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Deep Learning for Flexible and Site-Specific Protein Docking and
Design

Matt McPartlon * Jinbo Xu 8

Abstract

Protein complexes are vital to many biological processes and their understanding can lead to the development of
new drugs and therapies. Although the structure of individual protein chains can now be predicted with high
accuracy, determining the three-dimensional structure of a complex remains a challenge. Protein docking, the task
of computationally determining the structure of a protein complex given the unbound structures of its components
(and optionally binding site information), provides a way to predict protein complex structure. Traditional docking
methods rely on empirical scoring functions and rigid body simulations to predict the binding poses of two or more
proteins. However, they often make unrealistic assumptions about input structures, and are not effective at accom-
modating conformational flexibility or binding site information. In this work, we present DockGPT (Generative
Protein Transformer for Docking), an end-to-end deep learning method for flexible and site-specific protein docking
that allows conformational flexibility and can effectively make use of binding site information. Tested on multiple
benchmarks with unbound and predicted monomer structures as input, we significantly outperform existing meth-
ods in both accuracy and running time. Our performance is especially pronounced for antibody-antigen complexes,
where we predict binding poses with high accuracy even in the absence of binding site information. Finally, we
highlight our method’s generality by extending it to simultaneously dock and co-design the sequence and structure

of antibody complementarity determining regions targeting a specified epitope.

1 Introduction

The bound configuration of two or more proteins helps
regulate many biological processes including signal trans-
duction [1, 2], membrane transport [3, 4], and cell
metabolism [5, 6]. The process by which unbound pro-
tein chains bind together to form a complex is often
controlled by more general protein-protein interactions
(PPIs) [7-9], and accordingly, aberrant PPIs are asso-
ciated with various diseases, including cancer, infectious
diseases, and neurodegenerative diseases [10]. The role of
PPIs in protein complex formation makes selective tar-
geting of PPIs an essential strategy for drug design and
already forms the basis for several established cancer im-
munotherapies such as monoclonal antibodies [11, 12].
Although most proteins interact with partners to form
a complex, experimental methods for determining the
structures are often expensive and technically difficult to
administer [13, 14]. As a result, protein complexes ac-
count for only a small fraction of entries in the Protein
Data Bank (PDB) [15], highlighting the need for effective
in silico methods.

Although it is possible to infer protein complex struc-
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ture from primary sequence information alone, in many
cases, the three-dimensional structures of constituent
(unbound) chains have already been experimentally de-
termined. Moreover, extra information such as target
binding sites or inter-chain contacts, is readily available
in many applications, or can be derived through experi-
mental methods such as cross-linking mass spectrometry
[16]. In these scenarios, protein docking methods can
be used to predict a complex structure. Despite hav-
ing many practical applications [17-19], the efficacy of
in silico protein docking or design methods is ultimately
hindered by unrealistic assumptions about input struc-
tures, and failure to effectively utilize PPI information
such as binding sites and inter-protein contacts.

Current computational methods for protein docking and
design typically impose backbone and side-chain rigidity
constraints and are trained to utilize specific side-chain
interactions or protein backbone placements derived from
native complexes which are already optimal for binding
[20, 21]. Training computational models on only bound
structures — in which binding interfaces match perfectly
— is in a sense “starting with the answer.” In the real
world, unbound chains typically lack shape complemen-
tarity because proteins tend to deform substantially upon
binding [22, 23], even for small-molecule ligands [24]. Ac-
counting for backbone and side-chain flexibility can sig-
nificantly increase the number of sequences that fold to
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the structure while maintaining the general fold of the
protein [25], and is especially important for protein de-
sign because mutations in sequence often result in small
changes to the backbone structure, [26], and potentially
large changes to surrounding side-chain conformations

[27].

In addition to overlooking conformational flexibility, cur-
rent methods tend to either ignore or ineffectively incor-
porate PPI information. For many applications, it is im-
portant to consider interactions as a particular binding
site, such as targeting catalytic sites of enzymes, or de-
signing therapeutics to block a specific protein-protein
interaction. A salient example is the design of neu-
tralizing antibodies targeting the SARS-CoV-2 S pro-
tein which initiates infection upon binding to the human
angiotensin-converting enzyme 2 (ACE2) receptor [28,
29]. In most cases, PPIs such as binding sites or inter-
chain contacts are utilized only as a post-processing step,
to re-rank or filter out incompatible predictions.

Flexible docking and design of protein complexes
presents several challenges for machine learning. First,
the 3D geometry of multiple proteins is inherently diffi-
cult to represent. The difficulty arises from the fact that
spatial relationships between receptor and ligand struc-
tures are ambiguous at the input level, yet inter-protein
interactions must still be modeled jointly by the learning
algorithm. Although several geometric deep-learning ap-
proaches offer a way to directly model 3D point clouds,
so far only one end-to-end machine learning method has
been proposed for general protein docking [30]. This
method does not take into consideration backbone flex-
ibility or bindings site information, and suffers from ex-
cessive steric clashes in its predictions. Finally, sufficient
training data is also scarce. Currently, there is no large
dataset consisting of both protein complexes and their
unbound components.

In this work, we introduce DockGPT, an end-to-end
deep-learning approach to site-specific flexible docking
and design. In developing DockGPT, we hypothesized
that neural networks could accurately recover protein
3D-coordinates from coarse or incomplete descriptions
of their geometry. After affirming this capability, we ap-
proached flexible docking in a manner analogous to ma-
trix completion followed by multidimensional scaling. In
the matrix completion step, missing entries loosely corre-
spond to inter-chain quantities such as distance and ori-
entation. The imputed representation is then converted
to 3D geometry in order to recover the bound complex.
This framing allows us to naturally incorporate PPI in-
formation as input, in the form of residue-level binding
interfaces or interfacial contacts. In addition, removing
some intra-chain geometry allows us to simultaneously
dock and design protein segments, while still targeting
specific binding sites.

To better incorporate flexibility into our predictions, we

provide only a coarse description of intra-chain geome-
try; presenting distance and angle information within a
resolution of at least 2A and 20° respectively. On top
of this, we attempt to approximate the unbound state of
each training example, by applying Rosetta’s FastRelax
protocol [31] to individual chains.

To validate our approach, we perform an extensive
comparison against four other protein docking meth-
ods on unbound chains from Antibody Benchmark (Ab-
Bench)[32], and Docking Benchmark Version 5 [33]. We
also show that DockGPT performs well in docking pro-
tein structures predicted by AlphaFold2 [34] with high
success rates. Finally, we demonstrate how to extend
DockGPT to perform simultaneous docking and de novo
design by docking antibody-antigen partners while con-
currently predicting both the sequence and structure
of all heavy chain complementarity-determining regions
(CDRs).

2 Related Work

Geometric Deep Learning The field of geometric
deep learning is concerned with modeling data that has
some underlying geometric relationships. Typically, this
involves developing architectures that are invariant or
equivariant with respect to the action of some symme-
try group. Notable examples include the permutation
equivariance of graph neural networks and the transla-
tion equivariance of convolutional neural networks.

Complementary to this work, several geometric deep
learning methods tailored explicitly towards modeling
symmetries of point clouds have recently been proposed
[35-39]. These methods have helped facilitate signifi-
cant improvements in protein-related molecular model-
ing tasks such as protein structure prediction [34, 40—
42], inverse folding [43-45], and de novo design [46-50].

Traditional Methods for Protein Docking Pro-
tein docking is traditionally performed in three steps:
(1) sampling of candidate conformations, (2) score-based
ranking of candidates, and (3) refinement of top-ranking
complex structures. These algorithms primarily differ in
either of the first two steps. Holding the position of the
receptor fixed, each candidate conformation can be de-
scribed by a 3-dimensional rotation and translation of
the input ligand. Although the search space has rela-
tively few degrees of freedom, the size of the effective
candidate space can still total into the millions, even for
small ligands [51]. In addition, the choice of score func-
tion usually induces a rugged energy landscape which is
difficult to optimize over.

Within this paradigm, methods such as HDock [52, 53],
PatchDock [54], ZDock [55], Attract [56], ClusPro [57],
RosettaDock server [58], and Haddock [59], have been
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Figure 1: Approach Overview. (A) Unbound chain sequence and coordinates are given as input, and option-
ally, information regarding binding interface(s). (B) For each chain, an invariant representation of 3D geometry is
constructed from quantities such as pairwise atom distances and orientations. If interface residues or contacts are
provided, this information is added to the respective residue and pair features. Other features are discussed in Sec-
tion 3.1. (C) The main network consists of two submodules. The structure encoder develops a joint representation
of the input chains and the structure decoder infers the 3D geometry. (D) The output of the main network is the
complex 3D-coordinates and per-residue confidence predictions. Steps (C) and (D) are repeated four times, with
output residue, pair and distance features recycled from the previous iteration.

developed and made available for public access. Among
these methods, PatchDock is one of the most widely used
and computationally efficient. PatchDock avoids brute-
force search over transformation space by matching pro-
tein surface patches based on “shape complementarity.”
Ligand transformations that align favorable patches bol-
ster wide binding interfaces and avoid steric clashes re-
sulting in favorable energy scores. HDock, ClusPro, and
ZDock all make use of the Fast Fourier Transform al-
gorithm to efficiently perform a global search on a 3D
grid. The methods differ in how they post-process each
candidate. ClusPro clusters candidates by root-mean-
squared deviation and attempts to find a cluster with
favorable energies. ZDock uses a combination of shape
complementarity, electrostatics, and statistical potential
terms for scoring. HDock, which was ranked as the num-
ber one docking server for multimeric protein structure
prediction in the community-wide critical assessment of
structure prediction 13 (CASP13-CAPRI) experiment in
2018, uses an iterative knowledge-based scoring function
to discern the native complex. For a more complete re-
view of traditional docking methods, available software,
and accomplishments, we refer the reader to the compre-

hensive reviews [60-62].

The majority of these methods incorporate backbone and
side-chain flexibility only as a post-processing step, e.g.
through molecular dynamics simulations. In order to in-
corporate inter-chain contacts or binding site residues,
traditional docking methods typically alter their score
function, or restrict search or results to ligand transfor-
mations matching this criteria. For example, ZDock al-
lows users to specify “undesirble” residue contacts, and
penalizes these interactions via the score function, and
HDock applies post-processing to filter out predictions
lacking target interactions.

Machine Learning for Protein Docking In the
past, machine learning has been used outright or com-
bined with physics-based methods for scoring docked
complexes [63-65]. Recently, end-to-end machine learn-
ing methods EquiDock [30] and EquiBind [66] were
proposed for protein docking and docking drug-like
molecules. In particular, EquiDock makes use of an
SE(3)-equivariant graph matching network to output a
single rigid rotation and translation which, when applied
to the ligand, places it in a docked position relative to
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the receptor. This is done by matching and aligning pre-
dicted keypoints which roughly correspond to the cen-
troid of the binding interface. Although this method
provides favorable theoretical guarantees, it does not per-
form well in practice. On top of this, the independent
SE(3)-equivariant graph matching network and training
procedure are relatively complicated. Training EquiDock
requires solving an optimal transport plan which matches
predicted interface key-points to ground truth positions,
for each example. Custom loss functions are developed
to back-propagate gradients through alignments and to
penalize surface intersection. Moreover, it is unclear how
to extend this method to account for conformational flex-
ibility or more than two interacting chains. In contrast,
our framework is conceptually very simple, utilizes stan-
dard architectural components and losses, allows for flex-
ibility and is straightforward to extend to three or more
chains.

De novo Binder Design Recently, there has been
a spate of interest in de novo protein design using deep
learning, especially the design of small protein binders.
AlphaDesign [67] introduces a framework for de novo
protein design which uses AlphaFold2 inside an optimiz-
able design process, and [49] uses both AlphaFold2 and
RosettaFold to improve the experimental success rate of
their designs. Wang et al. [46] describe a method for de
novo design of proteins harboring a desired binding or
catalytic motif based on modifying the input and train-
ing of the RosettaFold network and augmenting the loss
function. Here we show that our docking method can
be easily extended to de novo design a protein that may
bind a specific target site.

