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Abstract

Background

Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers,
are characterised by stratified water columns with complex physicochemical profiles. These
environments, also known as subterranean estuaries, support an abundance of endemic macro
and microorganisms. There is now growing interest in characterising the metabolisms of
anchialine microbial communities, which is essential for understanding how complex
ecosystems are supported in extreme environments, and assessing their vulnerability to
environmental change. However, the diversity of metabolic strategies that are utilised in
anchialine ecosystems remains poorly understood.

Results

Here, we employ shotgun metagenomics to elucidate the key microorganisms and their
dominant metabolisms along a physicochemical profile in Bundera Sinkhole, the only known
continental subterranean estuary in the Southern Hemisphere. Genome-resolved
metagenomics suggests that the communities are largely represented by novel taxonomic
lineages, with 75% of metagenome-assembled genomes assigned to entirely new or
uncharacterised families. These diverse and novel taxa displayed depth-dependent
metabolisms, reflecting distinct phases along dissolved oxygen and salinity gradients. In
particular, the communities appear to drive nutrient feedback loops involving nitrification,
nitrate ammonification, and sulphate cycling. Genomic analysis of the most highly abundant
members in this system suggests that an important source of chemotrophic energy is
generated via the metabolic coupling of nitrogen and sulphur cycling.

Conclusion

These findings substantially contribute to our understanding of the novel and specialised

microbial communities in anchialine ecosystems, and highlight key chemosynthetic pathways
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48  that appear to be important in these energy-limited environments. Such knowledge is
49  essential for the conservation of anchialine ecosystems, and sheds light on adaptive processes

50 in extreme environments.
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51  Introduction

52

53  The microbial communities of stratified aquatic systems serve as useful models for studying
54  the relationships between metabolic strategies, water column depth, and physicochemistry.
55  Stratified water columns, characterised by physical and chemical gradients, provide distinct
56  niches for diverse assemblages of microbes, which, in turn, can support complex food webs
57  in relatively extreme environments. Thus, unravelling the network of microbial metabolic
58  strategies that link biogeochemical processes and trophic webs is important for understanding
59  ecosystem functioning as well as evaluating ecosystem vulnerability [1].

60 Subterranean estuaries are stratified aquatic systems in which marine-derived

61  groundwater mixes with meteoric freshwater in coastal aquifers [2]. These systems are

62  globally distributed, and most commonly form in the porous limestone of karst coastlines [3].
63  They are characterised by water columns that exhibit stratified physicochemical profiles and
64  low dissolved oxygen content [4]. Although they represent low-energy and extreme

65  environments, subterranean estuaries can support complex ecosystems, which have been

66  termed ‘anchialine’ [4]. The higher trophic levels of anchialine ecosystems largely comprise
67  cave-adapted invertebrates with high rates of endemism [5, 6]. Earlier investigations into

68  these anchialine food webs indicated that they may be supported, at least in part, by

69  chemosynthetic microbes [7-9]. There is now growing interest in surveying the microbial

70  communities that inhabit subterranean estuaries, and in particular, characterising their niche-
71  adaptive metabolisms [1, 10]. Such endeavours are critical for assessing the vulnerability of
72 anchialine ecosystems to environmental change.

73 Microbial ecology studies have revealed that anchialine ecosystems harbour highly
74 diverse microbial assemblages. Examination of the prokaryotic community structure using

75  16S rRNA gene amplicon sequencing has been undertaken for several anchialine systems,
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including those found in Eastern Adriatic Sea Islands [11], Sansha Yongle Blue Hole in the
South China Sea [12], Indonesian anchialine lakes [13], Blackwood Sinkhole in the Bahamas
[14], and coastal aquifers of the Yucatan Peninsula, Mexico [10, 15]. These sites all revealed
a high degree of taxonomic richness spanning functionally diverse microbial groups.
Brankovits D, et al. [10] combined 16S rRNA gene sequencing with respiratory quinone
biomarker analysis to infer the metabolic phenotypes of an anchialine water column, which
contained a mixture of methanotrophs, heterotrophs, photoautotrophs, and nitrogen and
sulphur cycling chemolithotrophs. They identified methane and dissolved organic carbon as
key microbial energy sources that support higher trophic levels of the anchialine food web.
Though, comparison between the microbial communities within coastal and in-land sinkholes
of the same region (Yucatan Peninsula) show that the dominant metabolic strategies can
differ significantly between different sinkholes along the same aquifer network [15].

