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Abstract

1 Fine-mapping prioritizes risk variants identified by genome-wide association studies (GWASs),
> serving as a critical step to uncover biological mechanisms underlying complex traits. However,
3 several major challenges still remain for existing fine-mapping methods. First, the strong linkage
s+ disequilibrium among variants can limit the statistical power and resolution of fine-mapping.
s Second, it is computationally expensive to simultaneously search for multiple causal variants.
s Third, the confounding bias hidden in GWAS summary statistics can produce spurious signals.
7 To address these challenges, we develop a statistical method for cross-population fine-mapping
s (XMAP) by leveraging genetic diversity and accounting for confounding bias. By using cross-
o population GWAS summary statistics from global biobanks and genomic consortia, we show
10 that XMAP can achieve greater statistical power, better control of false positive rate, and
un substantially higher computational efficiency for identifying multiple causal signals, compared
12 to existing methods. Importantly, we show that the output of XMAP can be integrated with
13 single-cell datasets, which greatly improves the interpretation of putative causal variants in

1 their cellular context at single-cell resolution.
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Introduction

Genome-wide association studies (GWASs) have reported hundreds of thousands of associations
between single-nucleotide polymorphisms (SNPs) and various phenotypes [1], but most reported
SNPs reside in non-coding regions [2, 3, 4]. As the cell type and cellular process in which
the identified SNPs are active remains largely unknown, the GWAS findings remain hard to
interpret. Fine-mapping seeks to prioritize the causal SNPs underlying complex traits and
diseases. Recent progress shows that, by integrating fine-mapping results and single-cell data,
it becomes feasible to identify disease/trait-relevant cell types and cell states [5, 6]. Therefore,
fine-mapping is a critical step to interpret GWAS findings by elucidating their biological
mechanisms of identified risk variants, and fine-mapping results will offer an invaluable resource
for precision medicine [7].

Despite the great promise of fine-mapping, efforts toward reliable prioritization of causal
SNPs have been hampered by three key challenges. First, when GWAS samples come from
a single population, SNPs in a local genomic region can be highly correlated due to the low
recombination rates in that region. It is very difficult for statistical methods to distinguish
the causal variants from a set of SNPs in strong linkage disequilibrium (LD). Second, genetic
signals at trait-associated regions are commonly conferred by many variants acting together.
A very recent study of 744 human expression quantitative trait loci (eQTLs) reported that
17.7% of the eQTLs harbour more than one variant with major effects on gene expression
levels, emphasizing the importance of identifying multiple genetic variants within an associated
locus [8, 9]. For example, an eQTL associated with FRPA2 and Crohn’s disease was found
to be driven by 13 separate variants [9]. However, it becomes computationally expensive to
simultaneously search for multiple SNPs by enumerating causal combinations. Third, the
unadjusted socioeconomic status [10] and geographic clustering [11, 12] in GWAS samples can
induce confounding bias in GWAS estimates [13]. These confounding factors cannot be fully
corrected through linear mixed models (LMMSs) [14, 15] or principal component analysis (PCA)
[16]. Fine-mapping without correcting the confounding bias in GWAS data can yield spurious
results.

While many efforts have been devoted to the development of fine-mapping methods, existing
methods only partially addressed the above major challenges. The classical fine-mapping

methods [17, 18] rely on an exhaustive search for all possible causal configurations of vari-
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ants. They become computationally unaffordable when searching for more than three causal
associations among thousands of variants. More efficient methods have been developed based
on approximated inference, including CAVIARBF [19], FINEMAP [20], and DAP-G [21, 22].
A very recent method, SuSiE [23, 24|, introduces a novel framework by assuming the overall
genetic effects can be decomposed as a sum of single effects. The model structure of SuSiE
enables an efficient algorithm to detect multiple causal SNPs with minor computational over-
head. Despite their improvement in computational efficiency, the statistical power of these
methods is usually limited because it is difficult for them to distinguish the causal variants
from the highly correlated variants in the single population setting. To boost the statistical
power of fine-mapping, several methods were developed to leverage different LD patterns
with cross-population GWASSs, including trans-ethnic PAINTOR [25] and MsCAVIAR [26].
Although these methods allow a locus to harbour multiple causal variants in principle, they
require enumerating all causal combinations of variants, hence become too time-consuming to
search for more than three causal variants. Furthermore, existing fine-mapping methods do not
account for confounding bias in GWAS summary statistics, leading to spurious results.

In this paper, we develop a statistical method for cross-population fine-mapping (XMAP)
by leveraging genetic diversity and accounting for confounding bias (Figure 1). The success of
XMAP relies on its three unique features. First, XMAP can leverage distinct LD structures
from genetically diverged populations. It is known that individuals from different population
backgrounds usually have different LD structures. For example, individuals from the African
(AFR) population are known to have narrower LD compared to those from the European
(EUR) population [27]. By jointly analyzing cross-population GWASs, XMAP can effectively
improve the power and resolution of fine-mapping. Second, XMAP can identify multiple causal
signals with a linear computational cost, while many existing fine-mapping methods are too
time-consuming to identify multiple causal signals. Third, XMAP can correct the confounding
bias in GWAS summary data to avoid false positive findings and improve reproducibility.

Through comprehensive simulation studies, we show that XMAP not only improves the
statistical accuracy of fine-mapping but also offers a substantial computational advantage
over existing methods. The evidence from real data analysis indicates that XMAP achieves
substantial power gain with high reproducibility. By combining the GWASs of low-density
lipoprotein (LDL) from East Asian (EAS), African, and European, XMAP identifies three times
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more putative causal SNPs than SuSiE. These SNPs are strongly enriched in the eQTL of the
liver, suggesting their important roles underlying the biological process of LDL. Furthermore,
using the height GWAS as an example, we show that XMAP can effectively correct confounding
bias and substantially improve reproducibility. Lastly but importantly, XMAP results can be
integrated with single-cell data to identify trait-relevant cell populations at single-cell resolution,
maximizing the utility of single-cell data for the inference of the pathological mechanisms.
We apply XMAP to 12 blood traits and perform integrative analyses of the XMAP results
and single-cell profiles of 23 hematopoietic cell populations. The analysis results suggest that
XMAP enables the identification of the trait-relevant cell types in which putative causal SNPs
are active. For example, SNPs identified by XMAP show a significant enrichment of the mean

corpuscular volume in 99.3% of late-stage erythroid cells, which is very helpful to interpret

GWAS results.

/ \\ I *  EUR Population reference 1
/! . genotypes
EUR Population | |
l - ! * I GWAS summary statistics 1
' 3 | from EUR population
| Y RN o =m0 . \ pop ]
| 0.8
| 7% o | =os . 1 — o o o - - - — - ——— — — -
=0 L% S =o4 3 - - - - - - —— — [
=02 1 -~ ~
Iz, . oze s I /s OUTPUT S
ER i < [
I g H / - \
£I> o ge 1 Improve power and reduce false positive by Detect multiple
1 . . ! . o ' accounting for confounding bias causal signals 1
1 - < . I o | method 1
5 N : I 1 Bl I, :
. K’ onr 3
I e —m8erme . W oY _gzettas 7, I 1 //J
I ] 2 oftz ez =22 otz 1 ! ; - 1
XAP_EURSEAS: AUC 0,025
I o 1 ————— -
I iz e i3 | . - spocticy 1
T T T T T T T T T T T T ® postionon
139.00 139.10 139.20 139.00 139.10 139.20 | . . - : : :
| Position on Chromosome 9 (Mb) Position on Chromosome 9 (Mb) 1 Gain computational efficiency Interpret causal.varlants in their ) 1
| 1 * cellular context at single-cell resolution 1
0000 T ‘ -
1 I |
FNEwAP
| 1 1 £ 4 aintor / 1
1 ! 4 Mscaviar /
| § " 1
1 I g sof
\ ‘ £ / l
LD in EUR Population / S 4
\ \ H 3 3 i
\ / \ Number of causal variants (K)
S e e o e ——— = — - < U U U U R U U -

Figure 1: XMAP overview. XMAP takes the summary statistics and reference genotypes from
multiple populations as inputs. XMAP can improve the statistical power of fine-mapping
by leveraging the distinct LD pattern across populations while reducing false positives by
accounting for confounding bias in GWAS summary statistics. Paired with a fast algorithm,
XMAP is able to efficiently identify multiple causal signals. The fine-mapped SNPs can be
integrated with single-cell datasets to identify trait-relevant cells.
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Results

