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Single-cell phenomics reveals behavioural and mechanical
heterogeneities underpinning collective migration during
mouse anterior patterning
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SUMMARY

Distal Visceral Endoderm (DVE) cells show a stereotypic unidirectional migration essential for correct
orientation of the anterior-posterior axis. They migrate within a simple epithelium, the Visceral Endoderm
(VE). It is unknown how DVE cells negotiate their way amongst the surrounding VE cells, what determines
the bounds of DVE migration within the VE, and the relative contributions of different cell behaviours to this
migration. To address these questions, we used lightsheet microscopy to generate a multi-embryo, single-
cell resolution, longitudinal dataset of cell behaviour and morphology. We developed a machine learning
based pipeline to segment cells and a data-informed systematic computational framework to extract and
compare select morphological, behavioural and molecular parameters of all VE cells in a unified coordinate
space. Unbiased clustering of this single-cell ‘phenomic’ dataset reveals considerable patterned phenotypic
heterogeneity within the VE and a previously unknown sub-grouping within the DVE. While migrating, DVE
cells retain regular morphology, do not exchange neighbours and are crowded, all hallmarks of the jammed
state. In contrast, VE cells immediately ahead of them deform and undergo neighbour exchange. We show
that DVE cells are characterised by higher levels of apical F-actin and elevated tension relative to the VE
cells immediately ahead of them through which they migrate, but stop migrating upon reaching a region of
the VE with matching elevated tension. Lefty? mutants, known to show abnormal over-migration of DVE
cells, show disruption to this patterned tension in the VE. Our findings provide novel insights into the control
of cell behaviour during the remodelling of curved epithelia, indicating that the collective migration of sub-
sets of cells can be circumscribed by modulating the mechanical properties of surrounding cells and that
migrating cells in this context remain as a jammed solid flock, with surrounding cells facilitating their
movement by becoming unjammed.
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INTRODUCTION

The dynamic remodelling of epithelial sheets
requires the movement of interconnected cells
through spatially localised, coordinated cell
behaviours. Live imaging of epithelia during cell
migration has revealed that cells can employ a
variety of behaviours including T1 transitions (Bertet
et al. 2004), or by forming transient multicellular
‘rosette’ structures that resolve in a directional
manner to facilitate local neighbour exchange events
(Blankenship et al. 2006). Cells in the tissue can
also undergo changes in morphology, regulated
patterns of divisions, and apoptosis, all of which
must be coordinated to enable movements while
retaining mechanical tissue integrity (Economou et
al. 2013). In order to initiate movements in an
epithelial context it has been suggested that the
tissue undergoes a transition from a rigid, packed
state, where cell movements are constrained
(‘fammed’), to a fluid-like state where cell
movements are permissible (‘unjammed’) (Angelini
et al. 2011; Bi et al. 2011; Bi et al. 2015; Bi et al.
2016; Cates et al. 1998; Lawson-Keister and
Manning 2021; Park et al. 2016; Trappe et al. 2001).
In the classical formulation, particles in a jammed
state can be forced to become unjammed by even
small changes in the direction of stresses applied on
them (Cates et al. 1998; Liu and Nagel 1998). In the
biological context, cells can come to occupy a
jammed state for a variety of reasons, with different
mechanisms being responsible depending on
biological context (Lawson-Keister and Manning
2021).

The onset of collective cell movements in a
confluent cell layer has been described as a flocking
transition, with parallels to the behaviour of birds
flying together in large groups (Giavazzi et al. 2018)
(Szabo et al. 2006; Vicsek and Zafeiris 2012). In
such a model, rather than leader cells ‘pulling’ the
cells behind them forward, it is the alignment of
interactions between individual cells that promotes
directional movement (Giavazzi et al. 2018;
Malinverno et al. 2017), as cells far from the leading
edge can also provide lamellipodial-based tractional
force in cell culture experiments (Trepat et al. 2009).
Modelling this process with Self-Propelled Voronoi
models indicate the existence of liquid-flock and
solid-flock states, where cells migrate with or without
cell mixing, respectively (Giavazzi et al. 2018; Trepat
and Sahai 2018). Such flocking behaviour can be
induced in confluent human mammary epithelial
cells by over expression of Rab5a, thought to be due
to stimulating junctional remodelling (Malinverno et
al. 2017).

Much of this work however has been carried out on
relatively flat epithelia, in vitro two-dimensional (2D)
flat culture or mathematical models of flat tissues.
However in vivo, epithelial tissues exist in complex
three-dimensional (3D) architectures, adding
potentially different topological and mechanical
settings across the varying spatiotemporal scales of

the tissue that migrating cells need to negotiate (Li
et al. 2021).

One such example is the Visceral Endoderm (VE), a
monolayer epithelium in the developing mouse
embryo arranged as a blunt-ended cylinder (often
referred to as the egg cylinder). A sub-set of VE
cells, termed the Distal Visceral Endoderm (DVE)
show a characteristic migratory behaviour within the
plane of this curved epithelial tissue. DVE cells are
induced at the distal-tip of the embryonic day 5.5
(E5.5) mouse embryo (Thomas et al. 1998) (Figure
1A) where they express a specific set of genes (Belo
et al. 1997; Pfister et al. 2007; Thomas et al. 1998;
Thowfeequ et al. 2021; Varlet et al. 1997; Yamamoto
et al. 2004) and migrate proximally over the course
of 3-5 hours in a unidirectional manner (Srinivas et
al. 2004; Thomas et al. 1998). DVE cells stop at a
boundary, defined by that of the underlying
embryonic (Em) epiblast and extra-embryonic
ectoderm (ExE) (the 'Em-Ex boundary'), so that they
are positioned asymmetrically along one side of the
embryo, at which point they are termed Anterior
Visceral Endoderm (AVE). DVE cells express Lefty1,
Cerl1 and Dkk1, inhibitors of the TGF-B/NODAL and
WNT pathways (Belo et al. 1997; Yamamoto et al.
2004) that restrict the formation of the primitive-
streak to the opposite (future 'posterior') side of the
epiblast at E6.25. Lefty1 mutant embryos show an
abnormal over-migration of DVE cells into the region
of VE overlying the ExE (Trichas et al. 2011),
indicating that regulation of TGF-B signalling in this
context is important for regulating migratory
behaviour.

Live imaging has shown that DVE cell movement is
an active process as cells produce polarised cellular
projections from their basal aspect in the direction of
migration (Migeotte et al. 2010; Srinivas et al. 2004)
Furthermore, knock-outs of genes involved in actin
regulation lead to loss of these cellular projections
and disruption of migratory behaviour (Migeotte et
al. 2010; Omelchenko et al. 2014; Rakeman and
Anderson 2006).

Our understanding of the cellular basis of DVE
migration is, nevertheless, incomplete. Studies
typically focus only on the actively migrating cells,
rather than considering the global epithelial context
(i.e., cells positioned lateral and posterior to the
DVE) within which migration occurs. Therefore we
lack an integrated understanding of the regional cell
behaviours (e.g., movement, changes in cell shape,
oriented cells division events, cell-cell
rearrangements) that underlie DVE migration — how,
in short, the interactions at the level of individual
cells lead to emergent tissue-level morphogenetic
behaviour. Furthermore, while this migration is often
described as a collective migration (Bloomekatz et
al. 2012; Migeotte et al. 2011; Morris et al. 2012;
Shioi et al. 2017), no study to date has tracked all
DVE cells in a single embryo during their migration,
so it remains unclear whether differences exist within
the migratory cell population as they migrate through
the plane of the epithelial monolayer.
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Although relatively little is known about the cellular
properties that distinguish migratory DVE cells from
surrounding non-migratory VE cells, it is known that
NODAL signalling from the epiblast is required for
DVE induction (Brennan et al. 2001), and that this
triggers cells to transition from squamous to
columnar morphology prior to migration (Kimura et
al. 2000; Rivera-Perez et al. 2003; Srinivas et al.
2004). It is understood that DVE cells are induced at
the distal tip as the embryo grows and elongates,
distancing the distal cells of the VE from repressive
BMP signals emanating from the ExXE (Mesnard et
al. 2006; Rodriguez et al. 2005). Nevertheless, as
DVE cells are positioned at the distal-tip of the
cylinder-shaped VE, the region with the highest
tissue curvature, these cells may also be subject to
increased mechanical stress (Helfrich 1973; Khairy
et al. 2018; Khmelinskii and Makarov 2020). As
mechanical cues can affect cell fate decisions and
cell behaviour (De Belly et al. 2022; Discher et al.
2009), it is unclear whether the columnar
morphology and behaviour of the migratory DVE
cells is due to biomechanical differences imposed by
the curvature of the VE tissue, or autonomously
controlled.

Consequently, identifying the key parameters
underlying tissue morphogenesis requires analysis
of the spatiotemporal heterogeneity in morphological
and behavioural characteristics (phenotypes) of all
the cells within the tissue at the level of the
constituent single-cells. Importantly, for statistical
robustness, these measurements require a
framework to integrate such quantitative data from
across multiple embryos, due to the nature of their
heterogeneity. Quantitative time-lapse data in the
mouse embryo can be obtained using lightsheet-
based imaging and cell tracking (Ichikawa et al.
2013; McDole et al. 2018; Udan et al. 2014),
however, such efforts so far have used only nuclear
fluorescent reporters (e.g. H2B-GFP) that are
relatively easy to segment and can be used for
positional cell tracking, but do not provide
information about cell-shape, surface-area or other
cell morphology specific phenotypic parameters.

In order to address these limitations, we developed
a longitudinal imaging based-approach for recording
cell shape and movements at high spatial and
temporal resolution during DVE migration, using
lightsheet microscopy. To integrate data on the
dynamics of cellular phenotypes from multiple
embryos with varying numbers of cells and durations
of DVE migration, we developed a method for the
temporal staging and spatial alignment of embryos
based on DVE migration. To enable systematic
comparative analysis of phenotype between these
large multi-dimensional image volumes, we
developed innovative computational tools to map the
apical surface of every VE cell at each time-point
onto a single volumetric coordinate system, so that
we could project it into 2D and use machine
learning-aided approaches to segment individual
cells for temporal tracking. To analyse these multi-
dimensional data, we developed a multivariate
single-cell manifold analysis that integrates cells

from multiple embryos developing across time. Such
approaches have recently been applied with good
effect to fixed samples to study morphological
transformations (Andrews et al. 2021). The
extension of these approaches to longitudinal data
enabled us to comprehensively profile and compare
the morphological and behavioural phenotype of all
VE cells during DVE migration, at single-cell
resolution.

This single cell ‘phenomic’ (Davis 1949)
characterisation revealed a previously
unappreciated, patterned, heterogeneity within the
VE. DVE cells can be categorised into distinct sub-
groups on the basis of their phenomes, while cells in
the proximal emVE (Figure 1 A) also form distinct
phenomic clusters. Tracking cells throughout the
migration phase revealed that DVE cells remain
relatively constant in morphology, do not exchange
neighbours and are crowded, with a constant low
apical surface area. In contrast, VE cells
immediately ahead of them show key hallmarks of a
phase transition to an unjammed state, changing cell
shape to become irregular and undergoing cell
mixing, enabling them to be displaced anteriorly and
laterally. In addition to being distinguished from
surrounding VE cells by their migratory behaviour
and morphology, DVE cells also show elevated
levels of apical and junctional F-actin, suggesting
that they are also mechanically distinct from
surrounding cells. We verified that DVE cells are
characterised by a significantly elevated membrane
tension, and that this tension is dependent on acto-
myosin contractile activity. DVE cells migrate
through cells with significantly lower apical tension
and halt their migration upon reaching the VE
overlying the ExE, which has an apical tension
comparable to the DVE. In contrast, Lefty? mutants
show a significant reduction of tension in the VE
overlying the ExE, into which DVE cells abnormally
over-migrate.

These results reveal a novel model for DVE
migration, where they migrate as a solid flock within
the epithelium of the VE, facilitated by the
unjamming of cells immediately surrounding them,
and delimited by patterned tension differentials
within the epithelium.

RESULTS

E5.5 multi-embryo 5D lightsheet time-lapse
dataset of DVE migration

To create a library of time-lapse datasets that
capture at cellular resolution dynamic events in the
VE during DVE migration and enable the extraction
of parameters relating to cell morphology, and
movements we optimised the culture and imaging of
egg-cylinder stage embryos on the ZEISS Z.1
lightsheet microscope (Figure S1A-C).

To ensure that our culture conditions and imaging
parameters permitted normal embryo development,
we performed a number of tests. We used embryos
carrying a ubiquitously expressed Lifeact-GFP
transgene, which delineates every individual cell in
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Figure 1. Data processing framework for single-cell, multi-embryo analysis of VE cell behaviour and morphology during DVE
migration. A. En face and cut-away profile illustrations of the E5.5 mouse embryo showing the monolayer visceral endoderm (VE)
surrounding the epiblast (EPI) and extra-embryonic ectoderm (ExE). The migratory distal visceral endoderm (DVE) cells are in green.
Arrows indicate direction of migration to future anterior. B. Representative images of a single time point from lightsheet imaged Hex-
GFP:membrane-tdTomato and Lifeact-GFP mouse embryos. C-G. Computational pipeline to extract and analyse quantitative single cell
phenomic data from multidimensional image data. C. Spatiotemporal registration of the 3D time-lapse data to generate a consistent
surface coordinate framework, to enable 2D geodesic surface projection of the apical VE surface. D. A DVE motion classifier trained
using superpixel motion tracking of DVE cells labelled with Hex-GFP. E. The trained motion-based classifier is used to identify the
migration phase of Lifeact-GFP embryos. F. Convolutional neural network to identify and segment individual cells from Lifeact-GFP time-
lapse data. G. Single-cell analysis of the phenome (morphology and behaviour) of VE cells integrating time-lapse data from multiple
embryos. 5
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the VE by labelling its cortical F-actin (Ried! et al.
2010). We acquired full z-stack image volumes of
E5.5 embryos from two angles (0° and 180°)(Figure
S1A) at 5-minute intervals, at diffraction-limited
resolution, throughout DVE migration. First, we
confirmed the correct patterning of key molecular
markers of the three main cell types (DVE, epiblast
and ExE) in embryos that had been imaged for 100
time-points at 5 minute intervals. Since each embryo
is imaged from two angles, this constituted a total of
200 z-stack acquisitions at 2 pm z-interval. Imaged
embryos showed the correct pattern of DVE markers
OTX2 and AMOT, epiblast marker OCT4 and ExE
marker CDX2, as assessed by whole-mount
immunofluorescence and confocal microscopy
(Figure S1C). Secondly, time-lapse imaged embryos
had intact nuclear morphology and had maintained
monolayer integrity, as seen by DAPI and phalloidin
staining (Figure S1C). Third, we assessed the extent
to which cells failed to divide, which is a hallmark of
photo-toxicity (Laissue et al. 2017). Cell divisions
could be observed in all tissues throughout the
duration of the time-lapse (data not shown) and
detailed analysis of all VE cell division events in
Lifeact-GFP time-lapse embryos showed a similar
rate of divisions among all imaged embryos (Figure
S2A). Fourth, to further test if the behaviour
observed in live embryos reflected in utero
development, we imaged embryos expressing the
Hex-GFP transgene that marks DVE cells and
analysed the radial distribution and proximal extent
of the Hex-GFP cells throughout the time-lapse.
Comparison to non-cultured Hex-GFP control
embryos fixed at early-, mid- and late-migration
(total N=48) (Figure S2B,C) revealed that the Hex-
GFP population in time-lapse imaged embryos
progressed through a similar radial distribution and
proximal position to that of the non-cultured control
embryos (Figure S2D). Finally, we measured the
duration of DVE migration in our dataset and found
that it was comparable to that of previous studies
(Migeotte et al. 2010; Srinivas et al. 2004) (average
4h hours 33 mins £ 1h 24 mins, N=18) (Table S1).

We next used these conditions to build a library of
time-lapse image volumes of Lifeact-GFP (Ried| et
al. 2010) embryos cultured during DVE migration,
that captured the behaviour of every cell in the VE at
high temporal and spatial resolution. To
automatically stage embryos according to the extent
of DVE migration, we developed a support vector
machine classifier (see below and Methods) that we
applied to time-lapse data from double reporter Hex-
GFP:membrane-tdTomato embryos, so that DVE
cells are labelled by Hex-GFP (Rodriguez et al.
2001) in a background where all cells express a
membrane-targeted tdTomato (Muzumdar et al.
2007). We generated a comprehensive ~12 TB, 5D
dataset (3 spatial, 1 temporal, 1 for multiple
fluorescence channels) of DVE migration, capturing
7-10 hours of development in each embryo, at
intervals of 5 minutes for Lifeact-GFP embryos
(N=9), and 10 minutes for double reporter Hex-
GFP:membrane-tdTomato embryos (N=9).

Creation of a dataset of single-cell specific
parameters of all VE cells during DVE migration

For the analysis of the multi-embryo dataset, we
established a computational pipeline
‘STrEAMS’(Spatio-Temporal Embryo Analysis at
Multiple-Scales) to automate the analysis of single-
cell behaviours and tissue morphology changes
throughout DVE cell migration. STFEAMS spatially
and temporally registers time-lapse data and
enables multi-scale feature extraction (Figure 1 &
Figure S3A). For each time-lapse, STrEAMS builds
a best quality 3D volume by fusing paired z-stacks
from each imaging angle followed by spatiotemporal
registration (Movie S1 and S2). Due to the
computational complexity of cell segmentation and
tracking in native 3D coordinate space, we
developed a pipeline to extract the apical VE surface
and re-project it as a series of 2D geodesic
projections (Movie S3) that could be used for
visualisation, augmentation, segmentation and cell
tracking before re-projecting to 3D coordinate space
for quantifications of cell statistics. In order to make
a spatiotemporally consistent 3D to 2D coordinate
framework, for each embryo, each time-point of the
volume data was 3D shape-matched to a mid-time-
point 'reference' volume, while tracking
measurements of embryo growth and embryo
shape-change.

To enable the visualisation and annotation of cellular
events across the entire radial circumference of the
apical surface of the VE epithelium, the reference
volume was then used to establish a consistent 1-
to-1 mapping of selected 3D apical surface co-
ordinates across time and to project the surface onto
a flat, 2D geodesic map (Figure 1C). We also
manually selected coordinates that corresponded to
the basal surface of the VE, to enable local cell
height to be measured. Critically, for all quantitative
analyses, features annotated on 2D projections were
transformed back to their corresponding original 3D
coordinates before deriving values for the
parameters being analysed (Figure 1C, Movie S6
and S7). This also enabled apical-surface VE
measurements to be integrated with local 3D shape
and behavioural measurements (see Methods for
details).

