 MAG (MAG-172), which comprised ~9% of the metagenomic 371 

reads from the 2 m samples (Fig. 8), represents a novel gammaproteobacterial lineage, having 372 

no classification below the family level. It encodes several enzymes that would enable it to 373 
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utilise sulphur as an energy source. However, it also carries genes for complex carbon 374 

degradation, suggesting it has the potential for both thioauto- and hetero-trophy. It also has 375 

the genetic potential to mediate two steps in the denitrification pathway (nitrite reduction to 376 

nitric oxide, and nitrous oxide reduction to N2 gas).  377 

The highly abundant Thioglobus MAG (MAG-2) represents a major component of the 378 

8 m community, comprising 26% of the reads from the 8 m samples (Fig. 8). It encodes 379 

several enzymes that suggest it also has the capacity for both thioauto- and hetero-trophy. It 380 

appears to be an important mediator of sulphur cycling, encoding several sulphur 381 

transformation pathways, and carries marker genes for the complete denitrification pathway, 382 

converting nitrate to N2 gas, via nitrite, nitric oxide, and nitrous oxide intermediates. Both 383 

dominant MAGs at the 2 m and 8 m depths possess the genetic potential for several sulphur 384 

cycling pathways as well as denitrification (Fig. 8). In marine oxygen minimum zones, a 385 

denitrification pathway linking reduced sulphur compounds to the loss of bioavailable 386 

nitrogen represents an important mode of metabolic coupling [75-78]. These two dominant 387 

MAGs are likely mediating this linking of sulphur cycling and denitrification in the shallower 388 

waters of the sinkhole. 389 

 In the deeper layers (17-28 m), two MAGs were highly abundant. One of these, 390 

MAG-107, belongs to the genus Nitrosopumilus, which comprise a group of ammonia-391 

oxidising Archaea [79]. Given their important ecological role in ammonia oxidation, we 392 

searched this MAG for the marker gene for ammonia oxidation, amoA, encoding the 393 

ammonia monooxygenase alpha subunit. Surprisingly, amoA was not detected in this MAG. 394 

However, as described above, we detected three archaeal amoA genes from the complete set 395 

of de-replicated metagenomic genes. One of these was predicted to belong to the genus 396 

Nitrosopumilus (100% query cover and 98.61% amino acid identity to Nitrosopumilus AmoA 397 

[NCBI accession WP_141977518.1]), and its relative abundance is almost perfectly 398 
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correlated (r2 = 0.97) with that of MAG-107, suggesting it to be indeed a component of its 399 

genome. The failure for the amoA gene to be binned with MAG-107, is possibly due to the 400 

several ribosomal protein genes co-located on the same contig (rpl32e, rpl19e, rpl10, rpl12, 401 

rpl21e, rps17e, rps11, rps15, rps3ae), which are often difficult to bin because of their 402 

differential codon usage patterns that have been optimised for rapid translation [80]. Besides 403 

ammonia oxidation, this MAG also had the genetic potential for several nitrate reduction 404 

pathways, as well as sulphite production (Fig. 8).  405 

The Marinisomatales MAG, MAG-158, represents the other dominant MAG at the 406 

lower depths. This MAG belongs to the phylum Marinisomatota, also commonly known as 407 

Marinimicrobia. These bacteria are widespread in the global oceans, and are particularly 408 

abundant in sub-euphotic oxygen minimum zones [75], which correspond to the samples that 409 

MAG-158 was most abundant. Out of the four dominant MAGs, MAG-158 had the lowest 410 

estimated genome completeness (57.14%), partially obscuring detailed analysis of its 411 

metabolism. Nevertheless, we detected several enzymes involved in selenium and arsenic 412 

cycling, as well as nitrate reduction (representing the first step in denitrification) (Fig. 8). 413 

