

1 MANGEM: a web app for Multimodal Analysis of 2 Neuronal Gene expression, Electrophysiology and 3 Morphology

4 Robert Hermod Olson¹, Noah Cohen Kalafut^{1,2}, Daifeng Wang^{1,2,3,*}

5 ¹Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705 USA

6 ²Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706 USA

7 ³Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison,

8 Madison, WI, 53706 USA

9 *Correspondence: daifeng.wang@wisc.edu

10 Abstract

11 Single-cell techniques have enabled the acquisition of multi-modal data, particularly for neurons,
12 to characterize cellular functions. Patch-seq, for example, combines patch-clamp recording, cell
13 imaging, and single-cell RNA-seq to obtain electrophysiology, morphology, and gene expression
14 data from a single neuron. While these multi-modal data offer potential insights into neuronal
15 functions, they can be heterogeneous and noisy. To address this, machine-learning methods
16 have been used to align cells from different modalities onto a low-dimensional latent space,
17 revealing multi-modal cell clusters. However, the use of those methods can be challenging for
18 biologists and neuroscientists without computational expertise and also requires suitable
19 computing infrastructure for computationally expensive methods. To address these issues, we
20 developed a cloud-based web application, MANGEM (Multimodal Analysis of Neuronal Gene
21 expression, Electrophysiology, and Morphology) at <https://ctc.waisman.wisc.edu/mangem>.

22 MANGEM provides a step-by-step accessible and user-friendly interface to machine-learning
23 alignment methods of neuronal multi-modal data while enabling real-time visualization of
24 characteristics of raw and aligned cells. It can be run asynchronously for large-scale data
25 alignment, provides users with various downstream analyses of aligned cells and visualizes the
26 analytic results such as identifying multi-modal cell clusters of cells and detecting correlated
27 genes with electrophysiological and morphological features. We demonstrated the usage of
28 MANGEM by aligning Patch-seq multimodal data of neuronal cells in the mouse visual cortex.

29 Author Summary

30 The human brain is made up of billions of tiny cells called neurons, each with their own
31 important job. Scientists are now able to study individual neurons in more detail than ever
32 before using new advanced techniques. They can look at different data of individual neurons
33 like how genes are being used (gene expression), how the neuron responds to electrical signals
34 (electrophysiology), and what it looks like (morphology). By combining all of this information,
35 they can start to group similar neurons together and figure out what they do. However, due to
36 the data complexity, this process can be very complicated and hard for researchers without
37 sufficient computational skills. To address this, we developed a web app, MANGEM (Multimodal

38 Analysis of Neuronal Gene Expression, Electrophysiology, and Morphology). It lets scientists
39 upload their data and select emerging machine-learning approaches to find groups of similar
40 neurons. It also makes interactive visualizations to help them explore the characteristics of
41 neuron groups and understand what they do.

42 Introduction

43 The human brain has approximately 86 billion neurons encompassing a vast range of different
44 functions. Understanding the roles of individual neurons is a daunting challenge that is
45 beginning to become possible with new techniques and technologies. The development of
46 single-cell technologies such as Patch-seq has resulted in the ability to characterize neurons
47 with new specificity and detail. Patch-seq enables a researcher to simultaneously obtain
48 measures of gene expression, electrophysiology, and morphology of individual neurons. Gene
49 expression is a measure of the extent to which different genes in a cell's DNA are transcribed to
50 RNA and then translated to produce proteins. Electrophysiology describes the electrical
51 behavior of a cell. A microscopic pipette containing an electrolyte contacts the cell membrane to
52 establish an electrical connection. Then the cell's electrical response to an applied voltage or
53 current is measured. Morphology refers to the physical structure of a neuron, including the size
54 and shape of the cell's axon and dendrites. By combining microscopy, RNA sequencing, and
55 electrophysiological recording for individual neurons, multi-modal datasets can be developed
56 with the potential to reveal relationships between neuronal function, structure, and gene
57 expression (1). Multi-modal single-cell datasets are increasingly available to researchers, in part
58 due to efforts by the Brain Research through Advancing Innovative Neurotechnologies (BRAIN)
59 Initiative to support the development and storage of such datasets in freely accessible
60 repositories such as the Neuroscience Multi-Omic Archive (2) for genomic data and Distributed
61 Archives for Neurophysiology Data Integration (3,4) for neurophysiology data, including
62 electrophysiology.

63
64 While multi-modal single-cell data offers great potential for improving understanding of brain
65 organization and function, new methods are required for integration and analysis of the data (5).
66 Because cells with similar characteristics in one modality are not necessarily similar when
67 measured by another, identification of cell clusters must incorporate disparate data types
68 simultaneously. Machine-learning methods such as manifold learning are highly applicable to
69 the problems posed by heterogeneity of multi-modal single-cell data (6), but these methods are
70 commonly difficult to use, especially for biologists and neurologists who may not have
71 computational expertise. Documentation and tutorials, if present, are limited in scope. The
72 methods are often supplied as source code only, requiring coding expertise to use, which further
73 limits their accessibility. Installation and configuration of the software adds another layer of
74 difficulty to overcome before these methods can be applied. As an example, consider the
75 software for UnionCom (7). While the UnionCom software is available in the Python package
76 index (PyPI) and easily installable, its dependencies are not automatically installed. The
77 prospective user will quickly discover that the versions of those dependencies suggested in the
78 limited documentation are not easily installable in recent versions of Python. Given time and
79 effort, a motivated researcher will manage to find the right combination of package versions and

80 Python version that will be compatible, but this level of difficulty is both a significant barrier to
81 use and common in open-source scientific software generally (8).

82

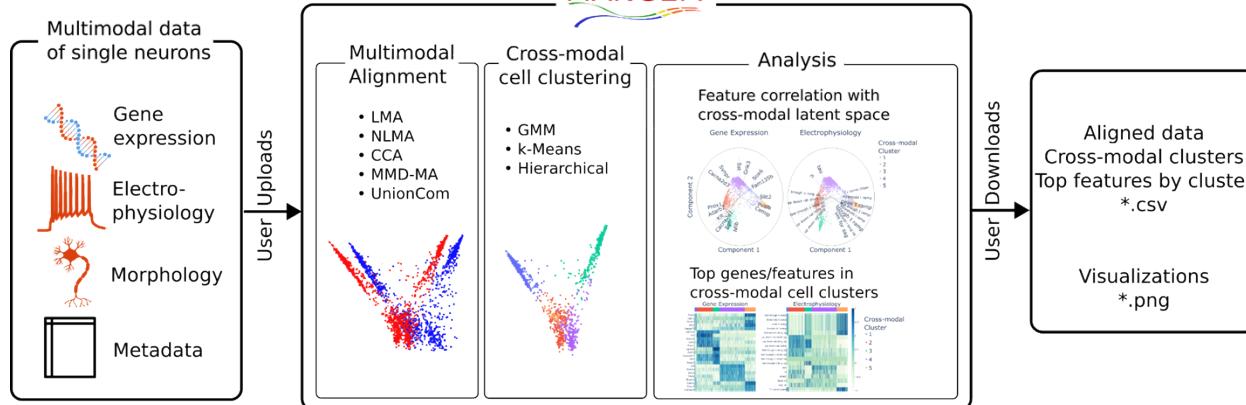
83 An increasingly common way to address the challenges of running open-source scientific
84 software is by implementing the methods of the software in a web application (9,10). Here we
85 present a new web application named MANGEM (Multimodal Analysis of Neuronal Gene
86 Expression, Electrophysiology and Morphology), developed to address the challenges
87 researchers may experience in using existing methods of aligning and analyzing multi-modal
88 single-cell data. In particular, MANGEM provides an easy-to-use interface to a variety of
89 machine-learning alignment methods, requires no coding to use, and does not require
90 installation of software or management of computing infrastructure. Preloaded datasets and an
91 interface that walks the user through each operational step provide for an accessible
92 introduction to the use of machine-learning methods to align multi-modal datasets. As a cloud-
93 based web application, MANGEM enables users to begin exploring multi-modal single-cell
94 datasets without first undertaking the challenges of software installation or management of the
95 underlying infrastructure. While the application was designed for real-time data processing and
96 exploration, it also supports running certain long-running methods asynchronously, providing a
97 customized URL for users to retrieve results after computation is complete. Interactive graphical
98 display of output facilitates exploration of the data at each step of the analysis process: raw data
99 as uploaded, preprocessed data (e.g., standardized), aligned datasets, and cross-modal
100 clusters. Integrated downstream analysis methods support identification of important cellular
101 features within cross-modal cell clusters and aid interpretation of the revealed relationships
102 within cell clusters.