Visual inspection of geodesic projections of Lifeact-
GFP labeled embryos readily revealed DVE cells by
their characteristic migratory behaviour. In order to
generate binary cell outlines of VE cells, to track
them and extract quantitative information about their
apical cell-surface morphology and behaviour, we
augmented the cortical F-actin signal in our Lifeact-
GFP datasets by training a convolutional neural
network (CNN) (see Methods and Figure S3E and
Movie S4). We selected five of these Lifeact-GFP
embryos for further extensive manual curation,
enabling us to segment the apical outlines of
individual cells across the entire duration of each
time-lapse movie (Figure 2E, Movie S4). The
centroid of each outlined cell was then tracked
frame-to-frame using bipartite matching (see
Methods, Figure 2F-F”, Movie S4 & S5). To integrate
cell division events, we generated a graphical user
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Figure 2. Embryo digitisation and VE cell tracking during DVE migration. A, A’. Example of a representative Hex-GFP:membrane-
tdTomato embryo at two time-points during lightsheet imaging, used for generating a DVE motion classifier to automate staging of
Lifeact-GFP data. B, B’. VE apical surface geodesic polar projections of the embryo in A, A'. Distal tip for the embryo indicated by white
cross. Dotted line indicates approximate position of emVE - exVE boundary. C, C’. representative Lifeact-GFP embryo at two time-
points during lightsheet imaging. D, D’. VE apical surface geodesic polar projections of the embryo in C, C’. E. Segmentation of VE cells
in polar projections after CNN membrane augmentation. F-F”. Three time-points of a polar projection of the VE surface, showing tracks
of segmented cells (also see Movie S5). G. Reprojection of segmented VE cells into a 3D coordinate space. H-H”. Three time-points
from reprojection of segmented VE cells into a 3D coordinate space (also see Movie S7). Scale bar = 50 um. Note: reprojections have
no scale bar as they are non-linear projections.

interface ‘Cell Tracker’ that enabled the centroids of This generated a comprehensive single-cell
dividing cells and daughter cells to be easily longitudinal VE dataset consisting of 91,901 data-
annotated. The timing, position and division angle of points (cell instances), tracking a total of 2221
each division was recorded and integrated with cell unique VE cells from five Lifeact-GFP embryos over
tracking (see Methods). a cumulative total of 1,900 minutes of time-lapse

data. Next, for each VE cell at each time-point, we
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measured 14 parameters (Table S2) including: two
‘dynamic' parameters, the instantaneous speed in
the anterior direction from the preceding time-point
(anterior speed) and the cumulative distance a cell
has moved in the anterior direction (cumulative
anterior distance); twelve 'static' parameters, relating
to the morphology and size of cells at each time-
point (apical cell surface area; apical cell perimeter,
shape index; aspect ratio; number of cell
neighbours; cell height, mean apical curvature;
mean basal curvature; mean apical gaussian
curvature; mean basal gaussian curvature; mean F-
actin levels along cell perimeter and; mean F-Actin
levels on apical surface) (see Methods and Table
S2). All measurements were transformed to 3D
coordinates to calculate corrected values. Together,
these measurements describe the instantaneous
‘Phenomic state’ of single VE cells (cell behaviour
and cell morphology) in the time-lapse data,
integrating both dynamic and static information. To
visualise the segmented and tracked VE cells in the
original context of the egg cylinder, we re-projected
our 2D cell outlines (Figure 2F, Movie S4) and
tracking back to 3D coordinates (Figure 2H-H”,
Movie S7) using Mesh Lab (Cignoni et al. 2008) an
open source 3D software interface. This allowed us
to distill our multidimensional image data of
embryonic development into ‘digital embryo’
representations, that we could interrogate for
quantitative insights into DVE migration, and on
which we could perform in silico labelling
‘experiments’ on cell fate.

Embryos at this stage show some natural variation
not only in size but in the duration of DVE migration.
To enable integration of data from across multiple
embryos, we stage matched embryos in our dataset
and spatially aligned them with respect to the major
embryonic axes of symmetry. We did this using the
motion-based superpixel tracking approach
‘MOSES’ (F. Y. Zhou et al. 2019) to train a support
vector machine based DVE classifier. As training
data, we used the Hex-GFP channel (that labels
migrating DVE cells) from our lightsheet imaged
double reporter Hex-GFP:membrane-tdTomato
embryo dataset (Methods, Figure S3B). We first
spatiotemporally registered and re-projected these
time-lapse data as 2D geodesic projections (Movie
S8), then used MOSES to extract motion features of
the Hex-GFP labelled DVE cells, to train a motion
feature classifier (Figure S3B, Movie S9). Finally, we
used the trained classifier to categorise the time-
lapse data for each embryo (Figure S3C, Movie
S10) into one of three phases: a first phase with
DVE cells at the distal tip of the egg cylinder, with no
directional persistence amongst any of the VE cells;
a second phase capturing the majority of DVE
migration, with consistent directional persistence
and; a third phase, with a plateau in directional
persistence, during which DVE cells show little or no
anterior migration, having reached the embryonic-
extraembryonic boundary (Srinivas et al. 2004;
Trichas et al. 2011) (Figure S3C).

To understand the cellular basis by which DVE cells
migrate directionally from the distal tip to this

boundary, we focused on the first two phases, that
we termed ‘Pre-Migration’ and ‘Migration’,
respectively. To compare cells of corresponding
regions from different embryos, we categorised cells
according to their location at the start of the
migration phase (Figure 3A). To do this, we
demarcated eight different anatomical regions of the
VE (Figure 3A and Figure S3F) based on four rings
of VE spanning the girth of the egg-cylinder along
the proximal-distal axis. These were in turn each
divided into anterior and posterior halves. Though
anterior and posterior become evident only upon
DVE migration, the orientation of this axis could be
back-propagated even to pre-migration stages
because of the longitudinal nature of the data. Prior
to migration, the DVE occupied Region ‘1’, the
anterior side of the DVE and ‘2’, the posterior side of
the DVE (see Methods and Figure S3F for
description of how boundaries of these regions were
determined). Regions ‘3’ and ‘4’ were proximal VE
overlying the epiblast in the anterior (Anterior emVE)
and posterior respectively (Posterior emVE).
Regions ‘5, ‘6’, ‘7’ and ‘8’ were the VE overlying the
ExXE (exVE)(Figure 3A).

Having spatiotemporally registered and defined
these relative positional regions in each embryo, we
could now integrate information from across multiple
embryos to quantitatively investigate the behaviours
of the VE during DVE migration, at the level of the
component single cells.

Single-cell phenomic analysis identifies
behaviourally and spatially distinct VE cell
populations

We analysed our data using two complementary
approaches — on the basis of commonalities in
cellular phenotype, and on the basis of shared
anatomical position. Firstly, to identify in an unbiased
manner cells with shared behaviours and
morphological characteristics, we performed
hierarchical clustering of all VE cells in the dataset
based on similarities in the 14 cellular parameters
(Methods, Figure S4). In order to incorporate
longitudinal changes over time, each instance of a
cell in the time-lapse data was included as a
separate datapoint. This allowed us, in the first
instance, to screen across our data for cells
displaying similar behaviours irrespective of
temporal or anatomical position, while still retaining
this information for later analyses (Figure 3A, Figure
S4C). This revealed five distinct phenomic cell
clusters that we named A, B, C, D and E. We
visualised these clustered data by generating a
UMAP that captured the dominant behavioural and
morphological phenomic variations over space-time
in all VE cells — the phenomic space (Figure 3B).
Cells that clustered closely shared a similar set of
characteristics while those further apart had more
divergent phenotypes. By plotting a heat-map of
each parameter on the UMAP it was evident that
many parameters were distributed in a graded
pattern (Figure 3D). As each cluster was located in a
different part of the UMAP, with clusters A-D
positioned towards the edge of the UMAP and
cluster E making up the remainder (Figure 3B), it
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Figure 3. Single-cell phenomic analysis of multi-embryo longitudinal Lifeact-GFP data. A. Overview of the steps of the single-cell
phenomic analysis method. B. 14 parameter single-cell phenomic UMAP integrating all instances (91,901) of all VE cells (2221 unique
cells) from five Lifeact-GFP embryos. The five phenomic clusters that emerge are annotated. C. Anatomical mapping of all instances of
clusters A to D from a representative embryo plotted as a polar projection to visualise both anterior and posterior regions (also see
Figure S5 for other embryos). D. Single-cell phenomic UMAP with trends of each cell parameter shown as a heatmap. E. Mean profile
of clusters A-E for each of the 14 cell parameters used in the UMAP analysis. F, F’. Single time-point from a representative digitised
embryo showing the cluster identity of VE cells in that time point, in 3D and polar-geodesic views (also see Movie S11). G. Summary of
anatomical origin of VE cells from each cluster. Cluster E was distributed throughout the VE.

suggested that cells in each cluster differ in their understand the precise locations of all instances of
phenotype. cells, we first performed a digital anatomical

mapping, by extracting the cell IDs of all instances of
As our approach allowed us to retain information cells from each phenomic cluster and plotted their
about the anatomical location of each cell at every position onto the corresponding 2D surface
time-point, we asked whether cells in each projection (Figure 3C & Figure S5B) and 3D re-
phenomic cluster were anatomically regionalised. To  projected ‘digital embryos’ (Figure 3F, Movie S11).
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Secondly we analysed the anatomical region of
origin of cells within each cluster (Figure 3G &
Figure S5C’). Together these analyses revealed a
striking pattern of anatomical segregation of cells
from Clusters A to D. Anatomical digital mapping
showed that each cluster was spatially ordered
along the proximal-distal and future anterior-
posterior axis of the emVE (Figure 3C, Figure S5B).
Furthermore, with the exception of cluster E, all
other clusters were comprised of a majority of cells
that originated in one or two closely located
anatomical regions (Figure 3G, Figure S5 B,C’).
Clusters A and B consisted predominantly of cells
from the anterior half of the DVE (Region 1), Cluster
D of cells from anterior proximal emVE (Region 3)
and Cluster C of cells from the posterior portion of
the DVE and posterior proximal emVE (Regions 2
and 4) (Figure 3C, Figure S5C’). In contrast, Cluster
E was comprised of cells distributed uniformly
throughout the the emVE and exVE in both
anatomical mapping (Figure S5B) and anatomical
origin (Figure 3G, Figure S5C’). This indicated that
cells that occupy different anatomical regions in the
emVE at the onset of migration had characteristic
and distinct phenomic signatures. Notably, even
Clusters A and B, which consist predominantly of
cells from the anterior part of the DVE (Region 1)
map, within this relatively small region, to more
proximal and distal positions respectively (Figure 3C
and Figure 3G). Accordingly, we annotated Cluster A
as Anterior DVE 1, Cluster B as Anterior DVE 2,
Cluster C as Posterior emVE, Cluster D as Anterior
emVE and Cluster E simply as VE. This extensive
phenomic heterogeneity in the VE emerged primarily
during DVE migration. When we plotted a UMAP of
the subset of data only belonging to the pre-
migration stage (Figure S6B), the vast majority of
cell instances fell in the general VE category, with a
minority belonging to two DVE clusters (Figure S6 B-
D). Having identified this previously unappreciated
extensive phenotypic heterogeneity within both DVE
and non-DVE cells, we next explored the
characteristics that define each of these phenomic
clusters.

Differences in both morphology and behaviour
define VE cell clusters

We extracted the average statistics for each of the
14 measurements (Table S3) to calculate the
'phenomic signature' for each cluster (Figure 3E).
We found that Cluster A (Anterior-DVE 1) cells had
low apical surface area, with high values for cell
height, anterior-ward speed and levels of F-actin
(Figure 3E), as evident by their position on the
parameter-highlighted UMAP (Figure 3B, E). Cluster
B (Anterior-DVE 2) cells showed similar
morphological characteristics, but were not as tall,
had lower anterior-ward speed, moved a shorter
distance and had a lower level of F-actin in
comparison to cells in Cluster A (Figure 3F). Cluster
C (posterior emVE) cells had the largest apical
surface area and lowest cell height. They are also
very regular in shape, showed relatively little
anterior-ward motion and had a lower level of apical
actin than cells in any other group (Figure 3E). In

contrast, Cluster D (‘Anterior Proximal emVE’) cells
had intermediate cell area, high cell perimeter, a
high aspect ratio, high values for cell height and
intermediate levels of F-actin (Figure 3E). Finally,
Cluster E contained cells that had intermediate
values for each parameter, confirming that these
cells reflect ‘average’ VE cells (Figure 3E).

VE cells undergo coordinated changes in
phenomic profile during DVE migration

To understand how the phenotypic characteristics of
cells from specific anatomical positions change over
the course of DVE migration, we leveraged our
longitudinal dataset and digitised representations of
embryos. In order to determine the anatomical fate
of cells from different parts of the embryo, we
tracked them in anatomical space (Figure 4A, B,
Figure S7B, Movie S12), and simultaneously, to
determine the phenotypic changes they underwent
during this process, we tracked them as they
traversed phenomic space, to determine their
‘phenomic fate’ (Figure 4A, C, and Figure S7C).

We used the eight anatomical regions described
above (Figure 4A) and in addition, to provide added
granularity to the analysis and reflect the
heterogeneity revealed by our phenomic cluster
analysis (Figure 3G), further sub-divided the anterior
DVE into proximal and distal regions giving us a total
of nine regions. We then categorised ‘digitally’
labelled cells based on their position at the start of
the migration phase, and then tracked them
forwards in time during migration as well as
backwards in time into the pre-migration phase, to
analyse how they change in multi-dimensional
phenomic space over time. We generated phenomic
trajectories (akin to ‘pseudo-time’ diffusion
trajectories in single-cell transcriptomic analyses, but
here having the added power of representing real
temporal trajectories) by combining data from our
stage-matched, spatially aligned embryos, to
calculate the average UMAP phenomic coordinates
at one-hour intervals for each region. This revealed
clear differences in the average phenomic
trajectories of cells originating in each anatomical
region, with differences in both the direction and
length of trajectories (Figure 4C, Figure S7C).

We first considered the anatomical and phenomic
fate of DVE cells (subdivided into proximal anterior
DVE, distal anterior DVE, and posterior DVE).
Anatomical fate mapping showed that cells from all
three of these anatomical regions moved
unidirectionally towards the anterior (Figure 4B &
Movie S11) and were similar across embryos (Figure
S7B). However, phenomic fate mapping revealed
that cells from each region showed distinct
phenomic trajectories; proximal anterior DVE cells
(Figure 4C, Region 1A) started in a UMAP region of
low apical surface area, low aspect ratio and high
apical curvature (Figure 4C, Region 1A). Upon
migration, these cells moved towards a region of the
UMAP characterised by higher apical F-actin,
instantaneous anterior speed and height, but of low
apical surface area and aspect ratio (Figure 4C).
Cells in the distal anterior DVE (Figure 4A - Region
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1B) started in a UMAP region of low apical surface
area, low aspect ratio and high apical curvature
(Figure 4C). While they increased in apical F-actin
and instantaneous speed during migration, in
contrast to proximal DVE cells, they did not increase
significantly in height (Figure 4C - Region 1B).
Furthermore their phenomic trajectory was shorter
than that of proximal anterior DVE cells (Figure 4C)
indicating that they changed less overall in their
phenotype over the course of migration. Despite
being migratory, we noted that cells in both of these
regions retained low apical surface area and did not
appear to significantly change shape prior to their
movement (Figure 4C). In contrast, posterior DVE
cells had a larger apical surface area at the start of
migration (Figure 4C - Region 2), and also had a
lower level of F-actin (Figure 4C, Region 2).
However, over time they decreased in apical surface
area, and increased in anterior speed, F-actin levels
and height (Figure 4C) indicating that, over the
course of their migration, they start to become more
like cells in Region 1A (proximal anterior DVE).

Visualising these trajectories on the UMAP with the
cluster boundaries highlighted revealed how tracked
cell populations can shift across phenomic clusters
(Figure 3C’). When we compared the phenomic
trajectories of tracked DVE cell populations to the
positions of each cluster, it could be seen that on
average, as a cell population, they change cluster
over time (Figure 4C). Plotting the trajectory of
proximal anterior DVE revealed that its cells begin in
cluster E but move through cluster B to cluster A
(Figure 4C’ - Region 1A), whereas the distal anterior
DVE remained largely within cluster B (Figure 4C’ -
Region 1B). This difference in phenomic trajectories
of cells in these two, relatively small, regions of the
anterior DVE is consistent with them being
differentiated into two different phenomic clusters
(Figure 3G). Interestingly, the trajectory of posterior
DVE cells started in cluster E but moved through
cluster C and cluster B (Figure 4C’ - Region 2),
consistent with them becoming progressively more
like anterior DVE cells over time, as they move into
the anatomical region vacated by anterior DVE cells
during migration (Figure 4B).

We next considered the cells surrounding the DVE in
the emVE (anterior proximal emVE and posterior
proximal emVE) (Figure 4A - Regions 3 and 4).
Anatomical fate mapping showed distinct behaviours
in these regions with anterior proximal emVE
showing anterior-lateral movements (Figure 4B -
Region 3) while posterior proximal emVE stayed
relatively static, with a slight movement towards the
distal tip (Figure 4B - Region 4). Phenomic fate
mapping revealed that cells in both regions start in a
similar central part of the UMAP, i.e., Cluster E,
‘average’ VE cells (Figure 4C). However, over the
course of DVE migration, they showed very different
trajectories. Anterior proximal cells moved towards
cluster D, characterised by higher aspect ratio, high
cumulative anterior speed and increased cell height
(Figure 4C, Figure 4D-D’). In contrast, posterior
proximal emVE remained centrally in the UMAP,
largely unchanged in behaviour and morphology

(Figure 4C, Figure 4E-E’) showing that these two
proximally located regions in the emVE have highly
distinct phenomic fates during DVE migration.

Finally we performed fate mapping and phenomic
trajectory analysis of exVE anatomical regions
(Figure S7A-C). This showed that exVE cells remain
relatively static in both anatomical fate mapping
(Figure S7B) as well as phenomic trajectories
(Figure S7C), in contrast to the dynamic emVE
behaviour (Figure 4B, Figure S7B, C). Together, by
incorporating data from across multiple embryos,
these single-cell phenomic (scPhenomic) analyses
revealed the salient temporal behaviour and
morphological changes across the entire VE, during
DVE migration.

An unjamming transition occurs not in migrating
DVE cells but in the cells ahead of them, the
anterior proximal emVE

Our phenomic trajectory analysis showed that
despite being highly migratory, anterior DVE
(Regions 1A and 1B) cells remained largely
unchanged in morphology during migration (Figure
4C-D’). Given that the initiation of movements in an
epithelial context is often considered to involve cell
shape changes to unjam the migratory tissue, this
finding was unexpected. To investigate this in further
detail, we took an integrative, tissue-level, approach
by pooling phenomic data from across the multiple
embryos in our spatially and stage-aligned library of
embryos.

To do this, for each of the nine anatomical regions
(Figure 5A), we calculated the mean UMAP
phenomic coordinate at one-hour intervals by
pooling the cells from each region (see Methods).
This enabled us to plot the phenomic dynamics for
each region over the course of DVE migration
(Figure 5A-E, Figure S7D). To visualise these
dynamic changes in the context of the embryo, we
also overlaid heat-maps for these parameters onto
polar projections of the digitised VE cells (Figure 5
B-E, Movie S13).

