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10 Abstract
11 Single-cell techniques have enabled the acquisition of multi-modal data, particularly for neurons, 
12 to characterize cellular functions. Patch-seq, for example, combines patch-clamp recording, cell 
13 imaging, and single-cell RNA-seq to obtain electrophysiology, morphology, and gene expression 
14 data from a single neuron. While these multi-modal data offer potential insights into neuronal 
15 functions, they can be heterogeneous and noisy. To address this, machine-learning methods 
16 have been used to align cells from different modalities onto a low-dimensional latent space, 
17 revealing multi-modal cell clusters. However, the use of those methods can be challenging for 
18 biologists and neuroscientists without computational expertise and also requires suitable 
19 computing infrastructure for computationally expensive methods. To address these issues, we 
20 developed a cloud-based web application, MANGEM (Multimodal Analysis of Neuronal Gene 
21 expression, Electrophysiology, and Morphology) at https://ctc.waisman.wisc.edu/mangem. 
22 MANGEM provides a step-by-step accessible and user-friendly interface to machine-learning 
23 alignment methods of neuronal multi-modal data while enabling real-time visualization of 
24 characteristics of raw and aligned cells. It can be run asynchronously for large-scale data 
25 alignment, provides users with various downstream analyses of aligned cells and visualizes the 
26 analytic results such as identifying multi-modal cell clusters of cells and detecting correlated 
27 genes with electrophysiological and morphological features. We demonstrated the usage of 
28 MANGEM by aligning Patch-seq multimodal data of neuronal cells in the mouse visual cortex.

29 Author Summary
30 The human brain is made up of billions of tiny cells called neurons, each with their own 
31 important job. Scientists are now able to study individual neurons in more detail than ever 
32 before using new advanced techniques. They can look at different data of individual neurons 
33 like how genes are being used (gene expression), how the neuron responds to electrical signals 
34 (electrophysiology), and what it looks like (morphology). By combining all of this information, 
35 they can start to group similar neurons together and figure out what they do. However, due to 
36 the data complexity, this process can be very complicated and hard for researchers without 
37 sufficient computational skills. To address this, we developed a web app, MANGEM (Multimodal 
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38 Analysis of Neuronal Gene Expression, Electrophysiology, and Morphology). It lets scientists 
39 upload their data and select emerging machine-learning approaches to find groups of similar 
40 neurons. It also makes interactive visualizations to help them explore the characteristics of 
41 neuron groups and understand what they do.

42 Introduction
43 The human brain has approximately 86 billion neurons encompassing a vast range of different 
44 functions. Understanding the roles of individual neurons is a daunting challenge that is 
45 beginning to become possible with new techniques and technologies. The development of 
46 single-cell technologies such as Patch-seq has resulted in the ability to characterize neurons 
47 with new specificity and detail. Patch-seq enables a researcher to simultaneously obtain 
48 measures of gene expression, electrophysiology, and morphology of individual neurons. Gene 
49 expression is a measure of the extent to which different genes in a cell’s DNA are transcribed to 
50 RNA and then translated to produce proteins. Electrophysiology describes the electrical 
51 behavior of a cell. A microscopic pipette containing an electrolyte contacts the cell membrane to 
52 establish an electrical connection. Then the cell’s electrical response to an applied voltage or 
53 current is measured. Morphology refers to the physical structure of a neuron, including the size 
54 and shape of the cell’s axon and dendrites. By combining microscopy, RNA sequencing, and 
55 electrophysiological recording for individual neurons, multi-modal datasets can be developed 
56 with the potential to reveal relationships between neuronal function, structure, and gene 
57 expression (1). Multi-modal single-cell datasets are increasingly available to researchers, in part 
58 due to efforts by the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) 
59 Initiative to support the development and storage of such datasets in freely accessible 
60 repositories such as the Neuroscience Multi-Omic Archive (2) for genomic data and Distributed 
61 Archives for Neurophysiology Data Integration (3,4) for neurophysiology data, including 
62 electrophysiology.
63
64 While multi-modal single-cell data offers great potential for improving understanding of brain 
65 organization and function, new methods are required for integration and analysis of the data (5).  
66 Because cells with similar characteristics in one modality are not necessarily similar when 
67 measured by another, identification of cell clusters must incorporate disparate data types 
68 simultaneously. Machine-learning methods such as manifold learning are highly applicable to 
69 the problems posed by heterogeneity of multi-modal single-cell data (6), but these methods are 
70 commonly difficult to use, especially for biologists and neurologists who may not have 
71 computational expertise. Documentation and tutorials, if present, are limited in scope. The 
72 methods are often supplied as source code only, requiring coding expertise to use, which further 
73 limits their accessibility. Installation and configuration of the software adds another layer of 
74 difficulty to overcome before these methods can be applied. As an example, consider the 
75 software for UnionCom (7). While the UnionCom software is available in the Python package 
76 index (PyPI) and easily installable, its dependencies are not automatically installed. The 
77 prospective user will quickly discover that the versions of those dependencies suggested in the 
78 limited documentation are not easily installable in recent versions of Python. Given time and 
79 effort, a motivated researcher will manage to find the right combination of package versions and 
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80 Python version that will be compatible, but this level of difficulty is both a significant barrier to 
81 use and common in open-source scientific software generally (8).
82
83 An increasingly common way to address the challenges of running open-source scientific 
84 software is by implementing the methods of the software in a web application (9,10). Here we 
85 present a new web application named MANGEM (Multimodal Analysis of Neuronal Gene 
86 Expression, Electrophysiology and Morphology), developed to address the challenges 
87 researchers may experience in using existing methods of aligning and analyzing multi-modal 
88 single-cell data. In particular, MANGEM provides an easy-to-use interface to a variety of 
89 machine-learning alignment methods, requires no coding to use, and does not require 
90 installation of software or management of computing infrastructure. Preloaded datasets and an 
91 interface that walks the user through each operational step provide for an accessible 
92 introduction to the use of machine-learning methods to align multi-modal datasets. As a cloud-
93 based web application, MANGEM enables users to begin exploring multi-modal single-cell 
94 datasets without first undertaking the challenges of software installation or management of the 
95 underlying infrastructure. While the application was designed for real-time data processing and 
96 exploration, it also supports running certain long-running methods asynchronously, providing a 
97 customized URL for users to retrieve results after computation is complete. Interactive graphical 
98 display of output facilitates exploration of the data at each step of the analysis process: raw data 
99 as uploaded, preprocessed data (e.g., standardized), aligned datasets, and cross-modal 

