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Abstract

Protein complexes are vital to many biological processes and their understanding can lead to the development of
new drugs and therapies. Although the structure of individual protein chains can now be predicted with high
accuracy, determining the three-dimensional structure of a complex remains a challenge. Protein docking, the task
of computationally determining the structure of a protein complex given the unbound structures of its components
(and optionally binding site information), provides a way to predict protein complex structure. Traditional docking
methods rely on empirical scoring functions and rigid body simulations to predict the binding poses of two or more
proteins. However, they often make unrealistic assumptions about input structures, and are not effective at accom-
modating conformational flexibility or binding site information. In this work, we present DockGPT (Generative
Protein Transformer for Docking), an end-to-end deep learning method for flexible and site-specific protein docking
that allows conformational flexibility and can effectively make use of binding site information. Tested on multiple
benchmarks with unbound and predicted monomer structures as input, we significantly outperform existing meth-
ods in both accuracy and running time. Our performance is especially pronounced for antibody-antigen complexes,
where we predict binding poses with high accuracy even in the absence of binding site information. Finally, we
highlight our method’s generality by extending it to simultaneously dock and co-design the sequence and structure
of antibody complementarity determining regions targeting a specified epitope.

1 Introduction1

The bound configuration of two or more proteins helps2

regulate many biological processes including signal trans-3

duction [1, 2], membrane transport [3, 4], and cell4

metabolism [5, 6]. The process by which unbound pro-5

tein chains bind together to form a complex is often6

controlled by more general protein-protein interactions7

(PPIs) [7–9], and accordingly, aberrant PPIs are asso-8

ciated with various diseases, including cancer, infectious9

diseases, and neurodegenerative diseases [10]. The role of10

PPIs in protein complex formation makes selective tar-11

geting of PPIs an essential strategy for drug design and12

already forms the basis for several established cancer im-13

munotherapies such as monoclonal antibodies [11, 12].14

Although most proteins interact with partners to form15

a complex, experimental methods for determining the16

structures are often expensive and technically difficult to17

administer [13, 14]. As a result, protein complexes ac-18

count for only a small fraction of entries in the Protein19

Data Bank (PDB) [15], highlighting the need for effective20

in silico methods.21

Although it is possible to infer protein complex struc-22
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ture from primary sequence information alone, in many 23

cases, the three-dimensional structures of constituent 24

(unbound) chains have already been experimentally de- 25

termined. Moreover, extra information such as target 26

binding sites or inter-chain contacts, is readily available 27

in many applications, or can be derived through experi- 28

mental methods such as cross-linking mass spectrometry 29

[16]. In these scenarios, protein docking methods can 30

be used to predict a complex structure. Despite hav- 31

ing many practical applications [17–19], the efficacy of 32

in silico protein docking or design methods is ultimately 33

hindered by unrealistic assumptions about input struc- 34

tures, and failure to effectively utilize PPI information 35

such as binding sites and inter-protein contacts. 36

Current computational methods for protein docking and 37

design typically impose backbone and side-chain rigidity 38

constraints and are trained to utilize specific side-chain 39

interactions or protein backbone placements derived from 40

native complexes which are already optimal for binding 41

[20, 21]. Training computational models on only bound 42

structures – in which binding interfaces match perfectly 43

– is in a sense “starting with the answer.” In the real 44

world, unbound chains typically lack shape complemen- 45

tarity because proteins tend to deform substantially upon 46

binding [22, 23], even for small-molecule ligands [24]. Ac- 47

counting for backbone and side-chain flexibility can sig- 48

nificantly increase the number of sequences that fold to 49
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the structure while maintaining the general fold of the50

protein [25], and is especially important for protein de-51

sign because mutations in sequence often result in small52

changes to the backbone structure, [26], and potentially53

large changes to surrounding side-chain conformations54

[27].55

In addition to overlooking conformational flexibility, cur-56

rent methods tend to either ignore or ineffectively incor-57

porate PPI information. For many applications, it is im-58

portant to consider interactions as a particular binding59

site, such as targeting catalytic sites of enzymes, or de-60

signing therapeutics to block a specific protein-protein61

interaction. A salient example is the design of neu-62

tralizing antibodies targeting the SARS-CoV-2 S pro-63

tein which initiates infection upon binding to the human64

angiotensin-converting enzyme 2 (ACE2) receptor [28,65

29]. In most cases, PPIs such as binding sites or inter-66

chain contacts are utilized only as a post-processing step,67

to re-rank or filter out incompatible predictions.68

Flexible docking and design of protein complexes69

presents several challenges for machine learning. First,70

the 3D geometry of multiple proteins is inherently diffi-71

cult to represent. The difficulty arises from the fact that72

spatial relationships between receptor and ligand struc-73

tures are ambiguous at the input level, yet inter-protein74

interactions must still be modeled jointly by the learning75

algorithm. Although several geometric deep-learning ap-76

proaches offer a way to directly model 3D point clouds,77

so far only one end-to-end machine learning method has78

been proposed for general protein docking [30]. This79

method does not take into consideration backbone flex-80

ibility or bindings site information, and suffers from ex-81

cessive steric clashes in its predictions. Finally, sufficient82

training data is also scarce. Currently, there is no large83

dataset consisting of both protein complexes and their84

unbound components.85

In this work, we introduce DockGPT, an end-to-end86

deep-learning approach to site-specific flexible docking87

and design. In developing DockGPT, we hypothesized88

that neural networks could accurately recover protein89

3D-coordinates from coarse or incomplete descriptions90

of their geometry. After affirming this capability, we ap-91

proached flexible docking in a manner analogous to ma-92

trix completion followed by multidimensional scaling. In93

the matrix completion step, missing entries loosely corre-94

spond to inter-chain quantities such as distance and ori-95

entation. The imputed representation is then converted96

to 3D geometry in order to recover the bound complex.97

This framing allows us to naturally incorporate PPI in-98

formation as input, in the form of residue-level binding99

interfaces or interfacial contacts. In addition, removing100

some intra-chain geometry allows us to simultaneously101

dock and design protein segments, while still targeting102

specific binding sites.103

To better incorporate flexibility into our predictions, we104

provide only a coarse description of intra-chain geome- 105

try; presenting distance and angle information within a 106

resolution of at least 2Å and 20◦ respectively. On top 107

of this, we attempt to approximate the unbound state of 108

each training example, by applying Rosetta’s FastRelax 109

protocol [31] to individual chains. 110

To validate our approach, we perform an extensive 111

comparison against four other protein docking meth- 112

ods on unbound chains from Antibody Benchmark (Ab- 113

Bench)[32], and Docking Benchmark Version 5 [33]. We 114

also show that DockGPT performs well in docking pro- 115

tein structures predicted by AlphaFold2 [34] with high 116

success rates. Finally, we demonstrate how to extend 117

DockGPT to perform simultaneous docking and de novo 118

design by docking antibody-antigen partners while con- 119

currently predicting both the sequence and structure 120

of all heavy chain complementarity-determining regions 121

(CDRs). 122

2 Related Work 123

Geometric Deep Learning The field of geometric 124

deep learning is concerned with modeling data that has 125

some underlying geometric relationships. Typically, this 126

involves developing architectures that are invariant or 127

equivariant with respect to the action of some symme- 128

try group. Notable examples include the permutation 129

equivariance of graph neural networks and the transla- 130

tion equivariance of convolutional neural networks. 131

Complementary to this work, several geometric deep 132

learning methods tailored explicitly towards modeling 133

symmetries of point clouds have recently been proposed 134

[35–39]. These methods have helped facilitate signifi- 135

cant improvements in protein-related molecular model- 136

ing tasks such as protein structure prediction [34, 40– 137

42], inverse folding [43–45], and de novo design [46–50]. 138

Traditional Methods for Protein Docking Pro- 139

tein docking is traditionally performed in three steps: 140

(1) sampling of candidate conformations, (2) score-based 141

ranking of candidates, and (3) refinement of top-ranking 142

complex structures. These algorithms primarily differ in 143

either of the first two steps. Holding the position of the 144

receptor fixed, each candidate conformation can be de- 145

scribed by a 3-dimensional rotation and translation of 146

the input ligand. Although the search space has rela- 147

tively few degrees of freedom, the size of the effective 148

candidate space can still total into the millions, even for 149

small ligands [51]. In addition, the choice of score func- 150

tion usually induces a rugged energy landscape which is 151

difficult to optimize over. 152

Within this paradigm, methods such as HDock [52, 53], 153

PatchDock [54], ZDock [55], Attract [56], ClusPro [57], 154

RosettaDock server [58], and Haddock [59], have been 155
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Figure 1: Approach Overview. (A) Unbound chain sequence and coordinates are given as input, and option-
ally, information regarding binding interface(s). (B) For each chain, an invariant representation of 3D geometry is
constructed from quantities such as pairwise atom distances and orientations. If interface residues or contacts are
provided, this information is added to the respective residue and pair features. Other features are discussed in Sec-
tion 3.1. (C) The main network consists of two submodules. The structure encoder develops a joint representation
of the input chains and the structure decoder infers the 3D geometry. (D) The output of the main network is the
complex 3D-coordinates and per-residue confidence predictions. Steps (C) and (D) are repeated four times, with
output residue, pair and distance features recycled from the previous iteration.

developed and made available for public access. Among156

these methods, PatchDock is one of the most widely used157

and computationally efficient. PatchDock avoids brute-158

force search over transformation space by matching pro-159

tein surface patches based on “shape complementarity.”160

Ligand transformations that align favorable patches bol-161

ster wide binding interfaces and avoid steric clashes re-162

sulting in favorable energy scores. HDock, ClusPro, and163

ZDock all make use of the Fast Fourier Transform al-164

gorithm to efficiently perform a global search on a 3D165

grid. The methods differ in how they post-process each166

candidate. ClusPro clusters candidates by root-mean-167

squared deviation and attempts to find a cluster with168

favorable energies. ZDock uses a combination of shape169

complementarity, electrostatics, and statistical potential170

terms for scoring. HDock, which was ranked as the num-171

ber one docking server for multimeric protein structure172

prediction in the community-wide critical assessment of173

structure prediction 13 (CASP13-CAPRI) experiment in174

2018, uses an iterative knowledge-based scoring function175

to discern the native complex. For a more complete re-176

view of traditional docking methods, available software,177

and accomplishments, we refer the reader to the compre-178

hensive reviews [60–62]. 179

The majority of these methods incorporate backbone and 180

side-chain flexibility only as a post-processing step, e.g. 181

through molecular dynamics simulations. In order to in- 182

corporate inter-chain contacts or binding site residues, 183

traditional docking methods typically alter their score 184

function, or restrict search or results to ligand transfor- 185

mations matching this criteria. For example, ZDock al- 186

lows users to specify “undesirble” residue contacts, and 187

penalizes these interactions via the score function, and 188

HDock applies post-processing to filter out predictions 189

lacking target interactions. 190

Machine Learning for Protein Docking In the 191

past, machine learning has been used outright or com- 192

bined with physics-based methods for scoring docked 193

complexes [63–65]. Recently, end-to-end machine learn- 194

ing methods EquiDock [30] and EquiBind [66] were 195

proposed for protein docking and docking drug-like 196

molecules. In particular, EquiDock makes use of an 197

SE(3)-equivariant graph matching network to output a 198

single rigid rotation and translation which, when applied 199

to the ligand, places it in a docked position relative to 200
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the receptor. This is done by matching and aligning pre-201

dicted keypoints which roughly correspond to the cen-202

troid of the binding interface. Although this method203

provides favorable theoretical guarantees, it does not per-204

form well in practice. On top of this, the independent205

SE(3)-equivariant graph matching network and training206

procedure are relatively complicated. Training EquiDock207

requires solving an optimal transport plan which matches208

predicted interface key-points to ground truth positions,209

for each example. Custom loss functions are developed210

to back-propagate gradients through alignments and to211

penalize surface intersection. Moreover, it is unclear how212

to extend this method to account for conformational flex-213

ibility or more than two interacting chains. In contrast,214

our framework is conceptually very simple, utilizes stan-215

dard architectural components and losses, allows for flex-216

ibility and is straightforward to extend to three or more217

chains.218

De novo Binder Design Recently, there has been219

a spate of interest in de novo protein design using deep220

learning, especially the design of small protein binders.221

AlphaDesign [67] introduces a framework for de novo222

protein design which uses AlphaFold2 inside an optimiz-223

able design process, and [49] uses both AlphaFold2 and224

RosettaFold to improve the experimental success rate of225

their designs. Wang et al. [46] describe a method for de226

novo design of proteins harboring a desired binding or227

catalytic motif based on modifying the input and train-228

ing of the RosettaFold network and augmenting the loss229

function. Here we show that our docking method can230

be easily extended to de novo design a protein that may231

bind a specific target site.232

3 Methods233

We overview our input representation, model training,234

loss, and architecture. Additional details can be found235

in Sections S1, S2 and S3236

Notation We adopt the convention of using xi and xi237

distinguish between a specific data point xi and the list of238

data points (xi)i=1..n indexed by i. We use 1v to denote239

the indicator function for a Boolean value v; evaluating240

to 1 if v is True and otherwise 0. A protein with n241

residues labeled 1..n, each with atom types a ∈ A, is242

represented by its amino acid sequence s = s1, . . . sn, and243

atom coordinates x⃗a
i = x⃗a1 , . . . , x⃗

a
n ⊂ R3. Each element244

si ∈ s can be any of the 20 naturally occurring amino245

acid types. To distinguish between multiple chains, we246

use C1, . . . , Ck ⊆ {1..n} to denote the partition of residue247

indices into chains 1..k.. We also use C (i) to denote the248

chain containing residue i, i.e. C (i) ∈ {C1, . . . , Ck}249

3.1 Input Features 250

The input to our network is a complete graph G = 251

(xi, eij) where V consists of residue features xi and E 252

consists of pair features eij between residues i and j. The 253

bulk of our input features are generated independently, 254

for each input chain. We refer to those features which do 255

not depend on the input complex as intra-chain features 256

and those which do as inter-chain features. In the inter- 257

est of clarity, we first describe intra-chain features, which 258

are independent of the protein complex being predicted. 259

3.1.1 Intra-Chain Features 260

Residue Features We generate residue features for 261

each chain and join them by concatenating along the se- 262

quence dimension. The input feature xi associated with 263

residue i consists of four encodings: 264

xchain
i = (1)(
EAA (si) , Epos (i, |C(i)|) , Ecen(i, x⃗

Cβ
i ), Edih (θi)

)
.

