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Abstract

Fine-mapping prioritizes risk variants identified by genome-wide association studies (GWASs),1

serving as a critical step to uncover biological mechanisms underlying complex traits. However,2

several major challenges still remain for existing fine-mapping methods. First, the strong linkage3

disequilibrium among variants can limit the statistical power and resolution of fine-mapping.4

Second, it is computationally expensive to simultaneously search for multiple causal variants.5

Third, the confounding bias hidden in GWAS summary statistics can produce spurious signals.6

To address these challenges, we develop a statistical method for cross-population fine-mapping7

(XMAP) by leveraging genetic diversity and accounting for confounding bias. By using cross-8

population GWAS summary statistics from global biobanks and genomic consortia, we show9

that XMAP can achieve greater statistical power, better control of false positive rate, and10

substantially higher computational efficiency for identifying multiple causal signals, compared11

to existing methods. Importantly, we show that the output of XMAP can be integrated with12

single-cell datasets, which greatly improves the interpretation of putative causal variants in13

their cellular context at single-cell resolution.14
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Introduction15

Genome-wide association studies (GWASs) have reported hundreds of thousands of associations16

between single-nucleotide polymorphisms (SNPs) and various phenotypes [1], but most reported17

SNPs reside in non-coding regions [2, 3, 4]. As the cell type and cellular process in which18

the identified SNPs are active remains largely unknown, the GWAS findings remain hard to19

interpret. Fine-mapping seeks to prioritize the causal SNPs underlying complex traits and20

diseases. Recent progress shows that, by integrating fine-mapping results and single-cell data,21

it becomes feasible to identify disease/trait-relevant cell types and cell states [5, 6]. Therefore,22

fine-mapping is a critical step to interpret GWAS findings by elucidating their biological23

mechanisms of identified risk variants, and fine-mapping results will offer an invaluable resource24

for precision medicine [7].25

Despite the great promise of fine-mapping, efforts toward reliable prioritization of causal26

SNPs have been hampered by three key challenges. First, when GWAS samples come from27

a single population, SNPs in a local genomic region can be highly correlated due to the low28

recombination rates in that region. It is very difficult for statistical methods to distinguish29

the causal variants from a set of SNPs in strong linkage disequilibrium (LD). Second, genetic30

signals at trait-associated regions are commonly conferred by many variants acting together.31

A very recent study of 744 human expression quantitative trait loci (eQTLs) reported that32

17.7% of the eQTLs harbour more than one variant with major effects on gene expression33

levels, emphasizing the importance of identifying multiple genetic variants within an associated34

locus [8, 9]. For example, an eQTL associated with ERPA2 and Crohn’s disease was found35

to be driven by 13 separate variants [9]. However, it becomes computationally expensive to36

simultaneously search for multiple SNPs by enumerating causal combinations. Third, the37

unadjusted socioeconomic status [10] and geographic clustering [11, 12] in GWAS samples can38

induce confounding bias in GWAS estimates [13]. These confounding factors cannot be fully39

corrected through linear mixed models (LMMs) [14, 15] or principal component analysis (PCA)40

[16]. Fine-mapping without correcting the confounding bias in GWAS data can yield spurious41

results.42

While many efforts have been devoted to the development of fine-mapping methods, existing43

methods only partially addressed the above major challenges. The classical fine-mapping44

methods [17, 18] rely on an exhaustive search for all possible causal configurations of vari-45
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ants. They become computationally unaffordable when searching for more than three causal46

associations among thousands of variants. More efficient methods have been developed based47

on approximated inference, including CAVIARBF [19], FINEMAP [20], and DAP-G [21, 22].48

A very recent method, SuSiE [23, 24], introduces a novel framework by assuming the overall49

genetic effects can be decomposed as a sum of single effects. The model structure of SuSiE50

enables an efficient algorithm to detect multiple causal SNPs with minor computational over-51

head. Despite their improvement in computational efficiency, the statistical power of these52

methods is usually limited because it is difficult for them to distinguish the causal variants53

from the highly correlated variants in the single population setting. To boost the statistical54

power of fine-mapping, several methods were developed to leverage different LD patterns55

with cross-population GWASs, including trans-ethnic PAINTOR [25] and MsCAVIAR [26].56

Although these methods allow a locus to harbour multiple causal variants in principle, they57

require enumerating all causal combinations of variants, hence become too time-consuming to58

search for more than three causal variants. Furthermore, existing fine-mapping methods do not59

account for confounding bias in GWAS summary statistics, leading to spurious results.60

In this paper, we develop a statistical method for cross-population fine-mapping (XMAP)61

by leveraging genetic diversity and accounting for confounding bias (Figure 1). The success of62

XMAP relies on its three unique features. First, XMAP can leverage distinct LD structures63

from genetically diverged populations. It is known that individuals from different population64

backgrounds usually have different LD structures. For example, individuals from the African65

(AFR) population are known to have narrower LD compared to those from the European66

(EUR) population [27]. By jointly analyzing cross-population GWASs, XMAP can effectively67

improve the power and resolution of fine-mapping. Second, XMAP can identify multiple causal68

signals with a linear computational cost, while many existing fine-mapping methods are too69

time-consuming to identify multiple causal signals. Third, XMAP can correct the confounding70

bias in GWAS summary data to avoid false positive findings and improve reproducibility.71

Through comprehensive simulation studies, we show that XMAP not only improves the72

statistical accuracy of fine-mapping but also offers a substantial computational advantage73

over existing methods. The evidence from real data analysis indicates that XMAP achieves74

substantial power gain with high reproducibility. By combining the GWASs of low-density75

lipoprotein (LDL) from East Asian (EAS), African, and European, XMAP identifies three times76
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more putative causal SNPs than SuSiE. These SNPs are strongly enriched in the eQTL of the77

liver, suggesting their important roles underlying the biological process of LDL. Furthermore,78

using the height GWAS as an example, we show that XMAP can effectively correct confounding79

bias and substantially improve reproducibility. Lastly but importantly, XMAP results can be80

integrated with single-cell data to identify trait-relevant cell populations at single-cell resolution,81

maximizing the utility of single-cell data for the inference of the pathological mechanisms.82

We apply XMAP to 12 blood traits and perform integrative analyses of the XMAP results83

and single-cell profiles of 23 hematopoietic cell populations. The analysis results suggest that84

XMAP enables the identification of the trait-relevant cell types in which putative causal SNPs85

are active. For example, SNPs identified by XMAP show a significant enrichment of the mean86

corpuscular volume in 99.3% of late-stage erythroid cells, which is very helpful to interpret87

GWAS results.88

Lym

−10

−5

0

5

10

15

−10 −5 0 5 10

UMAP 1

U
M

AP
 2

0
1
2
3
4

TRS

2.8%
0.4%

0.3%

1.0%

0.1%

0.3%

0.1%

0.7%
0.1%

0.1%
0.1%0.2%1.9%

6.6%

4.4%

0.4%
87.3%

83.2%

87.2%

78.2%
48.7%

81.0%
59.3%

Lym

Late.Eryth
Early.Eryth

Early.Baso

CD14.Mono.1

GMP.Neut

cDC

GMP

CD14.Mono.2

HSC

CMP.LMPP
CLP.1CLP.2

Plasma

B

Pre.B

pDC

CD8.EM

CD8.CM

CD4.M

CD8.N

NK

CD4.N1
CD4.N2

0%

25%

50%

75%

100%

Tr
ai

t−
en

ric
he

d 
ce

ll 
pr

op
or

tio
n

Interpret causal variants in their 
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+

Detect multiple 
causal signals

Gain computational efficiency

Improve power and reduce false positive by 
accounting for confounding bias

INPUT
• EUR Population reference 

genotypes

• GWAS summary statistics 
from EUR population

• EAS/AFR Population reference 
genotypes

• GWAS summary statistics from 
EAS/AFR population

EUR Population EAS/AFR Population 

LD in EUR Population LD in EAS/AFR 
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Figure 1: XMAP overview. XMAP takes the summary statistics and reference genotypes from

multiple populations as inputs. XMAP can improve the statistical power of fine-mapping

by leveraging the distinct LD pattern across populations while reducing false positives by

accounting for confounding bias in GWAS summary statistics. Paired with a fast algorithm,

XMAP is able to efficiently identify multiple causal signals. The fine-mapped SNPs can be

integrated with single-cell datasets to identify trait-relevant cells.
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Results89

Method overview90

XMAP is a computationally efficient and statistically accurate method for fine-mapping91

causal variants using GWAS summary statistics. With innovations in its model and algorithm92

design, XMAP has three features: (i) It can better distinguish causal variants from a set of93

associated variants by leveraging different LD structures of genetically diverged populations.94

