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Abstract

Pinpointing genetic impacts on DNA methylation can improve our understanding

of pathways that underlie gene regulation and disease risk. We report heritability

and methylation quantitative trait locus (meQTL) analysis at 724,499 CpGs profiled

with the Illumina Infinium MethylationEPIC array in 2,358 blood samples from

three UK cohorts, with replication. Methylation levels at 34.2% of CpGs were

affected by SNPs, and 98% of effects were cis-acting or within 1 Mbp of the tested

CpG. Our results are consistent with meQTL analyses based on the former Illumina

Infinium HumanMethylation450 array. Both meQTL SNPs and CpGs with meQTLs

were overrepresented in enhancers, which have improved coverage on this platform

compared to previous approaches. Co-localisation analyses across genetic effects

on DNA methylation and 56 human traits identified 1,520 co-localisations across

1,325 unique CpGs and 34 phenotypes, including in disease-relevant genes, such

ICOSLG (inflammatory bowel disease), and USP1 and DOCK7 (total cholesterol

levels). Enrichment analysis of meQTLs and integration with expression QTLs gave

insights into mechanisms underlying cis-meQTLs, for example through disruption

of transcription factor binding sites for CTCF and SMC3, and trans-meQTLs, for

example through regulating the expression of ACD and SENP7 which can modulate

DNA methylation at distal sites. Our findings improve the characterisation of

the mechanisms underlying DNA methylation variability and are informative for

prioritisation of GWAS variants for functional follow-ups. A results database and

viewer are available online.

Keywords: DNA methylation, heritability, GWAS, methylation quantitative

trait loci, meQTL
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1 Introduction

DNA methylation is a major regulator of gene function, with important roles in development

and over the life course [1–3]. In humans, DNA methylation and de-methylation occur

predominantly at cytosine-guanine dinucleotides (CpG-sites) through the action of DNA

methyltransferases and TET enzymes, respectively [4, 5]. The human methylome consists

of a mosaic of regions exhibiting variable stability over time, including both longitudinally

stable regions, as well as dynamic regions where changes can relate to ageing or reflect

environmental exposures, such as smoking [6, 7].

Multiple studies have shown that genetic effects have considerable impacts on DNA

methylation levels at specific CpGs. Family and twin-based estimates of narrow-sense

heritability in DNA methylation levels in blood [8, 9] report a wide range from 0 to 1

heritability at individual CpGs profiled by the Illumina Infinium HumanMethylation450

array (450K). Most studies typically associate genetic variation at single nucleotide poly-

morphisms (SNPs), or methylation quantitative trait loci (meQTLs), to DNA methylation

levels at a specific CpG. A large proportion of reported meQTLs are in close proximity to

the tested CpG (usually within 1 Mbp, in cis), while long-range and inter-chromosomal

associations (trans) only represent a small fraction of meQTL associations. A recent

large-scale study in 27,750 European samples estimated that DNA methylation levels at

up to 45% of CpGs in the blood 450K methylome are associated with meQTL SNPs [10],

which are in turn more likely to be GWAS signals than expected by chance. Another recent

analysis of 3,799 European and 3,195 South Asian samples further explored trans-ancestry

effects, and confirmed multiple links between meQTLs and phenotype variation [11]. In

addition to analyses based on blood, a variety of studies have also identified meQTL SNPs

in different tissues, for instance in brain [12, 13], adipose [14] and buccal tissue samples

[15].

The most extensively used profiling technology for human methylome analyses to date

has been the Illumina 450K array, comprising approximately 480,000 probes [16], and the

vast majority of meQTL reports are based on this platform. However, the 450K array

has limited coverage outside of CpG islands (CGIs) and genic regions. The most recent

Illumina methylation array, the Infinium MethylationEPIC BeadChip (EPIC), improves

genomic coverage of enhancers which are key regulatory regions. The EPIC array assays

853,307 sites, adding 333,265 novel CpGs in enhancers to the near entire set of 450K CpGs

[17]. Accordingly, there is a need for follow-up analyses to identify new genetic influences

on DNA methylation levels profiled by the newer EPIC array. To date, only two studies

have explored meQTLs on the EPIC array in blood, but both included relatively modest

sample sizes (n = 156− 1, 111) [18, 19] and did not consider both genome-wide cis and

trans-meQTL effects.

Here, we report novel genome-wide meQTL analyses of DNA methylation profiles on
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the Illumina EPIC array, applying a meta-analysis across 2,358 samples from three UK

population cohorts: TwinsUK [20], the MRC National Survey of Health and Development

or 1946 British Birth Cohort (1946BC) [21], and the National Child Development Study

or 1958 British Birth Cohort (1958BC) [22]. We characterised novel meQTLs specific to

the Illumina EPIC array, and carried out genome annotation enrichments and meQTL

integration with summary statistics from 54 GWASs and previously reported eQTLs. A

database and viewer of results is available online.

2 Results

We explored genetic impacts on all CpGs profiled by the Illumina EPIC array by initially

estimating twin-based narrow-sense heritability, and subsequently identifying common

genetic variants associated with DNA methylation levels in cis and trans genome-wide.

We independently analysed samples from each of the three UK cohorts (TwinsUK, 1946BC

and 1958BC cohort) separately, and meta-analysed the results. Results are presented at a

permutation-based false discovery rate (FDR). We validated a subset of our findings in an

external meQTL catalogue from the GoDMC study [10], and replicated selected meQTLs

in target regions using methylated DNA immunoprecipitation sequencing (MeDIP-seq) in

an independent sample. Follow-up analyses included enrichment analyses within genomic

annotations and ontologies, and co-localisation integrating meQTLs with previously

reported eQTLs and summary statistics from 56 GWASs, as well as clumping SNPs based

on linkage-disequilibrium (LD) (Fig. 1).

2.1 Heritability of the Illumina EPIC DNA methylome

We initially applied a classical twin study of 88 monozygotic (MZ) and 70 dizygotic (DZ)

twin pairs from the TwinsUK cohort, to decompose the DNA methylation variance at

each of 723,814 CpGs into additive genetic effects (A), common environmental effects (C )

and nonshared environmental effects (E ). The heritability distribution was zero-inflated

(45.5% of sites have A < 0.01), and the maximum individual CpG heritability was 0.998

(cg21906335 in the promoter region of ZNF155 ; Supplementary data 1). Across all

tested CpGs, the mean genome-wide narrow-sense heritability was A = 0.138 (sd = 0.198;

median A = 0.037, IQR = 0.220) (Fig. 2a). When stratifying by genomic annotations,

CpGs in enhancers tend to have overall greater heritability estimates (mean A = 0.179,

sd = 0.217, 95% CI [0.178, 0.181]), for example, compared to promoters, which have one of

the lowest heritability estimates (mean A = 0.106, sd = 0.179, 95% CI [0.105, 0.106]) (Fig.

2b). The improved representation of enhancer regions on the EPIC array may be reflected

in a modestly greater mean heritability across novel EPIC-only sites (A = 0.142, sd = 0.198,

n = 348, 091) than that across 450K legacy probes (A = 0.135, sd = 0.198, n = 375, 336;
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Figure 1. Study design. Genome-wide association analyses compared genotypes and DNA methylation
levels profiled by the EPIC array. Each cohort sample was independently tested, and results were meta-
analysed. Results are presented at a permutation-based false discovery rate (FDR). Follow-up analyses
aimed to find evidence of underlying mechanisms and their relevance to human disease.
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Figure 2. Proportion of variance of genome-wide DNA methylation levels attributed to
genetic variation. Estimates for the 723,814 CpGs sites covered by the EPIC array after a classical
twin study of 88 MZ and 70 DZ twin pairs from the TwinsUK cohort. (a) Cumulative proportion of
variance components of the ACE model: variance explained by additive genetic effects, or heritability (A),
common environmental effects (C ) and nonshared environmental effects (E ) (b) Cumulative proportion
of heritability estimates by genomic annotations.
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one-tailed t-test, t(723,425) = 15.2, P < 2.2× 10−16) (Supplementary fig. 1a). Overall,

the heritability patterns of the genomic annotations are consistent between EPIC-only

probes and 450K legacy probes (Supplementary fig. 1b-c), and are broadly in line with

previously reported 450K heritability estimates across genomic annotations [9]. We also

found that variable CpG sites (with methylation β-values sd > 0.025, see Supplementary

note) tend to be the most heritable. For example, the average heritability of the most

variable sites (A = 0.278) was double that estimated genome-wide (A = 0.138) and the

zero-inflation rate was substantially lower (Supplementary note).

