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SUMMARY


Distal Visceral Endoderm (DVE) cells show a stereotypic unidirectional migration essential for correct 
orientation of the anterior-posterior axis. They migrate within a simple epithelium, the Visceral Endoderm 
(VE). It is unknown how DVE cells negotiate their way amongst the surrounding VE cells, what determines 
the bounds of DVE migration within the VE, and the relative contributions of different cell behaviours to this 
migration. To address these questions, we used lightsheet microscopy to generate a multi-embryo, single-
cell resolution, longitudinal dataset of cell behaviour and morphology. We developed a machine learning 
based pipeline to segment cells and a data-informed systematic computational framework to extract and 
compare select morphological, behavioural and molecular parameters of all VE cells in a unified coordinate 
space. Unbiased clustering of this single-cell ‘phenomic’ dataset reveals considerable patterned phenotypic 
heterogeneity within the VE and a previously unknown sub-grouping within the DVE. While migrating, DVE 
cells retain regular morphology, do not exchange neighbours and are crowded, all hallmarks of the jammed 
state. In contrast, VE cells immediately ahead of them deform and undergo neighbour exchange. We show 
that DVE cells are characterised by higher levels of apical F-actin and elevated tension relative to the VE 
cells immediately ahead of them through which they migrate, but stop migrating upon reaching a region of 
the VE with matching elevated tension. Lefty1 mutants, known to show abnormal over-migration of DVE 
cells, show disruption to this patterned tension in the VE. Our findings provide novel insights into the control 
of cell behaviour during the remodelling of curved epithelia, indicating that the collective migration of sub-
sets of cells can be circumscribed by modulating the mechanical properties of surrounding cells and that 
migrating cells in this context remain as a jammed solid flock, with surrounding cells facilitating their 
movement by becoming unjammed.
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INTRODUCTION


The dynamic remodelling of epithelial sheets 
requires the movement of interconnected cells 
through spatially localised, coordinated cell 
behaviours. Live imaging of epithelia during cell 
migration has revealed that cells can employ a 
variety of behaviours including T1 transitions (Bertet 
et al. 2004), or by forming transient multicellular 
‘rosette' structures that resolve in a directional 
manner to facilitate local neighbour exchange events 
(Blankenship et al. 2006). Cells in the tissue can 
also undergo changes in morphology, regulated 
patterns of divisions, and apoptosis, all of which 
must be coordinated to enable movements while 
retaining mechanical tissue integrity (Economou et 
al. 2013). In order to initiate movements in an 
epithelial context it has been suggested that the 
tissue undergoes a transition from a rigid, packed 
state, where cell movements are constrained 
(‘jammed’), to a fluid-like state where cell 
movements are permissible (‘unjammed’) (Angelini 
et al. 2011; Bi et al. 2011; Bi et al. 2015; Bi et al. 
2016; Cates et al. 1998; Lawson-Keister and 
Manning 2021; Park et al. 2016; Trappe et al. 2001). 
In the classical formulation, particles in a jammed 
state can be forced to become unjammed by even 
small changes in the direction of stresses applied on 
them (Cates et al. 1998; Liu and Nagel 1998). In the 
biological context, cells can come to occupy a 
jammed state for a variety of reasons, with different 
mechanisms being responsible depending on 
biological context (Lawson-Keister and Manning 
2021). 


The onset of collective cell movements in a 
confluent cell layer has been described as a flocking 
transition, with parallels to the behaviour of birds 
flying together in large groups (Giavazzi et al. 2018) 
(Szabo et al. 2006; Vicsek and Zafeiris 2012). In 
such a model, rather than leader cells ‘pulling’ the 
cells behind them forward, it is the alignment of 
interactions between individual cells that promotes 
directional movement (Giavazzi et al. 2018; 
Malinverno et al. 2017), as  cells far from the leading 
edge can also provide lamellipodial-based tractional 
force in cell culture experiments (Trepat et al. 2009). 
Modelling this process with Self-Propelled Voronoi 
models indicate the existence of liquid-flock and 
solid-flock states, where cells migrate with or without 
cell mixing, respectively (Giavazzi et al. 2018; Trepat 
and Sahai 2018). Such flocking behaviour can be 
induced in confluent human mammary epithelial 
cells by over expression of Rab5a, thought to be due 
to stimulating junctional remodelling (Malinverno et 
al. 2017).


Much of this work however has been carried out on 
relatively flat epithelia, in vitro two-dimensional (2D) 
flat culture or mathematical models of flat tissues. 
However in vivo, epithelial tissues exist in complex 
three-dimensional (3D) architectures, adding 
potentially different topological and mechanical 
settings across the varying spatiotemporal scales of 

the tissue that migrating cells need to negotiate (Li 
et al. 2021). 


One such example is the Visceral Endoderm (VE), a 
monolayer epithelium in the developing mouse 
embryo arranged as a blunt-ended cylinder (often 
referred to as the egg cylinder). A sub-set of VE 
cells, termed the Distal Visceral Endoderm (DVE) 
show a characteristic migratory behaviour within the 
plane of this curved epithelial tissue. DVE cells are 
induced at the distal-tip of the embryonic day 5.5 
(E5.5) mouse embryo (Thomas et al. 1998) (Figure 
1A) where they express a specific set of genes (Belo 
et al. 1997; Pfister et al. 2007; Thomas et al. 1998; 
Thowfeequ et al. 2021; Varlet et al. 1997; Yamamoto 
et al. 2004) and migrate proximally over the course 
of 3-5 hours in a unidirectional manner (Srinivas et 
al. 2004; Thomas et al. 1998). DVE cells stop at a 
boundary, defined by that of the underlying 
embryonic (Em) epiblast and extra-embryonic 
ectoderm (ExE) (the 'Em–Ex boundary'), so that they 
are positioned asymmetrically along one side of the 
embryo, at which point they are termed Anterior 
Visceral Endoderm (AVE). DVE cells express Lefty1, 
Cerl1 and Dkk1, inhibitors of the TGF-β/NODAL and 
WNT pathways (Belo et al. 1997; Yamamoto et al. 
2004) that restrict the formation of the primitive-
streak to the opposite (future 'posterior') side of the 
epiblast at E6.25. Lefty1 mutant embryos show an 
abnormal over-migration of DVE cells into the region 
of VE overlying the ExE (Trichas et al. 2011), 
indicating that regulation of TGF-β signalling in this 
context is important for regulating migratory 
behaviour.


Live imaging has shown that DVE cell movement is 
an active process as cells produce polarised cellular 
projections from their basal aspect in the direction of 
migration (Migeotte et al. 2010; Srinivas et al. 2004)  
Furthermore, knock-outs of genes involved in actin 
regulation lead to loss of these cellular projections 
and disruption of migratory behaviour (Migeotte et 
al. 2010; Omelchenko et al. 2014; Rakeman and 
Anderson 2006). 


Our understanding of the cellular basis of DVE 
migration is, nevertheless, incomplete. Studies 
typically focus only on the actively migrating cells, 
rather than considering the global epithelial context 
(i.e., cells positioned lateral and posterior to the 
DVE) within which migration occurs. Therefore we 
lack an integrated understanding of the regional cell 
behaviours (e.g., movement, changes in cell shape, 
o r i e n t e d c e l l s d i v i s i o n e v e n t s , c e l l - c e l l 
rearrangements) that underlie DVE migration – how, 
in short, the interactions at the level of individual 
cells lead to emergent tissue-level morphogenetic 
behaviour. Furthermore, while this migration is often 
described as a collective migration (Bloomekatz et 
al. 2012; Migeotte et al. 2011; Morris et al. 2012; 
Shioi et al. 2017), no study to date has tracked all 
DVE cells in a single embryo during their migration, 
so it remains unclear whether differences exist within 
the migratory cell population as they migrate through 
the plane of the epithelial monolayer.
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Although relatively little is known about the cellular 
properties that distinguish migratory DVE cells from 
surrounding non-migratory VE cells, it is known that 
NODAL signalling from the epiblast is required for 
DVE induction (Brennan et al. 2001), and that this 
triggers cells to transition from squamous to 
columnar morphology prior to migration (Kimura et 
al. 2000; Rivera-Perez et al. 2003; Srinivas et al. 
2004). It is understood that DVE cells are induced at 
the distal tip as the embryo grows and elongates, 
distancing the distal cells of the VE from repressive 
BMP signals emanating from the ExE (Mesnard et 
al. 2006; Rodriguez et al. 2005). Nevertheless, as 
DVE cells are positioned at the distal-tip of the 
cylinder-shaped VE, the region with the highest 
tissue curvature, these cells may also be subject to 
increased mechanical stress (Helfrich 1973; Khairy 
et al. 2018; Khmelinskii and Makarov 2020). As 
mechanical cues can affect cell fate decisions and 
cell behaviour (De Belly et al. 2022; Discher et al. 
2009), it is unclear whether the columnar 
morphology and behaviour of the migratory DVE 
cells is due to biomechanical differences imposed by 
the curvature of the VE tissue, or autonomously 
controlled.


Consequently, identifying the key parameters 
underlying tissue morphogenesis requires analysis 
of the spatiotemporal heterogeneity in morphological 
and behavioural characteristics (phenotypes) of all 
the cells within the tissue at the level of the 
constituent single-cells. Importantly, for statistical 
robustness, these measurements require a 
framework to integrate such quantitative data from 
across multiple embryos, due to the nature of their 
heterogeneity. Quantitative time-lapse data in the 
mouse embryo can be obtained using lightsheet-
based imaging and cell tracking (Ichikawa et al. 
2013; McDole et al. 2018; Udan et al. 2014), 
however, such efforts so far have used only nuclear 
fluorescent reporters (e.g. H2B-GFP) that are 
relatively easy to segment and can be used for 
positional cell tracking, but do not provide 
information about cell-shape, surface-area or other 
cell morphology specific phenotypic parameters. 


In order to address these limitations, we developed 
a longitudinal imaging based-approach for recording 
cell shape and movements at high spatial and 
temporal resolution during DVE migration, using 
lightsheet microscopy. To integrate data on the 
dynamics of cellular phenotypes from multiple 
embryos with varying numbers of cells and durations 
of DVE migration, we developed a method for the 
temporal staging and spatial alignment of embryos 
based on DVE migration. To enable systematic 
comparative analysis of phenotype between these 
large multi-dimensional image volumes, we 
developed innovative computational tools to map the 
apical surface of every VE cell at each time-point 
onto a single volumetric coordinate system, so that 
we could project it into 2D and use machine 
learning-aided approaches to segment individual 
cells for temporal tracking. To analyse these multi-
dimensional data, we developed a multivariate 
single-cell manifold analysis that integrates cells 

from multiple embryos developing across time. Such 
approaches have recently been applied with good 
effect to fixed samples to study morphological 
transformations (Andrews et al. 2021). The 
extension of these approaches to longitudinal data 
enabled us to comprehensively profile and compare 
the morphological and behavioural phenotype of all 
VE cells during DVE migration, at single-cell 
resolution.


This s ingle cel l ‘phenomic ’ (Davis 1949)  
c h a r a c t e r i s a t i o n r e v e a l e d a p r e v i o u s l y 
unappreciated, patterned, heterogeneity within the 
VE. DVE cells can be categorised into distinct sub-
groups on the basis of their phenomes, while cells in 
the proximal emVE (Figure 1 A) also form distinct 
phenomic clusters. Tracking cells throughout the 
migration phase revealed that DVE cells remain 
relatively constant in morphology, do not exchange 
neighbours and are crowded, with a constant low 
apical surface area. In contrast, VE cells 
immediately ahead of them show key hallmarks of a 
phase transition to an unjammed state, changing cell 
shape to become irregular and undergoing cell 
mixing, enabling them to be displaced anteriorly and 
laterally. In addition to being distinguished from 
surrounding VE cells by their migratory behaviour 
and morphology, DVE cells also show elevated 
levels of apical and junctional F-actin, suggesting 
that they are also mechanically distinct from 
surrounding cells. We verified that DVE cells are 
characterised by a significantly elevated membrane 
tension, and that this tension is dependent on acto-
myosin contractile activity. DVE cells migrate 
through cells with significantly lower apical tension 
and halt their migration upon reaching the VE 
overlying the ExE, which has an apical tension 
comparable to the DVE. In contrast, Lefty1 mutants 
show a significant reduction of tension in the VE 
overlying the ExE, into which DVE cells abnormally 
over-migrate.


These results reveal a novel model for DVE 
migration, where they migrate as a solid flock within 
the epithelium of the VE, facilitated by the 
unjamming of cells immediately surrounding them, 
and delimited by patterned tension differentials 
within the epithelium.


RESULTS


E5.5 multi-embryo 5D lightsheet time-lapse 
dataset of DVE migration

To create a library of time-lapse datasets that 
capture at cellular resolution dynamic events in the 
VE during DVE migration and enable the extraction 
of parameters relating to cell morphology, and 
movements we optimised the culture and imaging of 
egg-cylinder stage embryos on the ZEISS Z.1 
lightsheet microscope (Figure S1A-C). 


To ensure that our culture conditions and imaging 
parameters permitted normal embryo development, 
we performed a number of tests. We used embryos 
carrying a ubiquitously expressed Lifeact-GFP 
transgene, which delineates every individual cell in 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Figure 1. Data processing framework for single-cell, multi-embryo analysis of VE cell behaviour and morphology during DVE 
migration. A. En face and cut-away profile illustrations of the E5.5 mouse embryo showing the monolayer visceral endoderm (VE) 
surrounding the epiblast (EPI) and extra-embryonic ectoderm (ExE). The migratory distal visceral endoderm (DVE) cells are in green. 
Arrows indicate direction of migration to future anterior. B. Representative images of a single time point from lightsheet imaged Hex-
GFP:membrane-tdTomato and Lifeact-GFP mouse embryos. C-G. Computational pipeline to extract and analyse quantitative single cell 
phenomic data from multidimensional image data. C. Spatiotemporal registration of the 3D time-lapse data to generate a consistent 
surface coordinate framework, to enable 2D geodesic surface projection of the apical VE surface. D. A DVE motion classifier trained 
using superpixel motion tracking of DVE cells labelled with Hex-GFP. E. The trained motion-based classifier is used to identify the 
migration phase of Lifeact-GFP embryos. F. Convolutional neural network to identify and segment individual cells from Lifeact-GFP time-
lapse data. G. Single-cell analysis of the phenome (morphology and behaviour) of VE cells integrating time-lapse data from multiple 
embryos.
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the VE by labelling its cortical F-actin (Riedl et al. 
2010). We acquired full z-stack image volumes of 
E5.5 embryos from two angles (0° and 180°)(Figure 
S1A) at 5-minute intervals, at diffraction-limited 
resolution, throughout DVE migration. First, we 
confirmed the correct patterning of key molecular 
markers of the three main cell types (DVE, epiblast 
and ExE) in embryos that had been imaged for 100 
time-points at 5 minute intervals. Since each embryo 
is imaged from two angles, this constituted a total of 
200 z-stack acquisitions at 2 μm z-interval. Imaged 
embryos showed the correct pattern of DVE markers 
OTX2 and AMOT, epiblast marker OCT4 and ExE 
marker CDX2, as assessed by whole-mount 
immunofluorescence and confocal microscopy 
(Figure S1C). Secondly, time-lapse imaged embryos 
had intact nuclear morphology and had maintained 
monolayer integrity, as seen by DAPI and phalloidin 
staining (Figure S1C). Third, we assessed the extent 
to which cells failed to divide, which is a hallmark of 
photo-toxicity (Laissue et al. 2017). Cell divisions 
could be observed in all tissues throughout the 
duration of the time-lapse (data not shown) and 
detailed analysis of all VE cell division events in 
Lifeact-GFP time-lapse embryos showed a similar 
rate of divisions among all imaged embryos (Figure 
S2A). Fourth, to further test if the behaviour 
observed in live embryos reflected in utero 
development, we imaged embryos expressing the 
Hex-GFP transgene that marks DVE cells and 
analysed the radial distribution and proximal extent 
of the Hex-GFP cells throughout the time-lapse. 
Comparison to non-cultured Hex-GFP control 
embryos fixed at early-, mid- and late-migration 
(total N=48) (Figure S2B,C) revealed that the Hex-
GFP population in time-lapse imaged embryos 
progressed through a similar radial distribution and 
proximal position to that of the non-cultured control 
embryos (Figure S2D). Finally, we measured the 
duration of DVE migration in our dataset and found 
that it was comparable to that of previous studies 
(Migeotte et al. 2010; Srinivas et al. 2004) (average 
4h hours 33 mins ± 1h 24 mins, N=18) (Table S1).


We next used these conditions to build a library of 
time-lapse image volumes of Lifeact-GFP (Riedl et 
al. 2010) embryos cultured during DVE migration, 
that captured the behaviour of every cell in the VE at 
h igh tempora l and spat ia l reso lu t ion. To 
automatically stage embryos according to the extent 
of DVE migration, we developed a support vector 
machine classifier (see below and Methods) that we 
applied to time-lapse data from double reporter Hex-
GFP:membrane-tdTomato embryos, so that DVE 
cells are labelled by Hex-GFP (Rodriguez et al. 
2001) in a background where all cells express a 
membrane-targeted tdTomato (Muzumdar et al. 
2007). We generated a comprehensive ~12 TB, 5D 
dataset (3 spatial, 1 temporal, 1 for multiple 
fluorescence channels) of DVE migration, capturing 
7-10 hours of development in each embryo, at 
intervals of 5 minutes for Lifeact-GFP embryos 
(N=9), and 10 minutes for double reporter Hex-
GFP:membrane-tdTomato embryos (N=9).


Creation of a dataset of single-cell specific 
parameters of all VE cells during DVE migration

For the analysis of the multi-embryo dataset, we 
e s t a b l i s h e d a c o m p u t a t i o n a l p i p e l i n e 
‘STrEAMS’(Spatio-Temporal Embryo Analysis at 
Multiple-Scales) to automate the analysis of single-
cell behaviours and tissue morphology changes 
throughout DVE cell migration. STrEAMS spatially 
and temporally registers time-lapse data and 
enables multi-scale feature extraction (Figure 1 & 
Figure S3A). For each time-lapse, STrEAMS builds 
a best quality 3D volume by fusing paired z-stacks 
from each imaging angle followed by spatiotemporal 
registration (Movie S1 and S2). Due to the 
computational complexity of cell segmentation and 
tracking in native 3D coordinate space, we 
developed a pipeline to extract the apical VE surface 
and re-project it as a series of 2D geodesic 
projections (Movie S3) that could be used for 
visualisation, augmentation, segmentation and cell 
tracking before re-projecting to 3D coordinate space 
for quantifications of cell statistics. In order to make 
a spatiotemporally consistent 3D to 2D coordinate 
framework, for each embryo, each time-point of the 
volume data was 3D shape-matched to a mid-time-
po in t ' r e fe rence ' vo lume, wh i le t rack ing 
measurements of embryo growth and embryo 
shape-change. 


To enable the visualisation and annotation of cellular 
events across the entire radial circumference of the 
apical surface of the VE epithelium, the reference 
volume was then used to establish a consistent 1-
to-1 mapping of selected 3D apical surface co-
ordinates across time and to project the surface onto 
a flat, 2D geodesic map (Figure 1C). We also 
manually selected coordinates that corresponded to 
the basal surface of the VE, to enable local cell 
height to be measured. Critically, for all quantitative 
analyses, features annotated on 2D projections were 
transformed back to their corresponding original 3D 
coordinates before deriving values for the 
parameters being analysed (Figure 1C, Movie S6 
and S7). This also enabled apical-surface VE 
measurements to be integrated with local 3D shape 
and behavioural measurements (see Methods for 
details).