Previous analyses of these bacteria indicate that they are important drivers of denitrification 414 

and sulphur cycling in hypoxic and anoxic seawater [75, 81], suggesting that this MAG might 415 

also be involved in coupled sulphur-nitrogen cycling in the sinkhole. 416 

 417 

Conclusion 418 

 419 

Here, we characterised the metabolic and biogeochemical cycling potential of the microbial 420 

communities inhabiting Bundera Sinkhole. We found that the microbial communities, largely 421 

represented by novel taxonomic lineages, display depth-dependent metabolisms. Key 422 

metabolic genes group into three depth-specific clusters that reflect distinct phases along the 423 
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dissolved oxygen and salinity gradients. In particular, chemotrophic metabolisms that couple 424 

nitrogen and sulphur cycling appear to be characteristic of the dominant members in this 425 

ecosystem. These data support the idea that microbial chemosynthesis is sustaining the higher 426 

trophic levels in the sinkhole. To the best of our knowledge, this is the first whole 427 

metagenomic analysis of an anchialine ecosystem, and thus presents key findings that 428 

contribute to our understanding of ecosystem functions in subterranean estuaries. 429 

 Understanding the diversity of metabolic strategies utilised by anchialine microbial 430 

communities can provide important insights into how trophic webs are supported in these 431 

unique ecosystems. This is particularly important given the high endemism of anchialine 432 

species and the potential vulnerability of these ecosystems to global environmental change 433 

and other anthropogenic influences [1]. Identifying the key microbial members and 434 

biogeochemical process is critical for the conservation of anchialine ecosystems. 435 
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Figure captions 706 
 707 
Fig. 1. Location and sampling map of the Bundera Sinkhole. (a) Location of the Bundera 708 
Sinkhole in the Cape Range Peninsula, Western Australia. (b) Topology of the sinkhole and 709 
sampling points for shotgun metagenomic sequencing. Figure panels are adapted from 710 
Elbourne LDH, et al. [18]. 711 
 712 
Fig. 2. Relative abundance and diversity of key metabolic and biogeochemical cycling 713 
genes in Bundera Sinkhole. (a-b) Non-linear multidimensional scaling (NMDS) based on 714 
Bray-Curtis distances of normalised read counts for (a) whole metagenomes (with genes 715 
dereplicated at 98% nucleotide identity) and (b) key metabolic genes (TPM sums) displayed 716 
in panel c. In panel a, NMDS points that represent replicate samples lie on top of each other, 717 
as do those representing all samples from 17, 18, 22, and 28 m depths. The NMDS groupings 718 
(circles, triangles, and squares) represent samples with similar levels of dissolved oxygen 719 
(DO) and salinity (Supplementary Table 1). In both NDMS plots, the grouping of samples 720 
from 17, 18, 22, and 28 m depths (squares) is supported by PERMANOVA (p=0.04; 721 
Supplementary Table 2). (c) Relative abundance of key metabolic marker genes within each 722 
sample. Colour scale is displayed as log10(TPM +1) to account for TPM values of zero. Gene 723 
names are displayed to the left of the heatmap, and the reactions that they facilitate are on the 724 
right. (d) Visualisation of microbial nitrogen and sulphur cycling pathways present in 725 
Bundera Sinkhole. Chemical compounds that represent either the substrate or product of a 726 
reaction are boxed, with oxidation states shown in parentheses. 727 
 728 
Fig. 3. Correlations between chemical compound concentrations and genes involved in 729 
their cycling. Nitrogen and sulphur cycling genes whose relative abundance (TPM) are 730 
strongly correlated (r2 > 0.6) with the environmental concentrations of (a-c) ammonia (NH3), 731 
(d-e) nitrate (NO3

