

XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias

Mingxuan Cai ^{*1}, Zhiwei Wang^{2,3}, Jiashun Xiao⁴, Xianghong Hu^{2,3}, Gang Chen⁵, and Can Yang ^{*2,3}

¹*Department of Biostatistics, City University of Hong Kong.*

²*Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China.*

³*Department of Mathematics, The Hong Kong University of Science and Technology.*

⁴*Shenzhen Research Institute of Big Data, Shenzhen 518172, China.*

⁵*The WeGene Company*

Abstract

1 Fine-mapping prioritizes risk variants identified by genome-wide association studies (GWASs),
2 serving as a critical step to uncover biological mechanisms underlying complex traits. However,
3 several major challenges still remain for existing fine-mapping methods. First, the strong linkage
4 disequilibrium among variants can limit the statistical power and resolution of fine-mapping.
5 Second, it is computationally expensive to simultaneously search for multiple causal variants.
6 Third, the confounding bias hidden in GWAS summary statistics can produce spurious signals.
7 To address these challenges, we develop a statistical method for cross-population fine-mapping
8 (XMAP) by leveraging genetic diversity and accounting for confounding bias. By using cross-
9 population GWAS summary statistics from global biobanks and genomic consortia, we show
10 that XMAP can achieve greater statistical power, better control of false positive rate, and
11 substantially higher computational efficiency for identifying multiple causal signals, compared
12 to existing methods. Importantly, we show that the output of XMAP can be integrated with
13 single-cell datasets, which greatly improves the interpretation of putative causal variants in
14 their cellular context at single-cell resolution.

^{*}Corresponding authors

15 Introduction

16 Genome-wide association studies (GWASs) have reported hundreds of thousands of associations
17 between single-nucleotide polymorphisms (SNPs) and various phenotypes [1], but most reported
18 SNPs reside in non-coding regions [2, 3, 4]. As the cell type and cellular process in which
19 the identified SNPs are active remains largely unknown, the GWAS findings remain hard to
20 interpret. Fine-mapping seeks to prioritize the causal SNPs underlying complex traits and
21 diseases. Recent progress shows that, by integrating fine-mapping results and single-cell data,
22 it becomes feasible to identify disease/trait-relevant cell types and cell states [5, 6]. Therefore,
23 fine-mapping is a critical step to interpret GWAS findings by elucidating their biological
24 mechanisms of identified risk variants, and fine-mapping results will offer an invaluable resource
25 for precision medicine [7].

26 Despite the great promise of fine-mapping, efforts toward reliable prioritization of causal
27 SNPs have been hampered by three key challenges. First, when GWAS samples come from
28 a single population, SNPs in a local genomic region can be highly correlated due to the low
29 recombination rates in that region. It is very difficult for statistical methods to distinguish
30 the causal variants from a set of SNPs in strong linkage disequilibrium (LD). Second, genetic
31 signals at trait-associated regions are commonly conferred by many variants acting together.
32 A very recent study of 744 human expression quantitative trait loci (eQTLs) reported that
33 17.7% of the eQTLs harbour more than one variant with major effects on gene expression
34 levels, emphasizing the importance of identifying multiple genetic variants within an associated
35 locus [8, 9]. For example, an eQTL associated with *ERPA2* and Crohn's disease was found
36 to be driven by 13 separate variants [9]. However, it becomes computationally expensive to
37 simultaneously search for multiple SNPs by enumerating causal combinations. Third, the
38 unadjusted socioeconomic status [10] and geographic clustering [11, 12] in GWAS samples can
39 induce confounding bias in GWAS estimates [13]. These confounding factors cannot be fully
40 corrected through linear mixed models (LMMs) [14, 15] or principal component analysis (PCA)
41 [16]. Fine-mapping without correcting the confounding bias in GWAS data can yield spurious
42 results.

43 While many efforts have been devoted to the development of fine-mapping methods, existing
44 methods only partially addressed the above major challenges. The classical fine-mapping
45 methods [17, 18] rely on an exhaustive search for all possible causal configurations of vari-

46 ants. They become computationally unaffordable when searching for more than three causal
47 associations among thousands of variants. More efficient methods have been developed based
48 on approximated inference, including CAVIARBF [19], FINEMAP [20], and DAP-G [21, 22].
49 A very recent method, SuSiE [23, 24], introduces a novel framework by assuming the overall
50 genetic effects can be decomposed as a sum of single effects. The model structure of SuSiE
51 enables an efficient algorithm to detect multiple causal SNPs with minor computational over-
52 head. Despite their improvement in computational efficiency, the statistical power of these
53 methods is usually limited because it is difficult for them to distinguish the causal variants
54 from the highly correlated variants in the single population setting. To boost the statistical
55 power of fine-mapping, several methods were developed to leverage different LD patterns
56 with cross-population GWASs, including trans-ethnic PAINTOR [25] and MsCAVIAR [26].
57 Although these methods allow a locus to harbour multiple causal variants in principle, they
58 require enumerating all causal combinations of variants, hence become too time-consuming to
59 search for more than three causal variants. Furthermore, existing fine-mapping methods do not
60 account for confounding bias in GWAS summary statistics, leading to spurious results.

