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Simple Summary:

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with few curative options. Desmoplastic stroma and
immune system evasion in PDAC represent challenges to the success of therapeutic strategies that function well in other
tumor types. Characterizing the PDAC microenvironment (including the immune environment) remains critical to
developing safe and efficient therapies. Here, we present a comprehensive meta-analysis identifying 1153 significantly
dysregulated genes, which mainly impact extracellular matrix remodeling and the immune system. We identify two
signatures of twenty-eight immune-related genes and eleven stroma-related genes influencing PDAC patient survival.
Additionally, five immune genes are associated with PDAC prognosis for the first time.

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) prognosis and treatment response remains devastatingly poor due partly to the
highly heterogeneous, aggressive, and immunosuppressive nature of this tumor type. The intricate relationship between
stroma, inflammation, and immunity remains vaguely understood in the PDAC microenvironment. Here, we performed a
meta-analysis of stroma-, and immune-related gene expression in the PDAC microenvironment to improve disease
prognosis and therapeutic development. We selected twenty-one PDAC studies from the Gene Expression Omnibus and
ArrayExpress databases, including 922 samples (320 controls and 602 cases). Differential gene enrichment analysis identified
1153 significant dysregulated genes in PDAC patients that contribute to a desmoplastic stroma and an immunosuppressive
environment (the hallmarks of PDAC tumors). The results highlighted two gene signatures related to the immune and
stromal environments that cluster PDAC patients in high- and low-risk groups, impacting patient stratification and
therapeutic decision-making. Moreover, HCP5, SLFN13, IRF9, IFIT2, and IFI35 immune genes were related to prognosis value
in PDAC patients, for the first time.

Cancers 2022, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/cancers
1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.03.31.535058doi: bioRxiv preprint 

mailto:fgarcia@cipf.es
mailto:jalopez@fivo.org
https://doi.org/10.1101/2023.03.31.535058
http://creativecommons.org/licenses/by/4.0/


Keywords: pancreatic ductal adenocarcinoma, desmoplasia, immune system, heterogeneity cancer, biomarkers, molecular
profile, meta-analysis, transcriptomics, prognosis, meta-analysis

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, representing over
80% of all diagnosed pancreatic neoplasms. This highly lethal cancer has a poor prognosis (five-year survival
rate below 5%) and a median survival rate of fewer than six months [1]. While currently the seventh leading
cause of cancer death worldwide [2], the yearly increase in incidence may make PDAC Europe's third leading
cause of cancer death by 2025 [2]. The absence of reliable biomarkers for effective screening and early diagnosis
at pre-symptomatic stages where treatments function most effectively represents a primary reason why most
PDAC cases remain incurable. Currently, most patients present locally advanced (30%-35%) or metastatic
(50%-55%) PDAC at diagnosis [3].

In advanced-stage PDAC patients, curative surgery remains impossible, and systemic therapeutic options
(including immunotherapy) remain limited and ineffective [4]. Among solid tumors, PDAC represents an
immunologically "cold" tumor characterized by sparse T-cell infiltration [5,6]; in contrast, immunologically
"hot" tumors (such as melanoma) suffer from high neoantigen load and immune cell infiltration [7]. As
distinctive features, PDAC tumors possess an extracellular matrix (ECM) composition and fibrotic stroma that
make it highly desmoplastic and significantly influence immune responses [8]. PDAC cells strongly interact
with the surrounding microenvironment, which includes components such as immune cells, cytokines,
metabolites, fibroblasts, and hyaluronan. These interactions create a highly fibrotic and active organized stroma
(desmoplastic stroma) and an immunosuppressive environment that makes PDAC invasive and highly resistant
to immunotherapy [6,9]; therefore, characterization of the stroma and tumor immune microenvironment in
PDAC patients represents a critical step in developing more effective therapeutic strategies.

This study aimed to understand the stroma and tumor immune microenvironment of PDAC patients by
retrieving and analyzing transcriptomic data from twenty-one different studies (representing a population of
922 samples; 320 controls and 602 cases) from the Gene Expression Omnibus (GEO)-NCBI and ArrayExpress
data repositories. Through a meta-analysis, we identified a series of gene signatures that may play a significant
role in the therapeutic decision-making in PDAC patients, including 5 genes not previously related to PDAC
survival. We also provide a friendly-user web tool with detailed and interactive visualization of our
comprehensive meta-analysis results.