(ii) By jointly modeling SNPs with putative causal effects and polygenic effects, XMAP95

allows a linear-time computational cost to identify multiple causal variants, even in the96

presence of an over-specified number of causal variants. (iii) It further corrects confounding97

bias hidden in the GWAS summary statistics to reduce false positive findings and improve98

replication rates. The fine-mapping results given by XMAP can be further used for downstream99

analysis to illuminate the causal mechanisms at different cascades of biological processes,100

including tissues, cell populations, and individual cells. In particular, XMAP results can101

be effectively integrated with single-cell datasets to identify disease/trait-relevant cells. We102

provide the implementation of XMAP in an efficient and freely available R package at https:103

//github.com/YangLabHKUST/XMAP. The technical details of XMAP are described in the104

Methods section.105

Simulation study106

We conducted comprehensive simulation studies to compare the performance of XMAP107

with several related fine-mapping methods, including DAP-G, FINEMAP, SuSiE, PAINTOR108

and MsCAVIAR. To mimic realistic LD patterns in different populations, we used genotypes of109

EUR samples from UKBB and genotypes of EAS samples from a Chinese cohort [28, 29]. We110

considered a region between the base pair position 45,202,602 and 45,435,202 in chromosome 22111

(GRCH37), which comprises p = 500 SNPs. To demonstrate the benefit of leveraging genetic112

diversity in different populations, we selected three candidate SNPs that satisfy the following113

properties: (i) In EUR population, they are in high LD (i.e., with absolute correlation > 0.9)114

with at least three non-causal SNPs. (ii) In EAS population, they are weakly correlated with115

non-causal SNPs (i.e., have an absolute correlation > 0.6 with less than two non-causal SNPs).116

The heat maps in Figure 2 B show the absolute correlation between the three candidate causal117

SNPs and their neighboring SNPs. We investigated Ktrue causal SNPs, where Ktrue ∈ {1, 2, 3},118

we randomly sampled Ktrue from the three candidate SNPs as the causal ones. To mimic the119
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unbalanced composition of GWAS samples in global populations, we considered n2 = 20, 000120

samples from the EUR population and explored different sample sizes n1 from the EAS121

population: 5,000, 10,000, 15,000, and 20,000. For reference LD matrices, we used the EUR122

LD matrix estimated with 337,491 British UKBB samples provided in a recent study [30] and123

estimated the EAS LD matrix with 35,989 EAS samples from the Chinese cohort [28]. We124

designed our simulations in two scenarios. First, we illustrated the benefit of cross-population125

fine-mapping by generating GWAS data without confounding bias. In the second scenario,126

we examined the effectiveness of XMAP in correcting confounding bias by simulating GWAS127

summary data with unadjusted sample structure.128

We first consider the scenario in the absence of confounding bias. Specifically, we generated129

the polygenic effects with [ϕ1j, ϕ2j] ∼ N (0,

[
0.005 0.004

0.004 0.005

]
/500) for j = 1, ..., 500di, where130

0.005 is the total heritability contributed by polygenic effects of the 500 SNPs in the locus,131

with a per-SNP heritability 0.005/500 = 10−5 and a genetic correlation 0.004√
0.005×0.005

= 0.8132

between two populations. Then, we simulated the causal effects in the two populations with133

β1k ∼ N (0, 0.25
500

) and β2k ∼ N (0, 0.25
500

) for k = 1, ..., Ktrue. This specification means that134

each causal SNP has a 0.25/0.005 = 50 fold per-SNP heritability enrichment compared to135

non-causal SNPs, and the effect sizes of SNP k are not necessarily the same across the two136

populations. The Ktrue causal SNPs jointly contribute 0.25/500 ×Ktrue = 5 × 10−4 ×Ktrue137

heritability. We obtained the standardized genotype matrices X1 = [x11, ...,x1p] ∈ Rn1×p
138

and X2 = [x21, ...,x2p] ∈ Rn2×p, whose columns have zero mean and unit variance. Given139

the genotypes and effect sizes, we generated quantitative phenotypes in the two populations140

with y1 =
∑p

j=1 x1jϕ1j +
∑Ktrue

k=1 x1[k]β1k + e2 and y2 =
∑p

j=1 x2jϕ2j +
∑Ktrue

k=1 x2[k]β2k + e2,141

where x1[k] and x2[k] are the columns of X1 and X2 corresponding to the k-th causal SNP, and142

e1 ∼ N (0, (1− 0.005− 5× 10−4 ×Ktrue)In1) and e2 ∼ N (0, (1− 0.005− 5× 10−4 ×Ktrue)In2)143

are independent noise in the two populations, respectively. Finally, we computed the GWAS144

summary statistics by marginally regressing the simulated phenotypes on each SNP for each145

population (Figure 2 A). The details of data pre-processing and parameter settings of XMAP146

and compared methods are given in the Supplementary Note.147

Using a posterior inclusion probability (PIP) threshold of 0.9, we first evaluated the148

statistical power of compared methods. Figure 2 F shows the comparison of statistical power149

when Ktrue = 3 and n1 = n2 = 20, 000. Clearly, XMAP was the overall winner with the highest150
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statistical power averaged across 50 replicates. In practice, we are usually more interested in151

the performance of fine-mapping when the false positive rate is small. Here, we evaluated the152

sensitivity and specificity under various PIP thresholds and generated the receiver operating153

characteristic (ROC) curve. As shown in Figure 2 G, DAP-G, SuSiE and FINEMAP only154

have a partial area under ROC curve (pAUC) around 0.1 when they were applied to EUR155

GWAS with the false positive rate (FPR)< 0.3. They achieved a higher pAUC when applied156

to the EAS GWAS because the causal variants were less correlated with non-causal variants in157

the EAS samples. For cross-population methods, we examined the performance of PAINTOR158

and MsCAVIAR. Because MsCAVIAR was too time-consuming to include more than two159

causal variants, we only applied MsCAVIAR to the setting with Ktrue ∈ {1, 2}. The results160

in Figure 2 F-G and Supplementary Figures 1-3 indicate that XMAP is more powerful than161

PAINTOR and MsCAVIAR in the existence of polygenic effects. In our additional simulation162

without polygenic effects (Supplementary Figures 8-13), XMAP could still achieve comparable163

performance with PAINTOR and MsCAVIAR because we allow the polygenic effects to be164

adaptively estimated from the data. To further investigate the difference in fine-mapping165

performance, we contrasted the PIP obtained by XMAP with those obtained by other methods166

(Figure 2D and Supplementary Figures 4-6). Clearly, XMAP produced substantially higher PIP167

for causal variants, as compared to SuSiE and PAINTOR, suggesting that XMAP could better168

distinguish causal SNPs from non-causal SNPs. This explains our observation that XMAP169

often yields higher pAUC and statistical power. We also assessed resolution of fine-mapping170

by evaluating the size of credible sets. The smaller credible sets, the higher resolution of171

fine-mapping. Here we consider XMAP, FINEMAP and SuSiE because they are the only172

methods that can provide credible sets for individual causal signals. As summarized in Figure173

2 H, XMAP and SuSiE were the only two methods that could produce level-95% credible sets174

with a median size of two when they were applied to EAS GWAS. We used K = 5 for XMAP175

in the main results and investigated K = 10 in the Supplementary Figure 1-3. Under both176

settings, XMAP had consistent performance and steadily outperformed compared methods,177

suggesting its robustness to the specification of K. More comparisons under different settings178

of n1, n2 and Ktrue are provided in the Supplementary Figures 1-3.179

To investigate the computational efficiency, we evaluated the CPU time of compared180

methods under different setting of K and p. As shown in Figure 2 D, the computational cost181
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of MsCAVIAR and PAINTOR increases exponentially with both K and p. When analyzing a182

locus with p = 100 SNPs, MsCAVIAR could only include K ≤ 4 causal signals and PAINTOR183

could only include K ≤ 5 causal signals. It took more than one week for them to finish the184

analysis when more signals were included. By contrast, the computational cost of XMAP is185

linear to K, which makes it highly efficient when applied to locus with multiple causal SNPs.186

To identify multiple causal signals, the computational efficiency of XMAP allows us to set K187

to a large value (e.g., K = 10) when Ktrue is unknown. While DAP-G and FINEMAP had188

CPU times comparable to XMAP, they could not leverage cross-population GWASs to improve189

fine-mapping. This benchmark was evaluated using a Linux computing platform with 20 CPU190

cores of Intel (R) Xeon (R) Gold 6152 CPU at 2.10 GHz processor.191
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Figure 2: Comparisons of fine-mapping approaches in GWAS without confounding bias. (A)

Manhattan plots of a simulated GWAS data in EAS (left) and EUR (right). (B) Heat maps

showing the absolute correlations between the three causal SNPs (highlighted with rectangles)

and their nearby SNPs in EAS and EUR populations. (C) CPU timings of XMAP, MsCAVIAR,