103 Design and Implementation

104 The MANGEM web application offers a range of methods for aligning multi-modal data of
105 neuronal cells, identifying cross-modal cell clusters using the aligned data, and generating
106 visualizations to facilitate the characterization of these cross-modal clusters, including their
107 differentially expressed genes and correlated multi-modal features (**Fig. 1**).
108

Multimodal Analysis of Neuronal Gene Expression, Electrophysiology and Morphology

MANGEM



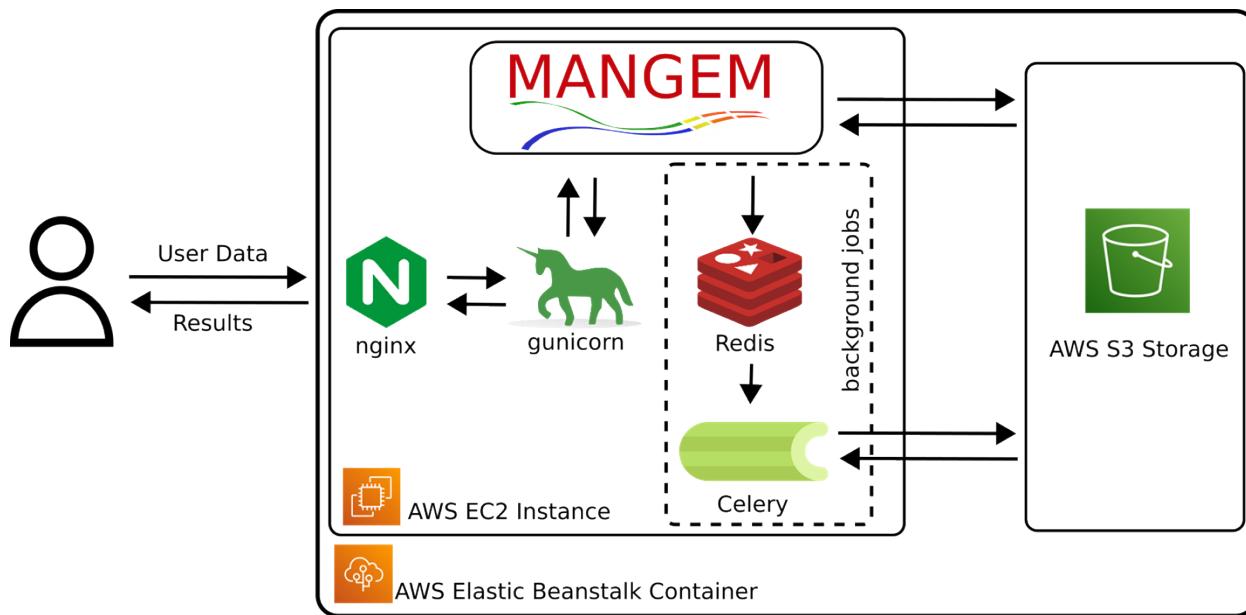
109

110 **Figure 1. Overview of MANGEM (Multimodal Analysis of Neuronal Gene Expression,**
111 **Electrophysiology and Morphology).** User input to MANGEM includes multimodal single-cell
112 data together with cell metadata. Within MANGEM, the multimodal data are aligned using
113 machine learning methods, projecting disparate modalities into a low-dimensional common
114 latent space. Clustering algorithms are applied within the latent space to identify cell clusters,
115 and then analysis methods are provided in MANGEM to characterize the clusters by differential
116 feature expression and correlation of features with the latent space. In addition to interactive
117 plots generated at each step of the workflow, downloadable output includes tabular data files
118 (cell coordinates in latent space, cluster annotations, top features for each cluster) and images
119 depicting alignment, cross-modal cell clusters, and cluster analyses.

120
121 The application is implemented using Plotly Dash Open Source, a Python-based framework for
122 developing data science applications (11). Dash is based on Plotly.js (12), React (13), and
123 Flask (14), and it functions by tying user interface elements to stateless callback functions. In
124 the case of MANGEM, some callback functions are quasi-stateless, in that uploaded and
125 aligned datasets are stored in a filesystem cache to avoid repeating lengthy calculations.

126
127 Our public deployment of MANGEM is on Amazon Web Services infrastructure (Fig. 2). The
128 Elastic Beanstalk service is used to deploy the application to an Elastic Compute Cloud (EC2)
129 instance with associated storage in Amazon Simple Storage Service (S3). In order to be
130 accessed by a user with a web browser, MANGEM requires additional software. A reverse
131 proxy server directs the requests from the web browser to an application server that can
132 translate the requests to the Web Server Gateway Interface (WSGI) protocol used for
133 communication with MANGEM. By default, the Elastic Beanstalk Python platform provides nginx
134 (15) as the reverse proxy server and Gunicorn (16) as the WSGI application server; however,
135 MANGEM does not depend on those specific programs. For example, in our development
136 environment, we use the Apache HTTP server with mod_proxy (17) as the reverse proxy server
137 and uWSGI (18) as the WSGI application server. Most data processing occurs within the main
138 MANGEM process, but additional software is required to enable long-running alignment jobs to

139 run asynchronously. In this case, Celery (19) is used to run those background jobs, and Redis
140 (20) is used as a message broker to communicate between MANGEM and Celery. Whether
141 aligned synchronously or asynchronously, aligned multi-modal datasets are stored in a
142 filesystem cache on AWS S3.
143



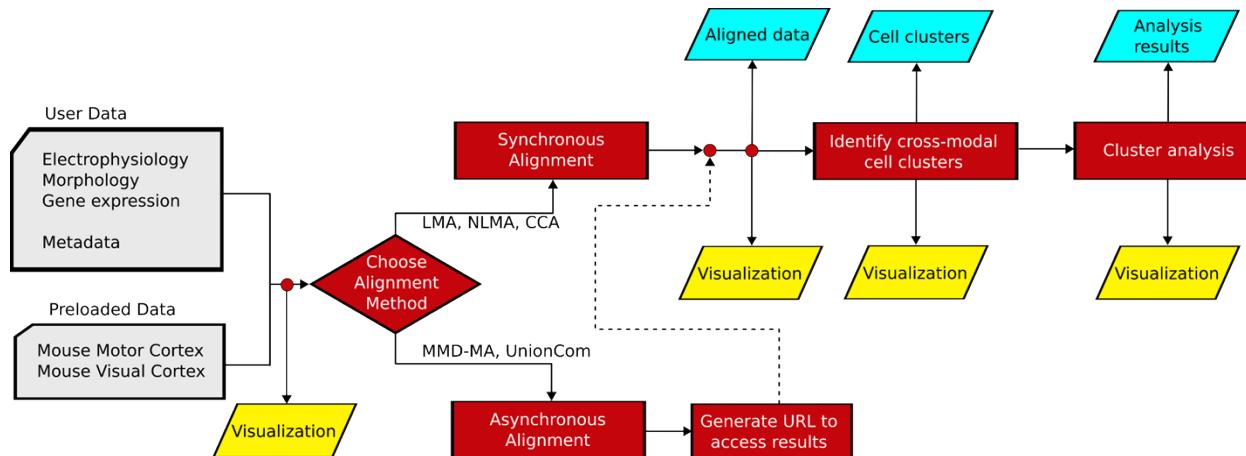
144
145 **Figure 2. Cloud implementation of MANGEM using AWS infrastructure.** The application
146 runs on Amazon Cloud Services using Elastic Beanstalk to provision an EC2 instance. The web
147 server nginx serves as a reverse proxy to the gunicorn WSGI server. MANGEM is written in
148 Python using the Plotly Dash framework. Long-running tasks are run in the background by
149 Celery workers, with Redis acting as the message broker between MANGEM and Celery.
150 Uploaded and processed data files are stored in a filesystem cache in AWS S3.
151

152 MANGEM's layout is organized as a set of tabs on the left which contain user interface controls,
153 while the right side contains plots or other information related to the active tab. The tabs
154 correspond to the sequence of steps users will typically take when running the application:
155 upload data, align data, identify cross-modal cell clusters, and perform downstream analysis of
156 cross-modal cell clusters. Each tab contains controls that allow the user to adjust parameters
157 relevant to the current step of the workflow and which influence the downstream results (**Table**
158 **1**).