2. Materials and Methods

All bioinformatics and statistical analyses employed R software v.4.1.3 [10] (Supplementary Table S1 details R
packages and versions).

2.1. Study search and selection

Publicly available datasets were collected from the GEO-NCBI [11] and ArrayExpress databases [12]. The data
available in the Cancer Genome Atlas (TCGA) [13] were excluded from the original search with the purpose of
using this dataset as an external cohort for survival analysis. Following the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) guidelines [14], a systematic search of published studies was
conducted in 2021 (period: 2002-2021). Three researchers in the study conducted the literature search (C.P.C,
L.F., and I.P.D.), and the consistency of the review and selection procedures used was evaluated and confirmed.
A broad search was performed using the MeSH (Medical Subject Headings) thesaurus keyword "pancreatic
cancer" after which stringent filters were applied. The final inclusion criteria were:
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● Normal and PDAC samples available
● RNA samples extracted directly from human pancreas biopsies
● Patients had not undergone treatment before biopsy
● Sample size > 4 for PDAC and control groups

Finally, normalized gene expression from twenty-seven microarray studies (GSE86436, GSE71989, GSE62452,
GSE62165, GSE60979, GSE56560, GSE55643, GSE46234, GSE43795, GSE43288, GSE41368, GSE32676, GSE28735,
GSE27890, GSE22780, GSE19650, GSE18670, GSE16515, GSE15471, GSE1542, GSE11838, GSE102238, GSE101448,
E-MTAB-3365, E-MTAB-1791, E-MEXP-950, and E-EMBL-6) and count matrices of two RNA-sequencing
(RNA-seq) (GSE119794 and GSE136569) datasets were retrieved for further analysis.

2.2. Individual preprocessing and analysis

Datasets were individually analyzed in two steps: preprocessing and differential expression analysis.

The nomenclature of the clinical variables included in each study was standardized for data preprocessing, and
then an exploratory analysis was performed. Prior to the exploratory analysis, RNA-seq raw count matrices
were normalized using the trimmed mean of m-values from the edgeR package [15,16]. The normalization
method performed by the original authors for each microarray dataset was assessed, and the matrices were
log2-transformed when necessary. The exploratory analysis included expression boxplots, unsupervised
clustering, and principal component analysis (PCA) to detect patterns of expression between samples and genes
and the presence of batch effects in each study.

Differential gene expression analyses were performed in R using limma (v.3.48.3) [17], and a paired sample
design was implemented in those datasets where applicable. Differentially-expressed genes were identified
using p-values with Benjamini-Hochberg correction [18] for a false discovery rate (FDR) at a significance level of
0.05.

2.3. Gene expression meta-analysis

Gene expression analysis results were integrated into a meta-analysis using the DerSimonian & Laird
random-effects model [19], considering individual study heterogeneity. This model considers the variability of
individual studies by increasing the weights of studies with less variability when computing meta-analysis
results.

A total of 24,365 genes were evaluated. P-values, FDR-corrected p-values, the logarithm of Fold Change
(logFC), and 95% confidence intervals of logFC were calculated for each evaluated gene, and both funnel and
forest plots were computed for each gene. These representations were assessed for possible biased results,
where logFC represents the effect size of a function, and the standard error of the logFC serves as a study
precision measure [20]. Genes were considered significant when FDR < 0.05, absolute logFC > 0.6, and were
measured in at least eleven studies. Sensitivity analysis (leave-one-out cross-validation [21]) was conducted for
each significant gene to verify alterations in the results owing to the inclusion of any study.

Statistically-significant results from the gene expression meta-analysis were functionally enriched by
over-representation analysis (ORA) using clusterProfiler [22,23] and ReactomePA [24]. Gene Ontology (GO)
terms [25,26] and Reactome pathway [27] enrichment were performed following this approach. Only those
functions and pathways with more than ten differentially-expressed genes found in the gene set were
considered. Functional enrichment was explored and visualized with the rrvgo package [28].