100 clusters. Integrated downstream analysis methods support identification of important cellular 
101 features within cross-modal cell clusters and aid interpretation of the revealed relationships 
102 within cell clusters.

103 Design and Implementation
104 The MANGEM web application offers a range of methods for aligning multi-modal data of 
105 neuronal cells, identifying cross-modal cell clusters using the aligned data, and generating 
106 visualizations to facilitate the characterization of these cross-modal clusters, including their 
107 differentially expressed genes and correlated multi-modal features (Fig. 1). 
108
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109
110 Figure 1. Overview of MANGEM (Multimodal Analysis of Neuronal Gene Expression, 
111 Electrophysiology and Morphology).  User input to MANGEM includes multimodal single-cell 
112 data together with cell metadata.  Within MANGEM, the multimodal data are aligned using 
113 machine learning methods, projecting disparate modalities into a low-dimensional common 
114 latent space.  Clustering algorithms are applied within the latent space to identify cell clusters, 
115 and then analysis methods are provided in MANGEM to characterize the clusters by differential 
116 feature expression and correlation of features with the latent space. In addition to interactive 
117 plots generated at each step of the workflow, downloadable output includes tabular data files 
118 (cell coordinates in latent space, cluster annotations, top features for each cluster) and images 
119 depicting alignment, cross-modal cell clusters, and cluster analyses.
120
121 The application is implemented using Plotly Dash Open Source, a Python-based framework for 
122 developing data science applications (11).  Dash is based on Plotly.js (12), React (13), and 
123 Flask (14), and it functions by tying user interface elements to stateless callback functions.  In 
124 the case of MANGEM, some callback functions are quasi-stateless, in that uploaded and 
125 aligned datasets are stored in a filesystem cache to avoid repeating lengthy calculations.
126
127 Our public deployment of MANGEM is on Amazon Web Services infrastructure (Fig. 2). The 
128 Elastic Beanstalk service is used to deploy the application to an Elastic Compute Cloud (EC2) 
129 instance with associated storage in Amazon Simple Storage Service (S3). In order to be 
130 accessed by a user with a web browser, MANGEM requires additional software. A reverse 
131 proxy server directs the requests from the web browser to an application server that can 
132 translate the requests to the Web Server Gateway Interface (WSGI) protocol used for 
133 communication with MANGEM. By default, the Elastic Beanstalk Python platform provides nginx 
134 (15) as the reverse proxy server and Gunicorn (16) as the WSGI application server; however, 
135 MANGEM does not depend on those specific programs. For example, in our development 
136 environment, we use the Apache HTTP server with mod_proxy (17) as the reverse proxy server 
137 and uWSGI (18) as the WSGI application server. Most data processing occurs within the main 
138 MANGEM process, but additional software is required to enable long-running alignment jobs to 
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139 run asynchronously. In this case, Celery (19) is used to run those background jobs, and Redis 
140 (20) is used as a message broker to communicate between MANGEM and Celery. Whether 
141 aligned synchronously or asynchronously, aligned multi-modal datasets are stored in a 
142 filesystem cache on AWS S3.
143