Method overview

XMAP is a computationally efficient and statistically accurate method for fine-mapping
causal variants using GWAS summary statistics. With innovations in its model and algorithm
design, XMAP has three features: (i) It can better distinguish causal variants from a set of
associated variants by leveraging different LD structures of genetically diverged populations.
(ii) By jointly modeling SNPs with putative causal effects and polygenic effects, XMAP
allows a linear-time computational cost to identify multiple causal variants, even in the
presence of an over-specified number of causal variants. (iii) It further corrects confounding
bias hidden in the GWAS summary statistics to reduce false positive findings and improve
replication rates. The fine-mapping results given by XMAP can be further used for downstream
analysis to illuminate the causal mechanisms at different cascades of biological processes,
including tissues, cell populations, and individual cells. In particular, XMAP results can
be effectively integrated with single-cell datasets to identify disease/trait-relevant cells. We
provide the implementation of XMAP in an efficient and freely available R package at https:
//github.com/YangLabHKUST/XMAP. The technical details of XMAP are described in the
Methods section.
Simulation study

We conducted comprehensive simulation studies to compare the performance of XMAP
with several related fine-mapping methods, including DAP-G, FINEMAP, SuSiE, PAINTOR
and MsCAVIAR. To mimic realistic LD patterns in different populations, we used genotypes of
EUR samples from UKBB and genotypes of EAS samples from a Chinese cohort [28, 29]. We
considered a region between the base pair position 45,202,602 and 45,435,202 in chromosome 22
(GRCH37), which comprises p = 500 SNPs. To demonstrate the benefit of leveraging genetic
diversity in different populations, we selected three candidate SNPs that satisfy the following
properties: (i) In EUR population, they are in high LD (i.e., with absolute correlation > 0.9)
with at least three non-causal SNPs. (ii) In EAS population, they are weakly correlated with
non-causal SNPs (i.e., have an absolute correlation > 0.6 with less than two non-causal SNPs).
The heat maps in Figure 2 B show the absolute correlation between the three candidate causal
SNPs and their neighboring SNPs. We investigated K., causal SNPs, where Ky € {1,2,3},

we randomly sampled K., from the three candidate SNPs as the causal ones. To mimic the
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unbalanced composition of GWAS samples in global populations, we considered n, = 20, 000
samples from the EUR population and explored different sample sizes n; from the EAS
population: 5,000, 10,000, 15,000, and 20,000. For reference LD matrices, we used the EUR
LD matrix estimated with 337,491 British UKBB samples provided in a recent study [30] and
estimated the EAS LD matrix with 35,989 EAS samples from the Chinese cohort [28]. We
designed our simulations in two scenarios. First, we illustrated the benefit of cross-population
fine-mapping by generating GWAS data without confounding bias. In the second scenario,
we examined the effectiveness of XMAP in correcting confounding bias by simulating GWAS
summary data with unadjusted sample structure.

We first consider the scenario in the absence of confounding bias. Specifically, we generated
the polygenic effects with [¢1;, ¢2;] ~ N (O, {888:2 888;1 /500) for j = 1,...,500di, where
0.005 is the total heritability contributed by polygenic effects of the 500 SNPs in the locus,
with a per-SNP heritability 0.005/500 = 107° and a genetic correlation \/ﬁﬁ = 0.8
between two populations. Then, we simulated the causal effects in the two populations with
Bie ~ N(0, %) and By, ~ N(0, %) for k = 1,..., K4pye. This specification means that
each causal SNP has a 0.25/0.005 = 50 fold per-SNP heritability enrichment compared to
non-causal SNPs, and the effect sizes of SNP k are not necessarily the same across the two
populations. The K., causal SNPs jointly contribute 0.25/500 X Kjpye = 5 X 1074 X Kypye
heritability. We obtained the standardized genotype matrices X; = [x31, ..., Xy,] € R™*P
and Xy = [Xa1, ..., X2y] € R™*P whose columns have zero mean and unit variance. Given
the genotypes and effect sizes, we generated quantitative phenotypes in the two populations
with yy = >0 x1;61; + Soniee x Bk + € and yy = >y Xajda; + Soreree o Bok + €,
where X3 and X are the columns of X; and X, corresponding to the k-th causal SNP, and
e; ~ N(0,(1—0.005—5x 107" X Kje)L,,) and s ~ N(0, (1 —0.005 — 5 x 107* X Ko )L, )
are independent noise in the two populations, respectively. Finally, we computed the GWAS
summary statistics by marginally regressing the simulated phenotypes on each SNP for each
population (Figure 2 A). The details of data pre-processing and parameter settings of XMAP
and compared methods are given in the Supplementary Note.

Using a posterior inclusion probability (PIP) threshold of 0.9, we first evaluated the
statistical power of compared methods. Figure 2 F shows the comparison of statistical power

when K, = 3 and n; = ny = 20,000. Clearly, XMAP was the overall winner with the highest
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statistical power averaged across 50 replicates. In practice, we are usually more interested in
the performance of fine-mapping when the false positive rate is small. Here, we evaluated the
sensitivity and specificity under various PIP thresholds and generated the receiver operating
characteristic (ROC) curve. As shown in Figure 2 G, DAP-G, SuSiE and FINEMAP only
have a partial area under ROC curve (pAUC) around 0.1 when they were applied to EUR
GWAS with the false positive rate (FPR)< 0.3. They achieved a higher pAUC when applied
to the EAS GWAS because the causal variants were less correlated with non-causal variants in
the EAS samples. For cross-population methods, we examined the performance of PAINTOR
and MsCAVIAR. Because MsCAVIAR was too time-consuming to include more than two
causal variants, we only applied MSCAVIAR to the setting with K., € {1,2}. The results
in Figure 2 F-G and Supplementary Figures 1-3 indicate that XMAP is more powerful than
PAINTOR and MsCAVIAR in the existence of polygenic effects. In our additional simulation
without polygenic effects (Supplementary Figures 8-13), XMAP could still achieve comparable
performance with PAINTOR and MsCAVIAR because we allow the polygenic effects to be
adaptively estimated from the data. To further investigate the difference in fine-mapping
performance, we contrasted the PIP obtained by XMAP with those obtained by other methods
(Figure 2D and Supplementary Figures 4-6). Clearly, XM AP produced substantially higher PIP
for causal variants, as compared to SuSiE and PAINTOR, suggesting that XMAP could better
distinguish causal SNPs from non-causal SNPs. This explains our observation that XMAP
often yields higher pAUC and statistical power. We also assessed resolution of fine-mapping
by evaluating the size of credible sets. The smaller credible sets, the higher resolution of
fine-mapping. Here we consider XMAP, FINEMAP and SuSiE because they are the only
methods that can provide credible sets for individual causal signals. As summarized in Figure
2 H, XMAP and SuSiE were the only two methods that could produce level-95% credible sets
with a median size of two when they were applied to EAS GWAS. We used K = 5 for XMAP
in the main results and investigated K = 10 in the Supplementary Figure 1-3. Under both
settings, XMAP had consistent performance and steadily outperformed compared methods,
suggesting its robustness to the specification of K. More comparisons under different settings
of ny, ny and Ky are provided in the Supplementary Figures 1-3.