These pooled data confirmed our scPhenomic
analysis, that anterior DVE cells (Regions 1A and
1B), had the highest anterior speed (Figure 5B),
smallest apical surface area (Figure 5C) and
remained relatively regular in shape throughout
migration (Figure 5D, E). To understand how cell
movements vary across regions, we next calculated
the diffusion coefficient, a measure of the ease of
mobility of cells (see Methods). We found that
regions 1A, 1B and 2 had significantly elevated
diffusion coefficients compared to the other regions,
consistent with DVE cells being more mobile (Figure
5F).

Interestingly, this region-anchored analysis
highlighted that, corresponding to the onset of
migration, cells in region 3 (the anterior proximal VE,
comprising cells ahead of the migratory DVE)
showed a marked, sustained increase in anisotropy
of cell shape (Figure 5D). This suggested that it was
cells proximal to the migratory DVE, not cells of the
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Figure 5. Temporal analysis VE cells in anatomical sub-region. A. Overview of the steps for temporal analysis. B, C, D, E. Plots of
cumulative anterior speed, apical surface area, aspect ratio and shape index (meanzs.e.m) at one hour intervals for cells from each of
the five emVE and one exVE sub-regions shown in A. Beside each plot are two time points from a polar projection of a representative
embryo with the parameter values overlaid on individual cells (also see Movie S13 for entire animation). F. Diffusion coefficient
(meanzs.e.m) of cells originating in each VE sub-region, over the course of migration. G. Superpixel tracking of tissue behaviour in the
polar projection of a representative embryo. A grid is overlaid on the embryo and deformed by motion tracking. Equivalent regions in the

anterior (orange) and posterior

(magenta) proximal emVE are shown prior to migration (t0) and after motion deformation during

migration (1125’, and t250’) showing tissue-level behavioural differences in shape and size. H. Fractional area change rate measured by
super-pixel analysis. Region 3, the anterior proximal emVE, is the only region to shows a significant difference compared to other
regions and is the only region to decrease in surface area during migration. I. Mean isotropic change rate measured by super-pixel
analysis. Region 3, the anterior proximal emVE, is the only region to show significant difference compare to all other regions, and is the

only region to show mean negative isotropic strain.

DVE itself, that undergo a phase ftransition and
become unjammed. A hallmark of the jamming-
unjamming transition is an increase in cell shape
index, a measure of the perimeter vs. areal cortical
tension of a cell’'s apical surface (Park et al. 2015).
While most regions, including the DVE, remained
relatively unchanged in their shape index throughout
migration, the anterior proximal emVE (Region 3)
increased significantly in shape index from the onset
of migration and remained high throughout the
migration phase (Figure 5E), further supporting the
notion that these cells are undergoing an unjamming
transition.

The jamming-unjamming transition is a tissue-level
event. To complement our single-cell based
characterisation of VE cell behaviour with an
independent, integrative, characterisation of net
tissue-level behaviour, we performed motion-sensing
superpixel analysis (Zhou et al., 2019). We
performed this on all nine Lifeact-GFP embryos in
our time-lapse library as well as our nine Hex-
GFP:membrane-tdTomato embryos, as the power of
this approach lies in it not requiring the
segmentation and tracking of individual cells. We
first confirmed that this approach was sensitive
enough to track the rotational movement of single-
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cell tracking, by plotting the average superpixel
motion during migration of Lifeact-GFP embryos
(Figure S8). Next we seeded a 640-sector grid
across the VE tissue by subdividing the area within
each of the 32 original regions into smaller 5x4
grids, and allowed the motion of super pixels to
deform the finer grid (Figure 5G, Movie S9,
MovieS10, Methods). The degree of change over
time reflects the cumulative effect of all cellular
events including cell movements, cell shape-change,
cell division events and cell mixing. We found that
the anterior proximal emVE tissue region specifically
underwent a deformation at the onset of migration,
becoming stretched along the radial axis and
compressed along the proximo-distal axis at the Em-
Ex boundary (Figure 5G). No other region in the VE
showed such a high degree of deformation.
Consistent with the single-cell based findings, this
analysis verified that Region 3 specifically
experienced a net reduction in tissue area (Figure
5H, Movie S14). Importantly, it revealed that this
region, uniquely within the VE, is subject to
compression, as indicated by a significant negative
mean isotropic strain rate (Figure 51, Movie S14).
These tissue-level analyses support the idea that the
anterior proximal emVE specifically is undergoing an
unjamming phase transition during DVE migration.

Cell intercalation events are restricted to the
region ahead of the DVE

Potential triggers for unjamming include cell
divisions (Petridou et al. 2021; Ranft et al. 2010),
and cell-cell rearrangements (Merkel and Manning
2017). We therefore next tested whether either of
these cellular behaviours differed specifically in the
anterior proximal emVE.

We compared the number, timing and angle of
divisions (Figure 6A - C”, Figure S9A - F) within the
anterior proximal emVE and the contralateral region
of the embryo, the posterior proximal emVE. We
found no significant difference in the number of cell
divisions events (Figure S9C), consistent with
previous studies (Stuckey et al. 2011). We also
found no difference in the timing of cells division
events in these two regions (Figure S9D,E).
Furthermore, there was no burst of division events
prior to-, or at the onset of anterior directional DVE
migration (Figure S9B). In contrast to the DVE
(Regions 1A, 1B and 2) where cell division angles
were uniformly distributed (Figure 6C), division
angles in the anterior proximal emVE were biased
along the radial axis (Figure 6C-C”) (along the girth
of the embryo - see diagram in Figure 6A). However,
a similar bias was also found in the posterior emVE
(Fig 6C-C”) suggesting that a difference in the
distribution of division angles is not responsible for
the specific unjamming in the anterior proximal
emVE.

We next analysed our time-lapse data for cell-cell
intercalation events, where the contact between a
pair of neighbouring cells is broken by a third cell
moving in-between them (Figure 6D). We recorded
the frequency, timing and anatomical region of
intercalation events across the VE in our time-lapse

data. In addition to quantifying intercalation events,
we also visualised them on the polar projections of
digitised embryos (Figure 6E, Movie S15). This
revealed a striking localisation within the VE of cell
intercalation events, that occur almost exclusively in
the anterior proximal emVE (Figure 6F, G).
Intercalation events also increased over the course
of migration, with the majority occurring in the latter
half of the migration phase (Figure 6H). Cell
intercalation events within the migrating DVE (1A,
1B and 2) were exceedingly rare (Figure 6G). As cell
mixing is a hallmark of unjamming, this further
supports a model where the anterior DVE remain
jammed during migration while anterior proximal
emVE cells undergo unjamming.

DVE cells have higher apical membrane tension
than the surrounding emVE

The primary characteristic of jammed tissues is
mechanical constraint (Lawson-Keister and Manning
2021; Mitchel et al. 2020). Our single-cell analysis
showed that migratory DVE cells had higher levels
of F-actin compared to the surrounding VE,
suggesting they may be under distinct mechanical
stresses (Figure 3F - Cluster A & B, Figure 4C). To
confirm that F-actin levels are indeed higher in DVE
than surrounding cells, we calculated the relative
levels of F-actin in each cell, on its apical surface
and along junctions with surrounding cells. We did
this using the normalised intensity of the Lifeact-GFP
signal at one-hour intervals prior to and during
migration. This revealed that even prior to migration,
DVE cells show the highest level of F-actin (both
junctional and apical surface) and maintain this
difference throughout migration (Figure 7A, B),
indicating that they might be mechanically distinct
from surrounding VE cells.

To test this prediction, we made use of a live-cell
tension-sensitive dye, Flipper-TR, whose
fluorescence lifetime is a readout of tension (Colom
et al. 2018) and has previously been used to
characterise mechanical tension in E6.5 mouse
embryos (Royer et al. 2022). We labelled live wild-
type E5.5 embryos and used the columnar
morphology of DVE cells (Kimura et al. 2000;
Rivera-Perez et al. 2003; Srinivas et al. 2004) to
identify the position of the DVE and categorise
embryos as ‘early-migration’ stage based on
whether the DVE was at, or just off-set from, the
distal tip (Figure 7C and Figure S10A). We then
performed fluorescence lifetime imaging microscopy
(FLIM) to capture a mid-sagittal z-section of each
embryo, so as to compare the apical membrane
tension of DVE cells to that of cells in the
surrounding emVE and exVE. This revealed that
apical tension in DVE cells was significantly higher
than that in surrounding emVE, but not significantly
different from exVE (N=7) (Figure 7C-C’).

The elevated tension of the DVE could be a property
intrinsic to DVE cells, or could be the result of their
being positioned at the distal end of the egg cylinder,
which is the site of highest curvature. To distinguish
between these two possibilities, we examined
embryos prior to DVE induction (Figure 7D-D’) a
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Figure 6. VE cell division angles and cell-cell intercalation events. A. Schematic of cell division angle measurement. B. Example of
a cell division event from a Lifeact-GFP time-lapse dataset. C. Cell divisions within the distal emVE binned into four angle ranges. The
distribution was not significantly different from random. y2 test for expected probabilities, p=>0.05. C’. Cell divisions within the proximal
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p=<0.001. C”. Cell divisions within the anterior and posterior proximal emVE, binned into four angle ranges. Both regions showed a
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expected probabilities p=<0.005. D. Example of VE cell-cell intercalation event in Lifeact-GFP time-lapse data showing two
neighbouring cells (NC1 and NC2, cyan) and an intercalating cell (IC, red) moving in between them. E. Selected time-points from the
polar projection of a representative embryo showing the position of DVE cells (yellow), neighbouring cells (cyan) and intercalating cells
(red). See Movie S15 for all frames. F. Position of all intercalation events (cyan) across time, in the embryo in E. G. Regional distribution
of 60 intercalation events from 5 embryos. X-axis show the region of origin of the intercalating cell (red), and neighbouring cells (cyan).
The majority of intercalation events (78.3%) occur amongst cells in the anterior-proximal emVE. H. Temporal distribution of 60
intercalation events from 5 embryos, across the pre-migration phase (5.5%), first half of the migration phase (33.3%) and the second
half of the migration phase (61.1%).
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stage at which VE cells positioned at the distal tip of
the egg cylinder have not yet acquired the molecular
(expression of genetic markers) (Belo et al. 1997;
Pfister et al. 2007; Thowfeequ et al. 2021;
Yamamoto et al. 2004), or morphological hallmarks
(columnar morphology) of the DVE (Kimura et al.
2000; Rivera-Perez et al. 2003; Srinivas et al. 2004).
We found no significant difference in apical tension
between the pre-DVE cells at the distal tip and the
surrounding cells in E5.5 pre-induction embryos
(Figure S10B). Furthermore, the apical tension was
significantly lower in the cells at the distal tip of pre-
induction embryos than in DVE cells of E5.5 early-
migration embryos (Figure 7D), suggesting that
elevated membrane tension is acquired by distal
cells only upon induction to the DVE state and is not
simply a property of cells by virtue of their position at
the distal tip of the egg cylinder.

To further test this finding, we examined late-
migration embryos in which DVE cells had moved
away from the distal tip and towards the Em-Ex
boundary (Figure 7E-E’). We found that DVE cells
retained elevated apical tension compared to
surrounding emVE cells even after they had
migrated away from the distal tip of the egg cylinder
(N=7) (Figure 7E-E’). These data further indicate
that DVE cells remain mechanically distinct from
surrounding emVE cells even during migration,
consistent with them remaining in a jammed state,
as a solid flock.

Given the high levels of F-actin in DVE cells, we
tested whether elevated apical tension in DVE cells
might be the result of increased actomyosin based
contractility, using the Myosin inhibitor blebbistatin
(Straight et al. 2003). While control DMSO treated
embryos showed no change in tension after
treatment (N=9) (Figure S10C-C’), blebbistatin
treated embryos showed a significant and rapid
decrease in tension (N=9) (Figure S10C-C’). This
points to an actomyosin dependent mechanism for
the elevated apical tension of DVE cells.

Lefty1 dependent modulation of mechanical
heterogeneity in the VE delimits DVE migration

DVE cells do not normally migrate into the exVE
region, despite it being part of the contiguous
monolayer epithelium of the VE. Instead, DVE cells
abruptly stop migrating proximally at the exVE and
start to be displaced laterally (Srinivas et al. 2004;
Takaoka et al. 2011; Trichas et al. 2011). In both
E5.5 early-migration and E5.5 late-migration
embryos, we observed that while the proximal emVE
cells had a significantly lower tension relative to the
DVE, exVE cells had a high tension, comparable to
that of the DVE (Figure 7C, E). We hypothesised
that this matched high-tension may prevent DVE
migration into the exVE. To test this hypothesis, we
measured VE cell tension in Lefty? null mutants
(Meno et al. 1998) (Figure 7F-F’, and Figure S10D-
D’) in which DVE cells abnormally over-migrate into
the exVE (Trichas et al. 2011). While E5.5 mid-
migration WT (N=3) and heterozygous Lefty1-+
embryos (N=3) showed no difference in tension
between DVE and exVE (Figure 7F), mid-migration

Lefty17 null mutants (N=3) had significantly lower
anterior exVE tension compared to DVE cells
(Figure 7F). This was due to a significantly reduced
tension in the anterior ExXVE of mutants in
comparison to WT and heterozygous embryo, while
the tension of mutant DVE cells was unaffected
(Figure 7F). Furthermore this lower tension was
found only in the anterior exVE of mutants embryos,
but not their posterior exVE (Figure S10D’). This
lowering in apical membrane tension in the anterior
exVE could help explain the over migration
phenotype observed in Lefty1 null embryos.

DISCUSSION

DVE cells remain as a solid flock during
collective migration

DVE migration takes place in an intact monolayer
epithelium requiring extensive coordination of cell
behaviour, so as to retain tissue integrity while
enabling dynamic movements. By generating a
multi-embryo, single-cell resolution longitudinal
dataset through lightsheet microscopy, and
developing a computational pipeline to extract and
analyse fundamental VE cell morphological and
behavioural parameters, we have been able to
decompose global tissue-scale events to their
component cellular behaviours. We find that, in
contrast to other epithelial tissues where the onset of
cell movement often involves a transition of cells to a
fluidised state, the DVE remains in a jammed state
throughout migration. It is the non-migratory VE cells
ahead of the DVE that show hallmarks of an
unjamming transition (cell shape changes and
mixing), leading to fluidisation of the tissue.
Migrating DVE cells in contrast show hallmarks of
the jammed state (Lawson-Keister and Manning
2021) such as crowding and elevated tension with
little change in the shape or size of cells. By
remaining in a jammed state, DVE cells are bound
together as a collective, enabling them to migrate via
basally located projections (Migeotte et al. 2010;
Srinivas et al. 2004), as a coherent group displacing
the anterior emVE cells ahead of them.

This finding suggests that DVE cells migrate as a
solid flock, and offers the first in vivo example of this.
It supports the more nuanced way of considering the
role of the unjamming transition in the context of
epithelial migration, where unjamming need not be
an obligate characteristic of migrating cells, but can
be a property of cells being deformed by an actively
migrating collective of cells moving as a solid flock
(Lawson-Keister and Manning 2021). In the case of
the VE, the solid flock of DVE cells might even be
responsible for triggering the unjamming liquefaction
of the cells ahead of them, by changing the
directional stress they are subject to (Cates et al.
1998; Liu and Nagel 1998). One characteristic of
solid flocks is that they are ‘self-propelled’. Migrating
DVE cells show hallmarks of active migration, such
as cell projections polarised in the direction of
motion (Srinivas et al. 2004), and being dependent
on the molecular regulators of active cell migration
NAP1 (Rakeman and Anderson 2006) and RAC1
(Migeotte et al. 2010).
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Figure 7. Migratory DVE cells show elevated apical F-actin and higher membrane tension. A. Plot of relative apical Lifeact-GFP
intensity (meanzs.e.m) at one hour intervals for cells in each of the five emVE and one exVE sub-regions shown in the inset. B.
Extended focus surface projection of Lifeact-GFP intensity from multiple time points of a representative embryo. The arrow shows the
position of the same DVE cell at each time point. C, D, E, F. Fluorescence lifetime imaging microscopy (FLIM) and quantitation of
FLIPPER-TR membrane tension reporter in mid-sagittal optical sections. C. Apical membrane lifetime of DVE cells, emVE cells not
belonging to the DVE, and exVE in early migration embryos (N=7). Apical lifetime was significantly higher in DVE and exVE compared to
emVE, reflecting a higher tension in the former two regions (one-way ANOVA, p=<0.01, followed by Tukey’s HSD Test on DVE vs.
emVE (p =<0.01) and exVE vs. emVE (p=<0.05)). There was no significant difference between DVE and exVE (Tukey’s HSD Test:
p=>0.05). D. Apical membrane lifetime of cells at the distal tip of E5.5 embryos prior to (N=7) and after (N=7) they had acquired DVE
identity. Apical lifetimes were significantly higher in DVE cells, compared to cells from pre-induction embryos (Student’s t-test, p=<0.05).
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E. Apical membrane lifetime of late-migration DVE cells, emVE and exVE from E5.5 embryos (N=7). Lifetimes were significantly higher
in migrated DVE than in the remaining emVE (one-way ANOVA, p=<0.001, followed by Tukey’s HSD Test, p =< 0.01) and in exVE
compared with emVE (Tukey’s HSD Test, p=<0.01). F. Apical membrane lifetime of mid-migration Lefty1/ null (N=3), Lefty1+-
heterozygous (N=3) and wild type (N=3) embryos. There were significant differences in tension based on genotype and region of the
embryo, one-way ANOVA, p=<0.001, followed by Tukey’'s HSD Test for specific comparisons. There was no difference in lifetime
between anterior exVE and migrated DVE in WT or Lefty1+- heterozygous embryos (Tukey’s HSD Test, p=>0.05 for both comparisons).
However in Lefty1/- mutant embryos, anterior exVE had a significantly lower lifetime than the DVE (Tukey’'s HSD Test, p=<0.01).
Furthermore, the anterior exVE from Lefty1/- mutant embryos had significantly reduced tension when compared with the DVE and
anterior exVE of wild type and Lefty1+- heterozygous embryos (Tukey’s HSD Test on Lefty1/ anterior exVE vs. wild type DVE
(p=<0.05), wild type anterior exVE (p=<0.05), Lefty1*~ heterozygous DVE (p=<0.01) and Lefty1*~ heterozygous anterior exVE
(p=<0.001)). F’. In inset images; dotted line marks the emVE - exVE boundary and arrows highlight cells in the anterior exVE region.