Visual inspection of geodesic projections of Lifeact-
GFP labeled embryos readily revealed DVE cells by 
their characteristic migratory behaviour. In order to 
generate binary cell outlines of VE cells, to track 
them and extract quantitative information about their 
apical cell-surface morphology and behaviour, we 
augmented the cortical F-actin signal in our Lifeact-
GFP datasets by training a convolutional neural 
network (CNN) (see Methods and Figure S3E and 
Movie S4). We selected five of these Lifeact-GFP 
embryos for further extensive manual curation, 
enabling us to segment the apical outlines of 
individual cells across the entire duration of each 
time-lapse movie (Figure 2E, Movie S4). The 
centroid of each outlined cell was then tracked 
frame-to-frame using bipartite matching (see 
Methods, Figure 2F-F’’, Movie S4 & S5). To integrate 
cell division events, we generated a graphical user  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interface ‘Cell Tracker’ that enabled the centroids of 
dividing cells and daughter cells to be easily 
annotated. The timing, position and division angle of 
each division was recorded and integrated with cell 
tracking (see Methods). 


This generated a comprehensive single-cell 
longitudinal VE dataset consisting of 91,901 data-
points (cell instances), tracking a total of 2221 
unique VE cells from five Lifeact-GFP embryos over 
a cumulative total of 1,900 minutes of time-lapse 
data. Next, for each VE cell at each time-point, we 

7

Figure 2. Embryo digitisation and VE cell tracking during DVE migration. A, A’. Example of a representative Hex-GFP:membrane-
tdTomato embryo at two time-points during lightsheet imaging, used for generating a DVE motion classifier to automate staging of 
Lifeact-GFP data.  B, B’. VE apical surface geodesic polar projections of the embryo in A, A’. Distal tip for the embryo indicated by white 
cross. Dotted line indicates approximate position of emVE - exVE boundary. C, C’. representative Lifeact-GFP embryo at two time-
points during lightsheet imaging. D, D’. VE apical surface geodesic polar projections of the embryo in C, C’. E. Segmentation of VE cells 
in polar projections after CNN membrane augmentation. F-F’’. Three time-points of a polar projection of the VE surface, showing tracks 
of segmented cells (also see Movie S5). G. Reprojection of segmented VE cells into a 3D coordinate space. H-H’’. Three time-points 
from reprojection of segmented VE cells into a 3D coordinate space (also see Movie S7). Scale bar = 50 μm. Note: reprojections have 
no scale bar as they are non-linear projections.
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measured 14 parameters (Table S2) including: two 
‘dynamic' parameters, the instantaneous speed in 
the anterior direction from the preceding time-point 
(anterior speed) and the cumulative distance a cell 
has moved in the anterior direction (cumulative 
anterior distance); twelve 'static' parameters, relating 
to the morphology and size of cells at each time-
point (apical cell surface area; apical cell perimeter; 
shape index; aspect ratio; number of cell 
neighbours; cell height; mean apical curvature; 
mean basal curvature; mean apical gaussian 
curvature; mean basal gaussian curvature; mean F-
actin levels along cell perimeter and; mean F-Actin 
levels on apical surface) (see Methods and Table 
S2). All measurements were transformed to 3D 
coordinates to calculate corrected values. Together, 
these measurements describe the instantaneous 
‘phenomic state’ of single VE cells (cell behaviour 
and cell morphology) in the time-lapse data, 
integrating both dynamic and static information. To 
visualise the segmented and tracked VE cells in the 
original context of the egg cylinder, we re-projected 
our 2D cell outlines (Figure 2F, Movie S4) and 
tracking back to 3D coordinates (Figure 2H-H’’, 
Movie S7) using Mesh Lab (Cignoni et al. 2008) an 
open source 3D software interface. This allowed us 
to distill our multidimensional image data of 
embryonic development into ‘digital embryo’ 
representations, that we could interrogate for 
quantitative insights into DVE migration, and on 
which we could perform in sil ico labelling 
‘experiments’ on cell fate.


Embryos at this stage show some natural variation 
not only in size but in the duration of DVE migration. 
To enable integration of data from across multiple 
embryos, we stage matched embryos in our dataset 
and spatially aligned them with respect to the major 
embryonic axes of symmetry. We did this using the 
motion-based superpixel tracking approach 
‘MOSES’ (F. Y. Zhou et al. 2019) to train a support 
vector machine based DVE classifier. As training 
data, we used the Hex-GFP channel (that labels 
migrating DVE cells) from our lightsheet imaged 
double reporter Hex-GFP:membrane-tdTomato 
embryo dataset (Methods, Figure S3B). We first 
spatiotemporally registered and re-projected these 
time-lapse data as 2D geodesic projections (Movie 
S8), then used MOSES to extract motion features of 
the Hex-GFP labelled DVE cells, to train a motion 
feature classifier (Figure S3B, Movie S9). Finally, we 
used the trained classifier to categorise the time-
lapse data for each embryo (Figure S3C, Movie 
S10) into one of three phases: a first phase with 
DVE cells at the distal tip of the egg cylinder, with no 
directional persistence amongst any of the VE cells; 
a second phase capturing the majority of DVE 
migration, with consistent directional persistence 
and; a third phase, with a plateau in directional 
persistence, during which DVE cells show little or no 
anterior migration, having reached the embryonic-
extraembryonic boundary (Srinivas et al. 2004; 
Trichas et al. 2011) (Figure S3C). 


To understand the cellular basis by which DVE cells 
migrate directionally from the distal tip to this 

boundary, we focused on the first two phases, that 
we termed ‘Pre-Migration’ and ‘Migration’, 
respectively. To compare cells of corresponding 
regions from different embryos, we categorised cells 
according to their location at the start of the 
migration phase (Figure 3A). To do this, we 
demarcated eight different anatomical regions of the 
VE (Figure 3A and Figure S3F) based on four rings 
of VE spanning the girth of the egg-cylinder along 
the proximal-distal axis. These were in turn each 
divided into anterior and posterior halves. Though 
anterior and posterior become evident only upon 
DVE migration, the orientation of this axis could be 
back-propagated even to pre-migration stages 
because of the longitudinal nature of the data. Prior 
to migration, the DVE occupied Region ‘1’, the 
anterior side of the DVE and ‘2’, the posterior side of 
the DVE (see Methods and Figure S3F for 
description of how boundaries of these regions were 
determined). Regions ‘3’ and ‘4’ were proximal VE 
overlying the epiblast in the anterior (Anterior emVE) 
and posterior respectively (Posterior emVE). 
Regions ‘5’, ‘6’, ‘7’ and ‘8’ were the VE overlying the 
ExE (exVE)(Figure 3A).


Having spatiotemporally registered and defined 
these relative positional regions in each embryo, we 
could now integrate information from across multiple 
embryos to quantitatively investigate the behaviours 
of the VE during DVE migration, at the level of the 
component single cells.


Single-cell phenomic analysis identifies 
behaviourally and spatially distinct VE cell 
populations

We analysed our data using two complementary 
approaches – on the basis of commonalities in 
cellular phenotype, and on the basis of shared 
anatomical position. Firstly, to identify in an unbiased 
manner cel ls with shared behaviours and 
morphological characteristics, we performed 
hierarchical clustering of all VE cells in the dataset 
based on similarities in the 14 cellular parameters 
(Methods, Figure S4). In order to incorporate 
longitudinal changes over time, each instance of a 
cell in the time-lapse data was included as a 
separate datapoint. This allowed us, in the first 
instance, to screen across our data for cells 
displaying similar behaviours irrespective of 
temporal or anatomical position, while still retaining 
this information for later analyses (Figure 3A, Figure 
S4C). This revealed five distinct phenomic cell 
clusters that we named A, B, C, D and E. We 
visualised these clustered data by generating a 
UMAP that captured the dominant behavioural and 
morphological phenomic variations over space-time 
in all VE cells – the phenomic space (Figure 3B). 
Cells that clustered closely shared a similar set of 
characteristics while those further apart had more 
divergent phenotypes. By plotting a heat-map of 
each parameter on the UMAP it was evident that 
many parameters were distributed in a graded 
pattern (Figure 3D). As each cluster was located in a 
different part of the UMAP, with clusters A-D 
positioned towards the edge of the UMAP and 
cluster E making up the remainder (Figure 3B), it  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suggested that cells in each cluster differ in their 
phenotype.


As our approach allowed us to retain information 
about the anatomical location of each cell at every 
time-point, we asked whether cells in each 
phenomic cluster were anatomically regionalised. To 


understand the precise locations of all instances of 
cells, we first performed a digital anatomical 
mapping, by extracting the cell IDs of all instances of 
cells from each phenomic cluster and plotted their 
position onto the corresponding 2D surface 
projection (Figure 3C & Figure S5B) and 3D re-
projected ‘digital embryos’ (Figure 3F, Movie S11). 

9

Figure 3. Single-cell phenomic analysis of multi-embryo longitudinal Lifeact-GFP data. A. Overview of the steps of the single-cell 
phenomic analysis method. B. 14 parameter single-cell phenomic UMAP integrating all instances (91,901) of all VE cells (2221 unique 
cells) from five Lifeact-GFP embryos. The five phenomic clusters that emerge are annotated. C. Anatomical mapping of all instances of 
clusters A to D from a representative embryo plotted as a polar projection to visualise both anterior and posterior regions (also see 
Figure S5 for other embryos). D. Single-cell phenomic UMAP with trends of each cell parameter shown as a heatmap. E.  Mean profile 
of clusters A-E for each of the 14 cell parameters used in the UMAP analysis. F, F’. Single time-point from a representative digitised 
embryo showing the cluster identity of VE cells in that time point, in 3D and polar-geodesic views (also see Movie S11). G. Summary of 
anatomical origin of VE cells from each cluster. Cluster E was distributed throughout the VE.
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Secondly we analysed the anatomical region of 
origin of cells within each cluster (Figure 3G & 
Figure S5C’). Together these analyses revealed a 
striking pattern of anatomical segregation of cells 
from Clusters A to D. Anatomical digital mapping 
showed that each cluster was spatially ordered 
along the proximal-distal and future anterior-
posterior axis of the emVE (Figure 3C, Figure S5B). 
Furthermore, with the exception of cluster E, all 
other clusters were comprised of a majority of cells 
that originated in one or two closely located 
anatomical regions (Figure 3G, Figure S5 B,C’). 
Clusters A and B consisted predominantly of cells 
from the anterior half of the DVE (Region 1), Cluster 
D of cells from anterior proximal emVE (Region 3) 
and Cluster C of cells from the posterior portion of 
the DVE and posterior proximal emVE (Regions 2 
and 4) (Figure 3C, Figure S5C’). In contrast, Cluster 
E was comprised of cells distributed uniformly 
throughout the the emVE and exVE in both 
anatomical mapping (Figure S5B) and anatomical 
origin (Figure 3G, Figure S5C’). This indicated that 
cells that occupy different anatomical regions in the 
emVE at the onset of migration had characteristic 
and distinct phenomic signatures. Notably, even 
Clusters A and B, which consist predominantly of 
cells from the anterior part of the DVE (Region 1) 
map, within this relatively small region, to more 
proximal and distal positions respectively (Figure 3C 
and Figure 3G). Accordingly, we annotated Cluster A 
as Anterior DVE 1, Cluster B as Anterior DVE 2, 
Cluster C as Posterior emVE, Cluster D as Anterior 
emVE and Cluster E simply as VE. This extensive 
phenomic heterogeneity in the VE emerged primarily 
during DVE migration. When we plotted a UMAP of 
the subset of data only belonging to the pre-
migration stage (Figure S6B), the vast majority of 
cell instances fell in the general VE category, with a 
minority belonging to two DVE clusters (Figure S6 B-
D). Having identified this previously unappreciated 
extensive phenotypic heterogeneity within both DVE 
and non-DVE cells, we next explored the 
characteristics that define each of these phenomic 
clusters.


Differences in both morphology and behaviour 
define VE cell clusters

We extracted the average statistics for each of the 
14 measurements (Table S3) to calculate the 
'phenomic signature' for each cluster (Figure 3E). 
We found that Cluster A (Anterior-DVE 1) cells had 
low apical surface area, with high values for cell 
height, anterior-ward speed and levels of F-actin 
(Figure 3E), as evident by their position on the 
parameter-highlighted UMAP (Figure 3B, E). Cluster 
B (Anter ior -DVE 2) ce l ls showed s imi lar 
morphological characteristics, but were not as tall, 
had lower anterior-ward speed, moved a shorter 
distance and had a lower level of F-actin in 
comparison to cells in Cluster A (Figure 3F). Cluster 
C (posterior emVE) cells had the largest apical 
surface area and lowest cell height. They are also 
very regular in shape, showed relatively little 
anterior-ward motion and had a lower level of apical 
actin than cells in any other group (Figure 3E). In 

contrast, Cluster D (‘Anterior Proximal emVE’) cells 
had intermediate cell area, high cell perimeter, a 
high aspect ratio, high values for cell height and 
intermediate levels of F-actin (Figure 3E). Finally, 
Cluster E contained cells that had intermediate 
values for each parameter, confirming that these 
cells reflect ‘average’ VE cells (Figure 3E).


VE cells undergo coordinated changes in 
phenomic profile during DVE migration

To understand how the phenotypic characteristics of 
cells from specific anatomical positions change over 
the course of DVE migration, we leveraged our 
longitudinal dataset and digitised representations of 
embryos. In order to determine the anatomical fate 
of cells from different parts of the embryo, we 
tracked them in anatomical space (Figure 4A, B, 
Figure S7B, Movie S12), and simultaneously, to 
determine the phenotypic changes they underwent 
during this process, we tracked them as they 
traversed phenomic space, to determine their 
‘phenomic fate’ (Figure 4A, C, and Figure S7C).


We used the eight anatomical regions described 
above (Figure 4A) and in addition, to provide added 
granularity to the analysis and reflect the 
heterogeneity revealed by our phenomic cluster 
analysis (Figure 3G), further sub-divided the anterior 
DVE into proximal and distal regions giving us a total 
of nine regions. We then categorised ‘digitally’ 
labelled cells based on their position at the start of 
the migration phase, and then tracked them 
forwards in time during migration as well as 
backwards in time into the pre-migration phase, to 
analyse how they change in multi-dimensional 
phenomic space over time. We generated phenomic 
trajectories (akin to ‘pseudo-time’ diffusion 
trajectories in single-cell transcriptomic analyses, but 
here having the added power of representing real 
temporal trajectories) by combining data from our 
stage-matched, spatially aligned embryos, to 
calculate the average UMAP phenomic coordinates 
at one-hour intervals for each region. This revealed 
clear differences in the average phenomic 
trajectories of cells originating in each anatomical 
region, with differences in both the direction and 
length of trajectories (Figure 4C, Figure S7C). 


We first considered the anatomical and phenomic 
fate of DVE cells (subdivided into proximal anterior 
DVE, distal anterior DVE, and posterior DVE). 
Anatomical fate mapping showed that cells from all 
three of these anatomical regions moved 
unidirectionally towards the anterior (Figure 4B & 
Movie S11) and were similar across embryos (Figure 
S7B). However, phenomic fate mapping revealed 
that cells from each region showed distinct 
phenomic trajectories; proximal anterior DVE cells 
(Figure 4C, Region 1A) started in a UMAP region of 
low apical surface area, low aspect ratio and high 
apical curvature (Figure 4C, Region 1A). Upon 
migration, these cells moved towards a region of the 
UMAP characterised by higher apical F-actin, 
instantaneous anterior speed and height, but of low 
apical surface area and aspect ratio (Figure 4C). 
Cells in the distal anterior DVE (Figure 4A - Region  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Figure 4. Tracking and phenomic trajectory analysis of emVE sub-regions during DVE migration. A. Overview of the steps in the  
analysis of anatomical sub-regions of the VE. B. Continuous tracking of cells from five sub-regions of the emVE from a representative 
embryo (also see Figure S7 for tracks from other embryos). C, C’. Phenomic trajectories of emVE sub-regions overlaid onto UMAPs 
showing selected cell parameters and the overview phenomic cluster map. D, D’. Representative examples of cells from sub-regions 
1A, 1B and 3 at two time points. E. E’. Representative examples of cells from sub-regions 2 and 4 at two time points.
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1B) started in a UMAP region of low apical surface 
area, low aspect ratio and high apical curvature 
(Figure 4C). While they increased in apical F-actin 
and instantaneous speed during migration, in 
contrast to proximal DVE cells, they did not increase 
significantly in height (Figure 4C - Region 1B). 
Furthermore their phenomic trajectory was shorter 
than that of proximal anterior DVE cells (Figure 4C) 
indicating that they changed less overall in their 
phenotype over the course of migration. Despite 
being migratory, we noted that cells in both of these 
regions retained low apical surface area and did not 
appear to significantly change shape prior to their 
movement (Figure 4C). In contrast, posterior DVE 
cells had a larger apical surface area at the start of 
migration (Figure 4C - Region 2), and also had a 
lower level of F-actin (Figure 4C, Region 2). 
However, over time they decreased in apical surface 
area, and increased in anterior speed, F-actin levels 
and height (Figure 4C) indicating that, over the 
course of their migration, they start to become more 
like cells in Region 1A (proximal anterior DVE).


Visualising these trajectories on the UMAP with the 
cluster boundaries highlighted revealed how tracked 
cell populations can shift across phenomic clusters 
(Figure 3C’). When we compared the phenomic 
trajectories of tracked DVE cell populations to the 
positions of each cluster, it could be seen that on 
average, as a cell population, they change cluster 
over time (Figure 4C). Plotting the trajectory of 
proximal anterior DVE revealed that its cells begin in 
cluster E but move through cluster B to cluster A 
(Figure 4C’ - Region 1A), whereas the distal anterior 
DVE remained largely within cluster B (Figure 4C’ - 
Region 1B). This difference in phenomic trajectories 
of cells in these two, relatively small, regions of the 
anterior DVE is consistent with them being 
differentiated into two different phenomic clusters 
(Figure 3G). Interestingly, the trajectory of posterior 
DVE cells started in cluster E but moved through 
cluster C and cluster B (Figure 4C’ - Region 2), 
consistent with them becoming progressively more 
like anterior DVE cells over time, as they move into 
the anatomical region vacated by anterior DVE cells 
during migration (Figure 4B).


We next considered the cells surrounding the DVE in 
the emVE (anterior proximal emVE and posterior 
proximal emVE) (Figure 4A - Regions 3 and 4). 
Anatomical fate mapping showed distinct behaviours 
in these regions with anterior proximal emVE 
showing anterior-lateral movements (Figure 4B - 
Region 3) while posterior proximal emVE stayed 
relatively static, with a slight movement towards the 
distal tip (Figure 4B - Region 4). Phenomic fate 
mapping revealed that cells in both regions start in a 
similar central part of the UMAP, i.e., Cluster E, 
‘average’ VE cells (Figure 4C). However, over the 
course of DVE migration, they showed very different 
trajectories. Anterior proximal cells moved towards 
cluster D, characterised by higher aspect ratio, high 
cumulative anterior speed and increased cell height 
(Figure 4C, Figure 4D-D’). In contrast, posterior 
proximal emVE remained centrally in the UMAP, 
largely unchanged in behaviour and morphology 

(Figure 4C, Figure 4E-E’) showing that these two 
proximally located regions in the emVE have highly 
distinct phenomic fates during DVE migration.


Finally we performed fate mapping and phenomic 
trajectory analysis of exVE anatomical regions 
(Figure S7A-C). This showed that exVE cells remain 
relatively static in both anatomical fate mapping 
(Figure S7B) as well as phenomic trajectories 
(Figure S7C), in contrast to the dynamic emVE 
behaviour (Figure 4B, Figure S7B, C). Together, by 
incorporating data from across multiple embryos, 
these single-cell phenomic (scPhenomic) analyses 
revealed the salient temporal behaviour and 
morphological changes across the entire VE, during 
DVE migration. 