To investigate the computational efficiency, we evaluated the CPU time of compared

methods under different setting of K and p. As shown in Figure 2 D, the computational cost
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of MsCAVIAR and PAINTOR increases exponentially with both K and p. When analyzing a
locus with p = 100 SNPs, MsCAVIAR could only include K < 4 causal signals and PAINTOR
could only include K < 5 causal signals. It took more than one week for them to finish the
analysis when more signals were included. By contrast, the computational cost of XMAP is
linear to K, which makes it highly efficient when applied to locus with multiple causal SNPs.
To identify multiple causal signals, the computational efficiency of XMAP allows us to set K
to a large value (e.g., K = 10) when Ky, is unknown. While DAP-G and FINEMAP had
CPU times comparable to XMAP, they could not leverage cross-population GWASs to improve
fine-mapping. This benchmark was evaluated using a Linux computing platform with 20 CPU

cores of Intel (R) Xeon (R) Gold 6152 CPU at 2.10 GHz processor.
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Figure 2: Comparisons of fine-mapping approaches in GWAS without confounding bias. (A)
Manhattan plots of a simulated GWAS data in EAS (left) and EUR (right). (B) Heat maps
showing the absolute correlations between the three causal SNPs (highlighted with rectangles)
and their nearby SNPs in EAS and EUR populations. (C) CPU timings of XMAP, MsCAVIAR,
PAINTOR, FINEMAP, and DAP-G are shown for increasing K with p = 100. Solid lines are
CPU time recorded in our experiments and dashed lines represent predicted CPU time based
on the time complexity of corresponding approaches. (D) Comparisons of PIP between XMAP
and SuSiE, and between XMAP and PAINTOR. Red points represent true causal SNPs, and
gray points represent SNPs with no effect. (E) CPU timings are shown for increasing p with
K = 2. (F-H) Comparisons of statistical power (F), partial AUC with false positive rate< 0.3
(G), and level-95% credible set size (H) with n; = ny = 20,000 and Kj.e = 3. Results are
summarized from 50 replications.
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192 In the second set of simulations, we focus on fine-mapping of GWAS data in the presence
103 of uncorrected confounding bias. We introduced sample structures to GWAS data by using the
s genotype principal components following a previous work [31]. Specifically, we first performed
15 PCA on the genotypes of EAS and EUR samples separately and extracted the first principal
s components from the two populations as representations of sample structures, denoted as
1w PCT € R™ and PCy € R™, respectively. We re-scaled PC to have mean zero and variance
10e  0.05 and re-scaled PC5 to have mean zero and variance 0.2. These variance values were selected
199 to introduce proper level of inflation in the summary statistics. Next, we generated quantitative
20 phenotypes with y; = PC; + ZkK:”l“ X1pe 1 + €1 and y, = PCy + ZkK:tq“e Xo[k] ok + €2, Where
20 the generating distributions of 51, and (s are the same as those in the first scenario and
2o the independent errors were generated with e; ~ A(0, (1 —5 x 107* x K. — 0.05)1,,,) and
03 €~ N(0,(1—=5x 107" x Kiye — 0.2)I,,,). Finally, we simulated GWAS summary data by
204 regressing phenotype vectors on each SNP without including the PCs as covariates. Figure
205 3 B shows the inflation constants in the simulated GWASSs of the two populations evaluated
206 btuy estimated LDSC intercepts ¢; and ¢;. The inflation constants were substantially larger
27 than one, indicating strong confounding bias. The confounding bias became stronger when
208 the sample size increased, suggesting an exacerbated inflation in GWAS summary statistics.
20 By accounting for the confounding bias, XMAP achieved the best overall performance across
210 different PIP thresholds among compared methods. For example, when K., = 2, ny = 5,000
a1 and ng = 20,000, XMAP produced the highest AUC (0.784), as shown in Figure 3 C. When
22 we focus on the the ROC curve with FPR< 0.3 (Figure 3 A), XMAP also achieved the highest
a3 pAUC. These results suggest that XMAP can improve statistical power while controlling the
aa false positive rate. The pAUC evaluated under other simulation settings are summarized in the
215 Supplementary Figure 7. Here we showed an concrete example with a single causal signal in
26 Figure 3 D as an illustration. With uncorrected confounding bias, the GWAS p-values were
27 inflated in the left regions of the locus (top panels of Figure 3 D). Without accounting for the
25 confounding bias, SuSiE produced a false positive signal (SNPs in blue circles in the middle
20 right panel of Figure 3 D) and assigned a high PIP~ 0.6 for a null SNP. By adjusting the
20 estimation error of GWAS effects based on inflation constants ¢; and ¢y, XMAP effectively
o1 reduced the PIP of SNPs related to the false positive signal and correctly excluded the false

22 positive signal from level-95% credible sets (left region in the bottom right panel of Figure 3
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D). When we forced XMAP to ignore the inflation by setting ¢; = ¢ = 1, the false positive
signal appeared in the output (bottom left panel of Figure 3 D), indicating the confounding
bias was not properly adjusted. This observation implies the effectiveness of using the inflation

constants to correct confounding bias in GWAS.
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Figure 3: Comparisons of fine-mapping approaches in the presence of confounding bias. (A)
Comparison of pAUC (FPR< 0.3) of fine-mapping among XMAP, PAINTOR, MsCAVIAR,
SuSiE, FINEMAP, and DAP-G with K}, = 2 and sample size n; € {5,000, 10,000} in EAS.
(B) Estimated LDSC intercepts ¢; (EAS) and ¢, (EUR) with sample size ny = 20,000 in EUR
and n; € {5,000, 10,000, 15,000, 20,000} in EAS. (C) ROC curves of XMAP, PAINTOR,
MsCAVIAR, SuSiE, FINEMAP, and DAP-G with Ky... = 1, ny = 5,000, ny = 20,000. (D)
An illustrative example generated by simulation. The first row shows the — log,,(p)-value
in the GWAS of EAS(left) and EUR (right). The second row shows the PIP obtained by
applying SuSiE to the training data of EAS (left) and EUR (right). The third row shows the
PIP obtained from XMAP by setting ¢; = é; = 1 (left) and estimating ¢; and ¢y from the
data (right). Red dots represent causal SNPs. Circles in the same color represent SNPs in the
level-95% credible sets of a causal signal. Results are summarized from 50 replications.

Real data analysis

We performed fine-mapping to identify putative causal SNPs of complex traits with cross-
population GWASs. First, by applying XMAP to LDL GWASSs, where the magnitude of
confounding bias was ignorable, we illustrated XMAP’s superior performance in improving
fine-mapping power and resolution. Second, to investigate the ability of XMAP in correcting
confounding bias, we applied XMAP to combine height GWASs from an EAS cohort [28] and
the British cohort in UKBB, which was known to be affected by population structure [11, 12].
Through replication analysis, we compared the credibility of XMAP fine-mapped SNPs with
related methods. Third, with the confounding bias properly corrected, we showed that XMAP

enables the identification of multiple causal signals within a locus. Lastly but importantly,
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we integrated the fine-mapping output of XMAP in blood traits with single-cell data. With
the improved fine-mapping results, we can have a better interpretation of risk variants in
their relevant cellular context, gaining biological insights of causal mechanisms at single-cell
resolution.

XMAP improves fine-mapping by leveraging genetic diversity

We first applied XMAP to analyze LDL by combining GWASs form EUR, EAS, and AFR.
As discovery cohorts, we used the GWASs of AFR and EAS released by the Global Lipids
Genetics Consotium (GLGC), which were obtained based on 92,934 AFR samples and 71,150
EAS samples, respectively. For EUR, we considered two GWAS datasets: the UKBB GWAS
summary data released by the Neale Lab with a sample size of 343,621, and the EUR GWAS
data from GLGC with a sample size of 664,450. These GWAS summary statistics included
11,569,928-35,328,891 genotyped and imputed autosomal SNPs, minimizing the risk of omitting
causal variants. Details of GWAS summary statistics are summarized in Supplementary Table
1. For EAS and EUR, we used the same reference LD matrices as in our simulation studies.
For AFR, we estimated the LD matrices by using 3,072 African individuals from UKBB as
reference samples. We followed a previous work [30] to partition all autosomal chromosomes
into 2,763 consecutive loci, each with a width of 1 million base pairs (Mbp). To fully account
for LD when analyzing each 1 Mbp locus, we included all SNPs in an extended region that
also covers 1 Mbp before the starting position and 1 Mbp beyond the ending position of the
locus, leading to a 3 Mbp extended region. We excluded the MHC region (25.5Mbp-33.5Mbp
in chromosome 6) and two other long-range LD regions (8Mbp-12Mbp in chromosome 8 and
46Mbp-57Mbp in chromosome 11) because many spurious results were reported in these regions
[30]. We applied XMAP to all regions that have more than 100 SNPs after overlapping the
reference LD matrices with GWAS data. Because SuSiE often achieved the best performance
among single-population methods in our simulation studies, we applied SuSiE to the GWAS of
each population separately, serving as a baseline for comparison. We set K = 10 in XMAP
and SuSiE for all loci.

