

1 **Melanin enhances metastatic melanoma colonization by inhibiting**
2 **ferroptosis**

3

4 Arwin Groenewoud^{1,2,3,4,*†}, Gangyin Zhao^{1†}, Maria-Chiara Gelmi^{5†}, Jie Yin¹, Gerda E.
5 M. Lamers¹, Remco van Doorn⁶, Rob. M. Verdijk⁷, Martine J. Jager⁵, Felix B.
6 Engel^{2,3,4} & B. Ewa Snaar-Jagalska^{1*}

7

8 ¹Institute of Biology, Leiden University, Leiden, The Netherlands

9 ²Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of
10 Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

11 ³Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany

12 ⁴Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany

13 ⁵Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands

14 ⁶Department of Dermatology, Leiden University Medical Center, Leiden University, Albinusdreef 2,
15 2300 RC Leiden, The Netherlands

16 ⁷Department of Pathology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the
17 Netherlands; Department of Pathology, Erasmus University Medical Center Rotterdam, PO Box 2040,
18 3000 CA Rotterdam, the Netherlands

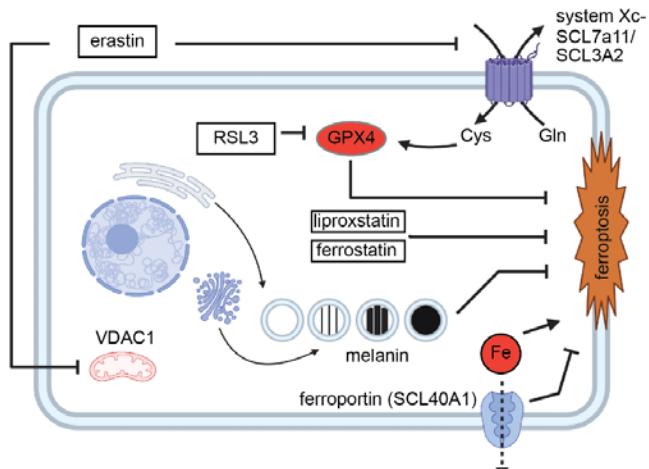
19

20 *Correspondence:

21 Arwin Groenewoud, email: arwin.groenewoud@uk-erlangen.de

22 Prof. Dr. B. E. Snaar-Jagalska, email: b.e.snaar-jagalska@biology.leidenuniv.nl

23


24 †: These authors contributed equally

25 Keywords: melanoma, melanin, metastasis, ferroptosis, TYRP1, GPX4, VDAC, XCT

26

27 **Graphical abstract**

28

29

30

31 **Abstract**

32 Melanoma associated death is mainly caused by metastatic disease. Increased
33 melanin levels are associated with decreased melanoma patient survival, yet the
34 contribution of melanin to this process is unknown. Here we show that melanin
35 protects circulating melanoma cells from ferroptosis, enhancing their metastatic
36 potential. We observed that melanin levels in patient-derived uveal melanoma cells
37 as well as cutaneous and conjunctival melanoma cell lines correlate with their
38 metastatic potential in zebrafish xenografts. We find strong associations of the
39 melanin biosynthesis gene *TYRP1*, ferroptosis related enzyme *GPX4* and
40 mitochondrial anion channel (*VDAC1*) with reduced melanoma-specific survival in
41 TCGA data of cutaneous melanoma. Modulation of melanin levels significantly
42 impacts melanoma metastatic potential, increasing or decreasing in concordance
43 with melanin levels. Furthermore, melanin depletion significantly sensitized
44 melanoma cells to ferroptosis leading to a decreased metastatic capacity and
45 enhanced efficacy of ferroptosis induction based anti-cancer therapeutic strategies.
46 Collectively, our results reveal that combined inhibition of melanin biosynthetic
47 enzymes and induction of ferroptosis has potential as a treatment strategy of
48 metastatic melanoma.

49

50 **Introduction**

51 Melanoma is one of the most common malignancies, and arises from melanocytes
52 following malignant transformation. Subsequent metastatic spread, and not the
53 growth of the primary tumor, kills up to 90% of cancer patients^{1,2,3}. For (intra-ocular)
54 melanoma, it is assumed that only a small fraction of cells that escape from the
55 primary tumor successfully establish a metastatic colony, indicating a strong
56 selective pressure on disseminating tumor cells within the circulation⁴⁻⁶. Among the
57 key factors in curbing metastatic dissemination in the circulation are reactive oxygen
58 species (ROS)^{7,8}. These ROS are derived from either intracellular or extracellular
59 stressors, such as but not limited to mitochondrial dysfunction, impaired influx/efflux
60 mechanisms, immune or stromal cell interactions⁹⁻¹². In healthy skin, melanin
61 functions to protect against Ultraviolet (UV) radiation by preventing direct DNA
62 damage by absorbing (UV-A/B) thus preventing subsequent ROS-mediated
63 genotoxicity¹³⁻¹⁵. We hypothesize that melanin protects transformed melanocytes
64 from ROS in a similar manner during metastasis, thus enhancing cell survival during
65 dissemination and the metastatic potential of melanoma cells.

66 Most melanoma cell lines derived from pigmented lesions lose their capacity to
67 synthesize melanin *in vitro*. Conversely, patient-derived xenograft models retain their
68 melanogenic potential, underscoring the apparent selective pressure *in vivo*.
69 Interestingly, studies suggest an inverse correlation between pigmentation and
70 migratory capacity^{21,22}. Strikingly, the *in vivo* cutaneous melanoma model described
71 by Pinner et al. shows an enhancement of distant metastasis in the presence of
72 heightened melanin levels²².

73 Melanomas are derived from neuroectodermal progenitor cells during embryonic
74 development, giving rise to different populations of melanocytic precursors^{16,17}. All
75 melanocytes harbor intrinsic melanogenic potential, which is normally induced in the
76 skin in a UV-dependent manner through the α MSH-MITF-TYR axis^{16,18}. In ocular
77 melanocytes, melanin biosynthesis is induced through a largely unknown
78 mechanism¹⁸⁻²⁰.

79 One of the possible mechanisms of ROS-mediated cell death is ferroptosis, a lipid
80 peroxidation-based, iron-dependent mechanism of cell death²³⁻²⁶. Ferroptosis seems

81 to be more strongly induced in cutaneous melanoma (CM) cells expressing
82 oncogenic RAS variants, possibly due to an increase in cellular iron levels^{23,26,27}.

83 Glutathione peroxidase 4 (*GPX4*) functions as a lipid peroxide reducer, effectively
84 reverting the damage done by ferroptosis^{24,25}. Intracellular glutathione is used as a
85 reservoir of ROS reduction and can effectively curb ferroptotic cell death. Common
86 inducers of ferroptosis either interfere with mitochondrial or electron transport chain
87 functions, the cellular system Xc- (erastin), or inhibit GPX4³⁰.

88 During ferroptosis, either induction of mitochondrial stress, endoplasmic reticulum
89 stress through inhibition of voltage-gated anion channel, or inhibition of the
90 cystine/glutamate antiporter system (System Xc-) cause a dramatic increase of
91 intracellular ROS. This sharp increase in ROS catalyzes lipid peroxidation and is
92 presumed to lead to subsequent cell membrane permeation and cell death, while
93 maintaining nuclear integrity^{28,29}.

94 We observed that increased levels of melanin and TYRP1 expression correlate with
95 worse disease outcome in primary UM patients. In addition, melanin inclusion in
96 primary UM tissues increased their respective engraftment capacity in a zebrafish
97 model therefore we propose that the retained melanin protects melanoma cells in the
98 circulation, by scavenging intracellular ROS-mediated damage, preventing
99 ferroptosis, effectively enhancing the metastatic potential of melanoma cells.

100 To address this hypothesis, we have tested a set of different melanoma cell lines
101 from CM and conjunctival melanoma (CoM) origin with pigmented and non-
102 pigmented phenotypes. We used a melanin depletion strategy for CM and CoM cell
103 lines. Conversely, we developed a biological melanin transfer system, allowing us to
104 re-introduce melanin from a pigmented CM donor cell line to non-pigmented uveal
105 melanoma (UM) cell lines.

106 We correlated melanin inclusion within UM, CM, and CoM with an enhanced
107 metastatic potential and proved that depletion of melanin in pigmented melanoma
108 cells decreases their metastatic potential. Furthermore, we showed that transfer of
109 exogenous melanin into UM cells confers protection to stress during hematogenous
110 dissemination. Finally, we demonstrated that melanin depletion significantly
111 enhances susceptibility to ferroptotic insult during dissemination *in vivo*. In

112 conclusion, we confirmed that melanin can act as a pro-metastatic factor protecting
113 cells from ROS and demonstrated the importance of melanin in blocking ferroptosis
114 during metastatic dissemination.

115 **Results**

116 **The presence of melanin and the upregulation of TYRP1 correlate with tumorigenic**
117 **potential of UM PDX samples and with a decrease in disease-free survival in UM**
118 **patients.**

119 When studying the metastatic colonization capacity of uveal melanoma in a zebrafish
120 model, we noticed striking differences between tumor samples (Figure 1A). We had
121 generated spheroid cultures from primary UM, as recently described by Groenewoud
122 et al 2023. After dissociation of spheroids, cells were stained with a red transient
123 dye and engrafted intravenously in blood vessel reporter zebrafish larvae
124 (*Tg(fli:eGFP)*) at 48 hours post fertilization (hpf). We measured the engraftment over
125 time based on the fluorescent intensity and the size of the metastatic foci, within the
126 engrafted zebrafish larvae at 1-, 4-, and 6-days post injection (dpi) (Figure 1B). Of
127 the three engrafted PDX samples, the highly-pigmented sample spUm-LB046
128 showed significant ($p<0.001$) enhancement of tumor cell number (as measured by
129 fluorescence integrated density) over time, with many tumor cells visible all over the
130 body after 6 days. Tumor sample spUm-LB048 (containing only medium levels of
131 melanin) induced a significant enhancement of fluorescent signal between 1 dpi and
132 4 dpi ($p<0.001$), with almost complete tumor clearance at 6 dpi ($p<0.001$), while the
133 non-pigmented primary UM sample spUM-LB049 was completely cleared from the
134 engrafted zebrafish host at 4 dpi. We considered the option that the differences were
135 caused by different degrees of melanin. As UM tend to spread hematogenously, we
136 verified our findings by assessing the relation between tumor pigmentation and
137 patient survival in a series of enucleated UM (LUMC cohort n=64) (Figure 1C/A) by
138 analyzing the transcription of the terminal enzymatic stages of melanin biosynthesis
139 (Leiden cohort, Figure 1D). Pigmentation levels assessed after enucleation of
140 primary UM sub-divided the tumors into two groups: non- and lightly-pigmented
141 versus medium- and highly-pigmented tumors. Survival analysis indicated that there
142 is a significant increase in melanoma-related death in patients with medium- and
143 highly-pigmented tumors compared to those with non- and lightly-pigmented UM
144 ($p=0.006$). When comparing melanin biosynthetic genes with melanoma-related

145 death, only the final biosynthetic step of melanin synthesis demonstrated a
146 correlation with bad disease outcome (*TYRP1*, $p=0.01$) whereas both upstream
147 tyrosinase (*TYR*) and dopachrome tautomerase (*DCT*) were not related to
148 melanoma-related death (*TYR*, $p=0.52$; *DCT*, $p=0.15$).

149 Next, we verified those finding by studying the metastatic colonization capacity of
150 patient derived UM using zebrafish xenografts (Figure 1A). We had generated
151 spheroid cultures from primary UM, as recently described by Groenewoud et al
152 2023. After dissociation of spheroids, cells were stained with a red transient dye
153 and engrafted in blood vessel reporter zebrafish larvae (*Tg(fli:eGFP)*) at 48 hours
154 post fertilization (hpf). We measured the engraftment over time based on the
155 fluorescent intensity and the size of the metastatic foci, within the engrafted zebrafish
156 larvae at 1-, 4-, and 6-days post injection (dpi) (Figure 1B). Of the three engrafted
157 PDX samples, the highly-pigmented sample spUm-LB046 showed significant
158 ($p<0.001$) enhancement of tumor cell number (as measured by fluorescence
159 integrated density) over time, with many tumor cells visible all over the body after 6
160 days. Tumor sample spUm-LB048 (containing only medium levels of melanin)
161 induced a significant enhancement of fluorescent signal between 1 dpi and 4 dpi
162 ($p<0.001$), with almost complete tumor clearance at 6 dpi ($p<0.001$), while the non-
163 pigmented primary UM sample spUM-LB049 was completely cleared from the
164 engrafted zebrafish host at 4 dpi. We considered the option that the differences were
165 caused by different degrees of melanin.

166 Combined these results suggest a causal link between the level of melanin in UM
167 cells and their metastatic potential.

168

169 **Ferroptosis resistance marker expression coincides with the expression of**
170 **melanin biosynthetic enzymes**

171 To assess if our findings in UM, namely that the expression of melanin biosynthetic
172 enzymes correlate with a significant decrease in melanoma specific survival, would
173 be also be applicable and specific to CM and CoM we analyzed available TCGA
174 datasets (Figure 2A, B). We asked if both elevations in expression levels of melanin
175 biosynthetic enzymes or in ferroptosis resistance marker levels showed any
176 significant effect on CM and survival data (Figure 2C, D). We determined the effect

177 of melanin biosynthetic genes on overall survival (Figure 2C). We subsequently
178 focused on the effect of melanin biosynthetic genes on overall survival of CM
179 patients in a group of 458 patients and were able to demonstrate a strong effect of
180 melanin biosynthetic molecules. All melanin biosynthetic pathway genes assessed in
181 this manner in CM patient data, correlated negatively with overall melanoma specific
182 survival (*MITF*, p=0.022; *TYR*, p=0.03; *DCT*, p=0.038; *TYRP1* p=0.0019).