An unjamming transition occurs not in migrating 
DVE cells but in the cells ahead of them, the 
anterior proximal emVE

Our phenomic trajectory analysis showed that 
despite being highly migratory, anterior DVE 
(Regions 1A and 1B) cells remained largely 
unchanged in morphology during migration (Figure 
4C-D’). Given that the initiation of movements in an 
epithelial context is often considered to involve cell 
shape changes to unjam the migratory tissue, this 
finding was unexpected. To investigate this in further 
detail, we took an integrative, tissue-level, approach 
by pooling phenomic data from across the multiple 
embryos in our spatially and stage-aligned library of 
embryos.


To do this, for each of the nine anatomical regions 
(Figure 5A), we calculated the mean UMAP 
phenomic coordinate at one-hour intervals by 
pooling the cells from each region (see Methods). 
This enabled us to plot the phenomic dynamics for 
each region over the course of DVE migration 
(Figure 5A-E, Figure S7D). To visualise these 
dynamic changes in the context of the embryo, we 
also overlaid heat-maps for these parameters onto 
polar projections of the digitised VE cells (Figure 5 
B-E, Movie S13).


These pooled data confirmed our scPhenomic 
analysis, that anterior DVE cells (Regions 1A and 
1B), had the highest anterior speed (Figure 5B), 
smallest apical surface area (Figure 5C) and 
remained relatively regular in shape throughout 
migration (Figure 5D, E). To understand how cell 
movements vary across regions, we next calculated 
the diffusion coefficient, a measure of the ease of 
mobility of cells (see Methods). We found that 
regions 1A, 1B and 2 had significantly elevated 
diffusion coefficients compared to the other regions, 
consistent with DVE cells being more mobile (Figure 
5F). 


Interestingly, this region-anchored analysis 
highlighted that, corresponding to the onset of 
migration, cells in region 3 (the anterior proximal VE, 
comprising cells ahead of the migratory DVE) 
showed a marked, sustained increase in anisotropy 
of cell shape (Figure 5D). This suggested that it was 
cells proximal to the migratory DVE, not cells of the  

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.03.31.534937doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.534937
http://creativecommons.org/licenses/by-nc-nd/4.0/


DVE itself, that undergo a phase transition and 
become unjammed. A hallmark of the jamming-
unjamming transition is an increase in cell shape 
index, a measure of the perimeter vs. areal cortical 
tension of a cell’s apical surface (Park et al. 2015). 
While most regions, including the DVE, remained 
relatively unchanged in their shape index throughout 
migration, the anterior proximal emVE (Region 3) 
increased significantly in shape index from the onset 
of migration and remained high throughout the 
migration phase (Figure 5E), further supporting the 
notion that these cells are undergoing an unjamming 
transition. 


The jamming-unjamming transition is a tissue-level 
event. To complement our single-cell based 
characterisation of VE cell behaviour with an 
independent, integrative, characterisation of net 
tissue-level behaviour, we performed motion-sensing 
superpixel analysis (Zhou et al., 2019). We 
performed this on all nine Lifeact-GFP embryos in 
our time-lapse library as well as our nine Hex-
GFP:membrane-tdTomato embryos, as the power of 
this approach l ies in i t not requir ing the 
segmentation and tracking of individual cells. We 
first confirmed that this approach was sensitive 
enough to track the rotational movement of single-
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Figure 5. Temporal analysis VE cells in anatomical sub-region. A. Overview of the steps for temporal analysis. B, C, D, E. Plots of 
cumulative anterior speed, apical surface area, aspect ratio and shape index (mean±s.e.m) at one hour intervals for cells from each of 
the five emVE and one exVE sub-regions shown in A. Beside each plot are two time points from a polar projection of a representative 
embryo with the parameter values overlaid on individual cells (also see Movie S13 for entire animation). F. Diffusion coefficient 
(mean±s.e.m) of cells originating in each VE sub-region, over the course of migration. G. Superpixel tracking of tissue behaviour in the 
polar projection of a representative embryo. A grid is overlaid on the embryo and deformed by motion tracking. Equivalent regions in the 
anterior (orange) and posterior  (magenta) proximal emVE are shown prior to migration (t0) and after motion deformation during 
migration (t125’, and t250’) showing tissue-level behavioural differences in shape and size. H. Fractional area change rate measured by 
super-pixel analysis. Region 3, the anterior proximal emVE, is the only region to shows a significant difference compared to other 
regions and is the only region to decrease in surface area during migration. I. Mean isotropic change rate measured by super-pixel 
analysis. Region 3, the anterior proximal emVE, is the only region to show significant difference compare to all other regions, and is the 
only region to show mean negative isotropic strain. 
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cell tracking, by plotting the average superpixel 
motion during migration of Lifeact-GFP embryos 
(Figure S8). Next we seeded a 640-sector grid 
across the VE tissue by subdividing the area within 
each of the 32 original regions into smaller 5x4 
grids, and allowed the motion of super pixels to 
deform the finer grid (Figure 5G, Movie S9, 
MovieS10, Methods). The degree of change over 
time reflects the cumulative effect of all cellular 
events including cell movements, cell shape-change, 
cell division events and cell mixing. We found that 
the anterior proximal emVE tissue region specifically 
underwent a deformation at the onset of migration, 
becoming stretched along the radial axis and 
compressed along the proximo-distal axis at the Em-
Ex boundary (Figure 5G). No other region in the VE 
showed such a high degree of deformation. 
Consistent with the single-cell based findings, this 
analysis verified that Region 3 specifically 
experienced a net reduction in tissue area (Figure 
5H, Movie S14). Importantly, it revealed that this 
region, uniquely within the VE, is subject to 
compression, as indicated by a significant negative 
mean isotropic strain rate (Figure 5I, Movie S14). 
These tissue-level analyses support the idea that the 
anterior proximal emVE specifically is undergoing an 
unjamming phase transition during DVE migration.


Cell intercalation events are restricted to the 
region ahead of the DVE

Potential triggers for unjamming include cell 
divisions (Petridou et al. 2021; Ranft et al. 2010), 
and cell-cell rearrangements (Merkel and Manning 
2017). We therefore next tested whether either of 
these cellular behaviours differed specifically in the 
anterior proximal emVE. 


We compared the number, timing and angle of 
divisions (Figure 6A - C’’, Figure S9A - F) within the 
anterior proximal emVE and the contralateral region 
of the embryo, the posterior proximal emVE. We 
found no significant difference in the number of cell 
divisions events (Figure S9C), consistent with 
previous studies (Stuckey et al. 2011). We also 
found no difference in the timing of cells division 
events in these two regions (Figure S9D,E).  
Furthermore, there was no burst of division events 
prior to-, or at the onset of anterior directional DVE 
migration (Figure S9B). In contrast to the DVE 
(Regions 1A, 1B and 2) where cell division angles 
were uniformly distributed (Figure 6C), division 
angles in the anterior proximal emVE were biased 
along the radial axis (Figure 6C-C’’) (along the girth 
of the embryo - see diagram in Figure 6A). However, 
a similar bias was also found in the posterior emVE 
(Fig 6C-C’’) suggesting that a difference in the 
distribution of division angles is not responsible for 
the specific unjamming in the anterior proximal 
emVE. 


We next analysed our time-lapse data for cell-cell 
intercalation events, where the contact between a 
pair of neighbouring cells is broken by a third cell 
moving in-between them (Figure 6D). We recorded 
the frequency, timing and anatomical region of 
intercalation events across the VE in our time-lapse 

data. In addition to quantifying intercalation events, 
we also visualised them on the polar projections of 
digitised embryos (Figure 6E, Movie S15). This 
revealed a striking localisation within the VE of cell 
intercalation events, that occur almost exclusively in 
the anterior proximal emVE (Figure 6F, G). 
Intercalation events also increased over the course 
of migration, with the majority occurring in the latter 
half of the migration phase (Figure 6H). Cell 
intercalation events within the migrating DVE (1A, 
1B and 2) were exceedingly rare (Figure 6G). As cell 
mixing is a hallmark of unjamming, this further 
supports a model where the anterior DVE remain 
jammed during migration while anterior proximal 
emVE cells undergo unjamming. 


DVE cells have higher apical membrane tension 
than the surrounding emVE

The primary characteristic of jammed tissues is 
mechanical constraint (Lawson-Keister and Manning 
2021; Mitchel et al. 2020). Our single-cell analysis 
showed that migratory DVE cells had higher levels 
of F-actin compared to the surrounding VE, 
suggesting they may be under distinct mechanical 
stresses (Figure 3F - Cluster A & B, Figure 4C). To 
confirm that F-actin levels are indeed higher in DVE 
than surrounding cells, we calculated the relative 
levels of F-actin in each cell, on its apical surface 
and along junctions with surrounding cells. We did 
this using the normalised intensity of the Lifeact-GFP 
signal at one-hour intervals prior to and during 
migration. This revealed that even prior to migration, 
DVE cells show the highest level of F-actin (both 
junctional and apical surface) and maintain this 
difference throughout migration (Figure 7A, B), 
indicating that they might be mechanically distinct 
from surrounding VE cells.


To test this prediction, we made use of a live-cell 
tens ion-sensi t ive dye, F l ipper-TR, whose 
fluorescence lifetime is a readout of tension (Colom 
et al. 2018) and has previously been used to 
characterise mechanical tension in E6.5 mouse 
embryos (Royer et al. 2022). We labelled live wild-
type E5.5 embryos and used the columnar 
morphology of DVE cells (Kimura et al. 2000; 
Rivera-Perez et al. 2003; Srinivas et al. 2004) to 
identify the position of the DVE and categorise 
embryos as ‘early-migration’ stage based on 
whether the DVE was at, or just off-set from, the 
distal tip  (Figure 7C and Figure S10A). We then 
performed fluorescence lifetime imaging microscopy 
(FLIM) to capture a mid-sagittal z-section of each 
embryo, so as to compare the apical membrane 
tension of DVE cells to that of cells in the 
surrounding emVE and exVE. This revealed that 
apical tension in DVE cells was significantly higher 
than that in surrounding emVE, but not significantly 
different from exVE (N=7) (Figure 7C-C’). 


The elevated tension of the DVE could be a property 
intrinsic to DVE cells, or could be the result of their 
being positioned at the distal end of the egg cylinder, 
which is the site of highest curvature. To distinguish 
between these two possibilities, we examined 
embryos prior to DVE induction (Figure 7D-D’) a  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Figure 6. VE cell division angles and cell-cell intercalation events. A. Schematic of cell division angle measurement. B. Example of 
a cell division event from a Lifeact-GFP time-lapse dataset. C. Cell divisions within the distal emVE binned into four angle ranges. The 
distribution was not significantly different from random. 𝜒2  test for expected probabilities, p=>0.05. C’. Cell divisions within the proximal 
emVE binned into four angle ranges. The distribution was significantly different from random. 𝜒2 test for expected probabilities 
p=<0.001. C’’. Cell divisions within the anterior and posterior proximal emVE, binned into four angle ranges. Both regions showed a 
distribution that was significantly different from random. Anterior: 𝜒2  test for expected probabilities p=<0.001, Posterior: 𝜒2 test for 
expected probabilities p=<0.005. D. Example of VE cell-cell intercalation event in Lifeact-GFP time-lapse data showing two 
neighbouring cells (NC1 and NC2, cyan) and an intercalating cell (IC, red) moving in between them. E. Selected time-points from the 
polar projection of a representative embryo showing the position of DVE cells (yellow), neighbouring cells (cyan) and intercalating cells 
(red). See Movie S15 for all frames. F. Position of all intercalation events (cyan) across time, in the embryo in E. G. Regional distribution 
of 60 intercalation events from 5 embryos. X-axis show the region of origin of the intercalating cell (red), and neighbouring cells (cyan). 
The majority of intercalation events (78.3%) occur amongst cells in the anterior-proximal emVE. H. Temporal distribution of 60 
intercalation events from 5 embryos, across the pre-migration phase (5.5%), first half of the migration phase (33.3%) and the second 
half of the migration phase (61.1%).
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stage at which VE cells positioned at the distal tip of 
the egg cylinder have not yet acquired the molecular 
(expression of genetic markers) (Belo et al. 1997; 
Pfister et al. 2007;  Thowfeequ et al. 2021; 
Yamamoto et al. 2004), or morphological hallmarks 
(columnar morphology) of the DVE (Kimura et al. 
2000; Rivera-Perez et al. 2003; Srinivas et al. 2004). 
We found no significant difference in apical tension 
between the pre-DVE cells at the distal tip and the 
surrounding cells in E5.5 pre-induction embryos 
(Figure S10B). Furthermore, the apical tension was 
significantly lower in the cells at the distal tip of pre-
induction embryos than in DVE cells of E5.5 early-
migration embryos (Figure 7D), suggesting that 
elevated membrane tension is acquired by distal 
cells only upon induction to the DVE state and is not 
simply a property of cells by virtue of their position at 
the distal tip of the egg cylinder.


To further test this finding, we examined late-
migration embryos in which DVE cells had moved 
away from the distal tip and towards the Em-Ex 
boundary (Figure 7E-E’). We found that DVE cells 
retained elevated apical tension compared to 
surrounding emVE cells even after they had 
migrated away from the distal tip of the egg cylinder 
(N=7) (Figure 7E-E’). These data further indicate 
that DVE cells remain mechanically distinct from 
surrounding emVE cells even during migration, 
consistent with them remaining in a jammed state, 
as a solid flock.


Given the high levels of F-actin in DVE cells, we 
tested whether elevated apical tension in DVE cells 
might be the result of increased actomyosin based 
contractility, using the Myosin inhibitor blebbistatin 
(Straight et al. 2003). While control DMSO treated 
embryos showed no change in tension after 
treatment (N=9) (Figure S10C-C’), blebbistatin 
treated embryos showed a significant and rapid 
decrease in tension (N=9) (Figure S10C-C’). This 
points to an actomyosin dependent mechanism for 
the elevated apical tension of DVE cells.


Lefty1 dependent modulation of mechanical 
heterogeneity in the VE delimits DVE migration 

DVE cells do not normally migrate into the exVE 
region, despite it being part of the contiguous 
monolayer epithelium of the VE. Instead, DVE cells 
abruptly stop migrating proximally at the exVE and 
start to be displaced laterally (Srinivas et al. 2004; 
Takaoka et al. 2011; Trichas et al. 2011). In both 
E5.5 early-migration and E5.5 late-migration 
embryos, we observed that while the proximal emVE 
cells had a significantly lower tension relative to the 
DVE, exVE cells had a high tension, comparable to 
that of the DVE (Figure 7C, E). We hypothesised 
that this matched high-tension may prevent DVE 
migration into the exVE. To test this hypothesis, we 
measured VE cell tension in Lefty1 null mutants 
(Meno et al. 1998) (Figure 7F-F’, and Figure S10D-
D’) in which DVE cells abnormally over-migrate into 
the exVE (Trichas et al. 2011). While E5.5 mid-
migration WT (N=3) and heterozygous Lefty1-/+ 
embryos (N=3) showed no difference in tension 
between DVE and exVE (Figure 7F), mid-migration 

Lefty1-/- null mutants (N=3) had significantly lower 
anterior exVE tension compared to DVE cells 
(Figure 7F). This was due to a significantly reduced  
tension in the anterior ExVE of mutants in 
comparison to WT and heterozygous embryo, while 
the  tension of mutant DVE cells was unaffected 
(Figure 7F). Furthermore this lower tension was 
found only in the anterior exVE of mutants embryos, 
but not their posterior exVE (Figure S10D’). This 
lowering in apical membrane tension in the anterior 
exVE could help explain the over migration 
phenotype observed in Lefty1 null embryos.


DISCUSSION


DVE cells remain as a solid flock during 
collective migration

DVE migration takes place in an intact monolayer 
epithelium requiring extensive coordination of cell 
behaviour, so as to retain tissue integrity while 
enabling dynamic movements. By generating a 
multi-embryo, single-cell resolution longitudinal 
dataset through lightsheet microscopy, and 
developing a computational pipeline to extract and 
analyse fundamental VE cell morphological and 
behavioural parameters, we have been able to 
decompose global tissue-scale events to their 
component cellular behaviours. We find that, in 
contrast to other epithelial tissues where the onset of 
cell movement often involves a transition of cells to a 
fluidised state, the DVE remains in a jammed state 
throughout migration. It is the non-migratory VE cells 
ahead of the DVE that show hallmarks of an 
unjamming transition (cell shape changes and 
mixing), leading to fluidisation of the tissue. 
Migrating DVE cells in contrast show hallmarks of 
the jammed state (Lawson-Keister and Manning 
2021) such as crowding and elevated tension with 
little change in the shape or size of cells. By 
remaining in a jammed state, DVE cells are bound 
together as a collective, enabling them to migrate via 
basally located projections (Migeotte et al. 2010; 
Srinivas et al. 2004), as a coherent group displacing 
the anterior emVE cells ahead of them. 


This finding suggests that DVE cells migrate as a 
solid flock, and offers the first in vivo example of this. 
It supports the more nuanced way of considering the 
role of the unjamming transition in the context of 
epithelial migration, where unjamming need not be 
an obligate characteristic of migrating cells, but can 
be a property of cells being deformed by an actively 
migrating collective of cells moving as a solid flock 
(Lawson-Keister and Manning 2021). In the case of 
the VE, the solid flock of DVE cells might even be 
responsible for triggering the unjamming liquefaction 
of the cells ahead of them, by changing the 
directional stress they are subject to (Cates et al. 
1998; Liu and Nagel 1998). One characteristic of 
solid flocks is that they are ‘self-propelled’. Migrating 
DVE cells show hallmarks of active migration, such 
as cell projections polarised in the direction of 
motion (Srinivas et al. 2004), and being dependent 
on the molecular regulators of active cell migration 
NAP1 (Rakeman and Anderson 2006) and RAC1 
(Migeotte et al. 2010). 
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Figure 7. Migratory DVE cells show elevated apical F-actin and higher membrane tension. A. Plot of relative apical Lifeact-GFP 
intensity (mean±s.e.m) at one hour intervals for cells in each of the five emVE and one exVE sub-regions shown in the inset. B. 
Extended focus surface projection of Lifeact-GFP intensity from multiple time points of a representative embryo. The arrow shows the 
position of the same DVE cell at each time point. C, D, E, F. Fluorescence lifetime imaging microscopy (FLIM) and quantitation of 
FLIPPER–TR membrane tension reporter in mid-sagittal optical sections. C. Apical membrane lifetime of DVE cells, emVE cells not 
belonging to the DVE, and exVE in early migration embryos (N=7). Apical lifetime was significantly higher in DVE and exVE compared to 
emVE, reflecting a higher tension in the former two regions (one-way ANOVA, p=<0.01, followed by Tukey’s HSD Test on DVE vs. 
emVE (p =<0.01) and exVE vs. emVE (p=<0.05)). There was no significant difference between DVE and exVE (Tukey’s HSD Test: 
p=>0.05). D. Apical membrane lifetime of cells at the distal tip of E5.5 embryos prior to (N=7) and after (N=7) they had acquired DVE 
identity. Apical lifetimes were significantly higher in DVE cells, compared to cells from pre-induction embryos (Student’s t-test, p=<0.05).
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Flocking behaviour can be described as either ‘solid’ 
or ‘liquid’ depending on the extent of local cell mixing 
superimposed on the long-range correlated 
movement of the flock (Giavazzi et al. 2018; Trepat 
and Sahai 2018). Given that DVE cells have an 
important signalling role in pattering the epiblast, 
migration as a solid flock might be necessary for it to 
remain as a coherent cell population so that the 
signals emanating from it can be properly localised, 
rather than being diluted or misplaced by dispersal 
of DVE cells were they to migrate through 
unjamming or as a liquid flock. Interestingly, 
embryos mutant for Nap1 (Rakeman and Anderson 
2006), or in which PCP signalling is disrupted 
(Trichas et al. 2011), show an abnormal dispersal of 
AVE cells within the visceral endoderm similar to 
what a migrating liquid flock might be expected to 
resemble, pointing to potential molecular modulators 
of flocking properties of DVE cells. Flocking 
behaviour can be induced in confluent human 
mammary epithelial cells by over expression of 
Rab5a, a regulator of endocytosis that is thought to 
promote junctional remodelling in this context 
(Malinverno et al. 2017). It is unknown what 
happens in the VE if one perturbs Rab5 function, but 
embryos genetically null for another endocytic 
regulator, Rab7, show patterning defects consistent 
with defective  DVE induction or migration 
(Kawamura et al. 2012). Though the precise cause 
of the defect in these mutants is unclear, this 
presents the possibility that  endocytosis might be 
modulating junctional remodelling in the  the mouse 
embryo as well.