Bundera Sinkhole, located in the karstic coast of Cape Range Peninsula in north-
western Australia, is the only known continental anchialine system in the Southern
Hemisphere. The sinkhole, which is the only opening to the subterranean estuary, is located
1.7 km inland from the Indian Ocean. The water column exhibits strong vertical stratification
in its physicochemical profile, with decreasing dissolved oxygen and increasing salinity with
depth, and polymodal peaks of inorganic nitrogen and sulphur compounds [16-18]. A range
of endemic eukaryotes have been discovered in Bundera Sinkhole, including copepods,
remipeds, and polychaetes [19-22]. Chemical profiling suggests that this trophic web may be
supported by microbial chemosynthesis [16].

Microbial studies of Bundera Sinkhole using flow cytometry and 16S rRNA gene
sequencing have shown the microbial communities to be stratified along the depth profile
[17, 18, 23]. A diverse range of prokaryotes have been identified in the water column,

comprising 67 identifiable bacterial and archaeal phyla [18]. Although community profiling
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101  suggests that a range of chemolithotrophic metabolisms are present throughout the water
102  column, the high level of taxonomic novelty has made it difficult to infer the metabolic

103  functions of many of the most abundant members [18]. Here, we employed shotgun

104  metagenomic sequencing across a depth profile in Bundera Sinkhole to elucidate the

105  metabolisms of these novel microbial communities. We identified key depth-dependent

106  chemotrophic metabolic pathways, including coupled nitrogen-sulphur cycling, that may be
107  driving nutrient feedback loops in this system. To the best of our knowledge, this is the first
108  whole metagenomic sequencing approach of any anchialine ecosystem, and represents

109  important findings that can help us to better understand microbial metabolic and

110  biogeochemical processes in these unique environments.

111

112 Methods

113

114  Sample collection, DNA extraction and sequencing

115

116 ~ Water samples were collected from Bundera Sinkhole as previously described [18]. Briefly,
117  this involved pumping water samples from depths of 2, 8, 17, 18, 22, and 28 m between the
118  29th of June and the 1st of July 2015 for metagenomic analysis. For depths of 8 m and below,
119  samples were collected using four previously installed boreholes (Fig. 1b). Physicochemical
120  data, including salinity, dissolved oxygen (DO), dissolved organic carbon (DOC), ammonia
121 (NHs), nitrate (NOs"), and sulphate (SO,*") measurements were obtained from our previous
122  study [18]. For metagenomic analysis, ~4 L water samples were pre-filtered using 60 pm
123  filters (Millipore Type NY®60), and then passed through 0.2 pm Sterivex™ filters. The 0.2 um
124  filters with captured microbial cells were cut from their casing, and DNA extractions carried

125  out using the PowerWater® DNA Isolation kit (MO BIO Laboratories, Inc., Carlsbad, USA),
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126  according to the manufacturer’s protocol. Metagenomic libraries were prepared for duplicate
127  biological replicates from each depth using the Illumina TruSeq DNA Library Preparation
128  Kit, according to the manufacturer’s protocol, and sequenced on the Illumina HiSeq 2000
129  platform (High-Output v4).

130

131  Metagenomic assembly and functional annotation

132

133 Raw reads were trimmed and quality filtered using Trimmomatic v 0.38 [24], and assembled
134 with metaSPAdes v 3.13.0 [25] with default parameters. Quality of the assembly for each
135  sample was assessed with QUAST v 5.0.2 using the metaQUAST option [26], and contigs
136  shorter than 1 kb were removed from the assemblies. Open reading frames (ORFs) and

137  translated protein sequences were predicted using Prodigal v2.6.3 [27] in metagenomic mode
138  [parameter: -p meta]. ORFs from all samples were pooled and dereplicated at 98% nucleotide
139  identity using CD-HIT v4.8.1 [28, 29] [parameters: -c 0.98 -n 10 -d 0 -t 0 -M 0]. The relative
140  abundance of ORFs in each sample was calculated using the transcripts per million (TPM)

141 method with CoverM v0.6.1 (https://github.com/wwood/CoverM) in contig mode

142 [parameters: contig -t 24 --coupled -m TPM].

143 Translated protein sequences of the dereplicated ORFs were functionally annotated
144  using METABOLIC v4.0 [30], by implementing the METABOLIC-G workflow with default
145  parameters. The METABOLIC software identifies metabolic and biogeochemical traits by
146  integrating several hidden Markov model (HMM) databases, comprising KOfam [31]

147  (containing KEGG HMMs [32]), TIGRfam [33], Pfam [34], and custom [35] HMM

148  databases.