We first quantified the confounding bias in these GWAS data using the estimates of LDSC
intercepts. As shown in Supplementary Table 1, the LDSC intercepts estimated from all
LDL GWASs were not substantially different from one, suggesting ignorable confounding bias
here. We then summarized the fine-mapped SNPs in Figure 4 A. By combining GWAS data
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Figure 4: Application of XMAP and SuSiE to LDL. (A) Number of causal signals identified
by XMAP and SuSiE with PIP thresholds 0.8, 0.9, 0.95, and 0.99. Colors represent different
combination of GWAS training data. (B) LD score distribution of causal SNPs identified by
XMAP. (C-F) Fine-mapping of locus 21.4Mbp-22.4Mbp in chromosome 8. The fine-mapping
methods and training data are labelled on top of each panel. Top panels show the PIP. SNPs
within 99% credible set are highlighted with red circles. Middle panels show the — log,,(p—value)
in GWAS. Red dashed lines represent 5 x 107%. Blue dashed lines represent 1 x 107, Bottom
panels annotate the position of genes in the locus. (G) Absolute correlation in EUR and AFR
among the SNPs within level-99% credible set as shown in the red circles of (C). The SNP
rs900776 is highlighted in the heat map.

from different populations, XMAP consistently identified more causal signals than SuSiE with
different PIP thresholds. Specifically, XMAP identified 149 SNPs with PIP> 0.8 and 145
SNPs with PIP> 0.9 when the GWASs from all three populations were jointly analyzed, which
was three times more than the number of SNPs identified by SuSiE in EUR (50 SNPs with
PIP> 0.8 and 45 SNPs with PIP> 0.9). The complete fine-mapping results are available at
https://github.com/YangLabHKUST/XMAP /results.

The improved statistical power of XMAP could be atttributed to its capacity of leveraging
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genetic diversity. To see this, we checked the LD score which is a summation of squared
correlation between a SNP and other SNPs in a population. A large LD score of a SNP means
that this SNP has strong LD with many other SNPs. We observed that the XMAP fine-mapped
SNPs have smallest LD scores in AFR (Figure 4 C), suggesting the power gain of XMAP
could be attributed to the weak LD between causal SNPs and non-causal SNPs in AFR. As an
example, rs900776 is an intronic variant in the DMTN region, which is highly correlated with
surrounding SNPs in EUR. Because of this, SuSiE estimated the PIP of rs900776 as small as
0.002 using UKBB GWAS and produced very large 99% credible set that included 16 other
SNPs for this signal. When applying SuSiE to the larger EUR GWAS data from GLGC, the
PIP of SNP rs900776 increased from 0.002 to 0.6 (Figure 4 D). Different from the LD pattern
in European population, rs900776 is less correlated with nearby SNPs in African population
(Figure 4 G). Therefore, when SuSiE was applied to AFR GWAS; the estimated PIP of rs900776
increased to 0.9 (Figure 4 E). Unlike SuSiE that analyzes a single population at a time, XMAP
enables joint analysis of EUR and AFR GWASs. XMAP successfully identified SNP rs900776
with a PIP as high as 0.99, yielding a high resolution credible set which contains rs900776
only (Figure 4 F). This indicates the improved power and resolution of XMAP by leveraging
genetic diversity. We verified our findings with the expression quantitative trait loci (eQTLs)
of liver obtained from the Genotype-Tissue Expression (GTEx) project [32]. As demonstrated
in Supplementary Figure 14 , the SNPs identified by XMAP produced a substantially higher
enrichment of LDL in the liver eQTLs, as compared to SNPs identified by SuSiE using single
population GWASS.
XMAP enables the correction of confounding bias in fine-mapping

To demonstrate the effectiveness of XMAP in correction of confounding bias, we applied
XMAP to the height GWASs which were well known to be affected by population structure
[11, 12]. Following the previous cross-population fine-mapping pipeline [33], we first applied
fine-mapping methods to discovery GWAS datasets, and then evaluated the credibility of
fine-mapped SNPs in replication datasets from different population backgrounds. Here, we
used the EUR GWAS from UKBB and a Chinese GWAS in our previous study [28] as discovery
cohorts. For replication, we considered a recently released within-sibship GWAS from European
population, which was known to be less confounded by population structure. We also included

the GWAS from BBJ cohort as a replication data from EAS background. To ensure the SNP
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density, these GWASs were imputed to cover 3,776,576-12,515,778 variants (see Supplementary
Table 1). The LDSC intercepts of UKBB GWAS and BBJ GWAS were estimated as 1.66
(s.e.=0.042) and 1.39 (s.e.=0.024), respectively, indicating the presence of strong confounding
bias. The LDSC intercepts of EUR Sibship GWAS and Chinese GWAS were estimated as 1.07
(s.e.=0.0089) and 1.12 (s.e.=0.012), suggesting that the confounding bias is nearly ignorable.
To investigate the ability of XMAP in accounting for confounding bias, we used UKBB and
Chinese GWASs as inputs of XMAP and used SuSiE to analyze these GWAS data separately
as benchmarks.

We summarized the replication rates of fine-mapped SNPs in Figure 5. Among the
overlapped SNPs between the EUR Sibship GWAS and discovery cohorts, SuSiE detected
306 SNPs with PIP> 0.8 from UKBB GWAS. However, only 14.1% (43/306, Figure 5 A)
were found to be genome-wide significant and only 13.4% of them (41/306, Figure 5 B) had
PIP> 0.1 in the EUR Sibship replication cohort. The low replication rate suggests that these
SNPs could be false positive signals due to unadjusted confounding bias. By accounting for the
confounding bias, XMAP successfully reduced the number of false positive signals. For example,
using PIP> 0.8 as a threshold, 21.4% (44/206) SNPs detected by XMAP were genome-wide
significant and 21.4% (44/206) had PIP> 0.1 in BBJ replication cohort. A similar pattern can
be observed in the BBJ replication cohort. With a PIP threshold of 0.8, only 23.9% (54,226,
Figure 5 C) SNPs detected from UKBB GWAS by SuSiE were genome-wide significant and
8.8% (19/226, Figure 5 D) had PIP> 0.1 in BBJ GWAS. As a comparison, 42.3% (71/168)
SNPs detected by XMAP were genome-wide significant and 14.9% (25/168) had PIP> 0.1
in BBJ replication cohort. The higher replication rate of XMAP implies its effectiveness of
fine-mapping by accounting for confounding bias.

Although PAINTOR and MsCAVIAR can also integrate cross-population GWASs, they are
too time-consuming to analyze all loci on the genome. Here, we consider a concrete example
to compare the performance of cross-population methods in the presence of confounding bias
(Figure 5). For XMAP, we considered two settings: (i) the standard XMAP that used the
estimated inflation constants (¢; and ¢g) to correct the confounding bias; (ii) a special case of
XMAP forced not to correct the confounding bias by setting ¢; = ¢o = 1, denoted as ‘XMAP
(C=I)’. In this example, the SNP rs2053005 locating at the locus 66.55 Mbp-66.85Mbp in
chromosome 15 was significantly associated (p-value< 107%) in UKBB GWAS (Figure 5 E),
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Figure 5: Replication analysis of XMAP and related methods on height GWASs. (A-D)
Overview of replication analyses of high-PIP fine-mapped SNPs across populations: bar charts
showing the fraction and number of fine-mapped SNPs with p-value< 5 x 1078 in the replication
cohorts of EUR Sibship GWAS (A) and BBJ (C) cohorts and bar charts showing the distribution
of PIP for fine-mapped SNPs computed by SuSiE in the replication cohorts of EUR Sibship
GWAS (B) and BBJ (D). (E-I) Fine-mapping of locus 66.55 Mbp-66.85Mbp in chromosome
15. The SNP rs2053005 is significant (p-value< 1 x 107%) in UKBB (E), but not significant
in Chinese GWAS and EUR Sibship GWAS (F and G). When UKBB and Chinese cohorts
were combined for cross-population fine-mapping (H), the PIP of rs2053005 was computed
to be > 0.8 by PAINTOR, MsCAVIAR and XMAP when we set ¢; = ¢o = 1 (XMAP C=I).
XMAP estimated the inflation constants of UKBB and BBJ as 1.66 and 1.39, suggesting they
are influenced by confounding bias. After correcting for confounding bias, this signal was
excluded in XMAP with a PIP< 0.05, which suggests that the high PIP of the SNP could have
been induced by uncorrected population stratification. To test our assumption, we combined
Chinese and EUR Sibship GWASs, which are both less influenced by confounding factors (both
with inflation constant estimated as 1.07). As expected, all methods consistently produced a
low PIP for rs2053005 (I), which confirmed our assumption and suggested XMAP can reduce