The first, EAA (s), is a one-hot encoding of the amino 265

acid type s using 20 bins for each naturally occurring 266

amino acid. The next, Epos, encodes the residue rela- 267

tive sequence position into ten equal-width bins. As a 268

proxy for estimating whether a residue is on the pro- 269

tein’s surface, we use a centrality encoding, Ecen, which 270

corresponds to the number of Cβ atoms in a ball of ra- 271

dius 10Å around the query residue. We encode this fea- 272

ture with six radial basis functions equally spaced be- 273

tween 6 and 40, and only consider residues in the same 274

chain as the query atom. Last, Edih, encodes the angle 275

θ ∈ [−180◦, 180◦] into 18 bins of width 20◦. The input 276

θi ∈ {ϕi, ψi} are the phi and psi backbone torsion angles 277

of residue i. For residues before and after chain breaks, 278

or at the N and C terminus of a chain, we set the phi 279

and psi angles to 0. 280

Pair Features Pair features are made up of low- 281

resolution descriptions of pairwise distance and orienta- 282

tion and relative sequence information. The features for 283

each chain are stacked to form a block-diagonal input 284

matrix. A separate learned parameter is used to fill the 285

missing off-diagonal entries. For a pair of residues i and 286

j, in a common chain, the corresponding feature eij con- 287

sists of three one-hot encodings 288

echain
ij = (2)(
Edist

(
∥x⃗Cα

i − x⃗aj ∥2
)
, Eori (θij) , Esep (i− j)

)
.

Edist is an encoding of the distance d into six equal-width 289

bins between 2Å and 16Å, with one extra bin added for 290
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distances greater than 16Å. We include distances be-291

tween Cα and each atom type a ∈ {N,Cα,C,Cβ}. Eori,292

encodes the angle θ performed in the same manner as293

the backbone dihedral encoding for residue features. The294

input angles θij ∈ {ϕij , ψij , ωij} are pairwise residue ori-295

entations defined in [68]. Note that all pairwise distances296

and angles are known only within a resolution of at least297

2Å and 20◦, respectively. The last feature, Esep (·), is a298

one-hot encoding of signed relative sequence separation299

into 32 classes, in the same manner as [69].300

3.1.2 Inter-Chain Features301

We add three additional features to encode information302

about the target protein complex and PPIs.303

Inter-Chain Interface (Residue) fi ∈ {0, 1} is an304

optional binary flag indicating whether the Cα atom of305

residue i is within 10Å of a Cα atom belonging to a306

residue in a different chain. This flag is 0 if this criteria307

does not hold.308

Inter-Chain Contact (Pair) fij ∈ {0, 1} indicates309

whether two residues in separate chains are in contact.310

This occurs when the distance between x⃗Cα
i and x⃗Cα

j is311

less than 10Å. This flag is 0 if this criteria does not hold.312

Relative Chain (Pair) A one-hot encoding of the313

the relative chain index for residues i and j into three314

classes. Let ci, cj ∈ {1, . . . , k} denote the chain index315

of residues i and j, then fij = OneHot (sign (ci − cj)),316

where sign (x) ∈ {−1, 0, 1}.317

The interface and contact flags provide context for318

residues on the binding interface for each chain; restrict-319

ing the effective search space during inference. In real-320

world applications, knowledge of the binding interface321

may be limited or unknown. In light of this, we provide322

only a limited number of contacts or binding residues,323

chosen randomly for each training example. Specifically,324

for each input, we include no contacts or no residue flags,325

independently, with probability 1/2. This means that326

during training, the method sees 25% of examples with-327

out any interface or contact information, 50% with one or328

the other, and 25% with both features provided, on aver-329

age. If interface features are included, we randomly sub-330

sample a number of interface residues Nint ∼ geom (1/5)331

to include, meaning five residues are selected on average.332

Similarly, we sub-sample Ncon ∼ geom(1/3) inter-chain333

contacts when this feature is used, resulting in three pro-334

vided contacts on average.335

The relative chain encoding provides a way to distinguish336

between intra-chain and inter-chain pair features. By337

taking a signed difference, pair features eij and eji receive338

different encodings when i and j are in distinct chains.339

This not only discriminates the endpoints as belonging340

to different chains, but also breaks symmetry.341

3.2 Deep Network Architecture and 342

Training 343

We design a two-stage network making use of triangle 344

multiplication, pair-biased attention, and invariant point 345

attention (IPA). Our first module, which we refer to 346

as the “structure encoder,” produces an invariant rep- 347

resentation of the protein complex which is subsequently 348

converted to 3D coordinates by the second module, the 349

“structure decoder.” Our encoder uses pair-biased atten- 350

tion to update residue features, and triangle multiplica- 351

tion to update pair features. The decoder updates only 352

residue features using IPA. We also make use of feature 353

recycling during training and inference. We note that, 354

although our architecture modifies or extends some com- 355

ponents in AlphaFold2, the two architectures are func- 356

tionally quite distinct. We do not make use of multiple 357

sequence alignments (MSAs), templates, global atten- 358

tion, self-distillation, or other elements contributing to 359

the success of AlphaFold2. In contrast, we hope to learn 360

the principles governing protein binding from sequence 361

and structure alone and develop a more specialized ar- 362

chitecture to do so. 363

3.2.1 Network Architecture 364

Here, we provide a general overview of our architectural 365

components. A schematic overview of the architecture 366

and loss can be found in Figure S1. Complete imple- 367

mentation details and more thorough descriptions of each 368

submodule can be found in Section S1. 369

Structure Encoder Layer Our encoder produces a 370

joint representation of the input chains. Since inter- 371

chain features are mostly missing from the input, we 372

hypothesized that a network that updates pair features 373

would facilitate more successful docking. Consequently, 374

we chose to update pair features using incoming and out- 375

going triangle-multiplicative updates [34]. 376

x
(ℓ+1)
i = Pair-Bias-Attn-Block(ℓ)

(
x
(ℓ)
i , e

(ℓ)
ij

)
(3)

e
(ℓ+1)
ij = Pair-Block(ℓ)

(
x
(ℓ+1)
i , e

(ℓ)
ij

)
(4)

Each layer has two update blocks. The first block up- 377

dates the residue features using multi-head attention 378

with pair bias. The next block transforms the updated 379

residue features into an update for the pair representa- 380

tion using a learned outer product, and then applies tri- 381

angle multiplication and a shallow feed-forward network 382

to the result. 383

Structure Decoder Layer The decoder module con- 384

verts the encoder representation to 3D Geometry. Since 385

we do not make direct use of coordinate information in 386
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our input (although we show that this can be done for387

special cases in Section 3.2.1), we sought an invariant388

architecture specialized for coordinate prediction and ul-389

timately settled on IPA.390

x
(ℓ+1)
i = IPA-Block

(
x
(ℓ)
i , e

(Lenc)
ij ,T

(ℓ)
i

)
(5)

T
(ℓ+1)
i = T

(ℓ)
i ◦ RigidUpdate

(
x
(ℓ+1)
i

)
(6)

We use a total of six decoder layers, sharing the same391

weights for all six layers. We perform recycling during392

training and inference, allowing us to execute our model393

multiple times on the same example. This is done by394

embedding the previous iteration’s outputs in the next395

iteration’s inputs. Our best-performing model uses the396

same scheme as described in the AlphaFold2 implemen-397

tation ([34], supplementary section 1.10). In concurrence398

with AlphaFold2 and OpenFold [70], we find that recy-399

cling significantly improves prediction quality while in-400

curring only a constant increase in inference and train-401

ing time. We experimented with recycling features from402

the structure decoder, rather than encoder. Since the403

decoder residue features encode plDDT information, we404

hypothesized that this information could better inform405

future iterations. This ablation and others are shown in406

Section S9.407

Coordinate Prediction In predicting residue-wise408

atom coordinates, we deviate from the strategy of Al-409

phaFold2 and simply compute the local-frame coordi-410

nates for each atom using a learned linear projection.411

The coordinates for Cα are taken as the translation com-412

ponent of the per-residue predicted rigid transformation,413

and the remaining atom coordinates are predicted as414

x⃗a
i = T

(L)
i ◦ Linear3D

(
LayerNorm

(
x
(L)
i

))
(7)

where L denotes the index of the last layer, and Linear3D415

is a learned projection into dimension |A|× 3. Note that416

only one rigid transformation is used to produce all atom417

coordinates for a given residue.418

Handling Coordinates as Input Although we do419

not explicitly make use of coordinates in our docking420

model, for certain tasks, it may be important to incorpo-421

rate this information as part of the input. This is espe-422

cially salient in antibody loop design, where the frame-423

work region tends to remain mostly rigid upon binding.424

In Section S7 we show how to modify Equation (6) and425

Equation (7) to easily incorporate rigid, flexible, and426

missing coordinates as part of the input, while still main-427

taining SE(3)-Equivariance. We also provide empirical428

results for designing CDR loops with this modification429

in Section S8.430

3.2.2 Training 431

For general protein docking, model training is split 432

into two stages. In the first stage, we pre-train on a 433

mix of complexes and monomers, randomly selecting a 434

monomer or a complex to train on with equal probability. 435

This repeats for 5 epochs. The rationale for this decision 436

is described in Section S3. Afterwards, monomers are 437

removed, and we train exclusively on complexes. For all 438

complexes in our training sets, we relaxed each individ- 439

ual chain using Rosetta’s FastRelax protocol [31] with all 440

default settings (antibody heavy and light chains were 441

relaxed jointly when applicable). For antibody-antigen 442

docking results, we fine-tuned the model on a dataset 443

consisting of only antibody-antigen complexes. 444

3.2.3 Datasets 445

Single Chains For pre-training, with single chains, 446

we randomly sample chains from the publicly available 447

BC40 dataset, consisting of roughly 37k chains filtered 448

to 40% nonredundancy. Proteins with greater than 40% 449

sequence similarity to any chain in our test datasets are 450

removed. 451

General Protein Complexes We use a subset of the 452

publicly available Database of Interacting Protein Struc- 453

tures (DIPS)1 [71]. The training set is generated to ex- 454

clude any complex that has any individual protein with 455

over 30% sequence identity when aligned to any protein 456

in the Docking Benchmark Version 5 test set (described 457

in Section 3.3.2). We follow the training and validation 458

splits for DIPS used in [72], with 33159 and 829 com- 459

plexes, respectively. 460

Antibody-Antigen Complexes For fine-tuning on 461

antibody complexes, we use the publicly available Struc- 462

tural Antibody Database (SAbDab) which consists of 463

4994 antibody structures renumbered according to the 464

Chothia numbering scheme [73–75]. Various papers from 465

Chothia have conflicting definitions of heavy-chain CDRs 466
2. In light of this, we use the most recent definitions from 467

[75]. We generate train and test splits based on antigen 468

sequence similarity, filtering out examples where anti- 469

gen chains have more than 40% sequence identity using 470

mmseqs [76]. Before generating clusters, we removed all 471

targets with overlap in our test sets, using the same cri- 472

teria. We remark that no filtering is performed against 473

antibodies. This results in roughly 3k complexes, for 474

which we use a 8:1:1 split for training, validation, and 475

testing. 476

1Downloaded from https://github.com/drorlab/DIPS.
2See here for a nice summary of CDR numbering schemes and

changes in corresponding CDR loop definitions over time.
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3.2.4 Loss477

