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Abstract

Single-cell techniques have enabled the acquisition of multi-modal data, particularly for neurons,
to characterize cellular functions. Patch-seq, for example, combines patch-clamp recording, cell
imaging, and single-cell RNA-seq to obtain electrophysiology, morphology, and gene expression
data from a single neuron. While these multi-modal data offer potential insights into neuronal
functions, they can be heterogeneous and noisy. To address this, machine-learning methods
have been used to align cells from different modalities onto a low-dimensional latent space,
revealing multi-modal cell clusters. However, the use of those methods can be challenging for
biologists and neuroscientists without computational expertise and also requires suitable
computing infrastructure for computationally expensive methods. To address these issues, we
developed a cloud-based web application, MANGEM (Multimodal Analysis of Neuronal Gene
expression, Electrophysiology, and Morphology) at_https://ctc.waisman.wisc.edu/mangem.
MANGEM provides a step-by-step accessible and user-friendly interface to machine-learning
alignment methods of neuronal multi-modal data while enabling real-time visualization of
characteristics of raw and aligned cells. It can be run asynchronously for large-scale data
alignment, provides users with various downstream analyses of aligned cells and visualizes the
analytic results such as identifying multi-modal cell clusters of cells and detecting correlated
genes with electrophysiological and morphological features. We demonstrated the usage of
MANGEM by aligning Patch-seq multimodal data of neuronal cells in the mouse visual cortex.

Author Summary

The human brain is made up of billions of tiny cells called neurons, each with their own
important job. Scientists are now able to study individual neurons in more detail than ever
before using new advanced techniques. They can look at different data of individual neurons
like how genes are being used (gene expression), how the neuron responds to electrical signals
(electrophysiology), and what it looks like (morphology). By combining all of this information,
they can start to group similar neurons together and figure out what they do. However, due to
the data complexity, this process can be very complicated and hard for researchers without
sufficient computational skills. To address this, we developed a web app, MANGEM (Multimodal
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Analysis of Neuronal Gene Expression, Electrophysiology, and Morphology). It lets scientists
upload their data and select emerging machine-learning approaches to find groups of similar
neurons. It also makes interactive visualizations to help them explore the characteristics of
neuron groups and understand what they do.

Introduction

The human brain has approximately 86 billion neurons encompassing a vast range of different
functions. Understanding the roles of individual neurons is a daunting challenge that is
beginning to become possible with new techniques and technologies. The development of
single-cell technologies such as Patch-seq has resulted in the ability to characterize neurons
with new specificity and detail. Patch-seq enables a researcher to simultaneously obtain
measures of gene expression, electrophysiology, and morphology of individual neurons. Gene
expression is a measure of the extent to which different genes in a cell’s DNA are transcribed to
RNA and then translated to produce proteins. Electrophysiology describes the electrical
behavior of a cell. A microscopic pipette containing an electrolyte contacts the cell membrane to
establish an electrical connection. Then the cell’s electrical response to an applied voltage or
current is measured. Morphology refers to the physical structure of a neuron, including the size
and shape of the cell’'s axon and dendrites. By combining microscopy, RNA sequencing, and
electrophysiological recording for individual neurons, multi-modal datasets can be developed
with the potential to reveal relationships between neuronal function, structure, and gene
expression (1). Multi-modal single-cell datasets are increasingly available to researchers, in part
due to efforts by the Brain Research through Advancing Innovative Neurotechnologies (BRAIN)
Initiative to support the development and storage of such datasets in freely accessible
repositories such as the Neuroscience Multi-Omic Archive (2) for genomic data and Distributed
Archives for Neurophysiology Data Integration (3,4) for neurophysiology data, including
electrophysiology.