MANGEM functions	Parameter
Step 1. Upload Data	<ul style="list-style-type: none">Preprocessing method for each modality (log/standardize)
Step 2. Alignment	<ul style="list-style-type: none">Alignment algorithmDimension of machine learning latent space (3-10)Number of nearest neighbors (1-10) used in constructing

	similarity matrices (LMA, NLMA). • Number of iterations (MMD-MA)
Step 3. Clustering	• Clustering algorithm • Number of cell clusters (1-10)
Step 4. Analysis	• Component selection • Number of top features per cell cluster in Features of Cross-modal Clusters • Number of top correlated features in Top Feature Correlation with Latent Space

159 **Table 1. Key parameters of data processing and analysis in MANGEM.** The listed
160 parameters all influence downstream output of MANGEM. For example, selecting a
161 preprocessing method on the Upload Data tab will result in that method being applied to the
162 uploaded dataset before the selected multi-modal alignment method is applied.
163
164 At each step of the workflow (**Fig. 3**), interactive figures are automatically generated to support
165 understanding, and computation products are available for download as tabular data files. A
166 video demonstration of the workflow is provided in the Supplemental Data.
167



168
169
170 **Figure 3. Data flow through MANGEM web application.** Input data passes into an alignment
171 process, which will either run in the main process or in the background, depending on the
172 method. In the case of background (asynchronous) alignment, a URL will be supplied to the
173 user which will allow them to check on the job's status and access the results upon completion.
174 Aligned data feed into a clustering algorithm, and then data analysis methods can be applied to
175 the cell clusters. Data visualization output can be produced at each stage of the process, and
176 tabular data files of aligned data, cell clusters, and analysis results can be downloaded.

177 Step 1: Upload Data

178 The first data processing step in MANGEM is selecting or uploading neuronal data,
179 accomplished on the Upload Data tab. The expected input to MANGEM consists of three data
180 files in .csv format: one file for each of two modalities, and a third file of cellular metadata. Three
181 sample data sets are preloaded in MANGEM, and a link is provided within the application to
182 download one of these. The first column of each file should contain a cell identifier, and the files
183 are expected to have a consistent cell order. Denote data for the first modality as X , data for the
184 second modality, Y , and metadata, M . Each of these has n rows corresponding to n neurons. X
185 and Y have d_1 and d_2 features, respectively. Metadata matrix M has d_m cell characteristics.

186
$$X = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^{n \times d_1}, Y = [y_1, y_2, \dots, y_n]^T \in \mathbb{R}^{n \times d_2}, M = [m_1, m_2, \dots, m_n]^T \in \mathbb{R}^{n \times d_m}$$

187

188 When user data is uploaded, a label may be supplied for each modality; otherwise, the
189 modalities will be identified using the default labels of “Modality 1” and “Modality 2” in plot
190 legends.

191

192 A preprocessing operation may optionally be selected for each modality. Choices include “Log
193 transform” and “Standardize”, which for the first modality would be:

194

195 “Log transform”: $f(X) \rightarrow \hat{X}, \hat{x}_i^j = \log_2 x_i^j \quad \forall i \in [1, n], j \in [1, d_1]$

196 “Standardize”: $f(X) \rightarrow \hat{X}, \hat{x}_i^j = \frac{x_i^j - \mu^j}{\sigma^j}, \mu^j = \sum_{k=1}^n \frac{x_k^j}{n}, \sigma^j = \sqrt{(\sum_{k=1}^n x_k^j - \mu^j)^2 / n}$

197 If a preprocessing operation is selected, that operation will be applied to the appropriate dataset
198 prior to alignment. The default values of “Log transform” for Modality 1 and “Standardize” for
199 Modality 2 are suitable for the preloaded datasets, where Modality 1 is Gene Expression and
200 Modality 2 is Electrophysiology.

201 Data Exploration

202 The “Explore Data” section of the Upload Data tab can generate plots to gain insight into cell
203 features in the uploaded or selected data sets. A series of box plots is generated for each value
204 of a categorical metadata variable when a single cell feature is selected (**Fig. S1a**). A particular
205 value of that metadata variable may be selected to filter the data, in which case a violin plot is
206 generated (**Fig. S1b**). It is also possible to select two features to compare in a scatter plot (**Fig.**
207 **S1c**). These features could be from the same or different modalities. Similarly, to the single-
208 feature case, selecting a specific value of a metadata variable filters the data so that only the
209 points corresponding to cells having that metadata value are displayed in the scatter plot (**Fig.**
210 **S1d**). As with all plots in MANGEM, a toolbar will pop up when the cursor is placed over the
211 plot. The toolbar has buttons to change to plot appearance (zoom or pan, for example) and also
212 has a button with a camera icon that causes an image of the plot to be downloaded.

213 Step 2: Multi-modal Alignment

214 The approach used by MANGEM to find clusters of related cells is to first transform the
215 measured cellular features into a latent space where cells having similar features are closer

216 together. This transformation process is called multi-modal alignment, and several alignment
217 methods are implemented in MANGEM. Currently supported methods include Linear Manifold
218 Alignment (LMA), Nonlinear Manifold Alignment (NLMA) (21), Canonical Correlation Analysis
219 (CCA), Manifold Alignment with Maximum Mean Discrepancy (MMD-MA) (22), and
220 Unsupervised Topological Alignment for Single-Cell Multi-Omics (UnionCom) (7). LMA and
221 NLMA utilize similarity matrices to formulate a common latent space. MMD-MA minimizes an
222 objective function which measures distortion and preserved representation. UnionCom infers
223 cross-modal correspondence information before using t-SNE (23) to provide the final latent
224 spaces.

225
226 Several parameters of these alignment methods can be adjusted on MANGEM’s Alignment tab.
227 These include the dimension of the latent space, the number of nearest neighbors to be used
228 when computing the similarity matrix (LMA, NLMA), and the number of iterations (MMD-MA).
229 The alignment methods take as input the preprocessed datasets \hat{X} and \hat{Y} ; if no preprocessing
230 method has been selected, then data are used as uploaded: $\hat{X} = X$ and $\hat{Y} = Y$. If we think of the
231 alignment as finding optimal projection functions f and g which project cellular data from
232 modality 1 and modality 2, respectively, to a common latent space of dimension d , then after
233 alignment, the i^{th} cell can be represented by $\tilde{x}_i = f(\hat{x}_i) \in \Re^d$ and $\tilde{y}_i = g(\hat{y}_i) \in \Re^d$.
234 After alignment has been completed, the cellular coordinates in the latent space can be
235 downloaded by clicking on the “Download Aligned Data” button on the Alignment tab of
236 MANGEM.

237 Asynchronous Computation of Alignment

238 Though MANGEM primarily operates synchronously, some of the supported alignment methods
239 (notably, UnionCom and MMD-MA) require enough computational resources to motivate
240 running those tasks in the background, asynchronously. Celery, an open-source asynchronous
241 task queue, is used to queue and run these long-running alignment tasks in the background.
242 When the user clicks the “Align Datasets” button after selecting the UnionCom or MMD-MA
243 alignment method, the alignment job is submitted to the task queue, and a unique URL is
244 provided to the user. Navigating to this URL will give the user a message indicating the job
245 status: waiting to start in the task queue, running, or complete. If the job is complete, then the
246 results will be loaded and the Clustering tab of MANGEM will open, and the usual clustering and
247 analysis methods will be available. A video demonstration of background alignment is included
248 in Supplemental Data.