2.2 Common genetic variation has major impacts on the blood

methylome

To identify specific genetic variants that impact the methylome, a meQTL analysis

was carried out with a total of 2,358 whole blood samples across five datasets from

three non-overlapping human cohort studies: TwinsUK, 1946BC and 1958BC (Table

1). Initially all SNP-CpG pairs were tested for association within each dataset. CpG

and SNP associations within 1 Mbp (upstream and downstream) were considered to be

in cis, and all others were considered to be in trans (Supplementary table 1). SNP-

CpG associations that surpassed relaxed significance thresholds within each dataset were

retained for meta-analysis, with a total of 189,202,234 unique candidate cis meQTL-CpG

pairs (P ≤ 5 × 10−3) and 100,814,822 trans pairs (P ≤ 5 × 10−6). After meta-analysis

we retained meQTL-CpG pairs where the strength of association surpassed FDR 5%

(Pcis ≤ 2.21× 10−4, Ptrans ≤ 3.35× 10−9), and where pairs were identified as candidates

in more than one dataset with a consistent direction of effect.

Table 1. Summary characteristics for the five UK cohort sample sets.

Cohorta Sample size Percentage
females

Percentage
smokers

Median age
[Range]

TwinsUK 394 100 5.6 64.5 [42.4, 86.6]

1946BC-99 1,348 52.3 24.2 53.4 [53, 54]

1946BC-09 197 59.4 11.2 63.2 [60.3, 64.6]

1958BC-1 183 50.8 21.3 45.1 [44.5, 45.8]

1958BC-2 236 54.2 42.4 45.1 [44.3, 46.0]

Total 2,358 60.9 21.5 53.5 [42.4, 86.6]

a 1946BC-99 and 1946BC-09 refers to independent samples from the 1946 birth cohort collected
at two different time points and stratified to facilitate data handling. 1958BC-1 and 1958BC-2
refers to samples from the 1958 birth cohort processed in two different batches (see Methods for
further details).
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We identified 244,491 CpGs (33.7% of tested probes) to be under the influence of

cis-meQTL SNPs, and 5,219 CpGs (0.7% of tested probes) to be influenced by trans-

meQTL SNPs. Of these, 2,281 CpGs (0.9% of CpGs with cis-meQTL; 43.7% of CpGs

with trans-meQTL) were influenced by at least one cis and one trans meQTL SNP

simultaneously. There were 4,609,875 unique genetic variants identified as cis-meQTLs,

and 240,866 identified as trans-meQTLs. Of these, 229,908 meQTLs were both cis and

trans-meQTLs for CpGs at different sites. The meQTL SNPs and CpGs under genetic

control altogether formed 39,110,128 cis and 805,319 trans SNP-CpGs pairs (Fig. 3a).

We carried out sensitivity analysis by splitting the CpGs into two sets, 450K legacy probes

and EPIC-specific probes, and repeating the meQTL discovery process, and found that

the resulting proportions of meQTLs reported remained very similar (Supplementary

note). The strength of the associations was stronger for trans SNP-CpG pairs than for

cis SNP-CpG pairs, although this is an expected result due to the difference in P -value

thresholds for cis and trans associations (Supplementary note). On the other hand,

trans effects were more heterogeneous across samples compared to cis effects, and therefore

the reported trans effects should be interpreted with caution. We estimated that, on

average, a cis-meQTL explains 7.6% of the methylation variance of its associated CpG,

while a trans-meQTL explains 11.5%, which is a significant difference (Supplementary

note). CpGs with both cis and trans associations, and SNPs that act as both cis and

trans-meQTLs, have associations with higher R2 estimates (Supplementary note). CpG-

sites with meQTLs were evenly distributed across chromosomes according to number

of genes per chromosome. However, this pattern was not observed for meQTL SNPs

(Supplementary note).

Cis-meQTLs exhibited relatively short-range effects as expected [10, 18]. The median

distance between each SNP cis-meQTLs and its target CpG was 20.5 kbp (interquartile

range (IQR) = 65.5 kbp) if considering the most significant association (Fig. 3b), and

75.5 kbp (IQR = 165.5 kbp) if considering all significant associations (Supplementary

fig. 6a). CpGs with trans associations have almost exclusively intra-chromosomal

or inter-chromosomal meQTLs, and cases in which both types occur are rare (only 25

CpGs). For trans associations, 71.8% of the most significant associated SNPs per CpG

are inter-chromosomal (Fig. 3c). When considering all trans associations the number of

inter-chromosomal SNP-CpG pairs decreases to 45.4% (Supplementary fig. 6b).

We also explored evidence for cell type-specific meQTL effects. These analyses consid-

ered only cis-meQTLs effects specific to CD4+ T cells (mean ratio = 0.199, sd = 0.073

across samples) and monocytes (mean ratio = 0.05, sd = 0.026 across samples). We

observed that 8.9% of all CpGs had cis-meQTL effects specific for either CD4+ T cells

or monocytes (P ≤ 2.21× 10−4; see Supplementary note and Supplementary table

2). Our cell-specific results replicate a proportion of previously reported cell-specific

meQTLs in CD4+ T cells (17.7%) and in monocytes (17.3%) [23]. Of the CpGs that
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Figure 3. DNA methylation quantitative trait loci (meQTLs) for CpG sites genome-wide.
Association analysis carried out between 724,499 CpGs vs. 6,361,063 SNPs. (a) Genomic distribution of
meQTL associations at a significance level of FDR < 0.05. The x -axis corresponds to the position of the
SNPs within in the 22 chromosomes and the y-axis to the position of the CpGs, with each pixel binning a
range of 25 Mbps. The colour scale indicates the number of associations between those specific CpGs/SNPs
locations, on logarithmic scale. (b) Histogram of distances between the CpGs and their most significant
cis-meQTL SNPs. (c) Bar plot of absolute distances between the CpGs and their most significant
trans-meQTL SNPs. Intra-chromosomal associations are shown in purple, and inter-chromosomal in grey.

had cis-meQTL SNPs in whole blood, 1.1% also showed evidence for cell-specific meQTL

effects (P ≤ 2.21× 10−4), suggesting that the majority of genetic effects that we detect on

CpGs in whole blood are stable across different blood cell types (Supplementary note).

Overall, meQTLs explain 14.2% of the variance in the DNA methylation heritability

(F(2, 723,424) = 5.99× 104, P < 2× 10−16) (Supplementary fig. 8 and Supplementary

note). CpGs without detected meQTLs have lower mean heritabilities (A = 0.085,

sd = 0.146, n = 476, 192) compared to CpGs that have meQTLs. CpGs that have meQTLs

can be split into three groups showing increasing mean heritabilities, from CpGs with only

cis-meQTLs (A = 0.238, sd = 0.239, n = 242, 021), to CpGs with only trans-meQTLs

(A = 0.295, sd = 0.251, n = 2, 933), and to CpGs with both cis and tran-meQTLs

simultaneously (A = 0.435, sd = 0.259, n = 2, 281). Overall, CpGs with both cis and

trans-meQTLs have the largest evidence for DNA methylation heritability.

2.3 Replication of novel EPIC-specific and 450K legacy CpGs

with meQTLs

We pursued replication of meQTL effects at selected CpGs using previously published

MeDIP-seq data in an independent sample of 2,319 individuals from the TwinsUK co-

hort. CpGs selected for replication included a subset of ten CpGs, which had the largest
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effect sizes (cg07143125, cg13904258, cg00918944, cg05808124), or with the largest num-

ber of meQTL SNP associations (cg25014118, cg00128506, cg18111489, cg16423305),

or with meQTL SNPs that co-localised with GWAS signals (cg11024963, cg06162668).

We replicated cis-meQTLs for 80% of the selected CpGs, and trans-meQTLs for 30%

(Supplementary table 3 and Supplementary data 2), after multiple testing correction

and with a consistent direction of effect.

The EPIC array doubles the coverage of the 450K array. We observed that 51.2% of

CpGs with cis-meQTLs (125,251 CpGs) and 37% of CpGs with trans-meQTLs (1,933

CpGs) are specific to the EPIC array. For the remaining 450K legacy CpGs with meQTLs,

we validated our results by comparing them to the GoDMC database based on 32,851

blood samples [10]. Altogether, 97.0% of our 450K specific CpGs with meQTLs (in cis or

trans) were also under genetic influence in the GoDMC dataset.