While multi-modal single-cell data offers great potential for improving understanding of brain
organization and function, new methods are required for integration and analysis of the data (5).
Because cells with similar characteristics in one modality are not necessarily similar when
measured by another, identification of cell clusters must incorporate disparate data types
simultaneously. Machine-learning methods such as manifold learning are highly applicable to
the problems posed by heterogeneity of multi-modal single-cell data (6), but these methods are
commonly difficult to use, especially for biologists and neurologists who may not have
computational expertise. Documentation and tutorials, if present, are limited in scope. The
methods are often supplied as source code only, requiring coding expertise to use, which further
limits their accessibility. Installation and configuration of the software adds another layer of
difficulty to overcome before these methods can be applied. As an example, consider the
software for UnionCom (7). While the UnionCom software is available in the Python package
index (PyPl) and easily installable, its dependencies are not automatically installed. The
prospective user will quickly discover that the versions of those dependencies suggested in the
limited documentation are not easily installable in recent versions of Python. Given time and
effort, a motivated researcher will manage to find the right combination of package versions and
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80  Python version that will be compatible, but this level of difficulty is both a significant barrier to
81  use and common in open-source scientific software generally (8).
82
83  Anincreasingly common way to address the challenges of running open-source scientific
84  software is by implementing the methods of the software in a web application (9,10). Here we
85  present a new web application named MANGEM (Multimodal Analysis of Neuronal Gene
86  Expression, Electrophysiology and Morphology), developed to address the challenges
87  researchers may experience in using existing methods of aligning and analyzing multi-modal
88  single-cell data. In particular, MANGEM provides an easy-to-use interface to a variety of
89  machine-learning alignment methods, requires no coding to use, and does not require
90 installation of software or management of computing infrastructure. Preloaded datasets and an
91 interface that walks the user through each operational step provide for an accessible
92  introduction to the use of machine-learning methods to align multi-modal datasets. As a cloud-
93 based web application, MANGEM enables users to begin exploring multi-modal single-cell
94  datasets without first undertaking the challenges of software installation or management of the
95  underlying infrastructure. While the application was designed for real-time data processing and
96  exploration, it also supports running certain long-running methods asynchronously, providing a
97  customized URL for users to retrieve results after computation is complete. Interactive graphical
98 display of output facilitates exploration of the data at each step of the analysis process: raw data
99 as uploaded, preprocessed data (e.g., standardized), aligned datasets, and cross-modal
100 clusters. Integrated downstream analysis methods support identification of important cellular
101  features within cross-modal cell clusters and aid interpretation of the revealed relationships
102  within cell clusters.

103 Design and Implementation

104  The MANGEM web application offers a range of methods for aligning multi-modal data of
105 neuronal cells, identifying cross-modal cell clusters using the aligned data, and generating
106  visualizations to facilitate the characterization of these cross-modal clusters, including their
107  differentially expressed genes and correlated multi-modal features (Fig. 1).

108
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Multimodal Analysis of Neuronal Gene Expression, Electrophysiology and Morphology
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110  Figure 1. Overview of MANGEM (Multimodal Analysis of Neuronal Gene Expression,

111 Electrophysiology and Morphology). User input to MANGEM includes multimodal single-cell
112  data together with cell metadata. Within MANGEM, the multimodal data are aligned using

113  machine learning methods, projecting disparate modalities into a low-dimensional common

114  latent space. Clustering algorithms are applied within the latent space to identify cell clusters,
115  and then analysis methods are provided in MANGEM to characterize the clusters by differential
116  feature expression and correlation of features with the latent space. In addition to interactive
117  plots generated at each step of the workflow, downloadable output includes tabular data files
118  (cell coordinates in latent space, cluster annotations, top features for each cluster) and images
119  depicting alignment, cross-modal cell clusters, and cluster analyses.

120

121 The application is implemented using Plotly Dash Open Source, a Python-based framework for
122  developing data science applications (11). Dash is based on Plotly.js (12), React (13), and
123  Flask (14), and it functions by tying user interface elements to stateless callback functions. In
124  the case of MANGEM, some callback functions are quasi-stateless, in that uploaded and

125  aligned datasets are stored in a filesystem cache to avoid repeating lengthy calculations.