2.4. Web tool

To make the data and results of our research widely accessible, a web tool was developed using the shiny
package in R. The tool was developed in a user-friendly manner, allowing users to navigate and interact with
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the data. Users can then select different variables and parameters to visualize the data in numerous ways. The
tool also includes interactive plots and tables to display the analysis results. The web tool is hosted on a secure
server and is regularly maintained to ensure stability and performance. The source code for the tool is also
publicly available and can be accessed through our GitHub repository: https://github.com/ipediez/ShinyReport.

2.5. Survival analysis

RNA-seq expression data and metadata from patients in the Pancreatic adenocarcinoma (PAAD) TCGA cohort
were downloaded from cBioPortal [29]. Z-scores of RNA-seq expression were used for survival analysis. For
each analyzed gene, samples were divided into two groups based on their expression levels. Samples with
expression Z-scores below the lower quartile were classified as having low expression, whereas samples
exceeding the upper quartile were classified as having high expression. Forty-five samples with high expression
and forty-five samples with low expression were included in the survival analysis. Gene-wise Kaplan-Meier
survival analysis compared the low- and high-expression groups. This method estimates the probability of
survival over time based on the expression levels of the gene of interest. The log-rank test was used to compare
the survival curves between distinct groups of samples.

For risk-score- based survival, genes were tagged as highly-expressed for a given sample when expression
levels were above the upper quartile. Then, samples were clustered into "high-risk" and "low-risk" groups based
on the number of highly expressed genes. The cutoff was set as the median of the highly-expressed genes in
each sample. Furthermore, a proportional hazard model using Cox regression was implemented to study the
impact of clinicopathological variables on survival and evaluate the contribution of the risk-score in a
multivariate model.

3. Results

We performed a systematic review and differential gene expression analysis of PDAC transcriptomic studies
from the GEO-NCBI [11] and ArrayExpress [12] databases to explore stroma and immune environments in
PDAC patients. We then integrated the results of each differential gene expression analysis into a meta-analysis.
The biological context of the meta-analysis results was explored via functional enrichment, using an ORA of GO
terms and pathways (Figure 1). Finally, we conducted a survival analysis to explore the impact of specific
candidate genes on patient outcomes.

Figure 1. Workflow and analysis design. Relevant studies from the GEO-NCBI and ArrayExpress databases were retrieved,
and data exploration and preprocessing were then performed. After DGE analysis, the results from different studies were
integrated into a gene meta-analysis. Functional profiling methodologies were applied to explore the biological implications
of the results.
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3.1. Study search and selection of PDAC studies

The systematic review identified 143 non-duplicated studies. We searched for studies including RNA-seq
samples of pancreatic cancer patients, and included in the exploratory analysis those studies that met the
inclusion criteria: include PDAC and control samples, and include human primary tissue samples. Then, we
excluded studies with samples from patients under cancer treatment and studies where sample size was less
than 4 in the PDAC or the control group, resulting in a subset of twenty-nine studies (Figure 2). We discarded
eight studies after exploratory analysis, giving a final set of twenty-one homogeneous and comparable studies
for further analysis. The selected studies included 922 samples (320 controls and 602 cases). Although most
studies did not include relevant sample metadata, we assessed clinical characteristics when available.
Supplementary Tables S2 and S3 contain further information regarding the selected studies and
clinicopathological characteristics of the study population.

Figure 2. Flow of information through the distinct phases of the systematic review, following PRISMA Statement
guidelines.

3.2. Data acquisition and preprocessing
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As the normalized data derived from different platforms, we performed exploratory and processing steps on
the dataset to ensure the comparability and integration of subsequent analyses. The exploratory analysis found
abnormal normalization or a lack of annotation in eight studies, which we excluded from further analysis
(listed in Supplementary Table S4).

3.3. Meta-analysis

We performed an independent differential gene expression analysis in each study and a functional
meta-analysis for the 24,365 genes evaluated in the different datasets, including every gene found in at least two
studies. We considered significant those results with an FDR < 0.05, an absolute logFC > 0.6, and evaluated in at
least eleven studies; overall, 1153 genes accomplished these criteria (Figure 3, further detailed in Supplementary
Table S4).