61 In this paper, we develop a statistical method for cross-population fine-mapping (XMAP)
62 by leveraging genetic diversity and accounting for confounding bias (Figure 1). The success of
63 XMAP relies on its three unique features. First, XMAP can leverage distinct LD structures
64 from genetically diverged populations. It is known that individuals from different population
65 backgrounds usually have different LD structures. For example, individuals from the African
66 (AFR) population are known to have narrower LD compared to those from the European
67 (EUR) population [27]. By jointly analyzing cross-population GWASs, XMAP can effectively
68 improve the power and resolution of fine-mapping. Second, XMAP can identify multiple causal
69 signals with a linear computational cost, while many existing fine-mapping methods are too
70 time-consuming to identify multiple causal signals. Third, XMAP can correct the confounding
71 bias in GWAS summary data to avoid false positive findings and improve reproducibility.

72 Through comprehensive simulation studies, we show that XMAP not only improves the
73 statistical accuracy of fine-mapping but also offers a substantial computational advantage
74 over existing methods. The evidence from real data analysis indicates that XMAP achieves
75 substantial power gain with high reproducibility. By combining the GWASs of low-density
76 lipoprotein (LDL) from East Asian (EAS), African, and European, XMAP identifies three times

77 more putative causal SNPs than SuSiE. These SNPs are strongly enriched in the eQTL of the
 78 liver, suggesting their important roles underlying the biological process of LDL. Furthermore,
 79 using the height GWAS as an example, we show that XMAP can effectively correct confounding
 80 bias and substantially improve reproducibility. Lastly but importantly, XMAP results can be
 81 integrated with single-cell data to identify trait-relevant cell populations at single-cell resolution,
 82 maximizing the utility of single-cell data for the inference of the pathological mechanisms.
 83 We apply XMAP to 12 blood traits and perform integrative analyses of the XMAP results
 84 and single-cell profiles of 23 hematopoietic cell populations. The analysis results suggest that
 85 XMAP enables the identification of the trait-relevant cell types in which putative causal SNPs
 86 are active. For example, SNPs identified by XMAP show a significant enrichment of the mean
 87 corpuscular volume in 99.3% of late-stage erythroid cells, which is very helpful to interpret
 88 GWAS results.

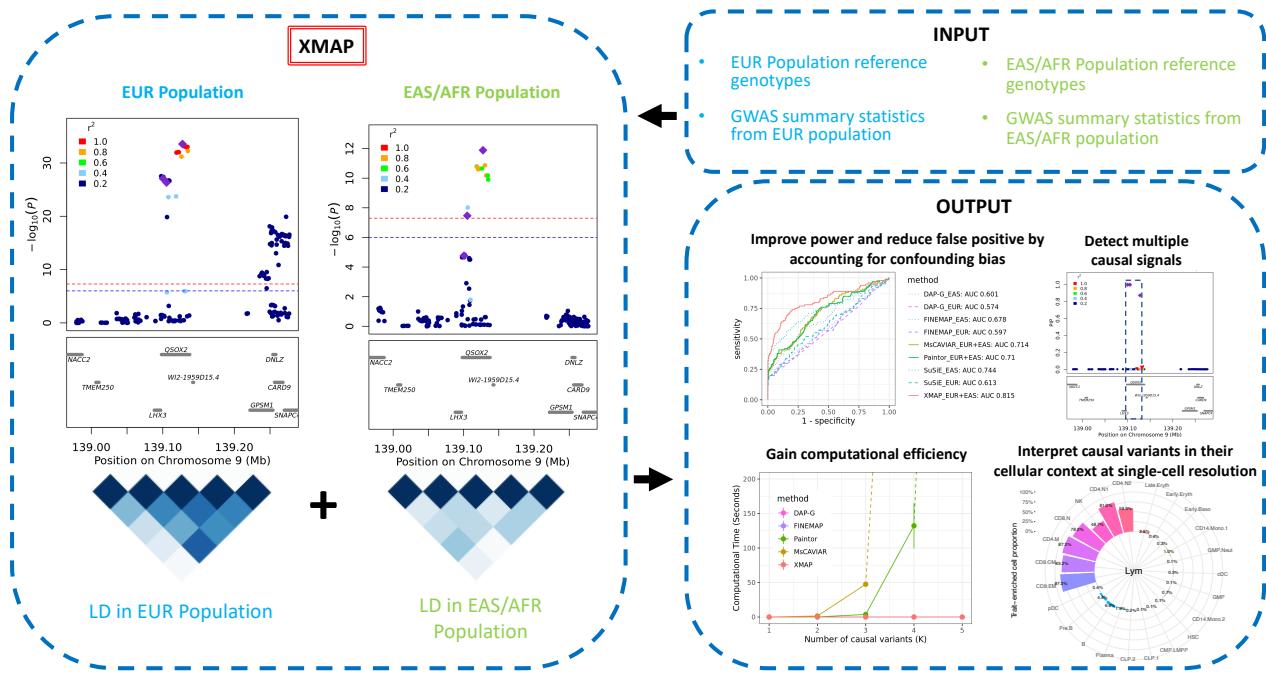


Figure 1: XMAP overview. XMAP takes the summary statistics and reference genotypes from multiple populations as inputs. XMAP can improve the statistical power of fine-mapping by leveraging the distinct LD pattern across populations while reducing false positives by accounting for confounding bias in GWAS summary statistics. Paired with a fast algorithm, XMAP is able to efficiently identify multiple causal signals. The fine-mapped SNPs can be integrated with single-cell datasets to identify trait-relevant cells.