249 Step 3: Cross-modal Cell Clustering

250 Once the multi-modal single-cell data have been aligned, cell clusters can be identified based
251 on proximity within the latent space. Three different clustering methods are currently supported
252 by MANGEM: Gaussian mixture model, K-means, and hierarchical clustering, all using methods
253 provided by the Scikit-learn Python package (24). Gaussian mixture model clustering uses the
254 GaussianMixture class with a single covariance matrix shared by all components and 50
255 iterations. K-means uses the KMeans class with the parameter n_init set to 4 and random seed

256 specified. Hierarchical clustering is implemented using the AgglomerativeClustering class with
257 Ward linkage, which minimizes the sum of squared distances within clusters. In all cases, the
258 number of clusters to be identified can be specified using the slider control on the Clustering tab
259 of MANGEM. After clusters have been identified, the assignment of cells to clusters can be
260 downloaded by clicking on the “Download Clusters” button.

261 Step 4: Analysis of Cross-modal Cell Clusters

262 The Analysis tab of MANGEM supports visualization of alignment and clustering results as well
263 as methods to reveal relationships between cell features in the context of identified cell clusters.
264 These methods are accessed via the Plot type selection control.

265 Features of cross-modal clusters

266 The “Features of cross-modal clusters” method identifies the most important features within
267 each cross-modal cluster and generates a heatmap for each modality where the rows
268 correspond to identified features and the columns correspond to cells, grouped into previously
269 identified clusters. The number of features identified for each cluster is specified using the
270 “Number of Top Features per cluster” control on the Analysis tab. A list of the most important
271 features can be downloaded using the “Download Top Features” button.

272 Top feature correlation with latent space

273 Top feature correlation with latent space creates a biplot (i.e., collection of biplots) (25) with
274 one biplot for each modality. Each biplot displays a 2-dimensional projection of the aligned data
275 for the modality in the latent space while overlaying lines corresponding to the features which
276 are most highly correlated with the latent space representation. For each modality, the
277 correlation is computed between the original cellular data for each feature and the projection of
278 the cellular data into the latent space dimensions selected as components X and Y on the
279 Analysis tab. For a given feature, the correlations between that feature and its X and Y latent
280 space representation determine the coordinates of the endpoint of that feature’s line.

281
282 The latent space dimensions in which aligned data are plotted can be selected using the
283 “Component Selection” controls on the Analysis tab. At most, three dimensions can be plotted at
284 one time within MANGEM, but these controls allow the user to select which dimensions are
285 plotted to gain different perspectives on the data. Additional controls on the Analysis tab allow
286 aligned data points to be colored either by cluster or by metadata value (for example,
287 transcriptomic cell type).

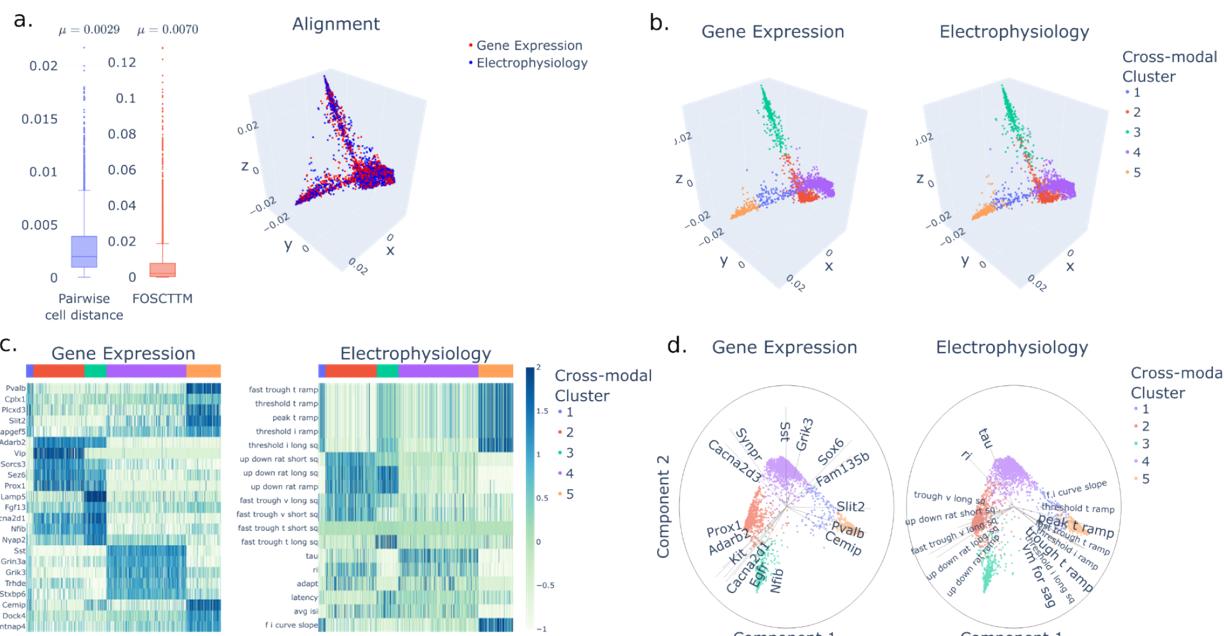
288 Results

289 In this study, we showcased the usage of MANGEM through two case studies that utilized
290 emerging Patch-seq multimodal data of inhibitory neuronal cells in the mouse visual cortex
291 (such as gene expression, electrophysiology, and morphology). It is worth noting that MANGEM
292 is a general-purpose tool that can be used for any user multimodal data of neurons.

293 Case Study 1: neuronal gene expression and electrophysiology

294 We first tested MANGEM to align these neuronal cells based on gene expression and
295 electrophysiological features. We uploaded two datasets, one containing 1302 most variable
296 expressed genes and 41 electrophysiological features for 3654 neuronal cells, on the Upload
297 Data tab of MANGEM. We then preprocessed the data using log transformation for gene
298 expression and standardization for electrophysiology features.
299

300 On the Alignment tab, we set the alignment method to Nonlinear Manifold Alignment (NLMA),
301 the number of latent space dimensions to 5, and the number of nearest neighbors (used in
302 construction of the similarity matrix for NLMA) to 2. Clicking the “Align Datasets” button
303 generated two measures of alignment along with a 3D plot of the aligned cells (Fig. 4a). The
304 aligned multimodal cells were represented in the common latent space, \tilde{X} and \tilde{Y} , are 3654 cells
305 (rows) by 5 latent dimensions (columns). We also tested other alignment methods and found
306 that NLMA, in addition to being one of the fastest methods to run, resulted in the smallest
307 alignment error (Fig. S2, Table S1).