183 Ferroptosis defense mechanisms such as GPX4, XCT (SLC7A11 and SLC3A2)
184 VDAC1 are clinically relevant targets for the induction of ferroptosis. We assessed
185 the association between the aforementioned markers and CM patient survival. We
186 noted that VDAC1 levels significantly correlated with a reduced overall survival for
187 CM (*VADC1* p=0.01; Figure 2D). Subsequently we asked if the co-expression of the
188 melanin biosynthetic enzyme TYRP1 and ferroptosis related transcripts (GPX4,
189 VDAC, XCT) would be associated with a decreased probability of CM specific
190 survival (Figure 2E). To establish the clinical significance of concordant expression of
191 melanin biosynthetic enzyme TYRP1 and ferroptosis resistance markers we
192 compared the association between the overall melanoma specific survival of TYRP1
193 and TYRP1 normalized to either GPX4, VDAC1 or XCT. Strikingly the negative
194 effects of GPX4 on melanoma dependent survival display a stronger statistical
195 probability after normalization to TYRP1 (p=0.0049) if compared to GPX4 alone
196 (p=0.12, Figure 2E). Subsequently we asked if we could show a similar relation
197 between TYRP1 and GPX4 protein levels in patient material, in a selection of
198 different cutaneous melanoma IHC samples (derived from patients with different skin
199 types, n=30) we assessed immune reactive scores (staining intensity multiplied by
200 staining percentage, binned in absent TYRP1 (0), low (1-3), medium (4-6) and high
201 (7-9)) of both markers and were able to find a significant correlation between TYRP1
202 and GPX4 expression (presence of GPX4 staining in TYRP1 absent compared to
203 low, p=0.0124; absent compared to medium, p=0.001 and absent compared to high
204 p<0.001) (Figure 2F, G).

205 **Intracellular melanin and TYRP1 levels predict cancer cell engraftment**

206 To further test our hypothesis that the presence of intracellular melanin plays a role
207 in metastatic dissemination of different types of melanomas, we analyzed a matched
208 panel of pigmented and non-pigmented melanoma cell lines (schematic
209 representation in Figure 3A). The metastatic colonization in zebrafish was measured

210 at 1, 4 and 6 dpi, comparing pigmented (marked by an *) and non-pigmented cell
211 lines derived from CoM (CRMM1*, CRMM2), CM (SK-Mel28, PDX11917*) and UM
212 (XMM66 and OMM2.3). All tested cell lines were transduced with lentiviral tdTomato
213 and data was analyzed after normalization of fluorescent intensity to 1 dpi (as
214 described previously)³³. For both CoM and CM, we noted a significantly enhanced
215 metastatic colonization for the pigmented cell line when compared to the non/low
216 pigmented cell line within the cell line pairs (figure 3B, C). Metastatic colonization
217 was not exclusively linked to melanin content, CRMM1*, p<0.001 when compared to
218 CRMM2. Conversely SK-Mel28, greatly showed enhanced metastatic capacity
219 p<0.001 when compared to CM patient derived xenograft culture PDX11917. Cell
220 line PDX11917 was found to be overtly pigmented, both in culture and when
221 concentrated during sub-cultivation, showed marginal proliferation in zebrafish, and
222 was able to establish metastatic colonies at 6 dpi³⁴. UM lines that were used in this
223 panel were deemed to be non-pigmented and as expected failed to form any
224 metastatic colonies as reported by Groenewoud et al 2021. Subsequently, we
225 determined if there were detectable melanosomes within the cell lines that made up
226 our panel, to ensure that all our designated non-pigmented cell lines indeed did not
227 contain any melanosomes (Figure 3D). Strikingly, not only CRMM1 and PDX11917
228 but also SK-Mel28 showed active melanosome formation when observed using
229 transmission electron microscopy (TEM). In line with our previous findings, we asked
230 if in this cell line panel, we could correlate *TYRP1* mRNA levels with their metastatic
231 capacity (Figure 3E). We noted a significant increase of *TYRP1* expression in
232 CRMM1, PDX11917 and SK-Mel28 when compared to their non-pigmented counter
233 parts or when compared to the non-pigmented cells within this panel (p<0.001).
234 None of the non-pigmented cell lines (CRMM2, XMM66, OMM2.3) showed
235 detectable *TYRP1* mRNA, indicating that both TEM and qPCR should be used to
236 verify the presence or absence of melanogenic capacity of melanoma cells.

237 Subsequently, we measured the effect of chemical inhibition of melanin biosynthesis
238 on the metastatic colonization of highly-pigmented PDX-derived CM cell line
239 PDX11917 when compared to SK-Mel28, a cell line bearing only occult melanin. We
240 demonstrated that PDX11917's metastatic capacity was significantly inhibited after
241 chemical melanin depletion, by treatment with N-Phenylthiourea (PTU) contrary to
242 vehicle control, at 6 dpi (p<0.01). SK-Mel28 was not significantly inhibited by

243 melanin depletion at 6 dpi, but displayed a significant delay in metastatic colonization
244 at 4 dpi ($p<0.01$) which recovered by 6 dpi, and indicated no overall inhibition when
245 compared to untreated control (Figure 3F).

246 These observations suggest that the presence of melanin enhances a melanoma
247 metastatic capacity and that TYRP1 levels are indicative of melanin biosynthesis,
248 given that upstream activation is present. Strikingly, SK-Mel28 shows strong
249 expression of TYRP1, but has only minimal melanosome formation and occult
250 melanin, as visualized under TEM, under normal culture conditions. This further
251 implies that the presence of melanin rather than solely the expression of TYRP1 is
252 required for the enhancement of tumorigenic capacity.

253

254 **Melanin depletion of highly-pigmented CM melanoma cell line mugmel2 significantly
255 reduces its metastatic potential**

256 After the primary assessment of the effect of melanin on metastatic dissemination of
257 melanoma cells in zebrafish xenografts, we asked if this phenomenon could be
258 validated in a highly-pigmented *NRAS*-mutated CM cell line: mugmel2³¹. We first
259 determined the presence of all stages of melanosome maturation in mugmel2 cells,
260 using transmission electron microscopy (TEM) as shown in (Figure 4A).
261 Melanosomes Type II, III and IV were readily visualized due to their intrinsic electron
262 density, and are indicated with yellow (▲ type II), blue (▲ type III) and red (▲ type
263 IV) arrowheads, respectively. The eGFP-expressing mugmel2 cells were engrafted in
264 zebrafish as described previously, with or without prior chemical depletion of melanin
265 through 1-phenyl 2-thiourea (PTU). Intravenous injection of the melanin-depleted
266 mugmel2 cells induced less metastatic colonization in Casper zebrafish at 6 dpi
267 (Figure 4B, C) in comparison to non-depleted cells *in vitro* (Figure 4C). Next, we
268 measured the decrease of metastatic potential at 4 dpi and 6 dpi for two
269 concentrations of PTU (125 and 500 μ M) when compared to treatment with
270 equivalent volumes of vehicle control (DMSO).

271 Genetic shRNA mediated interference with melanin biosynthesis through inhibition of
272 tyrosine (*TYR*) by led to a significant inhibition of metastatic capacity when compared
273 to scrambled shRNA control concordantly (Figure 4D, $p<0.001$).

274 Subsequently we measured the concentration of intracellular melanin
275 spectrophotometrically. For the chemical depletion the strongest inhibition, without
276 deleterious effects on cell survival, was induced by 500 μ M PTU (approximately
277 85%, $p<0.001$) and a dose-dependent increase in melanin content was recorded
278 between 500 μ M and lower PTU concentrations ($p<0.05$) (Figure 4E). Both shTYR
279 constructs were sufficient to reduced intracellular melanin levels significantly (Figure
280 4E)^{20,32}.

281 To assess whether this decrease in metastatic capacity could be due to a decrease
282 in overall migration, we measured cell migration *in vitro* using a wound healing
283 assay. We observed no difference in the migratory potential when comparing PTU-
284 treated cells with the vehicle control (Figure 4F, G). Using TEM, we determined
285 whether PTU treatment induced loss of melanosomal structures in mugmel2 cells
286 (Figure 4H). We observed a loss of type II, III and IV melanosomes upon PTU
287 treatment (250 μ M). In summary, these data clearly suggest that the degree of
288 melanation of mugmel2 correlates with its metastatic potential. The presence of all
289 known stages of melanosomes indicates that cell line mugmel2 has retained its
290 canonical melanogenic phenotype. To determine if the mugmel2 metastatic capacity
291 was driven by a de-differentiation, or general enhancement of stem cell like features,
292 we assessed mRNA transcription levels *ex situ* (tumor explants of 50 individual
293 tumors per timepoint, $n=3$). We determined the transcript levels of MITF, SOX10,
294 TYR and TYRP1, compared to *in vitro* cultured mugmel2 cells, to assess any
295 enhancement of stem cell like properties (MITF, SOX10) or any
296 differentiation/melanin biosynthesis markers (TYR, TYRP1) induced by interaction
297 with or selection by the zebrafish microenvironment. We noted that over time stem
298 cell like properties seem to diminish where melanin biosynthesis markers are slightly
299 enhanced by the end of the experiment (6 days). Taken together these data suggest
300 that the depletion of melanin from mugmel2 through either chemical or genetic
301 means significantly decreases its tumorigenic capacity. This depletion does not
302 significantly alter its migratory capacity, nor does it enhance stem cell properties.
303 This implies that not migration, but subsequent steps in metastatic dissemination *in*
304 *vivo* are affected by the presence of intracellular melanin.

305

306 **Introduction of extraneous melanin is sufficient to re-establish UM metastatic
307 potential.**

308 We previously observed and described that UM cell lines are generally non-
309 metastatic, non-pigmented and do not express TYRP1. Many UM patients have a
310 dark brown to black tumor at the time of enucleation, and we noticed that both a high
311 level of pigmentation as well as a high TYRP1 expression correlate with poor
312 survival. Furthermore, the tested pigmented primary samples were capable of
313 establishing metastatic colonies in zebrafish
314 (<https://doi.org/10.1101/2021.10.26.465874>).

315 To this end we asked if introduction of extraneous melanin would be sufficient to re-
316 instate the, in patients clearly noticeable, metastatic potential UM cells. Therefore,
317 we established a co-culture system to allow *in vitro* transfer of melanin from donor
318 pigmented cells (mugmel2) to naïve UM cells (XMM66, OMM2.3) (Figure 5A,
319 Supplementary Figure 1). We included a co-culture with vehicle (DMSO) in parallel
320 to a melanin-depleted co-culture. Donor cells were pre-incubated with Mitomycin-C,
321 a mitotic spindle poison, abrogating mitotic potential, while retaining overall cell
322 viability; this allowed us to perform a protracted (72 hours) co-culture with the donor
323 cells while blocking donor cell outgrowth. To determine how much melanin would be
324 taken up, we measured the intracellular melanin concentration in naïve UM cultures,
325 UM cells co-cultured with pigmented mugmel2 (mel+) and chemically melanin-
326 depleted mugmel2 (mel-) cells. We noted a significant melanin enhancement in
327 pigmented co-cultures, for both UM cell lines compared to both naïve (2 to 3-fold)
328 and melanin-depleted co-cultures (8 to 10-fold approximately) (Figure 5B). Using
329 TEM, we verified the successful transfer of intracellular melanin from highly-
330 pigmented melanoma cell line mugmel2 (mugmel2 mel+) to XMM66 cells (Figure
331 5C). In naïve XMM66 cells, melanosomes were completely absent, whereas large
332 melanosomal structures were observed in the co-cultures with pigmented cells. In
333 contrast, in the melanin-depleted co-culture, only a few small electron dense vesicles
334 and some empty vesicles were observed (Figure 5C), indicating functional transfer of
335 melanin from pigmented CM donor cells to naïve non-pigmented UM cells (additional
336 TEM images are presented in supplementary Figure 2). Subsequently, we asked if
337 the transferred intracellular melanin could play a protective role after UM cell
338 injection into the bloodstream of zebrafish. We therefore injected these sets of co-

339 cultured cells Xm66 and OMM2.3 labeled with red fluorescent, co-cultured with
340 green mugmel2mel+ and mugmel2mel- cells, into zebrafish and scored the
341 metastatic burden at 6 dpi. In pigmented co-cultures, both UM cell lines gained a
342 significant enhancement in metastatic colonization in contrast to the melanin-
343 depleted co-cultures (Figure 5D, E). Importantly these results prove that melanin
344 inclusion into UM cells rescues their survival in circulation leading to metastatic
345 dissemination.

346

347 **Melanin protects against ferroptosis *in vitro* and *in vivo*.**

348 Successful metastatic colonization is a relatively rare occurrence in most cancers
349 and can be described as a stochastic process. Here, random chance aligns with the
350 metastatic cells intrinsic properties to allow a minute subset of cancer cells to form a
351 metastatic colony in a suitable niche. Recent discoveries have highlighted the
352 importance of reactive oxygen species (ROS) and more specifically ferroptosis in the
353 curbing of metastatic dissemination in CM^{7,35}. Since melanin has long been known to
354 act as a ROS scavenger^{18,19} and we have shown within this manuscript that
355 upregulated melanin biosynthesis correlates with worse melanoma specific disease
356 outcome. Based on this we hypothesized that melanin might scavenge ROS while
357 cells are in the circulation, prolonging circulating tumor cell (CTC) survival, effectively
358 enhancing their chance of finding a suitable niche.