149

150  MAG binning and quality control
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151

152  To improve sequencing depth, the replicate metagenome samples were co-assembled using
153  MEGAHIT v1.2.9 [36, 37], with contig coverage calculated using Bowtie 2 v2.3.2 [38]. Co-
154  assembled contigs were then binned using METABAT 2 v2.2.15 [39] with default parameters
155  within Anvi’o v6.2 [40]. The resulting MAGs were then manually refined in Anvi’o. The
156  completion and contamination of MAGs were estimated with CheckM v1.2.1 [41] using
157  lineage-specific marker sets [parameters: lineage_wf -t 24]. MAG chimerism was assessed
158  using GUNC v1.0.5 [42] with default parameters. Only MAGs that passed the GUNC

159  chimerism check, had an estimated completion greater than 50%, and had an estimated

160  contamination less than 10% were retained for further analysis. These represent the

161  completion and contamination MIMAG criteria for high- and medium-quality MAGs [43].
162

163  MAGs taxonomy and functional annotation

164

165 MAG taxonomy was assigned using GTDB-Tk v2.1.1 [44, 45] [parameters: classify_wf --
166  cpus 24] with release R207_v2 of the Genome Taxonomy Database (GTDB) [46-49]. We
167  inferred domain-specific phylogenies using concatenated protein alignments generated by
168  GTDB-Tk, which were based on the BAC120 [50] and AR53 [51] protein marker sets. The
169  phylogenies were inferred from the alignments using a maximum-likelihood approximation
170  employed by FastTree v2.1.10 [52, 53]. We applied a WAG substitution model with branch
171  lengths rescaled to optimise the Gamma20 likelihood, and 1,000 resamples [parameters: -
172  gamma -wag]. The inferred phylogenies were visualised using the ggtree v2.4.2 [54] and
173 ggtreeExtra v1.7.0.990 [55] R packages.

174 MAGs were functionally annotated using METABOLIC v4.0 [30], by implementing

175  the METABOLIC-C workflow with default parameters. The relative abundance of MAGs in
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each sample was calculated using the TPM method with CoverM v0.6.1

(https://github.com/wwood/CoverM) in genome mode [parameters: genome -t 24 --coupled -

m TPM]. Four MAGs that were highly abundant, having TPM values greater than 50 in at
least one sample, were further profiled for nitrogen cycling genes using the NCycDB [56].
DIAMOND v2.0.15 [57] was used to query MAG proteins against the NCycDB with a
minimum E-value of 1e-05 [parameters: blastp -p 8 -k 1 -e 1e-5], and filtered using an amino

acid identity cut-off of 70%.

Satistical analyses

Beta-diversity analyses of the whole metagenomes, key metabolic genes, and MAG phyla
were assessed using non-metric multidimensional scaling (NMDS) based on Bray-Curtis
distances using the vegdist and metaMDS functions from the vegan v2.5-7 R package [58].
Groupings inferred from the NMDS ordination were compared with PERMANOVA using
the pairwiseAdonis v0.4 R package [59], which uses the vegan functions, vegdist and adonis,

to calculate inter-group differences in a pairwise fashion.

Results and Discussion

Bundera Sinkhole, Australia’s only deep water anchialine system, supports a complex trophic
web with an abundance of endemic micro- and macroorganisms. Previous chemical and
community profiling using 16S rRNA gene sequencing suggest that this ecosystem may be
sustained by microbial chemosynthesis [18, 23]. However, the high degree of taxonomic
novelty, with associated uncertainty of metabolic functions, has limited our understanding of

the dominant metabolic pathways in this system. Here, we employed shotgun metagenomic
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sequencing to investigate the distribution of key metabolic genes and to identify the
biogeochemical cycling potential of the stratified microbial communities in Bundera

Sinkhole.

Microbial metabolic profiles are associated with water depth and physicochemistry

Bundera sinkhole exhibited a highly stratified water column with a marked physicochemical
profile (Supplementary Table 1). The only oxic depth sampled was at 2 m, which had a
dissolved oxygen (DO) concentration of 2.75 mg/L, and had the lowest salt concentration,
with a salinity of 18.69 practical salinity units (PSS). The 8 m depth, representing the
sinkhole’s halocline [16, 17], had a DO (0.86 mg/L) relatively higher than the samples from
17-28 m depths, and an intermediate salinity of 25.46 PSS. The lower depths, encompassing
the 17-28 m samples, had lower levels of DO (0.28-0.47 mg/L) and higher salinity (31.41-
32.35 PSS). Polymodal peaks of dissolved organic carbon (DOC), ammonia, nitrate and
sulphate were observed along the water column (Supplementary Table 1).