144
145 Figure 2.  Cloud implementation of MANGEM using AWS infrastructure.  The application 
146 runs on Amazon Cloud Services using Elastic Beanstalk to provision an EC2 instance.  The web 
147 server nginx serves as a reverse proxy to the gunicorn WSGI server.  MANGEM is written in 
148 Python using the Plotly Dash framework.  Long-running tasks are run in the background by 
149 Celery workers, with Redis acting as the message broker between MANGEM and Celery.  
150 Uploaded and processed data files are stored in a filesystem cache in AWS S3.
151
152 MANGEM’s layout is organized as a set of tabs on the left which contain user interface controls, 
153 while the right side contains plots or other information related to the active tab. The tabs 
154 correspond to the sequence of steps users will typically take when running the application: 
155 upload data, align data, identify cross-modal cell clusters, and perform downstream analysis of 
156 cross-modal cell clusters.  Each tab contains controls that allow the user to adjust parameters 
157 relevant to the current step of the workflow and which influence the downstream results (Table 
158 1).

MANGEM functions Parameter

Step 1. Upload Data ● Preprocessing method for each modality (log/standardize)

Step 2. Alignment ● Alignment algorithm
● Dimension of machine learning latent space (3-10)
● Number of nearest neighbors (1-10) used in constructing 
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similarity matrices (LMA, NLMA).
● Number of iterations (MMD-MA)

Step 3. Clustering ● Clustering algorithm
● Number of cell clusters (1-10)

Step 4. Analysis ● Component selection
● Number of top features per cell cluster in Features of 

Cross-modal Clusters
● Number of top correlated features in Top Feature 

Correlation with Latent Space

159 Table 1. Key parameters of data processing and analysis in MANGEM. The listed 
160 parameters all influence downstream output of MANGEM. For example, selecting a 
161 preprocessing method on the Upload Data tab will result in that method being applied to the 
162 uploaded dataset before the selected multi-modal alignment method is applied.
163
164 At each step of the workflow (Fig. 3), interactive figures are automatically generated to support 
165 understanding, and computation products are available for download as tabular data files.  A 
166 video demonstration of the workflow is provided in the Supplemental Data.
167

168
169
170 Figure 3. Data flow through MANGEM web application. Input data passes into an alignment 
171 process, which will either run in the main process or in the background, depending on the 
172 method.  In the case of background (asynchronous) alignment, a URL will be supplied to the 
173 user which will allow them to check on the job’s status and access the results upon completion.  
174 Aligned data feed into a clustering algorithm, and then data analysis methods can be applied to 
175 the cell clusters.  Data visualization output can be produced at each stage of the process, and 
176 tabular data files of aligned data, cell clusters, and analysis results can be downloaded.
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177 Step 1: Upload Data   
178 The first data processing step in MANGEM is selecting or uploading neuronal data, 
179 accomplished on the Upload Data tab.  The expected input to MANGEM consists of three data 
180 files in .csv format: one file for each of two modalities, and a third file of cellular metadata. Three 
181 sample data sets are preloaded in MANGEM, and a link is provided within the application to 
182 download one of these. The first column of each file should contain a cell identifier, and the files 
183 are expected to have a consistent cell order. Denote data for the first modality as 𝑋, data for the 
184 second modality, 𝑌, and metadata, 𝑀.  Each of these has 𝑛 rows corresponding to 𝑛 neurons.  𝑋 
185 and 𝑌 have 𝑑1 and 𝑑2 features, respectively.  Metadata matrix 𝑀 has 𝑑𝑚 cell characteristics.  
186 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛]𝑇 ∈ ℜ𝑛×𝑑1, 𝑌 = [𝑦1, 𝑦2, ...,𝑦𝑛]𝑇 ∈ ℜ𝑛×𝑑2 , 𝑀 = [𝑚1, 𝑚2, ..., 𝑚𝑛]𝑇 ∈ ℜ𝑛×𝑑𝑚