126

127  Our public deployment of MANGEM is on Amazon Web Services infrastructure (Fig. 2). The

128  Elastic Beanstalk service is used to deploy the application to an Elastic Compute Cloud (EC2)
129 instance with associated storage in Amazon Simple Storage Service (S3). In order to be

130 accessed by a user with a web browser, MANGEM requires additional software. A reverse

131 proxy server directs the requests from the web browser to an application server that can

132  translate the requests to the Web Server Gateway Interface (WSGI) protocol used for

133  communication with MANGEM. By default, the Elastic Beanstalk Python platform provides nginx
134  (15) as the reverse proxy server and Gunicorn (16) as the WSGI application server; however,
135 MANGEM does not depend on those specific programs. For example, in our development

136  environment, we use the Apache HTTP server with mod_proxy (17) as the reverse proxy server
137  and uWSGI (18) as the WSGI application server. Most data processing occurs within the main
138  MANGEM process, but additional software is required to enable long-running alignment jobs to
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139  run asynchronously. In this case, Celery (19) is used to run those background jobs, and Redis
140 (20) is used as a message broker to communicate between MANGEM and Celery. Whether
141  aligned synchronously or asynchronously, aligned multi-modal datasets are stored in a

142  filesystem cache on AWS S3.

143
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145  Figure 2. Cloud implementation of MANGEM using AWS infrastructure. The application

146  runs on Amazon Cloud Services using Elastic Beanstalk to provision an EC2 instance. The web
147  server nginx serves as a reverse proxy to the gunicorn WSGI server. MANGEM is written in
148  Python using the Plotly Dash framework. Long-running tasks are run in the background by

149  Celery workers, with Redis acting as the message broker between MANGEM and Celery.

150 Uploaded and processed data files are stored in a filesystem cache in AWS S3.

151

152 MANGEM'’s layout is organized as a set of tabs on the left which contain user interface controls,
153  while the right side contains plots or other information related to the active tab. The tabs

154  correspond to the sequence of steps users will typically take when running the application:

155  upload data, align data, identify cross-modal cell clusters, and perform downstream analysis of
156  cross-modal cell clusters. Each tab contains controls that allow the user to adjust parameters
157  relevant to the current step of the workflow and which influence the downstream results (Table
158 1).

MANGEM functions Parameter

Step 1. Upload Data e Preprocessing method for each modality (log/standardize)

Step 2. Alignment e Alignment algorithm
Dimension of machine learning latent space (3-10)
Number of nearest neighbors (1-10) used in constructing
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similarity matrices (LMA, NLMA).
e Number of iterations (MMD-MA)

Step 3. Clustering e Clustering algorithm
Number of cell clusters (1-10)

Step 4. Analysis e Component selection
Number of top features per cell cluster in Features of
Cross-modal Clusters

e Number of top correlated features in Top Feature
Correlation with Latent Space

Table 1. Key parameters of data processing and analysis in MANGEM. The listed
parameters all influence downstream output of MANGEM. For example, selecting a
preprocessing method on the Upload Data tab will result in that method being applied to the
uploaded dataset before the selected multi-modal alignment method is applied.

At each step of the workflow (Fig. 3), interactive figures are automatically generated to support
understanding, and computation products are available for download as tabular data files. A
video demonstration of the workflow is provided in the Supplemental Data.
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Figure 3. Data flow through MANGEM web application. Input data passes into an alignment
process, which will either run in the main process or in the background, depending on the
method. In the case of background (asynchronous) alignment, a URL will be supplied to the
user which will allow them to check on the job’s status and access the results upon completion.
Aligned data feed into a clustering algorithm, and then data analysis methods can be applied to
the cell clusters. Data visualization output can be produced at each stage of the process, and
tabular data files of aligned data, cell clusters, and analysis results can be downloaded.
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177  Step 1: Upload Data

178  The first data processing step in MANGEM is selecting or uploading neuronal data,

179  accomplished on the Upload Data tab. The expected input to MANGEM consists of three data
180 files in .csv format: one file for each of two modalities, and a third file of cellular metadata. Three
181 sample data sets are preloaded in MANGEM, and a link is provided within the application to

182 download one of these. The first column of each file should contain a cell identifier, and the files
183  are expected to have a consistent cell order. Denote data for the first modality as X, data for the
184 second modality, Y, and metadata, M. Each of these has n rows corresponding to n neurons. X
185 and Y have d; and d, features, respectively. Metadata matrix M has d,, cell characteristics.