Clear distinctions in microbial metabolic strategies were observed at different depths
(Fig. 2). Microbial communities sampled from the 17, 18, 22, and 28 m depths exhibited
similar metabolic gene diversity profiles, which differed from the 2 m and 8 m communities
(Fig. 2b; PERMANOVA, P=0.04). The 2 m and 8 m metabolic profiles form distinct clusters
based on NMDS analysis (Fig. 2b), although this separation was not determined to be
significantly different (PERMANOVA, p=0.33), likely due to the limited statistical power of
this comparison. The same clustering is observed for the beta-diversity of all genes detected
in the metagenomes (Fig. 2a). Since genes were de-replicated at 98% nucleotide identity,
clustering of all genes is more likely to reflect the taxonomic composition of the samples.

Thus, both taxonomic and functional composition of the sinkhole appear to cluster according

10
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to salinity and oxygen concentrations. These same depth clusters are observed from16S
rDNA amplicon sequencing of the sinkhole [18].

Autotrophic CO; fixation strategies differed by depth (Fig. 2c), likely in response to
oxygen levels and percentage of incident light. The CBB cycle, which utilises the CO,
fixation enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) by photo- and
chemo-autotrophs, was depth-dependent. Two main forms of RuBisCO are known to be
involved in the classical CBB cycle [60]. Surface samples, particularly those from the 2 m
depth, were characterised by a greater relative abundance of the Form | RuBisCO compared
to other depths (and other C-fixation strategies), presumably from a greater abundance of
photoautotrophs. While the relative abundance of form Il RuBisCO, which is adapted to low-
O, conditions [61], had an opposite trend, with greater relative abundance at lower depths.
The relative abundance of genes that drive the reverse TCA cycle and Wood-Ljungdahl
pathway increased with depth, which are the hypoxic regions of this system (Supplementary
Table 1). Similar trends have been observed in hypoxic and anoxic zones of stratified water
columns [62, 63].

The relative abundance of marker genes for different pathways involved in carbon
metabolism also corresponded to a depth gradient (Fig. 2c). Methanol and formaldehyde
oxidation (C1 metabolism), decreased with depth, while the methane monooxygenase gene,
mmoB, involved in the first step of methane metabolism, increased with depth. Similar
patterns of carbon metabolism genes have been observed over an oxygen gradient in a
permanently stratified lake [63]. Arsenic and selenium cycling genes also corresponded to a
depth gradient (Fig. 2c). In particular, the abundance of genes involved in dissimilatory
(respiratory) arsenate and selenate reduction increased with depth. Both arsenate and selenate

can be utilised in anerobic respiration for energy production [64, 65], explaining their greater

11
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relative abundance at hypoxic depths. These elements can thus provide additional energy
sources for facultative or obligate anaerobes at the lower depths of the sinkhole.

Pathways for the complete cycling of nitrogen (N) and sulphur (S) compounds were
observed in the sinkhole (Fig. 2d), with diverse N and S cycling reactions present at different
depths (Fig. 2c). Several key N and S cycling genes were strongly correlated with
concentrations of ammonia, nitrate, and sulphate (Fig. 3; Supplementary Table 3),
highlighting these as key environmental parameters. To infer the direction of these
correlations and to identify nutrient feedback loops, we examined whether the correlated
genes were involved in either the production or substrate utilisation of these chemical
compounds. Marker genes for N cycling that correlated with ammonia concentrations were
all involved in pathways that produced ammonia (Fig. 3a-c; Supplementary Table 3). These
included: napA, encoding a nitrate reductase, involved in the first step of the dissimilatory
nitrate reduction to ammonia (DNRA) pathway, reducing nitrate to nitrite; and nirB and nrfA,
both encoding nitrite reductases, involved in the second step of the DNRA pathway, further
reducing nitrite to ammonia. Similarly, N cycling marker genes that correlated with nitrate
concentrations were all involved in nitrate production (Fig. 3d,e; Supplementary Table 3).
These included amoA, encoding an ammonia monooxygenase, involved in the first step of
nitrification, oxidising ammonia to nitrite; and nxrA, encoding a nitrite oxidoreductase,
involved in the final step of nitrification, oxidising nitrite to nitrate. We also found that the
relative abundance of both amoA and nxrA are negatively correlated with the concentration of
dissolved organic carbon (DOC) (Fig. S1; Supplementary Table 4), suggesting that
chemolithotrophic nitrification is an important metabolic pathway when available organic
carbon is limited. Thus, microbial communities and environmental concentrations of DOC,
ammonia and nitrate are apparently linked in a feedback loop involving nitrification

(ammonia to nitrate) and DNRA (nitrate to ammonia) pathways.