187
188 When user data is uploaded, a label may be supplied for each modality; otherwise, the 
189 modalities will be identified using the default labels of “Modality 1” and “Modality 2” in plot 
190 legends.
191
192 A preprocessing operation may optionally be selected for each modality. Choices include “Log 
193 transform” and “Standardize”, which for the first modality would be:
194
195 “Log transform”: 𝑓(𝑋)→𝑋, 𝑥𝑖

𝑗 = 𝑙𝑜𝑔2𝑥𝑖
𝑗  ∀ 𝑖 ∈ [1,𝑛], 𝑗 ∈ [1,𝑑1] 

196 “Standardize”: 𝑓(𝑋)→𝑋, 𝑥𝑖
𝑗 = 𝑥𝑖

𝑗 ― 𝜇𝑗

𝜎𝑗  , 𝜇𝑗 = ∑𝑛
𝑘=1

𝑥𝑘
𝑗

𝑛
,𝜎𝑗 = ( ∑𝑛

𝑘=1 𝑥𝑘
𝑗 ― 𝜇𝑗)2/𝑛  

197 If a preprocessing operation is selected, that operation will be applied to the appropriate dataset 
198 prior to alignment. The default values of “Log transform” for Modality 1 and “Standardize” for 
199 Modality 2 are suitable for the preloaded datasets, where Modality 1 is Gene Expression and 
200 Modality 2 is Electrophysiology.

201 Data Exploration
202 The “Explore Data” section of the Upload Data tab can generate plots to gain insight into cell 
203 features in the uploaded or selected data sets. A series of box plots is generated for each value 
204 of a categorical metadata variable when a single cell feature is selected (Fig. S1a). A particular 
205 value of that metadata variable may be selected to filter the data, in which case a violin plot is 
206 generated (Fig. S1b). It is also possible to select two features to compare in a scatter plot (Fig. 
207 S1c). These features could be from the same or different modalities. Similarly, to the single-
208 feature case, selecting a specific value of a metadata variable filters the data so that only the 
209 points corresponding to cells having that metadata value are displayed in the scatter plot (Fig. 
210 S1d). As with all plots in MANGEM, a toolbar will pop up when the cursor is placed over the 
211 plot. The toolbar has buttons to change to plot appearance (zoom or pan, for example) and also 
212 has a button with a camera icon that causes an image of the plot to be downloaded.

213 Step 2: Multi-modal Alignment    
214 The approach used by MANGEM to find clusters of related cells is to first transform the 
215 measured cellular features into a latent space where cells having similar features are closer 
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216 together. This transformation process is called multi-modal alignment, and several alignment 
217 methods are implemented in MANGEM. Currently supported methods include Linear Manifold 
218 Alignment (LMA), Nonlinear Manifold Alignment (NLMA) (21), Canonical Correlation Analysis 
219 (CCA), Manifold Alignment with Maximum Mean Discrepancy (MMD-MA) (22), and 
220 Unsupervised Topological Alignment for Single-Cell Multi-Omics (UnionCom) (7). LMA and 
221 NLMA utilize similarity matrices to formulate a common latent space.  MMD-MA minimizes an 
222 objective function which measures distortion and preserved representation. UnionCom infers 
223 cross-modal correspondence information before using t-SNE (23) to provide the final latent 
224 spaces.
225
226 Several parameters of these alignment methods can be adjusted on MANGEM’s Alignment tab. 
227 These include the dimension of the latent space, the number of nearest neighbors to be used 
228 when computing the similarity matrix (LMA, NLMA), and the number of iterations (MMD-MA).  
229 The alignment methods take as input the preprocessed datasets 𝑋 and 𝑌; if no preprocessing 
230 method has been selected, then data are used as uploaded: 𝑋 = 𝑋 and 𝑌 = 𝑌.  If we think of the 
231 alignment as finding optimal projection functions 𝑓 and 𝑔 which project cellular data from 
232 modality 1 and modality 2, respectively, to a common latent space of dimension 𝑑, then after 
233 alignment, the 𝑖𝑡ℎ cell can be represented by 𝑥𝑖 = 𝑓(𝑥𝑖) ∈ ℜ𝑑 and 𝑦𝑖 = 𝑔(𝑦𝑖) ∈ ℜ𝑑.
234 After alignment has been completed, the cellular coordinates in the latent space can be 
235 downloaded by clicking on the “Download Aligned Data” button on the Alignment tab of 
236 MANGEM.