186 X = [X1, X2, o Xn]T € RN Y = [y, y2, o]’ € R M = [y, my, ..., my]" € RV

187

188  When user data is uploaded, a label may be supplied for each modality; otherwise, the

189  modalities will be identified using the default labels of “Modality 1” and “Modality 2” in plot

190 legends.

191

192 A preprocessing operation may optionally be selected for each modality. Choices include “Log
193 transform” and “Standardize”, which for the first modality would be:

194

195  “Log transform”: f(X)—X, %/ = log.x/ Vi€ [1,n], j € [Ld4]

196 “Standardize”: f(X)~%, %/ =", 1/ = $i_ X0/ = [(Sioaxd — wye/m

197  If a preprocessing operation is selected, that operation will be applied to the appropriate dataset
198  prior to alignment. The default values of “Log transform” for Modality 1 and “Standardize” for
199  Modality 2 are suitable for the preloaded datasets, where Modality 1 is Gene Expression and

200 Modality 2 is Electrophysiology.

201 Data Exploration

202 The “Explore Data” section of the Upload Data tab can generate plots to gain insight into cell
203 features in the uploaded or selected data sets. A series of box plots is generated for each value
204  of a categorical metadata variable when a single cell feature is selected (Fig. S1a). A particular
205 value of that metadata variable may be selected to filter the data, in which case a violin plot is
206 generated (Fig. S1b). It is also possible to select two features to compare in a scatter plot (Fig.
207  S1c). These features could be from the same or different modalities. Similarly, to the single-
208 feature case, selecting a specific value of a metadata variable filters the data so that only the
209 points corresponding to cells having that metadata value are displayed in the scatter plot (Fig.
210  S1d). As with all plots in MANGEM, a toolbar will pop up when the cursor is placed over the
211 plot. The toolbar has buttons to change to plot appearance (zoom or pan, for example) and also
212  has a button with a camera icon that causes an image of the plot to be downloaded.

213 Step 2: Multi-modal Alignment

214  The approach used by MANGEM to find clusters of related cells is to first transform the
215 measured cellular features into a latent space where cells having similar features are closer
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216  together. This transformation process is called multi-modal alignment, and several alignment
217  methods are implemented in MANGEM. Currently supported methods include Linear Manifold
218  Alignment (LMA), Nonlinear Manifold Alignment (NLMA) (21), Canonical Correlation Analysis
219  (CCA), Manifold Alignment with Maximum Mean Discrepancy (MMD-MA) (22), and

220  Unsupervised Topological Alignment for Single-Cell Multi-Omics (UnionCom) (7). LMA and
221 NLMA utilize similarity matrices to formulate a common latent space. MMD-MA minimizes an
222  objective function which measures distortion and preserved representation. UnionCom infers
223  cross-modal correspondence information before using t-SNE (23) to provide the final latent
224  spaces.