3 Methods

We overview our input representation, model training,
loss, and architecture. Additional details can be found
in Sections S1, S2 and S3

Notation We adopt the convention of using z; and x;
distinguish between a specific data point x; and the list of
data points (x;),_; ,, indexed by i. We use 1, to denote
the indicator function for a Boolean value v; evaluating
to 1 if v is True and otherwise 0. A protein with n
residues labeled 1..n, each with atom types a € A, is
represented by its amino acid sequence s = s1, ... s,, and
atom coordinates @; = #¢,...,7¢ C R3. Each element
s; € s can be any of the 20 naturally occurring amino
acid types. To distinguish between multiple chains, we
use Cq,...,Cr C {1..n} to denote the partition of residue
indices into chains 1..k.. We also use C (i) to denote the
chain containing residue ¢, i.e. C (i) € {C1,...,Cx}

3.1 Input Features

The input to our network is a complete graph G =
(x;,e;;) where V consists of residue features z; and £
consists of pair features e;; between residues 7 and j. The
bulk of our input features are generated independently,
for each input chain. We refer to those features which do
not depend on the input complex as intra-chain features
and those which do as inter-chain features. In the inter-
est of clarity, we first describe intra-chain features, which
are independent of the protein complex being predicted.

3.1.1 Intra-Chain Features

Residue Features We generate residue features for
each chain and join them by concatenating along the se-
quence dimension. The input feature z; associated with
residue ¢ consists of four encodings:

chain

zghin = 1)
(Baa (). Epos (. 1CO) . Been (7. %57, Ean (6:))

The first, Eaa (s), is a one-hot encoding of the amino
acid type s using 20 bins for each naturally occurring
amino acid. The next, Epos, encodes the residue rela-
tive sequence position into ten equal-width bins. As a
proxy for estimating whether a residue is on the pro-
tein’s surface, we use a centrality encoding, Fce,, which
corresponds to the number of C 8 atoms in a ball of ra-
dius 10A around the query residue. We encode this fea-
ture with six radial basis functions equally spaced be-
tween 6 and 40, and only consider residues in the same
chain as the query atom. Last, Fg;n, encodes the angle
6 € [—180°,180°] into 18 bins of width 20°. The input
0; € {¢;, 1;} are the phi and psi backbone torsion angles
of residue i. For residues before and after chain breaks,
or at the N and C terminus of a chain, we set the phi
and psi angles to 0.

Pair Features Pair features are made up of low-
resolution descriptions of pairwise distance and orienta-
tion and relative sequence information. The features for
each chain are stacked to form a block-diagonal input
matrix. A separate learned parameter is used to fill the
missing off-diagonal entries. For a pair of residues ¢ and
Jj, in a common chain, the corresponding feature e;; con-
sists of three one-hot encodings

chain

(Edist (Hfzca - f;l”Q) 7E0ri (au) aEsep (Z - ])) .

e

FEgist is an encoding of the distance d into six equal-width
bins between 2A and 16A, with one extra bin added for
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distances greater than 16A. We include distances be-
tween C'ow and each atom type a € {N,Ca,C,CS}. Eoy,
encodes the angle 6 performed in the same manner as
the backbone dihedral encoding for residue features. The
input angles 6;; € {¢;;,¥i;,w;; } are pairwise residue ori-
entations defined in [68]. Note that all pairwise distances
and angles are known only within a resolution of at least
2A and 20°, respectively. The last feature, Fgep (+), is a
one-hot encoding of signed relative sequence separation
into 32 classes, in the same manner as [69].

3.1.2 Inter-Chain Features

We add three additional features to encode information
about the target protein complex and PPIs.

Inter-Chain Interface (Residue) f; € {0,1} is an
optional binary flag indicating whether the C'a atom of
residue i is within 10A of a Ca atom belonging to a
residue in a different chain. This flag is 0 if this criteria
does not hold.

Inter-Chain Contact (Pair) f;; € {0,1} indicates
whether two residues in separate chains are in contact.
This occurs when the distance between ¢ and fj@’a is

less than 10A. This flag is 0 if this criteria does not hold.

Relative Chain (Pair) A one-hot encoding of the
the relative chain index for residues 7 and j into three
classes. Let ¢;, ¢; € {1,...,k} denote the chain index
of residues ¢ and j, then f;; = OneHot (sign (¢; — ¢;)),
where sign (z) € {—1,0,1}.

The interface and contact flags provide context for
residues on the binding interface for each chain; restrict-
ing the effective search space during inference. In real-
world applications, knowledge of the binding interface
may be limited or unknown. In light of this, we provide
only a limited number of contacts or binding residues,
chosen randomly for each training example. Specifically,
for each input, we include no contacts or no residue flags,
independently, with probability 1/2. This means that
during training, the method sees 25% of examples with-
out any interface or contact information, 50% with one or
the other, and 25% with both features provided, on aver-
age. If interface features are included, we randomly sub-
sample a number of interface residues Niyy ~ geom (1/5)
to include, meaning five residues are selected on average.
Similarly, we sub-sample Ngo, ~ geom(1/3) inter-chain
contacts when this feature is used, resulting in three pro-
vided contacts on average.

The relative chain encoding provides a way to distinguish
between intra-chain and inter-chain pair features. By
taking a signed difference, pair features e;; and e;; receive
different encodings when ¢ and j are in distinct chains.
This not only discriminates the endpoints as belonging
to different chains, but also breaks symmetry.

3.2 Deep Network Architecture and
Training

We design a two-stage network making use of triangle
multiplication, pair-biased attention, and invariant point
attention (IPA). Our first module, which we refer to
as the “structure encoder,” produces an invariant rep-
resentation of the protein complex which is subsequently
converted to 3D coordinates by the second module, the
“structure decoder.” Our encoder uses pair-biased atten-
tion to update residue features, and triangle multiplica-
tion to update pair features. The decoder updates only
residue features using IPA. We also make use of feature
recycling during training and inference. We note that,
although our architecture modifies or extends some com-
ponents in AlphaFold2, the two architectures are func-
tionally quite distinct. We do not make use of multiple
sequence alignments (MSAs), templates, global atten-
tion, self-distillation, or other elements contributing to
the success of AlphaFold2. In contrast, we hope to learn
the principles governing protein binding from sequence
and structure alone and develop a more specialized ar-
chitecture to do so.

3.2.1 Network Architecture

Here, we provide a general overview of our architectural
components. A schematic overview of the architecture
and loss can be found in Figure S1. Complete imple-
mentation details and more thorough descriptions of each
submodule can be found in Section S1.

Structure Encoder Layer Our encoder produces a
joint representation of the input chains. Since inter-
chain features are mostly missing from the input, we
hypothesized that a network that updates pair features
would facilitate more successful docking. Consequently,
we chose to update pair features using incoming and out-
going triangle-multiplicative updates [34].

mgeﬂ) = Pair-Bias-Attn-Block ") (azgé), el(f)) (3)
el(fﬂ) = Pair-Block'” ($§£+1), egﬁ)) (4)
Each layer has two update blocks. The first block up-
dates the residue features using multi-head attention
with pair bias. The next block transforms the updated
residue features into an update for the pair representa-
tion using a learned outer product, and then applies tri-

angle multiplication and a shallow feed-forward network
to the result.

Structure Decoder Layer The decoder module con-
verts the encoder representation to 3D Geometry. Since
we do not make direct use of coordinate information in
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our input (although we show that this can be done for
special cases in Section 3.2.1), we sought an invariant
architecture specialized for coordinate prediction and ul-
timately settled on TPA.

()
(6)

;I;Z(ZH) = IPA-Block (scy), eEjLe"C), TZ(.Z))

Tg”l) = TEE) o RigidUpdate (w(£+1)>

K2

We use a total of six decoder layers, sharing the same
weights for all six layers. We perform recycling during
training and inference, allowing us to execute our model
multiple times on the same example. This is done by
embedding the previous iteration’s outputs in the next
iteration’s inputs. Our best-performing model uses the
same scheme as described in the AlphaFold2 implemen-
tation ([34], supplementary section 1.10). In concurrence
with AlphaFold2 and OpenFold [70], we find that recy-
cling significantly improves prediction quality while in-
curring only a constant increase in inference and train-
ing time. We experimented with recycling features from
the structure decoder, rather than encoder. Since the
decoder residue features encode plDDT information, we
hypothesized that this information could better inform
future iterations. This ablation and others are shown in
Section S9.

Coordinate Prediction In predicting residue-wise
atom coordinates, we deviate from the strategy of Al-
phaFold2 and simply compute the local-frame coordi-
nates for each atom using a learned linear projection.
The coordinates for Ca are taken as the translation com-
ponent of the per-residue predicted rigid transformation,
and the remaining atom coordinates are predicted as

T = TZ(-L) o Linear3D (LayerNorm (mEL))) @

where L denotes the index of the last layer, and Linear3D
is a learned projection into dimension |.A| x 3. Note that
only one rigid transformation is used to produce all atom
coordinates for a given residue.

Handling Coordinates as Input Although we do
not explicitly make use of coordinates in our docking
model, for certain tasks, it may be important to incorpo-
rate this information as part of the input. This is espe-
cially salient in antibody loop design, where the frame-
work region tends to remain mostly rigid upon binding.
In Section S7 we show how to modify Equation (6) and
Equation (7) to easily incorporate rigid, flexible, and
missing coordinates as part of the input, while still main-
taining SE(3)-Equivariance. We also provide empirical
results for designing CDR loops with this modification
in Section S8.

3.2.2 Training

For general protein docking, model training is split
into two stages. In the first stage, we pre-train on a
mix of complexes and monomers, randomly selecting a
monomer or a complex to train on with equal probability.
This repeats for 5 epochs. The rationale for this decision
is described in Section S3. Afterwards, monomers are
removed, and we train exclusively on complexes. For all
complexes in our training sets, we relaxed each individ-
ual chain using Rosetta’s FastRelax protocol [31] with all
default settings (antibody heavy and light chains were
relaxed jointly when applicable). For antibody-antigen
docking results, we fine-tuned the model on a dataset
consisting of only antibody-antigen complexes.

3.2.3 Datasets

Single Chains For pre-training, with single chains,
we randomly sample chains from the publicly available
BC40 dataset, consisting of roughly 37k chains filtered
to 40% nonredundancy. Proteins with greater than 40%
sequence similarity to any chain in our test datasets are
removed.

General Protein Complexes We use a subset of the
publicly available Database of Interacting Protein Struc-
tures (DIPS)! [71]. The training set is generated to ex-
clude any complex that has any individual protein with
over 30% sequence identity when aligned to any protein
in the Docking Benchmark Version 5 test set (described
in Section 3.3.2). We follow the training and validation
splits for DIPS used in [72], with 33159 and 829 com-
plexes, respectively.

Antibody-Antigen Complexes For fine-tuning on
antibody complexes, we use the publicly available Struc-
tural Antibody Database (SAbDab) which consists of
4994 antibody structures renumbered according to the
Chothia numbering scheme [73-75]. Various papers from
Chothia have conflicting definitions of heavy-chain CDRs
2. In light of this, we use the most recent definitions from
[75]. We generate train and test splits based on antigen
sequence similarity, filtering out examples where anti-
gen chains have more than 40% sequence identity using
mmseqs |[76]. Before generating clusters, we removed all
targets with overlap in our test sets, using the same cri-
teria. We remark that no filtering is performed against
antibodies. This results in roughly 3k complexes, for
which we use a 8:1:1 split for training, validation, and
testing.

!Downloaded from https://github.com/drorlab/DIPS.
2See here for a nice summary of CDR numbering schemes and
changes in corresponding CDR loop definitions over time.
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3.2.4 Loss

Our network is trained end-to-end with gradients com-
ing from frame-aligned point error (FAPE), pairwise dis-
tance, per-residue IDDT (pIDDT), and a few other auxil-
iary losses. We remark that our implementation of FAPE
differs from that in AlphaFold2, as we use a different
method for predicting coordinates. Other modifications
were made in the clamping procedure of FAPE loss in or-
der to facilitate faster convergence. A complete overview
is provided in Section S2 and Figure S1.