Our network is trained end-to-end with gradients com-478

ing from frame-aligned point error (FAPE), pairwise dis-479

tance, per-residue lDDT (plDDT), and a few other auxil-480

iary losses. We remark that our implementation of FAPE481

differs from that in AlphaFold2, as we use a different482

method for predicting coordinates. Other modifications483

were made in the clamping procedure of FAPE loss in or-484

der to facilitate faster convergence. A complete overview485

is provided in Section S2 and Figure S1.486

3.3 Evaluation Criteria487

To measure docking prediction quality, we report inter-488

face root-mean-square deviation (I-RMSD), ligand root-489

mean-square deviation (L-RMSD), DockQ score and490

DockQ success rate (SR) as reported by the DockQ algo-491

rithm3 [77]. DockQ score is a single continuous quality492

measure for protein docking models based on the Critical493

Assessment of PRedicted Interactions (CAPRI) commu-494

nity evaluation protocol. For antibody chains, we some-495

times report CDR-RMSD which is calculated after su-496

perimposing the Cα atoms of the heavy and light chain497

framework regions using the Kabsch algorithm [78]. Fi-498

nally, we sometimes include complex root-mean-square499

deviation (C-RMSD), which is derived by simultaneously500

superimposing all Cα atoms between two protein com-501

plexes. When assessing top-k performance, we take the502

best score over the top-k ranked predictions of each tar-503

get.504

When interface residues or contacts are specified, the in-505

formation is randomly sampled from the native complex,506

and each method is run fifteen times for each target, each507

run with different random samples. For energy-based508

methods, outputs are ranked by predicted energy. For509

our method, we use predicted interface lDDT to rank510

each prediction. (see Section S4 for details).511

3.3.1 Docking Paradigms512

In this paper, we are primarily concerned with predicting513

the bound conformation of a protein complex, given only514

unbound conformations of constituent chains. This is515

easily confused with redocking, the task of predicting a516

protein complex given bound conformations of each chain517

as input. Redocking is considerably easier than docking.518

For this task, traditional score-based methods are able519

to accurately predict most protein complexes. We verify520

this claim in Section S11.3, where we consider redocking521

antibody-antigen complexes.522

3DockQ is publicly available for download at
http://github.com/bjornwallner/DockQ/

When assessing docking performance, we sometimes con- 523

dition on information about PPIs, such as interacting 524

residues. Traditionally, amino acids are defined as inter- 525

acting if any of their heavy atoms are within 6Å from one 526

another. In this work, we used a more relaxed definition, 527

where residues are defined as interacting if the distance 528

between their Cα atoms is less than 10Å. This definition 529

is more applicable to downstream protein design tasks, 530

where knowledge of sequence or side-chain conformations 531

may be missing or incomplete. In some cases, we provide 532

the identity of select residues on the binding interface of 533

a complex. In other settings, we provide contacts, which 534

correspond to interacting residue pairs. We refer to the 535

setting where neither interface residues nor contacts are 536

specified as blind docking. 537

3.3.2 Benchmarks 538

For each benchmark we include only receptor-ligand 539

pairs having at least four contacts, and maximum chain- 540

wise RMSD less than 10Å from the bound state. We 541

note that some of the baselines might have used part of 542

the DB5 test set in validating their models, and thus 543

the scores may be optimistic. In addition to bound and 544

unbound structures, we also include comparisons using 545

receptor and ligand structures predicted by AlphaFold2 546

or AlphaFold-Multimer[41]. The same filtering criteria 547

is applied to predicted structures. 548

Antibody Benchmark (Ab-Bench) [32] A non- 549

redundant set of 46 test cases for antibody-antigen dock- 550

ing and affinity prediction. This set contains both bound 551

and unbound structures with diverse CDR-loop confor- 552

mations between the bound and unbound states, ranging 553

from ≤ 1Å to ≥ 4Å for CDR-H3. When AlphaFold- 554

predicted structures are used as input, 26 test cases are 555

used. 556

Docking Benchmark Version 5 (DB5) Test [33] 557

To the best of our knowledge, DB5 [33], which contains 558

253 structures, is the largest dataset containing both pro- 559

tein complexes and the unbound structures of their com- 560

ponents. We use a total of 42 complexes from the DB5 561

test set which are held-out by the DIPS training split. 562

For predicted structures, we also gathered 26 receptor- 563

ligand pairs meeting the filtering criteria. 564

Rosetta Antibody Design (RAbD) [79] A set of 565

46 κ and 14 λ antibody-antigen complexes. The bench- 566

mark contains antibodies with high CDR diversity and 567

a wide range of length classes. All structures have ex- 568

perimental resolution ≤ 2.5Å, buried surface area in the 569

antibody-antigen complex of ≥ 7002, and contacts with 570

CDRs in both the light and heavy chain regions. These 571

structures were used to assess the performance of dock- 572

ing algorithms in the bound input context, and results 573

are given in Section S11.3. 574
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4 Results575

We compare DockGPT against ZDock [55], HDock [53],576

PatchDock [54], and EquiDock [30]. We downloaded577

their code and ran them locally. More details can be578

found in Section S10.579

In addition to docking software, we provide a compari-580

son with AlphaFold-Multimer [41] in Section S6, fig. S8,581

and table S1. We do not do so in the main text as the582

focus of this manuscript is protein docking and assessing583

the ability of docking programs to target specific binding584

sites. In general, current complex prediction algorithms585

such as AlphaFold-Multimer do not explicitly make use586

of binding site information, although it may be derived587

implicitly via multiple sequence alignments or templates.588

That is, they lack the ability to target specific binding589

modes, which further highlights the importance of effec-590

tive docking methods.591

4.1 Antibody Docking592

We now compare methods on docking antibody-antigen593

unbound and predicted structures from the Antibody594

Benchmark dataset. As shown in Figure 2, for all but595

a few cases, our performance on docking AlphaFold2-596

predicted structures roughly matches that on unbound597

inputs. In the interest of brevity, we report statistics for598

unbound inputs unless otherwise specified. Additional599

results and tables with RMSD and DockQ statistics are600

provided in Section S11.2. Results for docking RAbD601

bound chains are provided in Section S11.3.602

In Figure 2C and 2D, our method obtains top perfor-603

mance in blind docking (i.e., no interfacial contacts or604

residues are provided as input), with considerably lower605

interface and ligand RMSD values than others. This606

holds regardless of whether unbound or predicted struc-607

tures are used as input. This carries over to DockQ suc-608

cess rate where our method exceeds 25% for both input609

types. Since our method is deterministic, we only make a610

single prediction in the blind setting, thus top-1 and top-611

5 success rates are the same. In an attempt to improve612

blind-docking results, we developed a genetic algorithm613

which exploits our method’s ability to target different614

binding modes and predict docking quality. Details are615

given in Section S5 and examples are shown in Figure S6.616

This procedure increases both top-1 and top-5 success617

rates to 37.0% and 45.7% respectively.618

For blind docking, traditional methods improve signifi-619

cantly when top-5 predictions are considered. ZDock’s620

top-1 predictions are successful for only one target, but621

this increases to 8 targets (17.4%) for top-5. Similarly,622

HDock improves median interface RMSD by roughly 5Å,623

from 15.6Å for top-1 to 10.8Å for top-5. EquiDock per-624

forms the worst of all five methods, with no DockQ suc-625

cesses for unbound or predicted targets. The method’s626

poor performance is likely a result of excessive steric 627

clashes. On average, EquiDock has 581 backbone atom 628

clashes between antibody and antigen chains. In con- 629

trast, our method does not produce more than 3 atom 630

clashes for any target. Clash distributions for our 631

method and EquiDock, along with some example pre- 632

dictions can be found in Figure S11. 633

Compared to the blind setting, performance for all meth- 634

ods improves significantly when information of the anti- 635

gen binding interface (epitope) is included. When four 636

epitope residues are given, we reduce top-1 median inter- 637

face RMSD from 9.2Å to 3.1Å. Top-1 ligand RMSD de- 638

creases accordingly, from 19.5Å to 9.5Å. For traditional 639

methods, the RMSD reduction is less dramatic. The 640

best-performing traditional method, ZDock, decreases 641

top-1 interface RMSD from 12.8Å for blind docking to 642

10.4Å when 4 epitope residues are given. Even when 643

binding interfaces are accurately predicted, traditional 644

methods often fail to orient protein backbones prop- 645

erly. When 12 epitope residues are provided, the lower- 646

quartile interface RMSD of ZDock is 3.6Å, but the same 647

quartile ligand RMSD is 14.4Å for top-1 predictions. 648

On the other hand, our method obtains 1.2Å and 3.5Å 649

RMSDs, respectively. 650

Parallel to blind docking performance, top-5 predic- 651

tions of the traditional methods yield significantly higher 652

DockQ success rates than top-1, when epitope residues 653

are included. Furthermore, traditional methods see sub- 654

stantial improvements on all metrics when more epitope 655

residues are provided. HDock and ZDock obtain top-5 656

DockQ success rates of 47.8% and 56.5% with 12 epitope 657

residues, but only 30.4% and 28.3% with four residues. 658

This is likely a side-effect of the post processing proce- 659

dure, as increasing the number of epitope residues limits 660

the size of the effective candidate space. In contrast, our 661

method achieves a top-5 DockQ success rate of 71.7% 662

with four epitope residues, increasing to 87.0% with 12. 663

This suggests that our method has learned to use binding 664

site information as more than just a search filter. 665

Considering the relationship between binding interface 666

quality and prediction accuracy, in Figure 2E, we con- 667

sider the heavy chain CDR-RMSD distribution of our 668

docked antibody structures. Here, we see that CDR loop 669

conformations predicted by our method are closer to the 670

ground truth than that of the unbound or AF2-Predicted 671

input. Predicted heavy-chain CDR conformations have 672

median RMSD 1.55Å, 1.39 Å, and 1.81 Å compared to 673

1.82 Å, 1.67 Å, and 1.94Å for the unbound input. The 674

outcome is similar starting from AF2-predicted input 675

structures. This implies that our method goes beyond 676

multidimensional scaling, and actually learns to incorpo- 677

rate backbone flexibility in its predictions. 678

Results for docking bound antibody-antigen structures 679

are radically different than those shown in Figure 2. 680

When blind-docking bound chains HDock and Patch- 681
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Figure 2: Results for Antibody Benchmark Predicted and Unbound Inputs. (A) Legends to distinguish
between the five methods and the target type (predicted or unbound) in plots (B–E). (B) and (C) show top-1 and
top-5 success rates for each method on unbound targets, with no epitope residues provided (blind) and 4 or 12
epitope residues provided. (D) Split violin plots showing interface RMSD distributions for docking unbound (left
half) and predicted (right half) chains given 0, 4, or 12 epitope residues. Each violin plot marks the median value
with a white dot, and shows the interquartile range with a bold vertical line. Both top-1 and top-5 distributions
are shown when 4 and 12 epitope residues are provided. (E) Ligand RMSD distributions, in the same manner as
(D). (F) Scatter plot of RMSD of heavy chain CDRs between our predicted and the ground truth (bound) complex
structure. Here, the x-axis shows RMSD between the input (unbound or AF2-predicted) heavy chain CDRs and
corresponding segments in the ground truth complex structure, and the y-axis shows RMSD between our predicted
heavy chain CDRs and corresponding segments in the ground truth. Points below the y = x axis correspond
to targets where the RMSD was lower for our predicted complex structures. The cumulative fraction of targets
with CDR-RMSD less than the corresponding x value is also plotted on a secondary axis using a red line for our
predictions, and a green line for unbound or predicted inputs. For these plots, we provided our method with 12
residues on the antigen epitope.

Dock achieve DockQ success rates of 79% and 25% re-682

spectively, for RAbD targets (see Figure S10). If we fine-683

tune and evaluate our model on bound antibody-antigen684

chains then the blind-docking success rate increases more685

than two-fold to 62%. This implies that important in-686

formation about antibody-antigen binding interfaces is687

captured in the bound structures, and highlights the im-688

portance of comparing docking methods on benchmarks689

containing unbound structures. When training and an-690

alyzing on bound inputs, we still provide only a coarse691

description of geometry, and do not consider input side- 692

chain conformations. We hypothesize that more fine- 693

grained featrues would significantly improve performance 694

for bound targets. Interestingly, although EquiDock was 695

trained on bound structures, the approach still under- 696

performs on bound targets, with a success rate of 1.2%. 697

698
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Figure 3: Results for DB5 with AlphaFold2 predicted and unbound monomer structures as input.
(A) Per-method distribution of inference times for docking DB5 unbound targets. (B) Bar plot of Top-1 DockQ
success rates for DB5 unbound targets. Each method was given one, two or three contacts (C = 1, 2, 3), or no
contacts and four residues distributed over both the receptor and ligand binding interfaces (I = 4). (C) Bar plot
of top-5 DockQ success rates, analogous to (B). (D) Scatter plot of the number of interacting residues in predicted
complexes (y-axis) compared to that in the ground truth complex (x-axis). Blind docking predictions were made for
all DB5 unbound targets, and interacting residues include only Cα atoms, with a cutoff distance of 10Å. (E) and
(F) Split violin plots of Interface-RMSD and Ligand-RMSD distributions as in Figure 2. In (B,C,E,F) we exclude
Equidock, because this method does not accept interface or contact information as input. Legends to distinguish
between the five methods and target type are shown alongside RMSD distributions in (E) and (F).