2.4 Genomic annotations of local and distal genetic effects show

consistent enrichment in enhancers

We found overall contrasting patterns of genomic annotations for CpGs with cis and

trans-meQTLs (Fig. 4a and Supplementary table 6). CpGs located in CpG islands

(CGIs), promoters and transcription factor binding sites (TFBSs) are less likely to harbour

cis-meQTLs (odds ratio (OR) < 1, FDR ≤ 0.05, two-tailed Fisher’s exact test), but are

more likely to have trans-meQTLs (OR > 1, FDR ≤ 0.05). CpGs located in intergenic

regions, enhancers and insulators are more likely to have both cis and trans-meQTLs.

We also explored the overrepresentation of CpGs with meQTLs near to genes, and with

respect to gene ontology (GO) terms related to molecular functions and biological processes

(Supplementary table 22).

We next explored enrichment or depletion of meQTL SNPs in different genomic annota-

tions. To this end, we compared the proportions of the most significantly associated meQTL

SNPs per CpG-site to the full panel of tested genetic variants in different annotations.

Contrary to results observed for CpGs, we found a consistent pattern in the distribution

of cis and the trans-meQTLs according to genomic category (Supplementary fig. 9 and

Supplementary table 7). Overall, coding regions, promoters, enhancers, insulators and

TFBSs are over-represented for genetic variants that are meQTLs (OR > 1, FDR ≤ 0.05),

either in cis or in trans. On the other hand, intergenic regions are under-represented for

genetic variants that are meQTLs (OR < 1, FDR ≤ 0.05). The results remain consistent

in sensitivity analyses taking as background reference subsamples of SNPs with a similar

distribution of minor allele frequencies (MAF) and distance to target CpGs (Fig. 4b and

Supplementary table 8). Therefore, unlike the genomic patterns observed for CpGs

under genetic control, the genetic variants driving meQTL effects show similar genomic

distributions for local and distal genetic effects.

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.31.535045doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.535045
http://creativecommons.org/licenses/by-nc-nd/4.0/


cis−CpGs trans−CpGs

0.5 1.0 2.0 0.5 1.0 2.0

TFBS
Insulators

Enhancers
Promoters

Intergenic regions
3'UTR

Coding sequences
Gene bodies

5'UTR
Open sea

CGI shelves
CGI shores

CGI

Odds ratio (95% Confidence Interval)

a

cis−meQTLs trans−meQTLs

0.5 2.0 8.0 0.5 2.0 8.0

TFBS
Insulators

Enhancers
Promoters

Intergenic regions
3'UTR

Coding sequences
Gene bodies

5'UTR
Open sea

CGI shelves
CGI shores

CGI

Odds ratio (95% Confidence Interval)

b

Figure 4. Enrichment in genomic annotations of meQTL SNPs and their CpGs. The x -axis
indicates the odds ratio and its 95% confidence interval (in logarithmic scale) for (a) CpGs with meQTLs,
or (b) meQTL SNPs, located within a specific genomic annotation. Significant enrichment is marked in
green, depletion in red, and non-significant genomic annotations in grey.

The location of meQTL SNPs and CpGs helps to elucidate genetic mechanisms of

methylome regulation. As previously proposed, TFBSs may play a critical role in cis

associations, as a genetic variant could prevent protein binding and alter methylation

of the surrounding loci [24–26] (Fig. 5a). The observed over-representation of meQTL

SNPs in TFBSs, both for cis and trans results, supports this hypothesis (ORcis = 2.47,

95% CIcis [2.44, 2.50], ORtrans = 1.92, 95% CItrans [1.74, 2.10]). We further explored this

observation through enrichment analyses considering TFBS for sixteen specific transcription

factors (TFs) of interest, previously identified as relevant for chromatin interactions and

in the modulation of DNA methylation. These TFs included CTCF [27], ZNF143 [28]

and EBF1 [29] (Supplementary fig. 10). The direction of the effect in all cases was

consistent with the results from the overall TFBS enrichment analysis.

We inspected CpGs in enhancers in more detail, motivated by their targeted coverage on

the EPIC array. A set of 39,450 CpGs with cis-meQTLs and 789 CpGs with tran-meQTLs

were annotated to enhancers (strong and weak/poised enhancers, see Methods), based

on ChromHMM annotations [30]. We find that the corresponding cis-meQTL genetic

variants of CpGs in enhancers also tend to be in enhancer regions and TFBSs, when
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a
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A
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PmeQTL = 6×10–32

PSMR = 4×10–23c

Figure 5. Underlying mechanisms of meQTL SNPs. (a) Example of a cis-meQTL mechanism.
The disruption of a TFBS (e.g. CTCF binding site) by a genetic variant (rs79197902), leads to reduced
affinity of the protein by its site, which changes local methylation (cg03916490, cg18402987). (b) Example
of an ‘eQTL-mediation mechanism’ for trans-meQTLs. SNP rs520558 that is an eQTL for a gene involved
in DNA methylation regulation (SENP7 ) indirectly affects distal CpG sites (cg24214260). Dashed lines
represent associations for which there is suggestive, but not conclusive, evidence of directionality. (c)
Example of a ‘cis-meQTL-mediation mechanism’ for trans-meQTLs. SNP rs28711261 is associated with a
nearby CpG (cg16218405), which in turn is associated with a gene involved in DNA methylation regulation
(ACD gene of TPP1), and indirectly affects distal CpG sites (cg14343953).

compared to the total set of meQTL SNPs (Supplementary fig. 11 and Supplementary

tables 18–19). This observation is not simply attributable to the genomic location of

the associated CpGs in enhancers (Supplementary note). In short, we observe a clear

enrichment of CpGs with meQTLs, and of meQTL SNPs, in enhancers.

2.5 Functional integration gives insights into long range genetic

impacts on the methylome

To explore potential mechanisms underlying meQTL associations, we carried out several

functional integration analyses.

First, we combined our meQTL findings with data from the eQTLGen Consortium

[31], the most extensive eQTL resource to date, conducted on 31,684 blood samples from
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individuals from 37 cohorts of predominantly European ancestry. We used cis-eQTLs

results for 19,250 genes, and applied Summary-based Mendelian Randomization (SMR) [32]

to co-localise signals and infer putative pleiotropic or causal effects on DNA methylation

and gene expression.

Overall, we observe robust evidence for co-localisation between cis-meQTLs and eQTLs,

which is in line with previous findings [18, 33]. Analysis of cis-meQTLs identified 19,267

unique SNPs that co-localise with cis-eQTLs of 8,511 genes and with cis-meQTLs of

21,663 CpGs, resulting in 31,395 unique gene-CpG associations (PSMR ≤ 9.82 × 10−9,

PHEIDI > 0.05) (Supplementary data 3). Altogether, 44.2% of expressed genes shared a

genetic basis with DNA methylation, which is greater than previously reported [18, 34].

CpGs typically have shared genetic effects with a single gene (median = 1, IQR = 1). Site

cg11024963 had the highest number of colocalization events (13 genes, including DUS2,

ZDHHC1, TPPP3 and ECD4 ) through the cis-meQTL rs8054034, successfully replicated

in the MeDIP-seq dataset. Correspondingly, genes have shared genetic effects with a

median of two CpGs (IQR = 2), and at most 88 CpGs, in the case of the MSRA gene.

We observed an enrichment of CpGs with shared meQTL/eQTLs in genic and regulatory

regions (Supplementary fig. 12 and Supplementary table 11). The resulting SMR

genes were related to immunological processes in GO analyses (Supplementary table

23). If we consider CpG-gene pairs with co-localised QTLs, we observe that methylation

levels at the CpGs tend to be negatively correlated with the corresponding gene expression

levels, regardless of the location of the CpG within the gene (Supplementary fig. 13

and Supplementary note). In summary, we observe the largest to date shared genetic

basis between local genetic impacts on DNA methylation and gene expression, suggesting

presence of joint regulatory mechanisms.

SMR analysis with trans-meQTLs also identified a number of meQTLs and eQTLs

co-localisation events. Altogether, 642 unique trans-meQTL SNPs co-localised with cis-

eQTLs (1,520 co-localisation events), simultaneously affecting 709 CpGs and 782 genes

(PSMR ≤ 3.71× 10−7, PHEIDI > 0.05) (Supplementary data 3). A median of one CpG is

associated per gene (IQR = 1) and one gene per CpG (IQR = 2). The results could reflect

a scenario where genetic variants that influence the expression of genes involved in direct

or indirect global epigenetic regulation are also trans-meQTLs (i.e. ‘eQTL-mediation

mechanism’ from Villicaña & Bell [26], also proposed by Huan et al. [35]). The gene

with the most associations to CpGs through co-localised QTLs was SENP7 (19 CpGs

in chromosome 19, one on chromosome 5 and one on chromosome 10; Fig. 5b). Our

findings are in line with recent studies indicating that SENP7 interacts with epigenetic

regulators in the context of DNA repair [11, 36]. Within these CpG-gene pairs with shared

trans-meQTLs/cis-eQTLs, we identified an enrichment of CpGs in enhancers and TFBSs

(Supplementary fig. 12 and Supplementary table 11). Furthermore, the genes are

annotated to GO terms related to DNA-binding transcription repressor activity including
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predominantly zinc finger proteins, which are known to act as epigenetic regulators in

different contexts [37–39] (Supplementary table 23). In addition, the results of GO

enrichments also replicate findings from previous studies [11, 35].