89 Results

90 Method overview

91 XMAP is a computationally efficient and statistically accurate method for fine-mapping
92 causal variants using GWAS summary statistics. With innovations in its model and algorithm
93 design, XMAP has three features: (i) It can better distinguish causal variants from a set of
94 associated variants by leveraging different LD structures of genetically diverged populations.
95 (ii) By jointly modeling SNPs with putative causal effects and polygenic effects, XMAP
96 allows a linear-time computational cost to identify multiple causal variants, even in the
97 presence of an over-specified number of causal variants. (iii) It further corrects confounding
98 bias hidden in the GWAS summary statistics to reduce false positive findings and improve
99 replication rates. The fine-mapping results given by XMAP can be further used for downstream
100 analysis to illuminate the causal mechanisms at different cascades of biological processes,
101 including tissues, cell populations, and individual cells. In particular, XMAP results can
102 be effectively integrated with single-cell datasets to identify disease/trait-relevant cells. We
103 provide the implementation of XMAP in an efficient and freely available R package at <https://github.com/YangLabHKUST/XMAP>. The technical details of XMAP are described in the
104 Methods section.

106 Simulation study

107 We conducted comprehensive simulation studies to compare the performance of XMAP
108 with several related fine-mapping methods, including DAP-G, FINEMAP, SuSiE, PAINTOR
109 and MsCAVIAR. To mimic realistic LD patterns in different populations, we used genotypes of
110 EUR samples from UKBB and genotypes of EAS samples from a Chinese cohort [28, 29]. We
111 considered a region between the base pair position 45,202,602 and 45,435,202 in chromosome 22
112 (GRCH37), which comprises $p = 500$ SNPs. To demonstrate the benefit of leveraging genetic
113 diversity in different populations, we selected three candidate SNPs that satisfy the following
114 properties: (i) In EUR population, they are in high LD (i.e., with absolute correlation > 0.9)
115 with at least three non-causal SNPs. (ii) In EAS population, they are weakly correlated with
116 non-causal SNPs (i.e., have an absolute correlation > 0.6 with less than two non-causal SNPs).
117 The heat maps in Figure 2 B show the absolute correlation between the three candidate causal
118 SNPs and their neighboring SNPs. We investigated K_{true} causal SNPs, where $K_{true} \in \{1, 2, 3\}$,
119 we randomly sampled K_{true} from the three candidate SNPs as the causal ones. To mimic the

120 unbalanced composition of GWAS samples in global populations, we considered $n_2 = 20,000$
121 samples from the EUR population and explored different sample sizes n_1 from the EAS
122 population: 5,000, 10,000, 15,000, and 20,000. For reference LD matrices, we used the EUR
123 LD matrix estimated with 337,491 British UKBB samples provided in a recent study [30] and
124 estimated the EAS LD matrix with 35,989 EAS samples from the Chinese cohort [28]. We
125 designed our simulations in two scenarios. First, we illustrated the benefit of cross-population
126 fine-mapping by generating GWAS data without confounding bias. In the second scenario,
127 we examined the effectiveness of XMAP in correcting confounding bias by simulating GWAS
128 summary data with unadjusted sample structure.

129 We first consider the scenario in the absence of confounding bias. Specifically, we generated
130 the polygenic effects with $[\phi_{1j}, \phi_{2j}] \sim \mathcal{N}(\mathbf{0}, \begin{bmatrix} 0.005 & 0.004 \\ 0.004 & 0.005 \end{bmatrix} / 500)$ for $j = 1, \dots, 500di$, where
131 0.005 is the total heritability contributed by polygenic effects of the 500 SNPs in the locus,
132 with a per-SNP heritability $0.005/500 = 10^{-5}$ and a genetic correlation $\frac{0.004}{\sqrt{0.005 \times 0.005}} = 0.8$
133 between two populations. Then, we simulated the causal effects in the two populations with
134 $\beta_{1k} \sim \mathcal{N}(0, \frac{0.25}{500})$ and $\beta_{2k} \sim \mathcal{N}(0, \frac{0.25}{500})$ for $k = 1, \dots, K_{true}$. This specification means that
135 each causal SNP has a $0.25/0.005 = 50$ fold per-SNP heritability enrichment compared to
136 non-causal SNPs, and the effect sizes of SNP k are not necessarily the same across the two
137 populations. The K_{true} causal SNPs jointly contribute $0.25/500 \times K_{true} = 5 \times 10^{-4} \times K_{true}$
138 heritability. We obtained the standardized genotype matrices $\mathbf{X}_1 = [\mathbf{x}_{11}, \dots, \mathbf{x}_{1p}] \in \mathbb{R}^{n_1 \times p}$
139 and $\mathbf{X}_2 = [\mathbf{x}_{21}, \dots, \mathbf{x}_{2p}] \in \mathbb{R}^{n_2 \times p}$, whose columns have zero mean and unit variance. Given
140 the genotypes and effect sizes, we generated quantitative phenotypes in the two populations
141 with $\mathbf{y}_1 = \sum_{j=1}^p \mathbf{x}_{1j} \phi_{1j} + \sum_{k=1}^{K_{true}} \mathbf{x}_{1[k]} \beta_{1k} + \mathbf{e}_1$ and $\mathbf{y}_2 = \sum_{j=1}^p \mathbf{x}_{2j} \phi_{2j} + \sum_{k=1}^{K_{true}} \mathbf{x}_{2[k]} \beta_{2k} + \mathbf{e}_2$,
142 where $\mathbf{x}_{1[k]}$ and $\mathbf{x}_{2[k]}$ are the columns of \mathbf{X}_1 and \mathbf{X}_2 corresponding to the k -th causal SNP, and
143 $\mathbf{e}_1 \sim \mathcal{N}(\mathbf{0}, (1 - 0.005 - 5 \times 10^{-4} \times K_{true}) \mathbf{I}_{n_1})$ and $\mathbf{e}_2 \sim \mathcal{N}(\mathbf{0}, (1 - 0.005 - 5 \times 10^{-4} \times K_{true}) \mathbf{I}_{n_2})$
144 are independent noise in the two populations, respectively. Finally, we computed the GWAS
145 summary statistics by marginally regressing the simulated phenotypes on each SNP for each
146 population (Figure 2 A). The details of data pre-processing and parameter settings of XMAP
147 and compared methods are given in the Supplementary Note.