spurious signals.
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but not significant in both Chinese GWAS and EUR Sibship GWAS (Figure 5 F and G).
When UKBB and Chinese cohorts were combined for cross-population fine-mapping, the PIP
of r$2053005 was computed to be > 0.8 by PAINTOR, MsCAVIAR and XMAP (C=I) without
accounting for confounding bias. After correcting for confounding bias, the PIP of this signal
dramatically decreased in XMAP with a PIP< 0.05, which suggests that the high PIP of the
SNP could have been caused by population stratification (Figure 5 H). To test our assumption,
we applied cross-population methods to combine Chinese and EUR Sibship GWASs, both
of which are known to be less influenced by population structure. As expected, all methods
consistently yielded a low PIP for rs2053005 (Figure 5 I). This observation confirmed our
assumption that rs2053005 could be a false positive and XMAP was able to exclude this signal
by correcting the confounding bias.
XMAP enables identification of multiple putative causal signals in fine-mapping
With the confounding bias properly corrected, XMAP’s efficient algorithm allows us to
produce reliable PIP for identifying multiple putative causal variants in thousands of loci
across the whole genome. As summarized in Figure 6 A, with a PIP threshold of 0.5, XMAP
identified 55 loci harboring more than one putative causal SNPs of height by combing UKBB
and Chinese GWASs, among which 6 loci harbor more than 3 causal SNPs and 2 loci harbor 5
causal variants. With a stringent threshold PIP= 0.9, XMAP identified 15 loci with 2 causal
SNPs and 9 loci with 3 causal SNPs. To examine the reliability of putative causal SNPs in loci
harboring multiple causal signals, we evaluated the replication rates of these SNPs using the
Sibship GWAS. Figure 6 B and C compare the replication rates of XMAP and SuSiE using their
putative causal SNPs with a PIP threshold of 0.9. For loci with more than one putative causal
SNPs, XMAP had the best replication rate (i.e., 24/55=43.6% SNPs had p-values< 10~¢ and
14/55=25.5% SNPs had PIP > 0.1). Although SuSiE can also identify multiple causal signals
(Supplementary Figure 17), it had lower replication rates than XMAP because it cannot correct
for confounding bias. For loci with more than two putative causal SNPs, XMAP had similar
replication rate with SuSiE applied to EUR GWAS. Although PAINTOR and MsCAVIAR
can also integrate cross-population GWASSs, they are too time-consuming to analyze all loci
on the genome when the number of causal signals are set to be larger than 2. We could only
run PAINTOR by setting the number of causal signals to 1 and 2. However, PAINTOR often

produced unrealistic PIP for loci containing thousands of variants (Supplementary Figures
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17 and 18). Here, we compared the PIP of SNPs computed by XMAP with PAINTOR and
MsCAVIAR using the locus 130.2 Mbp-130.5Mbp in chromosome 6 as an example. We first
combined the GWASs of UKBB (Figure 6 B) and Chinese (Figure 6 C). Clearly, all compared
methods suggest that both rs1415701 and rs6569648 had high probability to be causal (Figure
6 E). To test the robustness of compared methods, we replaced the UKBB GWAS with EUR
Sibship GWAS (Figure 6 D) which has smaller sample size but is less influenced by confounding
bias, and computed the PIP again (Figure 6 F). Because of the reduced sample size, the PIP
of rs6569648 computed by MsCAVIAR reduced to 0.78; the PIP computed by PAINTOR
substantially differed from its previous output. By contrast, XMAP was the only method that
consistently produced high PIP for rs1415701 and rs6569648 (PIP> 0.8).

In the main analysis, we set K = 10 to allow the detection of multiple causal variants. The
setting K = 10 was supported by the analysis of height as summarized in Figure 6, where
most loci had < 5 causal variants in height. To investigate the sensitivity of fine-mapping
performance to the parameter K, we further considered K = 15 for XMAP and SuSiE. As
shown in Supplementary Figure 15, the number of putative causal SNPs identified by XMAP
are highly consistent under different settings of K. Besides, the fine-mapped SNPs could be
replicated in a consistent rate under different settings of K (Figure 5 A-C and Supplementary
Figure 16). These evidence consolidate our conclusion of the XMAP’s robustness to the setting
of K.

The XMAP output improves the interpretation of risk variants in their relevant
cellular context at single-cell resolution

Integration of fine-mapping results with single-cell datasets is expected to offer a better
interpretation of putative causal variants in their relevant cellular context at single-cell resolution
[6]. However, fine-mapping of an under-presented population often lacks statistical power due
to the limited sample size, making the interpretation of causal risk variants difficult. In
this section, we show that cross-population fine-mapping results given by XMAP can greatly
improve the interpretation of putative causal variants in their relevant cellular context by
integrating single-cell datasets. To illustrate this benefit, we carried out SCAVENGE [6]
analysis to quantify the enrichment of putative causal variants for 12 blood traits (summarized
in Supplementary Table 1) within regions of accessible chromatin using the single-cell assay

for transpose-accessible chromatin by sequencing (scATAC-seq). We employed a scATAC-seq
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Figure 6: Performance of XMAP in identifying multiple causal variants for height. (A)
Distributions of the number of putative causal SNPs identified by XMAP under different
PIP thresholds. (B) With a PIP threshold of 0.9, the p-value distributions in the Sibship
GWAS replication cohort are shown for putative causal SNPs within loci harboring > 1 and
> 2 putative causal SNPs. (C) With a PIP threshold of 0.9, the PIP distributions in the
Sibship GWAS replication cohort are shown for putative causal SNPs within loci harboring
> 1 and > 2 putative causal SNPs. (D-G) A demonstrative example using the locus 130.2
Mbp-130.5Mbp in chromosome 6. Manhattan plots of the locus are shown for UKBB GWAS
in (D), Chinese GWAS in (C), and EUR Sibship GWAS in (F). The PIP of SNPs in target
locus are computed by XMAP, PAINTOR and MsCAVIAR with GWASs of UKBB+Chinese
(H) and Sibship+Chinese (G).

10 dataset that encompasses multiple hematopoietic lineages [34], which includes 33,819 cells

w0 from 18 hematological populations (Figure 7 A). Specifically, we have a matrix of fragment
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counts F € RE*L_ where C is the number of cells in scATAC-seq data and L is the number of
accessible chromatin peaks. To quantify the relevance between the peaks and a phenotype, we
first used the XMAP output to compute a vector of weight 17 € R* with the I-th element of n
being the sum of XMAP PIP for SNPs within the genomic region of peak [, which indicates the
relative importance of a peak to the phenotype. The raw cell-trait relevance scores could be
computed as t = Fn. As such, trait-related cells tend to have larger scores because more causal
SNPs are located within their accessible chromatin regions. Then a Z-score characterizing
the relationship between each pair of cell and trait can be obtained by further correcting for
technical confounders, such as GC content bias and PCR, amplification, using g-chromVAR, [5].
To optimize the inference by leveraging relatedness across individual cells, we constructed a
cell-cell similarity network and applied SCAVENGE [6] to assign a trait-relevance score (TRS)
for each cell via network propagation. Finally, we simulated null distributions of TRS by using
random seed cells for propagation and computed a p-value of trait-enrichment for each cell.
The cells with p-value< 0.05 were considered as significantly enriched for the trait.