4.2 Results for DB5 Unbound and Pre-699

dicted Targets700

Results for DB5 targets are shown in Figure 3. Here, we701

focus mainly on performance when residue contacts are702

provided, but also consider providing a limited number703

of interface residues on one or more chains. We chose704

to provide at most C = 3 inter-chain contacts because,705

in theory, the number of rotational degrees of freedom706

for the ligand chain should be roughly max(0, 3 − C) if707

the contacts are well distributed. More results for DB5708

predicted and unbound targets are shown in Figures 3,709

S4 and S5 and section S11.1, including tables with RMSD710

and DockQ statistics and performance on blind docking.711

For both unbound and AF2-predicted targets, supplying712

our model with a single contact generates better top-1713

median RMSD scores than traditional methods supplied714

with up to three contacts. When one contact is given,715

DockGPT achieves a top-1 DockQ success rate of 45.2%,716

and 59.5% for top-5. In contrast, ZDock and HDock717

have less than 20% success for top-1, and 33.3% for top-718

5. When 2 contacts are provided, DockGPT’s top-5 pre- 719

dictions are correct for all but three targets, and correct 720

for all targets with 3 contacts, in terms of DockQ score. 721

On the other hand, the success rate of traditional meth- 722

ods improves only moderately, with a maximum top-5 723

success rate of 45.2% for ZDock across all settings. 724

On top of performance, our method also achieves signif- 725

icantly faster inference times than others, averaging in- 726

ference times more than three orders of magnitude faster 727

than ZDock,HDock, and PatchDock, and approximately 728

6 times faster than EquiDock. 729

As shown in Figure 3D, blind docking predictions for 730

methods EquiDock, HDock, and PatchDock tend to have 731

large binding interfaces, even when there are few con- 732

tacts in the ground truth complex. The tendency is 733

most pronounced for EquiDock, which regularly predicts 734

receptor-ligand poses with large surface overlap. On av- 735

erage, EquiDock, predicts a binding interface size that is 736

5.4× larger than the ground truth. PatchDock, HDock 737

average 2.9× and 2.3×, that of the native complex, re- 738

spectively. In contrast, ZDock and our method are the 739
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Figure 4: Predictions for one DB5 target with unbound structure as input. Ground-truth and docking
predictions for PDB entry 2A1A. For each method, we show the surface of the predicted and ground truth ligand
relative to the ground truth receptor. For this example, we selected traditional method HDock as it performed
similarly or better than ZDock and PatchDock.

least biased, averaging 1.9× and 1.4×, respectively.740

The tendency to predict large binding interfaces may be741

explained by considering the objective functions of each742

method. PatchDock explicitly rewards large binding in-743

terfaces and high shape complementarity. HDock and744

ZDock rank decoys by summing pairwise interfacial en-745

ergy terms, and larger binding pockets may offer more746

potential for weak yet statistically favorable interactions.747

EquiDock, is trained to predict keypoints corresponding748

to the binding interface of each chain. It may be prefer-749

able from a loss perspective to predict keypoints near the750

chain’s center of mass when the binding interface is hard751

to discern. In theory, a chain’s center of mass offers a752

low-variance estimation of the true binding pocket. Fi-753

nally, our method is trained with clamped FAPE loss and754

thus all predictions that deviate beyond the clamp value755

are equally “bad” in a loss sense.756

An example of the behavior described in the previous757

paragraph is shown in Figure 4. Although EquiDock’s758

prediction is physically unrealistic, it still compares sim-759

ilarly to HDock in terms of interface and complex RMSD.760

EquiDock’s prediction has an interface RMSD of 14.8Å,761

and a complex RMSD of 17.2Å, whereas HDock obtains762

20.5Å and 14.9Å respectively. It is also clear that HDock763

predicts a large binding interface for this target, even764

though the true binding interface is relatively small. This765

example also highlights the importance of assessing lig-766

and RMSD in addition to complex and interface RMSD.767

4.3 CDR-Loop Design768

We now show how our model can be adapted to perform769

simultaneous docking, and sequence-structure co-design.770

For this task, we provide results for antibody CDR-loop771

generation, focusing on heavy chain CDRs H1-H3. We772

note that our method also designs light chain CDRs, but773

we omit this for brevity. In the remainder of this sec-774

tion, we briefly outline the modifications made to our775

approach and provide a comparison with other protein776

design frameworks tailored towards antibodies. More de- 777

tails and results can be found in Section S8. 778

Modifications to our approach In order to perform 779

joint imputation of sequence and complex structure, we 780

retrained our model using data as described in Sec- 781

tion 3.2.2, and all of same features as described in Sec- 782

tion 3.1, except for residue degree centrality. We add one 783

additional residue feature, which is a one-hot encoding of 784

secondary structure using three classes for sheets, helices 785

and loops. We encode all CDR residues as loops dur- 786

ing inference, and do not apply masking to this feature 787

during training. We found that the secondary structure 788

encoding improved convergence when transitioning from 789

pre-training to fine-tuning on antibody structures. Dur- 790

ing pre-training we masked linear segments of a randomly 791

selected chain, sampling the segments based on proxim- 792

ity to the chain’s binding interface. The length of the 793

masked segment is selected from a geometric distribution 794

as geom
(

1
15

)
. For each residue in the chosen segment, we 795

replace the corresponding features with separate ⟨MASK⟩ 796

parameters except for relative sequence position and rel- 797

ative sequence separation. To be clear, no inter-atom 798

distance or orientation information is given to our deep 799

learning model for masked residues. 800

Evaluation metrics and results To generate our 801

method’s results in Table 1, we provide four native 802

antibody-antigen contacts, and produce five decoys per 803

target. The decoy with the highest predicted interface 804

plDDT is selected for the comparison. 805

Although our method receives only coarse information 806

pertaining to antibody and antigen structures, we are 807

still able to recover antibody framework regions with sub- 808

Angstrom RMSD. Furthermore, none of the four other 809

methods are capable of designing CDR loop regions in 810

the presence of an antigen; for these methods the se- 811

quence and structure generation results in Table 1 are 812

generated on bound heavy-light chains, with the bound 813

antigen omitted. In contrast, our method simultaneously 814

docks and designs all six heavy and light chain CDR- 815

loops and sequences simultaneously. Additional results 816

and examples can be found in Section S8 817
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Structure Prediction Sequence Prediction

Method RMSD↓ PPL↓ NSR↑ PPL↓

H1 H2 H3 Fr H1 H2 H3 H1-H3

Ours 1.11 1.02 1.88 0.72 4.46 6.71 10.68 39.7% 7.67

CoordVAE [50] 0.96 1.00 1.95 – – – – – –

Refine-GNN [48] 1.18 0.87 2.50 – 6.09 6.58 8.38 35.4% –

AR-GNN [48, 80] 2.97 2.27 3.63 – 6.44 6.86 9.44 23.9% –

LSTM [81, 82] – – – – 6.79 7.21 9.70 22.5% –

Table 1: CDR-loop design. Performance of our method and four others on the task of predicting CDR H1-H3
loop conformation and sequence. For our method, “FT” denotes fine-tuning on antibody structures. The columns
H1-H3 show the Cα-RMSD of heavy chain CDR H1-H3 between predicted and native structures. For our method,
we also list the RMSD of the predicted and bound framework regions under column “Fr”. Perplexity (PPL) of
sequence predictions for each CDR loop are shown in separate columns. Finally, overall perplexity and native
sequence recovery across all loop regions is shown in the rightmost columns. We note that AR-GNN and Refine-
GNN predict sequence and structure for each CDR loop region separately, while conditioning on the native sequence
and structure of the other CDR regions. This may result in slightly lower perplexity for these models.

5 Concluding Remarks818

In this work, we developed DockGPT, a deep learning819

architecture for flexible protein docking with applica-820

tions to de novo design of protein-binding proteins. Un-821

like other methods, our approach circumvents explicitly822

training on bound structures, and offers a natural ap-823

proach to modeling conformational flexibility in complex824

prediction. By comparison across multiple benchmarks,825

we show that DockGPT meets or exceeds state of the art826

methods on rigorous quality metrics while also making827

better use of binding site information when it’s available.828

With significantly reduced inference times and explicit829

confidence estimates, we anticipate that our model will830

find further applications to machine-learning based vir-831

tual screening and de novo design platforms.832

Despite our success, there are several limitations and ex-833

tensions of our approach left open for future investiga-834

tion. We use only a single atom type and threshold to835

supply our model with interface and contact information.836

Although it is straightforward to incorporate more fine-837

grained binding site information, we did not explore this838

here. Parallel to this, supplying noisy or probabilistic839

binding site information could potentially improve per-840

formance and generalization. Although we do not pro-841

vide explicit details in the main text, we remark that842

the current training procedure enables generation of di-843

verse conformations by enumerating random contacts.844

We show in Section S5 how this can be used to rank and845

generate diverse binding modes, and ultimately improve846

blind docking. We suspect that this approach can be847

refined or extended to achieve even better performance.848

Although some of our deep network components were849

drawn from AlphaFold2, we do not incorporate any MSA 850

information. We expect that MSA embeddings would be 851

especially helpful in the blind docking setting. Finally, 852

for de novo design tasks, we only analyzed our model on 853

CDR loop design, and do not include estimates of binding 854

affinity or free energy. Evaluation across more rigorous 855

criteria and a broader range of design tasks must still be 856

performed. We hope that future work will address some 857

of these issues and develop this approach further. 858
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Supplementary Information 1239

S1 Architecture and Hyperparamter Details 1240

Figure S1: Architecture and Loss. Learnable modules are shown with bold text and bold borders. Modules
operating on residue features are shown in orange and those operating on pair features are shown in blue. Modules
making direct or indirect use of coordinates are shown in red. Optional input and modules for sequence and
structure co-generation are shown in light gray. We use ⊕ to denote residual operations, ⊙ to denote element-wise
multiplication, and ⊚ to denote the element-wise composition of two rigid transformations. Labeling of IPA and
pair blocks with the index of their respective layer is omitted, as block weights may be shared across multiple layers.
We highlight with a blue/red background those modules which are encoder/decoder specific (i.e. pair updates are
omitted in the decoder, and rigids are omitted in the encoder). The structure encoder uses pair-biased multi-head
attention for its residue update block, and the structure decoder used invariant point attention. Finally, layer
normalization is applied, but not displayed here, except for in deriving the output.