359 To address this hypothesis, we first tested the effect of melanin depletion on cell
360 membrane peroxidation *in vitro*, as this is one of the hallmarks of ferroptosis. Cell
361 membrane oxidation marker BODIPY 581/591 was used to compare the pro-
362 ferroptotic effects of XCT/VDAC or GPX4 inhibition with or without rescue with
363 membrane peroxidation inhibitor ferrostatin-1 (Figure 6A). In both XCT/VDAC and
364 GPX4 inhibition groups (utilizing erastin or RSL3 respectively) we noted a significant
365 increase of membrane peroxidation in the melanin depleted cells when compared to
366 the melanin proficient groups. In melanin depleted cells the addition of 2 μ M
367 ferrostatin-1 was sufficient to significantly reduce membrane peroxidation, in melanin
368 proficient cells this reduction was not significant (Figure 6B).

369 To assess the specific growth inhibitory effect of known ferroptosis-inducers erastin
370 and RSL3, we performed a WST1-based proliferation assay on both melanin

371 proficient and deficient mugmel2 cells (Figure 6C). Strikingly, we noted that under
372 normal culture conditions melanin proficient mugmel2 cells are largely refractory to
373 ferroptosis induction with erastin or RSL3. We found that only melanin-depleted
374 mugmel2 was significantly sensitized to both erastin (approximate growth inhibition
375 70-80%, 10-0.625 μ M, $p<0.001$) and RSL3 (approximate growth inhibition 60-80%,
376 10-1.25 μ M, $p<0.001$ and 0.625 at $p<0.05$). In contrast, the melanin-proficient
377 mugmel2 were only susceptible to the highest concentrations of RSL3 (10 and 5 μ M,
378 $p<0.001$).

379 To determine if we can measure a similar increase in membrane peroxidation *in vivo*
380 we developed an *in vivo* membrane peroxidation assay (Figure 6D, E). To this end,
381 we stained tdTomato expressing mugmel2 cells (both melanin pro- and deficient)
382 with membrane peroxidation specific dye Liperfluo 1 hour before engraftment. We
383 imaged both engrafted populations using a confocal microscope, focusing on the
384 caudal hematopoietic tissue (CHT), the location where the majority of the metastatic
385 colonies will form. Within 24 hours post engraftment we measured a significant
386 difference between melanin pro- and deficient mugmel2 cells, where the latter
387 showed a significant enhancement when compared to the melanin containing
388 mugmel2 cells.

389 We engrafted zebrafish larvae with either melanin pro- or deficient mugmel2 cells
390 (depleting melanin through chemical and genetic means) and treated the engrafted
391 larvae for 6 days (1 - 6 dpi) with 5 μ M erastin and 10 μ M RSL by water administration
392 (Figure 6F). We measured the tumor burden (total red fluorescent objects $\geq 10\mu\text{m}$
393 within the zebrafish larvae), normalized to vehicle control (DMSO) at 6 dpi. There
394 was no significant sensitization to erastin, most likely due to its strong inhibitor
395 capacity on both melanin pro- as deficient mugmel2 cells. Strikingly RSL3, acting
396 through inhibition of GPX4, significantly reduced the tumor burden in both chemically
397 and genetically-melanin depleted populations, indicative of resistance to canonical
398 ferroptosis induction mediated by the presence of intracellular melanin.

399 To determine the cross-sample validity of our hypothesis, we engrafted zebrafish
400 larvae intravenously with our previously described set of melanoma cells (UM, CM
401 and CoM), at 48 hpf and treated the engrafted larvae from 1 dpi with 5 μ M erastin
402 and 10 μ M RSL (Figure 6G). We subsequently measured the tumor burden at 6 dpi
403 and normalized the tumor burden to the vehicle control (DMSO). We noted that CoM

404 cell lines CRMM1* and CRMM2 and CM cell line SK-Mel28* showed a significant
405 (p<0.001) reduction of tumor burden when treated with erastin. RSL3 did not
406 significantly reduce tumor burden in any of the tested cell lines.

407 In conclusion, these data suggest that melanin protects melanoma cells in
408 circulation, functionally mitigating intracellular ROS and protecting circulating cancer
409 cells from ferroptotic cell death, indirectly enhancing tumorigenic capacity.

410 **Discussion**

411 Melanomas are often strongly pigmented in patients. The prevalence of melanoma
412 pigmentation underlines not only the cellular lineage they derive from, but also the
413 presence of selection pressure forcing the expression of melanin-related genes.
414 Cells derived from pigmented melanomas generally lose their melanin biosynthetic
415 capacity and increase their migratory capacity *in vitro*²². Next to clinical correlations
416 that associate either melanin or melanin-related gene signatures with an unfavorable
417 disease outcome, the true functional role of melanin in melanoma development
418 remains unclear and contradictory^{21,36}.

419 We engrafted spheroids derived from primary UMs tissues in zebrafish and observed
420 that there was a relation between the presence of melanin in the primary UM
421 samples (clinically scored for melanotic level in a +, +/- and – scale) and prolonged
422 circulation and tumorigenic potential in zebrafish after engraftment. This experiment
423 indicated that there is a significant difference in tumorigenic potential of heavily-
424 pigmented patient samples when compared to both intermediate and lightly-
425 pigmented samples. Interestingly, UM cell lines OMM2.3 and XMM66, originally
426 derived from metastatic UM, had lost all melanogenic capacity *in vitro*, and were
427 readily cleared from the engrafted host after systemic injection (within 16 hours post
428 injection). This observation and the short timeframe, wherein near complete attrition
429 of circulating tumor cells (CTCs) is attained, is in line with a possible induction of
430 ROS-mediated cell death⁸. Strikingly, we observed strong tumorigenic capacity when
431 engrafting low passage spXMM66 cells, derived from a pigmented patient-derived
432 xenograft tissue (PDX), while an immortalized cell line from the same patient XMM66
433 proved to be non-tumorigenic. In addition, our analysis of a clinical UM cohort
434 confirmed a strong association between high tumor pigmentation, high expression of

435 *TYRP1*, the terminal melanin biosynthetic, and high UM-related death in patients
436 (LUMC cohort n=64).

437 Following this observation, we reasoned that this phenomenon might hold true for
438 other melanoma sub-types. We concordantly observed that there has been a nearly
439 complete loss of melanin biosynthesis in most melanoma cell lines, presumably
440 through negative selection (or general lack of selection pressure) by successive *in*
441 *vitro* cultures without selection pressure.

442 To assess this, we acquired the aberrant CM cell line mugmel2, an NRAS-driven and
443 heavily-pigmented melanoma cell line³¹. We assessed the formation of
444 melanosomes using TEM and measured melanin levels using a spectrophotometric
445 method described by Friedmann et al¹⁸. Both chemical and genetic inhibition of
446 melanin biosynthesis, by treatment with 1-Phenyl-2-thiourea (PTU) or *TYRP1* shRNA
447 interference, reduced melanin levels and decreased metastatic dissemination in
448 zebrafish xenografts.

449 We assembled a set of UM, CM and CoM melanoma cell lines and were able to
450 generate a set of paired pigmented and non-pigmented CM and CoM cell lines. We
451 repeated the chemical depletion of melanin in the CoM melanoma set and found that
452 also within this set there is a significant reduction of tumorigenic potential upon
453 depletion of melanin, suggesting that melanin has a canonical pro-tumorigenic
454 function in all melanomas. Strikingly, our findings validate the work from Pinner et al
455 2009, where they state that low melanation correlates with high migratory capacity of
456 CM cells *in vivo*, but that pigmented cells do generate more distant metastases²².

457 To assess the mechanistic effect of melanin levels on the metastatic behavior of UM
458 cell lines we developed a co-culture system to transfer melanin from mugmel2 donor
459 cells into UM acceptor cells. Through this system, we introduced exogenous melanin
460 to UM cells, for subsequent assessment of metastatic capacity. Other methods to re-
461 instate melanin biosynthesis were unsuccessful (treatment with a-MSH, forskolin or
462 lentiviral over-expression of melanin biosynthetic genes *DCT*, *TYR* and *TYRP1*,
463 results not shown). Spectrophotometric measurement of the uptake of melanin and
464 visualization of melanosomes through TEM confirmed that UM cells readily take up
465 melanin from external donors. Co-cultures of both melanin biosynthesis proficient
466 and deficient donor cells were generated and we measured a significant

467 enhancement of detected melanin in co-culture with melanin proficient donors when
468 compared to melanin deficient donors or untreated control cells. Both OMM2.3 and
469 XMM66 co-cultured with melanin-proficient cells showed a significant enhancement
470 in tumorigenic potential when compared to either co-culture with melanin deficient or
471 untreated cells. These findings indicate that UM cells are capable of up taking
472 melanosomal melanin, at least *in vitro*, and underscore one of the possible functions
473 of melanin in the distant metastasis of UM.

474 Taking together our observations with recently published experimental proof that
475 circulating melanoma cells are largely killed through reactive oxygen^{7,35}, we
476 hypothesized that ROS-based cell death might be the underlying mechanism driving
477 UM attrition in circulation⁷. In line with this hypothesis, melanin inclusion within UM
478 cells might thus help prevent *in vivo* cell death of circulating UM cells. More recently
479 there has been experimental proof that circulating tumor cells are killed specifically
480 by an iron-dependent non-apoptotic cell death mechanism known as ferroptosis³⁵.

481 Using our model, we tested if melanoma cells were responsive to the induction of
482 ferroptosis during their time in circulation in the zebrafish model. We started out by
483 challenging duplicate sets of pigmented and non-pigmented melanoma cells we
484 used previously and demonstrated a clear correlation between the levels of
485 melanation and the response to the induction of ferroptosis with inhibitors of GPX4
486 ((1S,3R)-RSL3; alternatively named RSL3) and system Xc- (erastin)^{23,25,27,37}.
487 Ferroptosis induction by erastin occurs through perturbation of system Xc- and
488 mitochondrial voltage-dependent anion channels^{26,37}. The *in vivo* induction of
489 ferroptosis with erastin proved to be highly effective, reducing tumor burden
490 independent of melanin inclusion for cell line SK-Mel28, which showed low level
491 melanation under TEM. Additionally, erastin proved sufficiently potent to induce
492 ferroptosis in strongly-pigmented mugmel2 cells. Although there was a trend
493 indicative of sensitization of SK-Mel28 cells to erastin by melanin depletion, this was
494 presumably negated by the strong effects of erastin on the mel+ population.

495 Furthermore, we showed that there was a melanin-dependent sensitivity to
496 ferroptosis induction, when melanin-depleted mugmel2 cells were compared with
497 pigmented mugmel2 cells. Ferroptosis was induced either directly through the
498 inhibition of GPX4 or indirectly by blocking the glutamate antiporter function of the
499 system Xc- (erastin) and concordant perturbation of VDAC function. We found that

500 mugmel2, derived from an NRAS-driven CM, is largely refractory to ferroptosis
501 induction *in vitro* under conventional conditions, whereas these cells can be
502 sensitized through depletion of glutamine (a co-factor for GPX4 function). The
503 ferroptosis refractory nature of this RAS-driven cell line is contra-dogmatic, as both
504 RSL3 (RAS specific lethal 3) and erastin have been selected through a RAS
505 hyperactivation specific *in vitro* synthetic lethal screen³⁷. Therefore, we reason that
506 chemical depletion of melanin sensitizes mugmel2 cells to ferroptosis. This highlights
507 the functional relationship between the presence of melanin and ferroptosis
508 resistance, *in vitro*. Ferroptosis induction through GPX4 inhibition (with RSL3) or
509 concordant inhibition of XCT and VDAC1/2 (with Erastin) generally lead to a
510 reduction of metastasis formation, in both pigmented and non-pigmented melanoma
511 cells. A significant difference between pigmented and non-pigmented mugmel2
512 cells, could be seen upon RSL3 treatment, but not upon treatment with erastin,
513 indicating that non-pigmented cells are more susceptible to canonical ferroptosis
514 induction through inhibition of GPX4. Conversely mugmel2 cells were strongly
515 susceptible to ferroptosis induction with erastin independent of pigmentation.

516 These findings led us to search for both elevations in GPX4 levels or alterations in
517 melanin-biosynthesis genes (*MITF*, *TYR*, *DCT*, *TYRP1*) in patient survival data,
518 where we found that a high expression of GPX4 in CM significantly correlated with
519 decreased overall survival. A high tumor expression of all melanin biosynthetic genes
520 was correlated with increased death in CM patients. Strikingly, there were only
521 insignificant reductions when correlating ferroptosis mediators *GPX4* and *SCL7A11*
522 to overall survival of CM patients, on a whole tumor level. This however does not
523 exclude the presence of inter-tumoral differences.

524 For UM we found that a higher GPX4 expression strongly correlated with shorter
525 survival, whereas melanin biosynthetic activity when assessed as a measure of
526 mRNA levels of *TYRP1* showed an even stronger negative relation with survival of
527 primary UM patients. No transcriptomics data was available to us for CoM melanoma
528 at the time of writing.

529 VDAC1, one of the putative targets of erastin, showed a significant negative
530 correlation relation with patient survival for both CM and UM. This finding is in line
531 with the strong inhibitory effect of erastin and explains erastin's strong inhibitory
532 capacity on circulating cancer cells irrespective of intracellular melanin levels. Our

533 findings are in line with Nawaruk et al 2008, who show that arbutin, a known skin
534 whitening agent and inhibitor of TYR, works by enhancing VDAC1 protein levels in
535 A375 melanoma cells³⁸.