We had previously reported that neighbour 
exchange was restricted to the emVE and not seen 
in the exVE but due to limitations in imaging, could 
not tell whether neighbour exchange occurred in the 
posterior VE (Trichas et al. 2011). Lightsheet image 
volumes and our digitised embryos allow us to 
examine the entire surface of the egg cylinder and 
reveal the striking extent to which neighbour 
exchange events are restricted to only the anterior 
emVE, supporting the idea that it is this region 
specifically that is undergoing unjamming.


Studies of cell migration in other models generally 
consider relatively flat expanses of tissue composed 
of many cells. The difference we observe in the 
mouse VE might be because it is only a distinct 
subset of the VE, the DVE, that shows migratory 
movement. It might also be due to the cylindrical 
arrangement of the VE, with a relatively small 
circumference and high curvature. The range of 
shape index values we recorded for VE cells differed 


from the critical shape index of 3.81 reported for 
jamming in 2D epithelia (Park et al. 2015), 
presumably due to the intrinsic 3D curvature of the 
VE. This highlights the potential influence of overall 
tissue topology on the properties and collective 
behaviour of component cells. It will be interesting in 
future studies to examine other cylindrical epithelia 
such as the ureteric branches of the developing 
kidney or pulmonary branches of the developing 
lung to determine to what extent behaviours in 
cylindrical epithelia differ from those in relatively flat 
epithelia.


Regional heterogeneity of behaviour and 
mechanical state circumscribes DVE migration

DVE ce l l s become more co lumnar t han 
neighbouring VE cells upon induction and remain 
that way throughout their movement (Kimura et al. 
2000; Rivera-Perez et al. 2003; Srinivas et al. 2004). 
Here we show that distal VE cells prior to induction 
are squamous and have a similar membrane tension 
to the surrounding emVE. When they are induced to 
form columnar DVE cells, apical tension increases. If 
columnarity is linked to the cells occupying a 
different mechanical regime, it might explain why 
DVE cells first undergo this change, perhaps to 
increase their contact area, allowing them to adhere 
more effectively to each other and facilitating their 
migration as a collective through the surrounding VE 
cells. We also note from other studies that DVE cells 
express elevated levels of specific cytoskeletal 
modulators, Keratin19 and Drebrin molecules 
(Thowfeequ et al. 2021), and Keratin8 (Despin-
Guitard et al. 2022) that could provide additional 
mechanical differences. 


The significantly higher tension of DVE cells relative 
to surrounding emVE cells suggests a model 
whereby the high-tension collective of DVE cells 
migrate through a ‘permissive’ lower tension emVE. 
DVE does not normally migrate into the exVE 
despite this being part of the continuous monolayer 
tissue of the VE. We find that in wild-type embryos, 
the emVE shows a similar tension to that of the 
DVE, both higher than that of the emVE. These 
findings could explain why DVE migration results in 
a rotational, flow-like pattern in the emVE as shown 
by us and others (Shioi et al. 2017; Takaoka et al. 
2011; Trichas et al. 2011), that may emerge as a 
consequence of the jammed DVE population 
deforming the unjammed emVE against the 
relatively high-tension exVE, that defines the limits 
of DVE migration. Interestingly, these tissue-wide 
movements appear similar to the ‘polonaise’ 
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E. Apical membrane lifetime of late-migration DVE cells, emVE and exVE from E5.5 embryos (N=7). Lifetimes were significantly higher 
in migrated DVE than in the remaining emVE (one-way ANOVA, p=<0.001, followed by Tukey’s HSD Test, p =< 0.01) and in exVE 
compared with emVE (Tukey’s HSD Test, p=<0.01). F. Apical membrane lifetime of mid-migration Lefty1-/- null (N=3), Lefty1+/- 

heterozygous (N=3) and wild type (N=3) embryos. There were significant differences in tension based on genotype and region of the 
embryo, one-way ANOVA, p=<0.001, followed by Tukey’s HSD Test for specific comparisons. There was no difference in lifetime 
between anterior exVE and migrated DVE in WT or Lefty1+/- heterozygous embryos (Tukey’s HSD Test, p=>0.05 for both comparisons). 
However in Lefty1-/- mutant embryos, anterior exVE had a significantly lower lifetime than the DVE (Tukey’s HSD Test, p=<0.01). 
Furthermore, the anterior exVE from Lefty1-/- mutant embryos had significantly reduced tension when compared with the DVE and 
anterior exVE of wild type and Lefty1+/- heterozygous embryos (Tukey’s HSD Test on Lefty1-/- anterior exVE vs. wild type DVE 
(p=<0.05), wild type anterior exVE (p=<0.05), Lefty1+/- heterozygous DVE (p=<0.01) and Lefty1+/- heterozygous anterior exVE 
(p=<0.001)). F’. In inset images; dotted line marks the emVE - exVE boundary and arrows highlight cells in the anterior exVE region. 
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movements in the pre-gastrulation chick epiblast 
(Cui et al. 2005; Graper 1929; Voiculescu et al. 
2007; Wetzel 1929) which has also been shown to 
be surrounded by a high-tension boundary 
(Saadaoui et al. 2020), though in this case, the 
cellular mechanisms (mediolateral intercalation 
events, oriented cell divisions)(Firmino et al. 2016; 
Voiculescu et al. 2007) appear to be different.


In Lefty1 null mutants, the DVE over-migrates into 
the exVE region (Trichas et al. 2011). Our finding 
that in these mutants, the tension is lower in anterior 
exVE but not the DVE, suggests that in the wild-type 
embryo, exVE is a barrier to migration because its 
mechanical properties are matched to those of the 
DVE and that a differential in tension is required for 
migration. This opens up the interesting possibility 
that patterned differentials in tension across epithelia 
might be a general mechanism through which cell 
movements is controlled in other epithelial contexts.


As Lefty1 is expressed in DVE cells, how its loss 
leads to reduced tension in the exVE is unclear, 
though as a secreted ligand, it could be expected  to 
have non-cell-autonomous effects on nearby tissues. 
LEFTY1 is an inhibitor of the TGF-β family member 
NODAL, that has recently been shown to mediate an 
unjamming transition during zebrafish gastrulation 
(Pinheiro et al. 2022). In this system, a gradient of 
NODAL leads to unjamming mediated by changes in 
cell motility (Pinheiro et al. 2022). Though the 
cellular mechanism of unjamming in the mouse egg 
cylinder appears to be independent of cell motility, it 
is possible that it is still ultimately mediated by 
LEFTY1 acting via NODAL signalling. Nodal is 
expressed in the DVE  (Brennan et al. 2001; 
Thowfeequ et al. 2021) and its downstream 
effectors, SMAD2/3 are nuclear localised in VE cells 
(Yamamoto et al. 2004; Yamamoto et al. 2009), 
indicative of active NODAL signalling. Furthermore, 
we have previously shown that Nodal and Lefty1 
mutant embryos mislocalise the Planar Cell Polarity 
protein DVL2 (Trichas et al. 2011), suggesting a 
possible mechanism by which LEFTY1 might 
modulate the behaviour and mechanical properties 
of the VE. 


Molecular regulat ion of pat terned cel l 
behaviours in the Visceral Endoderm 

What are the molecular players regulating 
regionalised behaviours in the VE? Our recent 
transcriptomic analysis of the E5.5 VE (Thowfeequ 
et al. 2021) has identified two distinct transcriptional 
sub-clusters within the DVE that spatially correspond 
roughly to the phenomic clusters A and B (Anterior 
DVE1 and 2 respectively), allowing one to postulate 
a transcriptional underpinning to the phenomic 
grouping. Our transcriptomic characterisation also 
identified a novel role for Ephrin and Semaphorin 
signalling in the VE (Thowfeequ et al. 2021), that 
might be involved in establishing the behavioural 
and mechanical differences we observe between the 
DVE, surrounding emVE and exVE. 


We also note that the anatomically restricted cell-cell 
intercalation events that we observed in the anterior 

proximal emVE corresponds to a region that 
expresses DKK1 (Kimura et al. 2001; Thowfeequ et 
al. 2021). In addition to acting as an inhibitor of the 
canonical WNT pathway, DKK1 has been shown in 
zebrafish to also interact in the WNT-PCP pathway 
(Caneparo et al. 2007), which can regulate cell-cell 
rearrangements in other developmental contexts 
(Voiculescu et al. 2007; Wallingford et al. 2000; Yang 
and Mlodzik 2015). It is possible that DKK1 might be 
facilitating the neighbour exchange and cell shape 
changes that lead to the unjamming of anterior 
proximal emVE cells. 


Single-cell phenomic analysis to identify 
localised behaviours and morphologies 

Analyses of lightsheet time-lapse datasets during 
development have predominantly focused on cells 
tracked using nuclear markers, or involved the 
analysis of pre-selected sub-groups of cells, or the 
averaging of behaviour over time. By using 
lightsheet microscopy to image entire volumes of 
Lifeact-GFP expressing embryos, we were able to 
generate data on the cell outlines of all the VE cells 
of the cylindrical embryo. In order to leverage our 
rich, longitudinal dataset, we developed a machine-
learning based approach to segment cells and a 
quantitative methodology to unbiasedly study the 
changing phenotypic characteristic of cells – a single 
cell ‘phenomics’ approach. Using this novel 
methodology, we were able to integrate data from 
across multiple embryos and leverage the large 
numbers of cells and time points to identify distinct 
morphological and behavioural sub-clusters which 
are spatially ordered in the embryo, leading to the 
insights on DVE migration presented here. This 
approach is applicable to a variety of contexts and 
we anticipate that it will be a valuable method for 
other researchers generating and analysing similarly 
high temporally and spatially resolved data. 
Similarly, our extensive dataset of curated 
longitudinal cell phenotypes represents a unique 
resource to colleagues for developing and testing 
theoretical models.
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METHODS


Mouse Strains, Husbandry, and Embryo Collection 

Genetically modified mice were maintained on a mixed C57Bl/6 CBA/J background. The Hex-GFP line 
(Rodriguez et al. 2001) was bred into the ROSA26mTmG (Muzumdar et al. 2007) background to create a 
double homozygous line. Hex-GFP:membrane-tdTomato stud males were crossed with CD1 females 
(Charles River) for live imaging experiments. The Lifeact-GFP line (Riedl et al. 2010) was maintained as a 
heterozygous line and crossed with CD1 females (Charles River) for live imaging experiments. For FLIM 
experiments C57Bl/6 studs were crossed with CD1 females for all wild-type analysis. Lefty1 (Meno et al. 
1998) mice were crossed for FLIM experiments and mutants identified post-imaging though PCR genotyping 
as previously reported (Trichas et al. 2011). All mice were maintained on a 12 hour light, 12 hour dark cycle. 
Noon on the day of finding a vaginal plug was designated 0.5 days post coitum. Embryonic day 5.5 (E5.5) 
embryos were dissected in M2 medium (Sigma) with fine forceps and tungsten needles and transferred into 
pre-heated culture medium (as per (Trichas et al. 2011)) supplemented with antibiotics, and placed in an 
incubator at 37°C, 5% CO2 prior to imaging.


Embryo mounting for lightsheet imaging

Low melting point agarose (2%) (Sigma) in 1 x phosphate buffered saline was drawn up into a 20 µl glass 
capillary (Brand, 701904) using a teflon coated plunger (transferpettor piston rod) (Brand, 701934). A lumen 
was created within the agarose cylinder using a 150 µm diameter copper wire. Once solidified, the wire was 
removed, the end of the cylinder was sealed with agarose and a window to the lumen was cut with a razor 
blade. Two embryos, with their proximal ends opposing one another were transferred into the lumen of the 
agarose cylinder in a 35 mm petri-dish filled with culture medium. The agarose supporting the embryos was 
withdrawn into the glass capillary, the capillary was then transferred to the imaging chamber of a ZEISS Z1 
lightsheet microscope. Once positioned in the imaging chamber, the agarose supporting the embryos was 
extruded proud of the glass capillary prior to imaging. 


Lightsheet time-lapse imaging 

Embryos were imaged in a ZEISS Z.1 lightsheet microscope using a plan-apochromat 63X/1.0 NA water 
immersion lens.  Full volume z-stacks 1920 x 1920 pixels, 16bit resolution of each embryo were obtained at 
a 2 µm interval, recorded sequentially from 2 imaging angles (0° and 180°), with a 135 µW ± 228 nW 488 nm 
(Coherent) or 106.9 µW ± 248 nW 561 nm laser (Coherent) 106.9 µW ± 248 nW for eGFP and tdTomato, 
respectively. For Hex-GFP:membrane-tdTomato, eGFP and tdTomato channels were obtained in parallel 
using a 561 LP secondary beam splitter. Each z-plane was illuminated sequentially with right and left 
illumination pivot scans oscillating at 23 kHz. The laser lightsheet was focused through a pair of 10X/0.2 NA 
lenses and the paired lateral illuminations were fused using ZEN Black (ZEISS) “online dual-fusion” setting. 
For Lifeact-GFP embryos a pair of z-stack volumes were acquired every 5 minutes. For Hex–
GFP:membrane-tdTomato experiments a pair of 2-channel z-stack volumes were acquired every 10 minutes. 
All equipment was sterilised prior to each experiment by autoclaving or UV and Ozone treatment in a cool-
CLAVE steriliser (AMSBIO).
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Immunofluorescence

Embryos were fixed in 4% PFA at room temperature for 20 min, washed at room temperature three times for 
5 min each in 0.1% Triton-X100 in PBS; incubated in 0.25% Triton-X100 in PBS for 25 min; washed three 
times in 0.1% Tween-20 in 1xPBS; blocked with 2.5% donkey serum, 2.5% goat serum, and 3% Bovine 
Serum Albumin (BSA) in 0.1% Triton-X100 in PBS overnight; then incubated overnight at 4°C in primary 
antibodies diluted in 1:100 in blocking solution. Embryos were washed three times in 0.1% Tween-20 in PBS 
(PBT) for 5 min each, with a final additional wash for 15 min; incubated overnight at 4°C with appropriate 
secondary antibody 1:100 in 0.1% PBT; embryos were incubated with phalloidin at 1nM concentration in PBT 
overnight at 4°C, washed four times for 5 min in PBT at room temperature; and finally mounted with 
Vectashield mounting media containing 4′,6-diamidino-2-phenylindole (DAPI) (Vector Labs H-1200).


Antibodies and Phalloidin

Primary antibodies used were 1:100 goat anti-AMOT (Santa Cruz, 82491), 1:100 rabbit anti-CDX2 (Cell 
Signalling, 9775), 1:100 rabbit OCT-4 (Abcam, ab200834), 1:100 rabbit anti-OTX2 (Cell Signalling, 11943S). 
Secondary antibodies used were 1:100 Alex-Fluor (AF)-555 donkey anti-rabbit (Invitrogen, A31570), 1:100 
AlexFluor (AF)-633 donkey anti-goat (Invitrogen, A21082). For F-actin staining phalloidin-atto 647N (Sigma, 
65906) or Alexa Fluor 488 phalloidin (Invitrogen, 49409) were used at a 1nM final concentration in PBT. 


Confocal Microscopy of fixed embryos

Fixed embryos were imaged on a ZEISS LSM 880 confocal microscope using a 40x oil (1.36NA) objective. 
Z-stacks of embryos were acquired at 1 µm interval using non-saturating parameters. 3D opacity rendering 
images were made using Velocity Software (Improvision). Figures were prepared with Adobe Photoshop and 
Adobe Illustrator (Adobe Inc.). 


FLIM experiments 

Fluorescence lifetime imaging (FLIM) experiments were carried out as previously reported (Royer et al. 
2022). For wild-type C57Bl/6 (Charles River) studs were mated with CD1 (Charles River) females to 
generate E5.5 embryos that were dissected in phenol red-free M2. Embryos were then transferred to 8-well 
imaging plates (No. 1.5 glass. ThermoFisher Scientific) and incubated at 37°C in 250 µls of 1 µM FLIPPER-
TR probe (Spirochrome, SC020) membrane tension reporter  (Colom et al. 2018), and diluted in phenol-free 
M2. The 8-well imaging chambers were mounted on the pre-heated stage of an Leica SP8 with a Fast 
Lifetime Contrast (FALCON) module allowing for acquisitions at high photon counts using LAS-X (Leica 
Microsystems) software for acquisition and pre-processing. Embryos were imaged at 37°C using a 20x water 
immersion objective (Leica C PL APO CS2 20x/0.75 IMM). FLIPPER-TR was excited at 488 nm with a tuned 
white light laser (WLL: NKT Photonics) pulsing at 20 MHz. Zoom was at 2.2 x yielding an 264.4 um2 field of 
view covered by 1024 x 1024 pixels. The pinhole was set to 1.2 AU, scan speed 200 Hz and 25 repeats were 
acquired. Fluorescence was collected from 499 - 701 nm on an HyD-SMD detector (Leica Microsystems). 
Pixels were binned by a factor 4 to increase signal to noise and confidence in photon arrival times. Pixels 
containing only background photons (less than 50 counts) were removed. Lifetime images were generated 
using the Phasor-FLIM workflow in LAS-X. We used the phasor plots and a rainbowfalse-colouring from 3.75 
- 4.75 nm to aid in visualisation of membrane tension differences. For quantification, Phasor-FLIM images 
were exported to .tiff (using 0.01 lifetimes per grey level) and were further processed using the macro 
previously developed (Royer et al. 2022). ROI’s were drawn in FIJI using the intensity tiff image to 
unambiguously identify the apical membrane of each VE cell. The ROI was then applied to the lifetime 
channel alone and the lifetime vales per pixel within each region saved to a .csv file. Embryos were staged 
through morphological assessment of the position of columnar DVE cells, and the apical membrane lifetime 
vales from multiple embryos from each stage were combined for further analysis in R to calculate mean 
lifetimes of the apical membrane of VE cells using the tension-sensitive lifetime range of 2.8 - 7 ns (Colom et 
al. 2018). Lefty1 (Meno et al. 1998) FLIM experiments embryo were carried out as above. Post-imaging, all 
embryos were recovered and processed for PCR genotyping. For pharmaceutical inhibitor culture FLIM 
experiments, embryos were prepared as above in 8-well imaging plates incubated in 1 µM FLIPPER-TR 
probe and a baseline FLIM acquisition of a single mid-sagittal optical section captured of each embryo. Each 
well was then further incubated with  either 2  µM blebbistatin (Sigma), or 1:1000 DMSO as a vector control, 
for 30 minutes before a second FLIM  acquisition was taken. For analysis a total of 9 embryos incubated with 
DMSO, and 9 with blebbistatin, were analysed and the baseline compared with the 30 minutes treatment 
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across each group. 