3.3 Evaluation Criteria

To measure docking prediction quality, we report inter-
face root-mean-square deviation (I-RMSD), ligand root-
mean-square deviation (L-RMSD), DockQ score and
DockQ success rate (SR) as reported by the DockQ algo-
rithm?® [77]. DockQ score is a single continuous quality
measure for protein docking models based on the Critical
Assessment of PRedicted Interactions (CAPRI) commu-
nity evaluation protocol. For antibody chains, we some-
times report CDR-RMSD which is calculated after su-
perimposing the Ca atoms of the heavy and light chain
framework regions using the Kabsch algorithm [78]. Fi-
nally, we sometimes include complex root-mean-square
deviation (C-RMSD), which is derived by simultaneously
superimposing all Ca atoms between two protein com-
plexes. When assessing top-k performance, we take the
best score over the top-k ranked predictions of each tar-
get.

When interface residues or contacts are specified, the in-
formation is randomly sampled from the native complex,
and each method is run fifteen times for each target, each
run with different random samples. For energy-based
methods, outputs are ranked by predicted energy. For
our method, we use predicted interface IDDT to rank
each prediction. (see Section S4 for details).

3.3.1 Docking Paradigms

In this paper, we are primarily concerned with predicting
the bound conformation of a protein complex, given only
unbound conformations of constituent chains. This is
easily confused with redocking, the task of predicting a
protein complex given bound conformations of each chain
as input. Redocking is considerably easier than docking.
For this task, traditional score-based methods are able
to accurately predict most protein complexes. We verify
this claim in Section S11.3, where we consider redocking
antibody-antigen complexes.

3DockQ is  publicly available for  download at

http://github.com/bjornwallner/DockQ/

When assessing docking performance, we sometimes con-
dition on information about PPIs, such as interacting
residues. Traditionally, amino acids are defined as inter-
acting if any of their heavy atoms are within 6A from one
another. In this work, we used a more relaxed definition,
where residues are defined as interacting if the distance
between their Cov atoms is less than 10A. This definition
is more applicable to downstream protein design tasks,
where knowledge of sequence or side-chain conformations
may be missing or incomplete. In some cases, we provide
the identity of select residues on the binding interface of
a complex. In other settings, we provide contacts, which
correspond to interacting residue pairs. We refer to the
setting where neither interface residues nor contacts are
specified as blind docking.

3.3.2 Benchmarks

For each benchmark we include only receptor-ligand
pairs having at least four contacts, and maximum chain-
wise RMSD less than 10A from the bound state. We
note that some of the baselines might have used part of
the DB5 test set in validating their models, and thus
the scores may be optimistic. In addition to bound and
unbound structures, we also include comparisons using
receptor and ligand structures predicted by AlphaFold2
or AlphaFold-Multimer[41]. The same filtering criteria
is applied to predicted structures.

Antibody Benchmark (Ab-Bench) [32] A non-
redundant set of 46 test cases for antibody-antigen dock-
ing and affinity prediction. This set contains both bound
and unbound structures with diverse CDR-loop confor-
mations between the bound and unbound states, ranging
from < 1A to > 4A for CDR-H3. When AlphaFold-
predicted structures are used as input, 26 test cases are
used.

Docking Benchmark Version 5 (DB5) Test [33]
To the best of our knowledge, DB5 [33], which contains
253 structures, is the largest dataset containing both pro-
tein complexes and the unbound structures of their com-
ponents. We use a total of 42 complexes from the DB5
test set which are held-out by the DIPS training split.
For predicted structures, we also gathered 26 receptor-
ligand pairs meeting the filtering criteria.

Rosetta Antibody Design (RAbD) [79] A set of
46 k and 14 X antibody-antigen complexes. The bench-
mark contains antibodies with high CDR diversity and
a wide range of length classes. All structures have ex-
perimental resolution < 2.5A, buried surface area in the
antibody-antigen complex of > 7002, and contacts with
CDRs in both the light and heavy chain regions. These
structures were used to assess the performance of dock-
ing algorithms in the bound input context, and results
are given in Section S11.3.
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4 Results

We compare DockGPT against ZDock [55], HDock [53],
PatchDock [54], and EquiDock [30]. We downloaded
their code and ran them locally. More details can be
found in Section S10.

In addition to docking software, we provide a compari-
son with AlphaFold-Multimer [41] in Section S6, fig. S8,
and table S1. We do not do so in the main text as the
focus of this manuscript is protein docking and assessing
the ability of docking programs to target specific binding
sites. In general, current complex prediction algorithms
such as AlphaFold-Multimer do not explicitly make use
of binding site information, although it may be derived
implicitly via multiple sequence alignments or templates.
That is, they lack the ability to target specific binding
modes, which further highlights the importance of effec-
tive docking methods.

4.1 Antibody Docking

We now compare methods on docking antibody-antigen
unbound and predicted structures from the Antibody
Benchmark dataset. As shown in Figure 2, for all but
a few cases, our performance on docking AlphaFold2-
predicted structures roughly matches that on unbound
inputs. In the interest of brevity, we report statistics for
unbound inputs unless otherwise specified. Additional
results and tables with RMSD and DockQ statistics are
provided in Section S11.2. Results for docking RAbD
bound chains are provided in Section S11.3.

In Figure 2C and 2D, our method obtains top perfor-
mance in blind docking (i.e., no interfacial contacts or
residues are provided as input), with considerably lower
interface and ligand RMSD values than others. This
holds regardless of whether unbound or predicted struc-
tures are used as input. This carries over to DockQ suc-
cess rate where our method exceeds 25% for both input
types. Since our method is deterministic, we only make a
single prediction in the blind setting, thus top-1 and top-
5 success rates are the same. In an attempt to improve
blind-docking results, we developed a genetic algorithm
which exploits our method’s ability to target different
binding modes and predict docking quality. Details are
given in Section S5 and examples are shown in Figure S6.
This procedure increases both top-1 and top-5 success
rates to 37.0% and 45.7% respectively.

For blind docking, traditional methods improve signifi-
cantly when top-5 predictions are considered. ZDock’s
top-1 predictions are successful for only one target, but
this increases to 8 targets (17.4%) for top-5. Similarly,
HDock improves median interface RMSD by roughly 5A,
from 15.6A for top-1 to 10.8A for top-5. EquiDock per-
forms the worst of all five methods, with no DockQ suc-
cesses for unbound or predicted targets. The method’s

poor performance is likely a result of excessive steric
clashes. On average, EquiDock has 581 backbone atom
clashes between antibody and antigen chains. In con-
trast, our method does not produce more than 3 atom
clashes for any target. Clash distributions for our
method and EquiDock, along with some example pre-
dictions can be found in Figure S11.

Compared to the blind setting, performance for all meth-
ods improves significantly when information of the anti-
gen binding interface (epitope) is included. When four
epitope residues are given, we reduce top-1 median inter-
face RMSD from 9.2A to 3.1A. Top-1 ligand RMSD de-
creases accordingly, from 19.5A to 9.5A. For traditional
methods, the RMSD reduction is less dramatic. The
best-performing traditional method, ZDock, decreases
top-1 interface RMSD from 12.8A for blind docking to
10.4A when 4 epitope residues are given. Even when
binding interfaces are accurately predicted, traditional
methods often fail to orient protein backbones prop-
erly. When 12 epitope residues are provided, the lower-
quartile interface RMSD of ZDock is 3.6A, but the same
quartile ligand RMSD is 14.4A for top-1 predictions.
On the other hand, our method obtains 1.2A and 3.5A
RMSDs, respectively.

Parallel to blind docking performance, top-5 predic-
tions of the traditional methods yield significantly higher
DockQ success rates than top-1, when epitope residues
are included. Furthermore, traditional methods see sub-
stantial improvements on all metrics when more epitope
residues are provided. HDock and ZDock obtain top-5
DockQ success rates of 47.8% and 56.5% with 12 epitope
residues, but only 30.4% and 28.3% with four residues.
This is likely a side-effect of the post processing proce-
dure, as increasing the number of epitope residues limits
the size of the effective candidate space. In contrast, our
method achieves a top-5 DockQ success rate of 71.7%
with four epitope residues, increasing to 87.0% with 12.
This suggests that our method has learned to use binding
site information as more than just a search filter.

Considering the relationship between binding interface
quality and prediction accuracy, in Figure 2E, we con-
sider the heavy chain CDR-RMSD distribution of our
docked antibody structures. Here, we see that CDR loop
conformations predicted by our method are closer to the
ground truth than that of the unbound or AF2-Predicted
input. Predicted heavy-chain CDR conformations have
median RMSD 1.55A, 1.39 A, and 1.81 A compared to
1.82 A, 1.67 A, and 1.94A for the unbound input. The
outcome is similar starting from AF2-predicted input
structures. This implies that our method goes beyond
multidimensional scaling, and actually learns to incorpo-
rate backbone flexibility in its predictions.

Results for docking bound antibody-antigen structures
are radically different than those shown in Figure 2.
When blind-docking bound chains HDock and Patch-
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Figure 2: Results for Antibody Benchmark Predicted and Unbound Inputs. (A) Legends to distinguish
between the five methods and the target type (predicted or unbound) in plots (B-E). (B) and (C) show top-1 and
top-5 success rates for each method on unbound targets, with no epitope residues provided (blind) and 4 or 12
epitope residues provided. (D) Split violin plots showing interface RMSD distributions for docking unbound (left
half) and predicted (right half) chains given 0, 4, or 12 epitope residues. Each violin plot marks the median value
with a white dot, and shows the interquartile range with a bold vertical line. Both top-1 and top-5 distributions
are shown when 4 and 12 epitope residues are provided. (E) Ligand RMSD distributions, in the same manner as
(D). (F) Scatter plot of RMSD of heavy chain CDRs between our predicted and the ground truth (bound) complex
structure. Here, the z-axis shows RMSD between the input (unbound or AF2-predicted) heavy chain CDRs and
corresponding segments in the ground truth complex structure, and the y-axis shows RMSD between our predicted
heavy chain CDRs and corresponding segments in the ground truth. Points below the y = z axis correspond
to targets where the RMSD was lower for our predicted complex structures. The cumulative fraction of targets
with CDR-RMSD less than the corresponding x value is also plotted on a secondary axis using a red line for our
predictions, and a green line for unbound or predicted inputs. For these plots, we provided our method with 12
residues on the antigen epitope.

Dock achieve DockQ success rates of 79% and 25% re-
spectively, for RAbD targets (see Figure S10). If we fine-

description of geometry, and do not consider input side-
chain conformations. We hypothesize that more fine-

tune and evaluate our model on bound antibody-antigen
chains then the blind-docking success rate increases more
than two-fold to 62%. This implies that important in-
formation about antibody-antigen binding interfaces is
captured in the bound structures, and highlights the im-
portance of comparing docking methods on benchmarks
containing unbound structures. When training and an-
alyzing on bound inputs, we still provide only a coarse

grained featrues would significantly improve performance
for bound targets. Interestingly, although EquiDock was
trained on bound structures, the approach still under-
performs on bound targets, with a success rate of 1.2%.
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Figure 3: Results for DB5 with AlphaFold2 predicted and unbound monomer structures as input.
(A) Per-method distribution of inference times for docking DB5 unbound targets. (B) Bar plot of Top-1 DockQ
success rates for DB5 unbound targets. Each method was given one, two or three contacts (C' = 1,2,3), or no
contacts and four residues distributed over both the receptor and ligand binding interfaces (I = 4). (C) Bar plot
of top-5 DockQ success rates, analogous to (B). (D) Scatter plot of the number of interacting residues in predicted
complexes (y-axis) compared to that in the ground truth complex (z-axis). Blind docking predictions were made for
all DB5 unbound targets, and interacting residues include only Ca atoms, with a cutoff distance of 10A. (E) and
(F) Split violin plots of Interface-RMSD and Ligand-RMSD distributions as in Figure 2. In (B,C,E,F) we exclude
Equidock, because this method does not accept interface or contact information as input. Legends to distinguish
between the five methods and target type are shown alongside RMSD distributions in (E) and (F).