536 Taken together, our findings establish a functional link between intracellular melanin
537 levels in melanoma cells irrespective of their tissue of origin. Cells containing
538 melanin survive longer in the circulation of zebrafish during experimental micro-
539 metastasis formation and hence display an enhanced capacity to establish micro-
540 metastatic colonies. In line with the elegant experiments performed by Pinner et al in
541 2017²², melanin content lowers (albeit in our hands not significantly so) the migration
542 capacity of pigmented cells (endogenously or exogenously pigmented). Here our
543 findings prove that metastatic dissemination and metastatic initiation is effectively
544 enhanced by the presence of intracellular melanin.

545 The biological function of melanin as a ROS quencher is widely accepted^{13,14,19}.
546 Furthermore, there are several studies that correlate melanin concentrations, either
547 through direct measurements of melanin levels or through the detection of blood
548 borne mRNA in CM patients, with a worse prognosis^{21,36}. Paradoxically, there are
549 experimental studies showing a converse role of melanin, inhibiting small scale
550 metastasis in animal models^{21,22}. Taken together, we reason that our findings bridge
551 the gap between the observed phenomenon in patients and the discrepancy in
552 experimental animal models by showing that pigmented melanoma cells have a
553 survival advantage *in vivo* in the blood circulation and are more resistant to
554 ferroptosis. Furthermore, we show, using available patient survival data (TCGA and
555 LUMC cohort for UM), that CM, UM patients have a worse prognosis when melanin
556 biosynthesis is upregulated, notably the expression of terminal melanin biosynthetic
557 enzyme TYRP1. VDAC1 was identified as another gene associated with a negative
558 disease outcome and is a potential target for future therapy.

559
560
561

562

563 **Materials and methods:**

564 **Ethics statements**

565 All animal experiments were approved by Animal Experiments Committee (Dier
566 Experimenten Commissie, D.E.C.) under license AVD1060020172410. All animal
567 were maintained in accordance with local guidelines using standard protocols
568 (www.ZFIN.org)

569 **Stable cell culture**

570 Cell line SK-Mel28 (CVCL_0526) was acquired from ATCC, while other cell lines
571 were kindly provided by Dr. B. Rinner (Mugmel2, CVCL_JQ50)³¹, Prof. Dr. M.J. Jager
572 (CRMM1 (CVCL_M593) and CRMM2(CVCL_M593))⁴³, Dr. A.G Jochemsen
573 (OMM2.3 (CVCL_C306))⁴⁴ and Dr S. Alsafadi (XMM66, CVCL_4D17)⁴⁵. Human CM
574 PDX derived cell lines PDX11917 (alternatively named, M011-5.X1.CL) was kindly
575 provided by Prof. D. Peepen³⁴. All cells used were routinely imaged or observed
576 using an inverted automated EVOS microscope (Thermo Scientific, Waltham, USA)
577 using eGFP and RFP filters to ensure retention of normal phenotypes and to verify
578 fluorescent tracer expression

579 Cells were cultured in a humidified incubator, 5% CO₂ at 37°C, all cells were
580 intermittently tested for the absence of mycoplasma using the universal mycoplasma
581 detection Kit (American type cell culture (ATCC), LGC Standards GmbH, Wesel,
582 Germany) according to the manufacturer's prescriptions. All cells, with the exception
583 of primary UM cells, were cultured in Dulbecco's modified eagles' medium (DMEM),
584 enhancing melanin biosynthesis due to its high tyrosine levels (3,5-fold higher than
585 RPMI1640). DMEM was supplemented with 10% fetal bovine serum and glutamax
586 (GIBCO, Thermo scientific). Cells were propagated through subsequent medium
587 removal, washing with Dulbecco's phosphate buffered saline (DPBS) and incubation
588 with 2mL trypLE (GIBCO). Cells were carefully dispersed after the addition of DMEM
589 up to the original culture volume.

590 **Melanin measurement**

591 Melanin was measured spectrophotometrically, after solubilization in 1M NaOH,
592 containing 10% DMSO (v/v) as described by Friedman et al.¹⁸ In brief, cell pellets
593 were collected of 2 × 10⁶ cells by trypLE incubation, inactivation and subsequent
594 centrifugation. Cell pellets were stored frozen at -20°C prior to measurement. A

595 standard curve of chemical eumelanin (Sigma, Zwijndrecht, the Netherlands) was
596 made ranging from 1 mg/mL to 7,8125 µg/mL (2-fold dilution series) in triplicate.
597 Standards and samples were solubilized by addition of 1M NaOH, 10% DMSO and
598 incubation at 80°C for 30min. Melanin negative samples (breast cancer cells MDA-
599 mb231 cells expressing tdTomato were used as a negative control) were taken along
600 and were used to subtract backgrounds after measurement. Absorbance was
601 measured at 420nm and plotted; concentration was inferred from the standard curve.

602 **Lentiviral over expression and shRNA construct generation**

603 Lentiviral overexpression and shRNA constructs from the Sigma TRC mission library
604 were kindly provided to us by Dr. M. Rabelink from the department of department of
605 molecular cell biology, from the Leiden university medical center (Constructs detailed
606 in supplementary table ST1). Lentiviral particles were generated as described
607 previously by Heitzer et al 2019³³. In brief Hek293T cells were grown to 80-90%
608 confluency and transfected after a medium change with psPAX2, pMD2.G and the
609 transfer plasmid of choice at a respective molar ratio of 1.3 pmol, 0.72 pmol, 1.64
610 pmol using 30uL lipoD293 on a 75cm² culture flask. Cell culture medium was
611 exchanged for 20mL complete DMEM 24 hours post transfection. Viral particles were
612 harvested 72h after the original transfection.

613 **Chemical compounds and drugs**

614 Erastin, RSL3, ferrostatin and mitomycin-C were purchased from Cayman chemical
615 (Ann Arbor, Michigan, USA). PTU (1-Phenyl-2-thiourea) was purchased from Sigma
616 (Sigma, Zwijndrecht, the Netherlands). BODIPY™ 581/591 C11 was purchased from
617 Thermo scientific (Thermo Scientific, Breda, the Netherlands). Liperfluo was
618 purchased from Dojindo (through GERBU Biotechnik, Heidelberg, Germany).

619 **Transmission electron microscopy sample preparation**

620 Cells were cultured on thermanox (Thermo scientific/Nunc) coverslips, fixation was
621 performed with a mixture of 2% glutaraldehyde and 2% formaldehyde in 0,1M Na-
622 cacodylate buffer pH=7.2

623 Post-fixation was performed with 1% OsO₄ +K₄Fe(CN)₆ (15µg/ml) in demineralized
624 water for 1 hour at room temperature, after dehydration through a graded series of
625 ethanol, all specimens were kept for 16 hours in epoxy resin (Agar Scientific,) before
626 embedding. Ultrathin sections were collected on formvar-coated one hole copper

627 grids. Electron microscopy images were obtained with a JEOL 1400Plus
628 Transmission Electron Microscope (Tokyo, Japan) at 80KV.

629

630 **Chemical melanin depletion**

631 Commonly PTU (Sigma) is used, dissolved in water, for the inhibition of melanation
632 of zebrafish larvae. We reasoned that PTU could also be used to block the
633 biosynthesis of melanin *in vitro*. To this end, we treated mugmel2 cells with a
634 concentration range of 1 - 0.0625 mM, dissolved in dimethylsulfoxide (DMSO,
635 Sigma).

636 **Co-culture experiments**

637 For the melanin transfer co-culture experiments we cultured highly melanotic cell line
638 mugmel2³¹ expressing eGFP in the absence and presence of phenylthiourea (PTU)
639 a generic inhibitor of melanin biosynthesis.^{20,47} After two passages the PTU treated
640 cells were considered melanin depleted, where depletion was validated through the
641 spectrophotometric measurement previously described. The cells were treated with
642 100 µg/mL mitomycin-C (Sigma) in culture medium, under normal culture conditions,
643 for three hours. The cells were washed with sterile PBS and DMEM subsequently
644 prior to harvesting. UM cells were harvested as previously described. For both UM-
645 tdTOM lines 1×10^6 cells were seeded in a 75 cm² culture flask mixed together with
646 melanin depleted cells (mel⁻) and with highly pigmented cells (mel⁺), the cells were
647 cultured for 4 days at normal culture conditions. Prior to harvesting the cells were
648 checked for presence of remnant eGFP signal (donor cells) and tdTOM (acceptor
649 cells) and for presumptive melanin transfer. The cells were washed extensively, prior
650 to harvesting as previously described.

651

652 **WST1 proliferation assay**

653 Mugmel2 cells (7.5×10^4) were seeded in 100 µL in flat bottom 96 wells plates
654 (Corning), combining both cells with prior chemical inhibition of melanin biosynthesis
655 and vehicle control (DMSO) treated cells in the same plate, in triplicate. Cells were
656 left to attach overnight and were subjected to ferroptosis induction using erastin and
657 RSL3, compared to DMSO control for 3 days. Proliferation was measured based on

658 WST1 conversion, following the manufacturers description. Values were normalized
659 and plotted with vehicle treated control set to 100% survival.

660 **Zebrafish engraftment**

661 Primary cells were dispersed as described previously by Groenewoud et al⁴⁶. In
662 brief, cells were harvested from adherent cultures through trypLE addition, and
663 subsequently concentrated by centrifugation. Cells were transferred to a 15 mL
664 centrifuge tube and centrifuged for 5 minutes at 200 x g, followed by complete
665 removal of all DPBS. The cell pellet was resuspended in 1 mL DPBS and
666 subsequently counted. The cells were pelleted again at 200 x g whereafter the DPBS
667 was removed after centrifugation. To completely remove all DPBS the cells were
668 centrifuged for another minute at 200 x g, the cell pellet was resuspended to a final
669 concentration of $250 \times 10^6 \cdot \text{mL}^{-1}$ in 2% polyvinylpyrrolidone 40 (PVP₄₀) in DPBS.

670 In brief, cells were injected into zebrafish larvae of either *casper* or (Tg(*fli*:eGFP x
671 *casper*) zebrafish larvae at 48hpf into the duct of Cuvier (doC) also known as the
672 embryonic common cardinal vein using a capillary glass needle.

673 **Drug treatment of engrafted zebrafish**

674 Fish were bred and maintained until 48hpf, whereafter they were injected with
675 approximately 300-400 cells per individual, through the doC allowing the cells to
676 disseminate hematogenously within several hours after injection. One hour post
677 injection possible dead larvae were removed from the injected pool and the injected
678 individuals were divided over clean Petri dishes, with approximately 100-150
679 individuals per dish. Approximately 16hpi the injected larvae were screened using a
680 stereo epi-fluorescent microscope, all the unwanted phenotypes (uninjected,
681 malformed) were discarded. All larvae were randomly assigned to experimental
682 groups in a 24 wells plate, with at least 6 wells containing 6 fish per well per
683 condition. After plating the fish, approximately 16-18hpi the fish were treated with the
684 appropriate level of inhibitor dissolved in DMSO and diluted to the final concentration
685 in zebrafish water.

686 **Zebrafish xenograft data acquisition and analysis**

687 For kinetic measurements of tumorigenicity engrafted individuals were imaged at
688 1,4- and 6-days post implantation using an epifluorescent stereo microscope. At the
689 first time point the microscope settings (exposure time and gain) were set on the

690 control group of each sample population, taking care that signal saturation was not
691 attained to allow for signal increase due to cell growth. Each sample set was imaged
692 using the same settings throughout the duration of the experiment. All images were
693 analyze using a custom imageJ MACRO (Zenodo DOI: 10.5281/zenodo.4290225).
694 Data was normalized to the vehicle control group of each experimental population;
695 two biological replicates were combined with at least 20 individuals per biological
696 replicates.

697 **Zebrafish data acquisition and statistical analysis**

698 All zebrafish larval engraftments were performed in biological duplicate, unless
699 otherwise stated. All groups were >20 individuals per biological repeat, unless
700 otherwise stated. All individuals were randomized and entered into either control or
701 experimental groups, all individuals were randomly selected and imaged using the
702 same exposure setting using a stereo fluorescent microscope. Outliers were
703 removed from all data sets using GraphPad Prism 8.0, (Q5) prior to normalization
704 and combination of all biological replicates. Data was normalized to either control
705 (drug treatment) or to day one (in the case of growth kinetics experiments).
706 Statistical significance was tested with an ANOVA, for normally distributed data sets,
707 otherwise a Kruskal-Wallis test was used. Error bars depict \pm SEM.

708

709 **qPCR of zebrafish derived cells**

710 Mugmel2-dTomato cells were engrafted as previously described. At 1-, 4- and 6-
711 days post engraftment the tails of approximately 300 zebrafish larvae were
712 amputated after euthanasia. The resected tissue was collected and incubated in 0.4
713 mg/ml Liberase TL (Roche) and Primocin (Invivogen) in PBS for 20 minutes under
714 intermittent agitation (approximately every 5 minutes). Enzymatic digestion was
715 inhibited, through the addition of up to 10% FCS, after a single cell suspension was
716 generated. Cells were concentrated by centrifugation (5 minutes at 200 x g). The cell
717 pellet was resuspended in 1ml DPBS and filtered using a 50 μ m cell strainer
718 (Corning). mugmel2^{dTomato+} cells were isolated using a fluorescence activated cell
719 sorter (FACS). Isolated cells were cultured in complete DMEM for 24 hours. Whole
720 RNA was isolated using the Qiagen RNeasy kit following the manufacturer's
721 instructions. cDNA synthesis and subsequent qPCR analysis was performed as

722 previously described. The primer sequences were previously described in
723 Groenewoud et al 2023 (doi: <https://doi.org/10.1101/2021.10.26.465874>)

724

725 **qPCR analysis**

726 Cells were harvested (1×10^6) by centrifugation (200 x g for 5 min at 25°C. Whole
727 RNA was isolated using the Qiagen RNeasy kit (Qiagen) according to the
728 manufacturer's description, treating the isolate on-column with RNase free DNase
729 for 15 minutes at room temperature. Total RNA yield was quantified using Nanodrop
730 2000 (Thermo scientific, Wilmington, USA) and 1 μ g RNA was used to synthesize
731 cDNA using the iSCRIPT cDNA kit (Biorad, Hercules, USA) according the
732 manufacturers description.