STrEAMS (Spatio-Temporal Embryo Analysis at Multiple-Scales) data processing framework 

Figure S3 illustrates the key steps to process raw .czi (Carl Zeiss Imaging Format) two-angle, z-stack time-
lapse data of live E5.5 embryos imaged using a ZEISS Z.1 lightsheet microscope. 3D z-stack time-lapse 
data were processed to obtain a 2D “unwrapped” view of the apical surface of the visceral endoderm (VE) for 
quantitative analysis. As the visceral endoderm epithelium remains as a monolayer throughout DVE 
migration (Trichas et al. 2011), projection from 3D-to-2D significantly simplifies the segmentation and tracking 
of all VE cells. By retaining each cells’ original coordinate information, calculation of 3D corrected values is 
enabled, allowing for the efficient integration of cell behaviour with cell morphology analysis. Processing can 
be grouped into three distinct modules; pre-processing, spatiotemporal registration and 3D-to-2D VE apical 
surface projection (“unwrapping”). The input to the framework is a volumetric time-lapse of an embryo from 
two angles. The output is the unwrapping coordinate mapping from 2D-to-3D and the unwrapped 2D time-
lapse of the apical surface of the VE monolayer.


Data preprocessing

The  raw image data, stored in the ZEISS CZI image file format, of two angle (0° and 180°) z-stack volume 
acquisitions and all time-points from the ZEISS Z.1 lightsheet microscope were processed to make voxels 
spatially isotropic by image interpolation and to make the full volumetric time-lapse of an embryo 
computationally tractable for registration on a single PC; by 16bit to 8bit conversion, volumetric downsizing 
by a factor of 2 and cropping out empty voxels using a bounding box. The resulting volumes are saved as .tif 
per angle, per time-point and has an isotropic xyz voxel resolution of 0.363 µm; a size of 200MB per 8bit .tif 
file, 30-45GB for the whole time-lapse with two acquisition angles per time-point.


Intensity-based spatiotemporal registration

We spatiotemporally register both angles and all time-points in a multi-step procedure to obtain a single 
fused volumetric time-lapse capturing only cell movement independent from motion artefacts and embryo 
growth. Importantly all transformations are reversible, enabling accurate single-cell quantification data to be 
calculated, reincorporating growth and 3D shape information.


Rigid registration

Using time-point 1 (t1) as the reference volume, we temporally registered all volumes captured from angle 1 
in sequential manner using Matte’s mutual information (Mattes et al. 2001; Raghunathan et al. 2005) and 
similarity transformation; permitting only translation, rotation and scaling (Fig S3A, step i). The typical default 
parameters for similarity registration were (750, 750, 100) iterations at downsampled scales of [16,8,4] using 
Matlab’s imregtform. Translation compensates for the drift of the embryo and rotation for global rotations of 
the embryo around and towards the embryonic long axis. Scaling removes the components of cell movement 
due to embryo growth over the imaged duration. The rigid registered volumes isolate only the components of 
relative cell movement caused by cell migration and cell shape change.


Angle alignment

To combine angle 1 with angle 2, we rotate angle 2 by the known angle (1800) and refine the alignment by 
translation-only registration (and Matte’s mutual information metric) to the matched pre- temporally registered 
angle 1 as reference (Figure S3A, step ii). The typical default parameters for translation registration were 
(1250, 1250, 100) iterations at downsampled scales of [16,8,4] using Matlab’s imregtform. This step 
reasonably assumes that any embryo rotation and growth is negligible in the 30s between the imaging 
angles (20s to image the volume, 10s to reset). The angle 1 temporal transforms are applied to the angle 1 
spatially aligned angle 2 volumes to obtain an equivalent temporally registered angle 2 time-lapse at all time-
points for fusion (Figure S3A, step iii). 


Tilt correction

To enable coherent 2D surface projections of 3D volume data, the long (proximal-distal) axis of each embryo 
was manually aligned using morphological landmarks (ectoplacental cone, columnar DVE cells, epiblast 
tissue) to correct for any tilt in their mounting. Due to the prior temporal registration, the tilt correction angle 
had only to be found for t1 and could then applied to all other time-points to obtain spatiotemporally 

∼

∼
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registered and proximo-distally aligned volumes for both angles. 


Angle fusion

The two-angle acquisitions at each time-point were fused using a custom sigmoidal blending scheme, with a 
specified depth parameter marking roughly half way through the embryo. The sigmoidal blending allows a 
smooth transition of pixel intensity between the two angles at the fusion depth parameter. The depth 
parameter was manually specified per embryo due to the asymmetric exposure mentioned above. 


Non-rigid registration

We lastly use non-rigid registration (Demons (Thirion 1998; Vercauteren et al. 2009), Matlab imregdemons) 
to match the outer embryo shape over time to the shape at a reference time-point half-way through the time-
lapse. This step is essential to compensate for embryo shape variations and create a static reference volume 
for surface unwrapping and tracking single cells. To ensure warping of the outer shape with minimal impact 
to individual cells, multi-scale non-rigid registration was applied to downsampled volumetric images at three 
different resolutions, 4x, 8x and 16x such that the embryo-level detail of the outer edge of the embryo and 
the inner cavity were apparent, but not the cellular detail. The regularisation parameter in the optimisation 
objective of Demons was manually determined per embryo to find a balance between visualisation of cell 
shapes and the embryonic surface. 


3D-to-2D VE apical surface unwrapping

The 3D apical VE surface was re-projected (‘unwrapped’) to 2D to enable the visualisation of the entire 
circumferential surface of each embryo in a single flat image for subsequent analysis. This process 
encompasses three steps; semi-automatic binary embryo segmentation to generate the VE surface to 
unwrap as a collection of  surface coordinates; specifying the 3D-to-2D unwrapping transformation 
and projecting the 3D image to 2D image intensities by interpolation. Due to the spatial-temporal registration 
(above) the unwrapping transform needs to only be generated for t1, then iterated across all subsequent 
time-points in the time-lapse.


Semi-automatic binary embryo segmentation

An initial binary segmentation capturing the VE surface was automatically found either by binary Otsu 
thresholding or by using a fixed intensity threshold followed by a series of opening and closing 3D 
morphological operations. The automatic result was then manually refined slice-by-slice per embryo, from 
proximal to distal. The corrected binary was downsampled, smoothed, and re-upsampled to generate the 
final surface. The concatenation of all slice-by-slice contour points along the proximal-distal axis generates 
the  surface coordinates for re-projection (unwrapping). 


Find 3D-to-2D unwrap coordinates


In order to unwrap, we need to parameterise; resample and find a new set of  surface points where 

each  also has a unique ) coordinate thereby generating unique 5-tuples, . This is 

guaranteed when we choose  to be the geodesic distance of  along the curved embryo surface 

relative to a fixed specified reference coordinate, ( ) (here the distal most surface point along the 

long embryo axis through the embryo’s centroid), and  is the radial rotation angle. We developed 

a two-step approach to generate  from the input surface coordinates from the previous binary 
segmentation which we denote  in this section. The first step generates  by binning 
the data into angle bins and applying spline fitting, smoothing and resampling in each bin. The second step 
generates the desired  from the first step, binning the points into  bins and applying 
spline fitting, smoothing and resampling in each bin. In particular, the resampling is a crucial step to ensure 
the embryo surface has been uniformly sampled. We let  and  denote the output from the first and second 
step respectively.


Step 1. From  to . For input  surface coordinates from binary 

(x , y, z)

(x , y, z)

(x , y, z)
(x , y, z) (s, θ (x , y, z,  s,  θ )

s (x , y, z)
x0, y0, z0

θ ∈ [0,2π]
(x , y, z,  s,  θ )

(x0, y0, z0) (x′￼, y′￼, z′￼,  s′￼)

(x′￼′￼, y′￼′￼, z′￼′￼,  s′￼′￼,  θ ′￼′￼) s

′￼ ′￼′￼

(x0, y0, z0) (x′￼, y′￼, z′￼,  s′￼) (x0, y0, z0)
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segmentation, compute the radial angle,  relative to the fixed distal 

reference coordinate,  and let  denote the proximal-distal axis. This is appended to each 

coordinate to produce 4-tuples, . Discretising the angle space, -  radians into 480 

bins we assign each  surface points into one of the bins according to . In each angle bin, the 
coordinates represent unordered sampling of a line segment cross-section of the embryo surface. To obtain 
a uniform sampling and to measure exactly the geodesic distance we use splines; fitting an independent 
spline for -, -, - coordinate. To fit the spline, we must first order the  in the bin according to 

their geodesic distance from the reference ( ). For embryos, which are smooth and pseudo-
cylindrical and therefore largely convex, we use the Euclidean chordal distance as a good surrogate to the 
unknown geodesic distance that preserves the relative distance ordering from ( ). A cubic spline was 

then used to parameterise and fit a smooth line through each of the sorted -, -, - coordinate with a 

function,  of a single variable  with value from 0-1 such that . 

The variable  corresponds to a normalised geodesic distance, that is when we evaluate  in 1000 equal 

increments, the output  coordinates are 

ordered, lie on the embryo surface cross-section and the distance between them are the same. We can 
compute  for each generated  as the cumulative sum of all pairwise differences preceding the 

point in the order. For example,  of the 5th point is the sum of the distances of the first point to ( ), 
the second to the first, the third to the second, the fourth to the third and the fifth to the fourth. Applying the 
described spline parameterisation to points in every angle bin, resampling 1000 points per bin gives the full 
set of  coordinates.


Step 2. From  to . Step 2 smooths the obtained coordinates angularly before 
recomputing the associated angle, . This helps reduce discontinuous artefacts that may arise from 
processing the embryo with independent 1d splines in step 1. Similar to step 1, we discretise the range of the 
geodesic distance,  from 0 to , the maximum distance into bins of increments 1 voxel i.e. 0,1,2,3…., 

[ s’max ]+1 where [ . ] is the ceiling function. Similarly we assign each  point into one of the bins 

according to . These points represent a concentric cross-section of the embryo. For each bin, we thus sort 

the points angularly according to computed , where  is the 

centroid of the coordinates in the bin. We then fit a periodic smooth cubic spline for each , , ,  to obtain 
i n d i v i d u a l f u n c t i o n s ,  o f a s i n g l e v a r i a b l e  w i t h v a l u e f r o m 0 - 1 s u c h t h a t 

. Again, the variable  corresponds to a normalised 

angular distance, such that the cumulative angular differences is the cross-section circumference and we 
can resample 1000 equi-angularly spaced points with refined coordinates,  per bin. Doing so 
f o r a l l b i n s w e f i n a l l y p r o d u c e t h e f i n a l s e t o f 5 - t u p l e  w i t h 

 computed relative to the fixed distal reference coordinate, .


Project image 3D-to-2D


To obtain a 2D unwrapped projection image of the embryo surface we populate an  image grid of 
desired  coordinates and use -nearest neighbours  trained on  to get the 
matching  image grid of  coordinates. This is often called pullback. Trilinear interpolation 
of the volumetric pixel intensity at the   coordinates for every time-point of the 
spatiotemporally registered embryo produces the final unwrapped 2D time-lapse videos for each embryo. We 
used two different   coordinate grids to compute two different projections; the Cartesian 
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and Polar geodesic projections. 


Cartesian geodesic projection. This pseudo-cylindrical projection creates the  grid with the 
geodesic distance  as the row coordinate and radial angle  the column coordinate.  equally samples to [ 
s’’max ]+1 where [ . ] is the ceiling function i.e. we let M = [ s’’max ]+1.  equally samples 0 to -  radians with 

 equal bins.  is chosen so that the ratio  preserves where is the maximum 
cross-section circumference of a -bin from Step 2 above. 


Polar geodesic projection. This projection creates the  grid (i.e. ) such that the geodesic 
distance  and the radial angle  are the polar coordinate of the image grid i.e. if  denotes the image 
row and column coordinate respectively then :


. We choose  to be [ 1.2 [ s’’max ] / 2 

] where [ . ] is the ceiling and [ . ] the floor functions respectively. This means that the radial distance of  

from the image centre,  equally samples to 1.2 [ s’’max ] with  bins for  
radians.


3D-to-2D unwrapping inevitably distorts the true Cartesian surface distances. By construction the Cartesian 
geodesic projection best preserves distances of the cylindrical embryo surface whilst the Polar geodesic 
projection best preserves distances around the distal tip where DVE cells originate and migrate from. Note 
since there is bijection between the  image grid of  and the  grid of  we 
can always remap any processing in the subsequent analyses done in 2D back into Cartesian 3D to obtain 
true geometric measurements.


Tissue motion extraction for alignment and staging

To extract the tissue motion prior to cell segmentation we used motion sensing superpixels (F. Y. Zhou et al. 
2019). Instead of using the Farneback optical flow (Farnebäck 2003) as per the original publication, we used 
DeepFlow (Weinzaepfel et al. 2013) that captures the collective tissue dynamics and produced motion fields 
with close agreement to manually annotated single cell tracking (below). We extracted superpixel motion 
tracks at 1000 superpixels (larger region-of-interest) and 5000 superpixels (smaller region-of-interest) on 
both 2D Cartesian and polar geodesic projection time-lapses of each embryo. We used the tracks from 1000 
superpixels to train a classifier to identify DVE-associated superpixel tracks for migration staging and tracks 
from 5000 superpixels to compute DVE migration stage and the DVE migration angle. 


Automated DVE migration staging

As the duration of DVE migration varies between individual embryos, staging the dataset was necessary to 
allow consistent comparison between embryos. To enable objective staging, we developed an automatic 
pipeline using the motion characteristics of migrating cells from MOSES extracted superpixel tracks (1000 
superpixels). The pipeline comprises two modules; the first module involves training a classifier using a novel 
time-lapse dataset of lightsheet imaged Hex-GFP:membrane-tdTomato embryos in which DVE cells are 
labeled by Hex-GFP to classify each superpixel track of a ubiquitously Lifeact-GFP labelled embryo as “DVE” 
or "non-DVE” motion associated. The second module computes the difference in cumulative persistent 
distance moved between the mean DVE track vs the mean non-DVE track to classify each time-point of an 
embryo time-lapse into one of 3 phases: no directional persistence, consistent directional persistence 
(reflecting the movement of Hex-GFP labeled DVE cells from distal tip to Em–Ex boundary), or a plateau in 
persistence (after the Hex-GFP labeled cells have reached the boundary).  


Manual staging of embryos: To train a motion-based DVE classifier, two researchers independently staged 
2D surface projections of registered time-lapse data from 9 Hex–GFP:membrane-tdTomato embryos into 3 
stages (as above) by following the behaviour of the Hex-GFP labeled DVE cells.  The annotation of both 
researchers were combined to produce a single consensus staging for each embryo, the middle frames were 
used as consensus when not precisely matched. Lifeact-GFP datasets were also manually staged as a 
baseline to compare with automated results.
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Module 1, DVE-associated track classifier: Hex-GFP:membrane-tdTomato (where Hex–GFP expression 
labels DVE cells) time-lapse datasets were processed through the pipeline to 2D surface projections and 
used to guide the training of a classifier to assign each MOSES extracted superpixel track computed over 
the manually annotated DVE migration phase as either DVE (Hex+ve) or non-DVE (Hex-ve) -associated 
(Figure S3). The trained classifier could then operate on MOSES superpixel tracks of 2D surface projections 
of Lifeact-GFP embryos extracted over the entire video. We use the Cartesian geodesic projection and found 
that a 1000 superpixel coverage worked best as higher superpixels produced a non-continuous classification 
(data not shown). As Hex exhibits salt and pepper expression and not all cells in the DVE region express 
Hex-GFP equally (Srinivas et al., 2004; Migeotte et al., 2010; Takaoka, Yamamoto and Hamada, 2011), we 
applied Otsu binary thresholding to the maximum projection Hex-GFP image (computed over time) to 
generate the binary superpixel class for supervised training. In total 9 Hex-GFP embryos were used to train 
the classifier. As the Hex-GFP:membrane-tdTomato embryos are imaged at 10 minute intervals compared to 
5 minutes for Lifeact-GFP embryos we encoded each superpixel track as a velocity feature vector of length 
18 by concatenating the mean velocity of the superpixel track of interest (2 values, one each for x- and y- 
directions, red node, Figure S3B) and the mean velocity of the surrounding 8 superpixel tracks (black nodes, 
Figure S3B). The classifier takes the 18-vector of velocities as input to predict a binary variable where 
DVE=1 and non-DVE=0. Inclusion of neighbouring superpixel velocities helped promote greater spatial 
continuity in the final classification. As the number of embryos was small, we used a support vector machine 
(SVM)(Boser et al. 1992) classifier which is conservative and performs well on small datasets due to its 
maximum-margin property equipped with an RBF kernel to handle nonlinearity. To ensure further robustness, 
we trained a separate RBF-SVM classifier for k=10 random 5/4 partitionings of the 9 Hex-GFP embryos (i.e. 
5 embryos for training, 4 embryos for testing). Each embryo further comprises 2 Cartesian geodesic 
projections unwrapped with respect to reference radial angle  and  radians respectively. This 
can be seen as a data augmentation to promote robustness to the unknown DVE migration angle. This gives 
a total 18 trained classifiers. We use all trained classifiers to produce an ensemble prediction more robust to 
any individual training partition. Specifically a superpixel is only classified as DVE=1 if at least 0.85 x 18 > 15 
or 18 classifiers predicted the superpixel was DVE=1. The largest graph connected component of the DVE=1 
superpixels yields the final DVE classification. 