Figure 3. Volcano plot summarizing the gene expression meta-analysis. Significantly over-expressed genes shown in red,
and significantly under-expressed genes shown in blue (FDR < 0.05, absolute logFC > 0.6). Only genes found in at least
eleven studies shown.

We noted the presence of genes encoding ECM components (e.g., collagens, fibronectin, laminin, stratifin),
proteoglycans (e.g., versican), cell adhesion molecules, integrins, matrix metallopeptidases, and additional
peptidases and enzymes that impact mechano-contractility, epithelial tension, and stiffness of tumoral stroma,
which can promote tumor progression and resistance to therapy (Figure 4). Table 1 displays the twenty genes
with the highest and lowest logFC values from the meta-analysis; said genes mainly play roles in ECM
remodeling, desmoplasia, metabolism, and the immune system. Supplementary Table S4 reports the complete
list of significantly affected genes.
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Figure 4. Overview of PDAC microenvironment. Meta-analysis results indicated an overexpression of several ECM
components e.g., stratifin, fibronectin 1, different laminin subtypes (gamma2 and beta3), collagens and proteoglycans that
characterize the dense and desmoplastic stroma of PDAC tumors. Also highlight the presence of immune components such
as IFN27, which contribute to an increase of M2 macrophages and a decrease of CD8+ T cells. Therefore, the desmoplastic
stroma and the immune system favor immune tolerance and poor prognosis in PDAC. IFN27: interferon alpha inducible
protein, MMP1: matrix metallopeptidase 1, NK cells: natural killer cells, T cells: T effector lymphocytes, Tregs: T regulatory
lymphocytes T.

Table 1. Top twenty genes up- and down-regulated in PDAC patients.

Gene
Symbol

Gene
Name

Expressi
on Level Function

CEACA
M6

CEA cell adhesion molecule 6 UP EMR

SLC6A1
4

Solute carrier family 6
member 14

UP EMR

S100P
S100 calcium-binding protein

P
UP EMR

CTSE Cathepsin E UP EMR
SULF1 Sulfatase 1 UP EMR
POSTN Periostin UP EMR
GJB2 Gap junction protein beta 2 UP EMR
GPRC5

A
G protein-coupled receptor
class C group 5 member A

UP EMR

SFN Stratifin UP EMR
FN1 Fibronectin 1 UP EMR

LAMC2 Laminin subunit gamma 2 UP EMR
CEACA
M5

CEA cell adhesion molecule 5 UP EMR

MMP1 Matrix metallopeptidase 1 UP EMR
COL11A

1
Collagen type XI alpha 1

chain
UP EMR

TSPAN1 Tetraspanin 1 UP EMR

IFI27
Interferon alpha inducible

Protein 27
UP IS

CST1 Cystatin SN UP EMT
LAMB3 Laminin subunit beta 3 UP EMR
COL10A

1
Collagen type X alpha 1 chain UP EMR

VCAN Versican UP EMR

CTRB2 Chymotrypsinogen B2 DOWN EMR

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.03.31.535058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.535058
http://creativecommons.org/licenses/by/4.0/


PLA2G1
B

Phospholipase A2 group IB DOWN Metabolism

CTRC Chymotrypsin C DOWN EMR
GNMT Glycine N-methyltransferase DOWN Metabolism
AQP8 Aquaporin 8 DOWN H2O2 transport
SYCN Syncolin DOWN Exocytosis
CPA2 Carboxypeptidase A2 DOWN Metabolism

CELA2A
Chymotrypsin-like elastase

2A
DOWN EMR

GP2 Glycoprotein 2 DOWN Metabolism
KLK1 Kallikrein 1 DOWN Serine protease

ALB Albumin DOWN
Oncotic
pressure

CTRB1 Chymotrypsinogen B1 DOWN EMR

ERP27
Endoplasmic reticulum

protein 27
DOWN

Lipid and
protein
synthesis

TMED6
Transmembrane p24
trafficking protein 6

DOWN
Insulin
secretion

PNLIPR
P1

Pancreatic lipase-related
protein 1

DOWN Metabolism

CUZD1
CUB and zona pellucida like

domain 1
DOWN EMR and IS

CELA2B Chymotrypsin-like elastase 2B DOWN EMR
PNLIPR

P2
Pancreatic lipase-related

protein 2
DOWN Metabolism

CTRL Chymotrypsin-like DOWN EMR
SERPIN

I2
Serpin family I member 2 DOWN

Protease
inhibitor

EMR = ECM remodeling, IS = Immune system, EMT = Epithelial-mesenchymal transition