733 Detection was performed using the iQ5 QPCR apparatus (Biorad), using IQ green
734 super mix (Biorad), for 35 cycles. Primers were diluted in PCR grade nuclease free
735 water (Gibco) at a concentration of 100 μ M. All primers were tested for, and passed
736 an efficiency test prior to use and were used at a final concentration of 10 pmol.

737 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression level was used
738 as an internal reference for each experimental primer set. Transcript levels were
739 corrected for loading to GAPDH expression and normalized using the Δ CT method.
740 All samples were measured in at least 3 biological triplicates.

741 **In vivo ferroptosis measurement**

742 To assess the in vivo increase of membrane lipid peroxidation we stained
743 mugmel2^{tdTom+} cells prior to engraftment for 1 hour with 1 μ M Liperfluo (Dojindo) while
744 in adherent culture (in low serum medium, 2,5% FCS). Subsequently the cells were
745 washed three times with PBS and harvested with trypsin EDTA (as previously
746 mentioned). Approximately 250-350 cells were engrafted per Casper zebrafish larva
747 through the duct of Cuvier. 1 hour post engraftment the zebrafish were screened for
748 presence of cells in the tail (CHT area), 24 hours post engraftment 5 randomly
749 selected zebrafish larvae were embedded into low melting temperature agarose on a
750 glass bottom confocal dish (Willco dish, Willco wells, Amsterdam, the Netherlands).
751 Laser power and gain was set on the control (mel⁺) sample, measures were taken
752 with Leica sp8 confocal microscope (Ex = 488nm Em = 500-550nm). Liperfluo
753 intensity was measured within tdTom⁺ cells in the CHT, finally all measurements were

754 normalized to mel^+ , at least 5 individuals were measured in three separate
755 experiments.

756

757 **FACS experiments**

758 Mugmel2 cells were cultured in complete DMEM with and without PTU (250 μ M).
759 After at least 3 passages, both melanin pro and deficient cells were seeded in 12
760 wells tissue culture plates. After 24 h, the culture medium was exchanged for
761 complete culture medium containing Erastin (5 μ M), RSL3 (10 μ M), Erastin (5 μ M) +
762 Ferrostatin-1 (2 μ M) or RSL3 (10 μ M) + Ferrostatin (2 μ M) complete culture-medium.
763 After 8 hours of treatment, the medium was removed and cells were washed again
764 with PBS. Bodipy C580/591, from the lipid peroxidation kit (Sigma) was added to the
765 cells at a final concentration of 10 μ M. Subsequently the cells were incubated for 30
766 minutes at 37°C. The media was removed and the cells were washed three times
767 with PBS. The cells were collected by trypsinization and the shift in BODIPY
768 C580/591 fluorescence intensity was measured at excitation/emission of 488/510 nm
769 (FITC filter set). Data was analyzed with FlowJo 10.8.1.

770

771 **Patient data analysis**

772 LUMC cohort: Genetic information on TYR, TYRP1 and DCT and information on the
773 chromosome 3 status and BAP1 status was obtained from a database of 64 UMs in
774 eyes enucleated at the Leiden University Medical Center between 1999 and 2008.

775

776 TCGA cohort: Information for both uveal and cutaneous melanoma patients were
777 gathered from The Cancer Genome Atlas (TCGA), which is a publicly available
778 database available at <https://www.cancer.gov/tcga>. The TCGA database for UM
779 contains 80 patients and the TCGA database for cutaneous melanoma contains 458
780 patients. Data was accessed and analysed through GEPIA2⁴².

781

782 **Uveal melanoma patient samples**

783 UM tissue was obtained from patients from the Leiden University Medical Center
784 (LUMC) in Leiden, The Netherlands. Part of the tumor was snap frozen with 2-methyl
785 butane and used for DNA and RNA isolation, while the remaining tumor tissue was
786 fixed in 4% neutral-buffered formalin and embedded in paraffin.

787 For a gene expression array, material was obtained from 64 patients who underwent
788 an enucleation for UM between 1999 and 2008, of which 51% were male and 49%
789 female. The mean age at the time of enucleation was 61 years. The mean follow-up

790 time (defined as the time period between enucleation and death) was 83 months
791 (range 2 to 229 months). Follow-up was updated in 2020. At the end of follow up, 17
792 (27%) patients were alive, 37 (58%) patients had died because of metastasis, four
793 (6%) had died because of other causes and six (9%) had died but the cause of death
794 was unknown. Gene expression was determined with the Illumina HT12v4 array
795 (Illumina, Inc., San Diego, CA, US). As published by de Lange et al 2015³⁹.

796 Fresh tumor material was obtained directly after enucleation to establish spheroids.

797 We also assessed mRNA levels of tumors included in the TCGA database (n=80) as
798 published by Robertson et al 2017⁴⁰⁻⁴².

799

800 **Institutional Review Board Statement**

801 The analysis was approved by the METC of the LUMC (B14.003/SH/sh Approval
802 Biobank OOG-2 “Oogtumoren (of een verdenking hierop)”, protocol Uveamelanooom-
803 lab B20.026, approval June 2020). Fresh material was used for spheroids under
804 METC protocol UM CURE 2020: Prospective collection: new treatment options for
805 metastatic uveal melanoma (NL57166.058.16). The research adhered to Dutch law
806 and the tenets of the Declaration of Helsinki (World Medical Association of
807 Declaration 2013; ethical principles for medical research involving human subjects).
808 Each patient had signed an informed consent.

809 **Patient data and statistical analysis**

810 The statistical analyses were carried out with SPSS version 25 (IBM corp).
811 Correlation between melanin-related genes and chromosome 3 status and BAP1
812 status were calculated with Mann-Whitney U test. The survival analysis was carried
813 out using Kaplan Meier survival curves and splitting the gene expression data in the
814 middle and comparing the 32 patients with lower TYR, lower TYRP1 and lower DCT
815 with the 32 patients with higher TYR, higher TYRP1 and higher DCT respectively. In
816 the LUMC cohort, survival was calculated with melanoma-related mortality as the
817 endpoint.

818 The TCGA cohorts for both UM and cutaneous melanoma were analyzed with the
819 interactive web server GEPIA2, splitting the population along the median for each
820 gene. In these cohorts, survival was calculated with overall survival as the endpoint.

821 **Acknowledgements:**

822 We kindly thank Emilie Vinolo for the managerial assistance provided during this
823 UMcure2020 project.

824 This work has received funding from the European Union's Horizon 2020 research
825 and innovation program under grant agreement No 667787 (UM Cure 2020 project,
826 www.umcure2020.org).

827 We kindly thank Prof. R. Hoeben and M. Rabelink (Department of Cell Biology,
828 LUMC) for providing shRNA (lentiviral) vectors (TRC library, Sigma-Aldrich)

829 We kindly thank Dr. Anne-Roos Schrader for her help in scoring the uveal and
830 cutaneous melanoma stainings shown in figure 2

831 All graphics (excluding scientific data) were generated using Biorender.com
832 The results shown here are in whole or part based upon data generated by the
833 TCGA Research Network: <https://www.cancer.gov/tcga> accessed through gepia(2)

834 AG conceived/designed, performed, analyzed all experiments (unless otherwise
835 stated) and interpreted the data, wrote the manuscript.

836 MCG performed the UM patient pigment data analysis, read and provided feedback
837 on the manuscript.

838 JY performed *in vitro* proliferation assays, read the manuscript.

839 GZ performed *ex vivo* qPCR measurements and ferroptosis FACS experiments and
840 read the manuscript

841 GEML performed all the TEM sample prep and data acquisition, read the manuscript.

842 MJJ supplied materials and reviewed the manuscript.

843 FBE provided funding and reviewed the manuscript.

844 BES-J provided funding, supervised the project and reviewed the manuscript.

845

846

847 **References**

- 848 1. Mehlén, P. & Puisieux, A. Metastasis: A question of life or death. *Nature Reviews Cancer* vol. 6 449–458 (2006).
- 849 2. Bayraktar, S. & Glück, S. Molecularly targeted therapies for metastatic triple-negative breast cancer. *Breast Cancer Res. Treat.* **138**, 21–35 (2013).
- 850 3. Balch, C. M. *et al.* Final version of 2009 AJCC melanoma staging and classification. *J. Clin. Oncol.* **27**, 6199–6206 (2009).
- 851 4. Chiang, A. C. & Massagué, J. Molecular Basis of Metastasis. *N. Engl. J. Med.* **359**, 2814–2823 (2008).
- 852 5. Weiss, L. Metastatic Inefficiency. *Adv. Cancer Res.* **54**, 159–211 (1990).
- 853 6. Luzzi, K. J. *et al.* Multistep Nature of Metastatic Inefficiency □: Dormancy of Solitary Cells after Successful Extravasation and Limited Survival of Early Micrometastases. *Am. J. Pathol.* **153**, 865 (1998).
- 854 7. Piskounova, E. *et al.* Oxidative stress inhibits distant metastasis by human melanoma cells. *Nature* **527**, 186–191 (2015).
- 855 8. Chandra, J., Samali, A. & Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. *Free Radic. Biol. Med.* **29**, 323–333 (2000).
- 856 9. NC, J. & D, G. Role of melanin in melanocyte dysregulation of reactive oxygen species. *Biomed Res. Int.* **2013**, (2013).
- 857 10. Yang, H. *et al.* The role of cellular reactive oxygen species in cancer chemotherapy. *J. Exp. Clin. Cancer Res.* **2018** *37* 1–10 (2018).
- 858 11. Kumari, S., Badana, A. K., G, M. M., G, S. & Malla, R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. *Biomark. Insights* **13**, (2018).
- 859 12. Liou, G.-Y. & Storz, P. Reactive oxygen species in cancer. *Free Radic. Res.* **44**, 479–496 (2010).
- 860 13. Brenner, M. & Hearing, V. J. The Protective Role of Melanin Against UV Damage in Human Skin. *Photochem. Photobiol.* **84**, 539 (2008).
- 861 14. GJ, F. *et al.* Mechanisms of photoaging and chronological skin aging. *Arch. Dermatol.* **138**, 1462–1470 (2002).
- 862 15. Noonan, F. P. *et al.* Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. *Nat. Commun.* **2012** *31* 3, 1–10 (2012).
- 863 16. Cichorek, M., Wachulska, M., Stasiewicz, A. & Tymińska, A. Skin melanocytes: biology and development. *Adv. Dermatology Allergol. Dermatologii I Alergol.* **30**, 30 (2013).

880 17. Li, M., Knapp, S. K. & Iden, S. Mechanisms of melanocyte polarity and differentiation: What
881 can we learn from other neuroectoderm-derived lineages? *Curr. Opin. Cell Biol.* **67**, 99–108
882 (2020).

883 18. Friedmann, P. S. & Gilchrest, B. A. Ultraviolet radiation directly induces pigment production by
884 cultured human melanocytes. *J. Cell. Physiol.* **133**, 88–94 (1987).

885 19. Denat, L., Kadekaro, A. L., Marrot, L., Leachman, S. A. & Abdel-Malek, Z. A. Melanocytes as
886 instigators and victims of oxidative stress. *Journal of Investigative Dermatology* vol. 134 1512–
887 1518 (2014).

888 20. Whittaker, J. R. An analysis of melanogenesis in differentiating pigment cells of ascidian
889 embryos. *Dev. Biol.* **14**, 1–39 (1966).

890 21. Sarna, M., Krzykawska-Serda, M., Jakubowska, M., Zadlo, A. & Urbanska, K. Melanin
891 presence inhibits melanoma cell spread in mice in a unique mechanical fashion. *Sci. Rep.* **9**,
892 1–9 (2019).

893 22. Pinner, S. *et al.* Intravital imaging reveals transient changes in pigment production and Brn2
894 expression during metastatic melanoma dissemination. *Cancer Res.* **69**, 7969–7977 (2009).

895 23. Yang, W. S. *et al.* Regulation of ferroptotic cancer cell death by GPX4. *Cell* **156**, 317–331
896 (2014).

897 24. Imai, H., Matsuoka, M., Kumagai, T., Sakamoto, T. & Koumura, T. Lipid peroxidation-
898 dependent cell death regulated by GPx4 and ferroptosis. in *Current Topics in Microbiology and*
899 *Immunology* vol. 403 143–170 (Springer Verlag, 2017).

900 25. Yang, W. S. *et al.* Peroxidation of polyunsaturated fatty acids by lipoxygenases drives
901 ferroptosis. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E4966–E4975 (2016).

902 26. Yagoda, N. *et al.* RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent
903 anion channels. *Nature* **447**, 864–868 (2007).

904 27. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective
905 antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.
906 *Cancer Cell* **3**, 285–296 (2003).