4.2 Results for DB5 Unbound and Pre-
dicted Targets

Results for DB5 targets are shown in Figure 3. Here, we
focus mainly on performance when residue contacts are
provided, but also consider providing a limited number
of interface residues on one or more chains. We chose
to provide at most C' = 3 inter-chain contacts because,
in theory, the number of rotational degrees of freedom
for the ligand chain should be roughly max(0,3 — C) if
the contacts are well distributed. More results for DB5
predicted and unbound targets are shown in Figures 3,
S4 and S5 and section S11.1, including tables with RMSD
and DockQ statistics and performance on blind docking.

For both unbound and AF2-predicted targets, supplying
our model with a single contact generates better top-1
median RMSD scores than traditional methods supplied
with up to three contacts. When one contact is given,
DockGPT achieves a top-1 DockQ success rate of 45.2%,
and 59.5% for top-5. In contrast, ZDock and HDock
have less than 20% success for top-1, and 33.3% for top-

10

5. When 2 contacts are provided, DockGPT’s top-5 pre-
dictions are correct for all but three targets, and correct
for all targets with 3 contacts, in terms of DockQ score.
On the other hand, the success rate of traditional meth-
ods improves only moderately, with a maximum top-5
success rate of 45.2% for ZDock across all settings.

On top of performance, our method also achieves signif-
icantly faster inference times than others, averaging in-
ference times more than three orders of magnitude faster
than ZDock,HDock, and PatchDock, and approximately
6 times faster than EquiDock.

As shown in Figure 3D, blind docking predictions for
methods EquiDock, HDock, and PatchDock tend to have
large binding interfaces, even when there are few con-
tacts in the ground truth complex. The tendency is
most pronounced for EquiDock, which regularly predicts
receptor-ligand poses with large surface overlap. On av-
erage, EquiDock, predicts a binding interface size that is
5.4x larger than the ground truth. PatchDock, HDock
average 2.9x and 2.3x, that of the native complex, re-
spectively. In contrast, ZDock and our method are the
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Figure 4: Predictions for one DB5 target with unbound structure as input. Ground-truth and docking
predictions for PDB entry 2A1A. For each method, we show the surface of the predicted and ground truth ligand
relative to the ground truth receptor. For this example, we selected traditional method HDock as it performed

similarly or better than ZDock and PatchDock.

least biased, averaging 1.9x and 1.4x, respectively.

The tendency to predict large binding interfaces may be
explained by considering the objective functions of each
method. PatchDock explicitly rewards large binding in-
terfaces and high shape complementarity. HDock and
ZDock rank decoys by summing pairwise interfacial en-
ergy terms, and larger binding pockets may offer more
potential for weak yet statistically favorable interactions.
EquiDock, is trained to predict keypoints corresponding
to the binding interface of each chain. It may be prefer-
able from a loss perspective to predict keypoints near the
chain’s center of mass when the binding interface is hard
to discern. In theory, a chain’s center of mass offers a
low-variance estimation of the true binding pocket. Fi-
nally, our method is trained with clamped FAPE loss and
thus all predictions that deviate beyond the clamp value
are equally “bad” in a loss sense.

An example of the behavior described in the previous
paragraph is shown in Figure 4. Although EquiDock’s
prediction is physically unrealistic, it still compares sim-
ilarly to HDock in terms of interface and complex RMSD.
EquiDock’s prediction has an interface RMSD of 14.84,
and a complex RMSD of 17.2A, whereas HDock obtains
20.5A and 14.9A respectively. It is also clear that HDock
predicts a large binding interface for this target, even
though the true binding interface is relatively small. This
example also highlights the importance of assessing lig-
and RMSD in addition to complex and interface RMSD.

4.3 CDR-Loop Design

We now show how our model can be adapted to perform
simultaneous docking, and sequence-structure co-design.
For this task, we provide results for antibody CDR-loop
generation, focusing on heavy chain CDRs H1-H3. We
note that our method also designs light chain CDRs, but
we omit this for brevity. In the remainder of this sec-
tion, we briefly outline the modifications made to our
approach and provide a comparison with other protein
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design frameworks tailored towards antibodies. More de-
tails and results can be found in Section S8.

Modifications to our approach In order to perform
joint imputation of sequence and complex structure, we
retrained our model using data as described in Sec-
tion 3.2.2, and all of same features as described in Sec-
tion 3.1, except for residue degree centrality. We add one
additional residue feature, which is a one-hot encoding of
secondary structure using three classes for sheets, helices
and loops. We encode all CDR residues as loops dur-
ing inference, and do not apply masking to this feature
during training. We found that the secondary structure
encoding improved convergence when transitioning from
pre-training to fine-tuning on antibody structures. Dur-
ing pre-training we masked linear segments of a randomly
selected chain, sampling the segments based on proxim-
ity to the chain’s binding interface. The length of the
masked segment is selected from a geometric distribution
as geom (%) For each residue in the chosen segment, we
replace the corresponding features with separate (MASK)
parameters except for relative sequence position and rel-
ative sequence separation. To be clear, no inter-atom
distance or orientation information is given to our deep
learning model for masked residues.

Evaluation metrics and results To generate our
method’s results in Table 1, we provide four native
antibody-antigen contacts, and produce five decoys per
target. The decoy with the highest predicted interface
pIDDT is selected for the comparison.

Although our method receives only coarse information
pertaining to antibody and antigen structures, we are
still able to recover antibody framework regions with sub-
Angstrom RMSD. Furthermore, none of the four other
methods are capable of designing CDR loop regions in
the presence of an antigen; for these methods the se-
quence and structure generation results in Table 1 are
generated on bound heavy-light chains, with the bound
antigen omitted. In contrast, our method simultaneously
docks and designs all six heavy and light chain CDR-
loops and sequences simultaneously. Additional results
and examples can be found in Section S8
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Structure Prediction

Sequence Prediction

Method RMSD| PPL| NSRt PPL|
H1 H2 H3 Fr H1 H2 H3 H1-H3
Ours 111  1.02 1.88 0.72 4.46 6.71 10.68 39.7% 7.67
CoordVAE [50] 0.96 1.00 195 - - - - - -
Refine-GNN [48] 118 0.87 250 - 6.0 658 8.38 35.4% -
AR-GNN [48, 80] 297 227 363 - 644 6.86 9.44 23.9% -
LSTM [81, 82| - 679 721 9.70 22.5% -

Table 1: CDR-loop design. Performance of our method and four others on the task of predicting CDR H1-H3
loop conformation and sequence. For our method, “FT” denotes fine-tuning on antibody structures. The columns
H1-H3 show the C'a-RMSD of heavy chain CDR H1-H3 between predicted and native structures. For our method,
we also list the RMSD of the predicted and bound framework regions under column “Fr”. Perplexity (PPL) of
sequence predictions for each CDR loop are shown in separate columns. Finally, overall perplexity and native
sequence recovery across all loop regions is shown in the rightmost columns. We note that AR-GNN and Refine-
GNN predict sequence and structure for each CDR loop region separately, while conditioning on the native sequence
and structure of the other CDR regions. This may result in slightly lower perplexity for these models.

5 Concluding Remarks

In this work, we developed DockGPT, a deep learning
architecture for flexible protein docking with applica-
tions to de movo design of protein-binding proteins. Un-
like other methods, our approach circumvents explicitly
training on bound structures, and offers a natural ap-
proach to modeling conformational flexibility in complex
prediction. By comparison across multiple benchmarks,
we show that DockGPT meets or exceeds state of the art
methods on rigorous quality metrics while also making
better use of binding site information when it’s available.
With significantly reduced inference times and explicit
confidence estimates, we anticipate that our model will
find further applications to machine-learning based vir-
tual screening and de novo design platforms.

Despite our success, there are several limitations and ex-
tensions of our approach left open for future investiga-
tion. We use only a single atom type and threshold to
supply our model with interface and contact information.
Although it is straightforward to incorporate more fine-
grained binding site information, we did not explore this
here. Parallel to this, supplying noisy or probabilistic
binding site information could potentially improve per-
formance and generalization. Although we do not pro-
vide explicit details in the main text, we remark that
the current training procedure enables generation of di-
verse conformations by enumerating random contacts.
We show in Section S5 how this can be used to rank and
generate diverse binding modes, and ultimately improve
blind docking. We suspect that this approach can be
refined or extended to achieve even better performance.
Although some of our deep network components were
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drawn from AlphaFold2, we do not incorporate any MSA
information. We expect that MSA embeddings would be
especially helpful in the blind docking setting. Finally,
for de novo design tasks, we only analyzed our model on
CDR loop design, and do not include estimates of binding
affinity or free energy. Evaluation across more rigorous
criteria and a broader range of design tasks must still be
performed. We hope that future work will address some
of these issues and develop this approach further.
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Figure S1: Architecture and Loss. Learnable modules are shown with bold text and bold borders. Modules
operating on residue features are shown in orange and those operating on pair features are shown in blue. Modules
making direct or indirect use of coordinates are shown in red. Optional input and modules for sequence and
structure co-generation are shown in light gray. We use @ to denote residual operations, ® to denote element-wise
multiplication, and ® to denote the element-wise composition of two rigid transformations. Labeling of IPA and
pair blocks with the index of their respective layer is omitted, as block weights may be shared across multiple layers.
We highlight with a blue/red background those modules which are encoder/decoder specific (i.e. pair updates are
omitted in the decoder, and rigids are omitted in the encoder). The structure encoder uses pair-biased multi-head
attention for its residue update block, and the structure decoder used invariant point attention. Finally, layer
normalization is applied, but not displayed here, except for in deriving the output.

Figure S1 shows a schematic overview of our model architecture and loss. We do not explicitly show our structure
encoder module, since it differs only slightly from the structure decoder; the rigid update is removed, and IPA block
is replaced with a pair-biased attention block. Though not displayed in the figure, we follow the Pre-LayerNorm
scheme described in [83] where layer normalization [84] is placed inside the attention and transition residuals. In
addition (pun intended), we use ReZero [85] for all residuals. Each feed-forward transition consists of one hidden
layer having dimension four times that of the input dimension. For pointwise nonlinearity, we use gated GELU
(GeGLU) based on success in other sequence modeling tasks [86, 87]. The Learned Outer-Prod module is nearly
identical to that of the outer-product mean module described in [34], except we use a smaller intermediate dimension
(¢ =16 vs. ¢ = 32), and skip the mean operation. The rigid update maps residue features to a per-residue rigid
rotation and translation. This is implemented as a learned linear projection preceded by layer normalization. The
composition of rigid transformations is implemented in the same manner as the backbone update in AlphaFold2 (see
[34] Supp. Material, Algorithm 23). In some settings, the ability to incorporate prior coordinate information may
be useful. Specifically, a subset of coordinates can be held fixed by replacing the corresponding rigid rotation and
translation updates with the respective identity transformations (i.e. I3 and 6) More details on this are provided
in Section S7.

We use a hidden dimension of 256 for residue features and 128 for pair features in both submodules. All triangle
multiplication updates use four heads of dimension 32 for queries and values. In the encoder submodule, we use
eight attention heads of dimension 32 for each residue update block. Decoder IPA uses 12 heads per block, with
dimension 16 for scalar features, and dimensions four and eight for point queries and values.
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S2 Loss Details

We use the same loss function for pre-training and fine tuning. Each term in the loss (shown in the equation below)
is described in the remainder of this section.