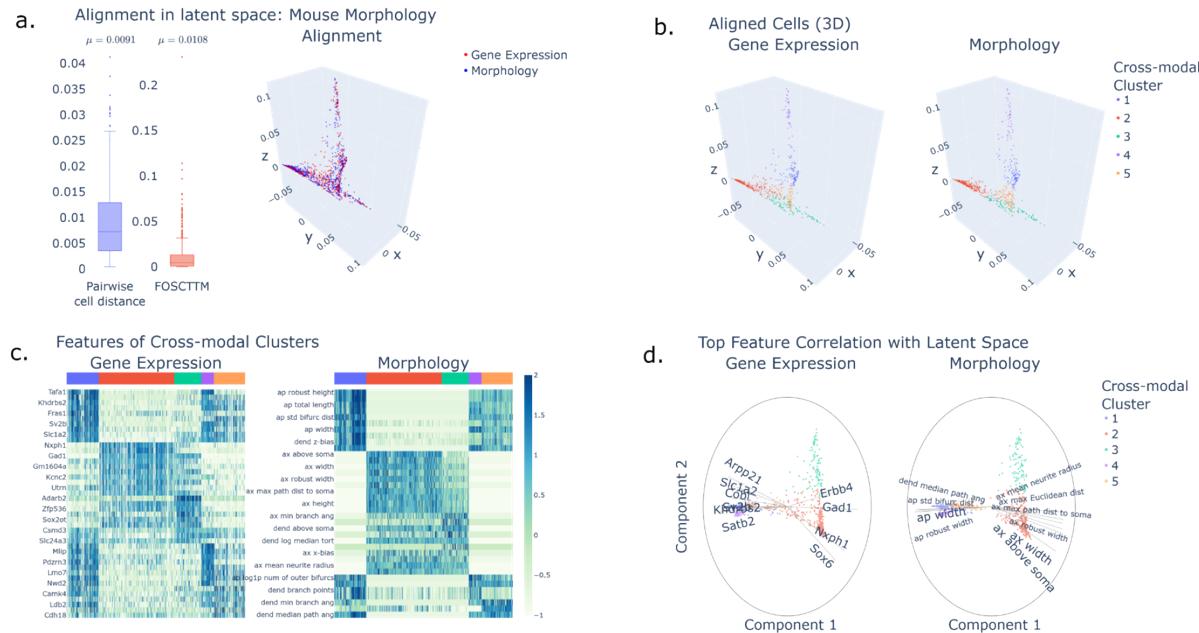


308
309 **Figure 4. MANGEM analysis and visualization of neuronal gene expression and**
310 **electrophysiological features in mouse visual cortex.** a.) Measures of alignment error and 3-
311 d plot of superimposed aligned data in latent space are shown for the preloaded mouse visual
312 cortex dataset after nonlinear manifold alignment. b.) Cross-modal clusters, obtained by
313 Gaussian mixture model, are indicated by color in plots of aligned data for each modality. c.)
314 Feature levels across all cells for the top 5 features for each cross-modal cluster. Normalized
315 feature magnitude was ranked using the Wilcox Rank Sum test. Cross-modal clusters are
316 identified by the colored bar at the top of each plot. d.) Biplots for Gene Expression and
317 Electrophysiological features using dimensions 1 and 2 of the latent space. The top 15 features
318 by correlation with the latent space are shown plotted as radial lines where the length is the
319 value of correlation (max value 1).

320
321 Afterwards, we chose to use the Gaussian Mixture Model clustering algorithm on the Clustering
322 tab, specifying 5 clusters. Upon clicking the “Identify Cross-Modal Cell Clusters” button, the
323 algorithm identified cross-modal cell clusters and generated side-by-side plots of the aligned
324 cells for each modality in the latent space. These plots showed cells colored according to their
325 respective cross-modal clusters (**Fig. 4b**).
326
327 The Analysis tab of MANGEM offers various visualization methods for exploring cross-modal
328 relationships between gene expression and electrophysiological features. We set the number of
329 top features to 5 and selected the “Features of Cross-modal Clusters (Heatmap)” (**Fig. 4c**). The
330 resulting heatmap showed that tau and ri were the top two electrophysiological features in
331 Cluster 4, while the top differentially-expressed genes in the cluster were Sst, Grin3a, Grik3,
332 Trhde, and Stxbp6. These shared multi-modal features suggest potential functional linkages
333 among the cells in the cluster.
334
335 To further investigate these linkages, we switched the plot type to “Top Feature Correlation with
336 Latent Space (Bibiplot)” (**Fig. 4d**) and set the number of top correlated features to 15. The
337 biplots graphically represented the most highly-correlated features from cross-modal cell
338 clusters and allowed for interactive zooming into the Cluster 4 area on the latent space. The
339 highly-correlated features included tau and, to a lesser extent, ri among the electrophysiological
340 features, while Sst and Grik3 were among the genes associated with Cluster 4.

341 Case Study 2: neuronal gene expression and morphology

342
343 MANGEM was used to process gene expression of the top 1000 variable genes and
344 morphological features in the mouse motor cortex (25). The data consists of 646 single-cells
345 with 42,466 genes and 63 morphological features. Each modality is formatted into a separate
346 csv, with an additional file indicating metadata such as age, gender, etc. The data was then
347 uploaded onto the webapp using the upload tab.
348
349 MANGEM can be used to easily test multiple integration methods. For this application, we
350 chose Non-Linear Manifold Alignment (NLMA). After alignment, pairwise accuracy statistics are
351 reported (**Fig. 5a**).



352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

Figure 5. MANGEM analysis and visualization of neuronal gene expression and morphological features in mouse visual cortex. a.) Measures of alignment error and 3-d plot of superimposed aligned data in latent space are shown for the mouse morphology cortex dataset after nonlinear manifold alignment. b.) Cross-modal clusters, obtained by Gaussian mixture model, are indicated by color in plots of aligned data for each modality. c.) Feature expression levels across all cells for the top 10 differentially expressed features for each cross-modal cluster. Normalized feature expression was ranked using the Wilcox Rank Sum test. Cross-modal clusters are identified by the colored bar at the top of each plot. d.) Biplots for Gene Expression and Electrophysiological features using dimensions 1 and 2 of the latent space. The top 15 features by correlation with the latent space are shown plotted as radial lines where the length is the value of correlation (max value 1).

MANGEM is then used to separate the data into 5 clusters using a gaussian mixture model. The clusters closely align with true cell types (Fig. 5b). Then, differentially expressed features for each cluster may be downloaded and used for downstream analysis. The expressed genes can then be analyzed for importance in brain function.

MANGEM identifies Pvalb, Vip, Lamp5, and Sst among the top 2 most differentially expressed genes over the 5 cell clusters (Fig. 5c). These genes are commonly used to identify cell-type (26). So, MANGEM can be used to automatically perform cell-type clustering on multimodal datasets. In addition, MANGEM identifies Adarb2 as a differentially expressed gene. Adarb2 has been found to distinguish between two major branches of inhibitory neurons (27).

MANGEM also allows users to create Bibiplots to Visualize features important to the latent space (Fig. 5d). These features which are highly correlated with the latent space (e.g., SOX6 and sp_width) may then be the focus of future data exploration.

380 Availability

381 MANGEM is freely available for use at <https://ctc.waisman.wisc.edu/mangem>. The source code
382 for MANGEM is released under the MIT License and is available for download at
383 <https://github.com/daifengwanglab/mangem>.

384 Future Directions

385 MANGEM is a user-friendly web application designed primarily for biologists and
386 neuroscientists. The app comes with pre-selected general-purpose hyperparameters that can
387 be fine-tuned by users to suit their needs. With the rapid advancements in multimodal machine
388 learning (28), MANGEM is constantly evolving to offer more advanced alignment options.

389

390 At present, MANGEM can only work with pre-processed electrophysiological and morphology
391 features, but future versions may incorporate methods like deep neural networks to work with
392 raw data (e.g., electrophysiological time-series data) or other types of data, such as genomics,
393 epigenomics, or images. MANGEM is also capable of incorporating emerging machine learning
394 approaches to infer missing modalities and cross-modal correspondence (29).

395

396 MANGEM uses cloud-based computing, which in the future will enable distributed training,
397 making computation faster and providing a smoother experience for users. To further improve
398 the efficiency of the app, MANGEM can be optimized for parallel processing, allowing it to take
399 advantage of multiple processors and GPUs for faster computation. In addition to its alignment
400 capabilities, MANGEM also enables collaborative work and data sharing. The app provides a
401 centralized repository for storing and sharing aligned data, with built-in privacy and security
402 measures to protect sensitive data.

403 Supporting Information

404 Supplemental Data - tutorial video

405 Supplemental Materials - Supplemental Figures 1-2, Supplemental Table 1

406 Competing interests

407 The authors declare no competing interests.

408 Funding

409 This work was supported by National Institutes of Health grants, RF1MH128695,
410 R21NS128761, R21NS127432, R01AG067025, R03NS123969 to D.W., P50HD105353 to
411 Waisman Center., and the start-up funding for D.W. from the Office of the Vice Chancellor for
412 Research and Graduate Education at the University of Wisconsin–Madison. The funders had no

413 role in study design, data collection, and analysis, decision to publish, or manuscript
414 preparation.

415 Author's Contributions

416 D.W. conceived the study. D.W., R.O. and N.K. designed the methodology, performed analysis
417 and visualization. R.O. implemented the software. D.W., R.O., and N.K. edited and wrote the
418 manuscript. All authors read and approved the final manuscript.