225

226  Several parameters of these alignment methods can be adjusted on MANGEM'’s Alignment tab.
227  These include the dimension of the latent space, the number of nearest neighbors to be used
228  when computing the similarity matrix (LMA, NLMA), and the number of iterations (MMD-MA).
229  The alignment methods take as input the preprocessed datasets X and Y;if no preprocessing
230 method has been selected, then data are used as uploaded: X=XandY =Y. If we think of the
231 alignment as finding optimal projection functions f and g which project cellular data from

232  modality 1 and modality 2, respectively, to a common latent space of dimension d, then after
233 alignment, the i‘" cell can be represented by x; = f(&;) € R and 7; = g(3;) € R

234  After alignment has been completed, the cellular coordinates in the latent space can be

235 downloaded by clicking on the “Download Aligned Data” button on the Alignment tab of

236 MANGEM.

237  Asynchronous Computation of Alignment

238 Though MANGEM primarily operates synchronously, some of the supported alignment methods
239  (notably, UnionCom and MMD-MA) require enough computational resources to motivate

240 running those tasks in the background, asynchronously. Celery, an open-source asynchronous
241  task queue, is used to queue and run these long-running alignment tasks in the background.
242  When the user clicks the “Align Datasets” button after selecting the UnionCom or MMD-MA

243  alignment method, the alignment job is submitted to the task queue, and a unique URL is

244  provided to the user. Navigating to this URL will give the user a message indicating the job

245  status: waiting to start in the task queue, running, or complete. If the job is complete, then the
246  results will be loaded and the Clustering tab of MANGEM will open, and the usual clustering and
247  analysis methods will be available. A video demonstration of background alignment is included
248  in Supplemental Data.

249  Step 3: Cross-modal Cell Clustering

250  Once the multi-modal single-cell data have been aligned, cell clusters can be identified based
251 on proximity within the latent space. Three different clustering methods are currently supported
252 by MANGEM: Gaussian mixture model, K-means, and hierarchical clustering, all using methods
253  provided by the Scikit-learn Python package (24). Gaussian mixture model clustering uses the
254  GaussianMixture class with a single covariance matrix shared by all components and 50

255 iterations. K-means uses the KMeans class with the parameter n_init set to 4 and random seed
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256  specified. Hierarchical clustering is implemented using the AgglomerativeClustering class with
257  Ward linkage, which minimizes the sum of squared distances within clusters. In all cases, the
258 number of clusters to be identified can be specified using the slider control on the Clustering tab
259  of MANGEM. After clusters have been identified, the assignment of cells to clusters can be

260 downloaded by clicking on the “Download Clusters” button.

261  Step 4: Analysis of Cross-modal Cell Clusters

262  The Analysis tab of MANGEM supports visualization of alignment and clustering results as well
263  as methods to reveal relationships between cell features in the context of identified cell clusters.
264  These methods are accessed via the Plot type selection control.

265 Features of cross-modal clusters

266  The “Features of cross-modal clusters” method identifies the most important features within
267 each cross-modal cluster and generates a heatmap for each modality where the rows

268  correspond to identified features and the columns correspond to cells, grouped into previously
269 identified clusters. The number of features identified for each cluster is specified using the
270  “Number of Top Features per cluster” control on the Analysis tab. A list of the most important
271  features can be downloaded using the “Download Top Features” button.

272  Top feature correlation with latent space

273  Top feature correlation with latent space creates a bibiplot (i.e., collection of biplots) (25) with
274  one biplot for each modality. Each biplot displays a 2-dimensional projection of the aligned data
275  for the modality in the latent space while overlaying lines corresponding to the features which
276  are most highly correlated with the latent space representation. For each modality, the

277  correlation is computed between the original cellular data for each feature and the projection of
278 the cellular data into the latent space dimensions selected as components X and Y on the

279  Analysis tab. For a given feature, the correlations between that feature and its X and Y latent
280  space representation determine the coordinates of the endpoint of that feature’s line.

281

282  The latent space dimensions in which aligned data are plotted can be selected using the

283  “Component Selection” controls on the Analysis tab. At most, three dimensions can be plotted at
284  one time within MANGEM, but these controls allow the user to select which dimensions are
285  plotted to gain different perspectives on the data. Additional controls on the Analysis tab allow
286  aligned data points to be colored either by cluster or by metadata value (for example,

287  transcriptomic cell type).