907 28. Riegman, M. *et al.* Ferroptosis occurs through an osmotic mechanism and propagates
908 independently of cell rupture. *Nat. Cell Biol.* **2020** **22**, 1042–1048 (2020).

909 29. Yan, B. *et al.* Membrane Damage during Ferroptosis Is Caused by Oxidation of Phospholipids
910 Catalyzed by the Oxidoreductases POR and CYB5R1. *Mol. Cell* **81**, 355–369.e10 (2021).

911 30. Xie, Y. *et al.* Ferroptosis: Process and function. *Cell Death and Differentiation* vol. 23 369–379
912 (2016).

913 31. Rinner, B. *et al.* MUG-Mel2, a novel highly pigmented and well characterized NRAS mutated
914 human melanoma cell line. *Sci. Rep.* **7**, (2017).

915 32. Hosoi, J., Abe, E., Suda, T. & Kuroki2, T. Regulation of Melanin Synthesis of B16 Mouse
916 Melanoma Cells by 1a,25- Dihydroxyvitamin D3 and Retinoic Acid1. *CANCER Res.* **45**, 1474–
917 1478 (1985).

918 33. Heitzer, E. *et al.* Human melanoma brain metastases cell line MUG-Mel1, isolated clones and
919 their detailed characterization. *Sci. Rep.* **9**, 4096 (2019).

920 34. Kemper, K. *et al.* BRAFV600E Kinase Domain Duplication Identified in Therapy-Refractory
921 Melanoma Patient-Derived Xenografts. *Cell Rep.* **16**, 263–277 (2016).

922 35. JM, U. *et al.* Lymph protects metastasizing melanoma cells from ferroptosis. *Nature* **585**, 113–
923 118 (2020).

924 36. Brozyna, A. A., Jóźwicki, W., Roszkowski, K., Filipiak, J. & Slominski, A. T. Melanin content in
925 melanoma metastases affects the outcome of radiotherapy. *Oncotarget* **7**, 17844–17853
926 (2016).

927 37. Yang, W. S. & Stockwell, B. R. Synthetic Lethal Screening Identifies Compounds Activating
928 Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-RAS-Harboring Cancer Cells. *Chem.*
929 *Biol.* **15**, 234–245 (2008).

930 38. J, N. *et al.* Proteomics analysis of A375 human malignant melanoma cells in response to
931 arbutin treatment. *Biochim. Biophys. Acta* **1794**, 159–167 (2009).

932 39. Lange, M. J. de *et al.* Heterogeneity revealed by integrated genomic analysis uncovers a
933 molecular switch in malignant uveal melanoma. *Oncotarget* **6**, 37824–37835 (2015).

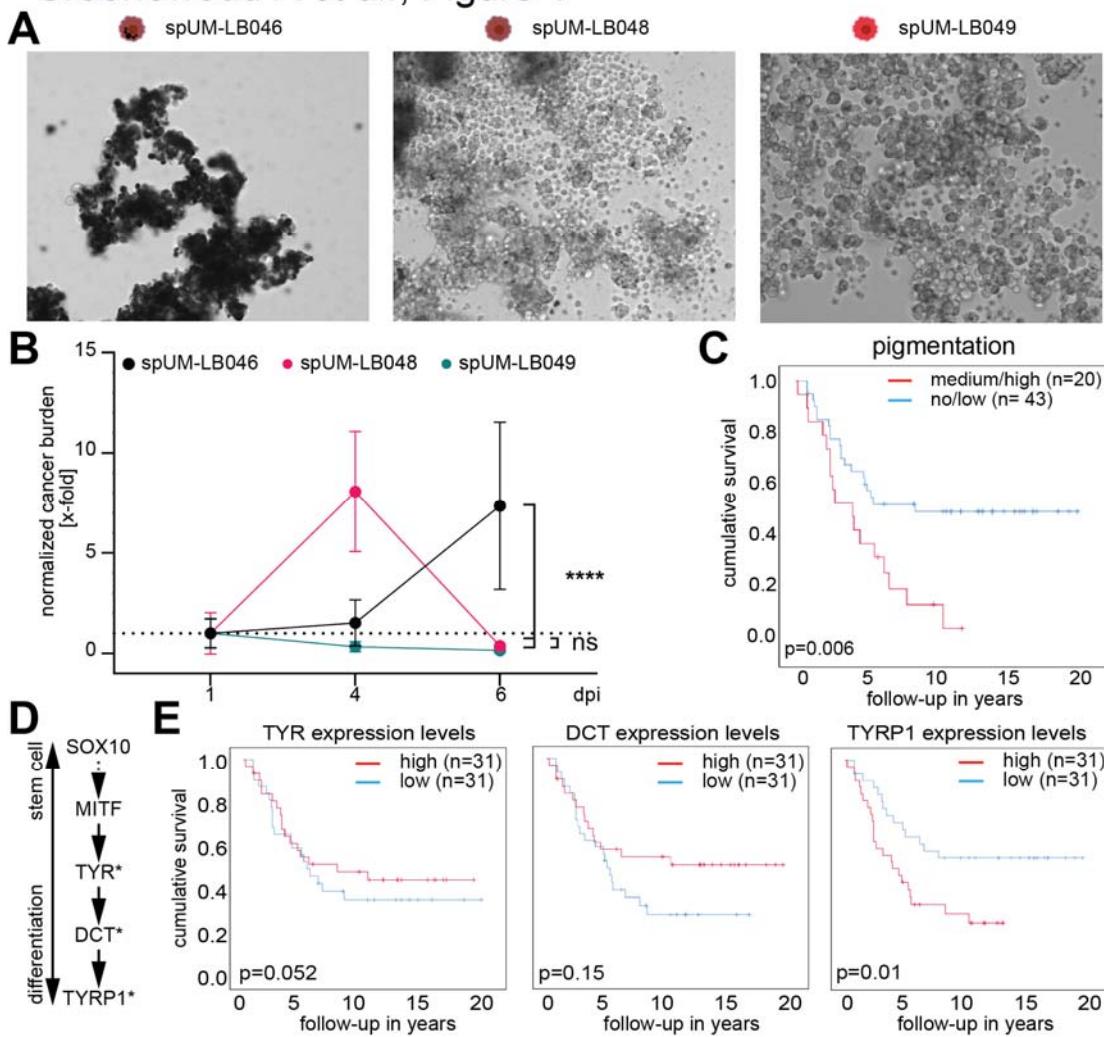
934 40. Robertson, A. G. *et al.* Integrative Analysis Identifies Four Molecular and Clinical Subsets in
935 Uveal Melanoma. *Cancer Cell* **32**, 204-220.e15 (2017).

936 41. Weinstein, J. N. *et al.* The cancer genome atlas pan-cancer analysis project. *Nature Genetics*
937 vol. 45 1113–1120 (2013).

938 42. Tang, Z. *et al.* GEPIA: A web server for cancer and normal gene expression profiling and
939 interactive analyses. *Nucleic Acids Res.* **45**, W98–W102 (2017).

940 43. G, N., H, W., D, von der H. & G, A. Establishment of two cell lines derived from conjunctival
941 melanomas. *Exp. Eye Res.* **81**, 361–362 (2005).

942 44. Chen, P. W. *et al.* Expression of MAGE genes in ocular melanoma during progression from
943 primary to metastatic disease. *Clin. Exp. Metastasis* **15**, 509–518 (1997).


944 45. Amirouchene-Angelozzi, N. *et al.* Establishment of novel cell lines recapitulating the genetic
945 landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. *Mol.*
946 *Oncol.* **8**, 1508–1520 (2014).

947 46. Ortho- and Ectopic Zebrafish Xeno-Engraftment of Ocular Melanoma to Recapitulate Primary
948 Tumor and Experimental Metastasis Development | Protocol.
949 [https://www.jove.com/de/t/62356/ortho-ectopic-zebrafish-xeno-engraftment-ocular-melanoma-](https://www.jove.com/de/t/62356/ortho-ectopic-zebrafish-xeno-engraftment-ocular-melanoma-to)
950 to.

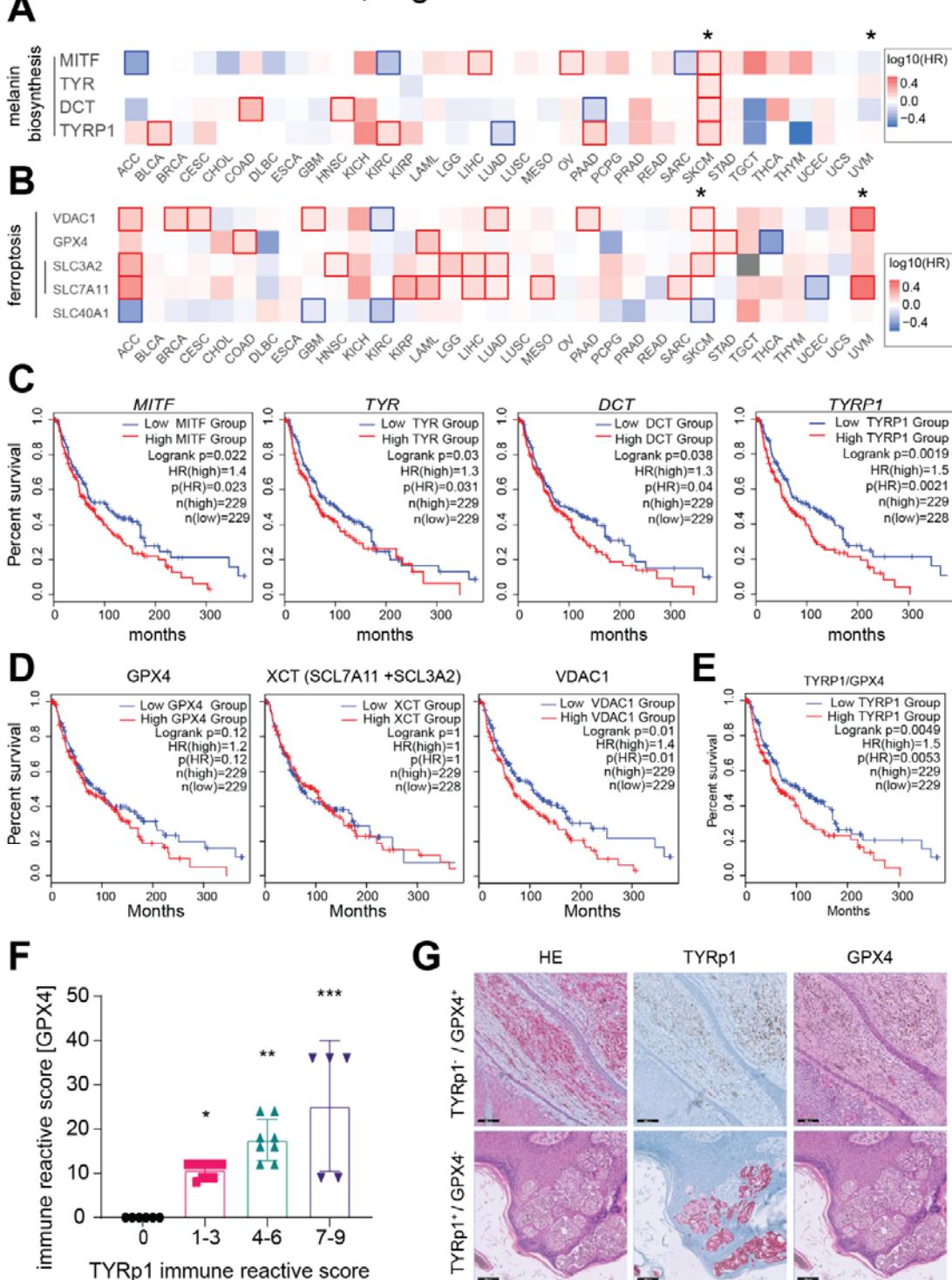
951 47. Karlsson, J., Von Hofsten, J. & Olsson, P. E. Generating transparent zebrafish: A refined
952 method to improve detection of gene expression during embryonic development. *Mar.*
953 *Biotechnol.* **3**, 522–527 (2001).