Flocking behaviour can be described as either ‘solid’
or ‘liquid’ depending on the extent of local cell mixing
superimposed on the long-range correlated
movement of the flock (Giavazzi et al. 2018; Trepat
and Sahai 2018). Given that DVE cells have an
important signalling role in pattering the epiblast,
migration as a solid flock might be necessary for it to
remain as a coherent cell population so that the
signals emanating from it can be properly localised,
rather than being diluted or misplaced by dispersal
of DVE cells were they to migrate through
unjamming or as a liquid flock. Interestingly,
embryos mutant for Nap1 (Rakeman and Anderson
2006), or in which PCP signalling is disrupted
(Trichas et al. 2011), show an abnormal dispersal of
AVE cells within the visceral endoderm similar to
what a migrating liquid flock might be expected to
resemble, pointing to potential molecular modulators
of flocking properties of DVE cells. Flocking
behaviour can be induced in confluent human
mammary epithelial cells by over expression of
Rab5a, a regulator of endocytosis that is thought to
promote junctional remodelling in this context
(Malinverno et al. 2017). It is unknown what
happens in the VE if one perturbs Rab5 function, but
embryos genetically null for another endocytic
regulator, Rab7, show patterning defects consistent
with defective DVE induction or migration
(Kawamura et al. 2012). Though the precise cause
of the defect in these mutants is unclear, this
presents the possibility that endocytosis might be
modulating junctional remodelling in the the mouse
embryo as well.

We had previously reported that neighbour
exchange was restricted to the emVE and not seen
in the exVE but due to limitations in imaging, could
not tell whether neighbour exchange occurred in the
posterior VE (Trichas et al. 2011). Lightsheet image
volumes and our digitised embryos allow us to
examine the entire surface of the egg cylinder and
reveal the striking extent to which neighbour
exchange events are restricted to only the anterior
emVE, supporting the idea that it is this region
specifically that is undergoing unjamming.

Studies of cell migration in other models generally
consider relatively flat expanses of tissue composed
of many cells. The difference we observe in the
mouse VE might be because it is only a distinct
subset of the VE, the DVE, that shows migratory
movement. It might also be due to the cylindrical
arrangement of the VE, with a relatively small
circumference and high curvature. The range of
shape index values we recorded for VE cells differed

from the critical shape index of 3.81 reported for
jamming in 2D epithelia (Park et al. 2015),
presumably due to the intrinsic 3D curvature of the
VE. This highlights the potential influence of overall
tissue topology on the properties and collective
behaviour of component cells. It will be interesting in
future studies to examine other cylindrical epithelia
such as the ureteric branches of the developing
kidney or pulmonary branches of the developing
lung to determine to what extent behaviours in
cylindrical epithelia differ from those in relatively flat
epithelia.

Regional heterogeneity of behaviour and
mechanical state circumscribes DVE migration

DVE cells become more columnar than
neighbouring VE cells upon induction and remain
that way throughout their movement (Kimura et al.
2000; Rivera-Perez et al. 2003; Srinivas et al. 2004).
Here we show that distal VE cells prior to induction
are squamous and have a similar membrane tension
to the surrounding emVE. When they are induced to
form columnar DVE cells, apical tension increases. If
columnarity is linked to the cells occupying a
different mechanical regime, it might explain why
DVE cells first undergo this change, perhaps to
increase their contact area, allowing them to adhere
more effectively to each other and facilitating their
migration as a collective through the surrounding VE
cells. We also note from other studies that DVE cells
express elevated levels of specific cytoskeletal
modulators, Keratin19 and Drebrin molecules
(Thowfeequ et al. 2021), and Keratin8 (Despin-
Guitard et al. 2022) that could provide additional
mechanical differences.

The significantly higher tension of DVE cells relative
to surrounding emVE cells suggests a model
whereby the high-tension collective of DVE cells
migrate through a ‘permissive’ lower tension emVE.
DVE does not normally migrate into the exVE
despite this being part of the continuous monolayer
tissue of the VE. We find that in wild-type embryos,
the emVE shows a similar tension to that of the
DVE, both higher than that of the emVE. These
findings could explain why DVE migration results in
a rotational, flow-like pattern in the emVE as shown
by us and others (Shioi et al. 2017; Takaoka et al.
2011; Trichas et al. 2011), that may emerge as a
consequence of the jammed DVE population
deforming the unjammed emVE against the
relatively high-tension exVE, that defines the limits
of DVE migration. Interestingly, these tissue-wide
movements appear similar to the ‘polonaise’
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movements in the pre-gastrulation chick epiblast
(Cui et al. 2005; Graper 1929; Voiculescu et al.
2007; Wetzel 1929) which has also been shown to
be surrounded by a high-tension boundary
(Saadaoui et al. 2020), though in this case, the
cellular mechanisms (mediolateral intercalation
events, oriented cell divisions)(Firmino et al. 2016;
Voiculescu et al. 2007) appear to be different.

In Lefty? null mutants, the DVE over-migrates into
the exVE region (Trichas et al. 2011). Our finding
that in these mutants, the tension is lower in anterior
exVE but not the DVE, suggests that in the wild-type
embryo, exVE is a barrier to migration because its
mechanical properties are matched to those of the
DVE and that a differential in tension is required for
migration. This opens up the interesting possibility
that patterned differentials in tension across epithelia
might be a general mechanism through which cell
movements is controlled in other epithelial contexts.

As Lefty1 is expressed in DVE cells, how its loss
leads to reduced tension in the exVE is unclear,
though as a secreted ligand, it could be expected to
have non-cell-autonomous effects on nearby tissues.
LEFTY1 is an inhibitor of the TGF- family member
NODAL, that has recently been shown to mediate an
unjamming transition during zebrafish gastrulation
(Pinheiro et al. 2022). In this system, a gradient of
NODAL leads to unjamming mediated by changes in
cell motility (Pinheiro et al. 2022). Though the
cellular mechanism of unjamming in the mouse egg
cylinder appears to be independent of cell motility, it
is possible that it is still ultimately mediated by
LEFTY1 acting via NODAL signalling. Nodal is
expressed in the DVE (Brennan et al. 2001;
Thowfeequ et al. 2021) and its downstream
effectors, SMAD2/3 are nuclear localised in VE cells
(Yamamoto et al. 2004; Yamamoto et al. 2009),
indicative of active NODAL signalling. Furthermore,
we have previously shown that Nodal and Lefty1
mutant embryos mislocalise the Planar Cell Polarity
protein DVL2 (Trichas et al. 2011), suggesting a
possible mechanism by which LEFTY1 might
modulate the behaviour and mechanical properties
of the VE.

Molecular regulation of patterned cell
behaviours in the Visceral Endoderm

What are the molecular players regulating
regionalised behaviours in the VE? Our recent
transcriptomic analysis of the E5.5 VE (Thowfeequ
et al. 2021) has identified two distinct transcriptional
sub-clusters within the DVE that spatially correspond
roughly to the phenomic clusters A and B (Anterior
DVE1 and 2 respectively), allowing one to postulate
a transcriptional underpinning to the phenomic
grouping. Our transcriptomic characterisation also
identified a novel role for Ephrin and Semaphorin
signalling in the VE (Thowfeequ et al. 2021), that
might be involved in establishing the behavioural
and mechanical differences we observe between the
DVE, surrounding emVE and exVE.

We also note that the anatomically restricted cell-cell
intercalation events that we observed in the anterior

proximal emVE corresponds to a region that
expresses DKK1 (Kimura et al. 2001; Thowfeequ et
al. 2021). In addition to acting as an inhibitor of the
canonical WNT pathway, DKK1 has been shown in
zebrafish to also interact in the WNT-PCP pathway
(Caneparo et al. 2007), which can regulate cell-cell
rearrangements in other developmental contexts
(Voiculescu et al. 2007; Wallingford et al. 2000; Yang
and Mlodzik 2015). It is possible that DKK1 might be
facilitating the neighbour exchange and cell shape
changes that lead to the unjamming of anterior
proximal emVE cells.

Single-cell phenomic analysis to identify
localised behaviours and morphologies

Analyses of lightsheet time-lapse datasets during
development have predominantly focused on cells
tracked using nuclear markers, or involved the
analysis of pre-selected sub-groups of cells, or the
averaging of behaviour over time. By using
lightsheet microscopy to image entire volumes of
Lifeact-GFP expressing embryos, we were able to
generate data on the cell outlines of all the VE cells
of the cylindrical embryo. In order to leverage our
rich, longitudinal dataset, we developed a machine-
learning based approach to segment cells and a
quantitative methodology to unbiasedly study the
changing phenotypic characteristic of cells — a single
cell ‘phenomics’ approach. Using this novel
methodology, we were able to integrate data from
across multiple embryos and leverage the large
numbers of cells and time points to identify distinct
morphological and behavioural sub-clusters which
are spatially ordered in the embryo, leading to the
insights on DVE migration presented here. This
approach is applicable to a variety of contexts and
we anticipate that it will be a valuable method for
other researchers generating and analysing similarly
high temporally and spatially resolved data.
Similarly, our extensive dataset of curated
longitudinal cell phenotypes represents a unique
resource to colleagues for developing and testing
theoretical models.
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METHODS

Mouse Strains, Husbandry, and Embryo Collection

Genetically modified mice were maintained on a mixed C57Bl/6 CBA/J background. The Hex-GFP line
(Rodriguez et al. 2001) was bred into the ROSA26mTmG (Muzumdar et al. 2007) background to create a
double homozygous line. Hex-GFP:membrane-tdTomato stud males were crossed with CD1 females
(Charles River) for live imaging experiments. The Lifeact-GFP line (Riedl et al. 2010) was maintained as a
heterozygous line and crossed with CD1 females (Charles River) for live imaging experiments. For FLIM
experiments C57BI/6 studs were crossed with CD1 females for all wild-type analysis. Lefty? (Meno et al.
1998) mice were crossed for FLIM experiments and mutants identified post-imaging though PCR genotyping
as previously reported (Trichas et al. 2011). All mice were maintained on a 12 hour light, 12 hour dark cycle.
Noon on the day of finding a vaginal plug was designated 0.5 days post coitum. Embryonic day 5.5 (E5.5)
embryos were dissected in M2 medium (Sigma) with fine forceps and tungsten needles and transferred into
pre-heated culture medium (as per (Trichas et al. 2011)) supplemented with antibiotics, and placed in an
incubator at 37°C, 5% CQ2 prior to imaging.

Embryo mounting for lightsheet imaging

Low melting point agarose (2%) (Sigma) in 1 x phosphate buffered saline was drawn up into a 20 pl glass
capillary (Brand, 701904) using a teflon coated plunger (transferpettor piston rod) (Brand, 701934). A lumen
was created within the agarose cylinder using a 150 pym diameter copper wire. Once solidified, the wire was
removed, the end of the cylinder was sealed with agarose and a window to the lumen was cut with a razor
blade. Two embryos, with their proximal ends opposing one another were transferred into the lumen of the
agarose cylinder in a 35 mm petri-dish filled with culture medium. The agarose supporting the embryos was
withdrawn into the glass capillary, the capillary was then transferred to the imaging chamber of a ZEISS Z1
lightsheet microscope. Once positioned in the imaging chamber, the agarose supporting the embryos was
extruded proud of the glass capillary prior to imaging.

Lightsheet time-lapse imaging

Embryos were imaged in a ZEISS Z.1 lightsheet microscope using a plan-apochromat 63X/1.0 NA water
immersion lens. Full volume z-stacks 1920 x 1920 pixels, 16bit resolution of each embryo were obtained at
a 2 ym interval, recorded sequentially from 2 imaging angles (0° and 180°), with a 135 pW + 228 nW 488 nm
(Coherent) or 106.9 yW + 248 nW 561 nm laser (Coherent) 106.9 yW + 248 nW for eGFP and tdTomato,
respectively. For Hex-GFP:membrane-tdTomato, eGFP and tdTomato channels were obtained in parallel
using a 561 LP secondary beam splitter. Each z-plane was illuminated sequentially with right and left
illumination pivot scans oscillating at 23 kHz. The laser lightsheet was focused through a pair of 10X/0.2 NA
lenses and the paired lateral illuminations were fused using ZEN Black (ZEISS) “online dual-fusion” setting.
For Lifeact-GFP embryos a pair of z-stack volumes were acquired every 5 minutes. For Hex—
GFP:membrane-tdTomato experiments a pair of 2-channel z-stack volumes were acquired every 10 minutes.
All equipment was sterilised prior to each experiment by autoclaving or UV and Ozone treatment in a cool-
CLAVE steriliser (AMSBIO).
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Immunofluorescence

Embryos were fixed in 4% PFA at room temperature for 20 min, washed at room temperature three times for
5 min each in 0.1% Triton-X100 in PBS; incubated in 0.25% Triton-X100 in PBS for 25 min; washed three
times in 0.1% Tween-20 in 1xPBS; blocked with 2.5% donkey serum, 2.5% goat serum, and 3% Bovine
Serum Albumin (BSA) in 0.1% Triton-X100 in PBS overnight; then incubated overnight at 4°C in primary
antibodies diluted in 1:100 in blocking solution. Embryos were washed three times in 0.1% Tween-20 in PBS
(PBT) for 5 min each, with a final additional wash for 15 min; incubated overnight at 4°C with appropriate
secondary antibody 1:100 in 0.1% PBT; embryos were incubated with phalloidin at 1nM concentration in PBT
overnight at 4°C, washed four times for 5 min in PBT at room temperature; and finally mounted with
Vectashield mounting media containing 4',6-diamidino-2-phenylindole (DAPI) (Vector Labs H-1200).

Antibodies and Phalloidin

Primary antibodies used were 1:100 goat anti-AMOT (Santa Cruz, 82491), 1:100 rabbit anti-CDX2 (Cell
Signalling, 9775), 1:100 rabbit OCT-4 (Abcam, ab200834), 1:100 rabbit anti-OTX2 (Cell Signalling, 11943S).
Secondary antibodies used were 1:100 Alex-Fluor (AF)-555 donkey anti-rabbit (Invitrogen, A31570), 1:100
AlexFluor (AF)-633 donkey anti-goat (Invitrogen, A21082). For F-actin staining phalloidin-atto 647N (Sigma,
65906) or Alexa Fluor 488 phalloidin (Invitrogen, 49409) were used at a 1nM final concentration in PBT.

Confocal Microscopy of fixed embryos

Fixed embryos were imaged on a ZEISS LSM 880 confocal microscope using a 40x oil (1.36NA) objective.
Z-stacks of embryos were acquired at 1 ym interval using non-saturating parameters. 3D opacity rendering
images were made using Velocity Software (Improvision). Figures were prepared with Adobe Photoshop and
Adobe lllustrator (Adobe Inc.).

FLIM experiments

Fluorescence lifetime imaging (FLIM) experiments were carried out as previously reported (Royer et al.
2022). For wild-type C57BIl/6 (Charles River) studs were mated with CD1 (Charles River) females to
generate E5.5 embryos that were dissected in phenol red-free M2. Embryos were then transferred to 8-well
imaging plates (No. 1.5 glass. ThermoFisher Scientific) and incubated at 37°C in 250 pls of 1 yM FLIPPER-
TR probe (Spirochrome, SC020) membrane tension reporter (Colom et al. 2018), and diluted in phenol-free
M2. The 8-well imaging chambers were mounted on the pre-heated stage of an Leica SP8 with a Fast
Lifetime Contrast (FALCON) module allowing for acquisitions at high photon counts using LAS-X (Leica
Microsystems) software for acquisition and pre-processing. Embryos were imaged at 37°C using a 20x water
immersion objective (Leica C PL APO CS2 20x/0.75 IMM). FLIPPER-TR was excited at 488 nm with a tuned
white light laser (WLL: NKT Photonics) pulsing at 20 MHz. Zoom was at 2.2 x yielding an 264.4 um?2 field of
view covered by 1024 x 1024 pixels. The pinhole was set to 1.2 AU, scan speed 200 Hz and 25 repeats were
acquired. Fluorescence was collected from 499 - 701 nm on an HyD-SMD detector (Leica Microsystems).
Pixels were binned by a factor 4 to increase signal to noise and confidence in photon arrival times. Pixels
containing only background photons (less than 50 counts) were removed. Lifetime images were generated
using the Phasor-FLIM workflow in LAS-X. We used the phasor plots and a rainbowfalse-colouring from 3.75
- 4.75 nm to aid in visualisation of membrane tension differences. For quantification, Phasor-FLIM images
were exported to .tiff (using 0.01 lifetimes per grey level) and were further processed using the macro
previously developed (Royer et al. 2022). ROI's were drawn in FIJI using the intensity tiff image to
unambiguously identify the apical membrane of each VE cell. The ROl was then applied to the lifetime
channel alone and the lifetime vales per pixel within each region saved to a .csv file. Embryos were staged
through morphological assessment of the position of columnar DVE cells, and the apical membrane lifetime
vales from multiple embryos from each stage were combined for further analysis in R to calculate mean
lifetimes of the apical membrane of VE cells using the tension-sensitive lifetime range of 2.8 - 7 ns (Colom et
al. 2018). Lefty1 (Meno et al. 1998) FLIM experiments embryo were carried out as above. Post-imaging, all
embryos were recovered and processed for PCR genotyping. For pharmaceutical inhibitor culture FLIM
experiments, embryos were prepared as above in 8-well imaging plates incubated in 1 yM FLIPPER-TR
probe and a baseline FLIM acquisition of a single mid-sagittal optical section captured of each embryo. Each
well was then further incubated with either 2 uM blebbistatin (Sigma), or 1:1000 DMSO as a vector control,
for 30 minutes before a second FLIM acquisition was taken. For analysis a total of 9 embryos incubated with
DMSO, and 9 with blebbistatin, were analysed and the baseline compared with the 30 minutes treatment
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across each group.

STrEAMS (Spatio-Temporal Embryo Analysis at Multiple-Scales) data processing framework

Figure S3 illustrates the key steps to process raw .czi (Carl Zeiss Imaging Format) two-angle, z-stack time-
lapse data of live E5.5 embryos imaged using a ZEISS Z.1 lightsheet microscope. 3D z-stack time-lapse
data were processed to obtain a 2D “unwrapped” view of the apical surface of the visceral endoderm (VE) for
quantitative analysis. As the visceral endoderm epithelium remains as a monolayer throughout DVE
migration (Trichas et al. 2011), projection from 3D-to-2D significantly simplifies the segmentation and tracking
of all VE cells. By retaining each cells’ original coordinate information, calculation of 3D corrected values is
enabled, allowing for the efficient integration of cell behaviour with cell morphology analysis. Processing can
be grouped into three distinct modules; pre-processing, spatiotemporal registration and 3D-to-2D VE apical
surface projection (“unwrapping”). The input to the framework is a volumetric time-lapse of an embryo from
two angles. The output is the unwrapping coordinate mapping from 2D-to-3D and the unwrapped 2D time-
lapse of the apical surface of the VE monolayer.

Data preprocessing

The raw image data, stored in the ZEISS CZI image file format, of two angle (0° and 180°) z-stack volume
acquisitions and all time-points from the ZEISS Z.1 lightsheet microscope were processed to make voxels
spatially isotropic by image interpolation and to make the full volumetric time-lapse of an embryo
computationally tractable for registration on a single PC; by 16bit to 8bit conversion, volumetric downsizing
by a factor of 2 and cropping out empty voxels using a bounding box. The resulting volumes are saved as .tif

per angle, per time-point and has an isotropic xyz voxel resolution of 0.363 um; a size of ~200MB per 8bit .tif
file, 30-45GB for the whole time-lapse with two acquisition angles per time-point.