148 Using a posterior inclusion probability (PIP) threshold of 0.9, we first evaluated the
149 statistical power of compared methods. Figure 2 F shows the comparison of statistical power
150 when $K_{true} = 3$ and $n_1 = n_2 = 20,000$. Clearly, XMAP was the overall winner with the highest

151 statistical power averaged across 50 replicates. In practice, we are usually more interested in
152 the performance of fine-mapping when the false positive rate is small. Here, we evaluated the
153 sensitivity and specificity under various PIP thresholds and generated the receiver operating
154 characteristic (ROC) curve. As shown in Figure 2 G, DAP-G, SuSiE and FINEMAP only
155 have a partial area under ROC curve (pAUC) around 0.1 when they were applied to EUR
156 GWAS with the false positive rate (FPR) < 0.3 . They achieved a higher pAUC when applied
157 to the EAS GWAS because the causal variants were less correlated with non-causal variants in
158 the EAS samples. For cross-population methods, we examined the performance of PAINTOR
159 and MsCAVIAR. Because MsCAVIAR was too time-consuming to include more than two
160 causal variants, we only applied MsCAVIAR to the setting with $K_{true} \in \{1, 2\}$. The results
161 in Figure 2 F-G and Supplementary Figures 1-3 indicate that XMAP is more powerful than
162 PAINTOR and MsCAVIAR in the existence of polygenic effects. In our additional simulation
163 without polygenic effects (Supplementary Figures 8-13), XMAP could still achieve comparable
164 performance with PAINTOR and MsCAVIAR because we allow the polygenic effects to be
165 adaptively estimated from the data. To further investigate the difference in fine-mapping
166 performance, we contrasted the PIP obtained by XMAP with those obtained by other methods
167 (Figure 2D and Supplementary Figures 4-6). Clearly, XMAP produced substantially higher PIP
168 for causal variants, as compared to SuSiE and PAINTOR, suggesting that XMAP could better
169 distinguish causal SNPs from non-causal SNPs. This explains our observation that XMAP
170 often yields higher pAUC and statistical power. We also assessed resolution of fine-mapping
171 by evaluating the size of credible sets. The smaller credible sets, the higher resolution of
172 fine-mapping. Here we consider XMAP, FINEMAP and SuSiE because they are the only
173 methods that can provide credible sets for individual causal signals. As summarized in Figure
174 2 H, XMAP and SuSiE were the only two methods that could produce level-95% credible sets
175 with a median size of two when they were applied to EAS GWAS. We used $K = 5$ for XMAP
176 in the main results and investigated $K = 10$ in the Supplementary Figure 1-3. Under both
177 settings, XMAP had consistent performance and steadily outperformed compared methods,
178 suggesting its robustness to the specification of K . More comparisons under different settings
179 of n_1 , n_2 and K_{true} are provided in the Supplementary Figures 1-3.

180 To investigate the computational efficiency, we evaluated the CPU time of compared
181 methods under different setting of K and p . As shown in Figure 2 D, the computational cost

182 of MsCAVIAR and PAINTOR increases exponentially with both K and p . When analyzing a
 183 locus with $p = 100$ SNPs, MsCAVIAR could only include $K \leq 4$ causal signals and PAINTOR
 184 could only include $K \leq 5$ causal signals. It took more than one week for them to finish the
 185 analysis when more signals were included. By contrast, the computational cost of XMAP is
 186 linear to K , which makes it highly efficient when applied to locus with multiple causal SNPs.
 187 To identify multiple causal signals, the computational efficiency of XMAP allows us to set K
 188 to a large value (e.g., $K = 10$) when K_{true} is unknown. While DAP-G and FINEMAP had
 189 CPU times comparable to XMAP, they could not leverage cross-population GWASs to improve
 190 fine-mapping. This benchmark was evaluated using a Linux computing platform with 20 CPU
 191 cores of Intel (R) Xeon (R) Gold 6152 CPU at 2.10 GHz processor.