We summarized the identified trait-enriched cells and the median TRS of each cell type in
Figure 7 B and Supplementary Figure 19, respectively. As we can observe, the enriched cells
were highly aligned with our knowledge of cell types related to the blood traits. For example,
we identified 8,388 lymphocyte count (Lym)-related cells, among which 5,021 cells were CD4
cells and 2,272 were CDS8 cells. For traits related to myeloid/compound white cells, including
eosinophil count (Eosino), monocyte count (Mono), neutrophil count (Neutro) and white
blood cell count (WBC), we observed a substantial number of enriched cells from the CD147"
monocytes. For traits related to red cells such as red blood cell count (RBC), mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular
volume (MCV), and hemoglobin (HB), a large amount of enriched cells were erythroid cells.
These observations indicate that the biological mechanisms of putative causal SNPs identified by
XMAP can be interpreted at single-cell resolution. Due to the unbalanced cell type composition
in the single cell dataset, cells from rare populations can be under-represented. To rule out the
influence of cell type composition on our analysis, we further investigated the proportion of
trait-relevant cells within each cell type. We observed that biologically related cell types had
largest proportion of enriched cells. For example, MCV was significantly enriched in 99.3% of

late stage erythroid cells (Figure 7 E-F), WBC was significantly enriched in more than 60%
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s of CD14" monocytes (Figure 7 I-J), Lym was significantly enriched in a large proportion of
i3 CD4 and CDS8 cells (Figure 7 C-D), and Plt was significantly enriched in the erythroid cells
se (Figure 7 G-H). These results suggest that the identification of trait-relevant cells is immune
15 to the cell type composition. As shown in Supplementary Figures 20-31, we compared the
36 trait-relevant cells obtained by using the XMAP PIP as input with those using the SuSik
a7 PIP from single population analysis as input. Due to the relatively smaller sample size in the
s BBJ cohort, the trait-relevant cells were less enriched when fine-mapping was performed only
a0 using the BBJ GWASs, including GWASs of lymphocyte count (Supplementary Figure 20C-D),
so eosinophil count (Supplementary Figure 25C-D), and basophil count (Supplementary Figure
s 24C-D). Compared with the single-population fine-mapping result by SuSiE, XMAP can take
w2 the advantage of well-powered UKBB GWASs and provide a more accurate fine-mapping result
w3 (Supplementary Figures 20A-B, 25A-B, 24A-B). By integrating with single-cell datasets, the
ws  fine-mapping results given by XMAP can offer a better understanding of the putative causal

ws  variants in their cellular context at single-cell resolution.

« 1D1lscussion

w7 In this paper, we have introduced a novel method named XMAP for cross-population fine-
us mapping. XMAP is able to improve the statistical power of fine-mapping by leveraging
uo  heterogeneous LD patterns across multiple populations. By correcting the hidden confounding
w0 bias in GWAS summary statistics, XMAP can effectively reduce spurious causal signals induced
s1 by sample structure. XMAP’s fast algorithm allows us to efficiently analyze loci that harbour
ss2  multiple causal SNPs. Through comprehensive simulations, we showed that XMAP has greater
53 statistical power, better control of false positive rate, and substantially higher computational
ssa  efficiency for identifying multiple causal signals. We applied XMAP to fine-map causal SNPs of
ss5  LDL by combining GWASs from EAS, EUR and AFR, achieving substantial gains in statistical
w6 power. Furthermore, we showed that XMAP was able to exclude spurious signals and produced
ss7 reproducible results. By combining the output of XMAP for blood traits with scATAC-seq
ss  profiles of hematopoietic cells, we illustrated that the output of XMAP was particularly helpful
ss0  to characterize the causal mechanism behind phenotypic variation at single-cell resolution. We
w0 believe that XMAP can serve as a powerful analytic tool of fine-mapping.

461 Considering the polygenic nature of complex traits, XMAP assumes that the genetic effects
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Figure 7: Enrichment of blood cell traits in hematological populations using XMAP fine-mapped
SNPs as input. (A) The two dimensional uniform manifold approximation and projection
(UMAP) plot of scATAC-seq data for 18 hematological populations. (B) The bar plots showing
the number of cells significantly enriched in each of the 12 blood traits. The TRS are shown in
the UMAP coordinates for four representative traits: Lym (C), MCV (E), Plt (G), and WBC
(I). The proportions of significantly enriched cells within each population are shown for Lym
(D), MCV (F), Plt (H), and WBC (J).

can be decomposed into two parts: the major causal effects and polygenic effects. For the
causal effects, we assume that the total effects can be decomposed as a sum-of-single-effects
[23, 24], which enables a highly efficient algorithm. While this assumption was also adopted in
previous works [23, 24], they could not leverage genetic diversity to improve statistical power in
the cross-population setting. For the polygenic effects, it benefits fine-mapping in two aspects.
First, it captures the small genetic effects, allowing us to focus on the causal SNPs with major
genetic impact that can be more biologically interesting for downstream analysis. Second,
the statistical inference of causal effects are protected against over-fitting when K is specified
larger than the ground truth. Therefore, we can safely set K to be a larger number, when
the ground truth is unknown (Supplementary Figure 3). The parameters of the polygenic
component are pre-estimated using LDSC, ensuring the model identifiability (see Methods).

Because SNPs from the entire genome are used for estimation, the parameter estimates of the
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s polygenic component are accurate and stable.

at5 Identifying the tissue and cellular context of causal variants is a critical step to understand
a6 their biological mechanisms. Existing methods are usually limited to investigation at tissue
wr [35, 36, 37, 38, 39, 40, 41, 42] or cell type levels [43, 44, 45, 46, 47|, which do not fully utilize
ars the rich resources of single-cell profiles. An important feature of XMAP is that it produces
a0 outputs that can be integrated with single-cell profiles to illuminate the cellular context of
w0 putative causal SNPs at single-cell resolution, offering a unique opportunity to characterize the
w1 biological mechanisms across a whole spectrum of cell functions.

a8 Although it is convenient to work with GWAS summary statistics, fine-mapping requires
w3 a population-matched reference LD matrix as an input. The inconsistency of LD patterns
s¢  between reference samples and GWAS samples can lead to false positive findings [24, 48, 49].
w5 In our main analysis, we have used the in-sample LD references for EAS and UKBB GWAS
w6 t0 minimize the risk of LD mismatching. In practice, if an in-sample LD reference is not
w7 available, some diagnostic tools such as SLALOM [49] and DENTIST [48] should be carried
w8 out to validate the fine-mapping results and remove suspicious signals.

489 Our XMAP approach needs more investigation in the following directions. First, similar
w0 to PAINTOR and MsCAVAIR, XMAP assumes that the causal variants are shared across
w1 populations. Recent studies have reported that some causal signals could be specific to a
w2 certain population [50]. Hence, extending XMAP to handle the population-specific causal
a3 effects may yield biologically interesting discoveries. Second, causal variants are reported to
ss  be distributed disproportionately in the genome, depending on the functional context of the
a5 genomic regions [18, 25, 30, 51]. Some recent methods incorporate the information of functional
w6 annotation to improve fine-mapping [18, 25, 30]. It is interesting to incorporate functional
a7 annotations in the causal inference of XMAP, which may further boost the statistical power
w8 of fine-mapping. Third, gene-level effects can be more stably shared across populations, as
w0 compared to SNP-level effects. A recent study [52] suggests that the correlation of gene-level
so effects is 20% stronger than SNP-level effects across populations. Therefore, leveraging the
so0  genetic diversity at the gene-level for fine-mapping can be also an interesting direction. We

s will explore these potential extensions in the near future.
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s Methods

sa. The XMAP model

505 We begin with the probabilistic formulation of XMAP with individual-level GWAS data.
so6 For easier introduction, we consider the case of two populations for easier introduction but note
sor  XMAP that is generally applicable to analyze multiple populations. Let {y1,X;} and {y2, X5}
ss be the GWAS datasets collected from two different populations, where y; € R™ and y, € R™2
so0 are phenotype vectors, X; € R"*P and Xy € R"*P are genotype matrices, p is the number of
s SNPs in the locus of interest, and n; and n, are the GWAS sample sizes of populations 1 and
su 2, respectively. With different recombination rates, the two populations tend to have different
sz LD patterns, i.e., the correlations among columns of X; are usually distinct from those of Xs.
si3. Without loss of generality, we assume that the columns of X; and X, have been standardized
su to have zero mean and unit variance. To relate genotypes and phenotypes, we consider the

sis following linear models:

y1 = Xi1b1 + X191 + e, 0

y2 = Xoba + Xogs + €y,
sis where by € RP and by € RP are sparse vectors of causal effects with major impact on phenotypes,
517 1 = [P11, P12, oy P17 € RP and ¢y = [Pa1, P2a, ..., 2p]” € RP are dense vectors capturing the
s polygenic effects [53], and e; ~ N(0,02 I,,) and e, ~ N(0,02,1,,,) are vectors of independent
s10 noises from populations 1 and 2, respectively. Here, we assume that the covariates (e.g., sex, age,
0 and principal components) have been adjusted. The detailed treatment of covariates follows
s our previous works [28, 54]. Unlike previous methods that only consider the overall genetic
s» effects [17, 18, 19, 20, 22], we separate the genetic effects into causal and polygenic components.
s23 'This decomposition allows us to focus on the causal SNPs with major genetic impact b; and
s« by that can be more biologically interesting for downstream analysis. Accumulating evidence
s of a shared genetic basis across populations [28, 25, 26, 55, 56] implies that by and by tend to
s26 have the same set of nonzero entries. Therefore, we expect that the different LD patterns in

s27 X1 and Xy can be helpful for fine-mapping shared causal SNPs across populations.