PAINTOR, FINEMAP, and DAP-G are shown for increasing K with p = 100. Solid lines are

CPU time recorded in our experiments and dashed lines represent predicted CPU time based

on the time complexity of corresponding approaches. (D) Comparisons of PIP between XMAP

and SuSiE, and between XMAP and PAINTOR. Red points represent true causal SNPs, and

gray points represent SNPs with no effect. (E) CPU timings are shown for increasing p with

K = 2. (F-H) Comparisons of statistical power (F), partial AUC with false positive rate< 0.3

(G), and level-95% credible set size (H) with n1 = n2 = 20, 000 and Ktrue = 3. Results are

summarized from 50 replications.
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In the second set of simulations, we focus on fine-mapping of GWAS data in the presence192

of uncorrected confounding bias. We introduced sample structures to GWAS data by using the193

genotype principal components following a previous work [31]. Specifically, we first performed194

PCA on the genotypes of EAS and EUR samples separately and extracted the first principal195

components from the two populations as representations of sample structures, denoted as196

PC1 ∈ Rn1 and PC2 ∈ Rn2 , respectively. We re-scaled PC1 to have mean zero and variance197

0.05 and re-scaled PC2 to have mean zero and variance 0.2. These variance values were selected198

to introduce proper level of inflation in the summary statistics. Next, we generated quantitative199

phenotypes with y1 = PC1 +
∑Ktrue

k=1 x1[k]β1k + e1 and y2 = PC2 +
∑Ktrue

k=1 x2[k]β2k + e2, where200

the generating distributions of β1k and β2k are the same as those in the first scenario and201

the independent errors were generated with e1 ∼ N (0, (1− 5× 10−4 ×Ktrue − 0.05)In1) and202

e2 ∼ N (0, (1 − 5 × 10−4 ×Ktrue − 0.2)In2). Finally, we simulated GWAS summary data by203

regressing phenotype vectors on each SNP without including the PCs as covariates. Figure204

3 B shows the inflation constants in the simulated GWASs of the two populations evaluated205

btuy estimated LDSC intercepts ĉ1 and ĉ2. The inflation constants were substantially larger206

than one, indicating strong confounding bias. The confounding bias became stronger when207

the sample size increased, suggesting an exacerbated inflation in GWAS summary statistics.208

By accounting for the confounding bias, XMAP achieved the best overall performance across209

different PIP thresholds among compared methods. For example, when Ktrue = 2, n1 = 5, 000210

and n2 = 20, 000, XMAP produced the highest AUC (0.784), as shown in Figure 3 C. When211

we focus on the the ROC curve with FPR< 0.3 (Figure 3 A), XMAP also achieved the highest212

pAUC. These results suggest that XMAP can improve statistical power while controlling the213

false positive rate. The pAUC evaluated under other simulation settings are summarized in the214

Supplementary Figure 7. Here we showed an concrete example with a single causal signal in215

Figure 3 D as an illustration. With uncorrected confounding bias, the GWAS p-values were216

inflated in the left regions of the locus (top panels of Figure 3 D). Without accounting for the217

confounding bias, SuSiE produced a false positive signal (SNPs in blue circles in the middle218

right panel of Figure 3 D) and assigned a high PIP≈ 0.6 for a null SNP. By adjusting the219

estimation error of GWAS effects based on inflation constants ĉ1 and ĉ2, XMAP effectively220

reduced the PIP of SNPs related to the false positive signal and correctly excluded the false221

positive signal from level-95% credible sets (left region in the bottom right panel of Figure 3222
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D). When we forced XMAP to ignore the inflation by setting ĉ1 = ĉ2 = 1, the false positive223

signal appeared in the output (bottom left panel of Figure 3 D), indicating the confounding224

bias was not properly adjusted. This observation implies the effectiveness of using the inflation225

constants to correct confounding bias in GWAS.226

A DC

B

Figure 3: Comparisons of fine-mapping approaches in the presence of confounding bias. (A)

Comparison of pAUC (FPR< 0.3) of fine-mapping among XMAP, PAINTOR, MsCAVIAR,

SuSiE, FINEMAP, and DAP-G with Ktrue = 2 and sample size n1 ∈ {5, 000, 10, 000} in EAS.

(B) Estimated LDSC intercepts ĉ1 (EAS) and ĉ2 (EUR) with sample size n2 = 20, 000 in EUR

and n1 ∈ {5, 000, 10, 000, 15, 000, 20, 000} in EAS. (C) ROC curves of XMAP, PAINTOR,

MsCAVIAR, SuSiE, FINEMAP, and DAP-G with Ktrue = 1, n1 = 5, 000, n2 = 20, 000. (D)

An illustrative example generated by simulation. The first row shows the − log10(p)-value

in the GWAS of EAS(left) and EUR (right). The second row shows the PIP obtained by

applying SuSiE to the training data of EAS (left) and EUR (right). The third row shows the

PIP obtained from XMAP by setting ĉ1 = ĉ2 = 1 (left) and estimating c1 and c2 from the

data (right). Red dots represent causal SNPs. Circles in the same color represent SNPs in the

level-95% credible sets of a causal signal. Results are summarized from 50 replications.

Real data analysis227

We performed fine-mapping to identify putative causal SNPs of complex traits with cross-228

population GWASs. First, by applying XMAP to LDL GWASs, where the magnitude of229

confounding bias was ignorable, we illustrated XMAP’s superior performance in improving230

fine-mapping power and resolution. Second, to investigate the ability of XMAP in correcting231

confounding bias, we applied XMAP to combine height GWASs from an EAS cohort [28] and232

the British cohort in UKBB, which was known to be affected by population structure [11, 12].233

Through replication analysis, we compared the credibility of XMAP fine-mapped SNPs with234

related methods. Third, with the confounding bias properly corrected, we showed that XMAP235

enables the identification of multiple causal signals within a locus. Lastly but importantly,236

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2023. ; https://doi.org/10.1101/2023.03.30.534832doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.30.534832
http://creativecommons.org/licenses/by-nc-nd/4.0/


we integrated the fine-mapping output of XMAP in blood traits with single-cell data. With237

the improved fine-mapping results, we can have a better interpretation of risk variants in238

their relevant cellular context, gaining biological insights of causal mechanisms at single-cell239

resolution.240

XMAP improves fine-mapping by leveraging genetic diversity241

We first applied XMAP to analyze LDL by combining GWASs form EUR, EAS, and AFR.242

As discovery cohorts, we used the GWASs of AFR and EAS released by the Global Lipids243

Genetics Consotium (GLGC), which were obtained based on 92,934 AFR samples and 71,150244

EAS samples, respectively. For EUR, we considered two GWAS datasets: the UKBB GWAS245

summary data released by the Neale Lab with a sample size of 343,621, and the EUR GWAS246

data from GLGC with a sample size of 664,450. These GWAS summary statistics included247

11,569,928-35,328,891 genotyped and imputed autosomal SNPs, minimizing the risk of omitting248

causal variants. Details of GWAS summary statistics are summarized in Supplementary Table249

1. For EAS and EUR, we used the same reference LD matrices as in our simulation studies.250

For AFR, we estimated the LD matrices by using 3,072 African individuals from UKBB as251

reference samples. We followed a previous work [30] to partition all autosomal chromosomes252

into 2,763 consecutive loci, each with a width of 1 million base pairs (Mbp). To fully account253

for LD when analyzing each 1 Mbp locus, we included all SNPs in an extended region that254

also covers 1 Mbp before the starting position and 1 Mbp beyond the ending position of the255

locus, leading to a 3 Mbp extended region. We excluded the MHC region (25.5Mbp-33.5Mbp256

in chromosome 6) and two other long-range LD regions (8Mbp-12Mbp in chromosome 8 and257

46Mbp-57Mbp in chromosome 11) because many spurious results were reported in these regions258

[30]. We applied XMAP to all regions that have more than 100 SNPs after overlapping the259

reference LD matrices with GWAS data. Because SuSiE often achieved the best performance260

among single-population methods in our simulation studies, we applied SuSiE to the GWAS of261

each population separately, serving as a baseline for comparison. We set K = 10 in XMAP262

and SuSiE for all loci.263

We first quantified the confounding bias in these GWAS data using the estimates of LDSC264

intercepts. As shown in Supplementary Table 1, the LDSC intercepts estimated from all265

LDL GWASs were not substantially different from one, suggesting ignorable confounding bias266

here. We then summarized the fine-mapped SNPs in Figure 4 A. By combining GWAS data267
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Figure 4: Application of XMAP and SuSiE to LDL. (A) Number of causal signals identified

by XMAP and SuSiE with PIP thresholds 0.8, 0.9, 0.95, and 0.99. Colors represent different

combination of GWAS training data. (B) LD score distribution of causal SNPs identified by