The cis-meQTL to cis-eQTL co-localisation results also allow us to make inferences

into mechanisms of distal genetic impacts on DNA methylation levels. We observed a

significant enrichment of trans-meQTLs in the co-localised cis-meQTL to cis-eQTL SNPs,

compared to the non-co-localised cis-meQTLs (OR = 3.73, 95% CI [3.59, 3.88]). In light

of this, we then used these trans-meQTL SNPs (that co-localised with cis-meQTL and cis-

eQTL) as instrumental variables in SMR to test for associations between the corresponding

eQTL gene expression levels and DNA methylation levels of the corresponding CpGs

in trans. We identified a total of 511 trans-associations through 279 SNPs (hereafter

‘multi-QTLs’), between 323 CpGs and 292 genes (PSMR ≤ 9.82 × 10−9, PHEIDI > 0.05)

(Supplementary data 3). These results could reflect a genetic mechanism of trans-

meQTL effects, where a cis-meQTL impacts nearby CpG sites. These CpG sites in

turn may affect the expression of genes involved in epigenetic regulatory processes, and

whose products affect the methylation of multiple distal sites (i.e. ‘cis-meQTL-mediation

mechanism’ from [26]). The adrenocortical dysplasia homolog (ACD) gene fits this scenario

(Fig. 5c). ACD has four eQTLs (rs28711261, rs9936153, rs12935253 and rs2059850989)

that co-localised with cis-meQTLs of six CpGs, and trans-meQTLs of 16 CpGs on different

chromosomes. ACD produces the TPP1 protein, which is part of the shelterin complex

that maintains telomere length [40]. A correlation between DNA methylation patterns

and telomere length has been reported previously [41, 42], although multiple mechanisms

likely underlie these links given that condensation of telomeric chromatin by the shelterin

complex does not primarily occur through DNA methylation [43].

We carried out two additional functional exploration analyses of meQTLs. First, we

searched for meQTL-CpG associations that overlapped three-dimensional (3D) confor-

mations of the genome, such as topologically associated domains (TADs). The rationale

behind this analysis was that some intra-chromosomal trans-meQTLs may act as ‘long-

range’ cis-meQTLs [11, 35] that TADs bring into physical proximity [26, 44]. We integrated

our meQTL results with TADs predicted from multiple-tissue Hi-C experiments [45–49].

We found that 36.5% of CpGs with intra-chromosomal trans-meQTLs share the same

TAD with their most associated meQTL. In comparison, 17.1% of CpGs with cis-meQTLs

share the same TAD with their most associated meQTL. Furthermore, TADs containing

intra-chromosomal trans-meQTL associations are significantly larger than TADs with

cis-meQTL associations (mean TAD sizecis = 1.2 Mbp; mean TAD sizetrans = 3.4 Mbp;

P ≤ 2.54× 10−13), which supports our hypothesis that TADs may bring trans-meQTLs

into physical proximity with their target CpG (Supplementary note). In summary, our

results are consistent with the hypothesis that some intra-chromosomal trans-meQTLs

may act as ‘long-range’ cis-meQTLs within TADs.
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Second, we focused on GO analysis of trans-meQTLs that lie within coding regions

to test for evidence that trans-meQTLs may alter the function of proteins such as TFs.

Our motivation was that such SNPs may impact the binding affinity of the TFs, and

therefore change DNA methylation levels of distal unoccupied binding sites. A total of 79

trans-meQTLs (1.8% of the 4,398 top trans-meQTLs) were annotated in coding regions

of 168 protein-coding genes. We found enrichment in 37 GO terms relative to molecular

functions and 182 terms for biological processes (Supplementary table 24). Of these,

11 corresponded to categories related to protein binding and 56 to regulation of biological

processes. Therefore, these results support the hypothesis that trans-meQTLs may alter

the function of proteins such as TFs that then impact DNA methylation levels at multiple

genomic regions.

2.6 Highly connected CpGs and meQTLs

We calculated the effective number of meQTL SNP associations per CpG, discarding

redundant SNPs due to LD. To this end, we merged all cis-meQTL SNPs and following LD

clumping generated ‘cis-meQTL regions’, and repeated the process for trans-meQTLs (see

Supplementary note). Overall, CpGs under genetic control tend to have few associations

after LD clumping, with a median of two meQTLs in cis (IQR = 3) and one meQTL in

trans (IQR = 1) per CpG. However, a subset of CpGs have a high number of clumped

meQTLs, or are ‘highly regulated’ or connected. Specifically, such highly regulated CpGs

include 1.4% of CpGs with cis-meQTLs that have over 13 clumped meQTLs, and 2.9% with

trans-meQTLs with over 5 meQTL associations (thresholds correspond to Q3 + 3IQR).

From the CpGs with both cis and trans-meQTLs (2,281 sites), 627 CpGs are highly

regulated by either cis-meQTLs, trans-meQTLs or both.

Highly regulated CpGs with cis-meQTLs are overrepresented in genic and regulatory

regions, such as enhancers, compared to other CpGs with cis-meQTLs (Supplementary

fig. 14, Supplementary tables 12 and 20). In the case of highly regulated CpGs with

trans-meQTLs, coding sequences are enriched, while promoters, TFBSs and intergenic

regions are depleted. Moreover, 32 immune-related GO annotations are enriched for highly

regulated CpGs in cis but not in trans (Supplementary table 25). The CpGs that have

the most associations overall both cis and trans are the novel EPIC probes cg16423305

(42 cis and 21 trans-meQTLs), cg00128506 (48 cis and 13 trans-meQTLs) and cg25014118

(50 cis and 6 trans-meQTLs). All these CpGs are located on chromosomal region 8p23.1

near to or in genes PRAG1, MFHAS1 and XKR6. Additionally, CpG cg00128506 is in

an enhancer region, and in the binding site of transcription factors ELF1, USF2, IKZF2

and RAD51. We replicated 81% of cg00128506 cis and trans-meQTL associations in the

MeDIP-seq dataset (Supplementary table 3).

We next considered the connectivity of meQTL SNPs. We observed a median of five
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unique cis-CpGs (IQR = 10) associated with each region of clumped meQTLs, and a

median of one trans-CpG (IQR = 1). Highly connected meQTL clumped regions, or ‘key

regulatory regions’, were defined as 4.4% (cis) and 7.8% (trans) of genetic regions associated

with more than 42 cis-CpGs and 5 trans-CpGs, respectively (thresholds correspond to

Q3+3IQR). A relatively large proportion of 71.9% of the meQTLs that act simultaneously

in cis and trans (165,290 SNPs) are located in key regulatory regions in either cis, trans

or both. MeQTLs located within key regulatory regions are enriched/depleted in the

same genomic regions as the top meQTLs previously described (Supplementary fig. 15,

Supplementary table 13 and 21).

Particularly noticeable among highly connected CpGs and genetic regions is the

major histocompatibility complex (MHC) region, which is overrepresented with both

CpGs with genetic effects and SNPs that are meQTL. This locus contains multiple highly

regulated CpGs and key regulatory meQTL regions for cis and especially trans associations

(Supplementary note). However, the very high genetic diversity and complexity of this

genomic region necessitates further follow-ups with higher resolution genetic and epigenetic

sequence datasets. Apart from the MHC region, other genomic regions with high level of

CpG connectivity include the above-mentioned region on chromosome 8p23.1 (6,200,001–

12,700,000 region spanning many genes). For meQTL SNP-level connectivity other genomic

region hotspots included chromosomes 17q25.3 (in B3GNTL1 ) and 21q22.3 (in multiple

genes) for cis associations, and 19p13.2 (ZNF gene family) and 7p22.3 (MAD1L1 ) for

trans associations.

We also compared the number of clumped meQTLs per CpGs in enhancer regions. We

detected a small but significant increase in the mean number of cis-meQTL associations

for CpGs in enhancers (3.14 meQTLs per CpG outside of enhancers, compared to 3.58 in

enhancers; two-tailed t-test, unequal variances, t(52,211) = 23.7, P < 2.2× 10−16), but no

difference in the median number of associations (two cis-meQTLs for both categories).