419 Acknowledgments

420 The authors wish to thank all members of the Wang lab for insightful discussions on the work.

421 References

- 422 1. Marx V. Patch-seq takes neuroscience to a multimodal place. *Nat Methods*. 2022
423 Nov;19(11):1340–4.
- 424 2. Institute for Genome Sciences. NeMO Archive - Home [Internet]. The Neuroscience Multi-
425 omic Archive. [cited 2023 Mar 27]. Available from: <https://nemoarchive.org/>
- 426 3. DANDI Archive [Internet]. [cited 2023 Mar 27]. Available from: <https://dandiarchive.org/>
- 427 4. Rübel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, et al. The Neurodata Without Borders
428 ecosystem for neurophysiological data science. Colgin LL, Jadhav SP, editors. *eLife*. 2022
429 Oct 4;11:e78362.
- 430 5. Efremova M, Teichmann SA. Computational methods for single-cell omics across
431 modalities. *Nat Methods*. 2020 Jan;17(1):14–7.
- 432 6. Huang J, Sheng J, Wang D. Manifold learning analysis suggests strategies to align single-
433 cell multimodal data of neuronal electrophysiology and transcriptomics. *Commun Biol*. 2021
434 Nov 19;4(1):1308.
- 435 7. Cao K, Bai X, Hong Y, Wan L. Unsupervised topological alignment for single-cell multi-
436 omics integration. *Bioinformatics*. 2020 Jul 1;36(Supplement_1):i48–56.
- 437 8. Swarts J. Open-Source Software in the Sciences: The Challenge of User Support. *J Bus
438 Tech Commun*. 2019 Jan;33(1):60–90.
- 439 9. Saia SM, Nelson NG, Young SN, Parham S, Vandegrift M. Ten simple rules for researchers
440 who want to develop web apps. *PLOS Comput Biol*. 2022 Jan 6;18(1):e1009663.
- 441 10. Lyons B, Isaac E, Choi NH, Do TP, Domingus J, Iwasa J, et al. The Simularium Viewer: an
442 interactive online tool for sharing spatiotemporal biological models. *Nat Methods*. 2022
443 May;19(5):513–5.
- 444 11. Hossain S. Visualization of Bioinformatics Data with Dash Bio. *Proc 18th Python Sci Conf*.
445 2019;126–33.
- 446 12. Plotly Technologies Inc. Collaborative data science [Internet]. Montreal, QC: Plotly
447 Technologies Inc.; 2015. Available from: <https://plot.ly>
- 448 13. Meta Platforms, Inc. and affiliates. React [Internet]. React: The library for web and native
449 user interfaces. 2023 [cited 2023 Mar 24]. Available from: <https://react.dev/>
- 450 14. Grinberg M. *Flask web development: developing web applications with python*. O'Reilly
451 Media, Inc.; 2018.
- 452 15. Reese W. Nginx: the high-performance web server and reverse proxy. *Linux J*. 2008 Sep
453 1;2008(173):2:2.

455 16. Gunicorn - WSGI server — Gunicorn 20.1.0 documentation [Internet]. [cited 2023 Mar 27].
456 Available from: <https://docs.gunicorn.org/en/stable/>

457 17. mod_proxy - Apache HTTP Server Version 2.4 [Internet]. [cited 2023 Mar 27]. Available
458 from: https://httpd.apache.org/docs/2.4/en/mod/mod_proxy.html

459 18. The uWSGI project — uWSGI 2.0 documentation [Internet]. [cited 2023 Mar 27]. Available
460 from: <https://uwsgi-docs.readthedocs.io/en/latest/>

461 19. Introduction to Celery — Celery 5.2.7 documentation [Internet]. [cited 2023 Mar 27].
462 Available from: <https://docs.celeryq.dev/en/stable/getting-started/introduction.html>

463 20. Redis [Internet]. Redis. [cited 2023 Mar 27]. Available from: <https://redis.io/>

464 21. Ma Y, Fu Y, editors. Manifold Learning Theory and Applications. Boca Raton: CRC Press;
465 2011. 314 p.

466 22. Singh R, Demetci P, Bonora G, Ramani V, Lee C, Fang H, et al. Unsupervised manifold
467 alignment for single-cell multi-omics data. ACM-BCB ACM Conf Bioinforma Comput Biol
468 Biomed ACM Conf Bioinforma Comput Biol Biomed. 2020 Sep;2020:1–10.

469 23. Maaten L van der, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res.
470 2008;9(86):2579–605.

471 24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
472 Machine Learning in Python. J Mach Learn Res. 2011;12(85):2825–30.

473 25. Scala F, Kobak D, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, et al. Phenotypic
474 variation of transcriptomic cell types in mouse motor cortex. Nature. 2021
475 Oct;598(7879):144–50.

476 26. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and
477 distinct transcriptomic cell types across neocortical areas. Nature. 2018 Nov;563(7729):72–
478 8.

479 27. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell
480 types with divergent features in human versus mouse cortex. Nature. 2019
481 Sep;573(7772):61–8.

482 28. Baltrušaitis T, Ahuja C, Morency LP. Multimodal Machine Learning: A Survey and
483 Taxonomy. IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):423–43.

484 29. Kalafut NC, Huang X, Wang D. JAMIE: Joint Variational Autoencoders for Multi-Modal
485 Imputation and Embedding [Internet]. bioRxiv; 2022 [cited 2023 Mar 31]. p.
486 2022.10.15.512388. Available from:
487 <https://www.biorxiv.org/content/10.1101/2022.10.15.512388v1>

Multimodal Analysis of Neuronal Gene Expression, Electrophysiology and Morphology