Intensity-based spatiotemporal registration

We spatiotemporally register both angles and all time-points in a multi-step procedure to obtain a single
fused volumetric time-lapse capturing only cell movement independent from motion artefacts and embryo
growth. Importantly all transformations are reversible, enabling accurate single-cell quantification data to be
calculated, reincorporating growth and 3D shape information.

Rigid registration

Using time-point 1 (t1) as the reference volume, we temporally registered all volumes captured from angle 1
in sequential manner using Matte’s mutual information (Mattes et al. 2001; Raghunathan et al. 2005) and
similarity transformation; permitting only translation, rotation and scaling (Fig S3A, step i). The typical default
parameters for similarity registration were (750, 750, 100) iterations at downsampled scales of [16,8,4] using
Matlab’s imregtform. Translation compensates for the drift of the embryo and rotation for global rotations of
the embryo around and towards the embryonic long axis. Scaling removes the components of cell movement
due to embryo growth over the imaged duration. The rigid registered volumes isolate only the components of
relative cell movement caused by cell migration and cell shape change.

Angle alignment

To combine angle 1 with angle 2, we rotate angle 2 by the known angle (1800°) and refine the alignment by
translation-only registration (and Matte’s mutual information metric) to the matched pre- temporally registered
angle 1 as reference (Figure S3A, step ii). The typical default parameters for translation registration were
(1250, 1250, 100) iterations at downsampled scales of [16,8,4] using Matlab’s imregtform. This step
reasonably assumes that any embryo rotation and growth is negligible in the ~30s between the imaging
angles (20s to image the volume, 10s to reset). The angle 1 temporal transforms are applied to the angle 1
spatially aligned angle 2 volumes to obtain an equivalent temporally registered angle 2 time-lapse at all time-
points for fusion (Figure S3A, step iii).

Tilt correction

To enable coherent 2D surface projections of 3D volume data, the long (proximal-distal) axis of each embryo
was manually aligned using morphological landmarks (ectoplacental cone, columnar DVE cells, epiblast
tissue) to correct for any tilt in their mounting. Due to the prior temporal registration, the tilt correction angle
had only to be found for t1 and could then applied to all other time-points to obtain spatiotemporally
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registered and proximo-distally aligned volumes for both angles.

Angle fusion

The two-angle acquisitions at each time-point were fused using a custom sigmoidal blending scheme, with a
specified depth parameter marking roughly half way through the embryo. The sigmoidal blending allows a
smooth transition of pixel intensity between the two angles at the fusion depth parameter. The depth
parameter was manually specified per embryo due to the asymmetric exposure mentioned above.

Non-rigid registration

We lastly use non-rigid registration (Demons (Thirion 1998; Vercauteren et al. 2009), Matlab imregdemons)
to match the outer embryo shape over time to the shape at a reference time-point half-way through the time-
lapse. This step is essential to compensate for embryo shape variations and create a static reference volume
for surface unwrapping and tracking single cells. To ensure warping of the outer shape with minimal impact
to individual cells, multi-scale non-rigid registration was applied to downsampled volumetric images at three
different resolutions, 4x, 8x and 16x such that the embryo-level detail of the outer edge of the embryo and
the inner cavity were apparent, but not the cellular detail. The regularisation parameter in the optimisation
objective of Demons was manually determined per embryo to find a balance between visualisation of cell

shapes and the embryonic surface.

3D-to-2D VE apical surface unwrapping

The 3D apical VE surface was re-projected (‘unwrapped’) to 2D to enable the visualisation of the entire
circumferential surface of each embryo in a single flat image for subsequent analysis. This process
encompasses three steps; semi-automatic binary embryo segmentation to generate the VE surface to
unwrap as a collection of (x, y, z) surface coordinates; specifying the 3D-to-2D unwrapping transformation
and projecting the 3D image to 2D image intensities by interpolation. Due to the spatial-temporal registration
(above) the unwrapping transform needs to only be generated for t1, then iterated across all subsequent
time-points in the time-lapse.

Semi-automatic binary embryo segmentation

An initial binary segmentation capturing the VE surface was automatically found either by binary Otsu
thresholding or by using a fixed intensity threshold followed by a series of opening and closing 3D
morphological operations. The automatic result was then manually refined slice-by-slice per embryo, from
proximal to distal. The corrected binary was downsampled, smoothed, and re-upsampled to generate the
final surface. The concatenation of all slice-by-slice contour points along the proximal-distal axis generates

the (x, y, z) surface coordinates for re-projection (unwrapping).

Find 3D-to-2D unwrap coordinates

In order to unwrap, we need to parameterise; resample and find a new set of (x,y, z) surface points where
each (x, y, z) also has a unique (s, 8) coordinate thereby generating unique 5-tuples, (x,y, z, s, €). This is
guaranteed when we choose s to be the geodesic distance of (x,y, z) along the curved embryo surface
relative to a fixed specified reference coordinate, (x,, ¥y, Zo) (here the distal most surface point along the
long embryo axis through the embryo’s centroid), and 8 € [0,277:] is the radial rotation angle. We developed

a two-step approach to generate (x, y, z, s, 6) from the input surface coordinates from the previous binary

segmentation which we denote (x°, y°, z°) in this section. The first step generates (x',y’, z/, ") by binning
the data into angle bins and applying spline fitting, smoothing and resampling in each bin. The second step
generates the desired (x”,y", 7", s”, 8") from the first step, binning the points into s bins and applying
spline fitting, smoothing and resampling in each bin. In particular, the resampling is a crucial step to ensure

the embryo surface has been uniformly sampled. We let " and ” denote the output from the first and second
step respectively.

Step 1. From (xo,yo, ZO) to (x',y',z, s"). For input (xo,yo, ZO) surface coordinates from binary
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segmentation, compute the radial angle, 8° = tan‘l((zo—zo) /(yo—yo)) relative to the fixed distal
reference coordinate,(x(, yy, Zp) and let x denote the proximal-distal axis. This is appended to each

coordinate to produce 4-tuples, (xo,yo, 20, 00). Discretising the angle space, 6 € 0-2x radians into 480

bins we assign each (xo,yo, zo) surface points into one of the bins according to 0°. In each angle bin, the

coordinates represent unordered sampling of a line segment cross-section of the embryo surface. To obtain

a uniform sampling and to measure exactly the geodesic distance we use splines; fitting an independent

spline for x-, y-, z- coordinate. To fit the spline, we must first order the (xo, yo, zo) in the bin according to

their geodesic distance from the reference (x, Y, Zg). For embryos, which are smooth and pseudo-
cylindrical and therefore largely convex, we use the Euclidean chordal distance as a good surrogate to the
unknown geodesic distance that preserves the relative distance ordering from (x, ¥y, Z()- A cubic spline was

then used to parameterise and fit a smooth line through each of the sorted x-, y-, z- coordinate with a

function, f of a single variable ¢ with value from 0-1 such that (xo,yo, zo) = (ﬁc(t), fy(t),fz(t)>, t € [0,1].

The variable t corresponds to a normalised geodesic distance, that is when we evaluate 7 in 1000 equal
increments, the output (x’,y’, z’) = (fx(t), fy(t), fz(t)>, t =0,0.001,0.002,...,1 coordinates are

ordered, lie on the embryo surface cross-section and the distance between them are the same. We can
compute s’ for each generated (x’,y’, z’) as the cumulative sum of all pairwise differences preceding the

point in the order. For example, s’ of the 5% point is the sum of the distances of the first point to (x, vy, Z¢),

the second to the first, the third to the second, the fourth to the third and the fifth to the fourth. Applying the
described spline parameterisation to points in every angle bin, resampling 1000 points per bin gives the full

set of (x’,y’, a s/) coordinates.

Step 2. From (x',y’,7/, s) to (x’/, v’,z",s",0"). Step 2 smooths the obtained coordinates angularly before

recomputing the associated angle, 8. This helps reduce discontinuous artefacts that may arise from
processing the embryo with independent 1d splines in step 1. Similar to step 1, we discretise the range of the

!/

- /
geodesic distance, s’ from 0 to 5.,

the maximum distance into bins of increments 1 voxel i.e. 0,1,2,3....,
[ S'max ]+1 where [ - ] is the ceiling function. Similarly we assign each (x',y’, z’, s’) point into one of the bins

according to s’. These points represent a concentric cross-section of the embryo. For each bin, we thus sort
the points angularly according to computed 6 = tan™! <(z’ -2 /(Y — y’0)>, where (x’o,y’o, z’0> is the

centroid of the coordinates in the bin. We then fit a periodic smooth cubic spline for each x’, ', z’, s’ to obtain
individual functions, f of a single variable t with value from 0-1 such that

(x’,y’, Z/,s’) = <]§(t), fy(t),fz(t),fs(t)>, t € [0,1]. Again, the variable ¢ corresponds to a normalised

angular distance, such that the cumulative angular differences is the cross-section circumference and we
can resample 1000 equi-angularly spaced points with refined coordinates, (x”,y”, z”, s”) per bin. Doing so
for all bins we finally produce the final set of 5-tuple (x",y",z", s”, ") with
0" = tan™! ((z” —-20) 1" = yo)) computed relative to the fixed distal reference coordinate, (X, ¥y, Z¢)-

Project image 3D-to-2D

To obtain a 2D unwrapped projection image of the embryo surface we populate an M X N X 2 image grid of
desired (s, @) coordinates and use k-nearest neighbours (k = 1) trained on (x”,y", z", s”, ") to get the
matching M X N X 3 image grid of (x, y, z) coordinates. This is often called pullback. Trilinear interpolation

of the volumetric pixel intensity at the M X N X3 (x,y,z) coordinates for every time-point of the
spatiotemporally registered embryo produces the final unwrapped 2D time-lapse videos for each embryo. We
used two different M X N X 2 (s,6) coordinate grids to compute two different projections; the Cartesian
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and Polar geodesic projections.

Cartesian geodesic projection. This pseudo-cylindrical projection creates the M X N X 2 grid with the
geodesic distance s as the row coordinate and radial angle @ the column coordinate. s equally samples O to [
S”max ]*1 where [ - ] is the ceiling function i.e. we let M = [ s”max ]+1. @ equally samples 0 to 0-2x radians with
N equal bins. N is chosen so that the ratio M/N preserves §"ax/¢C"max Where ¢”max is the maximum
cross-section circumference of a s-bin from Step 2 above.

Polar geodesic projection. This projection creates the M X M X 2 grid (i.e. N = M) such that the geodesic

distance s and the radial angle @ are the polar coordinate of the image grid i.e. if (i, j) denotes the image
row and column coordinate respectively then :

(5,0) = (G —M/2)* + (j - N/2)2, tan™"'((i — M/2) /(j — N/2))). We choose M to be [ 1.2 [ $"nax] / 2
] where [ - ] is the ceiling and [ - ] the floor functions respectively. This means that the radial distance of i, j

from the image centre, (M/2,N/2) equally samples O to 1.2 [ $”max | with M/2 bins for @ = 0,7/2,7,3x/2
radians.

3D-to-2D unwrapping inevitably distorts the true Cartesian surface distances. By construction the Cartesian
geodesic projection best preserves distances of the cylindrical embryo surface whilst the Polar geodesic
projection best preserves distances around the distal tip where DVE cells originate and migrate from. Note

since there is bijection between the M X N X 2 image grid of (s,0) and the M X N X 3 grid of (x,y, z) we

can always remap any processing in the subsequent analyses done in 2D back into Cartesian 3D to obtain
true geometric measurements.

Tissue motion extraction for alignment and staging

To extract the tissue motion prior to cell segmentation we used motion sensing superpixels (F. Y. Zhou et al.
2019). Instead of using the Farneback optical flow (Farneback 2003) as per the original publication, we used
DeepFlow (Weinzaepfel et al. 2013) that captures the collective tissue dynamics and produced motion fields
with close agreement to manually annotated single cell tracking (below). We extracted superpixel motion
tracks at 1000 superpixels (larger region-of-interest) and 5000 superpixels (smaller region-of-interest) on
both 2D Cartesian and polar geodesic projection time-lapses of each embryo. We used the tracks from 1000
superpixels to train a classifier to identify DVE-associated superpixel tracks for migration staging and tracks
from 5000 superpixels to compute DVE migration stage and the DVE migration angle.

Automated DVE migration staging

As the duration of DVE migration varies between individual embryos, staging the dataset was necessary to
allow consistent comparison between embryos. To enable objective staging, we developed an automatic
pipeline using the motion characteristics of migrating cells from MOSES extracted superpixel tracks (1000
superpixels). The pipeline comprises two modules; the first module involves training a classifier using a novel
time-lapse dataset of lightsheet imaged Hex-GFP:membrane-tdTomato embryos in which DVE cells are
labeled by Hex-GFP to classify each superpixel track of a ubiquitously Lifeact-GFP labelled embryo as “DVE”
or "non-DVE” motion associated. The second module computes the difference in cumulative persistent
distance moved between the mean DVE track vs the mean non-DVE track to classify each time-point of an
embryo time-lapse into one of 3 phases: no directional persistence, consistent directional persistence
(reflecting the movement of Hex-GFP labeled DVE cells from distal tip to Em—Ex boundary), or a plateau in
persistence (after the Hex-GFP labeled cells have reached the boundary).

Manual staging of embryos: To train a motion-based DVE classifier, two researchers independently staged
2D surface projections of registered time-lapse data from 9 Hex—GFP:membrane-tdTomato embryos into 3
stages (as above) by following the behaviour of the Hex-GFP labeled DVE cells. The annotation of both
researchers were combined to produce a single consensus staging for each embryo, the middle frames were
used as consensus when not precisely matched. Lifeact-GFP datasets were also manually staged as a
baseline to compare with automated results.
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Module 1, DVE-associated track classifier: Hex-GFP:membrane-tdTomato (where Hex—GFP expression
labels DVE cells) time-lapse datasets were processed through the pipeline to 2D surface projections and
used to guide the training of a classifier to assign each MOSES extracted superpixel track computed over
the manually annotated DVE migration phase as either DVE (Hex+ve) or non-DVE (Hex-ve) -associated
(Figure S3). The trained classifier could then operate on MOSES superpixel tracks of 2D surface projections
of Lifeact-GFP embryos extracted over the entire video. We use the Cartesian geodesic projection and found
that a 1000 superpixel coverage worked best as higher superpixels produced a non-continuous classification
(data not shown). As Hex exhibits salt and pepper expression and not all cells in the DVE region express
Hex-GFP equally (Srinivas et al., 2004; Migeotte et al., 2010; Takaoka, Yamamoto and Hamada, 2011), we
applied Otsu binary thresholding to the maximum projection Hex-GFP image (computed over time) to
generate the binary superpixel class for supervised training. In total 9 Hex-GFP embryos were used to train
the classifier. As the Hex-GFP:membrane-tdTomato embryos are imaged at 10 minute intervals compared to
5 minutes for Lifeact-GFP embryos we encoded each superpixel track as a velocity feature vector of length
18 by concatenating the mean velocity of the superpixel track of interest (2 values, one each for x- and y-
directions, red node, Figure S3B) and the mean velocity of the surrounding 8 superpixel tracks (black nodes,
Figure S3B). The classifier takes the 18-vector of velocities as input to predict a binary variable where
DVE=1 and non-DVE=0. Inclusion of neighbouring superpixel velocities helped promote greater spatial
continuity in the final classification. As the number of embryos was small, we used a support vector machine
(SVM)(Boser et al. 1992) classifier which is conservative and performs well on small datasets due to its
maximum-margin property equipped with an RBF kernel to handle nonlinearity. To ensure further robustness,
we trained a separate RBF-SVM classifier for k=10 random 5/4 partitionings of the 9 Hex-GFP embryos (i.e.
5 embryos for training, 4 embryos for testing). Each embryo further comprises 2 Cartesian geodesic

projections unwrapped with respect to reference radial angle @ = 0 and @ = 7z radians respectively. This
can be seen as a data augmentation to promote robustness to the unknown DVE migration angle. This gives
a total 18 trained classifiers. We use all trained classifiers to produce an ensemble prediction more robust to
any individual training partition. Specifically a superpixel is only classified as DVE=1 if at least 0.85 x 18 > 15
or 18 classifiers predicted the superpixel was DVE=1. The largest graph connected component of the DVE=1
superpixels yields the final DVE classification.

Module 2, Staging DVE migration based on the persistence of migration: We developed an unsupervised
method to use the trained DVE classifier on the Cartesian geodesic projection to stage individual Lifeact-
GFP embryos from MOSES superpixels tracks extracted in the Polar geodesic projection. The polar
projection best captures in a single spatiotemporally continuous manner the initiation of DVE migration at the
distal tip and its migration to the Em-Ex boundary (5000 superpixels). We first apply the Cartesian trained
DVE classifier to MOSES superpixel tracks extracted from only the manually specified migration to boundary
stage of Lifeact-GFP embryos, where available, or the MOSES superpixel tracks extracted over the full
duration, if not available. The classified superpixels designate the region of the image that comprise DVE

cells at the time-point (TP) at the start frame of (manually annotated) migration, TPmig if classifying using
migration stage or the first frame, T P, if using the full duration. We stress the use of TPmig is not necessary

for computing the staging. We use it here to show how to incorporate human guidance in the DVE
classification. As any motion prior to migration, was minimal we found there was almost no deviation
between the final results. To transfer the Cartesian projection classification result into the polar projection, we
remapped the DVE classified superpixel points. The mapping is learnt by nearest neighbour matching
between the respective unwrapping coordinates. We then compute the concave hull of the polar-mapped
DVE points to get a spatially contiguous binary mask. The binary mask is applied to the MOSES superpixel
tracks (5000 superpixels) extracted directly from the polar projection over the full video duration by direct

lookup at time-point 7'Py,;, or TP, respectively to classify tracks into DVE and non-DVE. If the (i, j) row,

column coordinate position of superpixel track at TPmig lies inside the binary then the whole superpixel track

is designated DVE, else it is non-DVE. DVE migration is characterised by continual persistent directional
motion. We use this prior knowledge to stage. As we do not know the persistent angle of migration and this

can differ per track, we define a cumulative persistence measure, d,;,...,, the cumulative directional distance

moved for a track SPi at time t using the mean velocity as the persistent direction,
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1
[t] = Z v,fpi - 93P1 where v is the displacement between time ¢ and ¢ + 1, ¥ the unit normalised
k=0

dSPi

direct

mean velocity, representing the persistent direction and - the dot product. We evaluate d;,..., after mapping
back to Cartesian 3D. We compute the instantaneous 3D velocity

437 = | (3 + oy {i g 4 1), 1)) = (300,505, 50050))| wsing

linear piecewise approximation that assumes 3D displacement is small and where c(¢) is the constant
scaling correction factor from the rigid temporal registration at time-point . We use (i,j, t) as shorthand to
denote the (i, j) row, column coordinate position of the track at time ¢. The unit normalised mean velocity

vector is determined from the mean of the 2D superpixel velocities in the unwrapped polar projection. In 3D

on a curved surface, the 3D equivalent directional vector will change depending on the surface position.