For trans-meQTLs, neither the mean (two-tailed t-test, unequal variance, t(1,042.7) = 0.4,

P = 0.69) or the median differed across these categories. Overall, the CpG sites with most

genetic associations are found in enhancers, as confirmed by the enrichment observed of

highly regulated CpGs.

2.7 The interplay between genetic variation, DNA methylation

and complex traits

We used our meQTL findings to identify co-localisations between our cis-meQTLs SNPs

and GWAS SNPs from 56 common human complex traits grouped in seven phenotypic

categories (Supplementary table 26).

After the Bonferroni correction for 186,817 CpG-sites tested and the seven phenotypic

classes, we identified 1,520 associations through co-localisation between 1,325 unique CpGs
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and 34 traits, involving 1,180 unique cis-meQTLs (PSMR ≤ 3.82 × 10−8, PHEIDI > 0.05)

(Supplementary tables 26–27 and Supplementary data 4). Height was the phenotype

with the most GWAS signals co-localised with meQTLs (501 CpG-sites). ‘Growth and

ageing’ (which includes height) was the phenotypic class with most co-localisations and

598 unique CpG-sites. The CpGs with most associations were cg06162668 and cg27288595,

with six traits each. CpG cg06162668 is in an intergenic region in chromosome 2, and was

associated with obesity and metabolic disease phenotypes through SNP rs7561317. The

association between cg06162668 and rs7561317 was replicated in the MeDIP-seq dataset.

Site cg27288595 was also associated with obesity and metabolic disease, along with growth

and ageing, and is located in the ZBTB38. This gene encodes a zinc finger that binds

to DNA methylation sites and acts a transcriptional repressor [37]. Overall, CpGs with

GWAS co-localisations are enriched in CGIs, coding and regulatory regions, compared

with other CpGs with meQTLs (Supplementary fig. 18 and Supplementary table

17).

The strongest associations were between total cholesterol levels with cg17260184 and

cg27123834, annotated upstream of the transcription starting site of USP1 and DOCK7,

respectively. USP1 encodes a deubiquitinase which regulates the cellular response to

DNA damage [50]. DOCK7—primarily involved in axon formation and neurogenesis—also

overlaps the gene encoding angiopoietin-like protein (ANGPTL3) that regulates plasma

lipid levels [51, 52]. The associated genetic variants rs2131925 and rs12136083, respectively,

are in non-coding regions. To our knowledge, the function of these two variants has not

been characterised.

Another example of note is the observed association between inflammatory bowel

disease (IBD) and cg19297788 (βSMR = −0.41, PSMR = 1.44 × 10−12, PHEIDI = 0.06), a

CpG in a weak enhancer region of chromosome 21 (Fig. 6). The CpG also falls within

three TFBSs for TCF12, EBF1 and RUNX3 and was not previously covered by the

450K array. We found evidence of association with both conditions comprised by IBD,

ulcerative colitis (βSMR = −0.39, PSMR = 9.27× 10−9, PHEIDI = 0.11) and Crohn’s disease

(βSMR = −0.47, PSMR = 3.11 × 10−10, PHEIDI = 0.08). This locus is surrounded by five

genes, including ICOSLG, a coding gene for a ligand of the T-cell surface receptor ICOS.

This gene has been identified in previous studies as a risk locus for IBD [53–55], where the

interaction between ICOS/ICOSLG in IBD and decreased expression of ICOSL can affect

IBD risk [54]. However, it was unclear how genetic variants in the locus lead to the change

in gene expression of ICOSL. According to our results, IBD and CpG-site cg19297788

share the common genetic variant rs2876932 (chr21:45,618,536).

Another example of note includes the associations observed for CpG cg17459721 and

phenotypes for waist (βSMR = −0.11, PSMR = 1.73 × 10−12, PHEIDI = 0.98) and hip

circumference (βSMR = −0.11, PSMR = 3.59 × 10−12, PHEIDI = 0.98), through rs7187776

on chromosome 16p11.2. Previous GWAS have described this region in the context of

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.31.535045doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.535045
http://creativecommons.org/licenses/by-nc-nd/4.0/


�
�

�
� �

�
�

�

�� � �
��

�

�
�

�

�
�

� �
� �

�

� �� ��
�

�

� ��

�

�
�

�

�
�

�

�

�

� �� �

�

�
�

�

�

�

�

��

� �

�

�

�

�

�
�

�

�
� � �

�

�

�

�

�

�

�

��

�
�

�

��

�

�

� �

�

�
�

�

�

�

�
�

�

��

�
� �

�

�
�

�

�

�
�

�
�

�
� �� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

� �
�

�

�
�

�

�

�

��
�

�
�

�

�

�
� � �

�

�

�

�

�

��

�

�

�

�

�

�

�

�� �
��

�� �

�

�

�

� �

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

�
�

�

��

�

�
�

�

�
�

�

�

��

�

�

�

�

�

�

�

��
�

�

� �

�

��
�

�

�

�

�
�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�
�

����
� �

�
�� � �

�

�
�

�

�

�

�� �

�

� �
�

�

�

� �
�

�
� �

�

�

�

�

��

���

�

�

�

�

�
�

� �

�
�

�

�

� �
�

�

�

�
�

�

�
�

�

�

�

�

��

��� ��

�

�
�

�

�

�
�

�

� �

�

�

�
�

�

�

�

�

� �
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
� �

�

�

� ��

��
�

�

�

�

�

��� �

�

�

� �

�

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�
��

�

�

�

�
�

�

�

� �
�

�

�

�

�

�

��

�

�

�

�

��

�

� �
�

�

�
�

�

�
�

�
�
�

��
�

�

�

�

�
��

�

� �

�

�

�

�
�

�
�

�

� ��

�

�

�

�

�

���

�
�

�
� ��

�

�
�

�

�

�

� �
�

��

�

� �

�

��
��

�
�

��

� ��

�

�
��

�

� ��

�

� �
�

�

�

��
�

�

� �

�

�

�

�

�
�

� ��

�

� �

�

��

�

�

�

�
��

�

�

�

�
� �

�

� �

��

�

�

��
� ��

�

�

�

�

�

�

�

��

�

��

�� �

�
��

�

� �

�

���

�

�
�

�
�

�

�

�
�

�

�

��

�

�

�
�

�

�

�

�

�

�

� �

�

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�
�

� �

�

�

�

�

�

�

�
��

�

�
�

�

� �� � ��
�

�

� �

�

�
��

�

�

�

�

�

�

��

�

�

�

�

�
��

�
�

� �

�

�

�

�
�

�

�

�
�

��

�

�

�
� �

�

��

�

�

�

�
�

� �
� �

�

�

�

�

�

�

� ��

�

�
�

�

�

��
�

�

�

�

�

�
�

�

�

�

�

� � � ���

�

�

�

��
�

��

�

�

��
�

�

�
��

�

�

�
�

�

�

�
�

�

�

�
�

� �
�

�

�

�

�
�

�� �

�

�
�

� �

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�
�

�

�

�

�

�

�

��

�

�
��

�

�

�
�

�

�
�� �

�

�

�

�

�
�

�

�

�

�

�

�

�

� ���

� ��
�

�� �

�

�
�

�
�

�
�

�

�

�

�

� �

�

�

��
��

�

�
� �

�

�
�

�

�
�

�

�

�

�
�

�

�

�

�

� ��
�

�� � �

�

�

��

�

�

� �� �

�

� ��

�

� �

�

� �

�

�� �
�

�

�

�

��

� �
��

��

�

�

�

�

�
��

�

�

�
�

�

�

�

�

�
�

�

�

45.50 45.55 45.60 45.65 45.70

Chromosome 21 position (Mbp)

0

4

9

14

18

−l
og

10
(P

G
W

AS
SM

R
)

cg19297788 (NA )

0
16
32
48

−l
og

10
(P

m
eQ

TL
)

PWP2
ICOSLG

C21orf33
DNMT3L

LOC105372833

cg19297788

PSMR =3.82×10–8

�

�

��

�

�

�

�

�

�

�

�

� �

−0.12 0 0.12 0.25 0.37

meQTL SNPs effect sizes

−0.154

−0.102

−0.051

0

0.051

G
W

AS
 S

N
Ps

 e
ffe

ct
 s

ize
s

cg19297788

�

top cis-meQTL
cis-meQTL

1

0.22

0.37

0.53

0.69

0.84

1.00

r2

a b

Figure 6. Association between IBD and DNA methylation at site cg19297788. (a) Locus
association plot. The grey dots represent the P -values of the SNPs from the IBD GWAS53, the violet
diamond the P -value of the SMR test, and the violet crosses the P -values of the meQTLs of cg19297788.
(b) Effect sizes of IBD GWAS SNPs vs. effect sizes of meQTLs of cg19297788, for SNPs used in the
HEIDI test. The slope of the dashed line represents the βSMR estimate at the co-localised SNP. Error
bars represent standard errors of estimated SNP effects. SNPs in LD with the top co-localised meQTL
are expected to have a consistent effect under the causality/pleiotropy scenario.

body mass index and body fat distribution [56, 57], but the mechanisms of action remain

unclear. Here we identified from the SMR with gene expression that this meQTL SNP

co-localises with eQTLs of the TUFM and SPNS1 genes, and trans-meQTL for cg03969070

(chromosome 1). The latter CpG is in the promoter of STK40, involved in the glycogen

metabolism (GO:0005977), among other biological processes. Therefore, we hypothesise

that the action of rs7187776 is through a cis-meQTL-mediation mechanism.