288 Results

289 In this study, we showcased the usage of MANGEM through two case studies that utilized

290 emerging Patch-seq multimodal data of inhibitory neuronal cells in the mouse visual cortex

291  (such as gene expression, electrophysiology, and morphology). It is worth noting that MANGEM
292  is a general-purpose tool that can be used for any user multimodal data of neurons.
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293 Case Study 1: neuronal gene expression and electrophysiology

294  We first tested MANGEM to align these neuronal cells based on gene expression and

295  electrophysiological features. We uploaded two datasets, one containing 1302 most variable
296  expressed genes and 41 electrophysiological features for 3654 neuronal cells, on the Upload
297  Data tab of MANGEM. We then preprocessed the data using log transformation for gene

298 expression and standardization for electrophysiology features.

299

300 On the Alignment tab, we set the alignment method to Nonlinear Manifold Alignment (NLMA),
301  the number of latent space dimensions to 5, and the number of nearest neighbors (used in
302  construction of the similarity matrix for NLMA) to 2. Clicking the “Align Datasets” button

303 generated two measures of alignment along with a 3D plot of the aligned cells (Fig. 4a). The
304 aligned multimodal cells were represented in the common latent space, X and ¥, are 3654 cells
305 (rows) by 5 latent dimensions (columns). We also tested other alignment methods and found
306 that NLMA, in addition to being one of the fastest methods to run, resulted in the smallest
307  alignment error (Fig. S2, Table S1).
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309 Figure 4. MANGEM analysis and visualization of neuronal gene expression and

310 electrophysiological features in mouse visual cortex. a.) Measures of alignment error and 3-
311 d plot of superimposed aligned data in latent space are shown for the preloaded mouse visual
312  cortex dataset after nonlinear manifold alignment. b.) Cross-modal clusters, obtained by

313  Gaussian mixture model, are indicated by color in plots of aligned data for each modality. c.)
314  Feature levels across all cells for the top 5 features for each cross-modal cluster. Normalized
315  feature magnitude was ranked using the Wilcox Rank Sum test. Cross-modal clusters are

316 identified by the colored bar at the top of each plot. d.) Biplots for Gene Expression and

317  Electrophysiological features using dimensions 1 and 2 of the latent space. The top 15 features
318 by correlation with the latent space are shown plotted as radial lines where the length is the
319  value of correlation (max value 1).
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320

321  Afterwards, we chose to use the Gaussian Mixture Model clustering algorithm on the Clustering
322  tab, specifying 5 clusters. Upon clicking the “Identify Cross-Modal Cell Clusters” button, the
323  algorithm identified cross-modal cell clusters and generated side-by-side plots of the aligned
324  cells for each modality in the latent space. These plots showed cells colored according to their
325 respective cross-modal clusters (Fig. 4b).

326

327  The Analysis tab of MANGEM offers various visualization methods for exploring cross-modal
328 relationships between gene expression and electrophysiological features. We set the number of
329 top features to 5 and selected the “Features of Cross-modal Clusters (Heatmap)” (Fig. 4c). The
330 resulting heatmap showed that tau and ri were the top two electrophysiological features in

331 Cluster 4, while the top differentially-expressed genes in the cluster were Sst, Grin3a, Grik3,
332 Trhde, and Stxbp6. These shared multi-modal features suggest potential functional linkages
333  among the cells in the cluster.

334

335  To further investigate these linkages, we switched the plot type to “Top Feature Correlation with
336 Latent Space (Bibiplot)” (Fig. 4d) and set the number of top correlated features to 15. The

337  Dbibiplots graphically represented the most highly-correlated features from cross-modal cell

338 clusters and allowed for interactive zooming into the Cluster 4 area on the latent space. The
339 highly-correlated features included tau and, to a lesser extent, ri among the electrophysiological
340 features, while Sst and Grik3 were among the genes associated with Cluster 4.