XMAP. (C-F) Fine-mapping of locus 21.4Mbp-22.4Mbp in chromosome 8. The fine-mapping

methods and training data are labelled on top of each panel. Top panels show the PIP. SNPs

within 99% credible set are highlighted with red circles. Middle panels show the− log10(p−value)

in GWAS. Red dashed lines represent 5× 10−8. Blue dashed lines represent 1× 10−6. Bottom

panels annotate the position of genes in the locus. (G) Absolute correlation in EUR and AFR

among the SNPs within level-99% credible set as shown in the red circles of (C). The SNP

rs900776 is highlighted in the heat map.

from different populations, XMAP consistently identified more causal signals than SuSiE with268

different PIP thresholds. Specifically, XMAP identified 149 SNPs with PIP> 0.8 and 145269

SNPs with PIP> 0.9 when the GWASs from all three populations were jointly analyzed, which270

was three times more than the number of SNPs identified by SuSiE in EUR (50 SNPs with271

PIP> 0.8 and 45 SNPs with PIP> 0.9). The complete fine-mapping results are available at272

https://github.com/YangLabHKUST/XMAP/results.273

The improved statistical power of XMAP could be atttributed to its capacity of leveraging274
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genetic diversity. To see this, we checked the LD score which is a summation of squared275

correlation between a SNP and other SNPs in a population. A large LD score of a SNP means276

that this SNP has strong LD with many other SNPs. We observed that the XMAP fine-mapped277

SNPs have smallest LD scores in AFR (Figure 4 C), suggesting the power gain of XMAP278

could be attributed to the weak LD between causal SNPs and non-causal SNPs in AFR. As an279

example, rs900776 is an intronic variant in the DMTN region, which is highly correlated with280

surrounding SNPs in EUR. Because of this, SuSiE estimated the PIP of rs900776 as small as281

0.002 using UKBB GWAS and produced very large 99% credible set that included 16 other282

SNPs for this signal. When applying SuSiE to the larger EUR GWAS data from GLGC, the283

PIP of SNP rs900776 increased from 0.002 to 0.6 (Figure 4 D). Different from the LD pattern284

in European population, rs900776 is less correlated with nearby SNPs in African population285

(Figure 4 G). Therefore, when SuSiE was applied to AFR GWAS, the estimated PIP of rs900776286

increased to 0.9 (Figure 4 E). Unlike SuSiE that analyzes a single population at a time, XMAP287

enables joint analysis of EUR and AFR GWASs. XMAP successfully identified SNP rs900776288

with a PIP as high as 0.99, yielding a high resolution credible set which contains rs900776289

only (Figure 4 F). This indicates the improved power and resolution of XMAP by leveraging290

genetic diversity. We verified our findings with the expression quantitative trait loci (eQTLs)291

of liver obtained from the Genotype-Tissue Expression (GTEx) project [32]. As demonstrated292

in Supplementary Figure 14 , the SNPs identified by XMAP produced a substantially higher293

enrichment of LDL in the liver eQTLs, as compared to SNPs identified by SuSiE using single294

population GWASs.295

XMAP enables the correction of confounding bias in fine-mapping296

To demonstrate the effectiveness of XMAP in correction of confounding bias, we applied297

XMAP to the height GWASs which were well known to be affected by population structure298

[11, 12]. Following the previous cross-population fine-mapping pipeline [33], we first applied299

fine-mapping methods to discovery GWAS datasets, and then evaluated the credibility of300

fine-mapped SNPs in replication datasets from different population backgrounds. Here, we301

used the EUR GWAS from UKBB and a Chinese GWAS in our previous study [28] as discovery302

cohorts. For replication, we considered a recently released within-sibship GWAS from European303

population, which was known to be less confounded by population structure. We also included304

the GWAS from BBJ cohort as a replication data from EAS background. To ensure the SNP305
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density, these GWASs were imputed to cover 3,776,576-12,515,778 variants (see Supplementary306

Table 1). The LDSC intercepts of UKBB GWAS and BBJ GWAS were estimated as 1.66307

(s.e.=0.042) and 1.39 (s.e.=0.024), respectively, indicating the presence of strong confounding308

bias. The LDSC intercepts of EUR Sibship GWAS and Chinese GWAS were estimated as 1.07309

(s.e.=0.0089) and 1.12 (s.e.=0.012), suggesting that the confounding bias is nearly ignorable.310

To investigate the ability of XMAP in accounting for confounding bias, we used UKBB and311

Chinese GWASs as inputs of XMAP and used SuSiE to analyze these GWAS data separately312

as benchmarks.313

We summarized the replication rates of fine-mapped SNPs in Figure 5. Among the314

overlapped SNPs between the EUR Sibship GWAS and discovery cohorts, SuSiE detected315

306 SNPs with PIP> 0.8 from UKBB GWAS. However, only 14.1% (43/306, Figure 5 A)316

were found to be genome-wide significant and only 13.4% of them (41/306, Figure 5 B) had317

PIP> 0.1 in the EUR Sibship replication cohort. The low replication rate suggests that these318

SNPs could be false positive signals due to unadjusted confounding bias. By accounting for the319

confounding bias, XMAP successfully reduced the number of false positive signals. For example,320

using PIP> 0.8 as a threshold, 21.4% (44/206) SNPs detected by XMAP were genome-wide321

significant and 21.4% (44/206) had PIP> 0.1 in BBJ replication cohort. A similar pattern can322

be observed in the BBJ replication cohort. With a PIP threshold of 0.8, only 23.9% (54/226,323

Figure 5 C) SNPs detected from UKBB GWAS by SuSiE were genome-wide significant and324

8.8% (19/226, Figure 5 D) had PIP> 0.1 in BBJ GWAS. As a comparison, 42.3% (71/168)325

SNPs detected by XMAP were genome-wide significant and 14.9% (25/168) had PIP> 0.1326

in BBJ replication cohort. The higher replication rate of XMAP implies its effectiveness of327

fine-mapping by accounting for confounding bias.328

Although PAINTOR and MsCAVIAR can also integrate cross-population GWASs, they are329

too time-consuming to analyze all loci on the genome. Here, we consider a concrete example330

to compare the performance of cross-population methods in the presence of confounding bias331

(Figure 5). For XMAP, we considered two settings: (i) the standard XMAP that used the332

estimated inflation constants (c1 and c2) to correct the confounding bias; (ii) a special case of333

XMAP forced not to correct the confounding bias by setting c1 = c2 = 1, denoted as ‘XMAP334

(C=I)’. In this example, the SNP rs2053005 locating at the locus 66.55 Mbp-66.85Mbp in335

chromosome 15 was significantly associated (p-value< 10−6) in UKBB GWAS (Figure 5 E),336
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Figure 5: Replication analysis of XMAP and related methods on height GWASs. (A-D)

Overview of replication analyses of high-PIP fine-mapped SNPs across populations: bar charts

showing the fraction and number of fine-mapped SNPs with p-value< 5×10−8 in the replication

cohorts of EUR Sibship GWAS (A) and BBJ (C) cohorts and bar charts showing the distribution

of PIP for fine-mapped SNPs computed by SuSiE in the replication cohorts of EUR Sibship

GWAS (B) and BBJ (D). (E-I) Fine-mapping of locus 66.55 Mbp-66.85Mbp in chromosome

15. The SNP rs2053005 is significant (p-value< 1× 10−6) in UKBB (E), but not significant

in Chinese GWAS and EUR Sibship GWAS (F and G). When UKBB and Chinese cohorts

were combined for cross-population fine-mapping (H), the PIP of rs2053005 was computed

to be > 0.8 by PAINTOR, MsCAVIAR and XMAP when we set c1 = c2 = 1 (XMAP C=I).