237 Asynchronous Computation of Alignment    
238 Though MANGEM primarily operates synchronously, some of the supported alignment methods 
239 (notably, UnionCom and MMD-MA) require enough computational resources to motivate 
240 running those tasks in the background, asynchronously. Celery, an open-source asynchronous 
241 task queue, is used to queue and run these long-running alignment tasks in the background.
242 When the user clicks the “Align Datasets” button after selecting the UnionCom or MMD-MA 
243 alignment method, the alignment job is submitted to the task queue, and a unique URL is 
244 provided to the user. Navigating to this URL will give the user a message indicating the job 
245 status: waiting to start in the task queue, running, or complete. If the job is complete, then the 
246 results will be loaded and the Clustering tab of MANGEM will open, and the usual clustering and 
247 analysis methods will be available. A video demonstration of background alignment is included 
248 in Supplemental Data.

249 Step 3: Cross-modal Cell Clustering    
250 Once the multi-modal single-cell data have been aligned, cell clusters can be identified based 
251 on proximity within the latent space. Three different clustering methods are currently supported 
252 by MANGEM: Gaussian mixture model, K-means, and hierarchical clustering, all using methods 
253 provided by the Scikit-learn Python package (24). Gaussian mixture model clustering uses the 
254 GaussianMixture class with a single covariance matrix shared by all components and 50 
255 iterations.  K-means uses the KMeans class with the parameter n_init set to 4 and random seed 
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256 specified.  Hierarchical clustering is implemented using the AgglomerativeClustering class with 
257 Ward linkage, which minimizes the sum of squared distances within clusters.  In all cases, the 
258 number of clusters to be identified can be specified using the slider control on the Clustering tab 
259 of MANGEM. After clusters have been identified, the assignment of cells to clusters can be 
260 downloaded by clicking on the “Download Clusters” button.

261 Step 4: Analysis of Cross-modal Cell Clusters    
262 The Analysis tab of MANGEM supports visualization of alignment and clustering results as well 
263 as methods to reveal relationships between cell features in the context of identified cell clusters. 
264 These methods are accessed via the Plot type selection control.

265 Features of cross-modal clusters
266 The “Features of cross-modal clusters” method identifies the most important features within 
267 each cross-modal cluster and generates a heatmap for each modality where the rows 
268 correspond to identified features and the columns correspond to cells, grouped into previously 
269 identified clusters. The number of features identified for each cluster is specified using the 
270 “Number of Top Features per cluster” control on the Analysis tab. A list of the most important 
271 features can be downloaded using the “Download Top Features” button.

272 Top feature correlation with latent space
273 Top feature correlation with latent space creates a bibiplot (i.e., collection of biplots) (25) with 
274 one biplot for each modality. Each biplot displays a 2-dimensional projection of the aligned data 
275 for the modality in the latent space while overlaying lines corresponding to the features which 
276 are most highly correlated with the latent space representation. For each modality, the 
277 correlation is computed between the original cellular data for each feature and the projection of 
278 the cellular data into the latent space dimensions selected as components X and Y on the 
279 Analysis tab.  For a given feature, the correlations between that feature and its X and Y latent 
280 space representation determine the coordinates of the endpoint of that feature’s line.
281
282 The latent space dimensions in which aligned data are plotted can be selected using the 
283 “Component Selection” controls on the Analysis tab. At most, three dimensions can be plotted at 
284 one time within MANGEM, but these controls allow the user to select which dimensions are 
285 plotted to gain different perspectives on the data.  Additional controls on the Analysis tab allow 
286 aligned data points to be colored either by cluster or by metadata value (for example, 
287 transcriptomic cell type).

288 Results
289 In this study, we showcased the usage of MANGEM through two case studies that utilized 
290 emerging Patch-seq multimodal data of inhibitory neuronal cells in the mouse visual cortex 
291 (such as gene expression, electrophysiology, and morphology). It is worth noting that MANGEM 
292 is a general-purpose tool that can be used for any user multimodal data of neurons.
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293 Case Study 1: neuronal gene expression and electrophysiology
294 We first tested MANGEM to align these neuronal cells based on gene expression and 
295 electrophysiological features. We uploaded two datasets, one containing 1302 most variable 
296 expressed genes and 41 electrophysiological features for 3654 neuronal cells, on the Upload 
297 Data tab of MANGEM. We then preprocessed the data using log transformation for gene 
298 expression and standardization for electrophysiology features. 
299
300 On the Alignment tab, we set the alignment method to Nonlinear Manifold Alignment (NLMA), 
301 the number of latent space dimensions to 5, and the number of nearest neighbors (used in 
302 construction of the similarity matrix for NLMA) to 2. Clicking the “Align Datasets” button 
303 generated two measures of alignment along with a 3D plot of the aligned cells (Fig. 4a).  The 
304 aligned multimodal cells were represented in the common latent space, 𝑋 and 𝑌, are 3654 cells 
305 (rows) by 5 latent dimensions (columns).  We also tested other alignment methods and found 
306 that NLMA, in addition to being one of the fastest methods to run, resulted in the smallest 
307 alignment error (Fig. S2, Table S1).  