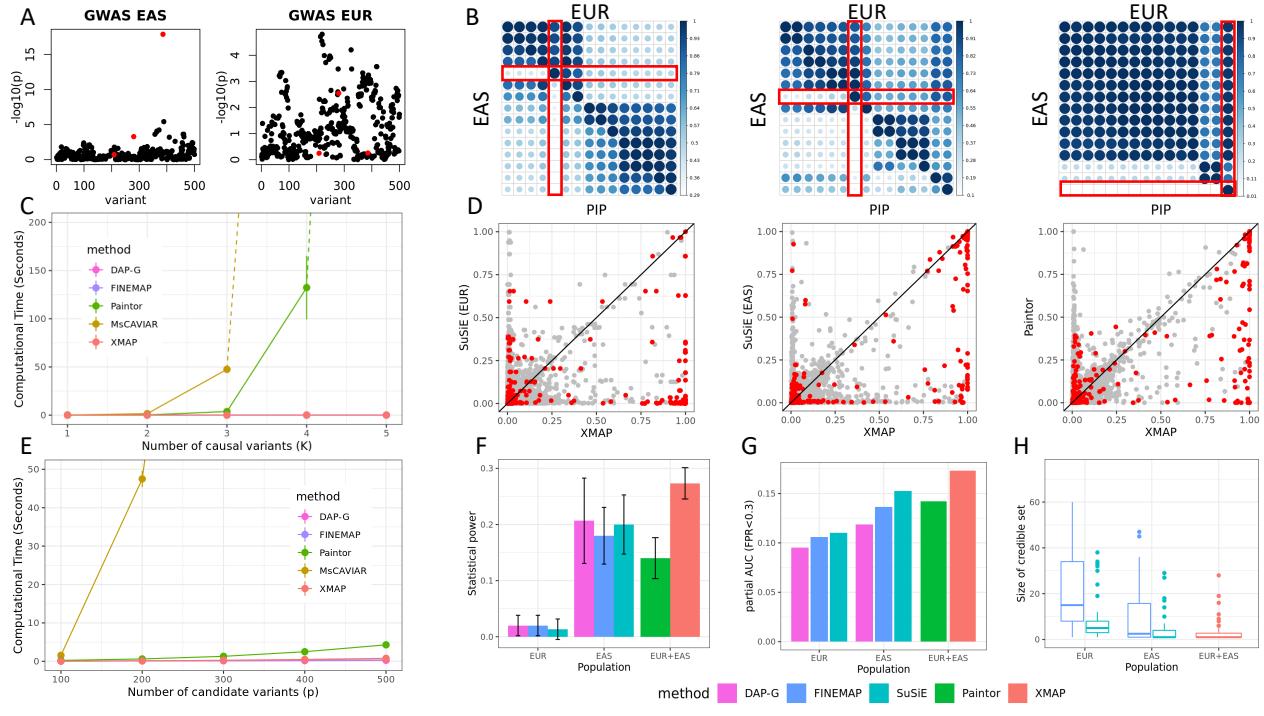


Figure 2: Comparisons of fine-mapping approaches in GWAS without confounding bias. (A) Manhattan plots of a simulated GWAS data in EAS (left) and EUR (right). (B) Heat maps showing the absolute correlations between the three causal SNPs (highlighted with rectangles) and their nearby SNPs in EAS and EUR populations. (C) CPU timings of XMAP, MsCAVIAR, PAINTOR, FINEMAP, and DAP-G are shown for increasing K with $p = 100$. Solid lines are CPU time recorded in our experiments and dashed lines represent predicted CPU time based on the time complexity of corresponding approaches. (D) Comparisons of PIP between XMAP and SuSiE, and between XMAP and PAINTOR. Red points represent true causal SNPs, and gray points represent SNPs with no effect. (E) CPU timings are shown for increasing p with $K = 2$. (F-H) Comparisons of statistical power (F), partial AUC with false positive rate < 0.3 (G), and level-95% credible set size (H) with $n_1 = n_2 = 20,000$ and $K_{true} = 3$. Results are summarized from 50 replications.

In the second set of simulations, we focus on fine-mapping of GWAS data in the presence of uncorrected confounding bias. We introduced sample structures to GWAS data by using the genotype principal components following a previous work [31]. Specifically, we first performed PCA on the genotypes of EAS and EUR samples separately and extracted the first principal components from the two populations as representations of sample structures, denoted as $PC_1 \in \mathbb{R}^{n_1}$ and $PC_2 \in \mathbb{R}^{n_2}$, respectively. We re-scaled PC_1 to have mean zero and variance 0.05 and re-scaled PC_2 to have mean zero and variance 0.2. These variance values were selected to introduce proper level of inflation in the summary statistics. Next, we generated quantitative phenotypes with $\mathbf{y}_1 = PC_1 + \sum_{k=1}^{K_{true}} \mathbf{x}_{1[k]} \beta_{1k} + \mathbf{e}_1$ and $\mathbf{y}_2 = PC_2 + \sum_{k=1}^{K_{true}} \mathbf{x}_{2[k]} \beta_{2k} + \mathbf{e}_2$, where the generating distributions of β_{1k} and β_{2k} are the same as those in the first scenario and the independent errors were generated with $\mathbf{e}_1 \sim \mathcal{N}(\mathbf{0}, (1 - 5 \times 10^{-4} \times K_{true} - 0.05) \mathbf{I}_{n_1})$ and $\mathbf{e}_2 \sim \mathcal{N}(\mathbf{0}, (1 - 5 \times 10^{-4} \times K_{true} - 0.2) \mathbf{I}_{n_2})$. Finally, we simulated GWAS summary data by regressing phenotype vectors on each SNP without including the PCs as covariates. Figure 3 B shows the inflation constants in the simulated GWASs of the two populations evaluated by estimated LDSC intercepts \hat{c}_1 and \hat{c}_2 . The inflation constants were substantially larger than one, indicating strong confounding bias. The confounding bias became stronger when the sample size increased, suggesting an exacerbated inflation in GWAS summary statistics. By accounting for the confounding bias, XMAP achieved the best overall performance across different PIP thresholds among compared methods. For example, when $K_{true} = 2$, $n_1 = 5,000$ and $n_2 = 20,000$, XMAP produced the highest AUC (0.784), as shown in Figure 3 C. When we focus on the ROC curve with $FPR < 0.3$ (Figure 3 A), XMAP also achieved the highest pAUC. These results suggest that XMAP can improve statistical power while controlling the false positive rate. The pAUC evaluated under other simulation settings are summarized in the Supplementary Figure 7. Here we showed a concrete example with a single causal signal in Figure 3 D as an illustration. With uncorrected confounding bias, the GWAS *p*-values were inflated in the left regions of the locus (top panels of Figure 3 D). Without accounting for the confounding bias, SuSiE produced a false positive signal (SNPs in blue circles in the middle right panel of Figure 3 D) and assigned a high PIP ≈ 0.6 for a null SNP. By adjusting the estimation error of GWAS effects based on inflation constants \hat{c}_1 and \hat{c}_2 , XMAP effectively reduced the PIP of SNPs related to the false positive signal and correctly excluded the false positive signal from level-95% credible sets (left region in the bottom right panel of Figure 3