Figure S1 shows a schematic overview of our model architecture and loss. We do not explicitly show our structure 1241

encoder module, since it differs only slightly from the structure decoder; the rigid update is removed, and IPA block 1242

is replaced with a pair-biased attention block. Though not displayed in the figure, we follow the Pre-LayerNorm 1243

scheme described in [83] where layer normalization [84] is placed inside the attention and transition residuals. In 1244

addition (pun intended), we use ReZero [85] for all residuals. Each feed-forward transition consists of one hidden 1245

layer having dimension four times that of the input dimension. For pointwise nonlinearity, we use gated GELU 1246

(GeGLU) based on success in other sequence modeling tasks [86, 87]. The Learned Outer-Prod module is nearly 1247

identical to that of the outer-product mean module described in [34], except we use a smaller intermediate dimension 1248

(c = 16 vs. c = 32), and skip the mean operation. The rigid update maps residue features to a per-residue rigid 1249

rotation and translation. This is implemented as a learned linear projection preceded by layer normalization. The 1250

composition of rigid transformations is implemented in the same manner as the backbone update in AlphaFold2 (see 1251

[34] Supp. Material, Algorithm 23). In some settings, the ability to incorporate prior coordinate information may 1252

be useful. Specifically, a subset of coordinates can be held fixed by replacing the corresponding rigid rotation and 1253

translation updates with the respective identity transformations (i.e. I3 and 0⃗). More details on this are provided 1254

in Section S7. 1255

We use a hidden dimension of 256 for residue features and 128 for pair features in both submodules. All triangle 1256

multiplication updates use four heads of dimension 32 for queries and values. In the encoder submodule, we use 1257

eight attention heads of dimension 32 for each residue update block. Decoder IPA uses 12 heads per block, with 1258

dimension 16 for scalar features, and dimensions four and eight for point queries and values. 1259
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S2 Loss Details1260

We use the same loss function for pre-training and fine tuning. Each term in the loss (shown in the equation below)1261

is described in the remainder of this section.1262

L = 1.0LFAPE + 1.0Laux-FAPE + 0.5Ldist + 0.5LplDDT + 0.2Lviol (8)

Similar to AlphaFold2, we also apply an averaged FAPE loss Laux-FAPE, on the intermediate structures produced1263

by the shared-weight layers of our decoder module. For the results in Sections 4.3 and S8, we add an additional1264

term which is an averaged cross-entropy loss for amino acid identity, given weight 0.51265

S2.1 Notation1266

We stick with the convention of using xi and xi to distinguish between the individual data point xi and the set of1267

data points {xi}i=1..n indexed by i. 3D rigid transformations T =
(
R, t⃗

)
are represented by a rotation R ∈ SO(3),1268

and translation t⃗ ∈ R3. We use T ◦ T ′
≜

(
RR

′
, t⃗+Rt⃗

′
)

to denote the composition of two rigid transformations T1269

and T
′
. We use T (x⃗) ≜ Rx⃗+ t⃗ to denote the action of the rigid transformation on a vector x⃗ ∈ R3. For notational1270

convenience, and as a visual aid, we adopt the notation [x⃗]T ≜ T−1 (x⃗) to denote the vector of coordinates x in the1271

local frame defined by the rigid transformation T .1272

In the remainder of this section, we will use n to denote the number of input residues, and C1, . . . , Ck ⊆ {1..n} to1273

denote the indices of residues in chains one and two respectively (i.e. C1, . . . , Ck is a partition of {1..n}). We assume1274

that we have output residue features xi, pair features eij , and predicted rigid transformations T i =
{(
Ri, t⃗i

)}
i

1275

for each residue i ∈ {1..n}. We also assume predicted coordinates x⃗a
i = {x⃗ai }i,a for each output atom type a ∈ A1276

derived as described in Section 3.2.1. When applicable, we use a superscript ∗ to distinguish between predicted and1277

ground-truth data.1278

Per Residue lDDT1279

Residue output features are used to predict per-residue local distance difference test scores (plDDT). In defining the1280

labels to evaluate on, there are two reasonable approaches. The first approach directly uses predicted coordinates,1281

plDDTi =
1

|N (i)|
·

∑
j∈N (i)

lDDT
(
abs

(∥∥t⃗i − t⃗j
∥∥
2
−
∥∥t⃗∗i − t⃗∗j

∥∥
2

))
(9)

where N (i) =
{
j :

∥∥t⃗∗i − t⃗∗j
∥∥
2
< 12Å

}
, and1282

lDDT (d) =
1

4
·

3∑
k=0

1d≤2k−1 (10)

The alternative approach compares coordinates as they are seen in the predicted local frames of each residue. For1283

this, we use predicted rigid transformations T i =
(
Ri, t⃗i

)
i=1..n

and true rigids T ∗
i =

(
R∗

i , t⃗
∗
i

)
i=1..n

obtained from1284

the native conformation to compute the local pLDDT score as:1285

plDDT-Locali =
1

|N (i)|
·

∑
j∈N (i)

lDDT
(
abs

(∥∥∥[⃗ti]Ti
−

[⃗
tj
]
Ti

∥∥∥
2
−

∥∥∥[⃗t∗i ]T∗
i

−
[⃗
t∗j
]
T∗
i

∥∥∥
2

))
(11)

=
1

|N (i)|
·

∑
j∈N (i)

lDDT
(
abs

(∥∥∥[⃗tj]Ti

∥∥∥
2
−

∥∥∥[⃗t∗j ]T∗
i

∥∥∥
2

))
. (12)

Ultimately, we use the standard plDDT to train our model. Although local-frame coordinates and distances are1286

compared in each IPA head, we found that the local plDDT produces less accurate confidence estimates, and is1287
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also more difficult to optimize. Nevertheless, we include the alternative definition as it may be of interest to some 1288

readers. 1289

To compute plDDT loss, we pass our output residue features xi through a shallow feedforward network with output 1290

representing 20 equal-width binned log likelihoods in the range [0, 1]. The predictions are compared with the 1291

ground-truth labels plDDTi by cross entropy loss. 1292

Pairwise Distance 1293

We predict pairwise distances for four atom pairs (Cα,X) , where X ∈ {N,Cα,C,Cβ} from 2-20Å using a bin 1294

width of 0.4Å. An extra bin is added for distances beyond 20Å. We do not separate inter and intra-chain atom 1295

pairs. Cross entropy loss is applied to compare the prediction to the ground truth. 1296

Violation Loss 1297

Unlike AlphaFold2, we predict only a single rigid transformation for each input residue. This means that intra- 1298

residue bond lengths and angles must be learned in the linear projection used to obtain predicted atom coordinates. 1299

We find that violation loss is very important for generating physically realistic conformations, and also for avoiding 1300

unfavorable steric interactions such as surface intersection. Here we use the same violation loss as defined in 1301

AlphaFold-Multimer; bond angle, bond length, and one-sided flat bottom steric penalty. We omit the “Center of 1302

Mass” loss [41, eq.1] as it had no empirical effect on performance. 1303

FAPE 1304

Here we describe a slight modification of the frame aligned point error (FAPE) loss described in [34, 41]. We 1305

reiterate that only a single rigid transformation is predicted for each residue, and thus rigid transformations for 1306

each output atom type cannot be directly compared. 1307

Given predicted atom coordinates x⃗a
j for each atom a ∈ Aj of residue j, we compute the per-residue FAPE, (pFAPE) 1308

for residue i as 1309

pFAPE
(
Ti, x⃗

a
j ; θ

)
= mean

j,a∈Aj

(
min

(∥∥∥[x⃗aj ]Ti
−
[
x⃗a,∗j

]
T∗
i

∥∥∥
2
, θ
))

(13)

the FAPE loss over all residues is then 1310

FAPE
(
T i, x⃗

a
j ; θ

)
=

1

θ
· mean

i

(
pFAPE

(
Ti, x⃗

a
j ; θ

))
(14)

Our network employs two FAPE loss terms, each with equal weight. The first, FAPEintra is is intra-chain FAPE 1311

which restricts the computation to pairwise relative coordinates within the same chain. The second is Inter-chain 1312

FAPE which applies the loss between atom coordinates in separate chains. Formally, 1313

LFAPE =
1

k
·

∑
C∈{C1,...,Ck}

FAPE
(
{Ti}i∈C ,

{
xaj

}
j∈C ; θintra

)
︸ ︷︷ ︸

intra-FAPE

+FAPE
(
{Ti}i∈C ,

{
xaj

}
j /∈C ; θinter

)
︸ ︷︷ ︸

inter-FAPE

 . (15)

Following AlphaFold-Multimer, we use θintra = 10, and θinter = 30 with probability 0.9 and randomly set θ = ∞ 1314

for each FAPE type with probability 0.1. 1315

S3 Training Details 1316

All models were trained on 48Gb Nvidia RTX A6000 GPUs and optimized using Adam [88] with default parameters 1317

(β1 = 0.9, β2 = 0.999, ϵ = 10−8), with learning rate 10−3 during pre-training, and 5 · 10−4 afterwards. We apply 1318

per-example gradient clipping by global norm as described in [34, supplementary material, section 1.11.3], and scale 1319

the loss of each example by the log of the total number of residues to up-weight larger complexes. We validate our 1320
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model every 500 mini-batches, using a minibatch size of 24. We train our model for at most 15 epochs, and apply1321

early stopping with patience of eight validation steps. Since ReZero is used for residuals, we do not use any learning1322

rate warm-up.1323

During the mixed monomer/multimer pre-training phase we crop complex chains so that the total number of residues1324

does not exceed 500. We also remark that during the pre-training stage we append a binary flag to each residue1325

and pair feature indicating whether the input corresponds to a single chain – in which case the chain should be1326

treated as rigid. For general multimer training and antibody fine-tuning we place the encoder and decoder modules1327

on separate GPUs and increase the crop size to 800 amino acids. Any complex containing a chain with more than1328

550 residues is removed from our training datasets. When cropping antibody-antigen complex chains, we randomly1329

sample a contiguous subset of antigen residues so that the total number of resulting residues in 800. We follow the1330

same strategy for general proteins, but choose a chain to crop at random. We note that no cropping was performed1331

at inference time for any of the results in this paper.1332

Rationale for Single Chain Pre-Training While developing this model, we first ran experiments to understand1333

how well our architecture performed on multidimensional scaling tasks. For this, we sought to recover the Cα trace1334

of protein chains given only distance and inter-residue orientation. We found that our deep model was able to1335

recover the original Cα-trace with sub-angstrom RMSD using a 2Å resolution for distances, and 20◦ resolution for1336

angles after around 4k mini batches (approximately 1.5 epochs).1337

We attempted to apply the same model to rigid-docking, providing the same intra-chain information, but excluding1338

all inter-chain features. In these experiments, the model struggled to reconstruct the conformations of the respective1339

chains with reasonable accuracy, and showed a tendency to favor auxiliary loss terms such as intra-chain pairwise1340

distance loss. This behavior persisted even after significantly more gradient updates (see Figure S2).1341

Considering this, we decided to separate FAPE loss into inter and intra-chain components, similar to what is done1342

in [41], and pre-train our model on a 50-50 split of protein complexes and monomers. This resulted in significantly1343

faster convergence in FAPE loss and far more accurate 3D-models. We remark that a single float (1 or 0) is appended1344

to each residue and pair feature to indicate if the input is a complex or monomer.1345

Figure S2: Training loss with and without monomer pre-training. (A) intra-chain FAPE loss (y-axis) and
optimizer updates (x-axis). (B) Intra-chain pairwise distance loss (y-axis) and optimizer updates (x-axis).

S4 Decoy Ranking with Predicted lDDT1346

In Section 4 we mention that decoys for each docking target are ranked by predicted interface lDDT (I-plDDT). We1347

now describe this procedure in more detail. We define the predicted binding interface as the set of residues having at1348

least one predicted inter-chain contact; a pair of residues from distinct chains, with Cα distance between predicted1349

coordinates less than 10Å. The true (actual) binding interface is defined analogously with respect to the ground1350

truth complex. To rank decoys for a given target, we take an average of the per-residue lDDT as predicted for those1351

residues on the predicted binding interface. The plDDT score for a given residue is taken as an expectation with1352

respect to the predicted logits. Similarly, the predicted lDDT for a decoy is defined as the average over predicted1353

plDDT for all residues in the complex.1354
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Figure S3: Analysis of lDDT predictions. Each plot shows results for predictions made on DB5 bound or
unbound input chains, providing the model four interface residues and four contacts sampled at random from the
ground truth complex. Each dot represents a decoy generated from bound or unbound input chains. A total of five
decoys were generated for each target. Correlation coefficients for predictions derived from unbound and bound
targets are denoted with ρu and ρb respectively. (A) scatter plot of predicted lDDT (x-axis) for the predicted
binding interface against actual lDDT (y-axis) for the ground truth binding interface. Unbound targets are shown
in blue (ρu = 0.69) and bound targets are shown in green (ρb = 0.83). We remark that the predicted and actual
interfaces may differ. (B) Scatter plot of predicted lDDT (x-axis) and actual lDDT (y-axis) for bound and unbound
targets (ρu = 0.70), ρb = 0.95). (C) Scatter plot of predicted lDDT using the predicted binding interface against
the complex RMSD of the predicted structure (ρu = −0.74).

Figure S3 shows scatter plots of predicted lDDT and predicted I-lDDT for DB5 bound and unbound targets. In 1355

plot (C), we find a strong correlation between I-plDDT and complex RMSD for unbound targets, suggesting that 1356

this quantity is effective for ranking decoy structures. We explore this further in Figure S4, which compares the 1357

complex (A) and interface (B) RMSD distributions of decoys selected by plDDT (orange) and the same distributions 1358

computed over all decoys (blue). In this figure, we again generate five decoys per target, and assess across 12 1359

binding site settings, varying the number of provided contacts or interface residues in each setting. Mean and 1360

median RMSD scores for selected decoys are lower across all binding site contexts. RMSD distributions of decoys 1361

selected by interface plDDT are also consistently more concentrated at lower values. 1362

Figure S4: Selection overview for DB5 unbound targets (without recycling iterations). For this experi-
ment we generate five decoys for each target using a reduced model (no side chain prediction, no recycling). Each
row/column corresponds a number of provided contacts/ interface residues. This information is derived as a ran-
dom sample from the native conformation. For each violin plot, we compare the complex RMSD (C-RMSD, (A))
or Interface RMSD (I-RMSD, (B)) of all predictions (blue) against the prediction for each target having highest
predicted interface plDDT (orange). We remark that results in the two plots use only Cα atoms to compute each
RMSD type, and as such, may differ slightly from the results reported in other sections.
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Figure S5: Examination of conformational flexibility for DB5 unbound targets. As in Figure S3, we
generate 5 predictions per DB5 target, using unbound chains as input to our model. For each prediction, we
provide our model with three contacts sampled at random. (A) Scatter plot of receptor/ligand chain-wise RMSD
between bound and unbound chains (x-axis) against predicted and bound chains (y-axis). Red dots show the decoy
with highest predicted interface pLDDT for each target. (B1) Shows the interface RMSD in the same manner as
(A). (B2) zooms in on the 0-2.5Å range of (B1). (C–E) Cartoon representations of our prediction, bound, and
unbound chains for DB5 target 3AAD. (C) Our top-ranked prediction for DB5 target 3AAD using unbound chains
as input is shown in in blue, and the bound conformation is shown in red. (D) Cartoon representations of our
top-ranked prediction (blue) and unbound chains (orange) for target 3AAD. For this image, unbound chains are
optimally aligned to respective bound chains using a chain-wise Kabsch alignment. (E) Our model’s top-3 ranked
predictions for 3AAD, colored by predicted interface lDDT. Lower transparency is used to denote lower predicted
interface-LDDT. For this target, the RMSD between bound and unbound receptor chains (top, helices) is 4.18Å,
and 2.05 Å for the ligand chain (bottom, sheets). The interface RMSD is ≈ 6.8Å when bound and unbound chains
are optimally aligned. Our top ranking prediction obtains an interface RMSD of 2.6Å.