528 To leverage the cross-population GWASs for fine-mapping, we propose to specify model (1)
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s20 by decomposing the causal genetic effects by and by into K ‘single effects’:

K
yi =Xy Z’)’kﬁlk + X ¢ + ey,

=1

< (2)
y2 = Xy Z’Ykﬁzk + Xopy + eq,

=1

s30 where [y, and [ are effect sizes of the k-th causal signal in populations one and two,
s respectively, vk = [Vi1, .-, Vip)” € {0, 1}? in which only one element is 1 and the rest are 0 with
s2 7Y = 1 indicating the j-th variant is responsible for the k-th causal signal. This formulation of
533 XMAP has three salient properties. First, through the shared causal status v, XMAP can
s leverage the distinct LD patterns between X; and X,. Meanwhile, we allow the two populations
535 to have different effect sizes 515 and [(sr. Second, the decomposition of the causal signals into
s I single causal effects not only allows us to characterize each individual causal signal with an
s37 associated credible set [23] but also offers a computational advantage over existing methods, as
s we shall see later. Third, the inclusion of the polygenic component also protects the statistical
s39 inference against over-fitting when K is specified larger than the ground truth. With this
sa0  property, we can safely set K to be a reasonably large number, say K = 10 by default, when the
s ground truth is unknown. To infer the causal status ~;, we specify the probabilistic structures

se2 for the genetic effects in model (2) as follows:

Y ™~ MU-lt<]-7 [1/]77 sy ]-/p]T>7

[5%} ~N(0,X), for k=1,... K,
Bak

|be:| ,\J./\/’(O7 Q), fOI'j: ]-7-"7p’
P2;

sis where Mult(1, [1/p, ..., 1/p]") denotes the non-informative categorical distribution of class counts

s drawn with class probabilities given by 1/p for each SNP, A/ (0,3;) and N (0, ) denote the
2 2

Ok O le}

2

ses  multivariate normal distributions with mean 0 and covariance matrices 3 = { 5
o o
k12 Ok2

w; w . :

sa and 2 = [ ! 12}, respectively. The variance components 3 = {X¥;, ..., ¥k} capture the
Wiz W2

sa7 - genetic covariance of the tow populations attributed to the K causal effects, and €2 captures

sis the genetic covariance attributed to the polygenic effects.

549 So far, we have assumed the covariates have been adjusted. In the presence of covariates,
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we can extend XMAP model in Equation (2) as

K
y1=Wium + X, Z’)’kﬁlk + X191 + ey,

k=1

- 0
Yo = Waty + X5 > Yk + Xagha + €2,

k=1

where W; € R™*% and Wy € R™*% are the covariate matrices of populations 1 and 2,
respectively, and u; € R? and uy € R% are corresponding vectors of covariate effects. To
adjust the covariates, we first construct the projection matrices P; =1 — W (WT W) 'WT
and Py = I — Wy (WIW,)"'WI' Then we multiply P; on both sides of the first equation and
P, on both sides of the second equation in model (4). Through this projection, we can obtain

a model without covariates

K
yi =X wbu+ XP ¢y +ef,
k=1
(5)

K
y; = X5 Z’)’kﬁ% + X5 by + €5,
k=1

where y¥ = Py, y¥ = Poyy, XP = P X, XF = P,X,, ef = Pie;, and e} = Pye,. As we
can observe, model (5) reduces to model (2). With this equivalence, we can work with model
(2) without loss of generality.
The XMAP model for summary-level data

Due to privacy concerns, the individual-level GWAS data may not be easily accessible.
Given this situation, we consider the summary-level GWAS data {131, §1} = {l;lj, 515} i=1,p

and {bg, 82} = {bs;, 52,};=1,.., obtained from simple linear regressions:

by = XLy1 /XXy, S1j = \/||Y1 — Xy5015113/ (nax{;x15),

(6)

boj = X3,y2/X3Xoj, S2j = \/||Y2 — Xa;ba;]|3/ (nax};xs;),
where x;; € R? and xy; € R” denote the j-th column of X, and Xy, respectively. To derive
XMAP with summary-level data, we consider the rows of X; and X, as independently and
identically distributed samples drawn from the two populations, respectively. Then, we define
the LD matrices Ry = {ri;;} € RP”? and Ry = {ro;} € RP?, where ri; = E[x{;xy;/n1] and

Tojl = E[ngxgl /ns] denote the correlation between variants j and [ in populations 1 and 2,
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respectively. We can then obtain the expectation of GWAS effect sizes conditional on b and ¢:

K
E [bifbr, 1| =B [XIX0 (3 e + @) + XTer) /b,

K
=R, Z Y Bk + Ri¢p1,
=1

L =1 | —
0 L5 g
E [52“02, ¢2] =K ngz(z YiPok + B2) + X5 €s)/na|ba, o | = Ry Z’Ykﬁ% + Rag.
1 1

With this expression, we can connect b and ¢ with GWAS summary data with the following

model: .
lA)1 =R, Z’)’kﬂlk +Ri¢1 + €, Var(e) = SlRlsl
k=1
< (8)
lA)2 =Ry Z’Ykﬂzk + Rotpy + €3, Var(ey) = S2R2S2
k=1

~

where S; € RP? and S, € RP*? are diagonal matrices with diagonal terms given as {Sl}jj = 51,
and {Sg}jj = §9; for j =1, ..., p, respectively (see Supplementary Note). To obtain a likelihood
function of summary level data, we impose normal distributions for by and by, and Eq. (8)

becomes the following model:

K
by~ N(Ri Y Bk + Rur, SiR1Sy),

k=

P 9)
by ~ N(R2 > viBar + Raghz, S2R,Sy).

k=1
Note that model (8) or model (9) is derived by assuming that all the population structures
have been properly adjusted in the GWAS summary statistics. To account for the unadjusted
confounding bias hidden in GWAS summary statistics, we extend Equation (1) under the
genetic drift model of LDSC [31] (see Supplementary Note). We show that model (9) is modified
accordingly as
K
by ~ N(R, Z YiBik + Ry, C1S1R1S1),
k;l (10)
by ~ N(Ra Y Bk + Ratha, 28:R2S5),

k=1

where ¢; and ¢, are LDSC intercepts that indicate the magnitude of inflation in GWAS effect
sizes due to confounding bias. In the absence of confounding bias, the values of inflation
constants ¢; and ¢y are close to one. As observed in biobank-scale GWASs [11, 12, 13, 54], the
inflation constant is often larger than one in the presence of confounding bias. These inflation

constants in the variance term of model (10) can re-calibrate the GWAS standard error based
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sss  on the magnitude of confounding effects. The SNP correlation matrices R = {Ry, Ry} can be
ss7 estimated with genotypes either from subsets of GWAS samples or from population-matched
sss reference panels. Under model (3) and (10), we denote the collection of unknown parameters
se0 @ = {3, Q,c1, o}, and the collections of latent variables ¢ = {¢1, ¢p2}, ¥ = {V& }r=1.. x and
soo (3 = {Pik, Bok }k=1,. k. We shall obtain the parameter estimates 0 and identify causal SNPs

s with the posterior R X
Pr(b,v, 8, ¢|s, R; 6)

Pr(v, 3, ¢|b.8, R;0) = X .
(. 8.l ) Pr(b|s,R;6)