We performed ORA using GO biological process terms to identify the possible implications of the 1153
significantly differentially-expressed genes in PDAC samples. We considered only those biological processes
with at least ten associated genes and an adjusted p-value under 0.05. We found 546 over-represented biological
processes among the over-expressed genes and forty biological processes over-represented among the
under-expressed genes (Supplementary Table S5). The ORA revealed the enrichment of terms related to the
tumor microenvironment (Figure 4), with GO terms related to the immune system, cell adhesion, and ECM
remodeling/degradation. Of note, additional over-represented functions had relevance to metastasis
(vascularization, cell migration, collagen, mesenchymal transition, cell proliferation, and peptidyl
modifications)[8,30].

3.3. Web tool

The web tool contains comprehensive information regarding the data and results of the meta-analysis of gene
expression. The application includes tables and plots for the differential expression results of the twenty-one
studies included in the meta-analysis and the meta-analysis results. Statistical indicators such as the log odds
ratio, confidence intervals, and adjusted p-values are provided to estimate each study's global expression and
specific contribution. This web resource is available in: https://bioinfo.cipf.es/MetaPDAC/

3.4. Immune system: a functional overview in PDAC

To focus our analysis on the tumor immune microenvironment, we extracted a consensus list of genes related to
the immune system and inflammation from the NCBI and GO databases (mainly framed in the categories of
HLA, interleukin, CD, interferon, chemokine, and S100 genes). Considering an FDR threshold of 0.05 and an
absolute fold change greater than 0.6, we discovered the significant differential expression of 322 immune genes
in our meta-analysis results. To explore the functional involvement of these results, we performed an ORA on
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this group of genes, using GO biological process terms and Reactome pathways. We considered significant
functional terms with at least ten associated genes and an adjusted p-value < 0.05. We discovered the
over-representation of thirty-three GO terms and twenty-seven pathways among the over-expressed
immune-related genes and none when analyzing the under-expressed genes. The enriched terms suggest
increased activity of neutrophil-related immune response, negative regulation of cell killing, interferon
signaling, and antigen presentation via major histocompatibility complex II.

Figure 4. Scatter plot of ORA results. The scatterplot reports the GO biological process representative terms after
redundancy reduction in a two-dimensional space derived from the semantic similarities between GO terms. The dot size
represents the number of biological processes related to a GO term. The parent terms of the main clusters are labeled.

3.5. Immune and stromal survival signatures impact PDAC prognosis

We explored the 322 differentially-expressed immune-related genes and identified a set of seventy genes of
particular interest in our experimental research (Table 3). We performed a survival analysis using the TCGA
PAAD cohort for each of these genes and found statistically significant differences in twenty-eight genes (IFI27,
IL1R2, IL1RN, IL1RAP, IL18, IL22RA1, HCP5, SLFN13, CD58, CD109, IFI44L, IFI16, IFITM1, IFIT1, IFIT3, IRF9,
IFIT2, IFI35, CXCL10, CXCL5, CXCL9, S100P, S100A6, S100A2, S100A16, S100A11, S100A14, and S100A10),
which shared a pattern: higher expression in patients correlated with lower survival. As far as we are aware,
this is the first time that HCP5, SLFN13, IRF9, IFIT2, and IFI35 are related to prognosis value in PDAC patients
(Supplementary Figure S1).
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Table 3. Subset of immune-related genes.