Last, we consider our model’s ability to predict conformation changes upon binding. In Figure S5(A,B) we see that1363

the chain-wise RMSD between predicted and unbound structures is similar for all but a handful of targets. In terms1364

of interface RMSD, predicted structures are slightly more similar to that of the bound conformation, especially1365

when there are larger discrepancies in the interface of aligned bound and unbound structures.1366

Unfortunately, the conformation similarity between DB5 bound and unbound structures is relatively high, and more1367

diverse structures should be examined before drawing conclusions from these results. Nevertheless, in Figure S51368

(C and D) we consider a case study on PDB entry 3AAD, where our model predicts a conformation diverging1369

significantly from the unbound state. For this target, our model with highest predicted interface lDDT has interface1370

RMSD 2.6Å, where as an optimal alignment mapping the unbound chains to the bound complex has interface RMSD1371

6.8Å. Moreover, our model predicts a conformation for the helical receptor chain that is only 2.2Å from that of the1372

bound conformation; compared to 4.2 for unbound-bound conformation. We remark that the maximum sequence1373

identity between target 3AAD and any training example is only 9%.1374

S5 Genetic Algorithm for Protein-Protein Docking1375

Although our method is deterministic, sampling can still be performed by providing different subsets of inter-1376

chain contacts of binding interface residues for the same example. To sample conformations in the absence of1377

interfacial residue and contact information, we use a genetic algorithm to guide complex predictions towards high1378
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confidence binding modes. Any genetic algorithm consists of three main components: (1) a genetic representation 1379

of the solution domain, (2) a “fitness” function to assess population quality, (3) a mutation function which alters 1380

representations, and (4) a crossover function which combines two representations. Given an initial population of 1381

solution candidates, the algorithm then proceeds to produce new “generations” by assessing the fitness of each 1382

candidate and stochastically selecting those with favorable fitness to combine or mutate. We run this procedure for 1383

a total of 10 generations, using an initial population size of 50, and subsequent population sizes of 25. We describe 1384

each component of our algorithm below. 1385

Solution Representation Solutions are represented as a binary vector of interface residues. The length of this 1386

vector is Lrec +Llig where Lrec is the length of the receptor chain, and Llig is the length of the ligand chain. Each 1387

position of the vector corresponds to a residue in one of the chains, and a one at position i is meant to indicate 1388

that this residue i is part of the binding interface. 1389

Initial Population To generate initial candidates {X(0)
0 , . . . , X

(0)

n(0)}, we randomly sample a single residue on 1390

the surface of receptor and ligand chains, and provide these two residues as the “interface-residue” feature. For 1391

antibodies, we restrict the sampling to residues in CDR H1-3 loops. Random surface residues are chosen by scaling 1392

a 3-dimensional Gaussian (direction), to the maximum distance between any two residues in the protein, and then 1393

choosing the residue closest to this point. 1394

Fitness Function To evaluate the fitness of each candidate, we use the candidate solution as the binding 1395

interface feature for our method, and then compute a function of predicted interface-pLDDT on the output. We 1396

choose f(X, t) = exp[t · (I-pLDDT(X))] where t is a scaling parameter (chosen ad hoc as one plus the index of the 1397

current iteration). 1398

Mutation Function Given a set of solution candidates, {X(1)
1 , . . . , X

(1)

n(1)} and corresponding structures gener- 1399

ated at time t, we select a subset of n = n(t+1) with replacement according to the fitness function f(·, t + 1), and 1400

randomly sub-sample six residues on the predicted binding interface. We choose to sample a fixed number here 1401

because we empirically found that predicted interface lDDT scores have a modest correlation with the number of 1402

interface residues provided as input. 1403

Figure S6: Genetic Algorithm Explores Diverse Binding Modes Ground truth and example predictions from
our genetic algorithm for DB5 target 2YVJ. In all sub-figures, the ground truth receptor is shown in orange, the
bound ligand is shown in gray, and our predictions are shown in blue. (A) Bound complex of DB5 Target 2YVJ.
(B–D) the top three ranked predictions using our genetic algorithm. (E) Rank 2, 3, 5, and 6 predictions from
our genetic algorithm. Rank 1 and rank 4 predictions are omitted for visual clarity, as they clash with some other
predictions. The bound ligand is also shown in gray. Although our method fails to generate an accurate top-1
prediction, our third ranked prediction successfully docks to the same interfacial region.

S6 Comparison to AlphaFold-Multimer 1404

We compare our method with AlphaFold-Multimer in the blind docking setting on DB5 and Ab-Bench benchmarks 1405

described in Section 3.3.2. In addition to comparing the two methods directly, we also include a hybrid approach 1406

(Ours + AF). For this approach, we provide our method with up to three randomly sampled residues from antibody- 1407

antigen binding interfaces predicted by AlphaFold-Multimer. No information of native complexes is used for our 1408

method. We generated 100 decoys for each target, and selected the decoy with highest predicted interface lDDT as 1409

our final prediction (selection as described in Section S4). The results are shown in Table S1. 1410
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Figure S7: Binding site precision and recall for AlphaFold-Multimer on Ab-Bench targets. Histograms
of binding site precision and recall for AlphaFold-Multimer predicted structures on Ab-Bench targets. Recovered
contacts, antigen binding interface (epitope) and antibody binding interface (paratope) is shown from left to right.

Motivating the hybrid approach, we analyzed binding site information extracted from AlphaFold-Multimer predic-1411

tions (Figure S7). As expected, AlphaFold-Multimer recovers the antibody paratope with high precision. Perhaps1412

more surprising, we see that at least part of the antigen epitope is recovered with relatively high precision, but lower1413

recall. Noticing this, we conjectured that our results may be improved by sampling a limited number of predicted1414

binding modes and ranking predictions.1415

Top-1 Top-5

DockQ↑ I-RMSD↓ L-RMSD↓ DockQ↑ I-RMSD↓ L-RMSD↓

SR (%) 25th 50th 75th 25th 50th 75th SR (%) 25th 50th 75th 25th 50th 75th

Antibody Benchmark

AF-Mult. 28.3% 1.9 9.3 14.7 12.2 22.6 36.0 34.8% 1.8 5.8 13.1 9.2 18.3 26.4

Ours 26.1% 2.5 9.2 12.1 8.2 19.5 25.4 - - - - - - -

Ours+GA 37.0% 1.8 8.3 12.4 5.5 19.2 26.4 45.7% 1.7 4.0 7.3 4.9 11.5 19.8

Ours+AFM 28.3% 1.9 10.1 13.3 5.7 20.1 27.8 37.0% 1.7 4.4 8.9 5.4 11.3 19.0

Docking Benchmark Version 5.5

AFM 50.0% 0.9 7.9 16.4 2.8 19.6 35.2 50% 0.9 4.7 13.0 2.6 12.2 30.2

Ours 7.1% 8.9 13.3 17.4 24.2 35.4 49.5 - - - - - - -

Ours+GA 9.5% 9.7 14.0 17.5 23.1 33.4 47.5 16.7% 5.4 8.8 13.6 12.9 20.7 34.3

Ours+AFM 42.8% 2.7 5.7 14.3 6.6 17.4 28.7 52.4% 2.0 5.1 12.7 5.2 12.4 24.5

Table S1: Comparison of Our Method and AlphaFold-Multimer on Two Docking Benchmarks Re-
sults for AlphaFold-Multimer (AFM), our method (ours), our method with genetic algorithm (Ours+GA), and
our method using AlphaFold-Multimer predicted interfaces (Ours+AFM) for Ab-Bench and DB5 benchmarks.
AlphaFold-Multimer outperforms our method on blind docking general protein targets from DB5. Our method
does not make use of MSA information, which is especially important for general proteins where binding interfaces
are harder to discern. For antibody complexes, the paratope is limited to CDR loops and our method has an easier
time predicting the complex.

Our blind docking (i.e., our deep learning plus our genetic algorithm) greatly outperforms AF-Multimer on antigen-1416

antibody complex structure prediction without using any binding site information. But on general protein targets,1417

our method performs poorly. Adding AF-Multimer predicted interface or contact information significantly improves1418

prediction quality since this indirectly makes use of MSA information. We hypothesize that directly including MSA1419
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information could significantly improve prediction quality for general proteins, especially in conjunction with our 1420

genetic algorithm, as model confidence predictions correlate strongly with predicted interface plDDT, but we leave 1421

this study for future work. 1422

Recently, Yin et al. [89] benchmarked AlphaFold-Multimer and other docking programs on antibody-antigen and 1423

general protein targets using the sequences or structures of unbound chains. This study found that AlphaFold- 1424

Multimer performs very poorly for antibodies, successfully predicting only 11% of targets. In their study, the 1425

authors identified sequence and structural features associated with lack of AlphaFold success and attribute the 1426

performance gap to lack of co-evolutionary signal. For antibody-antigen complexes, they found that the success rate 1427

of AlphaFold-Multimer was not much different when the model was given only templates, and no MSA information. 1428

In this setting, AlphaFold-Multimer is similar to our model. We hypothesize that our performance improvement 1429

for antibody-antigen targets comes from (1) fine-tuning and (2) no MSA inputs. Since we do not train with MSA 1430

information, our model is forced to learn sequence and structural features which facilitate good binding modes. This 1431

is particularly useful for immunoglobulin targets, as antibody-antigen interfaces are less likely to have co-evolving 1432

sequences available for MSA generation [89]. 1433

Figure S8: Comparison of Structure Predictions Between Our Method and AlphaFold-Multimer. In
this figure, all predictions from our model were made with AlphaFold2 or AlphaFold-Multimer predicted structures
as input. (A) Predictions for DB5 target 1JTD. Our method uses one random contact. (B) Predictions for RAbD
target 2ADF. Our prediction uses four randomly achosen epitope residues. (C) Example of high interface and
ligand RMSD for an antibody-antigen complex predicted by AlphaFold-Multimer (left). Alignment of predicted
chains to the ground truth structure (right). (D,E) Another example where AlphaFold predicts accurate chain
conformations, but incorrect complex. Supplying our method with antigen epitope residues predicted by AlphaFold
improves complex prediction quality (left) and CDR loop RMSD (right)

While AlphaFold-Multimer often predicts correct conformations for antibody and antigen chains, the predicted 1434

complex can deviate far from the ground truth. For example, Figure S8 (A) shows that although the complex 1435

structure is far from the ground truth, the antibody and antigen structures are highly similar to their respective 1436

bound counterparts, with less than 2Å complex-RMSD between predicted and unbound antibody chains, and 1.1Å 1437

RMSD between predicted and bound antigen chain. In Figure S8 (A,B,D) we provide more examples illustrating 1438

this and also show how our model can be used in conjunction with AlphaFold to improve prediction quality when 1439

binding site information is known. 1440

S7 Coordinate Flexibility 1441

Here, we provide further details on maintaining SE(3)-Equivariant updates to rigid frames when some input coordi- 1442

nates are treated as fixed. We note that IPA rigid frames are SE(3)-Equivariant with respect to a single global rigid 1443
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transformation applied to per-residue local frames [34, Suppl. Material, 1.8.2]. Moreover, the same proof shows1444

that scalar node features are invariant to any global rigid transformation. Thus, setting rigids T (0) in the decoder1445

submodule to those derived from a complete set of backbone coordinates results in an SE(3)-Equivariant update to1446

the rigid frames, and an invariant update to the scalar features.1447

We now argue a more general claim: that IPA can be made SE(3)-Equivariant even when some input coordinates are1448

fixed, flexible or missing. Let C = Cfixed∪Cflexible∪Cmissing be a partition of the input residues i = 1..n denoting1449

those residues with coordinates which should remain fixed, those which are flexible, and those with coordinates that1450

are missing. Without loss of generality, assume that the coordinates which are not missing have mean 0⃗, and all1451

missing coordinates are initialized at the origin.1452

To leave the coordinates corresponding to residues in Cfixed static, we modify the update in Equation (6) to1453