MANGEM

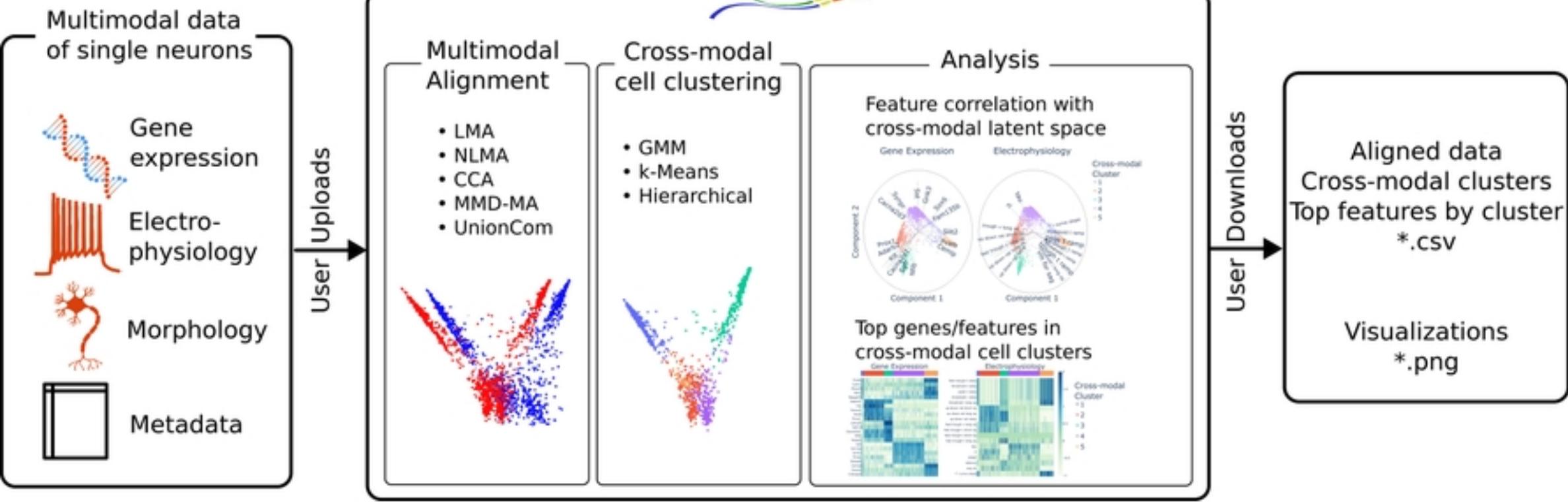


Figure 1

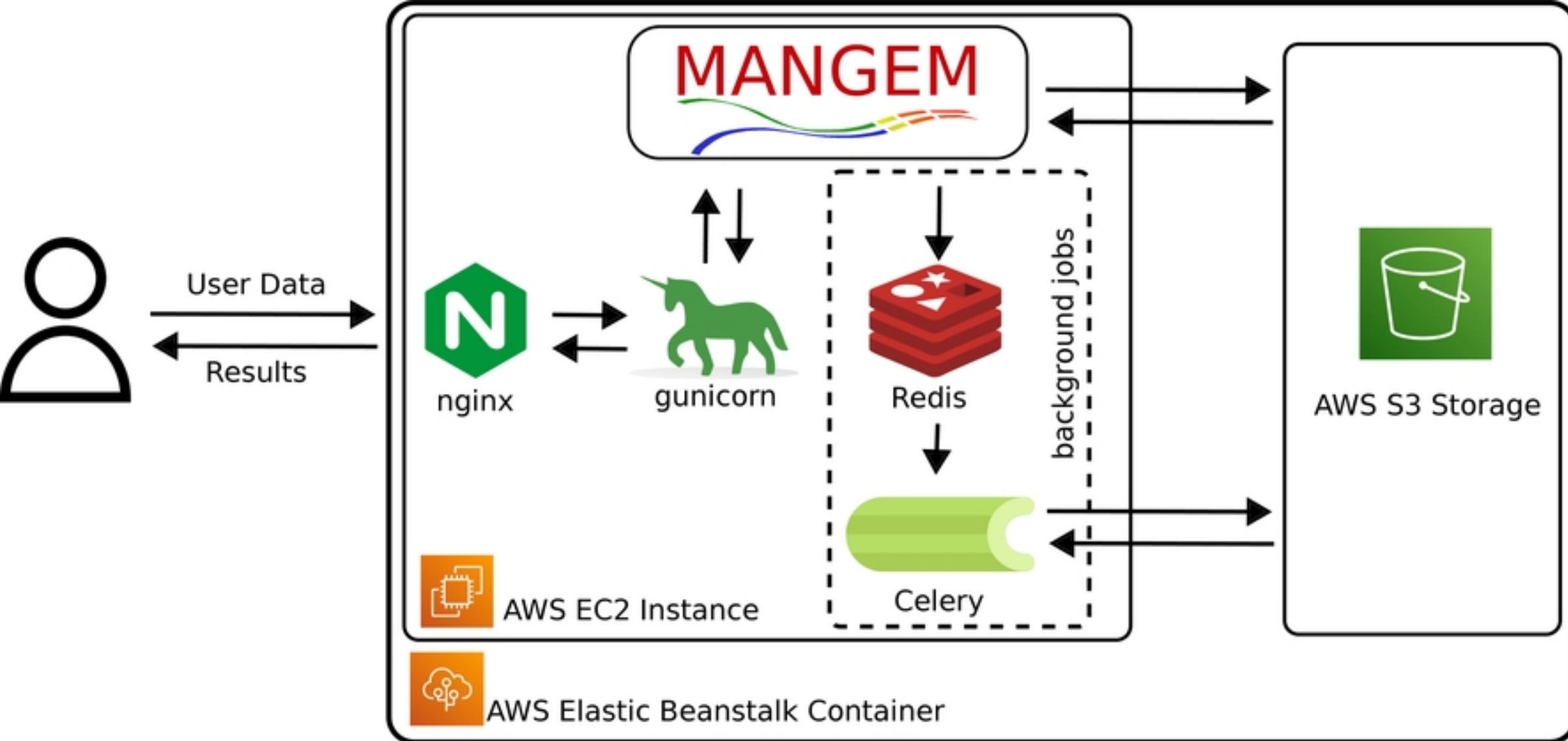


Figure 2

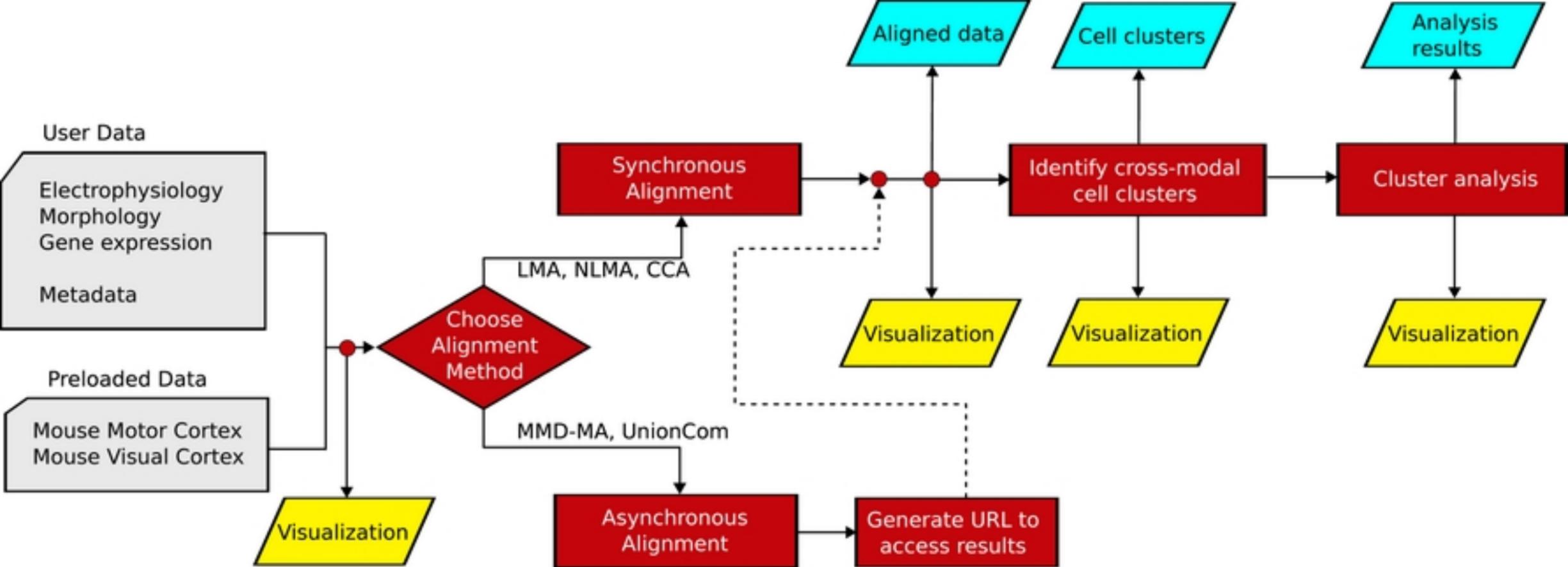


Figure 3

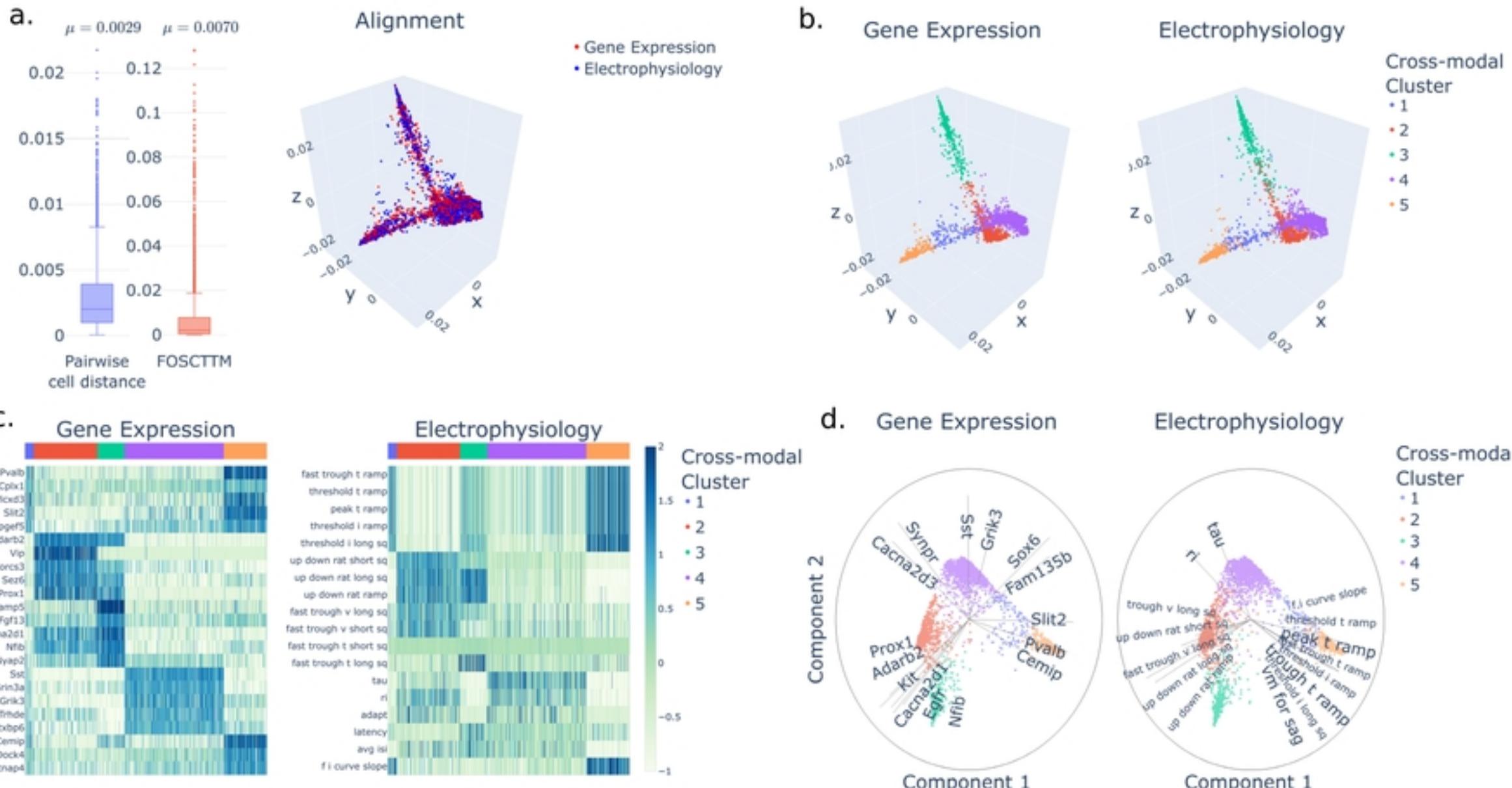
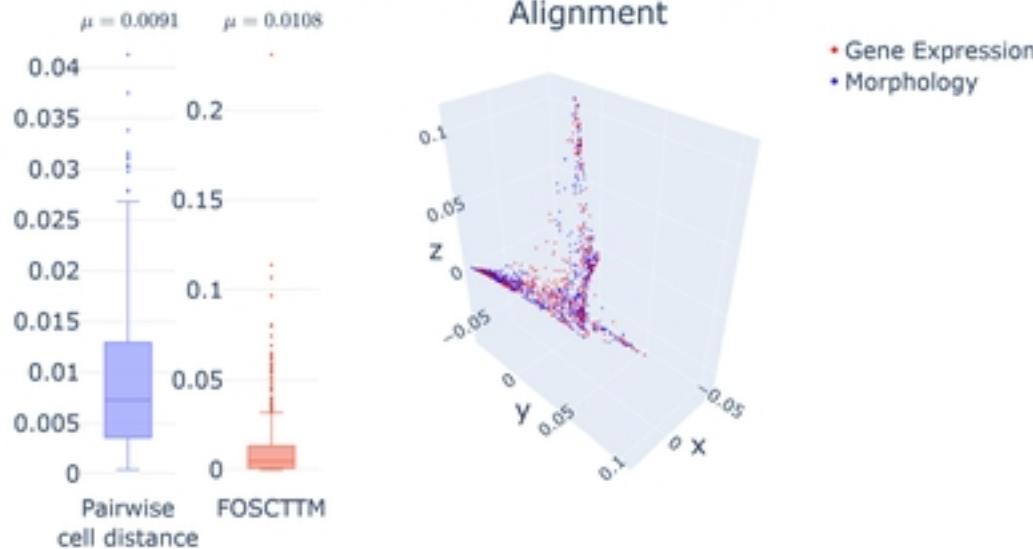
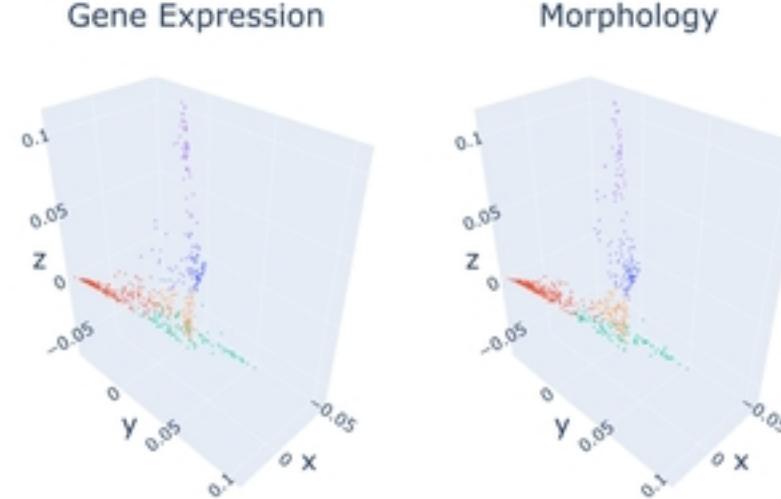


Figure 4

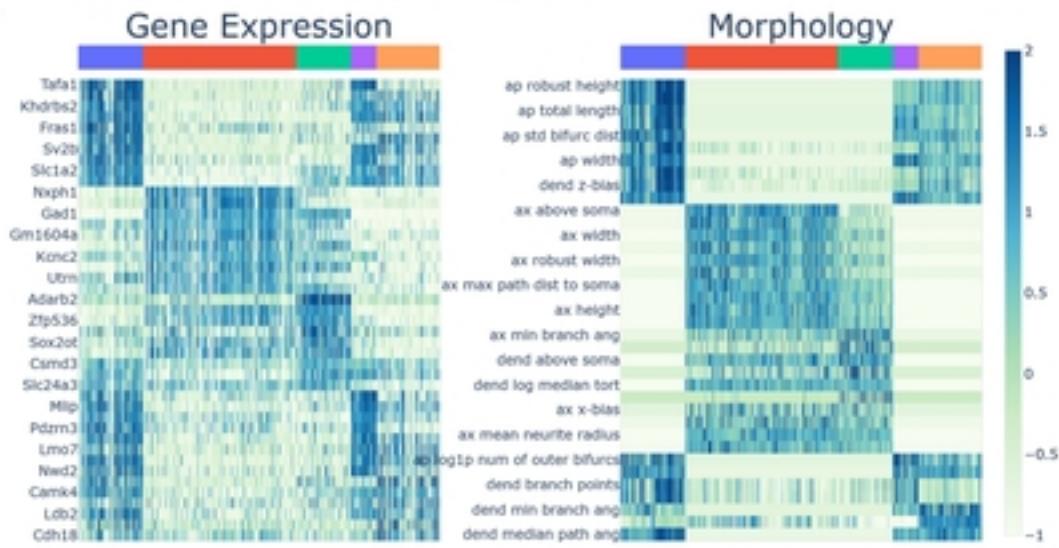