XMAP estimated the inflation constants of UKBB and BBJ as 1.66 and 1.39, suggesting they

are influenced by confounding bias. After correcting for confounding bias, this signal was

excluded in XMAP with a PIP< 0.05, which suggests that the high PIP of the SNP could have

been induced by uncorrected population stratification. To test our assumption, we combined

Chinese and EUR Sibship GWASs, which are both less influenced by confounding factors (both

with inflation constant estimated as 1.07). As expected, all methods consistently produced a

low PIP for rs2053005 (I), which confirmed our assumption and suggested XMAP can reduce

spurious signals.
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but not significant in both Chinese GWAS and EUR Sibship GWAS (Figure 5 F and G).337

When UKBB and Chinese cohorts were combined for cross-population fine-mapping, the PIP338

of rs2053005 was computed to be > 0.8 by PAINTOR, MsCAVIAR and XMAP (C=I) without339

accounting for confounding bias. After correcting for confounding bias, the PIP of this signal340

dramatically decreased in XMAP with a PIP< 0.05, which suggests that the high PIP of the341

SNP could have been caused by population stratification (Figure 5 H). To test our assumption,342

we applied cross-population methods to combine Chinese and EUR Sibship GWASs, both343

of which are known to be less influenced by population structure. As expected, all methods344

consistently yielded a low PIP for rs2053005 (Figure 5 I). This observation confirmed our345

assumption that rs2053005 could be a false positive and XMAP was able to exclude this signal346

by correcting the confounding bias.347

XMAP enables identification of multiple putative causal signals in fine-mapping348

With the confounding bias properly corrected, XMAP’s efficient algorithm allows us to349

produce reliable PIP for identifying multiple putative causal variants in thousands of loci350

across the whole genome. As summarized in Figure 6 A, with a PIP threshold of 0.5, XMAP351

identified 55 loci harboring more than one putative causal SNPs of height by combing UKBB352

and Chinese GWASs, among which 6 loci harbor more than 3 causal SNPs and 2 loci harbor 5353

causal variants. With a stringent threshold PIP= 0.9, XMAP identified 15 loci with 2 causal354

SNPs and 9 loci with 3 causal SNPs. To examine the reliability of putative causal SNPs in loci355

harboring multiple causal signals, we evaluated the replication rates of these SNPs using the356

Sibship GWAS. Figure 6 B and C compare the replication rates of XMAP and SuSiE using their357

putative causal SNPs with a PIP threshold of 0.9. For loci with more than one putative causal358

SNPs, XMAP had the best replication rate (i.e., 24/55=43.6% SNPs had p-values< 10−6 and359

14/55=25.5% SNPs had PIP > 0.1). Although SuSiE can also identify multiple causal signals360

(Supplementary Figure 17), it had lower replication rates than XMAP because it cannot correct361

for confounding bias. For loci with more than two putative causal SNPs, XMAP had similar362

replication rate with SuSiE applied to EUR GWAS. Although PAINTOR and MsCAVIAR363

can also integrate cross-population GWASs, they are too time-consuming to analyze all loci364

on the genome when the number of causal signals are set to be larger than 2. We could only365

run PAINTOR by setting the number of causal signals to 1 and 2. However, PAINTOR often366

produced unrealistic PIP for loci containing thousands of variants (Supplementary Figures367
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17 and 18). Here, we compared the PIP of SNPs computed by XMAP with PAINTOR and368

MsCAVIAR using the locus 130.2 Mbp-130.5Mbp in chromosome 6 as an example. We first369

combined the GWASs of UKBB (Figure 6 B) and Chinese (Figure 6 C). Clearly, all compared370

methods suggest that both rs1415701 and rs6569648 had high probability to be causal (Figure371

6 E). To test the robustness of compared methods, we replaced the UKBB GWAS with EUR372

Sibship GWAS (Figure 6 D) which has smaller sample size but is less influenced by confounding373

bias, and computed the PIP again (Figure 6 F). Because of the reduced sample size, the PIP374

of rs6569648 computed by MsCAVIAR reduced to 0.78; the PIP computed by PAINTOR375

substantially differed from its previous output. By contrast, XMAP was the only method that376

consistently produced high PIP for rs1415701 and rs6569648 (PIP> 0.8).377

In the main analysis, we set K = 10 to allow the detection of multiple causal variants. The378

setting K = 10 was supported by the analysis of height as summarized in Figure 6, where379

most loci had < 5 causal variants in height. To investigate the sensitivity of fine-mapping380

performance to the parameter K, we further considered K = 15 for XMAP and SuSiE. As381

shown in Supplementary Figure 15, the number of putative causal SNPs identified by XMAP382

are highly consistent under different settings of K. Besides, the fine-mapped SNPs could be383

replicated in a consistent rate under different settings of K (Figure 5 A-C and Supplementary384

Figure 16). These evidence consolidate our conclusion of the XMAP’s robustness to the setting385

of K.386

The XMAP output improves the interpretation of risk variants in their relevant387

cellular context at single-cell resolution388

Integration of fine-mapping results with single-cell datasets is expected to offer a better389

interpretation of putative causal variants in their relevant cellular context at single-cell resolution390

[6]. However, fine-mapping of an under-presented population often lacks statistical power due391

to the limited sample size, making the interpretation of causal risk variants difficult. In392

this section, we show that cross-population fine-mapping results given by XMAP can greatly393

improve the interpretation of putative causal variants in their relevant cellular context by394

integrating single-cell datasets. To illustrate this benefit, we carried out SCAVENGE [6]395

analysis to quantify the enrichment of putative causal variants for 12 blood traits (summarized396

in Supplementary Table 1) within regions of accessible chromatin using the single-cell assay397

for transpose-accessible chromatin by sequencing (scATAC-seq). We employed a scATAC-seq398
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Figure 6: Performance of XMAP in identifying multiple causal variants for height. (A)

Distributions of the number of putative causal SNPs identified by XMAP under different

PIP thresholds. (B) With a PIP threshold of 0.9, the p-value distributions in the Sibship

GWAS replication cohort are shown for putative causal SNPs within loci harboring > 1 and

> 2 putative causal SNPs. (C) With a PIP threshold of 0.9, the PIP distributions in the

Sibship GWAS replication cohort are shown for putative causal SNPs within loci harboring

> 1 and > 2 putative causal SNPs. (D-G) A demonstrative example using the locus 130.2

Mbp-130.5Mbp in chromosome 6. Manhattan plots of the locus are shown for UKBB GWAS

in (D), Chinese GWAS in (C), and EUR Sibship GWAS in (F). The PIP of SNPs in target

locus are computed by XMAP, PAINTOR and MsCAVIAR with GWASs of UKBB+Chinese

(H) and Sibship+Chinese (G).

dataset that encompasses multiple hematopoietic lineages [34], which includes 33,819 cells399

from 18 hematological populations (Figure 7 A). Specifically, we have a matrix of fragment400
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counts F ∈ RC×L, where C is the number of cells in scATAC-seq data and L is the number of401

accessible chromatin peaks. To quantify the relevance between the peaks and a phenotype, we402

first used the XMAP output to compute a vector of weight η ∈ RL with the l-th element of η403

being the sum of XMAP PIP for SNPs within the genomic region of peak l, which indicates the404

relative importance of a peak to the phenotype. The raw cell-trait relevance scores could be405

computed as t = Fη. As such, trait-related cells tend to have larger scores because more causal406

SNPs are located within their accessible chromatin regions. Then a Z-score characterizing407

the relationship between each pair of cell and trait can be obtained by further correcting for408

technical confounders, such as GC content bias and PCR amplification, using g-chromVAR [5].409

To optimize the inference by leveraging relatedness across individual cells, we constructed a410

cell-cell similarity network and applied SCAVENGE [6] to assign a trait-relevance score (TRS)411

for each cell via network propagation. Finally, we simulated null distributions of TRS by using412

random seed cells for propagation and computed a p-value of trait-enrichment for each cell.413

The cells with p-value< 0.05 were considered as significantly enriched for the trait.414

We summarized the identified trait-enriched cells and the median TRS of each cell type in415

Figure 7 B and Supplementary Figure 19, respectively. As we can observe, the enriched cells416

were highly aligned with our knowledge of cell types related to the blood traits. For example,417

we identified 8,388 lymphocyte count (Lym)-related cells, among which 5,021 cells were CD4418

cells and 2,272 were CD8 cells. For traits related to myeloid/compound white cells, including419

eosinophil count (Eosino), monocyte count (Mono), neutrophil count (Neutro) and white420

blood cell count (WBC), we observed a substantial number of enriched cells from the CD14+421

monocytes. For traits related to red cells such as red blood cell count (RBC), mean corpuscular422

hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular423

volume (MCV), and hemoglobin (HB), a large amount of enriched cells were erythroid cells.424

These observations indicate that the biological mechanisms of putative causal SNPs identified by425

XMAP can be interpreted at single-cell resolution. Due to the unbalanced cell type composition426

in the single cell dataset, cells from rare populations can be under-represented. To rule out the427

influence of cell type composition on our analysis, we further investigated the proportion of428

trait-relevant cells within each cell type. We observed that biologically related cell types had429

largest proportion of enriched cells. For example, MCV was significantly enriched in 99.3% of430

late stage erythroid cells (Figure 7 E-F), WBC was significantly enriched in more than 60%431
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of CD14+ monocytes (Figure 7 I-J), Lym was significantly enriched in a large proportion of432

CD4 and CD8 cells (Figure 7 C-D), and Plt was significantly enriched in the erythroid cells433

(Figure 7 G-H). These results suggest that the identification of trait-relevant cells is immune434

to the cell type composition. As shown in Supplementary Figures 20-31, we compared the435

trait-relevant cells obtained by using the XMAP PIP as input with those using the SuSiE436

PIP from single population analysis as input. Due to the relatively smaller sample size in the437