T
(ℓ+1)
i =

{
T

(ℓ)
i i ∈ Cfixed

T
(ℓ)
i ◦ RigidUpdate

(
x
(ℓ+1)
i

)
otherwise

(16)

From the equation above, it’s clear that the coordinates are fixed in the output, up to translation. Optionally, we1454

can also replace the prediction of x⃗ai (i ∈ Ifixed) in Equation (7) with the (centered) atom coordinates given as1455

input.1456

Note that any global rotation applied to the input points will leave the origin fixed, and thus only the fixed or1457

flexible coordinates can change position. The claim of equivariance now follows directly from the equivariance of1458

IPA. To see this, recall that the IPA-layer itself is rotation-equivariant, and that scalar residue features are invariant1459

under the same transformation. Thus, applying a global rotation to all residue coordinates, while keeping the scalar1460

embeddings fixed, will result in only an equivalent update to the local frames.1461

For practical reasons, mean-centering all of the input coordinates does not actually result in an equivariant update1462

– this is because the rigid frames use a specific atom (e.g. Cα) to initialize their translation. Thus, in practice,1463

only the rigid translations should have zero-mean.1464

S8 CDR-Loop Design1465

In Section 3.2.1, and Section 4.3, we mention that our architecture is capable of handling direct coordinate in-1466

formation. Moreover, it is possible to treat certain subsets of coordinates as rigid during inference (we actually1467

verify the more general claim - that some coordinates may be fixed, flexible, or missing in Section S7). In settings1468

such as CDR-loop generation, fixing the heavy and light chain framework regions may be practically useful. To1469

enable de novo design of loop regions, the CDR L1-L3 and H1-H3 segments can simply be treated as missing. To1470

test whether this approach works in practice, we fine-tuned the same pre-trained model from Section 4.3, while1471

supplying the coordinates of the heavy and light chain framework regions to the structure-decoder module. The1472

framework coordinates are treated as rigid during inference, and the rest of the procedure is implemented exactly1473

as described in Section 4.3. Of course, it is also possible to provide the coordinates of the docked antigen complex1474

in addition to the framework. For example, coordinates on or surrounding the epitope may be treated as flexible,1475

and the others as rigid depending on the use case. We omit this setting here as the manuscript focuses primarily1476

on protein docking.1477

Fine tuning our model on SAbDab reduces overall sequence perplexity (p = 0.086), and CDR-RMSD (p < 0.005 for1478

CDR H1-H3). We remark that including framework coordinates appears to reduce median CDR H1-H3 RMSD and1479

sequence perplexity, but hypothesis tests comparing our fine-tuned models with and without framework coordinates1480

do not support this claim (p = 0.41, p = 0.43, p = 0.86 for CDR H1, H2, and H3 RMSD). Nevertheless, this outcome1481

provides further empirical justification for our results in Section S7, and acts as a robust proof of concept for how1482

to integrate coordinate information into docking or de novo design tasks.1483

The methods in Table 1 are trained, validated, and tested on different datasets. Because of this, we tried to replicate1484

their training and testing procedures as accurately as possible. To generate our data we use the scheme proposed1485

in Jin et al. [48], generating CDR-clusters at 40% sequence identity and using an 8:1:1 split for training, validation,1486

and test sets respectively. Some example generations are shown in Figure S91487
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Structure Prediction Sequence Prediction

Our Method RMSD↓ PPL↓ CDR H1-3

H1 H2 H3 Fr H1 H2 H3 NSR PPL

No FT 1.43 1.53 2.49 0.55 4.84 7.53 11.17 37.5% 8.41

FT 1.11 1.04 1.88 0.82 4.46 6.71 10.68 39.7% 7.67

FT + Fr-Coord 1.03 0.98 1.78 – 4.27 6.50 10.36 40.6% 7.18

Table S2: CDR-loop design with framework coordinates Results from our method without framework coor-
dinates and without fine tuning (No FT), without framework coordinates and with fine-tuning (FT) and with fine
tunng and coordinates for antibody heavy and light chain framework regions (FT + Fr-Coord). The same criteria
and results from our method as described for Section 4.3 are used here.

Figure S9: Antibody Docking and CDR Design Example docking and designs comparing our predictions with
native structures. For each example, we give the length (L) of CDR H3 and the RMSD between the predicted
(red) and ground truth (orange) conformations. For simplicity, only heavy chains are displayed. Only the bound
antigen (gray-white) is shown when the prediction L-RMSD is less than 2 Å. (A) Fab of mAb 3E9 in complex with
Plasmodium vivax reticulocyte-binding protein 2b (PvRBP2b) (PDB: 6BPA, L = 11, RMSD = 1.49). (B) Fab
of IgG B13I2 bound to synthetic 19-amino acid peptide homolog of the C helix of myohemerythrin (PDB: 2IGF,
L = 11, RMSD = 1.19). (C) Fab of mAb B10 heavy chain in complex with A(H3N2) influenza Virus (PDB: 6N6B,
L = 9, RMSD = 1.21). (D) Fab of igG 7B2 bound to 13-residue HIV-1 GP41 peptide (PDB: 4YDV, L = 17,
RMSD = 2.86)

S9 Ablation Studies 1488

We trained several ablated models to identify how different components of our architecture and training procedure 1489

contribute to docking performance. We show results for four additional models in Table S3. 1490

We find that removing the shared weight layers and auxiliary FAPE loss from our structure decoder leads to the 1491

largest degradation in performance. We also remark that ablating the degree centrality encoding or adding a 1492

secondary structure encoding to our input residue features had an insignificant impact on performance. We remark 1493

that including ESM1b encodings (+ ESM1b) of each chain did not noticeably improve performance in the blind 1494

docking setting. We obtain DockQ scores ≥ 0.23 for 3 targets when ESM1b encodings are used, and 2 targets when 1495

the encodings are removed. It appears that these encodings do not significantly improve performance, so we opted 1496

for the simpler model instead. Interestingly, the variant of our model which does not use recycling is still able to 1497

obtain competitive top-5 performance, but suffers in top-1 performance. Recycling decoder residue features is also 1498

competitive with the baseline recycling implementation, but does not result in significantly better performance. 1499
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Top-1 Top-5 Top-1 Top-5

IRMS LRMS SR IRMS LRMS SR IRMS LRMS SR IRMS LRMS SR

4 Interface 1-Contact

Baseline 4.7 14.5 47.6% 3.0 8.6 69.0% 5.8 13.6 45.2% 3.5 10.2 59.5%

No Recycle 8.4 20.0 29.7% 3.9 8.5 64.9% 8.0 20.0 33.3% 4.1 11.5 51.4%

+ ESM1b 5.1 13.8 47.6% 3.3 8.8 73.3% 5.6 18.1 37.7% 3.6 9.5 62.2%

No Share Wts. 4.9 16.6 42.9% 3.9 9.6 54.8% 7.2 22.1 31.0% 3.7 11.4 45.2%

Recycle Dec. 5.3 13.7 42.9% 3.4 8.8 73.3% 5.7 18.0 37.7% 3.3 9.5 59.5%

Table S3: Ablation Study We consider the top-1 and top-5 performance of model variants on DB5 unbound
targets using 1 contact or 4 interfacial residues as input. This information is randomly sampled independently
for each variant, and a total of 15 decoys are generated for each target. Predicted IplDDT is used to rank each
decoy. The baseline model is described in the main text. For the four variants we considered removing recycling
(No Recycle), adding ESM1b encodings of chain sequences as input (+ESM1b), learning separate weights for each
decoder block (No Share Wts), and recycling decoder residue features, rather than encoder residue features (Recycle
Dec.). When learning separate weights for decoder layers, we also remove auxiliary FAPE loss.

S10 Data Collection1500

For all methods, the receptor and ligand chains were randomly rotated and translated before inference. For general1501

proteins, the smaller of the two targets was treated as the ligand (ties broken based on chain order in PDB file).1502

For antibody-antigen chains, the antigen was always treated as the ligand.1503

Code for EquiDock was downloaded from the author’s github page. Standalone packages for HDock, PatchDock,1504

and ZDock were downloaded from the respective servers. For HDock and PatchDock, all binding interface and1505

contact information was given as input. Still, results required an additional post-processing step when run locally.1506

For this, we enumerate all predictions of each program and choose the lowest energy prediction satisfying the1507

interface and contact criteria. We reiterate that interface and contacts are defined using Cα atoms with 10Å cutoff.1508

In some cases, HDock or PatchDock did not produce any decoys meeting all criteria. In these cases, we choose the1509

lowest scoring model with the most recovered interface residues and contacts.1510

AlphaFold and AlphaFold-Multimer were run with ColabFold [90] using the provided template and MSA servers.1511

Default settings were used for all other options. ColabFold’s monomer setting was used to predict all chains in the1512

DB5 benchmark, and all antigen chains in the RAbD and Ab-Bench benchmarks. The multimer setting was used1513

to generate all predicted antibody structures with bound heavy and light chains.1514

As mentioned in Section 3.2.2, we filter unbound and predicted targets based on RMSD to the bound conformation.1515

Full lists of targets used for comparisons is included with the code at https://github.com/MattMcPartlon/protein-1516

docking1517
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S11 Extended Results and Examples 1518

S11.1 Docking Benchmark Version 5 1519

Docking Benchmark Version 5.5, Unbound Targets (N = 42)

Top-1 Top-5

DockQ↑ I-RMSD↓ L-RMSD↓ DockQ↑ I-RMSD↓ L-RMSD↓

SR (%) 25th 50th 75th 25th 50th 75th SR (%) 25th 50th 75th 25th 50th 75th

Blind

EquiDock 0.0% 11.4 14.1 17.1 35.0 40.8 50.6 - - - - - - -

ZDock 11.9% 11.8 14.1 17.3 25.0 34.4 42.8 14.3% 7.3 10.1 12.7 17.2 22.7 32.6

PatchDock 0.0% 11.8 15.6 19.6 38.8 48.0 56.7 0.0% 9.0 11.5 15.0 26.8 37.9 48.9

HDock 9.5% 11.3 15.9 18.0 29.7 41.8 53.5 19.0% 6.8 10.2 11.6 15.7 26.2 32.1

AFM 50.0% 0.9 7.9 16.4 2.8 19.6 35.2 50% 0.9 4.7 13.0 2.6 12.2 30.2

Ours 7.1% 8.9 13.3 17.4 24.2 35.4 49.5 - - - - - - -

Ours+GA 9.5% 9.7 14.0 17.5 23.1 33.4 47.5 16.7% 5.4 8.8 13.6 12.9 20.7 34.3

Ours+AFM 42.8% 2.7 5.7 14.3 6.6 17.4 28.7 52.4% 2.0 5.1 12.7 5.2 12.4 24.5

4 Interface

ZDock 14.3% 8.7 11.7 13.8 18.4 26.9 34.9 33.3% 3.4 6.2 9.0 10.8 17.1 20.6

PatchDock 2.4% 9.2 11.6 15.8 26.2 37.4 52.5 4.8% 8.3 9.5 12.1 17.3 26.4 40.6

HDock 11.9% 8.0 10.7 14.3 19.3 29.6 39.7 31.0% 3.5 7.4 9.8 12.0 19.2 24.5

Ours 47.6% 2.7 4.7 8.9 7.1 14.5 23.6 69.0% 2.1 3.0 5.2 5.9 8.6 12.5

1 Contact

ZDock 16.7% 7.7 11.2 14.4 19.3 31.4 38.8 31.0% 3.3 7.3 11.2 10.7 18.5 29.1

PatchDock 2.4% 10.9 14.2 18.8 34.9 45.5 54.5 7.1% 7.8 10.7 14.5 18.5 36.1 46.0

HDock 14.3% 10.3 14.8 17.7 26.9 38.0 52.2 33.3% 3.4 7.1 10.5 12.0 19.2 29.1

Ours 45.2% 2.5 5.8 9.9 8.6 13.6 26.8 59.5% 2.0 3.5 6.2 5.5 10.2 16.3

2 Contacts

ZDock 19.0% 6.7 11.9 14.4 17.9 30.5 41.9 40.5% 2.9 5.9 10.1 9.8 17.1 25.9

PatchDock 4.8% 9.4 14.1 17.5 27.0 40.2 53.2 14.3% 6.6 9.1 12.8 15.0 27.7 43.3

HDock 14.3% 7.9 11.3 17.5 20.4 28.2 48.1 38.1% 3.4 6.5 10.0 11.3 17.1 29.3

Ours 66.7% 1.7 2.7 4.6 4.1 7.3 13.9 92.9% 1.6 2.1 2.6 3.9 5.3 8.1

3 Contacts

ZDock 23.8% 4.5 10.3 14.2 14.4 24.6 37.6 45.2% 2.8 4.9 8.5 9.0 16.5 22.2

PatchDock 7.1% 9.1 13.3 17.5 27.3 39.2 53.2 16.7% 5.5 9.1 11.8 15.0 24.9 42.9

HDock 19.0% 6.5 10.5 17.0 15.5 27.3 45.3 38.1% 3.3 6.6 9.6 11.3 16.9 24.5

Ours 88.0% 1.6 2.3 3.5 5.0 5.8 9.1 100% 1.4 1.8 2.6 4.3 5.1 6.4

Table S4: Results for DB5 Unbound Targets
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Docking Benchmark Version 5.5, Predicted Targets (N = 22)