223 D). When we forced XMAP to ignore the inflation by setting $\hat{c}_1 = \hat{c}_2 = 1$, the false positive
 224 signal appeared in the output (bottom left panel of Figure 3 D), indicating the confounding
 225 bias was not properly adjusted. This observation implies the effectiveness of using the inflation
 226 constants to correct confounding bias in GWAS.

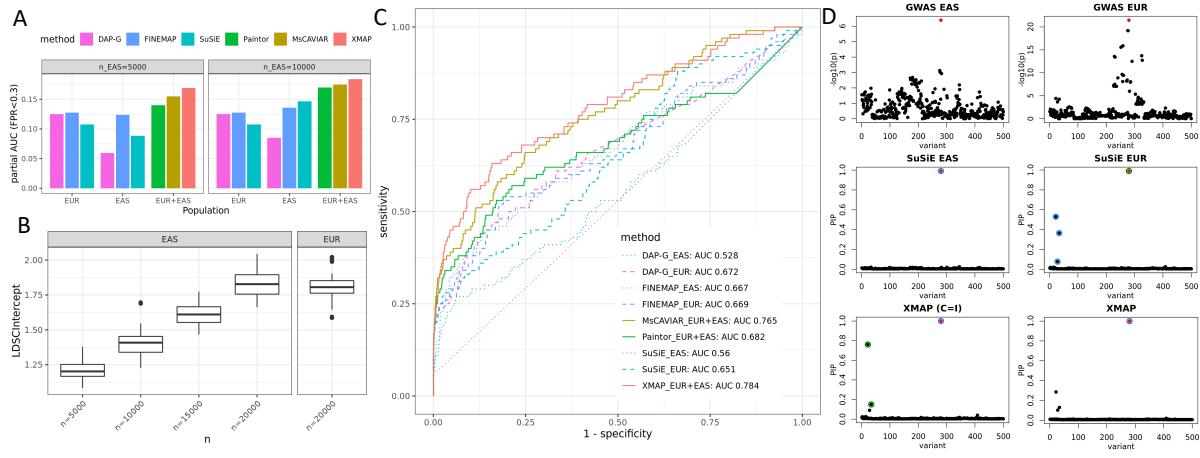


Figure 3: Comparisons of fine-mapping approaches in the presence of confounding bias. (A) Comparison of pAUC ($FPR < 0.3$) of fine-mapping among XMAP, PAINTOR, MsCAVIAR, SuSiE, FINEMAP, and DAP-G with $K_{true} = 2$ and sample size $n_1 \in \{5,000, 10,000\}$ in EAS. (B) Estimated LDSC intercepts \hat{c}_1 (EAS) and \hat{c}_2 (EUR) with sample size $n_2 = 20,000$ in EUR and $n_1 \in \{5,000, 10,000, 15,000, 20,000\}$ in EAS. (C) ROC curves of XMAP, PAINTOR, MsCAVIAR, SuSiE, FINEMAP, and DAP-G with $K_{true} = 1$, $n_1 = 5,000$, $n_2 = 20,000$. (D) An illustrative example generated by simulation. The first row shows the $-\log_{10}(p)$ -value in the GWAS of EAS(left) and EUR (right). The second row shows the PIP obtained by applying SuSiE to the training data of EAS (left) and EUR (right). The third row shows the PIP obtained from XMAP by setting $\hat{c}_1 = \hat{c}_2 = 1$ (left) and estimating c_1 and c_2 from the data (right). Red dots represent causal SNPs. Circles in the same color represent SNPs in the level-95% credible sets of a causal signal. Results are summarized from 50 replications.

227 Real data analysis

228 We performed fine-mapping to identify putative causal SNPs of complex traits with cross-
 229 population GWASs. First, by applying XMAP to LDL GWASs, where the magnitude of
 230 confounding bias was ignorable, we illustrated XMAP's superior performance in improving
 231 fine-mapping power and resolution. Second, to investigate the ability of XMAP in correcting
 232 confounding bias, we applied XMAP to combine height GWASs from an EAS cohort [28] and
 233 the British cohort in UKBB, which was known to be affected by population structure [11, 12].
 234 Through replication analysis, we compared the credibility of XMAP fine-mapped SNPs with
 235 related methods. Third, with the confounding bias properly corrected, we showed that XMAP
 236 enables the identification of multiple causal signals within a locus. Lastly but importantly,

237 we integrated the fine-mapping output of XMAP in blood traits with single-cell data. With
238 the improved fine-mapping results, we can have a better interpretation of risk variants in
239 their relevant cellular context, gaining biological insights of causal mechanisms at single-cell
240 resolution.