L =1.0LparE + 1.0Laux-FaPE + 0.5Lgist + 0~5£p1DDT +0.2Li01 (8)

Similar to AlphaFold2, we also apply an averaged FAPE loss L,ux.rapE, on the intermediate structures produced
by the shared-weight layers of our decoder module. For the results in Sections 4.3 and S8, we add an additional
term which is an averaged cross-entropy loss for amino acid identity, given weight 0.5

S2.1 Notation

We stick with the convention of using z; and x; to distinguish between the individual data point x; and the set of
data points {z;} indexed by i. 3D rigid transformations T = (R7 ﬂ are represented by a rotation R € SO(3),

i=1..n
and translation £ € R3. We use To T £ (RR/7 t+ Rt /> to denote the composition of two rigid transformations T’
and T". We use T (Z) £ RZ +t to denote the action of the rigid transformation on a vector Z € R3. For notational

convenience, and as a visual aid, we adopt the notation [#],, £ T~ (%) to denote the vector of coordinates z in the
local frame defined by the rigid transformation 7.

In the remainder of this section, we will use n to denote the number of input residues, and Cy,...,C; C {1..n} to
denote the indices of residues in chains one and two respectively (i.e. Cy,...,Cy is a partition of {1..n}). We assume
that we have output residue features x;, pair features e;;, and predicted rigid transformations T'; = {(Rz,t_;) }Z.
for each residue i € {1..n}. We also assume predicted coordinates &; = {}, , for each output atom type a € A
derived as described in Section 3.2.1. When applicable, we use a superscript * to distinguish between predicted and
ground-truth data.

Per Residue IDDT

Residue output features are used to predict per-residue local distance difference test scores (pIDDT). In defining the
labels to evaluate on, there are two reasonable approaches. The first approach directly uses predicted coordinates,

1 L. I
pIDDT, = 7o e 3 IDDT (abs (117 = 5], - |15 = 211,)) 9)
JEN(9)
where N (i) = {j g —t_; , < 12A}, and
1 3
IDDT (d) = - D g (10)
k=0

The alternative approach compares coordinates as they are seen in the predicted local frames of each residue. For
this, we use predicted rigid transformations T'; = (Ri7ti)¢:1_.n and true rigids T'; = (R;‘,tf)izl”n obtained from
the native conformation to compute the local pLDDT score as:

pIDDT-Local,

>~ 10T (abs (|[E],, - [7],

JEN(3)

_ Wil(l)l .jgf:@ IDDT (abs (H (] 7,

V@)

Ultimately, we use the standard plDDT to train our model. Although local-frame coordinates and distances are
compared in each IPA head, we found that the local pIDDT produces less accurate confidence estimates, and is
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also more difficult to optimize. Nevertheless, we include the alternative definition as it may be of interest to some
readers.

To compute pIDDT loss, we pass our output residue features x; through a shallow feedforward network with output
representing 20 equal-width binned log likelihoods in the range [0,1]. The predictions are compared with the
ground-truth labels pIDDT; by cross entropy loss.

Pairwise Distance

We predict pairwise distances for four atom pairs (Ca, X), where X € {N,Ca,C,CB} from 2-20A using a bin
width of 0.4A. An extra bin is added for distances beyond 20A. We do not separate inter and intra-chain atom
pairs. Cross entropy loss is applied to compare the prediction to the ground truth.

Violation Loss

Unlike AlphaFold2, we predict only a single rigid transformation for each input residue. This means that intra-
residue bond lengths and angles must be learned in the linear projection used to obtain predicted atom coordinates.
We find that violation loss is very important for generating physically realistic conformations, and also for avoiding
unfavorable steric interactions such as surface intersection. Here we use the same violation loss as defined in
AlphaFold-Multimer; bond angle, bond length, and one-sided flat bottom steric penalty. We omit the “Center of
Mass” loss [41, eq.1] as it had no empirical effect on performance.

FAPE

Here we describe a slight modification of the frame aligned point error (FAPE) loss described in [34, 41]. We
reiterate that only a single rigid transformation is predicted for each residue, and thus rigid transformations for
each output atom type cannot be directly compared.

Given predicted atom coordinates ﬂﬁ? for each atom a € A; of residue j, we compute the per-residue FAPE, (pFAPE)
for residue i as

pFAPE (Ti,a_:';;ﬁ) = JH;%% (min (H [f;l] " [3—3‘?7*]7? 27(9)) (13)
the FAPE loss over all residues is then
FAPE (T, #):60) = - mean (pFAPE (T, 2;6)) (14)

Our network employs two FAPE loss terms, each with equal weight. The first, FAPE;,+,, is is intra-chain FAPE
which restricts the computation to pairwise relative coordinates within the same chain. The second is Inter-chain
FAPE which applies the loss between atom coordinates in separate chains. Formally,

1
ﬁFAPE = E . Z FAPE ({TZ}'LEC ) {wg}jec ;eintra) + FAPE ({Tl}'LEC ) {x?}]¢c ;einter) ' (15)
Ce{C1,...Ck}

intra-FAPE inter-FAPE

Following AlphaFold-Multimer, we use 01 = 10, and 0;,,4¢, = 30 with probability 0.9 and randomly set § = oo
for each FAPE type with probability 0.1.

S3 Training Details

All models were trained on 48Gb Nvidia RTX A6000 GPUs and optimized using Adam [88] with default parameters
(B1 = 0.9, Bo = 0.999, ¢ = 1078), with learning rate 102 during pre-training, and 5 - 10™* afterwards. We apply
per-example gradient clipping by global norm as described in [34, supplementary material, section 1.11.3|, and scale
the loss of each example by the log of the total number of residues to up-weight larger complexes. We validate our
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model every 500 mini-batches, using a minibatch size of 24. We train our model for at most 15 epochs, and apply
early stopping with patience of eight validation steps. Since ReZero is used for residuals, we do not use any learning
rate warm-up.

During the mixed monomer/multimer pre-training phase we crop complex chains so that the total number of residues
does not exceed 500. We also remark that during the pre-training stage we append a binary flag to each residue
and pair feature indicating whether the input corresponds to a single chain — in which case the chain should be
treated as rigid. For general multimer training and antibody fine-tuning we place the encoder and decoder modules
on separate GPUs and increase the crop size to 800 amino acids. Any complex containing a chain with more than
550 residues is removed from our training datasets. When cropping antibody-antigen complex chains, we randomly
sample a contiguous subset of antigen residues so that the total number of resulting residues in 800. We follow the
same strategy for general proteins, but choose a chain to crop at random. We note that no cropping was performed
at inference time for any of the results in this paper.

Rationale for Single Chain Pre-Training While developing this model, we first ran experiments to understand
how well our architecture performed on multidimensional scaling tasks. For this, we sought to recover the C'a trace
of protein chains given only distance and inter-residue orientation. We found that our deep model was able to
recover the original Ca-trace with sub-angstrom RMSD using a 2A resolution for distances, and 20° resolution for
angles after around 4k mini batches (approximately 1.5 epochs).

We attempted to apply the same model to rigid-docking, providing the same intra-chain information, but excluding
all inter-chain features. In these experiments, the model struggled to reconstruct the conformations of the respective
chains with reasonable accuracy, and showed a tendency to favor auxiliary loss terms such as intra-chain pairwise
distance loss. This behavior persisted even after significantly more gradient updates (see Figure S2).

Considering this, we decided to separate FAPE loss into inter and intra-chain components, similar to what is done
in [41], and pre-train our model on a 50-50 split of protein complexes and monomers. This resulted in significantly
faster convergence in FAPE loss and far more accurate 3D-models. We remark that a single float (1 or 0) is appended
to each residue and pair feature to indicate if the input is a complex or monomer.

(A) Intra-Chain FAPE (B) Intra-Chain Pairwise Dist.
v

é ! with single-chain ?; 18 with single-chain
g, without single-chain 'y without single-chain
o 314

v =

L =3

:E - ; 1.2

® o o

< o 14

o 0. €

g g

: H

2000 1000 6000 800C 1000C 12000 0 200! 4000 60

Batch Index Batch Index

Figure S2: Training loss with and without monomer pre-training. (A) intra-chain FAPE loss (y-axis) and
optimizer updates (x-axis). (B) Intra-chain pairwise distance loss (y-axis) and optimizer updates (x-axis).

S4 Decoy Ranking with Predicted IDDT

In Section 4 we mention that decoys for each docking target are ranked by predicted interface IDDT (I-pIDDT). We
now describe this procedure in more detail. We define the predicted binding interface as the set of residues having at
least one predicted inter-chain contact; a pair of residues from distinct chains, with C« distance between predicted
coordinates less than 10A. The true (actual) binding interface is defined analogously with respect to the ground
truth complex. To rank decoys for a given target, we take an average of the per-residue IDDT as predicted for those
residues on the predicted binding interface. The pIDDT score for a given residue is taken as an expectation with
respect to the predicted logits. Similarly, the predicted IDDT for a decoy is defined as the average over predicted
pIDDT for all residues in the complex.
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Figure S3: Analysis of IDDT predictions. Each plot shows results for predictions made on DB5 bound or
unbound input chains, providing the model four interface residues and four contacts sampled at random from the
ground truth complex. Each dot represents a decoy generated from bound or unbound input chains. A total of five
decoys were generated for each target. Correlation coefficients for predictions derived from unbound and bound
targets are denoted with p, and py, respectively. (A) scatter plot of predicted IDDT (x-axis) for the predicted
binding interface against actual IDDT (y-axis) for the ground truth binding interface. Unbound targets are shown
in blue (p, = 0.69) and bound targets are shown in green (p, = 0.83). We remark that the predicted and actual
interfaces may differ. (B) Scatter plot of predicted IDDT (x-axis) and actual IDDT (y-axis) for bound and unbound
targets (p, = 0.70), p, = 0.95). (C) Scatter plot of predicted IDDT using the predicted binding interface against
the complex RMSD of the predicted structure (p, = —0.74).

Figure S3 shows scatter plots of predicted IDDT and predicted I-IDDT for DB5 bound and unbound targets. In
plot (C), we find a strong correlation between I-pIDDT and complex RMSD for unbound targets, suggesting that
this quantity is effective for ranking decoy structures. We explore this further in Figure S4, which compares the
complex (A) and interface (B) RMSD distributions of decoys selected by pIDDT (orange) and the same distributions
computed over all decoys (blue). In this figure, we again generate five decoys per target, and assess across 12
binding site settings, varying the number of provided contacts or interface residues in each setting. Mean and
median RMSD scores for selected decoys are lower across all binding site contexts. RMSD distributions of decoys
selected by interface pIDDT are also consistently more concentrated at lower values.
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Figure S4: Selection overview for DB5 unbound targets (without recycling iterations). For this experi-
ment we generate five decoys for each target using a reduced model (no side chain prediction, no recycling). Each
row/column corresponds a number of provided contacts/ interface residues. This information is derived as a ran-
dom sample from the native conformation. For each violin plot, we compare the complex RMSD (C-RMSD, (A))
or Interface RMSD (I-RMSD, (B)) of all predictions (blue) against the prediction for each target having highest
predicted interface pIDDT (orange). We remark that results in the two plots use only Ca atoms to compute each
RMSD type, and as such, may differ slightly from the results reported in other sections.
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Figure S5: Examination of conformational flexibility for DB5 unbound targets. As in Figure S3, we
generate 5 predictions per DB5 target, using unbound chains as input to our model. For each prediction, we
provide our model with three contacts sampled at random. (A) Scatter plot of receptor/ligand chain-wise RMSD
between bound and unbound chains (z-axis) against predicted and bound chains (y-axis). Red dots show the decoy
with highest predicted interface pLDDT for each target. (B1) Shows the interface RMSD in the same manner as
(A). (B2) zooms in on the 0-2.5A range of (B1). (C-E) Cartoon representations of our prediction, bound, and
unbound chains for DB5 target 3AAD. (C) Our top-ranked prediction for DB5 target 3AAD using unbound chains
as input is shown in in blue, and the bound conformation is shown in red. (D) Cartoon representations of our
top-ranked prediction (blue) and unbound chains (orange) for target 3AAD. For this image, unbound chains are
optimally aligned to respective bound chains using a chain-wise Kabsch alignment. (E) Our model’s top-3 ranked
predictions for 3AAD, colored by predicted interface IDDT. Lower transparency is used to denote lower predicted
interface-LDDT. For this target, the RMSD between bound and unbound receptor chains (top, helices) is 4.18A,
and 2.05 A for the ligand chain (bottom, sheets). The interface RMSD is ~ 6.8A when bound and unbound chains
are optimally aligned. Our top ranking prediction obtains an interface RMSD of 2.6A.