=SPi

Denoting the fixed 2D vector as Vosp » we compute the 3D version at a position

(x(i, Js t),y(i, Js t), z(i, Js t)) at time ¢ using the linear piecewise approximation above with the next time-

point a 2D displacement of k pixels from (i,j,t) in the direction of \'/‘;gi;

ySPi = norm((x(i’,j’, t),y(i"jf’ t),z(i"j/, t)> - (x(i,j, t)’y<i,j, 1), z(i, J, t))) where

()= (i+ko7] ek

—SPi —SPi s
j), Vob |i and Vob ‘/’ denote the i-, j- direction component of

\'zggi, and norm denotes unit vector normalisation such that magnitude of the 3D vector is 1. The

displacement k pixels is used to avoid getting the zero 3D vector. k should therefore be chosen small. We

empirically find k = 10 pixels is good. We compute directional persistence for all superpixel tracks, and

average within the DVE and non-DVE tracks separately to obtain two separate curves, dﬁyelit, "i"frﬁgv‘g
respectively. We subtract dg{;’;gm from dgy:it to normalise dg:’it. We further scale normalise to obtain a

JdPVE
direct
time-point 0. We don’t compute the real embryo volume since we have bounding box cropped during
spatiotemporal registration. Instead we use the spatiotemporally registered volume image dimensions of

dimensionless measure by dividing by a characteristic length, /, the cube root of the embryo volume at

1
X XY X Z pixels so that ] = (X -Y-Z)3. We then stage DVE migration by identifying distinct stepwise

d
changes in the temporal rate of change, d—(Addi,eC,) in the normalised d;‘i‘r/i[ denoted Ad;,,.,- Stepwise
t

d
changes are detected by computing a breakpoint score [0-1], abs <f* d_(Addirect>> given by the absolute
t

1, t>T/2 ]
where T is the

magnitude of the ‘same’ padding convolution of a step function, f(¢) = { 1 F < T2

d
number of frames with d—(Addl-rec,), and detecting the time-points of the local peaks of height > 0.15 and
!

separated by at least 5 frames (25 min). Any valid time-points must further be in the time interval [3,7 — 3]
frames. All detected valid time-points is sorted chronologically, [#,1,, ..., #y]. We construct all contiguous
time intervals formed by the time-points, [0, tl] , [tl +1, tz] , .... [ty + 1,T'] and compute for each interval
the mean Ady,,,.,. We then stage the intervals chronologically based on the observation Ad,;,.., should be
large and non-zero in migration to boundary and close to 0 in pre-migration and post-migration with these

distinguished by whether they occur before or after migration. The observation is hard-coded as
computational rules as follows. We first detect if there exists a time interval exhibiting a migration phase,
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defined as having a mean Ad,; ., > a fixed threshold of Ad"éh°ld = 2.5 x 1073 for all embryos. If

direct

multiple time intervals satisfy this criteria, the interval with the highest Ad,;..., is designated as the migration

anchor interval, anchor,,,. If an interval is found, we set all intervals starting at times before anchor,,;,

and have mean Ad;,,., < Ad}7hold as ‘pre-migration’. We then go through the remainder unclassified

time intervals in temporal order, comparing if their mean Ad;,,., is closer to the mean Ad,;,,,, of all ‘pre-
migration’ or the ‘migration’ -classified intervals. If an interval is closer to ‘pre-migration’ and precedes the
earliest interval of ‘migration’ interval, then it is designated ‘pre-migration’. If the interval occurs after the
latest ‘migration’ intervals, then it is ‘post-migration’ and all remainder intervals are ‘post-migration’.

The final algorithm automatically stages a given embryo video into three behavioural/motion phases: Phase
I: no directional persistence, Phase II: consistent directional persistence, Phase lll: a plateau in directional
persistence.

A-P Axis Alignment (DVE migration-angle determination)

We determine the DVE migration angle to enable alignment of each embryo along their future anterior-
posterior axis and enable consistent mapping (sub-regionalisation) across embryos. Angle determination
proceeds from migration staging (above) where the DVE classifier has been applied to classify polar
extracted MOSES superpixel tracks (5000 superpixels) as; DVE or non-DVE. We then find the most
directionally persistent subset within the DVE-classified tracks to compute mean direction as the DVE
migration angle. We compute the migration angle from both 2D unwrapped polar and Cartesian geodesic
projections to produce a final ‘consensus’ migration angle. We define the subset in polar geodesic projection
by computing as the directional persistence score, the magnitude of the mean 3D geodesic superpixel track
T
SPi

1 ,
_ ) _ SP
velocity of superpixel track SP;, Viirect = ? Z Vi l

k=0

where the instantaneous 3D velocity:

880 = | (30 )20 4 1) 1)) = (3005050 ). 500 00) )| i s

as previously, after mapping back the 2D superpixel track positions back to Cartesian 3D. c(f) is the

constant scaling correction factor from the rigid temporal registration at time-point z. The most directionally

persistent subset of DVE classified tracks are those with a magnitude of vjl.};ict greater than

mean(vgi’;éct) + Std(vjl.’;éct) where mean( - ) and std( - ) are the mean and standard deviation operations.

We post-process these tracks, keeping those within the largest connected component as the final subset,
{SPi}dDi‘:it. We find an equivalent subset in the Cartesian geodesic projection after remapping, in a manner

similar to transferring the Cartesian DVE classifier results into the polar projection as described in the
DVE

migration staging above. Given {SP;} .~

in polar and Cartesian projections we compute the angle as

follows.

DVE Migration angle from polar geodesic projection. In the polar projection the migration angle is the

equivalent 2D angle of the mean 3D velocity vector (Figure S3D). We compute the mean 3D velocity vector,
DVE
direc

v3p of the most directionally persistent subset of DVE superpixel tracks, {SPl-} ; by mapping superpixel

positions to Cartesian 3D. The mean 3D velocity vector, V3 is then converted to a 2D velocity vector, v, p in

eDVE

the unwrapped polar projection. The migration angle, polar

= tan_l(\_zw |J/\_/2D |]) where \_/2]_) |J and \_/2D|j

are the i-, j- direction component of ;. Conversion of V3 to ¥, uses coordinate lookup and interpolation.
We use the 2D superpixel tracks to compute the mean (i, j) coordinate position in polar projection to infer
the mean (x,y, z) coordinate position on the Cartesian 3D surface. We then compute the position on the
surface if we take a small displacement k - V3, from the mean (x, y, z) coordinate where k = 10. This is
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mapped by nearest neighbour matching to an equivalent 2D (i’, j) coordinate using the polar geodesic
unwrapping coordinates, then v, p = (i’, j’) — (i, ).

DVE Migration angle from Cartesian geodesic projection. In the Cartesian projection, every column j-

coordinate, corresponds to a unique radial angle and the row i- coordinate the proximal-distal embryo axis.
Therefore finding the migration angle is equivalent to finding the j- coordinate with the highest velocity
component in the ‘upward’ i- or proximal direction. However superpixels only sparsely sample the j-

coordinate. Thus we divide the j- coordinate into 20 equal sized bins. We allocate each Cartesian extracted
DVE

superpixel track in {SP,-}dl_rect

to one of the bins. For each bin, we then compute the mean 3D velocity

component in the proximal direction, vg’z)”x averaged over all superpixel tracks in the bin. This results in a plot

ProX To get a more accurate approximation of the j- coordinate corresponding to maximum v27*

3D 3D
fit a smooth univariate cubic spline and evaluate the spline at all integer increments of j € [0,N | where N

ofjvsv we

corresponds to the dimensions of the M X N pixel Cartesian projection. The migration angle is then
obtained by converting the j coordinate of maximum v/’**into a radial angle,

. 3D
DVE ]argmax( %M> NP2

cartesian ~ N

- 27 radians where the offset N/2 corresponds to a radial angle of O

radians in the polar projection. The mean 3D velocity component in the proximal direction, vé’g’x for a

superpixel track SP; is computed as —Zc(t) SPi . (y p”’x)SP’ where vSP’ is computed as previously
k=0

described, - is the dot product and c(¢) the growth scale correct factor from registration. The directional
vector in the proximal direction is computed pixelwise,

Ve, J) = norm((x(i +1,j, t),y(i +1,j, t),z(i +1,j, t)) - <x(i,j, t),y(i,j, t),z(i,j, t))> and

(vp"’x)SP is then found by interpolation at the required (i, j) position at time ¢ on the 2D superpixel track.

Consensus migration angle from polar and Cartesian projections. The angle mean of 49]?0 ‘l/fr and 931‘:5510,,

was taken as the consensus angle of DVE migration, OPVE.

Labelling and propagating the Em—Ex boundary throughout time-lapses

To ensure the Em-Ex boundary was correctly annotated we used VGG Image Annotator (VIA) (Dutta and
Zisserman 2019) was to manually annotate the boundary between emVE- and exVE at the first time-point as
a closed polygon in the unwrapped polar geodesic projection using the clear morphological difference
between the epiblast and extraembryonic ectoderm tissues. The manually specified polygon coordinates
were resampled using a linear spline to be 50 points. We then used the frame-by-frame computed DeepFlow
optical flow field to propagate the 50 point polygon at time-point O to all later time-points. The final result is a

T x 50 X 2 matrix for an embryo of total 7" frames.

Partitioning the VE into sector region-of-interests (ROIs)

Individual embryos are heterogeneous in size, shape and rate of growth. We use the DVE migration stage to
temporally align and DVE migration angle and the Em—Ex boundary to spatially partition each embryo in the

polar geodesic projection (of size M X M pixels) into 32 sector regions-of-interest (8 radial angle bins and 4
geodesic distance bins) to allow consistent inter-comparison of DVE migration across embryos, Spatial
partitioning for each embryo corresponds to the first frame of the migration phase. To spatial partition, we first

use the inferred consensus migration angle, OPVE to rotate the unwrapped polar projection such that the
DVE cells migrate upwards in the vertical axis direction of the image and corresponds to 8 = 0°. We then
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partition the radial angle space 6 € [0,27] equally into 8 angular bins such that @ = 0° is the centre of the

first bin;
152 = T 3x 37 S« Sr Ix Tr 9x Or 11z 11z 13x 137 15z
g 8’8’8 [8°8 |8 8|"|8 8|8 8|8 8 [ |8 8

. We partition the geodesic distance s €

M
0, 1.1?] , corresponding to the area between the central point

M
and an outer concentric ring of distance s, = 1.1? respectively equally into 4 intervals, guided by the

B B
Em-Ex- VE boundary; IO,lB] , [lB, Bl . | B, ( +Smax) ’ ( +smax) s
2 2 2 2

where the

max ’

boundary is denoted as a function of geodesic distance and angle, B = B(s, 8). This further partitions both
the emVE and exVE into 2 regions, along the proximal-distal (long) axis.

Tissue motion deformation analysis
We measure the local tissue deformation as a consequence of DVE migration in each migration stage as the

mean fractional rate of change in surface area, d_ of a local tissue patch previously reported (Rozbicki et
1

dA . . _ dA 1 A@t)—-A@-1) _ .
al. 2015) where — at time ¢ is defined —(t) = — where AT = 5 min, the time
dt dt AT A -1)

dA
elapsed between individual frames and d—(t) = 0 for time t = 0. For visualization, we smoothed the —
t

for each tissue surface patch temporally, running asymmetric least squares smoothing (Eilers and Boelens
2005)with parameters p = 0.5, 4 = 100 for 10 iterations after edge-mode padding of signals by the
maximum of 7/10 or 3 frames. For each migration stage, we compute the 32 sector ROI as described in the
previous section for the starting frame. The 32 sector is further subdivided equally by 5 angular and 4
distance intervals so that each quadrant is tessellated without overlap by 5x4=20 smaller quadrant ROls.
The subdivision parameters were chosen so that the small quadrant ROIs is a good quadrilateral
approximation (same surface area) of the continuous corresponding curvilinear surface patch in Cartesian
3D. Each ROI region is modelled as a quadrilateral in 2D by linearly joining its 4 corner points;

(il,jl), (iz,jz), (i3,j3), (i4,j4) and similarly in 3D where (il,jl) —> (x(il,jl), y(il,jl),z(il,j1)>
etc. The corner points of each of the 32 x 20 = 640 ROIs are propagated frame to frame until the end of the
respective migration stage by the MOSES extracted DeepFlow optical flow. The 3D quadrilateral surface

1 1
area at timet, A(t) = 5‘ (VB— VA) X (VC - VA) ‘ +E‘ (VC— VA) X (VD— VA) | , is the sum of the

area of the two constituent planar triangles /\ ABC and /\ ACD where Vs Vg, Ve, Vp are the vertex
(x,y, z) coordinates of the quadrilateral A BCD.

Single-cell segmentation

We used a semi-automatic scheme to segment the outline and temporally track the centroids of the apical
surface of individual cells in the VE monolayer of 5 Lifeact-GFP embryos throughout pre-migration and
migration phases in the 2D polar geodesic projection of time-lapse data imaged at five-minute intervals. This
consisted of the development of a custom convolutional neural network (CNN) to segment cells in the
densely-packed epithelium over-time, manual refinement and curation of the automatically segmented cells
and semi-automated single cell tracking.

Spatiotemporal convolutional neural network (CNN) for single-cell segmentation

We trained a deep neural network on the Cartesian geodesic projections to segment the apical surface of
individual VE cells for single-cell morphometric analysis. VGG Image Annotator (VIA) (Dutta and Zisserman
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2019) was used to generate training data through manually annotation all cells in 75 time-points of Cartesian
projected Lifeact-GFP data (7 embryos), comprising a training dataset of ~14,000 individual cell annotations.
A custom UNet convolutional bidirectional LSTM neural network was used to predict the single-cell

segmentation at time ¢, given the 3 sequential time slices att — 1, ¢, ¢ + 1.The neural network outputs three
images to describe the predicted instance segmentation for time t in manner similar to Cellpose (Stringer et

al. 2021). The first is a cell probability map that assigns a score of 0-1 to each (i, j) pixel of it containing a
cell and such that cell centre pixels have the highest score of 1 and pixels lying on cell membranes having

the lowest score of 0. The second and third images are the ‘I’-direction and ‘j’-direction displacements of
each (i, j) pixel from the unique cell centre that it is predicted to belong to. Pixels located at cell centres by

definition have ‘7’-direction and ‘j’-direction displacements of 0. We construct the supervised training for the
three outputs from the manually annotated instance segmentation labels. The first output, the probability map
is the composition of the normalised (0-1) distance transform of each unique cell (segmentation label).

Similarly, the second and third outputs, the x- and y- direction displacements is the composition of the image
gradient of the distance transform of each unique cell (segmentation label). The neural network effectively
learns a deep watershed, direct from the data itself (Bai and Urtasun 2017; Stringer et al. 2021). The network
is trained with a multi-task loss function; a softmax loss function to enforce mutual exclusivity of background

and foreground regions in the cell probability map, the first output and L1 loss for the x-, y- direction
displacements, with an uncertainty weighting scheme to automatically improve training (Kendall et al. 2018).
The dataset was split into annotated frames from 4 unique embryos for training and annotated images from 2
unique embryos for testing. Frames from the last embryo were equally shared, frames 18-22 for training and
frames 3-7 for testing. This gives n=30 (from 50 unique frames) and n=15 (from 25 unique frames) 3-frame
images for training and testing the CNN respectively. Images were resized to a pixel size of 512 x 640 and
were augmented in real time during training and validation. The set of augmentations include random left-
right, up-down flipping, piecewise affine deformation, Gaussian blur, average blur, median blur, additive
Gaussian noise, pixel and coarse dropout and intensity and contrast manipulations. We parse the individual
cell segmentations from the predicted outputs by Euler integration similar to that used in Cellpose (Stringer

et al. 2021). An M X N image corresponds to a uniformly seeded grid of points located at (i, j) row, column

coordinates. Likewise, the predicted ‘x’-, ‘y’- direction displacements corresponds to the

(Aj(i,j), Ai(i,j)> displacements respectively that we should displace the point at (i, j) to a new location

(i/, j/) - (i + aAi(i,j), Jj+ aAj(i,j)> where a is a constant step size in pixels that we take in the

predicted direction. Iteratively updating the location such that (i’, j’) is the new starting position for the next

update, (i, j) <« (i’, j’) for each point will eventually enable all points to converge to the unique cell centre

it is predicted to belong to by the neural network. Individual cell centroids correspond to non-spatially
connected regions of high point density which were found by thresholding and connected components
analysis. Tracing back to the starting position of individual pixels which voted for a particular cell centroid

retrieves the individual instance cell segmentations over the whole image. We iteratively advected (i, j)
pixels for 30 iterations to generate the cell segmentations in the Cartesian or 50 iterations for the polar
geodesic projection.

Manual curation of CNN-predicted single-cell segmentation

The unwrapped 2D Cartesian and Polar geodesic projection enables visualization of every cell in the VE
surface in a single image at each time-point. As each projection (Cartesian and polar) necessarily distorts
cell appearances in different regions of the VE cell sheet (greater at the distal-tip and proximal regions,
respectively), it can result in over-segmentation. To edit over-segmentations resulting from the automated
outlining manual proofreading and correction of CNN segmentations was necessary. This was done in 3
steps to obtain the final corrected CNN segmentation in the polar projection. Instance segmentations were
‘inverted’ to obtain binary membrane outlines for easier manual correction when comparing to the Lifeact-
GFP signal. Step 1: Check and correct individual cell outlines for all cells in the Cartesian projection except
those around the distal tip and all cells at the distal tip in the polar projection. Step 2: remap Cartesian
manually corrected cell outlines into polar view and combine with polar manually corrected cell outline. Step
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3: check for any inconsistencies in the combined polar projection. Step 4. Convert membrane cell outlines to
instance segmentation by binary pixel inversion and connected component labelling.

Automatic single cell tracking and manual correction for cell division

The single cell segmentations in individual frames need to be linked temporally such that all occurrences of
the same unique cell in different frames are captured in a single cell track. We regard mothers and daughters
as unique individuals such that the mother and two daughters constitute 3 separate cell tracks. The cell
segmentations were first linked automatically using by nearest neighbour tracking of cell centroids. Every cell
centroid at time-point 0, the first time-point of the time-lapse and of the pre-migration stage is initialised as a
unique cell track. We then compute the pairing of all cell centroids in the next frame to the last cell centroid in
each unique cell track that results in the minimum total 3D Euclidean distance using bipartite matching (Kuhn
1955). Centroids that could not be matched begin new tracks. Tracks that cannot be matched are
terminated. The process is repeated until the end of the migration stage for each of the 5 Lifeact-GFP
embryos. The automatic linking does not explicitly account for cell divisions. Manual proofreading was
subsequently undertaken to enforce cell division and correct for erroneous linkage using a custom graphical
user interface, “Cell Tracker”. Cell Tracker enables visualization of the history of all or a subset of cell tracks
overlaid on the 2D projections and the ability to delete or create new tracks and to create associations
between cell track IDs. Cell divisions were annotated as single time-point cell tracks (see cell division
annotation below) and used to break up the automatic tracks after manual refinement: daughter tracks are
assigned to a mother track, and combined to form continuous track in the dataset.