12
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The S cycling marker genes, sat and sdo, were significantly correlated with sulphate
concentrations (Fig. 3f,g; Supplementary Table 3), and are involved in the utilisation and
production of sulphate, respectively. sat encodes a sulphate adenylyltransferase that coverts
sulphate to adenosine-5'-phosphosulfate (APS) [66]. sdo encodes a sulphur deoxygenase
which oxidises glutathione persulphide (GSSH). Sulphite is the first product of SDO activity
via GSSH oxidation, which then leads to the non-enzymatic production of sulphate (likely
from auto-oxidation of sulphite) [67]. Thus, sulphate concentrations in Bundera Sinkhole are
likely being driven by, as well as shaping, the microbial communities in a sulphate-feedback

loop.

Taxonomically novel and functionally diverse prokaryotes inhabit the sinkhole

Bundera Sinkhole harbours considerable microbial diversity, so to gain better insight into the
metabolic potential of the novel and abundant microbial species, we employed genome-
resolved metagenomic analysis. We generated 180 medium- to high-quality MAGs from the
twelve co-assembled metagenomes (median completion = 88.75%, median contamination =
0.93%; Supplementary Table 5). These comprised 150 bacterial MAGs from 20 phyla, with
the remaining 30 MAGs from 3 archaeal phyla (Fig. 4). The composition of prokaryotic
phyla differed significantly by water depth, with distinct phyla found at 2 m, 8 m, and 17-28
m depths (Fig. S2; Supplementary Table 6), reflecting the same groupings as the gene-based
clusters. This is supported by 16S rDNA amplicon sequencing of Bundera Sinkhole
communities [18], which suggests similar depth-dependent composition of microbial taxa.
The communities inhabiting Bundera Sinkhole are taxonomically novel, with 75% of
MAGs assigned to entirely new or uncharacterised families that lack cultured representatives.

In the Genome taxonomy Database (GTDB), newly delineated taxa are allocated with

13
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alphanumeric placeholder labels. Using GTDB nomenclature, we found that 64% of MAGs
were assigned to families with such placeholder labels, and a further 11% of MAGs could not
be assigned to any family (Supplementary Table 5). Even at the class level, almost a quarter
of all MAGs in this system were assigned to placeholder-labelled lineages. Such taxonomic
novelty is likely driven by niche adaptation to the distinctive geomorphological and
physicochemical properties of anchialine ecosystems.

The suite of MAGs assembled from Bundera Sinkhole provides an ideal opportunity
to assess the functional potential of these diverse and novel taxa. The relative abundance of
MAG-related functions associates with water depth (Fig. 5), as observed with the gene-based
functional analysis. We found that the number of MAGs that have the genetic potential for
each key metabolic reaction varied considerably, as does their relative abundance at different
depths.

We found that the taxonomy of carbon metabolism varied based on the carbon
substrate (Fig. 5). For example, one-carbon (C1) molecules (e.g., methanol, formaldehyde,
formate, and carbon monoxide) are largely metabolised by Proteobacteria, while complex
carbon molecules (e.g., cellulose, chitin, starch, and other oligo- and poly-saccharides) are
metabolised by bacteria from a wider range of phyla.

The taxonomy of autotrophic microbes differed based on the CO, fixation strategy
(Fig. 5). Photo- and chemo-autotrophs that utilise RuBisCO as part of the carbon-fixing CBB
cycle were almost all Proteobacteria (80%). A much more diverse range of bacteria and
archaea had the genetic potential for utilising the reverse TCA (Patescibacteria,
Nanoarchaeota, Campylobacterota, Myxococcota, Bacteroidota) and Wood-Ljungdahl
(Planctomycetota, Desulfobacterota, Chloroflexota, VVerrucomicrobiota, Nitrospirota,

Bdellovibrionota) pathways for carbon fixation.
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324 For the most part, N and S cycling pathways were performed by Proteobacteria (Fig.
325 5). As described above, both the DNRA and nitrification processes appear to be important N
326  cycling pathways that drive a nitrogen-feedback loop in this system. The DNRA pathway,
327  involving nitrate reduction to nitrite, which is then further reduced to ammonia, is largely
328  driven by Proteobacteria (Fig. 5). The reverse of this process, nitrification, involves ammonia
329  oxidation to nitrite, which is further oxidised to nitrate. Here, the final nitrification step

330  (nitrite oxidation) is predominately driven by Myxococcota, and to a lesser extent,

331  Planctomycetota, Marinisomatota, and Nitrospinota (Fig. 5). However, the first step in

332 nitrification (ammonia oxidation), mediated by ammonia monooxygenases, was not detected
333 inany MAG, despite their presence in the gene-based analysis (Fig. 2c). Therefore, to