Last, we consider our model’s ability to predict conformation changes upon binding. In Figure S5(A,B) we see that
the chain-wise RMSD between predicted and unbound structures is similar for all but a handful of targets. In terms
of interface RMSD, predicted structures are slightly more similar to that of the bound conformation, especially
when there are larger discrepancies in the interface of aligned bound and unbound structures.

Unfortunately, the conformation similarity between DB5 bound and unbound structures is relatively high, and more
diverse structures should be examined before drawing conclusions from these results. Nevertheless, in Figure S5
(C and D) we consider a case study on PDB entry 3AAD, where our model predicts a conformation diverging
significantly from the unbound state. For this target, our model with highest predicted interface IDDT has interface
RMSD 2.6A, where as an optimal alignment mapping the unbound chains to the bound complex has interface RMSD
6.8A. Moreover, our model predicts a conformation for the helical receptor chain that is only 2.2A from that of the
bound conformation; compared to 4.2 for unbound-bound conformation. We remark that the maximum sequence
identity between target 3AAD and any training example is only 9%.

S5 Genetic Algorithm for Protein-Protein Docking
Although our method is deterministic, sampling can still be performed by providing different subsets of inter-

chain contacts of binding interface residues for the same example. To sample conformations in the absence of
interfacial residue and contact information, we use a genetic algorithm to guide complex predictions towards high
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confidence binding modes. Any genetic algorithm consists of three main components: (1) a genetic representation
of the solution domain, (2) a “fitness” function to assess population quality, (3) a mutation function which alters
representations, and (4) a crossover function which combines two representations. Given an initial population of
solution candidates, the algorithm then proceeds to produce new “generations”’ by assessing the fitness of each
candidate and stochastically selecting those with favorable fitness to combine or mutate. We run this procedure for
a total of 10 generations, using an initial population size of 50, and subsequent population sizes of 25. We describe
each component of our algorithm below.

Solution Representation Solutions are represented as a binary vector of interface residues. The length of this
vector is Lyec + Liig where L. is the length of the receptor chain, and L;;4 is the length of the ligand chain. Each
position of the vector corresponds to a residue in one of the chains, and a one at position ¢ is meant to indicate
that this residue i is part of the binding interface.

Initial Population To generate initial candidates {Xéo), .. ((()()))} we randomly sample a single residue on
the surface of receptor and ligand chains, and provide these two residues as the “interface-residue” feature. For
antibodies, we restrict the sampling to residues in CDR H1-3 loops. Random surface residues are chosen by scaling
a 3-dimensional Gaussian (direction), to the maximum distance between any two residues in the protein, and then
choosing the residue closest to this point.

Fitness Function To evaluate the fitness of each candidate, we use the candidate solution as the binding
interface feature for our method, and then compute a function of predicted interface-pLDDT on the output. We
choose f(X,t) =exp[t- (I-pLDDT(X))] where ¢ is a scaling parameter (chosen ad hoc as one plus the index of the
current iteration).

Mutation Function Given a set of solution candidates, {X{l), (1(3)} and corresponding structures gener-

ated at time t, we select a subset of n = n{tt1) with replacement accordlng to the fitness function f(-,¢+ 1), and
randomly sub-sample six residues on the predicted binding interface. We choose to sample a fixed number here
because we empirically found that predicted interface IDDT scores have a modest correlation with the number of
interface residues provided as input.

A B I-RMSD : 8.7A_ LRMSD:17.0A D LRMSD:1.7A p Rank 6
N L-RMSD : 20.3A ~-RMSD : 59.2A L-RMSD : 3.5AG, - ;

)3{; QCQ\" 2

A @/ ’
Rank 1 %Q\ Rank‘ij\)g Rank 3

Native \ -

Figure S6: Genetic Algorithm Explores Diverse Binding Modes Ground truth and example predictions from
our genetic algorithm for DB5 target 2YVJ. In all sub-figures, the ground truth receptor is shown in orange, the
bound ligand is shown in gray, and our predictions are shown in blue. (A) Bound complex of DB5 Target 2YV.J.
(B-D) the top three ranked predictions using our genetic algorithm. (E) Rank 2, 3, 5, and 6 predictions from
our genetic algorithm. Rank 1 and rank 4 predictions are omitted for visual clarity, as they clash with some other
predictions. The bound ligand is also shown in gray. Although our method fails to generate an accurate top-1
prediction, our third ranked prediction successfully docks to the same interfacial region.

S6 Comparison to AlphaFold-Multimer

We compare our method with AlphaFold-Multimer in the blind docking setting on DB5 and Ab-Bench benchmarks
described in Section 3.3.2. In addition to comparing the two methods directly, we also include a hybrid approach
(Ours + AF). For this approach, we provide our method with up to three randomly sampled residues from antibody-
antigen binding interfaces predicted by AlphaFold-Multimer. No information of native complexes is used for our
method. We generated 100 decoys for each target, and selected the decoy with highest predicted interface IDDT as
our final prediction (selection as described in Section S4). The results are shown in Table SI.
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Figure S7: Binding site precision and recall for AlphaFold-Multimer on Ab-Bench targets. Histograms
of binding site precision and recall for AlphaFold-Multimer predicted structures on Ab-Bench targets. Recovered
contacts, antigen binding interface (epitope) and antibody binding interface (paratope) is shown from left to right.

Motivating the hybrid approach, we analyzed binding site information extracted from AlphaFold-Multimer predic-
tions (Figure S7). As expected, AlphaFold-Multimer recovers the antibody paratope with high precision. Perhaps
more surprising, we see that at least part of the antigen epitope is recovered with relatively high precision, but lower
recall. Noticing this, we conjectured that our results may be improved by sampling a limited number of predicted
binding modes and ranking predictions.

Top-1 Top-5
DockQf  I-RMSD| L-RMSD| DockQt I-RMSD| L-RMSD|
SR (%) 25th 50tk 75th  25th 50th 75th  gp (%) 25th 5oth 75th  25th 5oth 75th
Antibody Benchmark
AF-Mult. 283% 1.9 93 14.7 122 226 36.0 348% 1.8 58 13.1 92 183 264
Ours 26.1% 25 92 12.1 82 195 254 - - - - -
OurstGA  37.0% 1.8 83 124 5.5 19.2 264 45.7% 1.7 4.0 7.3 4.9 11.5 19.8
Ours +tAFM  28.3% 1.9 10.1 133 57 201 278 37.0% 1.7 44 89 54 113 19.0

Docking Benchmark Version 5.5
AFM 50.0% 0.9 79 164 2.8 19.6 352 50% 0.9 4.7 13.0 2.6 12.2 30.2
Ours 71% 8.9 133 174 24.2 354 49.5 - - - - - - -
Ours+GA 9.5% 9.7 140 175 23.1 334 47.5 16.7% 54 88 13.6 129 20.7 34.3

Ours+AFM 42.8% 2.7 5.7 14.3 6.6 17.4 28.7 52.4% 20 51 12.7 52 124 24.5

Table S1: Comparison of Our Method and AlphaFold-Multimer on Two Docking Benchmarks Re-
sults for AlphaFold-Multimer (AFM), our method (ours), our method with genetic algorithm (Ours+GA), and
our method using AlphaFold-Multimer predicted interfaces (Ours+AFM) for Ab-Bench and DB5 benchmarks.
AlphaFold-Multimer outperforms our method on blind docking general protein targets from DB5. Our method
does not make use of MSA information, which is especially important for general proteins where binding interfaces
are harder to discern. For antibody complexes, the paratope is limited to CDR loops and our method has an easier
time predicting the complex.

Our blind docking (i.e., our deep learning plus our genetic algorithm) greatly outperforms AF-Multimer on antigen-
antibody complex structure prediction without using any binding site information. But on general protein targets,
our method performs poorly. Adding AF-Multimer predicted interface or contact information significantly improves
prediction quality since this indirectly makes use of MSA information. We hypothesize that directly including MSA
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information could significantly improve prediction quality for general proteins, especially in conjunction with our
genetic algorithm, as model confidence predictions correlate strongly with predicted interface pIDDT, but we leave
this study for future work.

Recently, Yin et al. [89] benchmarked AlphaFold-Multimer and other docking programs on antibody-antigen and
general protein targets using the sequences or structures of unbound chains. This study found that AlphaFold-
Multimer performs very poorly for antibodies, successfully predicting only 11% of targets. In their study, the
authors identified sequence and structural features associated with lack of AlphaFold success and attribute the
performance gap to lack of co-evolutionary signal. For antibody-antigen complexes, they found that the success rate
of AlphaFold-Multimer was not much different when the model was given only templates, and no MSA information.
In this setting, AlphaFold-Multimer is similar to our model. We hypothesize that our performance improvement
for antibody-antigen targets comes from (1) fine-tuning and (2) no MSA inputs. Since we do not train with MSA
information, our model is forced to learn sequence and structural features which facilitate good binding modes. This
is particularly useful for immunoglobulin targets, as antibody-antigen interfaces are less likely to have co-evolving
sequences available for MSA generation [89].

A PDB ID: 1jtd B PDB ID: 2adf PDB ID:A5d93
5 2 Ao i)

. = o b s & ok
b Soa :Vj@ v/ 49’

L-RMSD : 11.94
L-RMSD : 33.54

(ih N\ o
I-RMSD : 16.14 Ab-RMSD : 1.94
L-RMSD : 44.64 Ag-RMSD : 1.14

I-RMSD : 13.54 L-RMSD : 1.54 -
L-RMSD : 26.14 L-RMSD : 5.14 L-RMSD : 7.54 [ M Ground Truth [ AF2-Multimer [ Ours ]
I-RMSD : 9.74 L-RMSD : 1.14 PDB ID: 5en2
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Figure S8: Comparison of Structure Predictions Between Our Method and AlphaFold-Multimer. In
this figure, all predictions from our model were made with AlphaFold2 or AlphaFold-Multimer predicted structures
as input. (A) Predictions for DB5 target 1JTD. Our method uses one random contact. (B) Predictions for RAbD
target 2ADF. Our prediction uses four randomly achosen epitope residues. (C) Example of high interface and
ligand RMSD for an antibody-antigen complex predicted by AlphaFold-Multimer (left). Alignment of predicted
chains to the ground truth structure (right). (D,E) Another example where AlphaFold predicts accurate chain
conformations, but incorrect complex. Supplying our method with antigen epitope residues predicted by AlphaFold
improves complex prediction quality (left) and CDR loop RMSD (right)

While AlphaFold-Multimer often predicts correct conformations for antibody and antigen chains, the predicted
complex can deviate far from the ground truth. For example, Figure S8 (A) shows that although the complex
structure is far from the ground truth, the antibody and antigen structures are highly similar to their respective
bound counterparts, with less than 2A complex-RMSD between predicted and unbound antibody chains, and 1.1A
RMSD between predicted and bound antigen chain. In Figure S8 (A,B,D) we provide more examples illustrating
this and also show how our model can be used in conjunction with AlphaFold to improve prediction quality when
binding site information is known.

S7 Coordinate Flexibility

Here, we provide further details on maintaining SE(3)-Equivariant updates to rigid frames when some input coordi-
nates are treated as fixed. We note that IPA rigid frames are SE(3)-Equivariant with respect to a single global rigid
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transformation applied to per-residue local frames [34, Suppl. Material, 1.8.2]. Moreover, the same proof shows
that scalar node features are invariant to any global rigid transformation. Thus, setting rigids T in the decoder
submodule to those derived from a complete set of backbone coordinates results in an SE(3)-Equivariant update to
the rigid frames, and an invariant update to the scalar features.