−), and (f-g) sulphate (SO4
2−). Plots coloured red represent genes involved 732 

in pathways that produce the corresponding chemical compound, either directly (b,c,e) or 733 
indirectly, via an intermediate compound (a,d,g). Correlation between sat gene relative 734 
abundance and SO4 concentrations (f) is coloured blue to indicate the gene’s involvement in 735 
SO4 substrate utilisation. Shaded regions represent the 95% confidence interval of the fitted 736 
linear model. A full list of r2 and p-values for all evaluated nitrogen and sulphur cycling gene 737 
correlations is presented as Supplementary Table 3. 738 
 739 
Fig. 4. Domain-specific phylogenies of MAGs from Bundera Sinkhole. Tips of the trees 740 
are coloured by their assigned phylum. Heatmaps display the relative abundance of MAGs in 741 
each of the duplicate samples collected from six depths (from inner to outer rings: 2 m, 8 m, 742 
17 m, 18 m, 22 m, and 28 m). 743 
 744 
Fig. 5. Key metabolic and biogeochemical cycling traits of MAGs in Bundera Sinkhole. 745 
From left to right: the numbers of MAGs that carry genetic markers (listed in Supplementary 746 
Table 7) for each functional trait are displayed by numerals, and represented visually by the 747 
size of the circles; the average relative abundance (TPM) for corresponding MAGs at each 748 
depth are displayed by the blue heatmap; and the proportion of MAGs assigned to each 749 
phylum is represented by the red heatmap. Archaeal phyla are denoted with asterisks. 750 
 751 
Fig. 6. Metabolic functions associated with proteobacterial MAGs. MAGs are grouped 752 
according to their taxonomic class (left) and order (middle). Width of curved lines indicate 753 
the relative contribution, based on read coverage, of proteobacterial orders (middle) to a 754 
given metabolic reaction (right). 755 
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 756 
Fig. 7. Relative abundance of MAGs in Bundera Sinkhole. Phyla of MAGs are displayed 757 
to the left of the heatmap. Archaeal phyla are denoted with asterisks. The four most abundant 758 
MAGs, having a TPM value greater than 50 in any one sample, are denoted on the right. 759 
 760 
Fig. 8. Metabolisms of the most highly abundant MAGs in Bundera Sinkhole. Estimated 761 
genome completeness is displayed within square brackets under each MAG ID. Pie charts 762 
indicate the proportion of reads at each depth that map to the four MAGs. Metabolic 763 
reactions are labelled in red text, proteins mediating those reactions are labelled in black text, 764 
and the reaction products/substrates are labelled in blue text. Bar charts indicate the dissolved 765 
oxygen (DO) and salinity at each depth. In MAG-107, ammonia oxidation is displayed as a 766 
dashed arrow, as the amoA gene was not originally binned with this MAG. However, it was 767 
included here after detecting an amoA gene, taxonomically classified as Nitrosopumilus, that 768 
had a relative abundance almost perfectly correlated (r2 = 0.97) with that of MAG-107. 769 
  770 
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 28

Supplementary Figures 771 
 772 
 773 
 774 

 775 
Fig. S1. Correlation between dissolved organic carbon and nitrification. (a) Correlation 776 
between the relative abundance (TPM) of the marker gene for ammonia oxidation (amoA; 777 
first step of nitrification) and dissolved organic carbon (DOC) concentration. (b) Correlation 778 
between the relative abundance of the marker gene for nitrite oxidation (nxrA; final step of 779 
nitrification) and DOC concentration. Shaded regions represent the 95% confidence interval 780 
of the fitted linear model. A full list of r2 and p-values for all evaluated nitrogen and sulphur 781 
cycling gene correlations is presented as Supplementary Table 4. 782 
 783 
 784 
 785 

 786 
Fig. S2. Beta-diversity of MAG phyla in the Bundera sinkhole. Non-linear 787 
multidimensional scaling (NMDS) based on Bray-Curtis distances of normalised read counts 788 
for MAG phyla. NMDS points that represent replicate samples lie on top of each other, as do 789 
those representing all samples from 17, 18, 22, and 28 m depths. The groupings (circles, 790 
triangles, and squares) represent samples with similar levels of dissolved oxygen (DO) and 791 
salinity (Supplementary Table 1). The grouping of samples from 17, 18, 22, and 28m depths 792 
(squares) is supported by PERMANOVA (p=0.046; Supplementary Table 6). 793 
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MAG-172: Gammaproteobacteria sp.
(Order GCF-002020875)
MAG-2: Thioglobus sp.

MAG-158: Marinisomatales sp.

MAG-107: Nitrosopumilus sp.
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oxidation
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MAG-172: Gammaproteobacteria sp. 
[87.59%]    (Family GCF-002020875) 
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Sulphide oxidation
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MAG-2: Thioglobus sp.
[99.34%]

NO2
−
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-
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reduction
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MAG-107: Nitrosopumilus sp.
[87.54%]
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Ammonia oxidation
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Selenate reduction
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MAG-158: Marinisomatales sp.
[57.14%]
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arsenate reduction
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Nitrate reduction
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