308
309 Figure 4. MANGEM analysis and visualization of neuronal gene expression and 
310 electrophysiological features in mouse visual cortex. a.) Measures of alignment error and 3-
311 d plot of superimposed aligned data in latent space are shown for the preloaded mouse visual 
312 cortex dataset after nonlinear manifold alignment. b.) Cross-modal clusters, obtained by 
313 Gaussian mixture model, are indicated by color in plots of aligned data for each modality. c.) 
314 Feature levels across all cells for the top 5 features for each cross-modal cluster. Normalized 
315 feature magnitude was ranked using the Wilcox Rank Sum test.  Cross-modal clusters are 
316 identified by the colored bar at the top of each plot. d.) Biplots for Gene Expression and 
317 Electrophysiological features using dimensions 1 and 2 of the latent space. The top 15 features 
318 by correlation with the latent space are shown plotted as radial lines where the length is the 
319 value of correlation (max value 1).  
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320
321 Afterwards, we chose to use the Gaussian Mixture Model clustering algorithm on the Clustering 
322 tab, specifying 5 clusters. Upon clicking the “Identify Cross-Modal Cell Clusters” button, the 
323 algorithm identified cross-modal cell clusters and generated side-by-side plots of the aligned 
324 cells for each modality in the latent space. These plots showed cells colored according to their 
325 respective cross-modal clusters (Fig. 4b). 
326
327 The Analysis tab of MANGEM offers various visualization methods for exploring cross-modal 
328 relationships between gene expression and electrophysiological features. We set the number of 
329 top features to 5 and selected the “Features of Cross-modal Clusters (Heatmap)” (Fig. 4c). The 
330 resulting heatmap showed that tau and ri were the top two electrophysiological features in 
331 Cluster 4, while the top differentially-expressed genes in the cluster were Sst, Grin3a, Grik3, 
332 Trhde, and Stxbp6. These shared multi-modal features suggest potential functional linkages 
333 among the cells in the cluster. 
334
335 To further investigate these linkages, we switched the plot type to “Top Feature Correlation with 
336 Latent Space (Bibiplot)” (Fig. 4d) and set the number of top correlated features to 15. The 
337 bibiplots graphically represented the most highly-correlated features from cross-modal cell 
338 clusters and allowed for interactive zooming into the Cluster 4 area on the latent space. The 
339 highly-correlated features included tau and, to a lesser extent, ri among the electrophysiological 
340 features, while Sst and Grik3 were among the genes associated with Cluster 4.

341 Case Study 2: neuronal gene expression and morphology
342
343 MANGEM was used to process gene expression of the top 1000 variable genes and 
344 morphological features in the mouse motor cortex (25). The data consists of 646 single-cells 
345 with 42,466 genes and 63 morphological features. Each modality is formatted into a separate 
346 csv, with an additional file indicating metadata such as age, gender, etc. The data was then 
347 uploaded onto the webapp using the upload tab.
348
349 MANGEM can be used to easily test multiple integration methods.  For this application, we 
350 chose Non-Linear Manifold Alignment (NLMA).  After alignment, pairwise accuracy statistics are 
351 reported (Fig. 5a).
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352
353 Figure 5. MANGEM analysis and visualization of neuronal gene expression and 
354 morphological features in mouse visual cortex. a.) Measures of alignment error and 3-d plot 
355 of superimposed aligned data in latent space are shown for the mouse morphology cortex 
356 dataset after nonlinear manifold alignment. b.) Cross-modal clusters, obtained by Gaussian 
357 mixture model, are indicated by color in plots of aligned data for each modality. c.) Feature 
358 expression levels across all cells for the top 10 differentially expressed features for each cross-
359 modal cluster. Normalized feature expression was ranked using the Wilcox Rank Sum test.  
360 Cross-modal clusters are identified by the colored bar at the top of each plot. d.) Biplots for 
361 Gene Expression and Electrophysiological features using dimensions 1 and 2 of the latent 
362 space. The top 15 features by correlation with the latent space are shown plotted as radial lines 
363 where the length is the value of correlation (max value 1).  
364
365 MANGEM is then used to separate the data into 5 clusters using a gaussian mixture model.  
366 The clusters closely align with true cell types (Fig. 5b). Then, differentially expressed features 
367 for each cluster may be downloaded and used for downstream analysis.  The expressed genes 
368 can then be analyzed for importance in brain function.
369
370 MANGEM identifies Pvalb, Vip, Lamp5, and Sst among the top 2 most differentially expressed 
371 genes over the 5 cell clusters (Fig. 5c).  These genes are commonly used to identify cell-type 
372 (26).  So, MANGEM can be used to automatically perform cell-type clustering on multimodal 
373 datasets.  In addition, MANGEM identifies Adarb2 as a differentially expressed gene.  Adarb2 
374 has been found to distinguish between two major branches of inhibitory neurons (27).
375
376 MANGEM also allows users to create Bibiplots to Visualize features important to the latent 
377 space (Fig. 5d).  These features which are highly correlated with the latent space (e.g., SOX6 
378 and sp_width) may then be the focus of future data exploration.
379
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380 Availability
381 MANGEM is freely available for use at https://ctc.waisman.wisc.edu/mangem.  The source code 
382 for MANGEM is released under the MIT License and is available for download at 
383 https://github.com/daifengwanglab/mangem. 