Altogether these examples of integrative analyses highlight connections between target

genetic variants and DNA methylation at multiple CpGs, gene expression at several

genes, and a number of complex metabolic traits and diseases. These novel links provide

functional insights into mechanisms of action for specific GWAS variants in selected human

phenotypes.

3 Discussion

We investigated the impact of genetic variation on DNA methylation levels at genomic

regions profiled by the Illumina Infinium MethylationEPIC BeadChip in three UK cohort

populations. To our knowledge, previous meQTL studies have not yet explored both cis

and trans-meQTLs across the genome on the new EPIC array in a large number of samples

in blood. The increased coverage of the array, especially in intergenic regions such as

enhancers, provides novel insights into the genetic regulation of DNA methylation, with
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downstream impacts into the regulation of gene expression and human complex traits.

We estimated that more than 33% of the EPIC methylome is under genetic control,

the majority of which is in cis. Our cis results are in line with previous studies on

the Illumina EPIC and 450K, in terms of proportion of sites, distance to target, allele

frequency, and genomic annotations [10, 11, 19, 35]. The proportion of trans signals that

we detected is somewhat lower than previous studies [10, 18, 35], although this likely in

part reflects power as our two-stage meta-analysis approach may reduce power to detect

trans associations. Specifically, before filtering associations in at least two cohorts, the

detected trans associations were 10-fold greater compared to the final list (compared

to cis, only 2-fold higher). This likely represents lower reproducibility of trans signals,

which may be more likely subject to cohort specific differences, batch effects, or may

potentially represent biological factors. Therefore, the reported trans-meQTL results

should be interpreted with caution and validated in future studies. Furthermore and

consistent with previous studies [11, 35], we also observe evidence that intra-chromosomal

trans-meQTLs are likely to be ‘long-range’ cis-meQTLs, as the vast majority are located

within 5 Mbp from the target CpG and a proportion fall within TADs. Lastly, in line

with recent large-scale findings from the blood 450K meQTLs [10], our results confirm

that SNPs and CpGs that exhibit both cis and trans associations, are highly reproducible,

appear to have large effects, and exhibit high connectivity with other genetic variants and

CpGs. Our results also highlight multiple highly connected genomic regions of interest,

both putative key regulatory regions of SNPs, and regions containing highly-regulated

CpGs. These connectivity results improve our understanding of specific mechanisms of

genetic regulation on the epigenome, transcriptome, and human phenotypes.

We estimated the proportion of variance explained by meQTLs, both in relation to

variability of DNA methylation at each CpG and to methylation heritability. Although

the mean values genome-wide appear relatively low, there are cases of CpGs where

genetic factors explain close to 100% of CpG DNA methylation variance. A similar

trend is observed in terms of the number of meQTLs per CpG, where there are few

CpGs with a large number of associations after LD clumping. These extreme cases,

instead of being seen as exceptions, can be further explored in future to better understand

the underlying mechanisms, evolutionary selection, and epistatic and environmental

interactions of meQTL.

We integrated our meQTL results with large-scale blood eQTL results, as well as

with GWAS findings from 56 human phenotypes. Altogether, these integrative analyses

highlighted sets of shared genetic impacts that allow us to make two key inferences. The

first one through eQTL integration gives insights into specific mechanisms of long-range

genetic impacts on DNA methylation, highlighting multiple examples consistent with two

hypothesized mechanisms. Second, through integration of GWAS findings with meQTLs,

and in cases with eQTLs, we highlight multiple examples of specific putative mechanisms
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underlying GWAS genetic impacts on human phenotypes. Our work is consistent with

and extends previous efforts, both disease-specific [58, 59] and multi-trait [18, 34], that

integrate different molecular data at the genome-wide level to provide new insights into

disease processes and biological pathways.

One of the main strengths of our study is that the sample used is representative

and age-homogenous of a well-characterised nationwide population. Limitations include,

first, analyses were restricted to whole blood samples. Although blood cell heterogeneity

was taken into account, the estimated cell proportions are relatively low resolution. We

undertook cell-specific analysis and observed that the majority of whole blood meQTLs do

not show evidence for cell-specific effects. However, we did not comprehensively explore

cell-population specific meQTL effects and restricted our analysis to two cell types with

modest to moderate proportions in our whole blood data. Second, we did not include

conditional analyses and therefore the number of independent meQTLs per CpGs remains

unknown. Third, we carried out validation of all legacy 450K signals in the GoDMC dataset,

and pursued replication at targeted novel EPIC-specific sites. The resolution of MeDIP-seq

methylation data (500 bp) is lower compared to EPIC data and therefore presents a more

qualitative replication approach. Fourth, limitations to eQTL and meQTL integration

include the assumption of shared genetic impacts, although the effects may be coincidental.

Fifth, several limitations of the SMR approach include no explicit test for causal impacts,

a limited selection of 56 phenotypes considered, and differences in power across phenotypes

because different GWASs have differing samples sizes and therefore power. Sixth, we

cannot rule out that our sample has a selection bias, with an overrepresentation of healthy

participants able to give blood samples and information on health. Finally, our findings

relate to middle-aged and older adults. Although there is evidence to suggest that the

meQTL effects are stable across the life course [60], further studies should confirm whether

the associations described here are valid in other age groups. In this same line, we cannot

extrapolate our observations to other ethnic groups.

In summary, we present a novel large-scale DNA methylation quantitative trait locus

analysis in blood samples from three UK cohorts profiled on the Illumina EPIC array. The

results identify novel genetic impacts on DNA methylation levels across the genome, and

integrative analyses with gene expression and GWAS findings give insights into mechanisms

underlying genetic regulation of human functional and phenotypic variability.

4 Methods

4.1 Study cohorts

We analysed data collected from 2,478 samples across three different UK population

cohorts, of which 2,358 samples passed quality control assessment and are included in the
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analyses in this manuscript. TwinsUK [20] (post-QC n = 394, from 236 unique families)

is the UK’s most comprehensive and detailed registry of adult monozygotic and dizygotic

twins. The MRC National Survey of Health and Development (NSHD), or 1946 British

birth cohort (1946BC) [21] (post-QC n = 1, 545), is the longest-running birth cohort in

the UK, with data about individuals born during one week in March 1946. The National

Child Development Study (NCDS), or 1958 British birth cohort (1958BC) [22] (post-QC

n = 419), surveys individuals born during the same week in March 1958. The 1946BC data

contained samples of individuals at either age ≈ 53 or ≈ 63, and therefore, we stratified

the cohort in two age-based groups to facilitate data handling, referred to as 1946BC-99

(n = 1, 348) and 1946BC-09 (n = 197). The 1958BC samples were processed in two

different batches and also stratified into 1958BC-1 (n = 183) and 1958BC-2 (n = 236).

Local research ethics committees granted ethical approval of the study, and all participants

provided written informed consent.

4.2 Genotyping and imputation

DNA was extracted from whole blood samples and genotyping was carried out with a

combination of platforms across studies (Supplementary note). Quality control of raw

genotype data from each of the five samples was carried out separately in PLINK [61],

and steps included filtering out low-frequency and rare variants (minor allele frequency,

MAF < 0.01), with a Hardy-Weinberg equilibrium P < 1× 10−6 or missingness rate >

3%. We also removed samples with more than 5% of missing data. We imputed genotypes

with the 1000 Genomes reference panel phase 3 version 5 [62] in the Michigan Imputation

Server [63] and again filtered the resulting variants using a threshold for MAF > 0.05

and r2 > 0.8. For the present study we used the genome assembly GRCh37/hg19 [64] for

reporting the genomic positions. The final set was of 6,361,063 unique genetic variants in

at least one of the sample sets (Supplementary table 1 with CpG-sites per cohort).