BBJ cohort, the trait-relevant cells were less enriched when fine-mapping was performed only438

using the BBJ GWASs, including GWASs of lymphocyte count (Supplementary Figure 20C-D),439

eosinophil count (Supplementary Figure 25C-D), and basophil count (Supplementary Figure440

24C-D). Compared with the single-population fine-mapping result by SuSiE, XMAP can take441

the advantage of well-powered UKBB GWASs and provide a more accurate fine-mapping result442

(Supplementary Figures 20A-B, 25A-B, 24A-B). By integrating with single-cell datasets, the443

fine-mapping results given by XMAP can offer a better understanding of the putative causal444

variants in their cellular context at single-cell resolution.445

Discussion446

In this paper, we have introduced a novel method named XMAP for cross-population fine-447

mapping. XMAP is able to improve the statistical power of fine-mapping by leveraging448

heterogeneous LD patterns across multiple populations. By correcting the hidden confounding449

bias in GWAS summary statistics, XMAP can effectively reduce spurious causal signals induced450

by sample structure. XMAP’s fast algorithm allows us to efficiently analyze loci that harbour451

multiple causal SNPs. Through comprehensive simulations, we showed that XMAP has greater452

statistical power, better control of false positive rate, and substantially higher computational453

efficiency for identifying multiple causal signals. We applied XMAP to fine-map causal SNPs of454

LDL by combining GWASs from EAS, EUR and AFR, achieving substantial gains in statistical455

power. Furthermore, we showed that XMAP was able to exclude spurious signals and produced456

reproducible results. By combining the output of XMAP for blood traits with scATAC-seq457

profiles of hematopoietic cells, we illustrated that the output of XMAP was particularly helpful458

to characterize the causal mechanism behind phenotypic variation at single-cell resolution. We459

believe that XMAP can serve as a powerful analytic tool of fine-mapping.460

Considering the polygenic nature of complex traits, XMAP assumes that the genetic effects461
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Figure 7: Enrichment of blood cell traits in hematological populations using XMAP fine-mapped

SNPs as input. (A) The two dimensional uniform manifold approximation and projection

(UMAP) plot of scATAC-seq data for 18 hematological populations. (B) The bar plots showing

the number of cells significantly enriched in each of the 12 blood traits. The TRS are shown in

the UMAP coordinates for four representative traits: Lym (C), MCV (E), Plt (G), and WBC

(I). The proportions of significantly enriched cells within each population are shown for Lym

(D), MCV (F), Plt (H), and WBC (J).

can be decomposed into two parts: the major causal effects and polygenic effects. For the462

causal effects, we assume that the total effects can be decomposed as a sum-of-single-effects463

[23, 24], which enables a highly efficient algorithm. While this assumption was also adopted in464

previous works [23, 24], they could not leverage genetic diversity to improve statistical power in465

the cross-population setting. For the polygenic effects, it benefits fine-mapping in two aspects.466

First, it captures the small genetic effects, allowing us to focus on the causal SNPs with major467

genetic impact that can be more biologically interesting for downstream analysis. Second,468

the statistical inference of causal effects are protected against over-fitting when K is specified469

larger than the ground truth. Therefore, we can safely set K to be a larger number, when470

the ground truth is unknown (Supplementary Figure 3). The parameters of the polygenic471

component are pre-estimated using LDSC, ensuring the model identifiability (see Methods).472

Because SNPs from the entire genome are used for estimation, the parameter estimates of the473
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polygenic component are accurate and stable.474

Identifying the tissue and cellular context of causal variants is a critical step to understand475

their biological mechanisms. Existing methods are usually limited to investigation at tissue476

[35, 36, 37, 38, 39, 40, 41, 42] or cell type levels [43, 44, 45, 46, 47], which do not fully utilize477

the rich resources of single-cell profiles. An important feature of XMAP is that it produces478

outputs that can be integrated with single-cell profiles to illuminate the cellular context of479

putative causal SNPs at single-cell resolution, offering a unique opportunity to characterize the480

biological mechanisms across a whole spectrum of cell functions.481

Although it is convenient to work with GWAS summary statistics, fine-mapping requires482

a population-matched reference LD matrix as an input. The inconsistency of LD patterns483

between reference samples and GWAS samples can lead to false positive findings [24, 48, 49].484

In our main analysis, we have used the in-sample LD references for EAS and UKBB GWAS485

to minimize the risk of LD mismatching. In practice, if an in-sample LD reference is not486

available, some diagnostic tools such as SLALOM [49] and DENTIST [48] should be carried487

out to validate the fine-mapping results and remove suspicious signals.488

Our XMAP approach needs more investigation in the following directions. First, similar489

to PAINTOR and MsCAVAIR, XMAP assumes that the causal variants are shared across490

populations. Recent studies have reported that some causal signals could be specific to a491

certain population [50]. Hence, extending XMAP to handle the population-specific causal492

effects may yield biologically interesting discoveries. Second, causal variants are reported to493

be distributed disproportionately in the genome, depending on the functional context of the494

genomic regions [18, 25, 30, 51]. Some recent methods incorporate the information of functional495

annotation to improve fine-mapping [18, 25, 30]. It is interesting to incorporate functional496

annotations in the causal inference of XMAP, which may further boost the statistical power497

of fine-mapping. Third, gene-level effects can be more stably shared across populations, as498

compared to SNP-level effects. A recent study [52] suggests that the correlation of gene-level499

effects is 20% stronger than SNP-level effects across populations. Therefore, leveraging the500

genetic diversity at the gene-level for fine-mapping can be also an interesting direction. We501

will explore these potential extensions in the near future.502
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Methods503

The XMAP model504

We begin with the probabilistic formulation of XMAP with individual-level GWAS data.505

For easier introduction, we consider the case of two populations for easier introduction but note506

XMAP that is generally applicable to analyze multiple populations. Let {y1,X1} and {y2,X2}507

be the GWAS datasets collected from two different populations, where y1 ∈ Rn1 and y2 ∈ Rn2
508

are phenotype vectors, X1 ∈ Rn1×p and X2 ∈ Rn2×p are genotype matrices, p is the number of509

SNPs in the locus of interest, and n1 and n2 are the GWAS sample sizes of populations 1 and510

2, respectively. With different recombination rates, the two populations tend to have different511

LD patterns, i.e., the correlations among columns of X1 are usually distinct from those of X2.512

Without loss of generality, we assume that the columns of X1 and X2 have been standardized513

to have zero mean and unit variance. To relate genotypes and phenotypes, we consider the514

following linear models:515

y1 = X1b1 +X1ϕ1 + e1,

y2 = X2b2 +X2ϕ2 + e2,
(1)

where b1 ∈ Rp and b2 ∈ Rp are sparse vectors of causal effects with major impact on phenotypes,516

ϕ1 = [ϕ11, ϕ12, ..., ϕ1p]
T ∈ Rp and ϕ2 = [ϕ21, ϕ22, ..., ϕ2p]

T ∈ Rp are dense vectors capturing the517

polygenic effects [53], and e1 ∼ N (0, σ2
e1
In1) and e2 ∼ N (0, σ2

e2
In2) are vectors of independent518

noises from populations 1 and 2, respectively. Here, we assume that the covariates (e.g., sex, age,519

and principal components) have been adjusted. The detailed treatment of covariates follows520

our previous works [28, 54]. Unlike previous methods that only consider the overall genetic521

effects [17, 18, 19, 20, 22], we separate the genetic effects into causal and polygenic components.522

This decomposition allows us to focus on the causal SNPs with major genetic impact b1 and523

b2 that can be more biologically interesting for downstream analysis. Accumulating evidence524

of a shared genetic basis across populations [28, 25, 26, 55, 56] implies that b1 and b2 tend to525

have the same set of nonzero entries. Therefore, we expect that the different LD patterns in526

X1 and X2 can be helpful for fine-mapping shared causal SNPs across populations.527

To leverage the cross-population GWASs for fine-mapping, we propose to specify model (1)528
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by decomposing the causal genetic effects b1 and b2 into K ‘single effects’:529

y1 = X1

K∑
k=1

γkβ1k +X1ϕ1 + e1,

y2 = X2

K∑
k=1

γkβ2k +X2ϕ2 + e2,

(2)

where β1k and β2k are effect sizes of the k-th causal signal in populations one and two,530

respectively, γk = [γk1, ..., γkp]
T ∈ {0, 1}p in which only one element is 1 and the rest are 0 with531

γkj = 1 indicating the j-th variant is responsible for the k-th causal signal. This formulation of532

XMAP has three salient properties. First, through the shared causal status γk, XMAP can533

leverage the distinct LD patterns between X1 and X2. Meanwhile, we allow the two populations534

to have different effect sizes β1k and β2k. Second, the decomposition of the causal signals into535