241 **XMAP improves fine-mapping by leveraging genetic diversity**

242 We first applied XMAP to analyze LDL by combining GWASs from EUR, EAS, and AFR.
243 As discovery cohorts, we used the GWASs of AFR and EAS released by the Global Lipids
244 Genetics Consortium (GLGC), which were obtained based on 92,934 AFR samples and 71,150
245 EAS samples, respectively. For EUR, we considered two GWAS datasets: the UKBB GWAS
246 summary data released by the Neale Lab with a sample size of 343,621, and the EUR GWAS
247 data from GLGC with a sample size of 664,450. These GWAS summary statistics included
248 11,569,928-35,328,891 genotyped and imputed autosomal SNPs, minimizing the risk of omitting
249 causal variants. Details of GWAS summary statistics are summarized in Supplementary Table
250 1. For EAS and EUR, we used the same reference LD matrices as in our simulation studies.
251 For AFR, we estimated the LD matrices by using 3,072 African individuals from UKBB as
252 reference samples. We followed a previous work [30] to partition all autosomal chromosomes
253 into 2,763 consecutive loci, each with a width of 1 million base pairs (Mbp). To fully account
254 for LD when analyzing each 1 Mbp locus, we included all SNPs in an extended region that
255 also covers 1 Mbp before the starting position and 1 Mbp beyond the ending position of the
256 locus, leading to a 3 Mbp extended region. We excluded the MHC region (25.5Mbp-33.5Mbp
257 in chromosome 6) and two other long-range LD regions (8Mbp-12Mbp in chromosome 8 and
258 46Mbp-57Mbp in chromosome 11) because many spurious results were reported in these regions
259 [30]. We applied XMAP to all regions that have more than 100 SNPs after overlapping the
260 reference LD matrices with GWAS data. Because SuSiE often achieved the best performance
261 among single-population methods in our simulation studies, we applied SuSiE to the GWAS of
262 each population separately, serving as a baseline for comparison. We set $K = 10$ in XMAP
263 and SuSiE for all loci.

264 We first quantified the confounding bias in these GWAS data using the estimates of LDSC
265 intercepts. As shown in Supplementary Table 1, the LDSC intercepts estimated from all
266 LDL GWASs were not substantially different from one, suggesting ignorable confounding bias
267 here. We then summarized the fine-mapped SNPs in Figure 4 A. By combining GWAS data