Module 2, Staging DVE migration based on the persistence of migration: We developed an unsupervised 
method to use the trained DVE classifier on the Cartesian geodesic projection to stage individual Lifeact-
GFP embryos from MOSES superpixels tracks extracted in the Polar geodesic projection. The polar 
projection best captures in a single spatiotemporally continuous manner the initiation of DVE migration at the 
distal tip and its migration to the Em-Ex boundary (5000 superpixels). We first apply the Cartesian trained 
DVE classifier to MOSES superpixel tracks extracted from only the manually specified migration to boundary 
stage of Lifeact-GFP embryos, where available, or the MOSES superpixel tracks extracted over the full 
duration, if not available. The classified superpixels designate the region of the image that comprise DVE 
cells at the time-point (TP) at the start frame of (manually annotated) migration,  if classifying using 

migration stage or the first frame,  if using the full duration. We stress the use of  is not necessary 

for computing the staging. We use it here to show how to incorporate human guidance in the DVE 
classification. As any motion prior to migration, was minimal we found there was almost no deviation 
between the final results. To transfer the Cartesian projection classification result into the polar projection, we 
remapped the DVE classified superpixel points. The mapping is learnt by nearest neighbour matching 
between the respective unwrapping coordinates. We then compute the concave hull of the polar-mapped 
DVE points to get a spatially contiguous binary mask. The binary mask is applied to the MOSES superpixel 
tracks (5000 superpixels) extracted directly from the polar projection over the full video duration by direct 
lookup at time-point  or  respectively to classify tracks into DVE and non-DVE. If the  row, 

column coordinate position of superpixel track at  lies inside the binary then the whole superpixel track 
is designated DVE, else it is non-DVE. DVE migration is characterised by continual persistent directional 
motion. We use this prior knowledge to stage. As we do not know the persistent angle of migration and this 
can differ per track, we define a cumulative persistence measure, , the cumulative directional distance 

moved for a track at t ime  using the mean velocity as the persistent direction, 

θ = 0 θ = π

TPmig

TP0 TPmig
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 where  is the displacement between time  and ,   the unit normalised 

mean velocity, representing the persistent direction and  the dot product. We evaluate  after mapping 
back to Cartesian 3D. We compute the instantaneous 3D  velocity 


 u s i n g a 

linear piecewise approximation that assumes 3D displacement is small and where  is the constant 
scaling correction factor from the rigid temporal registration at time-point . We use  as shorthand to 

denote the  row, column coordinate position of the track at time . The unit normalised mean velocity 
vector is determined from the mean of the 2D superpixel velocities in the unwrapped polar projection. In 3D 
on a curved surface, the 3D equivalent directional vector will change depending on the surface position. 
Deno t ing the f i xed 2D vec to r as , we compu te the 3D ve rs ion a t a pos i t i on 

 at time  using the linear piecewise approximation above with the next time-

p o i n t a 2 D d i s p l a c e m e n t o f  p i x e l s f r o m  i n t h e d i r e c t i o n o f ; 

 w h e r e 

,  and  denote the - - direction component of 

, and  denotes unit vector normalisation such that magnitude of the 3D vector is 1. The 

displacement  pixels is used to avoid getting the zero 3D vector.  should therefore be chosen small. We 
empirically find  10 pixels is good. We compute directional persistence for all superpixel tracks, and 
average within the DVE and non-DVE tracks separately to obtain two separate curves, ,  

respectively. We subtract  from  to normalise . We further scale normalise to obtain a 

dimensionless measure by dividing  by a characteristic length, , the cube root of the embryo volume at 
time-point 0. We don’t compute the real embryo volume since we have bounding box cropped during 
spatiotemporal registration. Instead we use the spatiotemporally registered volume image dimensions of 

 pixels so that .  We then stage DVE migration by identifying distinct stepwise 

changes in the temporal rate of change,  in the normalised  denoted . Stepwise 

changes are detected by computing a breakpoint score [0-1],  given by the absolute 

magnitude of the ‘same’ padding convolution of a step function,  where  is the 

number of frames with , and detecting the time-points of the local peaks of height > 0.15 and 

separated by at least 5 frames (25 min). Any valid time-points must further be in the time interval  
frames. All detected valid time-points is sorted chronologically, . We construct all contiguous 

time intervals formed by the time-points,  and compute for each interval 

the mean . We then stage the intervals chronologically based on the observation  should be 
large and non-zero in migration to boundary and close to 0 in pre-migration and post-migration with these 
distinguished by whether they occur before or after migration. The observation is hard-coded as 
computational rules as follows. We first detect if there exists a time interval exhibiting a migration phase, 

dSPi
direct[t] =

t

∑
k=0

vSPi
k ⋅ v̄SPi v t t + 1 v̄

⋅ ddirect

vSPi
t = c(t)[(x(i, j, t + 1), y(i, j, t + 1), z(i, j, t + 1)) − (x(i, j, t), y(i, j, t), z(i, j, t))]

c(t)
t (i, j, t)

(i, j ) t

v̄SPi
2D

(x(i, j, t), y(i, j, t), z(i, j, t)) t

k (i, j, t) v̄SPi
2D

vSPi
t = nor m((x(i′￼, j′￼, t), y(i′￼, j′￼, t), z(i′￼, j′￼, t)) − (x(i, j, t), y(i, j, t), z(i, j, t)))

(i′￼, j′￼, t) = (i + k ⋅ v̄SPi
2D i

,  j + k ⋅ v̄SPi
2D j) v̄SPi

2D i
v̄SPi

2D j
i , j

v̄SPi
2D nor m

k k
k =

dDVE
direct dnonDVE

direct

dnonDVE
direct dDVE

direct dDVE
direct

dDVE
direct l

X × Y × Z l = (X ⋅ Y ⋅ Z )
1
3

d
dt (Δddirect) dAVE

direct Δddirect

abs(f *
d
dt (Δddirect))

f (t) = {1   ,       t ≥ T/2
− 1,      t < T/2

  T

d
dt (Δddirect)

[3,T − 3]
[t1, t2, …, tN]

[0, t1],  [t1 + 1, t2],  … .  [tN + 1,T ]
Δddirect Δddirect

31

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.03.31.534937doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.534937
http://creativecommons.org/licenses/by-nc-nd/4.0/


defined as having a mean   a fixed threshold of  for all embryos. If 

multiple time intervals satisfy this criteria, the interval with the highest  is designated as the migration 

anchor interval, . If an interval is found, we set all intervals starting at times before  

and have mean  as ‘pre-migration’. We then go through the remainder unclassified 

time intervals in temporal order, comparing if their mean  is closer to the mean  of all ‘pre-
migration’ or the ‘migration’ -classified intervals. If an interval is closer to ‘pre-migration’ and precedes the 
earliest interval of ‘migration’ interval, then it is designated ‘pre-migration’. If the interval occurs after the 
latest ‘migration’ intervals, then it is ‘post-migration’ and all remainder intervals are ‘post-migration’. 


The final algorithm automatically stages a given embryo video into three behavioural/motion phases: Phase 
I: no directional persistence, Phase II: consistent directional persistence, Phase III: a plateau in directional 
persistence.


A-P Axis Alignment (DVE migration-angle determination) 

We determine the DVE migration angle to enable alignment of each embryo along their future anterior-
posterior axis and enable consistent mapping (sub-regionalisation) across embryos. Angle determination 
proceeds from migration staging (above) where the DVE classifier has been applied to classify polar 
extracted MOSES superpixel tracks (5000 superpixels) as; DVE or non-DVE. We then find the most 
directionally persistent subset within the DVE-classified tracks to compute mean direction as the DVE 
migration angle. We compute the migration angle from both 2D unwrapped polar and Cartesian geodesic 
projections to produce a final ‘consensus’ migration angle. We define the subset in polar geodesic projection 
by computing as the directional persistence score, the magnitude of the mean 3D geodesic superpixel track 

velocity of superpixel track ,  


where the instantaneous 3D velocity:


 is defined 

as previously, after mapping back the 2D superpixel track positions back to Cartesian 3D.  is the 
constant scaling correction factor from the rigid temporal registration at time-point . The most directionally 
persistent subset of DVE classified tracks are those with a magnitude of  greater than 

 where  and  are the mean and standard deviation operations. 
We post-process these tracks, keeping those within the largest connected component as the final subset, 

. We find an equivalent subset in the Cartesian geodesic projection after remapping, in a manner 

similar to transferring the Cartesian DVE classifier results into the polar projection as described in the 
migration staging above. Given  in polar and Cartesian projections we compute the angle as 

follows.


DVE Migration angle from polar geodesic projection. In the polar projection the migration angle is the 
equivalent 2D angle of the mean 3D velocity vector (Figure S3D). We compute the mean 3D velocity vector, 

 of the most directionally persistent subset of DVE superpixel tracks,  by mapping superpixel 

positions to Cartesian 3D. The mean 3D velocity vector,  is then converted to a 2D velocity vector,  in 

the unwrapped polar projection. The migration angle,  where  and  

are the - - direction component of . Conversion of  to  uses coordinate lookup and interpolation. 
We use the 2D superpixel tracks to compute the mean  coordinate position in polar projection to infer 
the mean  coordinate position on the Cartesian 3D surface. We then compute the position on the 
surface if we take a small displacement   from the mean  coordinate where . This is 
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mapped by nearest neighbour matching to an equivalent 2D  coordinate using the polar geodesic 
unwrapping coordinates, then .   


DVE Migration angle from Cartesian geodesic projection. In the Cartesian projection, every column - 
coordinate, corresponds to a unique radial angle and the row - coordinate the proximal-distal embryo axis. 
Therefore finding the migration angle is equivalent to finding the - coordinate with the highest velocity 
component in the ‘upward’ - or proximal direction. However superpixels only sparsely sample the - 
coordinate. Thus we divide the - coordinate into 20 equal sized bins. We allocate each Cartesian extracted 
superpixel track in  to one of the bins. For each bin, we then compute the mean 3D velocity 

component in the proximal direction,  averaged over all superpixel tracks in the bin. This results in a plot 

of  vs . To get a more accurate approximation of the - coordinate corresponding to maximum  we 

fit a smooth univariate cubic spline and evaluate the spline at all integer increments of  where  
corresponds to the dimensions of the  pixel Cartesian projection. The migration angle is then 
o b t a i n e d b y c o n v e r t i n g t h e  c o o r d i n a t e o f m a x i m u m i n t o a r a d i a l a n g l e , 

 radians where the offset  corresponds to a radial angle of  

radians in the polar projection.  The mean 3D velocity component in the proximal direction,  for a 

superpixel track  is computed as  where is computed as previously 

described,  is the dot product and  the growth scale correct factor from registration. The directional 
v e c t o r i n t h e p r o x i m a l d i r e c t i o n i s c o m p u t e d p i x e l w i s e , 

 and 

 is then found by interpolation at the required  position at time  on the 2D superpixel track. 


Consensus migration angle from polar and Cartesian projections. The angle mean of  and  

was taken as the consensus angle of DVE migration, . 


Labelling and propagating the Em–Ex boundary throughout time-lapses 

To ensure the Em-Ex boundary was correctly annotated we used VGG Image Annotator (VIA) (Dutta and 
Zisserman 2019) was to manually annotate the boundary between emVE- and exVE at the first time-point as 
a closed polygon in the unwrapped polar geodesic projection using the clear morphological difference 
between the epiblast and extraembryonic ectoderm tissues. The manually specified polygon coordinates 
were resampled using a linear spline to be 50 points. We then used the frame-by-frame computed DeepFlow 
optical flow field to propagate the 50 point polygon at time-point 0 to all later time-points. The final result is a 

 matrix for an embryo of total  frames. 


Partitioning the VE into sector region-of-interests (ROIs)

Individual embryos are heterogeneous in size, shape and rate of growth. We use the DVE migration stage to 
temporally align and DVE migration angle and the Em–Ex boundary to spatially partition each embryo in the 
polar geodesic projection (of size  pixels) into 32 sector regions-of-interest (8 radial angle bins and 4 
geodesic distance bins) to allow consistent inter-comparison of DVE migration across embryos, Spatial 
partitioning for each embryo corresponds to the first frame of the migration phase. To spatial partition, we first 
use the inferred consensus migration angle,  to rotate the unwrapped polar projection such that the 
DVE cells migrate upwards in the vertical axis direction of the image and corresponds to . We then 

(i′￼, j′￼)
v̄2D = (i′￼, j′￼) − (i, j )

j
i

j
i j

j
{SPi}

DVE
direct

vprox
3D

j vprox
3D j vprox

3D

j ∈ [0,N ] N
M × N

j vprox
3D

θDVE
cartesian =

j
argmax(v prox

3D ) − N /2

N
⋅ 2π N /2 0

vprox
3D

SPi
1
T

T

∑
k=0

c(t)vSPi
k ⋅ (vprox

3D )SPi
k

vSPi
k

⋅ c(t)

vprox
3D (i, j ) = nor m((x(i + 1, j, t), y(i + 1, j, t), z(i + 1, j, t)) − (x(i, j, t), y(i, j, t), z(i, j, t)))

(vprox
3D )SPi

k
(i, j ) t

θDVE
polar θDVE

cartesian

θDVE

T × 50 × 2 T

M × M

θDVE

θ = 00

33

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.03.31.534937doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.534937
http://creativecommons.org/licenses/by-nc-nd/4.0/


partition the radial angle space  equally into 8 angular bins such that  is the centre of the 
f i r s t b i n ; 

. We partition the geodesic distance , corresponding to the area between the central point 

and an outer concentric ring of distance  respectively equally into 4 intervals, guided by the 

Em-Ex- VE boundary; , , , , where the 

boundary is denoted as a function of geodesic distance and angle, . This further partitions both 
the emVE and exVE into 2 regions, along the proximal-distal (long) axis.


Tissue motion deformation analysis

We measure the local tissue deformation as a consequence of DVE migration in each migration stage as the 

mean fractional rate of change in surface area,  of a local tissue patch previously reported (Rozbicki et 

al. 2015) where  at time  is defined  where  5 min, the time 

elapsed between individual frames and   for time . For visualization, we smoothed the  

for each tissue surface patch temporally, running asymmetric least squares smoothing (Eilers and Boelens 
2005)with parameters  for 10 iterations after edge-mode padding of signals by the 
maximum of  or 3 frames.  For each migration stage, we compute the 32 sector ROI as described in the 
previous section for the starting frame. The 32 sector is further subdivided equally by 5 angular and 4 
distance intervals so that each quadrant is tessellated without overlap by 5x4=20 smaller quadrant ROIs. 
The subdivision parameters were chosen so that the small quadrant ROIs is a good quadrilateral 
approximation (same surface area) of the continuous corresponding curvilinear surface patch in Cartesian 
3D. Each ROI region is modelled as a quadrilateral in 2D by linearly joining its 4 corner points; 

 and similarly in 3D where  

etc. The corner points of each of the 32 x 20 = 640 ROIs are propagated frame to frame until the end of the 
respective migration stage by the MOSES extracted DeepFlow optical flow. The 3D quadrilateral surface 

area at time , , is the sum of the 

area of the two constituent planar triangles  and  where  are the vertex 

 coordinates of the quadrilateral . 


Single-cell segmentation

We used a semi-automatic scheme to segment the outline and temporally track the centroids of the apical 
surface of individual cells in the VE monolayer of 5 Lifeact-GFP embryos throughout pre-migration and 
migration phases in the 2D polar geodesic projection of time-lapse data imaged at five-minute intervals. This 
consisted of the development of a custom convolutional neural network (CNN) to segment cells in the 
densely-packed epithelium over-time, manual refinement and curation of the automatically segmented cells 
and semi-automated single cell tracking.


Spatiotemporal convolutional neural network (CNN) for single-cell segmentation

We trained a deep neural network on the Cartesian geodesic projections to segment the apical surface of 
individual VE cells for single-cell morphometric analysis. VGG Image Annotator (VIA) (Dutta and Zisserman 
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2019) was used to generate training data through manually annotation all cells in 75 time-points of Cartesian 
projected Lifeact-GFP data (7 embryos), comprising a training dataset of ~14,000 individual cell annotations. 
A custom UNet convolutional bidirectional LSTM neural network was used to predict the single-cell 
segmentation at time t, given the 3 sequential time slices at .The neural network outputs three 
images to describe the predicted instance segmentation for time t in manner similar to Cellpose (Stringer et 
al. 2021). The first is a cell probability map that assigns a score of 0-1 to each  pixel of it containing a 
cell and such that cell centre pixels have the highest score of 1 and pixels lying on cell membranes having 
the lowest score of 0. The second and third images are the ‘ ’-direction and ‘ ’-direction displacements of 
each  pixel from the unique cell centre that it is predicted to belong to. Pixels located at cell centres by 
definition have ‘ ’-direction and ‘ ’-direction displacements of 0. We construct the supervised training for the 
three outputs from the manually annotated instance segmentation labels. The first output, the probability map 
is the composition of the normalised (0-1) distance transform of each unique cell (segmentation label). 
Similarly, the second and third outputs, the - and - direction displacements is the composition of the image 
gradient of the distance transform of each unique cell (segmentation label). The neural network effectively 
learns a deep watershed, direct from the data itself (Bai and Urtasun 2017; Stringer et al. 2021). The network 
is trained with a multi-task loss function; a softmax loss function to enforce mutual exclusivity of background 
and foreground regions in the cell probability map, the first output and L1 loss for the -, - direction 
displacements, with an uncertainty weighting scheme to automatically improve training (Kendall et al. 2018). 
The dataset was split into annotated frames from 4 unique embryos for training and annotated images from 2 
unique embryos for testing. Frames from the last embryo were equally shared, frames 18-22 for training and 
frames 3-7 for testing. This gives n=30 (from 50 unique frames) and n=15 (from 25 unique frames) 3-frame 
images for training and testing the CNN respectively. Images were resized to a pixel size of 512 x 640 and 
were augmented in real time during training and validation. The set of augmentations include random left-
right, up-down flipping, piecewise affine deformation, Gaussian blur, average blur, median blur, additive 
Gaussian noise, pixel and coarse dropout and intensity and contrast manipulations. We parse the individual 
cell segmentations from the predicted outputs by Euler integration similar to that used in Cellpose (Stringer 
et al. 2021). An  image corresponds to a uniformly seeded grid of points located at  row, column 
coordinates. Likewise, the predicted ‘ ’-, ‘ ’- direction displacements corresponds to the 

 displacements respectively that we should displace the point at  to a new location 

 where  is a constant step size in pixels that we take in the 

predicted direction. Iteratively updating the location such that  is the new starting position for the next 

update,  for each point will eventually enable all points to converge to the unique cell centre 
it is predicted to belong to by the neural network. Individual cell centroids correspond to non-spatially 
connected regions of high point density which were found by thresholding and connected components 
analysis. Tracing back to the starting position of individual pixels which voted for a particular cell centroid 
retrieves the individual instance cell segmentations over the whole image. We iteratively advected  
pixels for 30 iterations to generate the cell segmentations in the Cartesian or 50 iterations for the polar 
geodesic projection. 


Manual curation of CNN-predicted single-cell segmentation

The unwrapped 2D Cartesian and Polar geodesic projection enables visualization of every cell in the VE 
surface in a single image at each time-point. As each projection (Cartesian and polar) necessarily distorts 
cell appearances in different regions of the VE cell sheet (greater at the distal-tip and proximal regions, 
respectively), it can result in over-segmentation. To edit over-segmentations resulting from the automated 
outlining manual proofreading and correction of CNN segmentations was necessary. This was done in 3 
steps to obtain the final corrected CNN segmentation in the polar projection. Instance segmentations were 
‘inverted’ to obtain binary membrane outlines for easier manual correction when comparing to the Lifeact-
GFP signal. Step 1: Check and correct individual cell outlines for all cells in the Cartesian projection except 
those around the distal tip and all cells at the distal tip in the polar projection. Step 2: remap Cartesian 
manually corrected cell outlines into polar view and combine with polar manually corrected cell outline. Step 
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3: check for any inconsistencies in the combined polar projection. Step 4. Convert membrane cell outlines to 
instance segmentation by binary pixel inversion and connected component labelling. 


Automatic single cell tracking and manual correction for cell division

The single cell segmentations in individual frames need to be linked temporally such that all occurrences of 
the same unique cell in different frames are captured in a single cell track. We regard mothers and daughters 
as unique individuals such that the mother and two daughters constitute 3 separate cell tracks. The cell 
segmentations were first linked automatically using by nearest neighbour tracking of cell centroids. Every cell 
centroid at time-point 0, the first time-point of the time-lapse and of the pre-migration stage is initialised as a 
unique cell track. We then compute the pairing of all cell centroids in the next frame to the last cell centroid in 
each unique cell track that results in the minimum total 3D Euclidean distance using bipartite matching (Kuhn 
1955). Centroids that could not be matched begin new tracks. Tracks that cannot be matched are 
terminated. The process is repeated until the end of the migration stage for each of the 5 Lifeact-GFP 
embryos. The automatic linking does not explicitly account for cell divisions. Manual proofreading was 
subsequently undertaken to enforce cell division and correct for erroneous linkage using a custom graphical 
user interface, “Cell Tracker”. Cell Tracker enables visualization of the history of all or a subset of cell tracks 
overlaid on the 2D projections and the ability to delete or create new tracks and to create associations 
between cell track IDs. Cell divisions were annotated as single time-point cell tracks (see cell division 
annotation below) and used to break up the automatic tracks after manual refinement: daughter tracks are 
assigned to a mother track, and combined to form continuous track in the dataset.