We now argue a more general claim: that IPA can be made SE(3)-Equivariant even when some input coordinates are
fixed, flexible or missing. Let C' = CizeaU Ciexivie U Cmissing be a partition of the input residues ¢ = 1..n denoting
those residues with coordinates which should remain fixed, those which are flexible, and those with coordinates that
are missing. Without loss of generality, assume that the coordinates which are not missing have mean 0, and all
missing coordinates are initialized at the origin.

To leave the coordinates corresponding to residues in Cl;zeq static, we modify the update in Equation (6) to

T

7® i € Ctive
(£+1) :{ i fized (16)

! Tlm o RigidUpdate (3:5“_1)) otherwise

From the equation above, it’s clear that the coordinates are fixed in the output, up to translation. Optionally, we
can also replace the prediction of Z¥ (i € Ifizeq) in Equation (7) with the (centered) atom coordinates given as
input.

Note that any global rotation applied to the input points will leave the origin fixed, and thus only the fixed or
flexible coordinates can change position. The claim of equivariance now follows directly from the equivariance of
IPA. To see this, recall that the IPA-layer itself is rotation-equivariant, and that scalar residue features are invariant
under the same transformation. Thus, applying a global rotation to all residue coordinates, while keeping the scalar
embeddings fixed, will result in only an equivalent update to the local frames.

For practical reasons, mean-centering all of the input coordinates does not actually result in an equivariant update
— this is because the rigid frames use a specific atom (e.g. Ca) to initialize their translation. Thus, in practice,
only the rigid translations should have zero-mean.

S8 CDR-Loop Design

In Section 3.2.1, and Section 4.3, we mention that our architecture is capable of handling direct coordinate in-
formation. Moreover, it is possible to treat certain subsets of coordinates as rigid during inference (we actually
verify the more general claim - that some coordinates may be fixed, flexible, or missing in Section S7). In settings
such as CDR-loop generation, fixing the heavy and light chain framework regions may be practically useful. To
enable de novo design of loop regions, the CDR L1-L3 and H1-H3 segments can simply be treated as missing. To
test whether this approach works in practice, we fine-tuned the same pre-trained model from Section 4.3, while
supplying the coordinates of the heavy and light chain framework regions to the structure-decoder module. The
framework coordinates are treated as rigid during inference, and the rest of the procedure is implemented exactly
as described in Section 4.3. Of course, it is also possible to provide the coordinates of the docked antigen complex
in addition to the framework. For example, coordinates on or surrounding the epitope may be treated as flexible,
and the others as rigid depending on the use case. We omit this setting here as the manuscript focuses primarily
on protein docking.

Fine tuning our model on SAbDab reduces overall sequence perplexity (p = 0.086), and CDR-RMSD (p < 0.005 for
CDR H1-H3). We remark that including framework coordinates appears to reduce median CDR H1-H3 RMSD and
sequence perplexity, but hypothesis tests comparing our fine-tuned models with and without framework coordinates
do not support this claim (p = 0.41, p = 0.43, p = 0.86 for CDR H1, H2, and H3 RMSD). Nevertheless, this outcome
provides further empirical justification for our results in Section S7, and acts as a robust proof of concept for how
to integrate coordinate information into docking or de novo design tasks.

The methods in Table 1 are trained, validated, and tested on different datasets. Because of this, we tried to replicate
their training and testing procedures as accurately as possible. To generate our data we use the scheme proposed
in Jin et al. [48], generating CDR-clusters at 40% sequence identity and using an 8:1:1 split for training, validation,
and test sets respectively. Some example generations are shown in Figure S9
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Structure Prediction Sequence Prediction
Our Method RMSD| PPL| CDR H1-3

H1I H2 H3 Fr H1 H2 H3 NSR PPL
No FT 1.43 1.53 249 0.55 4.84 753 11.17 37.5% 8.41
FT 1.11 1.04 1.88 0.82 446 6.71 10.68 39.7% 7.67
FT + Fr-Coord 1.03 098 1.78 - 4.27 6.50 10.36 40.6% 7.18

Table S2: CDR-loop design with framework coordinates Results from our method without framework coor-
dinates and without fine tuning (No FT), without framework coordinates and with fine-tuning (FT) and with fine
tunng and coordinates for antibody heavy and light chain framework regions (FT + Fr-Coord). The same criteria
and results from our method as described for Section 4.3 are used here.

\ }\,
S =2

8 | 928

Figure S9: Antibody Docking and CDR Design Example docking and designs comparing our predictions with
native structures. For each example, we give the length (L) of CDR H3 and the RMSD between the predicted
(red) and ground truth (orange) conformations. For simplicity, only heavy chains are displayed. Only the bound
antigen (gray-white) is shown when the prediction L-RMSD is less than 2 A. (A) Fab of mAb 3E9 in complex with
Plasmodium vivax reticulocyte-binding protein 2b (PvRBP2b) (PDB: 6BPA, L = 11, RMSD = 1.49). (B) Fab
of IgG B13I2 bound to synthetic 19-amino acid peptide homolog of the C helix of myohemerythrin (PDB: 2IGF,
L =11, RMSD = 1.19). (C) Fab of mAb B10 heavy chain in complex with A(H3N2) influenza Virus (PDB: 6N6B,
L =9, RMSD = 1.21). (D) Fab of igG 7B2 bound to 13-residue HIV-1 GP41 peptide (PDB: 4YDV, L = 17,
RMSD = 2.86)
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S9 Ablation Studies

We trained several ablated models to identify how different components of our architecture and training procedure
contribute to docking performance. We show results for four additional models in Table S3.

We find that removing the shared weight layers and auxiliary FAPE loss from our structure decoder leads to the
largest degradation in performance. We also remark that ablating the degree centrality encoding or adding a
secondary structure encoding to our input residue features had an insignificant impact on performance. We remark
that including ESM1b encodings (+ ESM1b) of each chain did not noticeably improve performance in the blind
docking setting. We obtain Dock(@ scores > 0.23 for 3 targets when ESM1b encodings are used, and 2 targets when
the encodings are removed. It appears that these encodings do not significantly improve performance, so we opted
for the simpler model instead. Interestingly, the variant of our model which does not use recycling is still able to
obtain competitive top-5 performance, but suffers in top-1 performance. Recycling decoder residue features is also
competitive with the baseline recycling implementation, but does not result in significantly better performance.
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Top-1 Top-5 Top-1 Top-5
IRMS LRMS SR IRMS LRMS SR IRMS LRMS SR IRMS LRMS SR
4 Interface 1-Contact
Baseline 4.7 145 476% 3.0 8.6 69.0% 58 13.6 45.2% 35 102 59.5%
No Recycle 84 200 29.7% 3.9 85 64.9% 8.0 20.0 33.3% 41 115 51.4%
-+ ESM1b 51 138 47.6% 3.3 88 73.3% 5.6 181 37.7% 36 9.5 62.2%

No Share Wts. 4.9 16.6 42.9% 3.9 9.6 54.8% 72 221 31.0% 3.7 114 452%
Recycle Dec. 53 13.7 429% 34 88 73.3% 57 180 377% 3.3 9.5 59.5%

Table S3: Ablation Study We consider the top-1 and top-5 performance of model variants on DB5 unbound
targets using 1 contact or 4 interfacial residues as input. This information is randomly sampled independently
for each variant, and a total of 15 decoys are generated for each target. Predicted IpIDDT is used to rank each
decoy. The baseline model is described in the main text. For the four variants we considered removing recycling
(No Recycle), adding ESM1b encodings of chain sequences as input (+ESM1b), learning separate weights for each
decoder block (No Share Wts), and recycling decoder residue features, rather than encoder residue features (Recycle
Dec.). When learning separate weights for decoder layers, we also remove auxiliary FAPE loss.

S10 Data Collection

For all methods, the receptor and ligand chains were randomly rotated and translated before inference. For general
proteins, the smaller of the two targets was treated as the ligand (ties broken based on chain order in PDB file).
For antibody-antigen chains, the antigen was always treated as the ligand.

Code for EquiDock was downloaded from the author’s github page. Standalone packages for HDock, PatchDock,
and ZDock were downloaded from the respective servers. For HDock and PatchDock, all binding interface and
contact information was given as input. Still, results required an additional post-processing step when run locally.
For this, we enumerate all predictions of each program and choose the lowest energy prediction satisfying the
interface and contact criteria. We reiterate that interface and contacts are defined using C'ov atoms with 10A cutoff.
In some cases, HDock or PatchDock did not produce any decoys meeting all criteria. In these cases, we choose the
lowest scoring model with the most recovered interface residues and contacts.

AlphaFold and AlphaFold-Multimer were run with ColabFold [90] using the provided template and MSA servers.
Default settings were used for all other options. ColabFold’s monomer setting was used to predict all chains in the
DB5 benchmark, and all antigen chains in the RAbD and Ab-Bench benchmarks. The multimer setting was used
to generate all predicted antibody structures with bound heavy and light chains.

As mentioned in Section 3.2.2, we filter unbound and predicted targets based on RMSD to the bound conformation.
Full lists of targets used for comparisons is included with the code at https://github.com/MattMcPartlon/protein-
docking
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S11 Extended Results and Examples 1518

S11.1 Docking Benchmark Version 5 1510

Docking Benchmark Version 5.5, Unbound Targets (N = 42)

Top-1 Top-5

DockQf  I-RMSD| L-RMSD| DockQt I-RMSD| L-RMSD|

SR (%) 25" 50th 75th 25th 50th 75th  GR (%) 25th 50th 75th  25th 5oth 75th
Blind
EquiDock 0.0% 114 141 17.1 35.0 40.8 50.6 - - - - - - -
ZDock 11.9%  11.8 14.1 17.3 25.0 344 428 143% 7.3 10.1 127 17.2 22.7 32.6
PatchDock  0.0%  11.8 15.6 19.6 38.8 48.0 56.7  0.0% 9.0 11.5 150 26.8 37.9 48.9
HDock 9.5%  11.3 159 18.0 29.7 41.8 53.5 19.0% 6.8 10.2 11.6 15.7 26.2 32.1
AFM 50.0% 0.9 7.9 164 2.8 196 352  50% 0.9 4.7 13.0 2.6 12.2 30.2
Ours 71% 89 13.3 174 242 354 495 - - - - - - -

Ours+GA 9.5% 9.7 14.0 175 23.1 334 475 16.7% 54 88 13.6 129 20.7 34.3
Ours+AFM  42.8% 2.7 5.7 14.3 6.6 17.4 28.7 52.4% 2.0 5.1 12.7 52 124 24.5

4 Interface

ZDock 14.3% 87 11.7 13.8 184 26.9 349  33.3% 34 62 9.0 108 17.1 20.6
PatchDock 2.4% 9.2 11.6 158 26.2 374 525 4.8% 83 9.5 121 17.3 264 40.6
HDock 11.9% 8.0 10.7 14.3 193 29.6 39.7 31.0% 35 74 98 12.0 19.2 245
Ours 47.6% 2.7 4.7 89 7.1 145 23.6 69.0% 2.1 3.0 52 59 8.6 12.5
1 Contact

ZDock 16.7% 77 112 144 193 314 388  31.0% 33 73 11.2 10.7 185 29.1
PatchDock 2.4% 109 14.2 18.8 349 455 54.5 7.1% 7.8 10.7 14.5 185 36.1 46.0
HDock 14.3% 10.3 14.8 17.7 269 38.0 522  33.3% 34 71 105 12.0 19.2 29.1
Ours 45.2% 2.5 58 9.9 8.6 13.6 26.8 59.5% 2.0 3.5 6.2 5.5 10.2 16.3
2 Contacts