954

Groenewoud A et al., Figure 1

956 **Figure 1 Melanin levels within primary UM cells correlate with survival in vivo. A)**

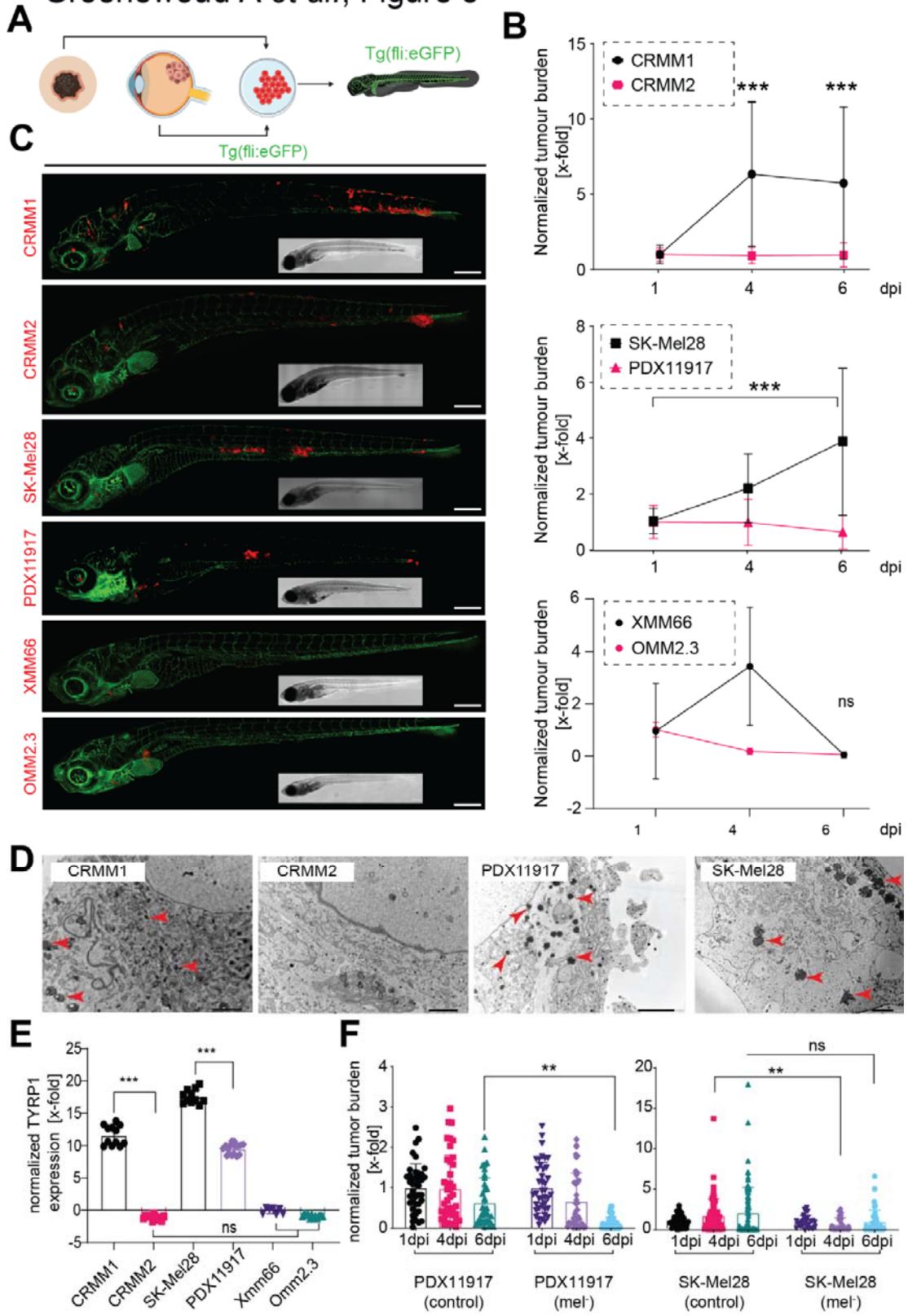
957 Three primary UM patient samples ranging from strongly pigmented (spUM-LB046),
958 intermediately pigmented (spUM-LB048) and non-pigmented (spUM-LB049). Melanin levels
959 were derived from phase contrast images of spheroid cultures established from patient
960 material, prior to engraftment. **B)** Three UM spheroid cultures were stained red fluorescent
961 (CMDil) before intravenous injection into zebrafish larvae and monitored for cancer cell
962 engraftment on days 1, 4, and 6- post injection (dpi). **C)** UM tumor pigmentation at the time
963 of enucleation (histologically determined) and its correlation with UM specific survival.
964 Survival of patients with not and lightly-pigmented tumors (n= 43) was compared to survival
965 in patients (n=20) medium- and highly-pigmented tumors based on pathological assessment.
966 **D)** general differentiation markers used to assess melanocyte differentiation from stem cell
967 to differentiated melanocyte, markers found to significantly affect UM related mortality were
968 marked with an asterisk. **E)** Assessment of the effect of individual melanin biosynthetic


969 genes on UM survival. Expression of the most upstream located tyrosinase (TYR) and the
970 downstream biosynthetic proteins dopachrome tautomerase (DCT, or alternatively TYRP2)
971 and tyrosinase-related protein 1 (TYRP1), analyzed in a group of 64 patients; groups were
972 determined according to the median mRNA expression only TYRP1 expression levels show
973 a negative correlation with survival.

974

975

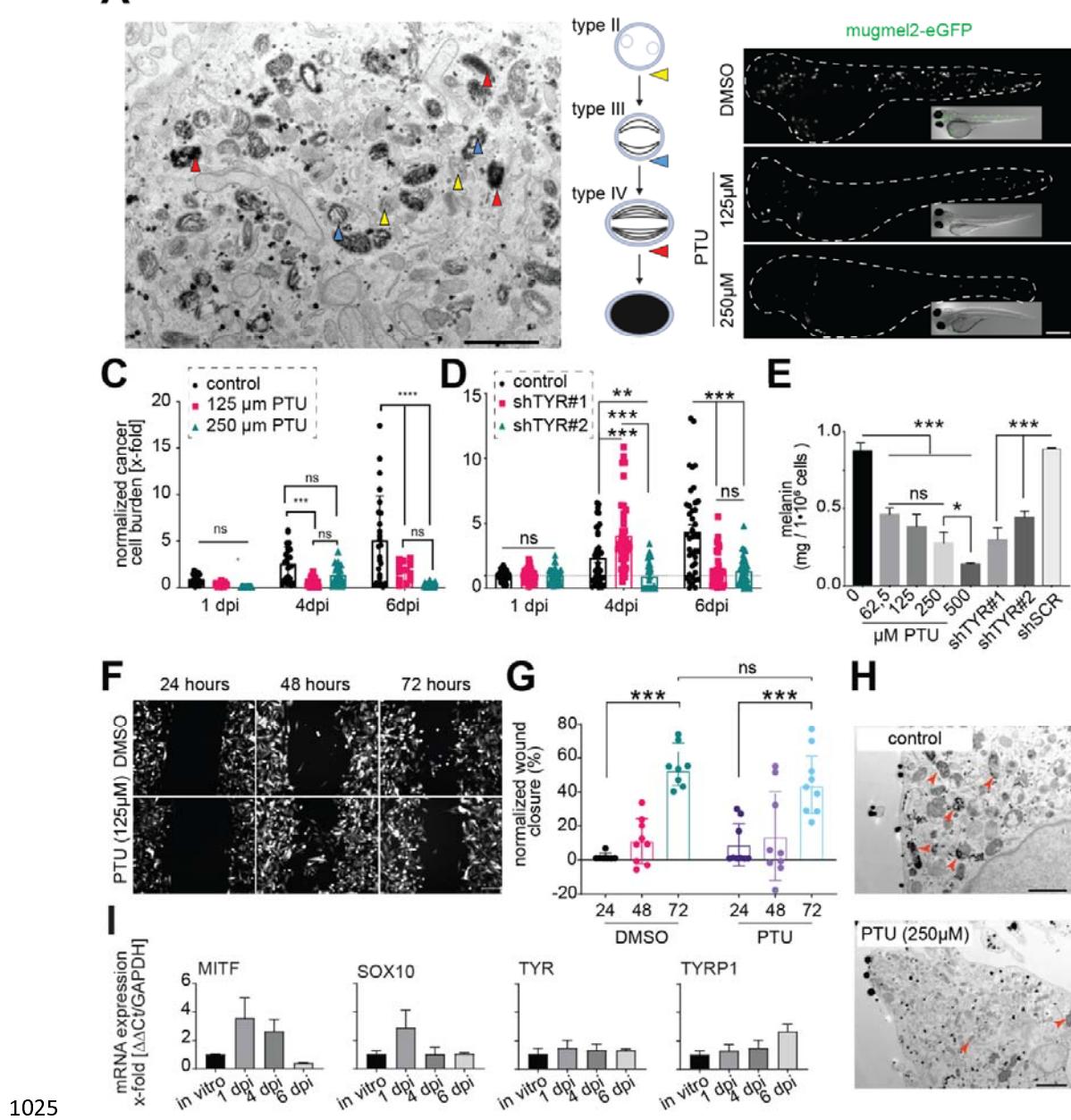
976


A Groenewoud A et al., Figure 2

978 **Figure 2 Analysis of melanin biosynthesis and ferroptosis levels in CM melanoma**
979 **patient. A)** Survival map of all available TCGA cancer data sets, comparing the effect of
980 melanin biosynthesis genes on cancer associated survival (CM = SKCM and UM= UVM) are
981 marked with an asterisk. TCGA SKCM cohort size = 458, all values are split along the

982 median for each gene. Significant effects on survival are denoted with a red bounding box. In
983 CM melanoma (n= 458), a significant negative correlation with disease free survival for all
984 known melanin biosynthetic genes can be noted (MITF, TYR, DCT, TYRP1). **B)**
985 Comparative analysis of the TCGA, plotting the correlation of disease-free survival for the
986 known anti-ferroptotic mechanisms, system Xc- (SCL7A11 and SCL3A2), GPX4 and
987 mitochondrial VDAC1 show that there is a significant effect of SCL3A2 on survival in CM
988 (p=0.00022) and SCL7A11 in UM (p=0.00014). Data sets are split on the mean and
989 significant effects on survival are denoted with a red bounding box. **C)** Comparative analysis
990 of the effect of melanin biosynthetic gene expression on disease free survival in CM
991 melanoma patients. All known major melanin biosynthetic genes negatively correlate with
992 overall survival (MITF, p=0.022; TYR, p=0.03; DCT, p=0.038; TYRP1 p=0.0019). **D)** Analysis
993 of ferroptosis detoxifying enzymes GPX4 and XCT (SLC7A11 + SLC3A2) and VDAC1
994 shows that VDAC1 correlates negatively with overall survival. **E)** TYRP1 levels strongly
995 correlate with worse melanoma specific survival when normalized for GPX4 levels. TCGA
996 data, TYRP1 normalized on GPX4 expression, population split along the median. **E)**
997 Analysis of IHC immune reactive scores of TYRP1 on 25 patient tumors stratified on TYRP1
998 staining levels, enhanced TYRP1 levels correlate significantly with an enhancement in GPX4
999 staining. Staining intensity * absent = 0, low =1-3, intermediate = 4-6 and high = 7-9. **G)** IHC
1000 analysis of human CM patient material, H&E, TYRP1 and GPX4, showing representative
1001 TYRP1+/GPX4- and TYRP1-/GPX4+ CM tumors, scale bars denote 200 μ m.

Groenewoud A et al., Figure 3


1002

1003

1004 **Figure 3 Engraftment of a (pan)melanoma panel in *Tg(fli:eGFP)* x Casper zebrafish**
1005 **shows efficient engraftment of CM and CoM melanoma, whereas UM is readily cleared**
1006 **from zebrafish. A)** Schematic representation of the experimental approach: CoM, CM and
1007 UM cell lines were injected in to *Tg(fli:eGFP)* blood vessel reporter zebrafish through the
1008 duct of Cuvier at 48 hours post fertilization. Pairs of pigmented and non- pigmented cell lines
1009 were chosen for CoM and CM and two non-pigmented cell lines for UM. **B)** Growth kinetics
1010 of the (pan)melanoma cell line panel, after hematogenous engraftment into zebrafish. For all
1011 measurement, the integrated fluorescence density was plotted for 1, 4 and 6- dpi (all
1012 measurements were normalized to day 1 of the individual cell line). Measurements shown
1013 are the mean, error bars represent \pm SEM. **C)** Confocal micrographs of representative
1014 phenotypes of the engrafted cell lines at 6 dpi, scale bar is 250 μ m **D)** Transmission electron
1015 micrographs of CoM and CM melanoma cell line pairs; (type IV melanosomes, indicated with
1016 \blacktriangle). Scale bars are 2 μ m, all images are representative images. **E)** Quantitative PCR
1017 measurements of tyrosine related protein 1 (TYRP1), the enzyme responsible for the
1018 terminal biosynthetic conversion of tyrosine into melanin. **F)** Melanin depletion through PTU
1019 treatment of pigmented and non-pigmented cells. CM melanoma PDX-derived cell line
1020 PDX11917 and non-pigmented melanoma cell line SK-Mel28 were depleted for 14 days prior
1021 to engraftment through injection into zebrafish. The mean and the standard error of the
1022 mean (SEM) were plotted, n=20*2. $p<0.05=^*$ $p<0.01=^{**}$ $p<0.001=^{***}$.