K single causal effects not only allows us to characterize each individual causal signal with an536

associated credible set [23] but also offers a computational advantage over existing methods, as537

we shall see later. Third, the inclusion of the polygenic component also protects the statistical538

inference against over-fitting when K is specified larger than the ground truth. With this539

property, we can safely set K to be a reasonably large number, say K = 10 by default, when the540

ground truth is unknown. To infer the causal status γk, we specify the probabilistic structures541

for the genetic effects in model (2) as follows:542

γk ∼ Mult(1, [1/p, ..., 1/p]T ),[
β1k

β2k

]
∼ N (0,Σk) , for k = 1, ..., K,[

ϕ1j

ϕ2j

]
∼ N (0,Ω), for j = 1, ..., p,

(3)

where Mult(1, [1/p, ..., 1/p]T ) denotes the non-informative categorical distribution of class counts543

drawn with class probabilities given by 1/p for each SNP, N (0,Σk) and N (0,Ω) denote the544

multivariate normal distributions with mean 0 and covariance matrices Σk =

[
σ2
k1 σ2

k12

σ2
k12 σ2

k2

]
545

and Ω =

[
ω1 ω12

ω12 ω2

]
, respectively. The variance components Σ = {Σ1, ...,ΣK} capture the546

genetic covariance of the tow populations attributed to the K causal effects, and Ω captures547

the genetic covariance attributed to the polygenic effects.548

So far, we have assumed the covariates have been adjusted. In the presence of covariates,549
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we can extend XMAP model in Equation (2) as550

y1 = W1u1 +X1

K∑
k=1

γkβ1k +X1ϕ1 + e1,

y2 = W2u2 +X2

K∑
k=1

γkβ2k +X2ϕ2 + e2,

(4)

where W1 ∈ Rn1×q1 and W2 ∈ Rn2×q2 are the covariate matrices of populations 1 and 2,551

respectively, and u1 ∈ Rq1 and u2 ∈ Rq2 are corresponding vectors of covariate effects. To552

adjust the covariates, we first construct the projection matrices P1 = I−W1(W
T
1 W1)

−1WT
1553

and P2 = I−W2(W
T
2 W2)

−1WT
2 . Then we multiply P1 on both sides of the first equation and554

P2 on both sides of the second equation in model (4). Through this projection, we can obtain555

a model without covariates556

yP
1 = XP

1

K∑
k=1

γkβ1k +XP
1 ϕ1 + eP1 ,

yP
2 = XP

2

K∑
k=1

γkβ2k +XP
2 ϕ2 + eP2 ,

(5)

where yP
1 = P1y1, y

P
2 = P2y2, X

P
1 = P1X1, X

P
2 = P2X2, e

P
1 = P1e1, and eP2 = P2e2. As we557

can observe, model (5) reduces to model (2). With this equivalence, we can work with model558

(2) without loss of generality.559

The XMAP model for summary-level data560

Due to privacy concerns, the individual-level GWAS data may not be easily accessible.561

Given this situation, we consider the summary-level GWAS data {b̂1, ŝ1} = {b̂1j, ŝ1j}j=1,...,p562

and {b̂2, ŝ2} = {b̂2j, ŝ2j}j=1,...,p obtained from simple linear regressions:563

b̂1j = xT
1jy1/x

T
1jx1j, ŝ1j =

√
||y1 − x1j b̂1j||22/(n1xT

1jx1j),

b̂2j = xT
2jy2/x

T
2jx2j, ŝ2j =

√
||y2 − x2j b̂2j||22/(n2xT

2jx2j),
(6)

where x1j ∈ Rp and x2j ∈ Rp denote the j-th column of X1 and X2, respectively. To derive564

XMAP with summary-level data, we consider the rows of X1 and X2 as independently and565

identically distributed samples drawn from the two populations, respectively. Then, we define566

the LD matrices R1 = {r1jl} ∈ Rp×p and R2 = {r2jl} ∈ Rp×p, where r1jl = E[xT
1jx1l/n1] and567

r2jl = E[xT
2jx2l/n2] denote the correlation between variants j and l in populations 1 and 2,568
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respectively. We can then obtain the expectation of GWAS effect sizes conditional on b and ϕ:569

E
[
b̂1|b1,ϕ1

]
= E

[
XT

1X1(
K∑
k=1

γkβ1k + ϕ1) +XT
1 e1)/n1|b1,ϕ1

]
= R1

K∑
k=1

γkβ1k +R1ϕ1,

E
[
b̂2|b2,ϕ2

]
= E

[
XT

2X2(
K∑
k=1

γkβ2k + ϕ2) +XT
2 e2)/n2|b2,ϕ2

]
= R2

K∑
k=1

γkβ2k +R2ϕ2.

(7)

With this expression, we can connect b and ϕ with GWAS summary data with the following570

model:571

b̂1 = R1

K∑
k=1

γkβ1k +R1ϕ1 + ϵ1, Var(ϵ1) = Ŝ1R1Ŝ1

b̂2 = R2

K∑
k=1

γkβ2k +R2ϕ2 + ϵ2, Var(ϵ2) = Ŝ2R2Ŝ2

(8)

where Ŝ1 ∈ Rp×p and Ŝ2 ∈ Rp×p are diagonal matrices with diagonal terms given as {Ŝ1}jj = ŝ1j572

and {Ŝ2}jj = ŝ2j for j = 1, ..., p, respectively (see Supplementary Note). To obtain a likelihood573

function of summary level data, we impose normal distributions for b̂1 and b̂2, and Eq. (8)574

becomes the following model:575

b̂1 ∼ N (R1

K∑
k=1

γkβ1k +R1ϕ1, Ŝ1R1Ŝ1),

b̂2 ∼ N (R2

K∑
k=1

γkβ2k +R2ϕ2, Ŝ2R2Ŝ2).

(9)

Note that model (8) or model (9) is derived by assuming that all the population structures576

have been properly adjusted in the GWAS summary statistics. To account for the unadjusted577

confounding bias hidden in GWAS summary statistics, we extend Equation (1) under the578

genetic drift model of LDSC [31] (see Supplementary Note). We show that model (9) is modified579

accordingly as580

b̂1 ∼ N (R1

K∑
k=1

γkβ1k +R1ϕ1, c1Ŝ1R1Ŝ1),

b̂2 ∼ N (R2

K∑
k=1

γkβ2k +R2ϕ2, c2Ŝ2R2Ŝ2),

(10)

where c1 and c2 are LDSC intercepts that indicate the magnitude of inflation in GWAS effect581

sizes due to confounding bias. In the absence of confounding bias, the values of inflation582

constants c1 and c2 are close to one. As observed in biobank-scale GWASs [11, 12, 13, 54], the583

inflation constant is often larger than one in the presence of confounding bias. These inflation584

constants in the variance term of model (10) can re-calibrate the GWAS standard error based585
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on the magnitude of confounding effects. The SNP correlation matrices R = {R1,R2} can be586

estimated with genotypes either from subsets of GWAS samples or from population-matched587

reference panels. Under model (3) and (10), we denote the collection of unknown parameters588

θ = {Σ,Ω, c1, c2}, and the collections of latent variables ϕ = {ϕ1,ϕ2}, γ = {γk}k=1,...,K and589

β = {β1k, β2k}k=1,...,K . We shall obtain the parameter estimates θ̂ and identify causal SNPs590

with the posterior591

Pr(γ,β,ϕ|b̂, ŝ,R; θ̂) =
Pr(b̂,γ,β,ϕ|ŝ,R; θ̂)

Pr(b̂|ŝ,R; θ̂)
. (11)

Algorithm and parameter estimation592

To ensure the model identifiability, we first apply LDSC to estimate the parameters c1, c2,593

and Ω using summary statistics across the whole genome. For Ω, the diagonal terms ω1 and594

ω2 are estimated with the per-SNP heritabilities of the corresponding populations using LDSC.595

The off-diagonal term ω12 is estimated by the per-SNP co-heritability obtained via bi-variate596

LDSC. The inflation constants c1 and c2 are estimated by the intercepts of LDSC of the two597

populations. Then, with the parameters {ĉ1, ĉ2, Ω̂} pre-fixed, we can estimate Σ without model598

identifiability issue. Traditional maximum likelihood approach estimates Σ by maximizing the599

marginal likelihood600

Pr(b̂|ŝ,R; Ω̂, ĉ1, ĉ2,Σ) =
∑
γ

∫ ∫
Pr(b̂|ŝ,R,γ,β,ϕ; ĉ1, ĉ2) Pr(ϕ|Ω̂) Pr(γ) Pr(β|Σ)dβdϕ.