(11)
s Algorithm and parameter estimation

503 To ensure the model identifiability, we first apply LDSC to estimate the parameters ¢, ca,
sa and {2 using summary statistics across the whole genome. For €2, the diagonal terms w; and
sos Wy are estimated with the per-SNP heritabilities of the corresponding populations using LDSC.
so6 ' The off-diagonal term wys is estimated by the per-SNP co-heritability obtained via bi-variate
s LDSC. The inflation constants c¢; and ¢, are estimated by the intercepts of LDSC of the two
ss  populations. Then, with the parameters {¢;, ¢, ﬂ} pre-fixed, we can estimate 3 without model
soo identifiability issue. Traditional maximum likelihood approach estimates 3 by maximizing the

s0 marginal likelihood

Pr(b|s, R; Q,¢é1,6,%) = ) //Pr(6|§, R, v, 3, ¢; é1, &) Pr(p|Q) Pr(v) Pr(8|X)dBdée.
’ (12)
s However, due to the combinatorial nature of «, the computational cost for Equation (12) grows
02 exponentially with the number of causal signals K. To address this difficulty, we develop an
s03 efficient variational expectation-maximization (VEM) algorithm to estimate ¥ and approximate

s+ the posterior (11). To achieve this, we first derive a lower bound of the logarithm of the marginal

605 likelihood (1 2)

6 Pr 060,60,
g Pr(bls. R 2.61,02,%) > Y [ [t 5.9 10g O LABEL 0B g5
. q(v, B, 9)
~ R A 13
=E,[log Pr(b,v, 3, #[8,R; 2, ¢1, ¢2, X) — logq(7, B, @) (13)

E‘CQ(E)a
sos where the inequality follows Jensen’s inequality and ¢(«, 3, ¢) is a variational approximation
s of the posterior (11). For convenience, we denote by = xf1x and bg, = i S2. By leveraging

s the decomposition in model (2), we propose a factorizable formulation of the variational
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600 approximation:

K

(v, 8,9) = [ [ 4b1x. bar)a(9) = [ [ a(ve)a(Bur, Bk vi)a(9)- (14)

k=1
s10 Unlike previous methods [57, 58] that require by and by to be fully factorizable across their p el-
e ements, the variational approximation in Equation (14) only requires that {by1,ba1}, ..., {b1x, bax }
s> are independent and they are independent of ¢ [23, 24], which allows flexible dependencies
sz among the elements of by and by,. With the above factorizable approximation given by
aa  Equation (14), it turns out that both ¢(v, 8, ¢) and £,(X) can be analytically evaluated. We
s1s summarize the VEM algorithm in the following:

s E-step At the t-th iteration, the variational distributions are given as

q(7|=) = Mult(1, 7),

o] by = 1.39) = NGy, S, )

|9 1=0) = w5 ),

or where T = [fp1, ..., Tip)T € [0,1]7, Ty € R fiy; € R2 A € R¥* and o € R? are

sis variational parameters. The variational parameters are given as

i 1
Tk = softmax(—log(p) + —10g|§]k]| + Mk]EkJ fj),

~9 ~9 144 0 -1
51— |Tkit Okjaz| _ é153; E(t)
K= . = + (=)
J 0.2 0.2 0 7255 ’
kj,2 kj,2 283
"N T
ji = A
~ kj,1 s C187. 185 ~ ~ ~
P = [ﬂ ] } =S (|5 | |7 m | (2 mmeme o)) (16)
kj,2 J
7> E2d2, 0 @253, K'#1
_ -1
. S;'R4S; 0 .
_ C1 —
A= 0 S7'RaS; | T QT el, '
L ()

) ST'R1ST!
v=A 952152] - [ o 1RQS‘ ] ((Z“kj ®7Tk)> :
L Co C2

so where softmax denotes the softmax function to make sure » 7| 7; = 1 and ® is the Kronecker

620 product. By combing Equations (14,15,16), the lower bound (13) can be analytically evaluated
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621 AS

L,(2[2)

K T S;an

C2

A T reir,s;! 0 K
-5 (Z iy ® 7y + :7) [ . SRS] (Z iy ® Ty + ,;)
P = 1 \%

2

p
~9
— E 2A o35 "'jj E Thj ngl + 1) — E YR E Tkj Mk]2+ak]2)

€157 ; 2658 b,2j

K
Z(um ® )" (Frj @ ) ) ——ZZTT Nk + i)
k
~ 1 N -
- —log 127Q)| — 57 T 'eL)v - g Ir (( +Q'® Ip> A)

p K P K p K

- 1 . N 1 N ~ 1 ~

+ ZZWW log]—? - ZZWM log 7y, + 3 ZZij(log |2, — log | 2k|) + ilog |A|
ik ik ik

+ constant,

a—1
SRS 0
a a—lp. a-1
S, 'R,S;
G2

+

N | —

—_

ST'R; ST 0
0 L8;'R,S;!

(17)

622 where Tr(B) denotes the trace of the square matrix B, the constant term does not involve X.

e23 M-step We solve ggq = 0 to obtain the update equation of X:

E . Z Tkj I“l’kﬂl"l’kj + Ekj) (18)

J
624 The above VEM algorithm has computational cost linear to the number of causal variants
es K, allowing for detecting multiple causal effects (e.g., K = 10) at a given locus.
e2s ldentification of causal variant and construction of credible set
627 After the convergence of VEM algorithm, we can obtain the approximated posterior
e probabilities q(7yx) = 7), where 7y; is the posterior probability that the k-th causal signal is
620 contributed by the j-th SNP. With the variational approximation given by Equation (15), we
30 can compute the posterior inclusion probability of SNP j as

K
PIP; = Pr(v; # 0 for some k|b,§) ~ 1 — H(l — Thj)- (19)

k=1
31 We can compute the local false discovery rate of SNP j as fdr; =1 — PIP; and prioritize the
22 causal SNPs by controlling the false discovery rate.

633 The decomposition of causal effects (2) offers an opportunity to characterize the set of SNPs
s that have high credibility to contribute to an individual causal signal. Let M C {1,...,p} be a

e3s  subset of SNPs from the target locus. A level-a credible set of a causal signal k, denoted as
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CS(k,a), is defined as the smallest M with > .\, 7x; > . A smaller size of level-a credible
set (e.g., & = 0.9) indicates a higher confidence of the identified causal variants.
Influence and choice of K

The number of causal signals is usually unknown in practice. In XMAP, we do not require
K to be the number of causal SNPs in the target locus. Instead, because the computational
cost of our VEM algorithm only increases linearly with K, we can set K to a reasonably large
number (e.g., K = 10) with minor computational overhead. When K is larger than the ground
truth, the posterior probabilities in the excessive components will be broadly distributed across
all SNPs in the locus because there is high uncertainty in the assignment of these causal effects.
Importantly, the polygenic component will account for the small genetic effects, forcing the
variance of excessive signals toward zero. Therefore, it has very minor influence in prioritization
of causal SNPs when including extra causal effects than necessary. To exclude credible sets
associated with redundant signal clusters, we follow SuSiE [23] to introduce the purity of
credible sets. The purity of a credible set is defined as the smallest absolute correlation between
pairs of SNPs within it. In XMAP, we consider the credible sets with purity less than 0.1 in all

populations as redundant and discard the associated credible sets.

Data and Code Availability

The publicly available GWAS summary statistics for meta-analysis were obtained from the links
summarized in Supplementary Table 1. The XMAP software and source codes in this study were

publicly available in GitHub repository of XMAP (https://github.com/YangLabHKUST /XMAP).
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Web resources

LDSC: https://github.com/bulik/ldsc;

XMAP: https://github.com/YangLabHKUST/XMAP:;

PLINK: https://www.cog-genomics.org/plink;

BOLT-LMM: https://alkesgroup.broadinstitute.org/BOLT-LMM.
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UKBB: https://www.ukbiobank.ac.uk;

SuSiE: https://github.com/stephenslab/susieR
PAINTOR: https://github.com/gkichaev/PAINTOR V3.0
MsCAVIAR: https://github.com/nlapier2/MsCAVIAR
FINEMAP: http://www.christianbenner.com

DAP-G: https://github.com/xqwen/dap

g-chromVAR: https://github.com/caleblareau/gchromVAR
SCAVENGE: https://github.com/sankaranlab/SCAVENGE
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