Single-cell phenomic characterisation


For each segmented and tracked cell, we extracted fourteen measurements to describe the instantaneous 
morphodynamics of its instance at time ; two dynamic (VE Anterior speed, cumulative VE anterior distance), 
five planar/surface (surface area, cell perimeter, shape index, aspect ratio, number of cell neighbours), one 
depth (cell height, four relating to global embryo context  (VE apical, apical Gauss, basal and basal Gauss 
surface curvatures), and two related to Lifeact-GFP/F-actin signal (area and perimeter apical Lifeact-GFP/F-
actin intensity) along with their lineage annotation and embryonic-spatial position within the radial grid 
schema. All dynamic measurements were measured for time  if an instance exists at time . This means 
all cell segmentation instances in the last frame of pre-migration and migration stages do not have dynamic 
measurements. Dynamic measurements were computed after transformation back to 3D coordinates and 
multiplicative scale factor correction between time-points to account for growth. All geometrical 
measurements were transformed to 3D coordinates and multiplicative scale factor correction with additional 
with reversal of non-rigid registration parameters to calculate real absolute values (minus motion artifacts 
from rotation and translation). We use Lifeact-GFP pixel intensity to quantify actin. Area actin is the mean 
Lifeact-GFP intensity within the cell area. Perimeter actin is the mean Lifeact-GFP intensity along the cell 
perimeter. The raw Lifeact-GFP intensity varies across embryos and increases over time. We therefore use 
the z-score instead of the raw intensity with the per frame mean and standard deviation. Together, the 
fourteen measurements, summarised in Table S2 describe the instantaneous phenotypic-state of single VE 
cells in the time-lapse during pre-Migration and migration phases, integrating both planar and 3D 
information.


To compute average cell height, KBasal and HBasal we unwrapped for each Lifeact-GFP embryo an additional 
manually annotated basal VE binary volume, taking into account the shape of the underlying epiblast using 
the same method described for apical VE above. As the apical and basal binary volumes are similar in 
shape, we put the two unwrapped coordinates in alignment by resizing the basal projections and unwrapping 
coordinates to match that of the corresponding apical VE. We then used the same apical VE single cell 
segmentations to extract single cell statistics of the apical-basal height of the cells. As each cell is not 3D 
segmented, this computed cell height metric provides an approximation of cell height as it measures the 
apical-basal height of the local VE tissue.


Single-cell UMAP phenomic space 

Analysis of single-cell parameters is a multi-step process involving the initial extraction of data from all  
datapoints followed by a filtering step to remove invalid or missing values. From five Lifeact-GFP embryos 

t

t t + 1
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we initially extracted a total 102,872 cell instances (data-points) with a complete set of fourteen 
measurements (phenomic signature), tracking a total of 2358 unique cells and incorporating 447 division 
events. Cell instances with any invalid or missing values i.e.,  inf or nan value in any measure were removed 
leaving a total of 91,901 cell instances tracking a total of 2221 unique cells, with a total of 447 divisions 
events across the data The phenomic signature of these remaining cell instances was preprocessed to 
normalise each measure and corrected for potential individual embryo-specific effects. Each measure is 
power-normalised and z-scored relative to all instances from the embryo it belongs to. The mean is 
computed from the data for non-signed measures: area, perimeter, shape-index, aspect ratio, cell height and 
cell neighbours and is set to 0 for signed measures: anterior speed, cumulative anterior distance, Gaussian 
apical surface curvature, apical surface curvature, Gaussian basal surface curvature, basal surface 
curvature, apical areal and apical perimeter actin intensities. The zscored measures reflect the extremity of 
each measure relative to that of a mean cell instance from the same embryo as a multiplicative factor of 
standard deviation. We remove all cell instances which has any measure with an absolute zscore value > 3.  
For the remainder cell instances we compute for each of the eleven measures, a value corrected for embryo 
(batch) - the residual  of linearly regressing measure ,  as the dependent variable with embryo,  

encoded as an independent categorical variable, . We apply UMAP (Becht et al. 2018; 
McInnes et al. 2018) to the normalised and embryo corrected phenomic signatures to plot all remaining 
91,901 cell instances, as one datapoint per instance, across all embryos, all time-points into a jointly shared 
2D coordinate space - the morphodynamic phenomic space for comparative analysis. This 2D space 
captures the multidimensional phenomic differences between all individual cell instances over space-time 
during pre-migration and migration stages according to the eleven-dimensional morphodynamic signature. 


Automatic UMAP phenomic clustering

To automatically determine the number of unique phenotype clusters we first grouped all cell instances into 
100 clusters using k-means clustering on the 2D umap coordinates as the input features to cluster on. 
Hierarchical clustering with Ward linkage and Euclidean metric was then applied to group the 100 k-means 
clusters into phenotype clusters using automatic cluster determination. The input feature vector per k-means 
cluster for hierarchical clustering is the histogram of the quadrant ID of all data points. The histogram 
describes the fraction of all data points assigned to a k-means cluster belonging to all possible quadrant IDs. 
The quadrant ID uses the reduced 8 sector ROI scheme which aggregates the anterior and posterior regions 
of the 32 sector ROI. Cell instances were assigned to an 8 sector ID based on cell origin according to the 
position of the unique cell it belong to at the first frame of migration stage – lineage quadrant ID. Cell 
instances were also assigned a quadrant ID according to their instantaneous position in the embryo – 
instantaneous quadrant ID. The k-means cluster summary features is sixteen-valued; the concatenation of 
the histogram based on lineage and instantaneous quadrant IDs. Data points corresponding to lateral VE 
quadrants are therefore not included and do not influence the hierarchical clustering. Hierarchical clustering 
generates a dendrogram such that the root node corresponds to all k-means cluster grouped as one label, 
and progressive branch splitting corresponds to subsplitting the larger parental grouping into unique smaller 
groupings. The bottommost leaves of the dendrogram are the 100 individual k-means clusters. Automatic 
cluster determination is equivalent to finding where to cut the dendrogram. This was based on finding the 
minimum number of groups that grouped k-means clusters in a stable and spatially homogeneous way. We 
operationalise this definition by finding all potential groupings of the k-means clusters when placing cuts up 
to a maximum linkage distance (to constrain the search). For each grouping, we compute a homogeneity 
score to summarise the tendency to group k-means clusters coming from the same regional quadrant ID 
together. Specifically, the consistency of a k-means cluster is quantified by the fractional dominance of any 
single quadrant ID given by the maximum value in the sixteen-valued histogram vector. We plot the 
homogeneity score as a function of the linkage distance. A grouping is stable if over a range of linkage 
distance the homogeneity score does not change. We detect and use the first linkage distance to generate 
the first possible stable grouping. This produces a total of 6 phenotype groups. We retain groups as the final 
confident groups if the homogeneity score > 0.3. The groups that do not satisfy this criteria are identified as a 
single large miscellaneous group. We find in total 5 distinct phenomic clusters, designated A-E which we 
could relate to spatial regions of the embryo; cluster A: anterior DVE 1, cluster B: anterior DVE 2, cluster C: 
posterior emVE, cluster D: proximal anterior emVE, and cluster E: grouping representing the mean emVE 
and exVE. For visualization in polar geodesic projection, we use label spreading (D. Zhou et al. 2004), a 

ri i Fi Emb
Fi ∼ C(Emb) + ri
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semi-supervised machine learning technique to impute the phenomic cluster of cell instances not included in 
the original UMAP by its multidimensional similarity to the nearest 15 cell instances (15 nearest neighbours). 
The algorithm is iterative so that the first iteration labels unknown cell instances which are closest to cells 
used in the UMAP and successive iterations gradually propagates the labels to cells of unknown labels 
transductively. 


Sector-based UMAP phenomic fate trajectories

Phenomic space is a two-dimensional representation of a continuum of morphodynamic states. Construction 
of a temporal phenomic fate trajectory representing the evolution of the average behaviour of cells starting in 
each of the 8 spatial sectors overtime was carried out as follows: 1) bin all datapoints starting in sector  into 
6 equal temporal intervals from -2h to +4h of migration, 2) for each temporal interval, derive a spatial 
heatmap of the number of datapoints (density) mapping to any local region in phenomic space, 3) find the 
spatial regions of highest datapoint density by thresholding on mean + 1 standard deviation of density, 4) 
compute the mean UMAP coordinate of the high density spatial regions, 5) repeat steps 1-4 for all temporal 
intervals and join together the UMAP coordinates in chronological order to form the phenomic fate trajectory.


Phenomic correlation between sectors across migration stages

We compute the Lasso regression coefficients (partial correlation) treating each of the fourteen statistics in 
turn as the independent variable and the other thirteen statistics as the dependent variable. We use the 
Python statsmodels.regression.linear_model.OLS.fit_regularized function with L1 penalty = 1, and the 
normalized and embryo corrected phenomic signatures to do the Lasso regression. The result is a 14 x 14 
coefficient matrix. We compute such 14 x 14 matrices for each of the 8 sectors labelled according to cell 
lineage and separating out pre-migration and migration stages. This gives 16 matrices in total. Each 14x14 
matrix,  summarises the interdependency between single cell statistics as captured by the cell instances in 

each sector , in each migration stage. To assess the phenomic correlation between sectors across 
migration stages, we applied hierarchical clustering, Euclidean metric, complete linkage to the 16x16 
pairwise difference matrix between the 16 matrices. We define the pairwise difference between two 
coefficient matrices,  and  is the total sum of the absolute difference in matrix entries, . In 

a similar manner we assessed the phenomic correlation between sectors and migration stage when cell 
instances were instead labelled by their instantaneous position.  


Single measure time-series

The time-series for a single chosen measure in Figure S5B-E, and Figure S7D and quadrant ID origin is the 
mean and standard error of the mean (s.e.m) of all the datapoints within the given time interval, 

. The mean and s.e.m is computed on the raw data, not the batch embryo-corrected and pre-
processed data used for defining the UMAP.  


Single-cell track diffusion coefficient

The mean squared displacement (MSD) of individual single cell tracks were computed using the imsd 
function in the Python Trackpy package using a maximum lag time of one quarter the maximum video length. 
The mean squared displacement is related to the diffusion coefficient  in  dimensions of freedom by the 
formula  where  is the time lag.  is estimated for each cell track using  (the cell track 
migrates effectively constrained to the 2D surface) using linear regression. 


Cell division annotation and analysis 

Cell divisions were manually annotated using custom designed software “Cell Tracker” Due to Lifeact-GFP 
condensation at the site of cytokinesis, cell division events could be clearly seen as bright puncta in the time-
lapse data. Using the Cell Tracker software the 2D surface projections could be used to efficiently screen 
through the time-lapse data for divisions. The centroid of the mother and corresponding daughter cells of the 
post-processed time-lapse data were manually inputted along with the timing of the division event, 
anatomical position and linked to its cell track. Division angles were computed after remapping the individual 
2D daughter cell centroids to 3D. For analysis we computed the angles relative to the proximal-distal axis as 
follows; a division resulting in a line drawn between daughter cell centroids when aligned perpendicular to 

i
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Ci Cj ∑ |Ci − Cj |

tstart < t < tend

D n
MSD = 2n D t t D n = 2
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the proximal-distal axis is given as 0° , if aligned orthogonal to the proximal-distal axis (i.e., perpendicular to 
the radial axis) the division angle is given as 90°. Negative division angles were inverted (i.e., -45 to +45) for 
comparison, so that all angles were converted to a range of 0°- 90°. For analysis all cell division events from 
9 Lifeact-GFP embryos per selected anatomical region were combined, and binned into 4 groups (0-22.5, 
22.6-45, 45.1-67.0, 67.1-90). A Chi-squared test for given probabilities was then performed. To analyse the 
frequency of cell division events we combined all cell division events occurring in the anterior proximal emVE 
and separately, the posterior proximal exVE during DVE migration. We performed a Chi-squared test for 
significance from expected probabilities. To analyse the timing of cell division events with respect to the 
onset and duration of DVE migration, we binned cell division events from anterior proximal emVE and 
posterior proximal exVE into 10 bins according to the time of migration (both prior to and during DVE 
migration). A Chi-squared test was performed to test for significance from expected probabilities. We note 
that the random distribution of angles on curved surfaces such as a sphere does not follow a uniform 
distribution (Cai et al. 2013), it does not apply here as the radius of curvature is much larger relative to the 
cell size at the distal tip of embryos and therefore the surface is locally flat - enabling us to use the uniform 
distribution. 


Cell intercalation events

Cell intercalation events whereby a pair of neighbouring VE cells were separated by a third cell moving 
between them, and not associated with a cell division event, were manually annotated using the Cell Tracker 
GUI (above). 2D surface projections of post-processed time-lapse data were screened through for 
incidences of intercalation events and centroids of the cell trio; neighbouring cells 1 and 2, and the 
intercalating cell, were inputted, along with their timing, anatomical position and cell tracking IDs. The cell 
tracking ID could then be use to cross-reference with the instantaneous cell status (e.g., phenomic cluster).   


Visualization of cell statistics in 2D projections

Each segmented cell instance has a unique cell ID. To visualize the desired scalar statistics of a segmented 
cell instance, the scalar value was linearly mapped to a Python Matplotlib colorscheme to colour the entire 
cell area in the 2D projection; ‘Reds’ colorscheme for non-signed measures: area, perimeter, shape-index, 
aspect ratio and cell neighbours and ‘coolwarm’ colorscheme for signed measures: anterior speed, 
cumulative anterior distance, Gaussian surface curvature, mean surface curvature, apical area-, and apical 
perimeter actin intensities. 


Visualization of cell statistics on 3D meshes

We visualize the desired scalar statistics of a segmented cell instance in 3D using MeshLab. (Cignoni et al. 
2008). Meshlab requires as input a triangle mesh (trimesh). We use Python Trimesh library to write a .obj 
trimesh which requires a list of 3D  vertex coordinates, a list of faces, 3-tuple specifying how vertex 
indices are connected together in triangles and a list of vertex colours, 3-tuple specifying the RGB colour at 
each vertex. Cell statistics were first visualised in the 2D projections as an image as described above with 
cell tracks drawn as 3-pixel wide lines using Python Scikit-Image. A 2D image is equivalent to a quadrilateral 
mesh specified by a list of 2D  vertex coordinates, a list of quadrilateral faces, 4-tuples specifying how 
individual pixels are connected to neighbours in squares and the 2D image pixel colour as the RGB vertex 
colour. To obtain the desired 3D trimesh, we triangulate the quadrilateral mesh to a trimesh using the Python 
Trimesh library (trimesh.geometry.triangulate_quads function); remove all  vertex coordinates and faces 

not part covering the VE in the polar geodesic projection; and remap the 2D  coordinate to 3D  
vertex coordinates using the 2D-to-3D unwrapping coordinates (see above).  

(x , y, z)

(i, j )