Single-cell phenomic characterisation

For each segmented and tracked cell, we extracted fourteen measurements to describe the instantaneous

morphodynamics of its instance at time ¢; two dynamic (VE Anterior speed, cumulative VE anterior distance),
five planar/surface (surface area, cell perimeter, shape index, aspect ratio, number of cell neighbours), one
depth (cell height, four relating to global embryo context (VE apical, apical Gauss, basal and basal Gauss
surface curvatures), and two related to Lifeact-GFP/F-actin signal (area and perimeter apical Lifeact-GFP/F-
actin intensity) along with their lineage annotation and embryonic-spatial position within the radial grid
schema. All dynamic measurements were measured for time 7 if an instance exists at time ¢ + 1. This means
all cell segmentation instances in the last frame of pre-migration and migration stages do not have dynamic
measurements. Dynamic measurements were computed after transformation back to 3D coordinates and
multiplicative scale factor correction between time-points to account for growth. All geometrical
measurements were transformed to 3D coordinates and multiplicative scale factor correction with additional
with reversal of non-rigid registration parameters to calculate real absolute values (minus motion artifacts
from rotation and translation). We use Lifeact-GFP pixel intensity to quantify actin. Area actin is the mean
Lifeact-GFP intensity within the cell area. Perimeter actin is the mean Lifeact-GFP intensity along the cell
perimeter. The raw Lifeact-GFP intensity varies across embryos and increases over time. We therefore use
the z-score instead of the raw intensity with the per frame mean and standard deviation. Together, the
fourteen measurements, summarised in Table S2 describe the instantaneous phenotypic-state of single VE
cells in the time-lapse during pre-Migration and migration phases, integrating both planar and 3D
information.

To compute average cell height, Ksasai and Hsasa we unwrapped for each Lifeact-GFP embryo an additional
manually annotated basal VE binary volume, taking into account the shape of the underlying epiblast using
the same method described for apical VE above. As the apical and basal binary volumes are similar in
shape, we put the two unwrapped coordinates in alignment by resizing the basal projections and unwrapping
coordinates to match that of the corresponding apical VE. We then used the same apical VE single cell
segmentations to extract single cell statistics of the apical-basal height of the cells. As each cell is not 3D
segmented, this computed cell height metric provides an approximation of cell height as it measures the
apical-basal height of the local VE tissue.

Single-cell UMAP phenomic space

Analysis of single-cell parameters is a multi-step process involving the initial extraction of data from all
datapoints followed by a filtering step to remove invalid or missing values. From five Lifeact-GFP embryos
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we initially extracted a total 102,872 cell instances (data-points) with a complete set of fourteen
measurements (phenomic signature), tracking a total of 2358 unique cells and incorporating 447 division
events. Cell instances with any invalid or missing values i.e., inf or nan value in any measure were removed
leaving a total of 91,901 cell instances tracking a total of 2221 unique cells, with a total of 447 divisions
events across the data The phenomic signature of these remaining cell instances was preprocessed to
normalise each measure and corrected for potential individual embryo-specific effects. Each measure is
power-normalised and z-scored relative to all instances from the embryo it belongs to. The mean is
computed from the data for non-signed measures: area, perimeter, shape-index, aspect ratio, cell height and
cell neighbours and is set to 0 for signed measures: anterior speed, cumulative anterior distance, Gaussian
apical surface curvature, apical surface curvature, Gaussian basal surface curvature, basal surface
curvature, apical areal and apical perimeter actin intensities. The zscored measures reflect the extremity of
each measure relative to that of a mean cell instance from the same embryo as a multiplicative factor of
standard deviation. We remove all cell instances which has any measure with an absolute zscore value > 3.
For the remainder cell instances we compute for each of the eleven measures, a value corrected for embryo

(batch) - the residual r; of linearly regressing measure i, F; as the dependent variable with embryo, Emb
encoded as an independent categorical variable, F; ~ C(Emb) + r;. We apply UMAP (Becht et al. 2018;

Mclnnes et al. 2018) to the normalised and embryo corrected phenomic signatures to plot all remaining
91,901 cell instances, as one datapoint per instance, across all embryos, all time-points into a jointly shared
2D coordinate space - the morphodynamic phenomic space for comparative analysis. This 2D space
captures the multidimensional phenomic differences between all individual cell instances over space-time
during pre-migration and migration stages according to the eleven-dimensional morphodynamic signature.

Automatic UMAP phenomic clustering

To automatically determine the number of unique phenotype clusters we first grouped all cell instances into
100 clusters using k-means clustering on the 2D umap coordinates as the input features to cluster on.
Hierarchical clustering with Ward linkage and Euclidean metric was then applied to group the 100 k-means
clusters into phenotype clusters using automatic cluster determination. The input feature vector per k-means
cluster for hierarchical clustering is the histogram of the quadrant ID of all data points. The histogram
describes the fraction of all data points assigned to a k-means cluster belonging to all possible quadrant IDs.
The quadrant ID uses the reduced 8 sector ROl scheme which aggregates the anterior and posterior regions
of the 32 sector ROI. Cell instances were assigned to an 8 sector ID based on cell origin according to the
position of the unique cell it belong to at the first frame of migration stage — lineage quadrant ID. Cell
instances were also assigned a quadrant ID according to their instantaneous position in the embryo —
instantaneous quadrant ID. The k-means cluster summary features is sixteen-valued; the concatenation of
the histogram based on lineage and instantaneous quadrant IDs. Data points corresponding to lateral VE
quadrants are therefore not included and do not influence the hierarchical clustering. Hierarchical clustering
generates a dendrogram such that the root node corresponds to all k-means cluster grouped as one label,
and progressive branch splitting corresponds to subsplitting the larger parental grouping into unique smaller
groupings. The bottommost leaves of the dendrogram are the 100 individual k-means clusters. Automatic
cluster determination is equivalent to finding where to cut the dendrogram. This was based on finding the
minimum number of groups that grouped k-means clusters in a stable and spatially homogeneous way. We
operationalise this definition by finding all potential groupings of the k-means clusters when placing cuts up
to a maximum linkage distance (to constrain the search). For each grouping, we compute a homogeneity
score to summarise the tendency to group k-means clusters coming from the same regional quadrant ID
together. Specifically, the consistency of a k-means cluster is quantified by the fractional dominance of any
single quadrant ID given by the maximum value in the sixteen-valued histogram vector. We plot the
homogeneity score as a function of the linkage distance. A grouping is stable if over a range of linkage
distance the homogeneity score does not change. We detect and use the first linkage distance to generate
the first possible stable grouping. This produces a total of 6 phenotype groups. We retain groups as the final
confident groups if the homogeneity score > 0.3. The groups that do not satisfy this criteria are identified as a
single large miscellaneous group. We find in total 5 distinct phenomic clusters, designated A-E which we
could relate to spatial regions of the embryo; cluster A: anterior DVE 1, cluster B: anterior DVE 2, cluster C:
posterior emVE, cluster D: proximal anterior emVE, and cluster E: grouping representing the mean emVE
and exVE. For visualization in polar geodesic projection, we use label spreading (D. Zhou et al. 2004), a
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semi-supervised machine learning technique to impute the phenomic cluster of cell instances not included in
the original UMAP by its multidimensional similarity to the nearest 15 cell instances (15 nearest neighbours).
The algorithm is iterative so that the first iteration labels unknown cell instances which are closest to cells
used in the UMAP and successive iterations gradually propagates the labels to cells of unknown labels
transductively.

Sector-based UMAP phenomic fate trajectories

Phenomic space is a two-dimensional representation of a continuum of morphodynamic states. Construction
of a temporal phenomic fate trajectory representing the evolution of the average behaviour of cells starting in
each of the 8 spatial sectors overtime was carried out as follows: 1) bin all datapoints starting in sector i into
6 equal temporal intervals from -2h to +4h of migration, 2) for each temporal interval, derive a spatial
heatmap of the number of datapoints (density) mapping to any local region in phenomic space, 3) find the
spatial regions of highest datapoint density by thresholding on mean + 1 standard deviation of density, 4)
compute the mean UMAP coordinate of the high density spatial regions, 5) repeat steps 1-4 for all temporal
intervals and join together the UMAP coordinates in chronological order to form the phenomic fate trajectory.

Phenomic correlation between sectors across migration stages

We compute the Lasso regression coefficients (partial correlation) treating each of the fourteen statistics in
turn as the independent variable and the other thirteen statistics as the dependent variable. We use the
Python statsmodels.regression.linear_model.OLS.fit_regularized function with L1 penalty = 1, and the
normalized and embryo corrected phenomic signatures to do the Lasso regression. The result is a 14 x 14
coefficient matrix. We compute such 14 x 14 matrices for each of the 8 sectors labelled according to cell
lineage and separating out pre-migration and migration stages. This gives 16 matrices in total. Each 14x14

matrix, C, summarises the interdependency between single cell statistics as captured by the cell instances in
each sector s, in each migration stage. To assess the phenomic correlation between sectors across

migration stages, we applied hierarchical clustering, Euclidean metric, complete linkage to the 16x16
pairwise difference matrix between the 16 matrices. We define the pairwise difference between two

coefficient matrices, C; and C] is the total sum of the absolute difference in matrix entries, Z |C; — le .In

a similar manner we assessed the phenomic correlation between sectors and migration stage when cell
instances were instead labelled by their instantaneous position.

Single measure time-series

The time-series for a single chosen measure in Figure S5B-E, and Figure S7D and quadrant ID origin is the
mean and standard error of the mean (s.e.m) of all the datapoints within the given time interval,
Lyars < 1t <t,,, The mean and s.e.m is computed on the raw data, not the batch embryo-corrected and pre-
processed data used for defining the UMAP.

Single-cell track diffusion coefficient

The mean squared displacement (MSD) of individual single cell tracks were computed using the imsd
function in the Python Trackpy package using a maximum lag time of one quarter the maximum video length.

The mean squared displacement is related to the diffusion coefficient D in n dimensions of freedom by the

formula MSD = 2n D t where t is the time lag. D is estimated for each cell track using n = 2 (the cell track
migrates effectively constrained to the 2D surface) using linear regression.

Cell division annotation and analysis

Cell divisions were manually annotated using custom designed software “Cell Tracker” Due to Lifeact-GFP
condensation at the site of cytokinesis, cell division events could be clearly seen as bright puncta in the time-
lapse data. Using the Cell Tracker software the 2D surface projections could be used to efficiently screen
through the time-lapse data for divisions. The centroid of the mother and corresponding daughter cells of the
post-processed time-lapse data were manually inputted along with the timing of the division event,
anatomical position and linked to its cell track. Division angles were computed after remapping the individual
2D daughter cell centroids to 3D. For analysis we computed the angles relative to the proximal-distal axis as
follows; a division resulting in a line drawn between daughter cell centroids when aligned perpendicular to
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the proximal-distal axis is given as 0°, if aligned orthogonal to the proximal-distal axis (i.e., perpendicular to
the radial axis) the division angle is given as 90°. Negative division angles were inverted (i.e., -45 to +45) for
comparison, so that all angles were converted to a range of 0°- 90°. For analysis all cell division events from
9 Lifeact-GFP embryos per selected anatomical region were combined, and binned into 4 groups (0-22.5,
22.6-45, 45.1-67.0, 67.1-90). A Chi-squared test for given probabilities was then performed. To analyse the
frequency of cell division events we combined all cell division events occurring in the anterior proximal emVE
and separately, the posterior proximal exVE during DVE migration. We performed a Chi-squared test for
significance from expected probabilities. To analyse the timing of cell division events with respect to the
onset and duration of DVE migration, we binned cell division events from anterior proximal emVE and
posterior proximal exVE into 10 bins according to the time of migration (both prior to and during DVE
migration). A Chi-squared test was performed to test for significance from expected probabilities. We note
that the random distribution of angles on curved surfaces such as a sphere does not follow a uniform
distribution (Cai et al. 2013), it does not apply here as the radius of curvature is much larger relative to the
cell size at the distal tip of embryos and therefore the surface is locally flat - enabling us to use the uniform
distribution.

Cell intercalation events

Cell intercalation events whereby a pair of neighbouring VE cells were separated by a third cell moving
between them, and not associated with a cell division event, were manually annotated using the Cell Tracker
GUI (above). 2D surface projections of post-processed time-lapse data were screened through for
incidences of intercalation events and centroids of the cell trio; neighbouring cells 1 and 2, and the
intercalating cell, were inputted, along with their timing, anatomical position and cell tracking IDs. The cell
tracking ID could then be use to cross-reference with the instantaneous cell status (e.g., phenomic cluster).

Visualization of cell statistics in 2D projections

Each segmented cell instance has a unique cell ID. To visualize the desired scalar statistics of a segmented
cell instance, the scalar value was linearly mapped to a Python Matplotlib colorscheme to colour the entire
cell area in the 2D projection; ‘Reds’ colorscheme for non-signed measures: area, perimeter, shape-index,
aspect ratio and cell neighbours and ‘coolwarm’ colorscheme for signed measures: anterior speed,
cumulative anterior distance, Gaussian surface curvature, mean surface curvature, apical area-, and apical
perimeter actin intensities.

Visualization of cell statistics on 3D meshes

We visualize the desired scalar statistics of a segmented cell instance in 3D using MeshLab. (Cignoni et al.
2008). Meshlab requires as input a triangle mesh (trimesh). We use Python Trimesh library to write a .obj
trimesh which requires a list of 3D (x, y, z) vertex coordinates, a list of faces, 3-tuple specifying how vertex
indices are connected together in triangles and a list of vertex colours, 3-tuple specifying the RGB colour at
each vertex. Cell statistics were first visualised in the 2D projections as an image as described above with
cell tracks drawn as 3-pixel wide lines using Python Scikit-Image. A 2D image is equivalent to a quadrilateral
mesh specified by a list of 2D (i, j) vertex coordinates, a list of quadrilateral faces, 4-tuples specifying how
individual pixels are connected to neighbours in squares and the 2D image pixel colour as the RGB vertex
colour. To obtain the desired 3D trimesh, we triangulate the quadrilateral mesh to a trimesh using the Python

Trimesh library (trimesh.geometry.triangulate_quads function); remove all (i, j) vertex coordinates and faces

not part covering the VE in the polar geodesic projection; and remap the 2D (i, j) coordinate to 3D (x, Y, 7)
vertex coordinates using the 2D-to-3D unwrapping coordinates (see above).
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Comparision of tissue-markers post-timelapse imaging with non-cultured control embryos
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* Imaging Parameters: 2 x full-volume z-stacks at 2 um z-step. Interval : 5 minutes. Total acquisitions: 100 pairs of
z-stacks (0° and 180° imaging angles). Total imaging time: 8 hrs 20 mins