Functional Group Genes

HLA

HLA-F, HLA-DRB5, HLA-B, HLA-A, HCP5,
HLA-DRA, HLA-DPA1, HLA-DQB1, HLA-DQA1,
HLA-DMB, HLA-DRB1, HLA-G, HLA-DPB1,

SLFN12, SLFN13, SLFN11

Interleukin
IL1R2, IL1RN, IL1RAP, IL7R, IL2RG, IRAK3,

IL18, LIF, IL22RA1

CD
CD58, CD109, CD52, CD53, CD74, CD14,

CCDC80, CCDC141, CCDC69, DCDC2, PDCD4

Interferon
IFI27, IFI44L, IFI6, STING1, IFI16, IFITM1,
ISG20, IFIT1, IFIT3, IFITM2, IRF9, IFIT2,

IFNGR2, IFITM3, IFI35

Chemokine
CCL20, CCL18, CXCL10, CXCL5, CXCL8, CXCR4,

CKLF, CXCL9, CXCL3, CXCL14, CXCL12

S100
S100P, S100A6, S100A2, S100A16, S100A11,

S100A4, S100A14, S100A10
Genes in bold possess statistically significant differences in the survival analysis

We analyzed genes that displayed statistical significance as a "signature," dividing the samples into high-risk
and low-risk groups based on the number of highly-expressed genes (above the upper quartile). We set the
median (six highly-expressed genes) as the cutoff value to divide the samples into groups. Interestingly,
patients in the high-risk group possessed shorter survival times than those in the low-risk group (p-value <
0.0001, Figure 6A). Furthermore, we studied the effect of this signature in a multivariate Cox model also
including age, alcoholic history, presence of chronic pancreatitis, diabetes diagnostic, tumor grade, AJCC
classification of metastatic tumor and residual tumor as covariates. The proposed signature was the only
variable with p-value < 0.05, and showed a hazard ratio of 2.36 (Supplementary Figure S2). We then analyzed
the co-occurrence of highly-expressed genes in samples, finding two main co-occurrence groups that related to
high-risk patients: i) the interferon gene family (IFN genes) and ii) the S100 and IL genes (S100A14, S100A16,
S100A6, S100A11, IL1R2, IL1RN, S100P) (Figure 6B).

Figure 6. Survival analysis of immune system genes. A twenty-eight gene signature clustered patients into high-risk or
low-risk groups based on the number of highly-expressed signature genes in their transcriptomic profile. Patients with at
least six highly-expressed genes were classified as high-risk, whereas those with five or fewer were classified as low-risk.
(A) Kaplan-Meier curve. Patients from the high-risk group (red) had shorter survival times than patients from the low-risk
group (blue). Below, the number of still alive patients and percentage in each group at 0, 25, 50, 75, and 100 months, and the
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censored events. (B) Heatmap demonstrating the patterns of high expression between genes and samples. Gene expression
was coded as 1 for a sample above the upper quartile.

To explore how a desmoplastic environment can affect patient survival, we employed an homologous approach
using genes related to ECM remodeling (Table 1). We discovered eleven genes whose survival analysis showed
statistically significant differences (CEACAM5, CEACAM6, FN1, GJB2, GPRC5A, LAMB3, LAMC2, SFN,
SLC6A14, TSPAN1, and VCAN). Again, we divided samples into high-risk and low-risk groups using the
median of the number of highly-expressed genes as the cutoff value (median = 3). Patients with high expression
in three or more genes from the signature presented lower survival times than those with fewer
highly-expressed genes (p-value = 0.00012, Figure 7A). Of note, we distinguished a cluster of co-occurrence of
patients with high levels of GJB2, FN1, and VCAN at the same time.

Figure 7. Survival analysis of ECM remodeling genes. An eleven-gene signature clustered patients into high-risk or
low-risk groups based on the number of highly-expressed signature genes in their transcriptomic profile. Patients with at
least three highly-expressed genes were classified as high-risk, whereas those with five or fewer were classified as low-risk.
(A) Kaplan-Meier curve. Patients from the high-risk group (red) had shorter survival times than patients from the low-risk
group (blue). Below, the number of still alive patients and percentage in each group at 0, 25, 50, 75, and 100 months, and the
censored events. (B) Heatmap demonstrating the patterns of high expression between genes and samples. Gene expression
was coded as 1 for a sample above the upper quartile.