4.3 DNA methylation profiling and data processing

DNA was bisulfite-converted using the EZ DNA methylation kit (Zymo Research). DNA

methylation levels were profiled with the Infinium MethylationEPIC BeadChip (EPIC) at

a site-specific resolution, and raw intensities signals were obtained. Altogether five cohort

samples were profiled, and detailed description of profiling and DNA methylation data

initial processing is provided in Supplementary note.

Briefly, raw intensities signals were processed (separately for each sample set) with the

ENmix package [65] in the R environment [66] and converted into Illumina β-values (ratio

of methylation at each CpG-site) for downstream analysis. Background correction was

performed using the Exponential-Normal mixture distribution (ENmix) method, dye-bias

correction was performed using the Regression on Logarithm of Internal Control probes
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(RELIC) method [67], and probe design bias adjustment was performed implementing

the Regression on Correlated Probes (RCP) method [68]. Filtering included exclusion of

probes with missingness rates > 5% (detection P > 1×10−6) and exclusion of samples with

missing methylation data at > 5% CpG (detection P > 1× 10−6) and with no genotyping

data. Additionally, we filtered out probes with a polymorphism with MAF > 0.05 in the

interrogated CpG or the extension base (in case of type II probes), using the UK10K

haplotype reference panel, plus the recommended list of masked probes published by Zhou

et al. [69]. After data normalisation, we retained 724,499 unique CpGs in the autosomes

across the sample sets (Supplementary table 1 with CpG-sites per cohort). For the

analysis, the number of samples with DNA methylation and genotyping data was 2,358

(see Table 1 for the final sample size of each cohort).

4.4 DNA methylation data adjustment

DNA methylation profiles are cell type-dependent, and cell composition is a major con-

founding variable in methylation studies in tissues with cellular heterogeneity, such as whole

blood [70]. We estimated the cell composition for monocytes, granulocytes, plasmablasts

and immune cells (natural killer, näıve CD8+, CD4+, and joined CD8+/ CD28–/CD45RA

cells), using the regression calibration approach proposed by Houseman et al. [70] and

implemented in the R package minfi [71].

To ensure normality and reduce the impact of confounders in the analyses, we applied

a rank-based inverse normal transformation (INT) to the DNA methylation β-values and

fitted a linear mixed-effects model (LMM) with covariates with the lme4 package [72]. We

specified as fixed effects the variables sex (only for the birth cohorts), blood cell proportions,

smoking and age (only for TwinsUK), and as random effects the technical covariates plate

ID and position on the chip (as well as family ID and zygosity for TwinsUK). The residuals

of this model were used for downstream analyses.

4.5 Heritability estimation

We used a classical twin design to estimate the narrow-sense heritability (h2) of DNA

methylation at a CpG-level for TwinsUK data, with the OpenMx package [73] in R. After

removing singletons, we kept 70 MZ twin pairs and 88 MZ twin pairs from the cohort.

We used adjusted residuals of β-values (without the correction of family ID and zygosity)

of the 723,814 CpG-sites available in the cohort. We applied structural equations and

maximum likelihood estimation to decompose the variance proportion at each CpG-site in

additive genetic (A), shared environment (C ) and unique environment plus residual (E )

components. The h2 corresponds to the proportion of phenotypic variance attributed to

additive genetic effects (A component). We discarded CpGs where the model had critical

optimization failures, keeping estimations for 723,427 CpGs. We compared the mean
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heritability between novel EPIC-only sites and the 450K legacy probes using a one-tailed

t-test assuming equal variance.

4.6 Genome-wide association of DNA methylation

MeQTL analysis was performed in two stages. In the discovery phase, we identified

candidate associations per sample. We fitted a linear regression between all possible pairs

of SNPs and CpG-sites, with the genotype variant as the explanatory variable—coded

as doses of the alternative allele (0, 1 or 2)—and adjusted β-values for the CpG as the

response. In total, 3.4 billion of cis pairs and 4.7 trillion of trans pairs were tested across

the five cohort samples. SNPs separated by no more than 1 Mbp from the tested CpG

were considered cis, and the remaining trans. In the discovery step we applied a liberal

P -value to keep the associations for further analysis, specifically, P ≤ 5× 10−3 for cis and

P ≤ 5× 10−6 for trans associations. The discovery step was performed in Matrix eQTL

[74] implemented in R.

The second stage was a meta-analysis with the summary statistics of the subset of

candidate associations kept from the discovery phase. As some of the sample sizes of the

cohorts are substantially different, which impacts the variance of the estimated coefficients,

we accounted for this heterogeneity in a random-effects inverse-variance weighted meta-

analysis, using the open-source software GWAMA [75].

To account for multiple testing, we estimated the false discovery rate (FDR) with

a permutation approach. Briefly, for each of the cohorts, we shuffled the labels of the

individual samples for the methylation profiles (maintaining the family structure in

TwinsUK), and association tests on the permuted data were carried out as before in Matrix

eQTL and meta-analysed in GWAMA. A total of twenty permutations were performed

overall, and the resulted P -values formed our null distribution. Then, we calculated the

FDR as described in Hastie et al. [76], with the proportion of associations in the null

distribution over the associations in the observed real data. SNP-CpG pairs were reported

as significant meQTLs if they had an FDR ≤ 0.05 (P ≤ 2.21×10−4 for cis, P ≤ 3.35×10−9

for trans). Lastly, we only report those associations that were observed in two or more of

the five sample sets and with the same direction of effect. As a sensitivity analysis, we

also estimated the threshold P -values by dividing the EPIC CpGs into two sets (legacy

450K probes only and the novel EPIC-only probes). All the details are available in the

Supplementary note.

We replicated our results with the GoDMC meQTL catalogue [10]. We selected from

our list of CpGs probes, those that were included in the 450K array and that were in

the GoDMC study. We considered CpGs to replicate if they were also reported to be

under genetic influence in the GoDMC study, with the same or with different SNP as that

identified in our study.
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For the integration of meQTL and heritability results, we fit a linear regression with

the A estimate for each CpG as the dependent variable, and the categorical variables

indicating the presence or absence of cis- or trans-meQTLs as independent.

4.7 Cell type-specific meQTLs

In addition to identifying whole blood meQTLs, we also explored evidence for blood

cell-specific meQTL effects. To this end we considered DNA methylation-based estimates

of blood cell proportion for each sample cohort (Supplementary fig. 7a), and focused

on CD4+ T cells and monocytes. In cell-type specific analyses for CD4+ T cells, we first

adjusted DNA methylation levels for covariates as described in the whole blood meQTL

analysis, but did not include estimated proportion of CD4+ T cells as a covariate. We

then fitted a linear model to estimate cis-meQTLs in Matrix eQTL. We considered the

genetic variant, the proportion of CD4+ T cells, and the interaction term between these

as predictors. For each cohort sample, we kept all associations where the interaction term

surpassed P ≤ 5× 10−3. We then meta-analysed the summary statistics of the interaction

terms in a random-effects model using GWAMA, and filtered associations observed in

two or more sample sets with the same direction of effect. We used a similar process to

estimate cell-specific meQTL effects for monocytes.

4.8 Linkage disequilibrium (LD)-based clumping of meQTLs

To account for LD structure among the identified meQTLs, we carried our LD clumping

of the meQTL SNPs, performed separately for cis and trans meQTLs. Here, we kept

the genetic variant with more associated CpGs as representative for each LD block—to

ensure that all clumps were consistent across all CpGs. LD clumping was performed using

PLINK with LD threshold of r2 > 0.1 (calculated using all the samples in this study)

within a window of 2 Mbp. Finally, as the representative SNP of each clump may not be

the one associated with a given CpG, we used the most significant meQTL per CpG and

per clump.

4.9 MeDIP-seq data

For meQTL replication of novel EPIC probes we used previously published methylation data

profiled with methylated DNA immunoprecipitation sequencing (MeDIP-seq) in TwinsUK

blood samples [77, 78]. We excluded individuals from the current study, resulting in a

final independent sample of 2,319 participants (from 1,632 unique families, 93.5% females,

median age 55, age range 16–82) from the TwinsUK cohort, with whole blood methylomes

profiled using MeDIP-seq.
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MeDIP-seq of whole blood samples was performed as previously described [78]. Briefly,

following DNA fragmentation through sonication, sequencing libraries were prepared

using Illumina’s DNA Sample Prep kit for single-end sequencing. The anti-5mC antibody

(Diagenode) was used for immunoprecipitation and MeDIP was validated by quantitative

polymerase chain reaction. Captured DNA was purified and amplified with adaptor-

mediated PCR, and fragments of size 200–500 bp were selected by gel excision and QC

assessed by Agilent BioAnalyzer. Sequencing was carried out on the Illumina platform.