Figure S1. Lightsheet imaging set-up and expression of tissue markers in imaged embryos. A. Diagram of the imaging chamber
of the ZEISS Z.1 lightsheet microscope. A’. Diagram of an E5.5 embryo mounted for imaging. B. Brightfield image of an E5.5 embryo
mounted for imaging in the lumen of an agarose cylinder. Note the embryo is placed within a lumen wide enough so that it does not
constrict growth. C. Whole-mount immunofluorescence of control non-cultured E5.75 embryos and Lifeact-GFP E5.5 embryos imaged
for 100 time points (>8 hours) at five-minute interval in a ZEISS Z.1 microscope. Imaged embryos show similar expression patterns of
DVE (OTX2, AMOT), epiblast (OCT-4) and extraembryonic ectoderm (CDX2) markers to controls. Phalloidin (green) and DAPI (cyan)
staining show that the VE remains as a monolayer epithelium. All scale bars = 25 ym.
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Cell division events in lightsheet-imaged Lifeact-GFP embryos
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Figure S2. Controls to assess health of imaged embryos — cell division events and comparison with non-cultured stage-series
reference embryos. A. Cumulative VE cell division events for each of 9 Lifeact-GFP embryos imaged in a ZEISS Z.1 ligthsheet
microscope from 2 view angles every five-minutes with a 2 ym z-step interval show that cell divisions continue throughout imaging. B to
D. Lightsheet imaged embryos were compared to a stage-series of fixed embryos with respect to the radial distribution and proximal
extent of the Hex-GFP cells during the course of the time-lapse. B. At left, representative examples of embryos fixed at early, mid-, and
late stages of migration, with migrating DVE cells marked by Hex-GFP expression (green) and all cell outlines visualised with Phalloidin
labelled F-actin (white). At right, full volume confocal z-stacks of select time-points of a representative, live imaged Hex-GFP:membrane-
tdTomato embryo, capturing different stages of DVE migration. C. 3D confocal data of fixed embryos, as well as time-lapse live data
were reprojected as 2D polar projections. At left, a representative example of a non-cultured, fixed embryo is shown. To enable a
quantitative comparison of DVE migration in embryos, the radial distribution of the Hex-GFP expressing DVE cell population was
calculated for each non-cultured embryo, and for each time-point of live imaged embryos, with; 0 = radially symmetric, 1 = polarised (top
panel, green line). To assess how far DVE cells had migrated in each embryo, the proximal extent of the Hex-GFP cell population in the
emVE was calculated for each non-cultured embryo, and for each time-point of live imaged embryos. As embryos differ in size, the
proximal extent of migration was expressed as a fraction of the distance from the distal-tip to emVE-exVE boundary for each embryo
(lower panel, magenta line = emVE-exVE boundary, green line = proximal extent of DVE, blue line = Hex-GFP intensity). D. The radial
distribution of DVE cells was plotted against their proximal extent for fixed and cultured embryos. The stage series of fixed embryos is
represented by coloured dots (green = early migration, magenta = mid-migration, purple = late migration). Time-lapse imaged cultured
embryos are represented by solid lines, coloured by phase of migration (phase | = pre-migration, phase Il = migration and phase Ill =
late migration). The Hex-GFP cell population in live imaged embryos progress through a radial distribution and proximal extent within the
range of non-imaged, control embryos showing that imaged embryos reflect normal development.
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Figure S3. Lightsheet data processing framework. A. Overview of the analytical steps to generate a consistent surface coordinate
framework for a two-angle volumetric embryo time-lapse, and to project the apical surface of the VE to a 2D geodesic surface projection
in a reversible manner. B. Overview of the key steps to train a superpixel-based motion classifier based on Hex-GFP embryos, to be
used to identify DVE cells in Lifeact-GFP data. This includes: (i) initial binary segmentation of the Hex-GFP signal to label Hex-GFP+ve /
Hex-GFP -ve associated superpixels for training; (ii) using the mean superpixel velocity as a consistent motion feature across Hex-GFP
and Lifeact-GFP for classification; (iii) construction of the velocity features to classify each superpixel using the mean velocity of itself
and its surrounding eight neighbours; and (iv) training a binary machine learning classifier to classify each superpixel given the velocity
features as either DVE=0 (not DVE) or DVE=1 (DVE). C. Overview of the key steps to automatically stage DVE migration from
superpixel-based motion tracking including: (i) applying the trained DVE classifier to identify DVE-associated tracks in polar-geodesic
projection and (ii) identifying a continuous time window when DVE associated superpixels exhibit significantly greater directional motion
persistence than non-DVE associated superpixels (Migration phase, green) to classify the remainder time into Pre-migration (red) and
Post-boundary (blue) phases. D. Detection of DVE migration as the mean consensus angle between the mean velocity direction of the
‘core’ persistent subset of DVE cells in polar and Cartesian-geodesic 2D projections (white dashed lines) given relative to 0°-180° line
(black dashed lines). The DVE migration angle is used to spatially align the projections from multiple embryos with respect to the future
anterior-posterior and left-right axes. E. Training of a LSTM-Convolution neural network to automatically segment individual VE cells
from 2D projection images in each time point, integrating the temporal information from times -1 and +1. F. Schematic of the 32 sector
and 8 major sector anatomical region-of-interest (ROI) spatial partitioning of each embryo relative to the anterior-posterior axis, given by
the consensus DVE migration angle found in D). This consistent subdivision enables integrative analysis of statistics across multiple
embryos.
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Figure S4. Single-cell phenomic analysis and hierarchical clustering. A. Overview of the analytical steps to compare phenomic
behaviour across regions and phases based on the similarity of the 14 parameters. B. Hierarchical clustering of regions and phases
based on the similarity across the 14 parameters, given by the absolute difference in the partial regression coefficients matrix amongst
parameters (see Methods). All regions show the same behaviour between pre-migration and migration. exVE regions clustered together.
emVE regions also clustered together except the posterior distal emVE (Region 2) which appears distinct. C. Hierarchical clustering of
cell instances into phenomic clusters with the number of phenomic clusters determined by an automatic cut threshold (left, see
Methods). Cell instances were first coarsely grouped into 100 coarser k-means clusters based on their UMAP coordinate (which is also
a non-linear average of the 14 parameters) to minimise the effect of individual cell heterogeneity. Hierarchical clustering was then
applied to the k-means clusters based on the anatomical origin distribution given by tracking (lineage) and instantaneously. The
clustering checks individual phenomic clusters for consistency in anatomical origin which is used as a measure of uncertainty and marks
all clusters with high variability as an average VE cell, cluster E (grey). The resultant phenomic clusters, overlaid on the k-means
clusters (numbered and demarcated by black outlines) are thus determined based on phenomic and anatomical consistency (right).
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Figure S5. VE Single-cell phenomic UMAP. A. VE single-cell phenomic UMAP comprising of all instances of all VE cells from five
Lifeact-GFP embryos, showing 5 phenomic clusters. B. Anatomical mapping of all instances of all cells in phenomic clusters A-D onto
the respective polar projection of each of the embryos that they were measured from. C. Diagram showing each of the 8 anatomical
sub-divisions of the VE used in this study. C’. Charts showing the proportion of instances of all VE cells from each anatomical location
(from C) in each of the UMAP clusters (from A). D. VE single-cell phenomic UMAP coloured by intensity (red high, blue low) for each of
the 14 cell parameters quantified.
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Figure S6. Pre-Migration phase single-cell phenomic UMAP. A. Summary of the single-cell phenomic analysis method applied to the
pre-migration phase. B. VE single-cell phenomic UMAP comprising of all instances of all VE cells from the pre-migration phase only, of
embryos based on the 14 measured cell parameters. C. Example of the anatomical mapping of one embryo in the dataset showing all
instances of clusters A-C on a 2D polar projection. D. Charts showing the proportion of instances of all VE cells from each anatomical
location (A) in each of the UMAP clusters (B). E. VE single-cell pre-migration UMAPs showing each of 14 cell measurements
highlighted. F. Mean profiles of each pre-migration cluster for each of the 14 cell measurements.
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Figure S7. Tracking and phenomic trajectory analysis of emVE and exVE sub-regions during DVE migration. A. Summary of the
analytical steps for all VE sub-regions in digital fate-mapping, phenomic trajectories and temporal analysis. B. Continuous tracking of
cells from five sub-regions of the emVE and four sub-regions of the exVE during the migration phase of all embryos analysed. Tracks
towards the periphery are exaggerated in length due to the distortion inherent in the projection. C. Average UMAP position of VE cells
starting at each emVE and exVE subregion at 1-hour intervals in the multi-parameter phenomic UMAP. D. Temporal plots of of
meanzts.e.m for 14 cell parameters in all five emVE and four exVE sub-regions.
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A Motion sensing superpixel tracking (MOSES) trajectories

o 200

Figure S8. Motion Superpixel tracking analysis of Lifeact-GFP embryos. A. Polar projections of nine Lifeact-GFP embryos tracked
by motion superpixel tracking, showing the mean velocity vector of each superpixel over the migration phase. The mean velocity vector
is coloured by angle with colour intensity indicative of magnitude.
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Figure S9. VE Cell Division Events in time-lapse imaged Lifeact-GFP embryos. A. Representative Lifeact-GFP embryo as 2D polar
projection with all cell divisions events annotated. B, C, D, E, F. Cell division events from live imaged Lifeact-GFP embryos were
quantified. B. Cell divisions in anterior- and posterior-proximal emVE during two hour period prior to migration (N=5 embryos). There
was no significant difference in the average number of cell divisions between anterior proximal emVE (3.0 + 2.6) and posterior proximal
emVE (3.4 = 1.8) (Student’s t-test, p=>0.05). C. Cell divisions in anterior- and posterior-proximal emVE during DVE migration were
analysed (N=9 embryos). There was no significant difference in the average number of cell divisions between anterior proximal emVE
(8.7 = 5) and posterior proximal emVE (6.7 +5.3) (Student’s t-test, p=>0.05). D. Cell division events in anterior- and posterior-proximal
emVE during DVE migration per embryo. There were more posterior divisions than anterior in three embryos, while in the remaining six
embryos there were either an equal number, or more divisions anteriorly than posteriorly. E. Cell divisions events in anterior- and
posterior-proximal emVE during migration phase divided into ten bins show no difference in temporal ordering of divisions (N=9
embryos). F. Distribution of cell division angles in four regions of the VE during DVE migration. A 0° division angle means cells divide
parallel to the proximal-distal axis a 90° angle = parallel to the radial axis. Distal emVE showed a distribution that was not significantly
different than random (2 test for expected probabilities p=>0.05), but all remaining regions showed a bias in cell division events along

the radial axis (proximal emVE: »2 for expected probabilities p=<0.001, distal exVE: y2 for expected probabilities p=<0.001, proximal
exVE: 2 for expected probabilities p=<0.001).
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Figure S10. Fluorescence lifetime imaging. A, B, C, D. Fluorescence lifetime imaging microscopy (FLIM) and quantitation of
FLIPPER-TR membrane tension reporter in mid-sagittal optical sections of wild type (WT) and Lefty? mutant embryos. A. Example
image of an early migration stage embryo with DVE shifted to one-side. B. Apical lifetime in distal VE cells, emVE cells not belonging to
the DVE and exVE in E5.5 pre-induction stage embryos (N=7) showed no significant differences between regions. C. E5.5 embryos
were imaged to acquire a baseline (t0’) reading prior to treatment with an inhibitor of myosin (2 pM blebbistatin) or the solvent as control
(1:1000 DMSO) and then re-imaged 30 minutes post-treatment (t+30’). C’. There was no significant difference in apical VE lifetime in
the control DMSO treatment group, but the blebbistatin treated embryos showed a significant decrease in lifetime (one-way ANOVA,
p=<0.001), Tukey's HSD Test (p =< 0.001), showing that VE tension is actomyosin dependent. D, D’. Apical membrane lifetime of mid-
migration Lefty1-- null (N=3), Lefty1+*- heterozygous (N=3) and wild type (N=3) embryos. There were significant differences in tension
based on genotype and region of the embryo, one-way ANOVA, p=<0.001, followed by Tukey’s HSD Test for specific comparisons.
There was no difference in lifetime between anterior exVE, posterior exVE, and migrated DVE in WT or Lefty1+- heterozygous embryos
(Tukey’s HSD Test, p=>0.05 for all comparisons). However in Lefty1-- mutant embryos, anterior exVE had a significantly lower lifetime
than the DVE (Tukey’s HSD Test, p=<0.01), but not the posterior exVE (Tukey’s HSD Test, p=>0.05). Furthermore, the anterior exVE
from Lefty1/- mutant embryos had significantly reduced tension when compared with the DVE, anterior exVE and posterior exVE of wild
type and Lefty1++ heterozygous embryos (Tukey’s HSD Test on Lefty1-- anterior exVE vs. wild type DVE (p=<0.05), wild type anterior
exVE (p=<0.05), wild-type posterior exVE (p=<0.001), Lefty1*~ heterozygous DVE (p=<0.01), Lefty1*- heterozygous anterior exVE
(p=<0.001) and Lefty1*~ heterozygous posterior exVE (p=<0.05). In all backgrounds, DVE had higher tension than emVE (Tukey’s HSD
Test, p=>0.05). 49
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Table S1- List of imaging data and analysis

imagi
Control 2 Control 3 Control 5 1 2 5 D) 7

Data Set LA Imaging_ LA Imaging_ LA Imaging_ LA Imaging_ LA Imaging_ LA Embryo LA Embryo_ LA Embryo LA Embryo LA Embryo LA Embryo LA Embryo LA Embryo LA Embryo HXMG_ Control HXMG Control HXMG Control HXMG_ Control HXMG_ Control HXMG_Control HXMG Control HXMG Control HXMG Control
Control_1 Control 4. 3 4 _ K E 8 K) a 2 3 4 5 a7 8 9
Mouse lines. LifeAt/CD1 | LifeAGt/CD1 | LifeACt/CD1 | LifeAtUCGD1 | LifeACtCD1 | LifeAC/CD1 | LifeAcUCD1 | LifeACUCDI | LifeACt/CD1 | LifeACt/CD1 | LifeAGt/CD1 | LifeACUCD1 | LifeAGt/CD1 | LifeACt/CD1 | HexGFP/
mi

Microscope Zeis 21 Zeis 21 Zeis 2.1 Zeis 2.1 Zeis 2.1 Zeisz1  |ZeisZ1 Zeisz1 | Zelsz1 | ZeisZA Zeis 21 Zeis 2.1 Zeisz1  |zeisz1 |ZzeisZ1 Zeis 2.1 Zeis 2.1 Zeis 2.1 Zeis 2.1 Zeis 2.1 Zeis 21 Zeis .1 Zeis 21

Acquisition 63x10W  63¢10W  |63¢10W  63x10W  63x10W  63x10W 63x10W |63¢10W |63010W |63¢10W |6310W  6310W  63¢10W | 63x10W |63010W 63x/1.0 W Plan- | 63x/1.0 W Plan- | 63x/1.0 W Plan- | 63x1.0 W Plan- | 63x/1.0 W Plan- | 63x/1.0 W Plan- | 63x/1.0W Plan- | 63x/1.0 W

Obijective Plan- Plan- Plan- Plan- Plan- Plan- lan- Plan- Plan- Plan- Plan- Plan- Plan- Plan- lan- APOCHROMAT | APOCHROMAT | APOCHROMAT | APOCHROMAT | APOCHROMAT | APOCHROMAT | APOCHROMAT | Plan-
APOCHROM | APOCHROMA | APOCHROM | APOCHROM | APOCHROM | APOCHRO | APOCHROM | APOCHRO | APOCHRO | APOCHROM | APOCHROM | APOCHRO CHRO | APOCHRO | APOCHROMAT | VIS-IR VISR Vis-R VISR VISR Vis-R Vis-R APOCHROMAT

ATVISIR | TVIS-R ATVISHR  |ATVISIR  |ATVIS-R | MATVIS-R |ATVIS-R | MATVISIR |MATVIS-R |ATVISIR | ATVISIR | MATVIS-R | MATVIS-IR | MATVIS-IR |VIS-IR Vis-IR

Laser (Excitation 488 488 488 488 488 488 488 488 488 488 488 488 488 488 | 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561 488 & 561
wavelength)

Laser power (%) 2

~
~
~
~
~
~
~
-
~

08815 08815 08815 08815 08815 08815 08815 08815 08815
Exposure (ms) 35 3 3 3 35 35 3 3 30 35 30 30 30 30 30 30 30 30 30 30 30 30 30
Zeinterval (uM) 2

~
~
~
~
~
~
~
~
~

Dual-side Yes Yes. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Z-stack Angles | 0+180 0+180 0+180 0+180 0+180 0+180 | 0+180 0+180  |0+180  0+180 0+180 0+180 0/0+180 | 0+180 0+180 0+180 0+180 0+180 0+180 0+180 0+180 0+180
Acquired

Acquisition Time 5 5 5 5 5 5 5 B 5 5 5 5 5 5 10 10 10 10 10 10 10 10 10
Interval (minutes)

Total z-stack 200 200 200 200 200 240 180 222 220 230 132 132 230 240 66 140 194 84 188 188 120 212 154
volumes acquired

Total Imaging 500 500 500 500 500 600 450 555 550 575 330 330 575 600 660 700 970 420 940 940 600 1060 770
Time (min)

Fixed Post- X X x x x
culture for IHC.

Registration & VE
projections.

MOSES X X X X X X X X X X X X X X X X X X
Superpixel

Tracking
MOSES-based X X X X X X X X X
training Set for

CNN - AVE
classifier

Autostaged by X x X x X X X X x
CNN - AVE
Classifier

Time Prior to 60 215 125 190 155 60 110 0 0 60 0 280 220 130 100 280 0 60
Migration Phase
(mins)

Time of Migration 230 140 390 200 195 230 330 190 280 170 360 280 200 300 260 320 360 480
Phase (mins)

Automated Cell X X X X x
Detection

cells annotated)

Manual cell 100TPs.
tracking polar
projection +
100 TPs
rectangular
projection

@
duplicate)

Automated Cell x X X X X
tracking

Single-cell X X X X X
Phenomic
Analysis
Cell Division x x x x x x x x x
Anaylsis
Cell Division 12 53 31 38 31 12
Events Manually
Annotated (Pre-
Migration)

Cell Division 40 3 102 6 8 80 2 a1 60
Events Manaully
tated

Annot
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Table S2 — List of single-cell parameters for UMAP analysis

Measure Definition Units Analysis Level

Area, A VE apical surface area um?2 Cell

Perimeter, P VE apical cell perimeter um Cell

Shape Index, S P/VA - Cell

Aspect ratio Major axis length/minor axis length - Cell
Mean distance between the VE apical surface

Cell height and basal surface within the cell area um Cell
Number of cells in immediate contact with the

# Cell neighbours cell - Cell
Mean curvilinear speed of VE cell towards

Instantaneous Anterior speed (VE), VVE  |anterior um/min Cell

Cumulative distance moved in the anterior
migration direction relative to spatial position at

Cumulative anterior distance start of migration stage um Cell
Mean 3D Gaussian curvature of VE layer surface

Gauss surface curvature, KVE within the cell area pm-2 Local Tissue
Mean 3D Mean curvature of the apical surface

surface curvature, HVE of VE layer within the cell area um-1 Local Tissue
Mean 3D Gaussian curvature of basal VE layer

Gauss basal surface curvature, KBasal surface within the cell area um-2 Local Tissue
Mean 3D Mean curvature of the basal surface of

Basal surface curvature, HBasal VE layer within the cell area um-1 Local Tissue
Mean frame-normalised (zscore) LifeAct

Apical area actin intensity intensity within the cell area - Cell

Mean frame-normalised (zscore) LifeAct
Apical perimeter actin intensity intensity on the cell perimeter - Cell
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Table S3 — UMAP cluster cell-statistics

UMAP_cluster A B C D E

#uniq_cells(tracks) 490 604 503 599 2028
#cell_instances(points) 4939 4668 3773 8434 70087
mean_Area 80.52346857 116.6191976 207.9843496 189.0047956 211.9836127
std_Area 34.86962487 40.73001707 74.14555621 71.48139029 79.10606223
mean_Perimeter 41.74987103 46.51516565 63.29230273 88.41735758 75.959465
std_Perimeter 10.80886274 7.81106195 10.87329918 22.26876227 18.74232654
mean_Shape_Index 4.623896676 4.285127455 4.347583469 6.287724275 5.12587973
std_Shape_Index 0.51769817 0.224406052 0.308586131 0.999005134 0.775179415
mean_Eccentricity 1.653645121 1.29261722 1.222860135 2.461113106 1.526654629
std_Eccentricity 0.457465217 0.20631402 0.151629021 0.856780185 0.364529915
mean_Thickness 22.46898971 17.90128155 15.52420732 23.08539708 19.81309955
std_Thickness 4.382465709 3.984125083 3.852794722 4.130163375 3.957381623
mean_Num_Neighbors 4.754606196 5.051842331 5.636628677 5.515532369 5.743433162
std_Num_Neighbors 0.909398711 0.830731262 0.845752694 1.077089394 0.955248865
mean_A_P_speed_VE 0.130708615 0.115459743 0.065148348 0.016153396 0.013766578
std_A_P_speed_VE 0.207569044 0.198095563 0.159571964 0.14251743 0.126601846
mean_cum_A_P_VE_speed 2.676548187 1.3748286 0.670067231 0.76593717 0.183659292
std_cum_A_P_VE_speed 3.381420368 2.45493328 1.744130637 1.959203188 1.117753818
mean_Mean_Curvature_VE 0.018608583 0.02127803 0.018636241 0.011732662 0.014163141
std_Mean_Curvature_VE 0.007213856 0.006425515 0.005077823 0.005097735 0.004703488
mean_Mean_Curvature_Epi 0.023223832 0.026877937 0.024867422 0.016437137 0.020007063
std_Mean_Curvature_Epi 0.008518081 0.007893641 0.00641074 0.010816232 0.007950077
mean_Gauss_Curvature_VE 0.000192541 0.00045322 0.000328515 -0.000722758 2.99E-07
std_Gauss_Curvature_VE 0.004523865 0.000312234 0.000230596 0.008839429 0.002662359
mean_Gauss_Curvature_Epi 0.000420801 0.000683199 0.000549453 -0.000408465 7.13E-05
std_Gauss_Curvature_Epi 0.001366855 0.000531844 0.000430972 0.004632281 0.001473701
mean_norm_apical_actin 1.753306628 0.757132514 0.053330851 0.855594778 0.34379363
std_norm_apical_actin 0.998529035 0.627348763 0.333609662 0.535353585 0.443457129
mean_norm_perimeter_actin 1.757957566 0.930002378 0.276976641 0.950897818 0.518107186
std_norm_perimeter_actin 0.913554768 0.630632239 0.359617951 0.524461312 0.450450051
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