4. Discussion

Using a comprehensive meta-analysis, we explored the immune environment and desmoplastic stroma of
PDAC tumors to contribute to a deeper understanding of tumorigenesis and the design of effective therapeutic
strategies such as immunotherapies. ECM components from the desmoplastic stroma tightly interact with the
immune environment and contribute to immune evasion by modulating immune cell infiltration, thus
influencing cell proliferation, tumor progression, and overall survival [31,32]. Meta-analysis and ORA results
characterized differences in the gene-expression landscape of PDAC tumors and identified more than 1,000
dysregulated genes, most of them with immune system- and desmoplasia-related roles. We discovered
thirty-nine genes (twenty-eight immune-related genes and eleven stroma-related genes) that impact PDAC
patient survival.

Among the top forty dysregulated genes (Table 1), we observed the upregulation of collagens (COL11A1 and
COL10A1), which influence immune infiltration and chemoresistance and confer poor prognosis [33–35]. PDAC
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patients also presented with upregulated periostin expression, which has been linked to shorter overall survival
[36], and cystatin SN, which contributes to pancreatic cancer cell proliferation and may represent a potential
biomarker for the early detection of pancreatic cancer [37]. Stratifin and matrix metallopeptidase 1 also
appeared upregulated in PDAC patients, stratifin stimulates matrix metallopeptidase 1 expression in
fibroblasts contributing to remodel ECM [38]. Increased expression of fibronectin in PDAC stroma has also been
reported. The observed upregulation of cathepsin E and sulfatase 1 expression in the PDAC microenvironment
might also benefit the development of therapeutic strategies with polymer drug conjugates, since they may
contribute to the drug release [39–41].

Analysis of the top forty dysregulated genes also provided evidence for the downregulation of genes coding for
proteolytic enzymes released by the pancreas (e.g., chymotrypsin, chymotrypsinogen, lipases, and phospholipases).
Pancreatic cancer cells express around 20% of chymotrypsin C normal cells expression, with this enzyme
participating in cancer cell apoptosis and migration [42]. A recent report suggested that a combination of
trypsinogen and chymotrypsinogen displayed anti-tumorigenic potential [43].

Focusing on the immune environment, PDAC tumors develop a wide range of mechanisms to evade the
immune system (e.g., low expression of HLA antigens, immunosuppressive signals that inhibit natural killer
and T cell functions, and the presence of immunosuppressive cells). This creates an immunotolerant
environment in which the immune system of PDAC patients does not robustly recognize and target cancer cells
[44]. We explored the expression of seventy genes of particular interest, including those from the HLA,
interleukin, CD, interferon, chemokine, and S100 categories. Survival analysis of these genes in the TCGA
PAAD cohort identified a twenty-eight immune-related gene signature with a prognostic value that clusters
PDAC patients into high-risk and low-risk groups.

The proposed signature possessed significance in univariate and multivariate Cox models with
clinicopathological variables, significantly adding statistical power to the survival analysis. This signature could
aid the stratification of patients who could benefit from immunotherapeutic strategies, given that it could
contribute to distinguishing "cold" PDAC tumors (characterized by the low presence of T cells (CD8+) and
natural killer cells, high presence of immunosuppressive cell populations, poor prognosis and response to
immunotherapy) from "hot tumors" (with an opposite profile) [45,46]. We uncovered two high gene-expression
co-occurrence patterns, one composed of IFN genes and the other of S100/IL genes. The IFN signaling pathways
participate in PDAC development, while over-expression of S100 genes blocks the infiltration and cytotoxic
activity of CD8+ T cells and the low expression of IL1RN and IL1R2 has been associated with increase survival
in PDAC patients [47–49].

To the best of our knowledge, this is the first report of data suggesting a link between the HCP5, SLFN13, IRF9,
IFIT2, and IFI35 immune genes and PDAC prognosis, presenting discriminatory power to cluster PDAC
patients. The remaining genes of the immune gene signature have been individually associated with PDAC or
other cancers, with data suggesting that their overexpression could impact diagnosis, prognosis, and response
to treatment [50–55]; however, we report that a joint gene expression signature of these genes impacts PDAC
patient survival.