ZDock 19.0% 6.7 119 144 179 30.5 41.9  40.5% 29 59 101 98 17.1 259
PatchDock 4.8% 9.4 14.1 175 27.0 40.2 53.2 14.3% 6.6 9.1 128 15.0 27.7 43.3
HDock 14.3% 79 113 175 204 282 481 38.1% 34 65 10.0 11.3 17.1 29.3
Ours 66.7% 1.7 2.7 46 4.1 7.3 13.9 92.9% 1.6 2.1 26 3.9 5.3 8.1
3 Contacts

ZDock 23.8% 4.5 103 142 144 246 376  452% 28 49 85 9.0 16.5 222
PatchDock 71% 9.1 133 175 273 39.2 53.2 16.7% 55 9.1 11.8 15.0 24.9 42.9
HDock 19.0% 6.5 10.5 17.0 155 27.3 453  38.1% 33 6.6 9.6 11.3 169 245
Ours 88.0% 1.6 23 3.5 5.0 5.8 9.1 100% 14 1.8 26 43 5.1 64

Table S4: Results for DB5 Unbound Targets
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Docking Benchmark Version 5.5, Predicted Targets (N = 22)

Top-1 Top-5

DockQ? I-RMSD| L-RMSD| DockQt I-RMSD| L-RMSD,|

SR (%) 25" 50th 75th 25th 5oth 75th  GR (%) 25th 50th 75th  25th 5oth 75th
Blind
EquiDock 0.0% 9.8 12.2 15.4 26.4 42.1 50.1 - - - - - - -
ZDock 9.1% 8.5 129 176 19.5 29.5 34.8 18.2% 5.5 10.0 13.0 12.0 22.4 31.1
PatchDock  4.5% 11.5 144 194 29.8 38.2 55.5 9.1% 84 10.2 11.6 18.6 274 32.0
HDock 9.1% 12.0 152 206 275 369 63.6 18.2% 86 11.0 133 17.0 28.6 34.1
Ours 9.1% 9.6 13.8 18.9 22.8 34.3 58.3 - - - - - - -
4 Interface
ZDock 9.1% 72 119 153 17.6 27.8 331 31.8% 29 68 102 81 152 26.9
PatchDock  4.5% 9.7 11.7 144 21.1 29.5 386  18.2% 51 83 10.0 15.1 18.1 27.8
HDock 9.1% 8.7 11.3 144 21.1 30.1 414  27.3% 3.6 83 101 14.6 19.6 259
Ours 59.1% 2.2 3.2 74 6.1 7.1 22.2 68.2% 2.2 2.6 4.1 5.4 6.8 10.6
1 Contact
ZDock 13.6% 6.5 12.0 176 17.0 284 37.8  36.4% 27 65 130 80 184 311
PatchDock 4.5% 10.0 14.4 19.1 21.1 34.6 54.9 27.3% 40 84 11.2 13.1 19.0 32.0
HDock 9.1% 10.9 15.0 20.6 27.5 39.0 63.6 22.7% 6.0 10.2 12.8 16.8 23.8 33.5
Ours 27.3% 3.6 7.1 10.3 10.0 18.3 29.1 54.5% 24 28 7.2 6.7 10.5 15.7
2 Contacts
ZDock 9.1% 7.2 115 156 17.0 26.9 348  36.4% 24 65 130 58 173 311
PatchDock  4.5% 9.1 128 154 221 31.1 50.1  27.3% 40 79 106 13.1 18.6 32.0
HDock 13.6% 79 14.6 20.6 23.1 39.0 63.6 22.7% 6.0 88 11.1 16.8 24.0 29.5
Ours 66.7% 2.3 33 64 64 73 177 90.5% 19 24 3.0 5.1 6.5 7.3
3 Contacts
ZDock 13.6% 6.5 11.0 156 152 284 348  40.9% 24 69 132 58 152 314
PatchDock  4.5% 9.8 13.7 156 27.1 314 529  27.3% 37 73 99 111 16.7 32.0
HDock 18.2% 7.8 15.0 20.6 18.7 38.4 63.6 27.3% 3.8 84 101 14.6 22.7 289
Ours 75.0% 1.5 24 4.1 4.6 7.8 11.7 95.0% 1.4 20 24 4.0 5.3 8.0

Table S5: Results for DB5 Predicted Targets
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S11.2 Antibody Benchmark

Blind
EquiDock
ZDock
PatchDock
HDock
AF-Mult.
Ours
Ours+GA
Ours+AFM

4 Epitope
ZDock
PatchDock
HDock
Ours

12 Epitope
ZDock
PatchDock
HDock

Ours

Antibody Benchmark Unbound Targets (N = 46)

Top-1

Top-5

DockQt  I-RMSD|
SR (%) 25" 50tk 75th

L-RMSD/
25th 50th 75th

DockQ?t

I-RMSD|
SR (%) 25 50tk 75th

L-RMSD,
25th 50th 75th

0.0%  11.6 13.7 168 31.9 41.1 51.0 - - - .
22% 101 128 17.0 239 282 393 174% 58 81 115 147 21.2 286
0.0% 12 139 155 26.1 322 463  22% 6.6 102 129 19.7 239 37.0
22% 125 156 198 24.0 47.3 585  87% 86 108 13.7 211 244 393
28.3% 1.9 9.3 147 122 226 360 348% 1.8 58 131 92 183 264
26.1% 2.5 9.2 12.1 82 195 254 - - - .
37.0% 1.8 8.3 124 5.5 19.2 264 45.7% 1.7 4.0 7.3 4.9 11.5 19.8
28.3% 1.9 10.1 133 57 20.1 278 37.0% 1.7 44 89 54 113 19.0
87% 82 104 133 207 272 33.0 283% 28 62 7.9 102 15 212
0.0% 97 11.9 147 224 288 397 87% 60 82 92 168 20.1 285
87% 9.9 121 157 21.3 27.6 426 304% 34 7.5 99 11.7 189 23.6
54.3% 1.6 3.1 6.8 4.6 9.5 206 71.7% 1.4 2.5 3.7 4.4 6.7 12.3
26.1% 3.6 85 114 144 207 27.8 565% 14 32 72 53 9.7 20.7
0.0% 84 102 129 21.3 251 327 21.7% 42 64 7.9 152 17.8 272
13.0% 7.6 103 13.1 186 23.9 36.1 47.8% 2.2 42 7.8 7.6 142 222
65.2% 1.2 1.9 6.8 3.8 7.5 22.3 87.0% 1.2 1.5 2.6 3.5 54 8.8

Table S6: Results for Antibody Benchmark Unbound Targets
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Antibody Benchmark Predicted Targets (N = 26)

Top-1 Top-5

DockQf  I-RMSD| L-RMSD| DockQt I-RMSD] L-RMSD|

SR (%) 25" 50th 75th 25th 5oth 75th  GR (%) 25th 50th 75th  25th 5qth 75th
Blind
EquiDock 0.0%  13.2 145 164 38.3 41.6 50.0 - - - - - - -
ZDock 3.8% 106 129 154 219 268 373  7.7% 64 9.6 115 14.7 19.8 28.7
PatchDock  0.0%  12.3 14.0 18.8 26.3 33.3 495  3.8% 7.8 109 12.2 184 22.7 28.0
HDock 0.0%  11.9 135 189 255 31.2 524  3.8% 81 10.1 124 183 252 30.7
Ours 26.9% 2.8 104 13.9 94 229 264 - - - - - - -

Ours+GA  42.3% 1.9 7.3 9.0 6.5 15.5 19.4 46.2% 1.8 7.2 9.1 6.5 13.5 17.3

4 Epitope

ZDock 7% 74 94 132 186 24.7 31.8  30.8% 39 6.1 88 89 153 21.0
PatchDock  3.8% 103 12.2 14.5 24.8 27.2 40.0 7.7% 6.0 7.7 95 152 194 264
HDock 3.8% 9.0 13.2 14.1 23.0 27.6 35.2 19.2% 50 7.5 104 158 19.5 259
Ours 53.8% 1.9 2.7 9.3 4.8 85 28.0 692% 1.5 24 34 44 6.0 11.8
12 Epitope

ZDock 19.2% 5.7 103 11.6 14.0 23.2 28.6  57.7% 20 39 6.2 48 118 15.8
PatchDock  11.5% 74 102 124 173 26.1 389  30.8% 45 6.0 74 89 172 243
HDock 7.7% 7.8 10.2 13.5 179 243 302  50.0% 21 53 86 58 13.2 22.7
Ours 69.2% 1.3 1.8 58 3.7 6.1 21.1 885% 1.3 1.7 3.2 3.7 4.8 9.8

Table S7: Results for Antibody Benchmark Predicted Targets
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S11.3 Rosetta Antibody Design

Rosetta Antibody Design (Bound Targets)

I-RMSD/, L-RMSD/, DockQ?t

Epitope Method Med. Mean Std. Med. Mean  Std. SR Med. Mean Std.
EquiDock 14.76 1547 3.60 40.70 41.89 12.05 1.7%  0.02 0.03 0.03
ZDock 5.43 8.35 8.01 14.22  22.05 24.01 50.0%  0.29 0.43 0.40
0 PatchDock 11.33 10.33 6.78 26.96 29.00 22.95 259% 0.04 024 0.34
HDock 0.32 4.56 9.01 1.01 13.56 26.52 79.3%  0.98 0.77  0.39
Ours 1.79 575 7.60 5.0 16.7  22.0 61.7% 0.44 045 0.37
2 1.55 242  2.99 4.0 8.6 114 78.6%  0.62 0.56  0.32
4 Ours 1.20 1.87  2.10 3.5 6.9 8.3 82.1%  0.66 0.59 0.30
All 1.17 1.78  1.95 3.3 7.1 12.2 87.5%  0.73 0.64 0.27

DockQ Score (Ab-Ag) Interface RMSD (Ab-Ag) . Ligand RMSD (Ab-Ag) £ o >=Iﬂ):;(lzgeouality (Ab-Ag)

10 10
08
o 06
b/
S
Sos :
02
00 0
0-Ag

0-Ag 2-Ag 4-Ag All Ag

Figure S10: Rosetta Antibody Design Bound Targets. Results on the RAbD test set using bound chains as
input to each docking method. Results for our method are generated after fine-tuning on bound antibody-antigen
chains. The z-axis in the below 4 pictures show the number of epitope residues provided to the docking methods.

2-Ag

4-Ag

0-Ag

2-Ag

All Ag

0-Ag

2-Ag

4-Ag All Ag

DockQ score cutoffs for acceptable, medium and high quality predictions are > 0.23, > 0.49, and > 0.80

Figure S11: Comparison Between Our Method and Equidock Blind docking predictions for a single domain
antibody targeting the toxin Ricin (A and B), and therapeutic antibody which targets the CD4 binding site on the
HIV-1 spike protein (C and D). In (A-D), we show the bound antigen in orange and bound antibody in light gray.
For clarity we align each complex prediction to the ground truth using only the antigen chain, and show only the
predicted antibody in blue. We also show the solvent accessible surface of antibody predictions (independent of the
antigen) to better illustrate surface intersections. For both of these targets, the RMSD between bound and unbound
antigen chains is less than 2A. (E) Distribution of the number of steric clashes for blind docking DB5 unbound
targets. We consider only backbone atom clashes, since EquiDock cannot modify side-chain conformations. Two
atoms are said to clash if each atom belongs to a different chain, and the pairwise distance is less than 90% the

sum of their van der Waals radii.
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Figure S12: Docking Predictions for Antibody Benchmark Target 2W9E Protein backbones are shown in
cartoon with ground-truth antibody and antigen structures shown in green for each figure. The antigen epitope is
highlighted in yellow. We show the predicted antibody orientation relative to the ground truth antigen in a separate
color for each method. Ligand RMSD (LRMSD) is shown for each prediction. (A) Blind docking predictions for
methods EquiDock, ZDock, PatchDock, HDock, and DockGPT. (B) Close up of EquiDock’s prediction showing
excessive surface overlap between antibody and antigen chain predictions. (C) Top-1 docking predictions for each
method, except EquiDock given four epitope residues. (D) Ground truth complex. (E) Top-1 docking predictions
for each method, except EquiDock given 12 epitope residues.
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