Sequencing data were aligned using BWA [79] using build GRCh37/hg19 and a mapping

quality score of Q10, and QC steps included FastQC, removal of duplicate reads, and

SAMTools [80] QC. MeDIP-seq data quantification into methylation levels was carried

out using MEDIPS v1.0 [81] reads per million (RPM), and further QC was carried out

in R including batch effects inspection. The average high quality BWA aligned reads

were ≈ 16.8 million per sample. Processed MeDIP-seq methylation data for analysis were

quantified in genomic windows (bins) of 500 bp (250 bp overlap) with RPM scores.

We selected ten novel EPIC CpGs to replicate based on the number of associations, the

strength of association, effect sizes, and the co-localisation of their meQTLs resulting after

SMR. MeDIP-seq methylation levels in each bin were transformed with the rank-based INT

and adjusted for covariates (sex, age, family and zygosity) in an LMM. We excluded bins

with evidence of methylation association with smoking (P < 0.05). Finally, we excluded

bins with methylation data in less than 1,160 samples. The final set of CpGs and the

respective bins is listed in Supplementary table 3.

We performed the meQTL analysis in Matrix eQTL as described above. We considered

associations to replicated if they exceeded a statistical threshold of P < 0.005 (Bonferroni

correction for 10 CpGs at a significance level of 0.05) and with the same direction of effect

as in the original EPIC meQTL analysis.

4.10 Functional annotations

We obtained different genomic annotations in BED file format through UCSC Table

Browser as of August 31, 2020 [82]. We used annotations for CpG islands, RefSeq genes

[83], chromatin state segmentation for the GM12878 cell line [30], and TFBSs for GM12878

cell line from ENCODE 3 [84]. Then we mapped the DNA methylation sites and genetic

variants with the functional annotations.

Chromosome sizes and number of coding genes were retrieved from the reference genome

GRCh37/hg19 and Ensembl 104 [85] databases. We considered the major histocompatibility

complex (MHC) locus to span chromosome 6 base-pair positions 28,477,797 to 33,448,354

bp [64].

We incorporated 3D genomic annotations in the meQTL functional annotations by using

previously published data from Hi-C experiments in lymphoblastoid cell line GM12878
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[46, 47]. We also considered additional Hi-C data across multiple relevant cells and tissues,

including in GM12878, in spleen [48] and thymus [49]. TADs from these datasets were

the generated in and obtained from the 3D Genome Browser [45]. We estimated the

percentage of CpGs where the target CpG and its most associated meQTL fell within the

same TAD. This analysis was carried out for all CpGs with cis-meQTLs and for all CpGs

with intra-chromosomal trans-meQTLs. The estimation was performed for the GM12878

Hi-C data alone, as well as for TADs estimated from multiple cells and tissues. Further

details and results are provided in the Supplementary note.

4.11 Enrichment analyses

Fisher’s exact tests were performed to investigate enrichment or depletion of CpGs/SNPs

across genomic regions and functional annotations. We used a modified version of the R

package LOLA [86] extending the default one-tailed to a two-tailed test, and incorporating

the estimation of confidence intervals. The results for each independent analysis were

corrected for multiple testing with the Benjamini–Hochberg procedure [87] to control the

FDR.

For all enrichment tests on SNPs, we used the most significant meQTL per CpG

(referred to as top meQTL). For some of the analyses on SNPs, we first generated a

background set from a resampling method in order to obtain a collection of SNPs with

equivalent distributions of MAFs and distances to the CpGs. To do this, we categorised

the available SNPs according to their distance from the EPIC CpGs and their MAF. We

took a random sample of SNPs with the same size as that of the set of interest (sample

without replacement within each category, and with replacement across all the categories).

Then, we did the enrichment analysis as described before, using the random sample as

the background set. We repeated the process one thousand times and saved for each

iteration the OR estimates. Finally, we obtained the mean OR of the annotations for the

point estimate, and for the confidence intervals at α = 0.05, we used the 2.5% and 97.5%

percentiles of resampling distribution of OR. All the enrichment tests results are presented

specifying the set of CpGs/SNPs of interest and the background set used (Supplementary

tables 5–25).

We carried out gene ontology (GO) [88] enrichment analyses with the R implementation

of clusterProfiler [89]. This package uses a one-tailed Fisher’s exact test to find the

overrepresentation of genes in molecular functions, cellular components or biological

processes. P -values were corrected using Benjamini–Hochberg procedure, and redundancy

was reduced in the enriched GO terms with the Wang method [90] using a similarity

cut-off value of 0.7. GO enrichment analysis at a CpG level was performed with the

GOmeth method available in the missMethyl package, which corrects for probe number

and multi-gene bias [91].
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4.12 Summary-based Mendelian Randomisation with gene ex-

pression data

We applied Summary-based Mendelian Randomization (SMR) analysis [32] between DNA

methylation and gene expression. The SMR approach consists of two stages. First, it

employs the most significant genetic variant associated with a CpG-site as an instrumental

variable (IV) to test the association between the CpG and a phenotype through the two-

step least-squares (2SLS) estimation. This association can be due to a causal relationship,

horizontal pleiotropy, or LD. Under a causal/pleiotropic scenario, the estimations of the

effect sizes of the DNA methylation on the expression levels are expected to be homogeneous

when calculated with other SNPs in LD with the single causal variant. Therefore, for

excluding spurious associations derived from LD, the second step is the heterogeneity in

dependent instruments (HEIDI) test with up to twenty alternative SNPs for each CpG.

A significant P -value in the HEIDI test is evidence of heterogeneity across the effects of

the SNPs and, therefore, indicates that the phenotype and the CpG are associated with

different causal variants in LD.

We used summary statistics from the eQTLGen Consortium [31], carried out on 31,684

blood samples from individuals from 37 cohorts (mostly of European ancestry). We stuck

to the cis-eQTL results—pairs of SNPs and genes no more than 1 Mbp apart, considering

the centre of the gene—available at 19,250 genes. We used SMR v1.03 with the default

settings, with the European subset of 1000 Genomes phase 3 version 5 as reference panel.

In the first analysis, we only used the cis-meQTLs to find associations between genes

and nearby CpGs. We tested a total of 5,092,588 pairs of CpGs–genes, setting a statistical

threshold of PSMR ≤ 9.82× 10−9 (Bonferroni correction for a significance level of 0.05) and

PHEIDI > 0.05 to filter out associations due to LD.

The second SMR analysis was with the trans-meQTLs as IVs to test long-range

associations through co-localised QTLs between all the CpGs and genes. We compared

134,698 CpG–gene pairs and established a significant threshold of PSMR ≤ 3.71 × 10−7

(Bonferroni correction for a significance level of 0.05) and PHEIDI > 0.05.

The final SMR eQTL analysis consisted of identifying associations between CpGs

and distant genes through genetic variants that were also significant in the cis SMR

analysis. For this, we made a list of targets SNP-CpG pairs (separated by more than 5

Mbp to exclude cases of long-range LD) to test for each gene and use the option --extract-

target-snp-probe in SMR v1.03. We considered the same significance criterion as in the

cis-meQTL–cis-eQTL co-localisation (PSMR ≤ 9.82× 10−9, PHEIDI > 0.05).
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4.13 Summary-based Mendelian Randomisation with GWAS

data

We repeated the SMR approach to test for co-localisation of our significant cis-meQTLs

with GWAS signals from 56 phenotypic traits, using summary statistics from previously

published studies (details of each study in Supplementary table 26). We downloaded

and prepared data, adding the chromosomal position of the variants using dbSNP 141 as

reference [92] (where not annotated), and harmonising the ID format with that of the

meQTLs. We used SMR v1.03 with the default settings, with the European subset of 1000

Genomes phase 3 version 5 as reference panel. We categorised post hoc the phenotypes

into seven classes. For filtering co-localisations with sufficient statistical evidence, we set a

threshold of PSMR ≤ 3.82× 10−8 after the Bonferroni adjustment of the significance level

of 0.05 for the number of independent tests (186, 817× 7 accounting the CpGs tested and

the phenotypic classes), and a PHEIDI > 0.05.

5 Data availability

An interactive web application with our results is available online (built using the R

Shiny framework [93]), with summary statistics of top meQTLs and associations after LD

clumping. Supplementary data 1–4 present all the results of the analyses described

here, including full summary statistics of significant meQTL associations.

Cohort-specific data availability details can be found in the Supplementary note.
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