334  identify the taxa involved in ammonia oxidation, we queried the genes annotated as amoA
335 (encoding the ammonia monooxgenase, alpha subunit) against NCBI’s nr database using

336 BLASTP. Three amoA genes were detected among the set of de-replicated genes. All three
337  were identified as archaeal, belonging to the NCBI phylum Thaumarchaeota (classified in the
338 GTDB as class Nitrososphaeria — phylum Thermoproteota [48]). Thus, the nitrogen-feedback
339  loop that cycles between ammonia and nitrate is driven by distinct prokaryotes —

340 predominately those belonging to Proteobacteria, Myxococcota, and Archaea. The

341  aforementioned sulphate-feedback loop, associated with sulphate reduction (sat) and sulphur
342  oxidation (sdo) processes, is also largely driven by Proteobacteria (Fig. 5).

343 Given the large metabolic contribution of Proteobacteria to this system, we further
344 investigated their functional potential at lower taxonomic levels (Fig. 6). We found that the
345  most important contributors to key metabolic reactions (based on read coverage) are species
346  from less well characterised proteobacterial lineages. In particular, bacteria belonging to the
347  gammaproteobacterial orders PS1 (n=1) and GCF-002020875 (n=7) were key contributors to

348  carbon fixation (CBB cycle), and nitrogen and sulphur cycling (Fig. 6). The single PS1 MAG

15


https://doi.org/10.1101/2023.04.03.535450
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.03.535450; this version posted April 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

available under aCC-BY-NC-ND 4.0 International license.

belongs to the genus Thioglobus, which encompass members of the sulphur-oxidising marine
SUPO5 clade of Gammaproteobacteria. Thioglobus comprises a handful of cultured
representatives which consist of chemoauto- and hetero-trophic bacteria that grow under
aerobic and anaerobic conditions, and are assumed to contribute to denitrification [68-71].
The seven MAGs assigned to the order GCF-002020875, which lacks any cultured
representatives, all belong to the same family, also designated GCF-002020875. Of these,
four MAGs belong to the genus Thiopontia, while the other three MAGs were unclassified at
the genus level. There are five species representative MAGs for Thiopontia
(GCA_018671205.1, GCA_018658305.1, GCA_018648825.1, GCA_013349825.1,
GCA_014384675.1), all of which were assembled from hypoxic saline water metagenomes
[72-74] (NCBI BioProject Accessions: PRINA630981, PRINA632036, and PRINA649215),

suggesting that these bacteria are specific to this environmental niche.

Bundera Snkhole has one to two highly abundant MAGs at each depth

Four highly abundant MAGs (with TPM values >50 in at least one sample) were dominant at
different depths (Fig. 7). These included two gammaproteobacterial MAGs, one assigned at
the family level (family GCF-002020875), and a Thioglobus sp., which were highly abundant
at the 2 m and 8 m depths, respectively. A Marinisomatota MAG (order Marinisomatales)
was highly abundant across all lower-depth samples (17-28 m). An archaeal MAG,
Nitrosopumilus sp., was also abundant across the lower-depth samples, particularly, at the 22
m depth.

The GCF-002020875 MAG (MAG-172), which comprised ~9% of the metagenomic
reads from the 2 m samples (Fig. 8), represents a novel gammaproteobacterial lineage, having

no classification below the family level. 1t encodes several enzymes that would enable it to
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utilise sulphur as an energy source. However, it also carries genes for complex carbon
degradation, suggesting it has the potential for both thioauto- and hetero-trophy. It also has
the genetic potential to mediate two steps in the denitrification pathway (nitrite reduction to
nitric oxide, and nitrous oxide reduction to N, gas).

The highly abundant Thioglobus MAG (MAG-2) represents a major component of the
8 m community, comprising 26% of the reads from the 8 m samples (Fig. 8). It encodes
several enzymes that suggest it also has the capacity for both thioauto- and hetero-trophy. It
appears to be an important mediator of sulphur cycling, encoding several sulphur
transformation pathways, and carries marker genes for the complete denitrification pathway,
converting nitrate to N gas, via nitrite, nitric oxide, and nitrous oxide intermediates. Both
dominant MAGs at the 2 m and 8 m depths possess the genetic potential for several sulphur
cycling pathways as well as denitrification (Fig. 8). In marine oxygen minimum zones, a
denitrification pathway linking reduced sulphur compounds to the loss of bioavailable
nitrogen represents an important mode of metabolic coupling [75-78]. These two dominant
MAGs are likely mediating this linking of sulphur cycling and denitrification in the shallower
waters of the sinkhole.