1024

Groenewoud A et al., Figure 4

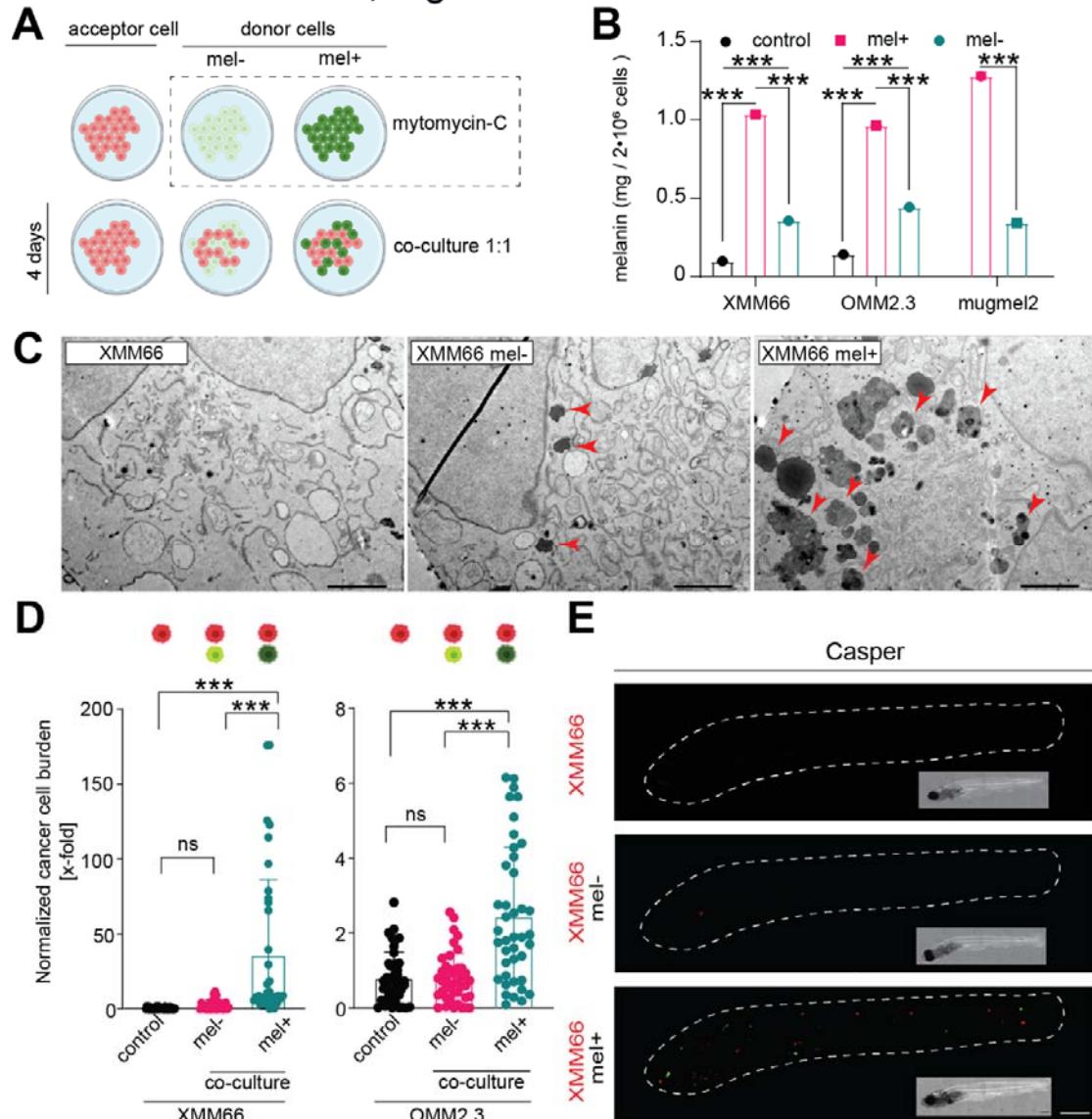


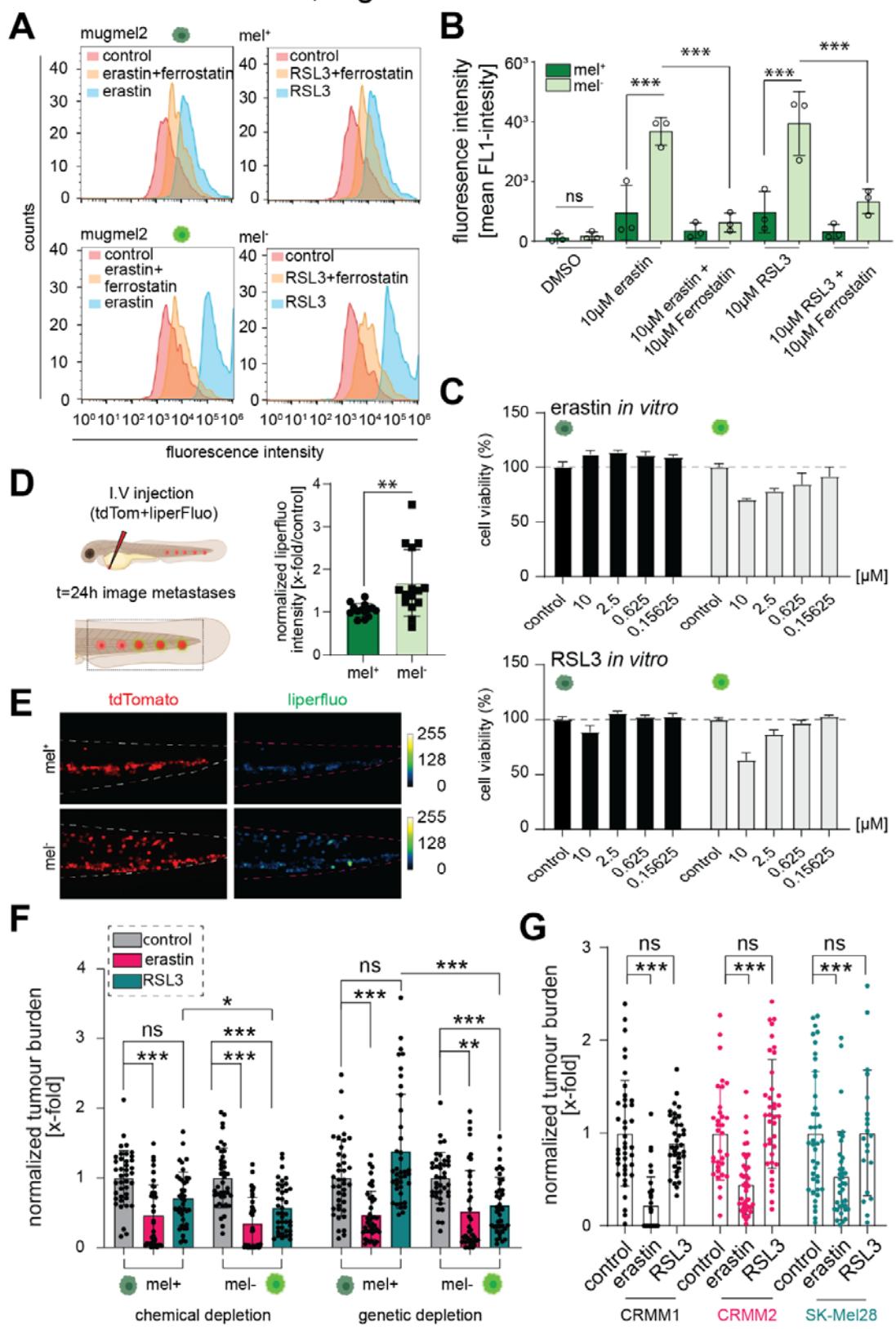
Figure 4 Melanin depletion of pigmented melanoma cell lines decreases their tumorigenic potential. **A)** Transmission electron microscope (TEM) assessment of melanosome maturation in mugmel2 cells: type II melanosomes are indicated by ▲, type III melanosomes by ▲ and type IV by ▲. Scale bars are 2 μm, and all images are representative images. **B)** Engraftment of melanotic melanoma cell line mugmel2, labelled lentivirally with eGFP, in non-pigmented Casper zebrafish, representative confocal micrographs were shown. Mugmel2 cells were treated with 1-phenyl 2-thiourea (PTU) in vitro prior to engraftment and its effect on cell intrinsic metastatic potential was compared to

1034 DMSO control **C)** PTU inhibition of mugmel2 melanation and its effect on the metastatic
1035 capacity of mugmel2 in vivo. Cells were depleted in vitro through PTU addition 2 weeks prior
1036 to hematogenous engraftment into Casper zebrafish (n=2 * 20). Measurements were
1037 normalized to 1 day post injection (dpi), engraftment was monitored on 1, 4 and 6- dpi. **D)**
1038 Quantification of cancer cell engraftment of zebrafish implanted with mugmel2-eGFP,
1039 containing shSCR, shTYR1#1 or shTYR1#2. Measurements were normalized to day 1 of
1040 each individual condition. **E)** Dose-dependent melanin depletion upon in vitro application of
1041 PTU to mugmel2 cells compared to solvent control and genetic depletion of TYR (lentiviral
1042 shRNA mediated knock down) compared to scrambled short hairpin control, as measured by
1043 spectrophotometer. **F)** Cellular migration (wound healing) of mugmel2 cells treated with
1044 solvent control (DMSO) compared to PTU-mediated chemical depletion of melanin, shown
1045 as representative epifluorescent micrographs and in panel **G)** as quantification of wound
1046 area over time, normalized to wound area at t=0. **H)** TEM micrographs noting the chemical
1047 depletion of melanin and the subsequent reduction of visible melanosomes when compared
1048 to solvent control. **I)** ex vivo qPCR quantification of melanocyte differentiation markers MITF,
1049 SOX10, TYR and TYRP1, on engrafted mugmel2 cells following FACS isolation from
1050 metastatic colonies. Respective quantifications are normalized to transcription levels *in vitro*
1051 and were normalized internally to GAPDH levels (were normalized internally to GAPDH
1052 levels and were normalized internally to GAPDH levels ($\Delta\Delta Ct$). All measurements were
1053 generated from 3 biological replicates (pooled from 100-300 larvae prior to FACS isolation).
1054 The mean and the standard error of the mean were plotted (SEM), $n \geq 20^*2$. Statistical
1055 significance was indicated as $p < 0.05 = ^*$ $p < 0.01 = ^{**}$ $p < 0.001 = ^{***}$.

1056

Groenewoud A et al., Figure 5

1057


1058

1059 **Figure 5 In vitro melanin transfer from donor cells into recipient UM cells rescues**
1060 **their metastatic potential in vivo. A)** Schematic representation of melanin transfer co-
1061 **culture model.** Recipient (red, UM cells) and donor cells (green, mugmel2, mugmel2 mel+,
1062 pre-treated with DMSO and mugmel2 mel- melanin depleted through pre-treatment with
1063 PTU) were cultured separately. Prior to co-culture, donor cells were pre-treated with
1064 mitomycin-C (100 μ g/mL) for 3 hours. Cells were mixed in a 1:1 ratio of acceptor cell
1065 combined with mel+ or mel- mugmel2 cells. After 4 days of co-culture, cells are harvested
1066 and either engrafted into zebrafish or used for in vitro analyses. **B)** Spectrophotometric
1067 analysis of uptaken melanin in UM cells, calculating mg / 2* 10⁶ cells. 3 biological repeats.

1068 **C)** Representative transmission electron micrograph indicates the internalized melanosomes
1069 in UM cells donated from mugmel2 mel+ cells (type IV melanosomes, indicated with ▲).
1070 Scale bar represents 2 μ m. **D)** End point measurement (6 dpi) of zebrafish (n=2 x 20)
1071 engrafted with naïve cells (control), UM cells co-cultured with melanin-depleted donor cells
1072 (mel-) and co-cultured with pigmented donor cells (mel+). **E)** Representative fluorescent
1073 micrographs of co-cultured UM cell line XMM66, show the naïve XMM66 cells (red), XMM66
1074 cells co-cultured with green melanin-depleted (mel-) and melanin-proficient (mel+) mugmel2
1075 donor cells. Some mugmel2 cells (green) remain in circulation, do not form metastatic
1076 colonies but increase survival of UM cells as indicated in D.

1077

Groenewoud A et al., Figure 6

1078

1079

1080 **Figure 6 ROS and ferroptosis is quenched by intracellular melanin, erastin induces**
1081 **ferroptosis at sufficient levels to overcome cellular ROS defenses. A)** Membrane lipid
1082 peroxidation measurements using BODIPY 581/591 of mugmel2 cells with (mel-) and
1083 without melanin (mel+) through chemical inhibition (PTU pre-treatment), as described. Both
1084 cells with and without melanin were treated with Erastin (5 μ M), RSL3 (10 μ M), Erastin (5
1085 μ M) + Ferrostatin-1 (2 μ M) or RSL3 (10 μ M) + Ferrostatin (2 μ M) 8 hours prior to
1086 flowcytometric measurement. **B)** Quantification of fluorescent (BODIPY 581/591) signal. **C)**
1087 In vitro proliferation (WST1) assay to assess the growth inhibitory effects of ferroptosis
1088 inducers erastin and RSL3 on mel+ and mel- mugmel2 cells. **D)** *In vivo* measurement of lipid
1089 peroxidation of circulating mugmel2 cells after engraftment (24h), cells (tdTom $^+$) were
1090 stained lipid peroxidation reactive dye (Liperfluo, 10 μ M) for one hour prior to engraftment. **E)**
1091 quantification of Liperfluo intensity of tdTom $^+$ mugmel2 cells in circulation. Liperfluo signal
1092 intensity was measured, using a confocal microscope, in 3 experimental replicates, focusing
1093 on cells in the caudal hematopoietic tissue. Signal intensity was rescaled and show as an
1094 intensity plot (representative individual, rescaled to 0-255 bits). **F)** *In vivo* ferroptosis
1095 induction as described in D in larvae engrafted with naïve mel+ and depleted mel- mugmel2
1096 cells after chemical (PTU) and genetical (shTYR#2) melanin depletion prior-engraftment.
1097 Melanin depletion by chemical and genetics means sensitized melanoma cell lines to RSL3
1098 whereas erastin mainly seems to circumvent or overpower ferroptosis resistance mediated
1099 by melanin. **G)** Ferroptosis induction in ZF xenograft models *in vivo* obtained by engraftment
1100 of a melanoma panel with CoM (CRMM1 and CRMM2) and CM cell lines (SK-Mel28 and
1101 mugmel2). Ferroptosis inducers erastin and RSL3 were added to the previously determined
1102 maximum tolerated dose (MTD) (results not shown, manuscript in writing, erastin 5 μ M and
1103 RSL3, 10 μ M) to the zebrafish water of engrafted larvae at 3 dpi. The water containing the
1104 compounds was exchanged every other day. At 6 dpi, the cancer cell burden was measured
1105 and subsequently normalized to the vehicle control group (of each individual condition).