(i, j )
(i, j ) (x , y, z)
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Figure S1. Lightsheet imaging set-up and expression of tissue markers in imaged embryos. A. Diagram of the imaging chamber 
of the ZEISS Z.1 lightsheet microscope. A’. Diagram of an E5.5 embryo mounted for imaging. B. Brightfield image of an E5.5 embryo 
mounted for imaging in the lumen of an agarose cylinder. Note the embryo is placed within a lumen wide enough so that it does not 
constrict growth. C. Whole-mount immunofluorescence of control non-cultured E5.75 embryos and Lifeact-GFP E5.5 embryos imaged 
for 100 time points (>8 hours) at five-minute interval in a ZEISS Z.1 microscope. Imaged embryos show similar expression patterns of 
DVE (OTX2, AMOT), epiblast (OCT-4) and extraembryonic ectoderm (CDX2) markers to controls. Phalloidin (green) and DAPI (cyan) 
staining show that the VE remains as a monolayer epithelium. All scale bars = 25 µm.
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Figure S2. Controls to assess health of imaged embryos – cell division events and comparison with non-cultured stage-series 
reference embryos. A. Cumulative VE cell division events for each of 9 Lifeact-GFP embryos imaged in a ZEISS Z.1 ligthsheet 
microscope from 2 view angles every five-minutes with a 2 µm z-step interval show that cell divisions continue throughout imaging. B to 
D. Lightsheet imaged embryos were compared to a stage-series of fixed embryos with respect to the radial distribution and proximal 
extent of the Hex-GFP cells during the course of the time-lapse. B. At left, representative examples of embryos fixed at early, mid-, and 
late stages of migration, with migrating DVE cells marked by Hex-GFP expression (green) and all cell outlines visualised with Phalloidin 
labelled F-actin (white). At right, full volume confocal z-stacks of select time-points of a representative, live imaged Hex-GFP:membrane-
tdTomato embryo, capturing different stages of DVE migration. C. 3D confocal data of fixed embryos, as well as time-lapse live data 
were reprojected as 2D polar projections. At left, a representative example of a non-cultured, fixed embryo is shown. To enable a 
quantitative comparison of DVE migration in embryos, the radial distribution of the Hex-GFP expressing DVE cell population was 
calculated for each non-cultured embryo, and for each time-point of live imaged embryos, with; 0 = radially symmetric, 1 = polarised (top 
panel, green line). To assess how far DVE cells had migrated in each embryo, the proximal extent of the Hex-GFP cell population in the 
emVE was calculated for each non-cultured embryo, and for each time-point of live imaged embryos. As embryos differ in size, the 
proximal extent of migration was expressed as a fraction of the distance from the distal-tip to emVE-exVE boundary for each embryo 
(lower panel, magenta line = emVE-exVE boundary, green line = proximal extent of DVE, blue line = Hex-GFP intensity). D. The radial 
distribution of DVE cells was plotted against their proximal extent for fixed and cultured embryos. The stage series of fixed embryos is 
represented by coloured dots (green = early migration, magenta = mid-migration, purple = late migration). Time-lapse imaged cultured 
embryos are represented by solid lines, coloured by phase of migration (phase I = pre-migration, phase II = migration and phase III = 
late migration). The Hex-GFP cell population in live imaged embryos progress through a radial distribution and proximal extent within the 
range of non-imaged, control embryos showing that imaged embryos reflect normal development.
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Figure S3. Lightsheet data processing framework. A. Overview of the analytical steps to generate a consistent surface coordinate 
framework for a two-angle volumetric embryo time-lapse, and to project the apical surface of the VE to a 2D geodesic surface projection 
in a reversible manner. B. Overview of the key steps to train a superpixel-based motion classifier based on Hex-GFP embryos, to be 
used to identify DVE cells in Lifeact-GFP data. This includes: (i) initial binary segmentation of the Hex-GFP signal to label Hex-GFP+ve / 
Hex-GFP -ve  associated superpixels for training; (ii) using the mean superpixel velocity as a consistent motion feature across Hex-GFP 
and Lifeact-GFP for classification; (iii) construction of the velocity features to classify each superpixel using the mean velocity of itself 
and its surrounding eight neighbours; and (iv) training a binary machine learning classifier to classify each superpixel given the velocity 
features as either DVE=0 (not DVE) or DVE=1 (DVE). C. Overview of the key steps to automatically stage DVE migration from 
superpixel-based motion tracking including: (i) applying the trained DVE classifier to identify DVE-associated tracks in polar-geodesic 
projection and (ii) identifying a continuous time window when DVE associated superpixels exhibit significantly greater directional motion 
persistence than non-DVE associated superpixels (Migration phase, green) to classify the remainder time into Pre-migration (red) and 
Post-boundary (blue) phases. D. Detection of DVE migration as the mean consensus angle between the mean velocity direction of the 
‘core’ persistent subset of DVE cells in polar and Cartesian-geodesic 2D projections (white dashed lines) given relative to 0°-180° line 
(black dashed lines). The DVE migration angle is used to spatially align the projections from multiple embryos with respect to the future 
anterior-posterior and left-right axes. E. Training of a LSTM-Convolution neural network to automatically segment individual VE cells 
from 2D projection images in each time point, integrating the temporal information from times -1 and +1. F. Schematic of the 32 sector 
and 8 major sector anatomical region-of-interest (ROI) spatial partitioning of each embryo relative to the anterior-posterior axis, given by 
the consensus DVE migration angle found in D). This consistent subdivision enables integrative analysis of statistics across multiple 
embryos.
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Figure S4. Single-cell phenomic analysis and hierarchical clustering. A. Overview of the analytical steps to compare phenomic 
behaviour across regions and phases based on the similarity of the 14 parameters. B. Hierarchical clustering of regions and phases 
based on the similarity across the 14 parameters, given by the absolute difference in the partial regression coefficients matrix amongst 
parameters (see Methods). All regions show the same behaviour between pre-migration and migration. exVE regions clustered together. 
emVE regions also clustered together except the posterior distal emVE (Region 2) which appears distinct. C. Hierarchical clustering of 
cell instances into phenomic clusters with the number of phenomic clusters determined by an automatic cut threshold (left, see 
Methods). Cell instances were first coarsely grouped into 100 coarser k-means clusters based on their UMAP coordinate (which is also 
a non-linear average of the 14 parameters) to minimise the effect of individual cell heterogeneity. Hierarchical clustering was then 
applied to the k-means clusters based on the anatomical origin distribution given by tracking (lineage) and instantaneously. The 
clustering checks individual phenomic clusters for consistency in anatomical origin which is used as a measure of uncertainty and marks 
all clusters with high variability as an average VE cell, cluster E (grey). The resultant phenomic clusters, overlaid on the k-means 
clusters (numbered and demarcated by black outlines) are thus determined based on phenomic and anatomical consistency (right). 
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Figure S5. VE Single-cell phenomic UMAP. A. VE single-cell phenomic UMAP comprising of all instances of all VE cells from five 
Lifeact-GFP embryos, showing 5 phenomic clusters. B. Anatomical mapping of all instances of all cells in phenomic clusters A–D onto 
the respective polar projection of each of the embryos that they were measured from. C. Diagram showing each of the 8 anatomical 
sub-divisions of the VE used in this study. C’. Charts showing the proportion of instances of all VE cells from each anatomical location 
(from C) in each of the UMAP clusters (from A). D. VE single-cell phenomic UMAP coloured by intensity (red high, blue low) for each of 
the 14 cell parameters quantified.
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Figure S6. Pre-Migration phase single-cell phenomic UMAP. A. Summary of the single-cell phenomic analysis method applied to the 
pre-migration phase. B. VE single-cell phenomic UMAP comprising of all instances of all VE cells from the pre-migration phase only, of 
embryos based on the 14 measured cell parameters. C. Example of the anatomical mapping of one embryo in the dataset showing all 
instances of clusters A-C on a 2D polar projection. D. Charts showing the proportion of instances of all VE cells from each anatomical 
location (A) in each of the UMAP clusters (B). E. VE single-cell pre-migration UMAPs showing each of 14 cell measurements 
highlighted. F. Mean profiles of each pre-migration cluster for each of the 14 cell measurements.
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Figure S7. Tracking and phenomic trajectory analysis of emVE and exVE sub-regions during DVE migration. A. Summary of the 
analytical steps for all VE sub-regions in digital fate-mapping, phenomic trajectories and temporal analysis. B. Continuous tracking of 
cells from five sub-regions of the emVE and four sub-regions of the exVE during the migration phase of all embryos analysed. Tracks 
towards the periphery are exaggerated in length due to the distortion inherent in the projection. C. Average UMAP position of VE cells 
starting at each emVE and exVE subregion at 1-hour intervals in the multi-parameter phenomic UMAP. D. Temporal plots of of 
mean±s.e.m for 14 cell parameters in all five emVE and four exVE sub-regions.
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Figure S8. Motion Superpixel tracking analysis of Lifeact-GFP embryos. A. Polar projections of nine Lifeact-GFP embryos tracked 
by motion superpixel tracking, showing the mean velocity vector of each superpixel over the migration phase. The mean velocity vector 
is coloured by angle with colour intensity indicative of magnitude.
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Figure S9. VE Cell Division Events in time-lapse imaged Lifeact-GFP embryos. A. Representative Lifeact-GFP embryo as 2D polar 
projection with all cell divisions events annotated. B, C, D, E, F. Cell division events from live imaged Lifeact-GFP embryos were 
quantified. B. Cell divisions in anterior- and posterior-proximal emVE during two hour period prior to migration (N=5 embryos). There 
was no significant difference in the average number of cell divisions between anterior proximal emVE (3.0 ± 2.6) and posterior proximal 
emVE (3.4 ± 1.8) (Student’s t-test, p=>0.05). C. Cell divisions in anterior- and posterior-proximal emVE during DVE migration were 
analysed (N=9 embryos). There was no significant difference in the average number of cell divisions between anterior proximal emVE 
(8.7 ± 5) and posterior proximal emVE (6.7 ±5.3) (Student’s t-test, p=>0.05). D. Cell division events in anterior- and posterior-proximal 
emVE during DVE migration per embryo. There were more posterior divisions than anterior in three embryos, while in the remaining six 
embryos there were either an equal number, or more divisions anteriorly than posteriorly. E. Cell divisions events in anterior- and 
posterior-proximal emVE during migration phase divided into ten bins show no difference in temporal ordering of divisions (N=9 
embryos). F. Distribution of cell division angles in four regions of the VE during DVE migration. A 0° division angle means cells divide 
parallel to the proximal-distal axis a 90° angle = parallel to the radial axis. Distal emVE showed a distribution that was not significantly 
different than random (𝜒2 test for expected probabilities p=>0.05), but all remaining regions showed a bias in cell division events along 
the radial axis (proximal emVE: 𝜒2 for expected probabilities p=<0.001, distal exVE: 𝜒2 for expected probabilities p=<0.001, proximal 
exVE:  𝜒2 for expected probabilities p=<0.001).
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Figure S10. Fluorescence lifetime imaging. A, B, C, D. Fluorescence lifetime imaging microscopy (FLIM) and quantitation of 
FLIPPER-TR membrane tension reporter in mid-sagittal optical sections of wild type (WT) and Lefty1 mutant embryos. A. Example 
image of an early migration stage embryo with DVE shifted to one-side. B. Apical lifetime in distal VE cells, emVE cells not belonging to 
the DVE and exVE in E5.5 pre-induction stage embryos (N=7) showed no significant differences between regions. C. E5.5 embryos 
were imaged to acquire a baseline (t0’) reading prior to treatment with an inhibitor of  myosin (2 µM blebbistatin) or the solvent as control 
(1:1000 DMSO) and then re-imaged 30 minutes post-treatment (t+30’). C’. There was no significant difference in apical VE lifetime in 
the control DMSO treatment group, but the blebbistatin treated embryos showed a significant decrease in lifetime (one-way ANOVA, 
p=<0.001), Tukey’s HSD Test (p =< 0.001), showing that VE tension is actomyosin dependent. D, D’. Apical membrane lifetime of mid-
migration Lefty1-/- null (N=3), Lefty1+/- heterozygous (N=3) and wild type (N=3) embryos. There were significant differences in tension 
based on genotype and region of the embryo, one-way ANOVA, p=<0.001, followed by Tukey’s HSD Test for specific comparisons. 
There was no difference in lifetime between anterior exVE, posterior exVE, and migrated DVE in WT or Lefty1+/- heterozygous embryos 
(Tukey’s HSD Test, p=>0.05 for all comparisons). However in Lefty1-/- mutant embryos, anterior exVE had a significantly lower lifetime 
than the DVE (Tukey’s HSD Test, p=<0.01), but not the posterior exVE (Tukey’s HSD Test, p=>0.05). Furthermore, the anterior exVE 
from Lefty1-/- mutant embryos had significantly reduced tension when compared with the DVE, anterior exVE and posterior exVE of wild 
type and Lefty1-/+ heterozygous embryos (Tukey’s HSD Test on Lefty1-/- anterior exVE vs. wild type DVE (p=<0.05), wild type anterior 
exVE (p=<0.05), wild-type posterior exVE (p=<0.001), Lefty1+/- heterozygous DVE (p=<0.01), Lefty1+/- heterozygous anterior exVE 
(p=<0.001) and Lefty1+/- heterozygous posterior exVE (p=<0.05). In all backgrounds, DVE had higher tension than emVE (Tukey’s HSD 
Test, p=>0.05).
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Table S1– List of imaging data and analysis
Data Set LA_Imaging_

Control_1
LA_Imaging_
Control_2

LA_Imaging_
Control_3

LA_Imaging_
Control_4

LA_Imaging_
Control_5

LA_Embryo
_1

LA_Embryo_
2

LA_Embryo
_3

LA_Embryo
_4

LA_Embryo
_5

LA_Embryo
_6

LA_Embryo
_7

LA_Embryo
_8

LA_Embryo
_9

HXMG_Control
_1

HXMG_Control
_2

HXMG_Control
_3

HXMG_Control
_4

HXMG_Control
_5

HXMG_Control
_6

HXMG_Control
_7

HXMG_Control
_8

HXMG_Control
_9

Mouse lines  LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 LifeAct/CD1 HexGFP/
mTmG

HexGFP/mTmG HexGFP/mTmG HexGFP/mTmG HexGFP/mTmG HexGFP/mTmG HexGFP/mTmG HexGFP/mTmG HexGFP/mTmG

Microscope Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 Zeis Z.1 

Acquisition 
Objective

63x/1.0 W 
Plan-
APOCHROM
AT VIS-IR

63x/1.0 W 
Plan-
APOCHROMA
T VIS-IR

63x/1.0 W 
Plan-
APOCHROM
AT VIS-IR

63x/1.0 W 
Plan-
APOCHROM
AT VIS-IR

63x/1.0 W 
Plan-
APOCHROM
AT VIS-IR

63x/1.0 W 
Plan-
APOCHRO
MAT VIS-IR

63x/1.0 W 
Plan-
APOCHROM
AT VIS-IR

63x/1.0 W 
Plan-
APOCHRO
MAT VIS-IR

63x/1.0 W 
Plan-
APOCHRO
MAT VIS-IR

63x/1.0 W 
Plan-
APOCHROM
AT VIS-IR

63x/1.0 W 
Plan-
APOCHROM
AT VIS-IR

63x/1.0 W 
Plan-
APOCHRO
MAT VIS-IR

63x/1.0 W 
Plan-
APOCHRO
MAT VIS-IR

63x/1.0 W 
Plan-
APOCHRO
MAT VIS-IR

63x/1.0 W 
Plan-
APOCHROMAT 
VIS-IR

63x/1.0 W Plan-
APOCHROMAT 
VIS-IR

63x/1.0 W Plan-
APOCHROMAT 
VIS-IR

63x/1.0 W Plan-
APOCHROMAT 
VIS-IR

63x/1.0 W Plan-
APOCHROMAT 
VIS-IR

63x/1.0 W Plan-
APOCHROMAT 
VIS-IR

63x/1.0 W Plan-
APOCHROMAT 
VIS-IR

63x/1.0 W Plan-
APOCHROMAT 
VIS-IR

63x/1.0 W 
Plan-
APOCHROMAT 
VIS-IR

Laser (Excitation 
wavelength)

488 488 488 488 488 488 488 488 488 488 488 488 488 488 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561

Laser power (%) 2 2 2 2 2 2 2 2 2 2 2 2 4 2 0.8 & 1.5 0.8 & 1.5 0.8 & 1.5 0.8 & 1.5 0.8 & 1.5 0.8 & 1.5 0.8 & 1.5 0.8 & 1.5 0.8 & 1.5

Exposure (ms) 35 35 35 35 35 35 35 35 30 35 30 30 30 30 30 30 30 30 30 30 30 30 30

Z-interval (uM) 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2

Dual-side Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Z-stack Angles 
Acquired

0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180 0 + 180

Acquisition Time 
Interval (minutes)

5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 10 10 10 10

Total z-stack 
volumes acquired

200 200 200 200 200 240 180 222 220 230 132 132 230 240 66 140 194 84 188 188 120 212 154

Total Imaging 
Time (min)

500 500 500 500 500 600 450 555 550 575 330 330 575 600 660 700 970 420 940 940 600 1060 770

Fixed Post-
culture for IHC

X X x x x

Spatiotemporal 
Registration & VE 
projections

X X X X X X X X X X X X X X X X X X

MOSES 
Superpixel 
Tracking

X X X X X X X X X X X X X X X X X X

MOSES-based 
training Set for 
CNN - AVE 
classifier

X X X X X X X X X

Autostaged by 
CNN - AVE 
Classifier

X X X X X X X X X

Time Prior to 
Migration Phase 
(mins)

60 215 125 190 155 60 110 0 0 60 0 280 220 130 100 280 0 60

Time of Migration 
Phase (mins)

230 140 390 200 195 230 330 190 280 170 360 280 200 300 260 320 360 480

Automated Cell 
Detection

X X X X X

Training Data for 
Cell ID CNN 
(number of 
timepoints with 
cells annotated)

15 10 10 10 10 10 10

Manual cell 
tracking

100 TPs 
polar 
projection + 
100 TPs 
rectangular 
projection 
(in 
duplicate)

Automated Cell 
tracking

X X X X X

Single-cell 
Phenomic 
Analysis

X X X X X

Cell Division 
Anaylsis

X X X X X X X X X

Cell Division 
Events Manually 
Annotated (Pre-
Migration)

12 53 31 38 31 12

Cell Division 
Events Manaully 
Annotated 
(Migration Phase)

40 35 102 66 48 80 22 31 60
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Table S2 – List of single-cell parameters for UMAP analysis
Measure Defini+on Units Analysis Level 
Area, A VE apical surface area μm2 Cell
Perimeter, P VE apical cell perimeter μm Cell
Shape Index, S P/√A -        Cell
Aspect ra+o Major axis length/minor axis length -        Cell

Cell height
Mean distance between the VE apical surface 
and basal surface  within the cell area μm Cell

# Cell neighbours
Number of cells in immediate contact with the 
cell -        Cell

Instantaneous Anterior speed (VE), VVE
Mean curvilinear speed of VE cell towards 
anterior μm/min Cell

Cumula+ve anterior distance

CumulaJve distance moved in the anterior 
migraJon direcJon relaJve to spaJal posiJon at 
start of migraJon stage μm Cell

Gauss surface curvature, KVE     
Mean 3D Gaussian curvature of VE layer surface 
within the cell area μm-2 Local Tissue

surface curvature, HVE
Mean 3D Mean curvature of the apical surface 
of VE layer within the cell area μm-1 Local Tissue

Gauss basal surface curvature, KBasal     
Mean 3D Gaussian curvature of basal VE layer 
surface within the cell area μm-2 Local Tissue

Basal surface curvature, HBasal
Mean 3D Mean curvature of the basal surface of 
VE layer within the cell area μm-1 Local Tissue

Apical area ac+n intensity
Mean frame-normalised (zscore) LifeAct 
intensity within the cell area - Cell

Apical perimeter ac+n intensity
Mean frame-normalised (zscore) LifeAct 
intensity on the cell perimeter - Cell
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Table S3 – UMAP cluster cell-statistics
UMAP_cluster A B C D E

#uniq_cells(tracks) 490 604 503 599 2028

#cell_instances(points) 4939 4668 3773 8434 70087

mean_Area 80.52346857 116.6191976 207.9843496 189.0047956 211.9836127

std_Area 34.86962487 40.73001707 74.14555621 71.48139029 79.10606223

mean_Perimeter 41.74987103 46.51516565 63.29230273 88.41735758 75.959465

std_Perimeter 10.80886274 7.81106195 10.87329918 22.26876227 18.74232654

mean_Shape_Index 4.623896676 4.285127455 4.347583469 6.287724275 5.12587973

std_Shape_Index 0.51769817 0.224406052 0.308586131 0.999005134 0.775179415

mean_Eccentricity 1.653645121 1.29261722 1.222860135 2.461113106 1.526654629

std_Eccentricity 0.457465217 0.20631402 0.151629021 0.856780185 0.364529915

mean_Thickness 22.46898971 17.90128155 15.52420732 23.08539708 19.81309955

std_Thickness 4.382465709 3.984125083 3.852794722 4.130163375 3.957381623

mean_Num_Neighbors 4.754606196 5.051842331 5.636628677 5.515532369 5.743433162

std_Num_Neighbors 0.909398711 0.830731262 0.845752694 1.077089394 0.955248865

mean_A_P_speed_VE 0.130708615 0.115459743 0.065148348 0.016153396 0.013766578

std_A_P_speed_VE 0.207569044 0.198095563 0.159571964 0.14251743 0.126601846

mean_cum_A_P_VE_speed 2.676548187 1.3748286 0.670067231 0.76593717 0.183659292

std_cum_A_P_VE_speed 3.381420368 2.45493328 1.744130637 1.959203188 1.117753818

mean_Mean_Curvature_VE 0.018608583 0.02127803 0.018636241 0.011732662 0.014163141

std_Mean_Curvature_VE 0.007213856 0.006425515 0.005077823 0.005097735 0.004703488

mean_Mean_Curvature_Epi 0.023223832 0.026877937 0.024867422 0.016437137 0.020007063

std_Mean_Curvature_Epi 0.008518081 0.007893641 0.00641074 0.010816232 0.007950077

mean_Gauss_Curvature_VE 0.000192541 0.00045322 0.000328515 -0.000722758 2.99E-07

std_Gauss_Curvature_VE 0.004523865 0.000312234 0.000230596 0.008839429 0.002662359

mean_Gauss_Curvature_Epi 0.000420801 0.000683199 0.000549453 -0.000408465 7.13E-05

std_Gauss_Curvature_Epi 0.001366855 0.000531844 0.000430972 0.004632281 0.001473701

mean_norm_apical_actin 1.753306628 0.757132514 0.053330851 0.855594778 0.34379363

std_norm_apical_actin 0.998529035 0.627348763 0.333609662 0.535353585 0.443457129

mean_norm_perimeter_actin 1.757957566 0.930002378 0.276976641 0.950897818 0.518107186

std_norm_perimeter_actin 0.913554768 0.630632239 0.359617951 0.524461312 0.450450051

of cells from the posterior portion of the DVE and posterior proximal emVE (Regions 2 and 4) (Figure 3C, 
Figure S5C’). In contrast, Cluster E was comprised of cells distributed uniformly throughout the the emVE 
and exVE in both anatomical mapping (Figure S5B) and anatomical origin (Figure 3G, Figure S5C’). This 
indicated that cells that occupy different anatomical regions in the emVE at the onset of migration had 
characteristic and distinct phenomic signatures. Notably, even Clusters A and B, which consist predominantly 
of cells from the anterior part of the DVE (Region 1) map, within this relatively small region, to more proximal 

10

Figure 3. Single-cell phenomic analysis of multi-embryo longitudinal Lifeact-GFP data. A. Overview of the steps of the single-cell 
phenomic analysis method. B. 14 parameter single-cell phenomic UMAP integrating all instances (91,901) of all VE cells (2221 unique 
cells) from five Lifeact-GFP embryos. The five phenomic clusters that emerge are annotated. C. Anatomical mapping of all instances of 
clusters A to D from a representative embryo plotted as a polar projection to visualise both anterior and posterior regions (also see 
Figure S5 for other embryos). D. Single-cell phenomic UMAP with trends of each cell parameter shown as a heatmap. E.  Mean profile 
of clusters A-E for each of the 14 cell parameters used in the UMAP analysis. F, F’. Single time-point from a representative digitised 
embryo showing the cluster identity of VE cells in that time point, in 3D and polar-geodesic views (also see Movie S11). G. Summary of 
anatomical origin of VE cells from each cluster. Cluster E was distributed throughout the VE.
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