In the deeper layers (17-28 m), two MAGs were highly abundant. One of these,
MAG-107, belongs to the genus Nitrosopumilus, which comprise a group of ammonia-
oxidising Archaea [79]. Given their important ecological role in ammonia oxidation, we
searched this MAG for the marker gene for ammonia oxidation, amoA, encoding the
ammonia monooxygenase alpha subunit. Surprisingly, amoA was not detected in this MAG.
However, as described above, we detected three archaeal amoA genes from the complete set
of de-replicated metagenomic genes. One of these was predicted to belong to the genus
Nitrosopumilus (100% query cover and 98.61% amino acid identity to Nitrosopumilus AmoA

[NCBI accession WP_141977518.1]), and its relative abundance is almost perfectly
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correlated (r* = 0.97) with that of MAG-107, suggesting it to be indeed a component of its
genome. The failure for the amoA gene to be binned with MAG-107, is possibly due to the
several ribosomal protein genes co-located on the same contig (rpl32e, rpl19e, rpl 10, rpl12,
rpl2le, rpsl7e, rpsll, rpsls, rps3ae), which are often difficult to bin because of their
differential codon usage patterns that have been optimised for rapid translation [80]. Besides
ammonia oxidation, this MAG also had the genetic potential for several nitrate reduction
pathways, as well as sulphite production (Fig. 8).

The Marinisomatales MAG, MAG-158, represents the other dominant MAG at the
lower depths. This MAG belongs to the phylum Marinisomatota, also commonly known as
Marinimicrobia. These bacteria are widespread in the global oceans, and are particularly
abundant in sub-euphotic oxygen minimum zones [75], which correspond to the samples that
MAG-158 was most abundant. Out of the four dominant MAGs, MAG-158 had the lowest
estimated genome completeness (57.14%), partially obscuring detailed analysis of its
metabolism. Nevertheless, we detected several enzymes involved in selenium and arsenic
cycling, as well as nitrate reduction (representing the first step in denitrification) (Fig. 8).
Previous analyses of these bacteria indicate that they are important drivers of denitrification
and sulphur cycling in hypoxic and anoxic seawater [75, 81], suggesting that this MAG might

also be involved in coupled sulphur-nitrogen cycling in the sinkhole.

Conclusion

Here, we characterised the metabolic and biogeochemical cycling potential of the microbial

communities inhabiting Bundera Sinkhole. We found that the microbial communities, largely

represented by novel taxonomic lineages, display depth-dependent metabolisms. Key

metabolic genes group into three depth-specific clusters that reflect distinct phases along the
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dissolved oxygen and salinity gradients. In particular, chemotrophic metabolisms that couple
nitrogen and sulphur cycling appear to be characteristic of the dominant members in this
ecosystem. These data support the idea that microbial chemosynthesis is sustaining the higher
trophic levels in the sinkhole. To the best of our knowledge, this is the first whole
metagenomic analysis of an anchialine ecosystem, and thus presents key findings that
contribute to our understanding of ecosystem functions in subterranean estuaries.

Understanding the diversity of metabolic strategies utilised by anchialine microbial
communities can provide important insights into how trophic webs are supported in these
unique ecosystems. This is particularly important given the high endemism of anchialine
species and the potential vulnerability of these ecosystems to global environmental change
and other anthropogenic influences [1]. Identifying the key microbial members and

biogeochemical process is critical for the conservation of anchialine ecosystems.
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Figure captions

Fig. 1. L ocation and sampling map of the Bundera Sinkhole. (a) Location of the Bundera
Sinkhole in the Cape Range Peninsula, Western Australia. (b) Topology of the sinkhole and
sampling points for shotgun metagenomic sequencing. Figure panels are adapted from
Elbourne LDH, et al. [18].

Fig. 2. Relative abundance and diver sity of key metabolic and biogeochemical cycling
genesin Bundera Sinkhole. (a-b) Non-linear multidimensional scaling (NMDS) based on
Bray-Curtis distances of normalised read counts for (a) whole metagenomes (with genes
dereplicated at 98% nucleotide identity) and (b) key metabolic genes (TPM sums) displayed
in panel c. In panel a, NMDS points that represent replicate samples lie on top of each other,
as do those representing all samples from 17, 18, 22, and 28 m depths. The NMDS groupings
(circles, triangles, and squares) represent samples with similar levels of dissolved oxygen
(DO) and salinity (Supplementary Table 1). In both NDMS plots, the grouping of samples
from 17, 18, 22, and 28 m depths (squares) is supported by PERMANOVA (p=0.04;
Supplementary Table 2). (c) Relative abundance of key metabolic marker genes within each
sample. Colour scale is displayed as logio(TPM +1) to account for TPM values of zero. Gene
names are displayed to the left of the heatmap, and the reactions that they facilitate are on the
right. (d) Visualisation of microbial nitrogen and sulphur cycling pathways present in
Bundera Sinkhole. Chemical compounds that represent either the substrate or product of a
reaction are boxed, with oxidation states shown in parentheses.