384 Future Directions
385 MANGEM is a user-friendly web application designed primarily for biologists and 
386 neuroscientists. The app comes with pre-selected general-purpose hyperparameters that can 
387 be fine-tuned by users to suit their needs. With the rapid advancements in multimodal machine 
388 learning (28), MANGEM is constantly evolving to offer more advanced alignment options. 
389
390 At present, MANGEM can only work with pre-processed electrophysiological and morphology 
391 features, but future versions may incorporate methods like deep neural networks to work with 
392 raw data (e.g., electrophysiological time-series data) or other types of data, such as genomics, 
393 epigenomics, or images. MANGEM is also capable of incorporating emerging machine learning 
394 approaches to infer missing modalities and cross-modal correspondence (29).
395
396 MANGEM uses cloud-based computing, which in the future will enable distributed training, 
397 making computation faster and providing a smoother experience for users. To further improve 
398 the efficiency of the app, MANGEM can be optimized for parallel processing, allowing it to take 
399 advantage of multiple processors and GPUs for faster computation. In addition to its alignment 
400 capabilities, MANGEM also enables collaborative work and data sharing. The app provides a 
401 centralized repository for storing and sharing aligned data, with built-in privacy and security 
402 measures to protect sensitive data.

403 Supporting Information
404 Supplemental Data - tutorial video
405 Supplemental Materials - Supplemental Figures 1-2, Supplemental Table 1

406 Competing interests
407 The authors declare no competing interests.

408 Funding
409 This work was supported by National Institutes of Health grants, RF1MH128695, 
410 R21NS128761, R21NS127432, R01AG067025, R03NS123969 to D.W., P50HD105353 to 
411 Waisman Center., and the start-up funding for D.W. from the Office of the Vice Chancellor for 
412 Research and Graduate Education at the University of Wisconsin–Madison. The funders had no 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.03.535322doi: bioRxiv preprint 

https://ctc.waisman.wisc.edu/mangem
https://github.com/daifengwanglab/mangem
https://doi.org/10.1101/2023.04.03.535322
http://creativecommons.org/licenses/by/4.0/


14

413 role in study design, data collection, and analysis, decision to publish, or manuscript 
414 preparation.

415 Author’s Contributions
416 D.W. conceived the study. D.W., R.O. and N.K. designed the methodology, performed analysis 
417 and visualization. R.O. implemented the software. D.W., R.O., and N.K. edited and wrote the 
418 manuscript. All authors read and approved the final manuscript.