Top-1 Top-5

DockQ↑ I-RMSD↓ L-RMSD↓ DockQ↑ I-RMSD↓ L-RMSD↓

SR (%) 25th 50th 75th 25th 50th 75th SR (%) 25th 50th 75th 25th 50th 75th

Blind

EquiDock 0.0% 9.8 12.2 15.4 26.4 42.1 50.1 - - - - - - -

ZDock 9.1% 8.5 12.9 17.6 19.5 29.5 34.8 18.2% 5.5 10.0 13.0 12.0 22.4 31.1

PatchDock 4.5% 11.5 14.4 19.4 29.8 38.2 55.5 9.1% 8.4 10.2 11.6 18.6 27.4 32.0

HDock 9.1% 12.0 15.2 20.6 27.5 36.9 63.6 18.2% 8.6 11.0 13.3 17.0 28.6 34.1

Ours 9.1% 9.6 13.8 18.9 22.8 34.3 58.3 - - - - - - -

4 Interface

ZDock 9.1% 7.2 11.9 15.3 17.6 27.8 33.1 31.8% 2.9 6.8 10.2 8.1 15.2 26.9

PatchDock 4.5% 9.7 11.7 14.4 21.1 29.5 38.6 18.2% 5.1 8.3 10.0 15.1 18.1 27.8

HDock 9.1% 8.7 11.3 14.4 21.1 30.1 41.4 27.3% 3.6 8.3 10.1 14.6 19.6 25.9

Ours 59.1% 2.2 3.2 7.4 6.1 7.1 22.2 68.2% 2.2 2.6 4.1 5.4 6.8 10.6

1 Contact

ZDock 13.6% 6.5 12.0 17.6 17.0 28.4 37.8 36.4% 2.7 6.5 13.0 8.0 18.4 31.1

PatchDock 4.5% 10.0 14.4 19.1 21.1 34.6 54.9 27.3% 4.0 8.4 11.2 13.1 19.0 32.0

HDock 9.1% 10.9 15.0 20.6 27.5 39.0 63.6 22.7% 6.0 10.2 12.8 16.8 23.8 33.5

Ours 27.3% 3.6 7.1 10.3 10.0 18.3 29.1 54.5% 2.4 2.8 7.2 6.7 10.5 15.7

2 Contacts

ZDock 9.1% 7.2 11.5 15.6 17.0 26.9 34.8 36.4% 2.4 6.5 13.0 5.8 17.3 31.1

PatchDock 4.5% 9.1 12.8 15.4 22.1 31.1 50.1 27.3% 4.0 7.9 10.6 13.1 18.6 32.0

HDock 13.6% 7.9 14.6 20.6 23.1 39.0 63.6 22.7% 6.0 8.8 11.1 16.8 24.0 29.5

Ours 66.7% 2.3 3.3 6.4 6.4 7.3 17.7 90.5% 1.9 2.4 3.0 5.1 6.5 7.3

3 Contacts

ZDock 13.6% 6.5 11.0 15.6 15.2 28.4 34.8 40.9% 2.4 6.9 13.2 5.8 15.2 31.4

PatchDock 4.5% 9.8 13.7 15.6 27.1 31.4 52.9 27.3% 3.7 7.3 9.9 11.1 16.7 32.0

HDock 18.2% 7.8 15.0 20.6 18.7 38.4 63.6 27.3% 3.8 8.4 10.1 14.6 22.7 28.9

Ours 75.0% 1.5 2.4 4.1 4.6 7.8 11.7 95.0% 1.4 2.0 2.4 4.0 5.3 8.0

Table S5: Results for DB5 Predicted Targets
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S11.2 Antibody Benchmark 1520

Antibody Benchmark Unbound Targets (N = 46)

Top-1 Top-5

DockQ↑ I-RMSD↓ L-RMSD↓ DockQ↑ I-RMSD↓ L-RMSD↓

SR (%) 25th 50th 75th 25th 50th 75th SR (%) 25th 50th 75th 25th 50th 75th

Blind

EquiDock 0.0% 11.6 13.7 16.8 31.9 41.1 51.0 - - - - - - -

ZDock 2.2% 10.1 12.8 17.0 23.9 28.2 39.3 17.4% 5.8 8.1 11.5 14.7 21.2 28.6

PatchDock 0.0% 12 13.9 15.5 26.1 32.2 46.3 2.2% 6.6 10.2 12.9 19.7 23.9 37.0

HDock 2.2% 12.5 15.6 19.8 24.0 47.3 58.5 8.7% 8.6 10.8 13.7 21.1 24.4 39.3

AF-Mult. 28.3% 1.9 9.3 14.7 12.2 22.6 36.0 34.8% 1.8 5.8 13.1 9.2 18.3 26.4

Ours 26.1% 2.5 9.2 12.1 8.2 19.5 25.4 - - - - - - -

Ours+GA 37.0% 1.8 8.3 12.4 5.5 19.2 26.4 45.7% 1.7 4.0 7.3 4.9 11.5 19.8

Ours+AFM 28.3% 1.9 10.1 13.3 5.7 20.1 27.8 37.0% 1.7 4.4 8.9 5.4 11.3 19.0

4 Epitope

ZDock 8.7% 8.2 10.4 13.3 20.7 27.2 33.0 28.3% 2.8 6.2 7.9 10.2 15 21.2

PatchDock 0.0% 9.7 11.9 14.7 22.4 28.8 39.7 8.7% 6.0 8.2 9.2 16.8 20.1 28.5

HDock 8.7% 9.9 12.1 15.7 21.3 27.6 42.6 30.4% 3.4 7.5 9.9 11.7 18.9 23.6

Ours 54.3% 1.6 3.1 6.8 4.6 9.5 20.6 71.7% 1.4 2.5 3.7 4.4 6.7 12.3

12 Epitope

ZDock 26.1% 3.6 8.5 11.4 14.4 20.7 27.8 56.5% 1.4 3.2 7.2 5.3 9.7 20.7

PatchDock 0.0% 8.4 10.2 12.9 21.3 25.1 32.7 21.7% 4.2 6.4 7.9 15.2 17.8 27.2

HDock 13.0% 7.6 10.3 13.1 18.6 23.9 36.1 47.8% 2.2 4.2 7.8 7.6 14.2 22.2

Ours 65.2% 1.2 1.9 6.8 3.8 7.5 22.3 87.0% 1.2 1.5 2.6 3.5 5.4 8.8

Table S6: Results for Antibody Benchmark Unbound Targets
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Antibody Benchmark Predicted Targets (N = 26)

Top-1 Top-5

DockQ↑ I-RMSD↓ L-RMSD↓ DockQ↑ I-RMSD↓ L-RMSD↓

SR (%) 25th 50th 75th 25th 50th 75th SR (%) 25th 50th 75th 25th 50th 75th

Blind

EquiDock 0.0% 13.2 14.5 16.4 38.3 41.6 50.0 - - - - - - -

ZDock 3.8% 10.6 12.9 15.4 21.9 26.8 37.3 7.7% 6.4 9.6 11.5 14.7 19.8 28.7

PatchDock 0.0% 12.3 14.0 18.8 26.3 33.3 49.5 3.8% 7.8 10.9 12.2 18.4 22.7 28.0

HDock 0.0% 11.9 13.5 18.9 25.5 31.2 52.4 3.8% 8.1 10.1 12.4 18.3 25.2 30.7

Ours 26.9% 2.8 10.4 13.9 9.4 22.9 26.4 - - - - - - -

Ours+GA 42.3% 1.9 7.3 9.0 6.5 15.5 19.4 46.2% 1.8 7.2 9.1 6.5 13.5 17.3

4 Epitope

ZDock 7.7% 7.4 9.4 13.2 18.6 24.7 31.8 30.8% 3.9 6.1 8.8 8.9 15.3 21.0

PatchDock 3.8% 10.3 12.2 14.5 24.8 27.2 40.0 7.7% 6.0 7.7 9.5 15.2 19.4 26.4

HDock 3.8% 9.0 13.2 14.1 23.0 27.6 35.2 19.2% 5.0 7.5 10.4 15.8 19.5 25.9

Ours 53.8% 1.9 2.7 9.3 4.8 8.5 28.0 69.2% 1.5 2.4 3.4 4.4 6.0 11.8

12 Epitope

ZDock 19.2% 5.7 10.3 11.6 14.0 23.2 28.6 57.7% 2.0 3.9 6.2 4.8 11.8 15.8

PatchDock 11.5% 7.4 10.2 12.4 17.3 26.1 38.9 30.8% 4.5 6.0 7.4 8.9 17.2 24.3

HDock 7.7% 7.8 10.2 13.5 17.9 24.3 30.2 50.0% 2.1 5.3 8.6 5.8 13.2 22.7

Ours 69.2% 1.3 1.8 5.8 3.7 6.1 21.1 88.5% 1.3 1.7 3.2 3.7 4.8 9.8

Table S7: Results for Antibody Benchmark Predicted Targets
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S11.3 Rosetta Antibody Design 1521

Rosetta Antibody Design (Bound Targets)

I-RMSD↓ L-RMSD↓ DockQ↑

Epitope Method Med. Mean Std. Med. Mean Std. SR Med. Mean Std.

0

EquiDock 14.76 15.47 3.60 40.70 41.89 12.05 1.7% 0.02 0.03 0.03

ZDock 5.43 8.35 8.01 14.22 22.05 24.01 50.0% 0.29 0.43 0.40

PatchDock 11.33 10.33 6.78 26.96 29.00 22.95 25.9% 0.04 0.24 0.34

HDock 0.32 4.56 9.01 1.01 13.56 26.52 79.3% 0.98 0.77 0.39

Ours 1.79 5.75 7.60 5.0 16.7 22.0 61.7% 0.44 0.45 0.37

2

Ours

1.55 2.42 2.99 4.0 8.6 11.4 78.6% 0.62 0.56 0.32

4 1.20 1.87 2.10 3.5 6.9 8.3 82.1% 0.66 0.59 0.30

All 1.17 1.78 1.95 3.3 7.1 12.2 87.5% 0.73 0.64 0.27

Figure S10: Rosetta Antibody Design Bound Targets. Results on the RAbD test set using bound chains as
input to each docking method. Results for our method are generated after fine-tuning on bound antibody-antigen
chains. The x-axis in the below 4 pictures show the number of epitope residues provided to the docking methods.
DockQ score cutoffs for acceptable, medium and high quality predictions are ≥ 0.23, ≥ 0.49, and ≥ 0.80

Figure S11: Comparison Between Our Method and Equidock Blind docking predictions for a single domain
antibody targeting the toxin Ricin (A and B), and therapeutic antibody which targets the CD4 binding site on the
HIV-1 spike protein (C and D). In (A–D), we show the bound antigen in orange and bound antibody in light gray.
For clarity we align each complex prediction to the ground truth using only the antigen chain, and show only the
predicted antibody in blue. We also show the solvent accessible surface of antibody predictions (independent of the
antigen) to better illustrate surface intersections. For both of these targets, the RMSD between bound and unbound
antigen chains is less than 2Å. (E) Distribution of the number of steric clashes for blind docking DB5 unbound
targets. We consider only backbone atom clashes, since EquiDock cannot modify side-chain conformations. Two
atoms are said to clash if each atom belongs to a different chain, and the pairwise distance is less than 90% the
sum of their van der Waals radii.
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Figure S12: Docking Predictions for Antibody Benchmark Target 2W9E Protein backbones are shown in
cartoon with ground-truth antibody and antigen structures shown in green for each figure. The antigen epitope is
highlighted in yellow. We show the predicted antibody orientation relative to the ground truth antigen in a separate
color for each method. Ligand RMSD (LRMSD) is shown for each prediction. (A) Blind docking predictions for
methods EquiDock, ZDock, PatchDock, HDock, and DockGPT. (B) Close up of EquiDock’s prediction showing
excessive surface overlap between antibody and antigen chain predictions. (C) Top-1 docking predictions for each
method, except EquiDock given four epitope residues. (D) Ground truth complex. (E) Top-1 docking predictions
for each method, except EquiDock given 12 epitope residues.
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