341 Case Study 2: neuronal gene expression and morphology

342

343 MANGEM was used to process gene expression of the top 1000 variable genes and

344  morphological features in the mouse motor cortex (25). The data consists of 646 single-cells
345  with 42,466 genes and 63 morphological features. Each modality is formatted into a separate
346  csv, with an additional file indicating metadata such as age, gender, etc. The data was then

347  uploaded onto the webapp using the upload tab.

348

349 MANGEM can be used to easily test multiple integration methods. For this application, we

350 chose Non-Linear Manifold Alignment (NLMA). After alignment, pairwise accuracy statistics are
351  reported (Fig. 5a).
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Figure 5. MANGEM analysis and visualization of neuronal gene expression and
morphological features in mouse visual cortex. a.) Measures of alignment error and 3-d plot
of superimposed aligned data in latent space are shown for the mouse morphology cortex
dataset after nonlinear manifold alignment. b.) Cross-modal clusters, obtained by Gaussian
mixture model, are indicated by color in plots of aligned data for each modality. c.) Feature
expression levels across all cells for the top 10 differentially expressed features for each cross-
modal cluster. Normalized feature expression was ranked using the Wilcox Rank Sum test.
Cross-modal clusters are identified by the colored bar at the top of each plot. d.) Biplots for
Gene Expression and Electrophysiological features using dimensions 1 and 2 of the latent
space. The top 15 features by correlation with the latent space are shown plotted as radial lines
where the length is the value of correlation (max value 1).

MANGEM is then used to separate the data into 5 clusters using a gaussian mixture model.
The clusters closely align with true cell types (Fig. 5b). Then, differentially expressed features
for each cluster may be downloaded and used for downstream analysis. The expressed genes
can then be analyzed for importance in brain function.

MANGEM identifies Pvalb, Vip, Lamp5, and Sst among the top 2 most differentially expressed
genes over the 5 cell clusters (Fig. 5¢). These genes are commonly used to identify cell-type
(26). So, MANGEM can be used to automatically perform cell-type clustering on multimodal
datasets. In addition, MANGEM identifies Adarb2 as a differentially expressed gene. Adarb2
has been found to distinguish between two major branches of inhibitory neurons (27).

MANGEM also allows users to create Bibiplots to Visualize features important to the latent

space (Fig. 5d). These features which are highly correlated with the latent space (e.g., SOX6
and sp_width) may then be the focus of future data exploration.
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380 Availability

381 MANGEM is freely available for use at https://ctc.waisman.wisc.edu/mangem. The source code
382 for MANGEM is released under the MIT License and is available for download at
383 https://github.com/daifengwanglab/mangem.

384 Future Directions

385 MANGEM is a user-friendly web application designed primarily for biologists and

386  neuroscientists. The app comes with pre-selected general-purpose hyperparameters that can
387  be fine-tuned by users to suit their needs. With the rapid advancements in multimodal machine
388 learning (28), MANGEM is constantly evolving to offer more advanced alignment options.

389

390 At present, MANGEM can only work with pre-processed electrophysiological and morphology
391  features, but future versions may incorporate methods like deep neural networks to work with
392 raw data (e.g., electrophysiological time-series data) or other types of data, such as genomics,
393  epigenomics, or images. MANGEM is also capable of incorporating emerging machine learning
394  approaches to infer missing modalities and cross-modal correspondence (29).

395

396 MANGEM uses cloud-based computing, which in the future will enable distributed training,

397  making computation faster and providing a smoother experience for users. To further improve
398 the efficiency of the app, MANGEM can be optimized for parallel processing, allowing it to take
399 advantage of multiple processors and GPUs for faster computation. In addition to its alignment
400 capabilities, MANGEM also enables collaborative work and data sharing. The app provides a
401  centralized repository for storing and sharing aligned data, with built-in privacy and security
402 measures to protect sensitive data.

403  Supporting Information

404  Supplemental Data - tutorial video
405  Supplemental Materials - Supplemental Figures 1-2, Supplemental Table 1
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a. Alignment in latent space: Mouse Morphology
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