Fig. 3. Corréations between chemical compound concentrations and genesinvolved in
their cycling. Nitrogen and sulphur cycling genes whose relative abundance (TPM) are
strongly correlated (r* > 0.6) with the environmental concentrations of (a-c) ammonia (NHs),
(d-e) nitrate (NOs"), and (f-g) sulphate (SO4%). Plots coloured red represent genes involved
in pathways that produce the corresponding chemical compound, either directly (b,c,e) or
indirectly, via an intermediate compound (a,d,g). Correlation between sat gene relative
abundance and SO4 concentrations (f) is coloured blue to indicate the gene’s involvement in
SO4 substrate utilisation. Shaded regions represent the 95% confidence interval of the fitted
linear model. A full list of r* and p-values for all evaluated nitrogen and sulphur cycling gene
correlations is presented as Supplementary Table 3.

Fig. 4. Domain-specific phylogenies of MAGs from Bundera Sinkhole. Tips of the trees
are coloured by their assigned phylum. Heatmaps display the relative abundance of MAGs in
each of the duplicate samples collected from six depths (from inner to outer rings: 2 m, 8 m,
17 m, 18 m, 22 m, and 28 m).

Fig. 5. Key metabolic and biogeochemical cycling traits of MAGsin Bundera Sinkhole.
From left to right: the numbers of MAGs that carry genetic markers (listed in Supplementary
Table 7) for each functional trait are displayed by numerals, and represented visually by the
size of the circles; the average relative abundance (TPM) for corresponding MAGs at each
depth are displayed by the blue heatmap; and the proportion of MAGs assigned to each
phylum is represented by the red heatmap. Archaeal phyla are denoted with asterisks.

Fig. 6. Metabalic functions associated with proteobacterial M AGs. MAGs are grouped
according to their taxonomic class (left) and order (middle). Width of curved lines indicate
the relative contribution, based on read coverage, of proteobacterial orders (middle) to a
given metabolic reaction (right).
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Fig. 7. Relative abundance of MAGsin Bundera Sinkhole. Phyla of MAGs are displayed
to the left of the heatmap. Archaeal phyla are denoted with asterisks. The four most abundant
MAGs, having a TPM value greater than 50 in any one sample, are denoted on the right.

Fig. 8. Metabolisms of the most highly abundant MAGsin Bundera Sinkhole. Estimated
genome completeness is displayed within square brackets under each MAG ID. Pie charts
indicate the proportion of reads at each depth that map to the four MAGs. Metabolic
reactions are labelled in red text, proteins mediating those reactions are labelled in black text,
and the reaction products/substrates are labelled in blue text. Bar charts indicate the dissolved
oxygen (DO) and salinity at each depth. In MAG-107, ammonia oxidation is displayed as a
dashed arrow, as the amoA gene was not originally binned with this MAG. However, it was
included here after detecting an amoA gene, taxonomically classified as Nitrosopumilus, that
had a relative abundance almost perfectly correlated (r* = 0.97) with that of MAG-107.
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Supplementary Figures
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Fig. S1. Correlation between dissolved organic carbon and nitrification. (a) Correlation
between the relative abundance (TPM) of the marker gene for ammonia oxidation (amoA,;
first step of nitrification) and dissolved organic carbon (DOC) concentration. (b) Correlation
between the relative abundance of the marker gene for nitrite oxidation (nxrA; final step of
nitrification) and DOC concentration. Shaded regions represent the 95% confidence interval
of the fitted linear model. A full list of r* and p-values for all evaluated nitrogen and sulphur
cycling gene correlations is presented as Supplementary Table 4.
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Fig. S2. Beta-diversity of MAG phylain the Bundera sinkhole. Non-linear
multidimensional scaling (NMDS) based on Bray-Curtis distances of normalised read counts
for MAG phyla. NMDS points that represent replicate samples lie on top of each other, as do
those representing all samples from 17, 18, 22, and 28 m depths. The groupings (circles,
triangles, and squares) represent samples with similar levels of dissolved oxygen (DO) and
salinity (Supplementary Table 1). The grouping of samples from 17, 18, 22, and 28m depths
(squares) is supported by PERMANOVA (p=0.046; Supplementary Table 6).
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