(12)

However, due to the combinatorial nature of γ, the computational cost for Equation (12) grows601

exponentially with the number of causal signals K. To address this difficulty, we develop an602

efficient variational expectation-maximization (VEM) algorithm to estimate Σ and approximate603

the posterior (11). To achieve this, we first derive a lower bound of the logarithm of the marginal604

likelihood (12)605

log Pr(b̂|ŝ,R; Ω̂, ĉ1, ĉ2,Σ) ≥
∑
γ

∫ ∫
q(γ,β,ϕ) log

Pr(b̂,γ,β,ϕ|ŝ; Ω̂, ĉ1, ĉ2,Σ)

q(γ,β,ϕ)
dβdϕ

=Eq[log Pr(b̂,γ,β,ϕ|ŝ,R; Ω̂, ĉ1, ĉ2,Σ)− log q(γ,β,ϕ)]

≡Lq(Σ),

(13)

where the inequality follows Jensen’s inequality and q(γ,β,ϕ) is a variational approximation606

of the posterior (11). For convenience, we denote b1k = γkβ1k and b2k = γkβ2k. By leveraging607

the decomposition in model (2), we propose a factorizable formulation of the variational608
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approximation:609

q(γ,β,ϕ) =
K∏
k=1

q(b1k,b2k)q(ϕ) =
K∏
k=1

q(γk)q(β1k, β2k|γk)q(ϕ). (14)

Unlike previous methods [57, 58] that require b1k and b2k to be fully factorizable across their p el-610

ements, the variational approximation in Equation (14) only requires that {b11,b21}, ..., {b1K ,b2K}611

are independent and they are independent of ϕ [23, 24], which allows flexible dependencies612

among the elements of b1k and b2k. With the above factorizable approximation given by613

Equation (14), it turns out that both q(γ,β,ϕ) and Lq(Σ) can be analytically evaluated. We614

summarize the VEM algorithm in the following:615

E-step At the t-th iteration, the variational distributions are given as616

q(γk|Σ(t)) = Mult(1, π̃k),

q(

[
β1k

β2k

]
|γkj = 1,Σ(t)) = N (µ̃kj, Σ̃kj),

q(

[
ϕ1

ϕ2

]
|Σ(t)) = N (ν̃, Λ̃),

(15)

where π̃ = [π̃k1, ..., π̃kp]
T ∈ [0, 1]p, Σ̃kj ∈ R2×2, µ̃kj ∈ R2, Λ̃ ∈ R2p×2p, and ν̃ ∈ R2p are617

variational parameters. The variational parameters are given as618

π̃kj = softmax(− log(p) +
1

2
log |Σ̃kj|+

1

2
µ̃T

kjΣ̃
−1
kj µ̃kj),

Σ̃kj =

[
σ̃2
kj,1 σ̃2

kj,12

σ̃2
kj,2 σ̃2

kj,2

]
=

([ r1jj
ĉ1ŝ21j

0

0
r2jj
ĉ2ŝ22j

]
+ (Σ

(t)
k )−1

)−1

,

µ̃kj =

[
µ̃kj,1

µ̃kj,2

]
= Σ̃kj

 b̂1j

ĉ1ŝ21j
b̂2j

ĉ2ŝ22j

−

 RT
1j

ĉ1ŝ21j
0

0
RT

2j

ĉ2ŝ22j

( K∑
k′ ̸=1

µ̃k′j ⊗ π̃k′ + ν̃

) ,

Λ̃ =

([
Ŝ−1
1 R1Ŝ

−1
1

ĉ1
0

0
Ŝ−1
2 R2Ŝ

−1
2

ĉ2

]
+ Ω̂−1 ⊗ Ip

)−1

,

ν̃ = Λ̃

[
Ŝ−2
1 b̂1

ĉ1
Ŝ−2
2 b̂2

ĉ2

]
−

[
Ŝ−1
1 R1Ŝ

−1
1

ĉ1
0

0
Ŝ−1
2 R2Ŝ

−1
2

ĉ2

]((
K∑
k=1

µ̃kj ⊗ π̃k

))
,

(16)

where softmax denotes the softmax function to make sure
∑p

j=1 π̃kj = 1 and ⊗ is the Kronecker619

product. By combing Equations (14,15,16), the lower bound (13) can be analytically evaluated620
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as621

Lq(Σ|Σ(t))

=

(
K∑
k

µ̃kj ⊗ π̃k + ν̃

)T [ Ŝ−2
1 b̂1

ĉ1
Ŝ−2
2 b̂2

ĉ2

]
− 1

2

(
K∑
k

µ̃kj ⊗ π̃k + ν̃

)T [ Ŝ−1
1 R1Ŝ

−1
1

ĉ1
0

0
Ŝ−1
2 R2Ŝ

−1
2

ĉ2

](
K∑
k

µ̃kj ⊗ π̃k + ν̃

)

−
p∑
j

1

2ĉ1ŝ21j
r1jj

K∑
k

π̃kj(µ̃
2
kj,1 + σ̃2

kj,1)−
p∑
j

1

2ĉ2ŝ2b,2j
r2jj

K∑
k

π̃kj(µ̃
2
kj,2 + σ̃2

kj,2)

+
1

2

K∑
k

(
(µ̃kj ⊗ π̃k)

T

[
Ŝ−1
1 R1Ŝ

−1
1

ĉ1
0

0
Ŝ−1
2 R2Ŝ

−1
2

ĉ2

]
(µ̃kj ⊗ π̃k)

)
− 1

2p

∑
k

∑
j

Tr(Σ−1
k (Σ̃kj + µ̃kjµ̃

T
kj))

− p

2
log |2πΩ̂| − 1

2
ν̃T (Ω̂−1 ⊗ Ip)ν̃ − 1

2
Tr

(([
1
ĉ1
Ŝ−1
1 R1Ŝ

−1
1 0

0 1
ĉ2
Ŝ−1
2 R2Ŝ

−1
2

]
+ Ω̂−1 ⊗ Ip

)
Λ̃

)

+

p∑
j

K∑
k

π̃kj log
1

p
−

p∑
j

K∑
k

π̃kj log π̃kj +
1

2

p∑
j

K∑
k

π̃kj(log |Σ̃kj| − log |Σk|) +
1

2
log |Λ̃|

+ constant,
(17)

where Tr(B) denotes the trace of the square matrix B, the constant term does not involve Σ.622

M-step We solve ∂Lq

∂Σk
= 0 to obtain the update equation of Σk:623

Σ
(t+1)
k =

p∑
j

π̃kj(µ̃kjµ̃
T
kj + Σ̃kj). (18)

The above VEM algorithm has computational cost linear to the number of causal variants624

K, allowing for detecting multiple causal effects (e.g., K = 10) at a given locus.625

Identification of causal variant and construction of credible set626

After the convergence of VEM algorithm, we can obtain the approximated posterior627

probabilities q(γk) = π̃k, where π̃kj is the posterior probability that the k-th causal signal is628

contributed by the j-th SNP. With the variational approximation given by Equation (15), we629

can compute the posterior inclusion probability of SNP j as630

PIPj = Pr(γkj ̸= 0 for some k|b̂, ŝ) ≈ 1−
K∏
k=1

(1− π̃kj). (19)

We can compute the local false discovery rate of SNP j as fdrj = 1− PIPj and prioritize the631

causal SNPs by controlling the false discovery rate.632

The decomposition of causal effects (2) offers an opportunity to characterize the set of SNPs633

that have high credibility to contribute to an individual causal signal. Let M ⊂ {1, ..., p} be a634

subset of SNPs from the target locus. A level-α credible set of a causal signal k, denoted as635
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CS(k, α), is defined as the smallest M with
∑

j∈M π̃kj ≥ α. A smaller size of level-α credible636

set (e.g., α = 0.9) indicates a higher confidence of the identified causal variants.637

Influence and choice of K638

The number of causal signals is usually unknown in practice. In XMAP, we do not require639

K to be the number of causal SNPs in the target locus. Instead, because the computational640

cost of our VEM algorithm only increases linearly with K, we can set K to a reasonably large641

number (e.g., K = 10) with minor computational overhead. When K is larger than the ground642

truth, the posterior probabilities in the excessive components will be broadly distributed across643

all SNPs in the locus because there is high uncertainty in the assignment of these causal effects.644

Importantly, the polygenic component will account for the small genetic effects, forcing the645

variance of excessive signals toward zero. Therefore, it has very minor influence in prioritization646

of causal SNPs when including extra causal effects than necessary. To exclude credible sets647

associated with redundant signal clusters, we follow SuSiE [23] to introduce the purity of648

credible sets. The purity of a credible set is defined as the smallest absolute correlation between649

pairs of SNPs within it. In XMAP, we consider the credible sets with purity less than 0.1 in all650

populations as redundant and discard the associated credible sets.651

Data and Code Availability652

The publicly available GWAS summary statistics for meta-analysis were obtained from the links653

summarized in Supplementary Table 1. The XMAP software and source codes in this study were654

publicly available in GitHub repository of XMAP (https://github.com/YangLabHKUST/XMAP).655
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