419 Acknowledgments
420 The authors wish to thank all members of the Wang lab for insightful discussions on the work.

421 References
422
423 1. Marx V. Patch-seq takes neuroscience to a multimodal place. Nat Methods. 2022 
424 Nov;19(11):1340–4.
425 2. Institute for Genome Sciences. NeMO Archive - Home [Internet]. The Neuroscience Multi-
426 omic Archive. [cited 2023 Mar 27]. Available from: https://nemoarchive.org/
427 3. DANDI Archive [Internet]. [cited 2023 Mar 27]. Available from: https://dandiarchive.org/
428 4. Rübel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, et al. The Neurodata Without Borders 
429 ecosystem for neurophysiological data science. Colgin LL, Jadhav SP, editors. eLife. 2022 
430 Oct 4;11:e78362.
431 5. Efremova M, Teichmann SA. Computational methods for single-cell omics across 
432 modalities. Nat Methods. 2020 Jan;17(1):14–7.
433 6. Huang J, Sheng J, Wang D. Manifold learning analysis suggests strategies to align single-
434 cell multimodal data of neuronal electrophysiology and transcriptomics. Commun Biol. 2021 
435 Nov 19;4(1):1308.
436 7. Cao K, Bai X, Hong Y, Wan L. Unsupervised topological alignment for single-cell multi-
437 omics integration. Bioinformatics. 2020 Jul 1;36(Supplement_1):i48–56.
438 8. Swarts J. Open-Source Software in the Sciences: The Challenge of User Support. J Bus 
439 Tech Commun. 2019 Jan;33(1):60–90.
440 9. Saia SM, Nelson NG, Young SN, Parham S, Vandegrift M. Ten simple rules for researchers 
441 who want to develop web apps. PLOS Comput Biol. 2022 Jan 6;18(1):e1009663.
442 10. Lyons B, Isaac E, Choi NH, Do TP, Domingus J, Iwasa J, et al. The Simularium Viewer: an 
443 interactive online tool for sharing spatiotemporal biological models. Nat Methods. 2022 
444 May;19(5):513–5.
445 11. Hossain S. Visualization of Bioinformatics Data with Dash Bio. Proc 18th Python Sci Conf. 
446 2019;126–33.
447 12. Plotly Technologies Inc. Collaborative data science [Internet]. Montreal, QC: Plotly 
448 Technologies Inc.; 2015. Available from: https://plot.ly
449 13. Meta Platforms, Inc. and affiliates. React [Internet]. React: The library for web and native 
450 user interfaces. 2023 [cited 2023 Mar 24]. Available from: https://react.dev/
451 14. Grinberg M. Flask web development: developing web applications with python.  O’Reilly 
452 Media, Inc.; 2018.
453 15. Reese W. Nginx: the high-performance web server and reverse proxy. Linux J. 2008 Sep 
454 1;2008(173):2:2.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.03.535322doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535322
http://creativecommons.org/licenses/by/4.0/


15

455 16. Gunicorn - WSGI server — Gunicorn 20.1.0 documentation [Internet]. [cited 2023 Mar 27]. 
456 Available from: https://docs.gunicorn.org/en/stable/
457 17. mod_proxy - Apache HTTP Server Version 2.4 [Internet]. [cited 2023 Mar 27]. Available 
458 from: https://httpd.apache.org/docs/2.4/en/mod/mod_proxy.html
459 18. The uWSGI project — uWSGI 2.0 documentation [Internet]. [cited 2023 Mar 27]. Available 
460 from: https://uwsgi-docs.readthedocs.io/en/latest/
461 19. Introduction to Celery — Celery 5.2.7 documentation [Internet]. [cited 2023 Mar 27]. 
462 Available from: https://docs.celeryq.dev/en/stable/getting-started/introduction.html
463 20. Redis [Internet]. Redis. [cited 2023 Mar 27]. Available from: https://redis.io/
464 21. Ma Y, Fu Y, editors. Manifold Learning Theory and Applications. Boca Raton: CRC Press; 
465 2011. 314 p.
466 22. Singh R, Demetci P, Bonora G, Ramani V, Lee C, Fang H, et al. Unsupervised manifold 
467 alignment for single-cell multi-omics data. ACM-BCB ACM Conf Bioinforma Comput Biol 
468 Biomed ACM Conf Bioinforma Comput Biol Biomed. 2020 Sep;2020:1–10.
469 23. Maaten L van der, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 
470 2008;9(86):2579–605.
471 24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: 
472 Machine Learning in Python. J Mach Learn Res. 2011;12(85):2825–30.
473 25. Scala F, Kobak D, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, et al. Phenotypic 
474 variation of transcriptomic cell types in mouse motor cortex. Nature. 2021 
475 Oct;598(7879):144–50.
476 26. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and 
477 distinct transcriptomic cell types across neocortical areas. Nature. 2018 Nov;563(7729):72–
478 8.
479 27. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell 
480 types with divergent features in human versus mouse cortex. Nature. 2019 
481 Sep;573(7772):61–8.
482 28. Baltrušaitis T, Ahuja C, Morency LP. Multimodal Machine Learning: A Survey and 
483 Taxonomy. IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):423–43.
484 29. Kalafut NC, Huang X, Wang D. JAMIE: Joint Variational Autoencoders for Multi-Modal 
485 Imputation and Embedding [Internet]. bioRxiv; 2022 [cited 2023 Mar 31]. p. 
486 2022.10.15.512388. Available from: 
487 https://www.biorxiv.org/content/10.1101/2022.10.15.512388v1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.03.535322doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535322
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.03.535322doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535322
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.03.535322doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535322
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.03.535322doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535322
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.03.535322doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535322
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.03.535322doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535322
http://creativecommons.org/licenses/by/4.0/