a. Alignment in latent space: Mouse Morphology Alignment



b. Aligned Cells (3D) Gene Expression



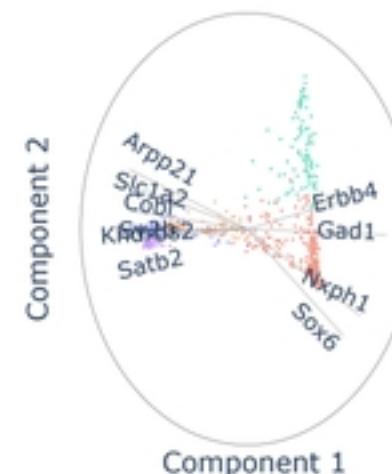
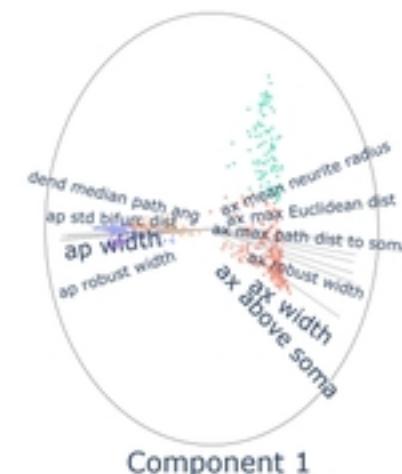
c. Features of Cross-modal Clusters



d. Top Feature Correlation with Latent Space

Gene Expression

Morphology



Cross-modal Cluster

- 1
- 2
- 3
- 4
- 5

Cross-modal Cluster

- 1
- 2
- 3
- 4
- 5

Figure 5