Focusing on the PDAC stroma, altered genes include several types of collagens, fibronectins, and proteolytic
enzymes such as metalloproteases and peptidases (Table 1, Supplementary Table S4), which significantly
contribute to ECM composition and stromal remodeling and support desmoplasia and immunosuppression
[56]. Survival analysis of significantly dysregulated stromal gene expression from the meta-analysis of the
TCGA PAAD cohort revealed a gene signature with prognostic capacity that clustered PDAC patients into
high-risk and low-risk groups. We observed a co-occurrence pattern in high-risk patients, indicating a subgroup
of PDAC patients with high expression of GJB2, FN1, and VCAN genes. These results indicate stromal
heterogeneity in PDAC [57] and the need to characterize it to stratify patients.
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With respect to other dysregulated genes, the upregulation of CEACAM5 and CEACAM6 represents an early
event in pancreatic carcinogenesis, with these genes candidates for immunotherapies [58–60]. Furthermore,
laminins LAMBC2 and LAMB3 support cancer progression and resistance to gemcitabine - one of the main
chemotherapeutics used in PDAC patients [61,62]. In general, the association with poor prognosis of the stroma
signature is consistent with the one described in previous studies for each gene: CEACAM5 [63], CEACAM6
[64], FN1 [65], GJB2 [66], GPRC5A [67], LAMB3 [68,69], LAMC2 [68,69], SFN [70], SLC6A14 [71], TSPAN1 [72],
VCAN [65].

Figure 9. Patient stratification based on PDAC molecular features. The meta-analysis from transcriptomic studies allows a
better understanding of the PDAC environment. In this study, the found gene signatures might contribute to the
stratification of PDAC patients. In a first step the immune or the stroma gene signatures can divide patients into high and
low risk populations. After, and focus on the immune signature co-occurrence, patients could be divided in those with a
more S100/IL genes profile and in those with a more IFN expressed genes. The knowledge of these molecular features of
PDAC tumors may guide the design of more effective therapeutic strategies.

With respect to other similar approaches, we are aware of two additional studies that integrated expression
datasets to explore the nature of the PDAC in-depth: Gooneskere and colleagues, which integrated six PDAC
and three other pancreatic carcinomas datasets [73], and Irigoyen and colleagues, which integrated two
peripheral blood datasets [74]. Both approaches integrate different datasets at the gene level to increase the
number of samples and perform a unique DGE analysis. In contrast, our approach analyzed each dataset
independently and then integrated the results, evaluating their robustness. From the experimental design point
of view, both studies differ greatly from ours, since Grooneskere et al. is not specifically focused on PDAC, and
Irigoyen et al. does not analyze pancreatic tissue. From the methodological point of view, our study contributes
to a more profound and robust analysis of the PDAC expression landscape by integrating data after DGE
analysis has been performed, thus avoiding the necessity to control heterogeneity among studies and retaining
the full potential of biological differences.

A potential limitation of our study has been the relative heterogeneity in sample sizes and sequencing
platforms used. The meta-analysis methodology, which integrates data groups and provides results with higher
statistical power and precision [75,76], addresses this issue by comparing each study independently and
combining the results. A lack of clinical and/or molecular information in most studies, such as survival time,
stage condition, or molecular pattern, represented an additional limitation. We employed TCGA data for
survival analysis, but additional analyses should integrate other covariates of interest in the study.

Finally, we provided an interactive web tool that allows users to explore our results, facilitating the
accessibility, transparency, and reusability of our research. Overall, the web tool provides a detailed and
interactive visualization of the meta-analysis results, allowing users to further explore and understand the gene
expression patterns identified in the studies. Other functionalities include the capability to customize and filter
the data to further investigate specific aspects of the analysis in more detail. In this manner, we aim to align our
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research with the FAIR principles to share our data in a way that can be of further use to the scientific
community studying this aggressive and lethal tumor.

Conclusions

Therapeutic strategies to overcome the immune microenvironment and the desmoplastic stroma barriers
remain limited and generally unsuccessful. This study performs a comprehensive transcriptional signature of
the molecular PDAC environment. The identified immune and stroma genes signatures provide new insights
into the potential therapeutic targets for this deadly disease that can stratify, in part, its heterogeneity. Further
studies are needed to validate these findings and explore the potential of targeting the immune and stroma
microenvironments as a treatment strategy for PDAC. Finally, we highlight the importance of sharing data and
using open platforms to improve the effectiveness and performance of science.
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