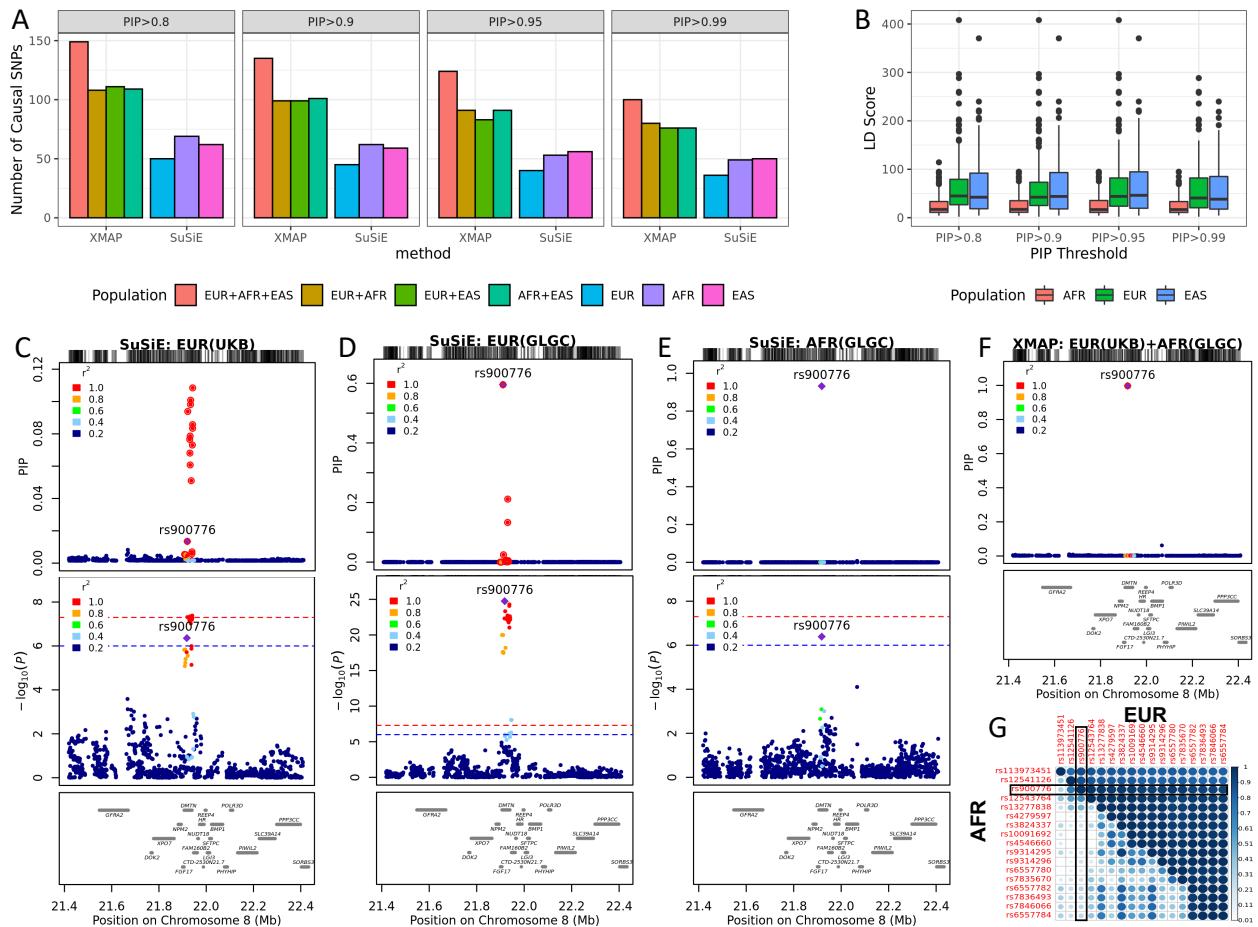


Figure 4: Application of XMAP and SuSiE to LDL. (A) Number of causal signals identified by XMAP and SuSiE with PIP thresholds 0.8, 0.9, 0.95, and 0.99. Colors represent different combination of GWAS training data. (B) LD score distribution of causal SNPs identified by XMAP. (C-F) Fine-mapping of locus 21.4Mbp-22.4Mbp in chromosome 8. The fine-mapping methods and training data are labelled on top of each panel. Top panels show the PIP. SNPs within 99% credible set are highlighted with red circles. Middle panels show the $-\log_{10}(p\text{-value})$ in GWAS. Red dashed lines represent 5×10^{-8} . Blue dashed lines represent 1×10^{-6} . Bottom panels annotate the position of genes in the locus. (G) Absolute correlation in EUR and AFR among the SNPs within level-99% credible set as shown in the red circles of (C). The SNP rs900776 is highlighted in the heat map.

from different populations, XMAP consistently identified more causal signals than SuSiE with different PIP thresholds. Specifically, XMAP identified 149 SNPs with $\text{PIP} > 0.8$ and 145 SNPs with $\text{PIP} > 0.9$ when the GWASs from all three populations were jointly analyzed, which was three times more than the number of SNPs identified by SuSiE in EUR (50 SNPs with $\text{PIP} > 0.8$ and 45 SNPs with $\text{PIP} > 0.9$). The complete fine-mapping results are available at <https://github.com/YangLabHKUST/XMAP/results>.

274 The improved statistical power of XMAP could be attributed to its capacity of leveraging

275 genetic diversity. To see this, we checked the LD score which is a summation of squared
276 correlation between a SNP and other SNPs in a population. A large LD score of a SNP means
277 that this SNP has strong LD with many other SNPs. We observed that the XMAP fine-mapped
278 SNPs have smallest LD scores in AFR (Figure 4 C), suggesting the power gain of XMAP
279 could be attributed to the weak LD between causal SNPs and non-causal SNPs in AFR. As an
280 example, rs900776 is an intronic variant in the *DMTN* region, which is highly correlated with
281 surrounding SNPs in EUR. Because of this, SuSiE estimated the PIP of rs900776 as small as
282 0.002 using UKBB GWAS and produced very large 99% credible set that included 16 other
283 SNPs for this signal. When applying SuSiE to the larger EUR GWAS data from GLGC, the
284 PIP of SNP rs900776 increased from 0.002 to 0.6 (Figure 4 D). Different from the LD pattern
285 in European population, rs900776 is less correlated with nearby SNPs in African population
286 (Figure 4 G). Therefore, when SuSiE was applied to AFR GWAS, the estimated PIP of rs900776
287 increased to 0.9 (Figure 4 E). Unlike SuSiE that analyzes a single population at a time, XMAP
288 enables joint analysis of EUR and AFR GWASs. XMAP successfully identified SNP rs900776
289 with a PIP as high as 0.99, yielding a high resolution credible set which contains rs900776
290 only (Figure 4 F). This indicates the improved power and resolution of XMAP by leveraging
291 genetic diversity. We verified our findings with the expression quantitative trait loci (eQTLs)
292 of liver obtained from the Genotype-Tissue Expression (GTEx) project [32]. As demonstrated
293 in Supplementary Figure 14, the SNPs identified by XMAP produced a substantially higher
294 enrichment of LDL in the liver eQTLs, as compared to SNPs identified by SuSiE using single
295 population GWASs.

296 **XMAP enables the correction of confounding bias in fine-mapping**

297 To demonstrate the effectiveness of XMAP in correction of confounding bias, we applied
298 XMAP to the height GWASs which were well known to be affected by population structure
299 [11, 12]. Following the previous cross-population fine-mapping pipeline [33], we first applied
300 fine-mapping methods to discovery GWAS datasets, and then evaluated the credibility of
301 fine-mapped SNPs in replication datasets from different population backgrounds. Here, we
302 used the EUR GWAS from UKBB and a Chinese GWAS in our previous study [28] as discovery
303 cohorts. For replication, we considered a recently released within-sibship GWAS from European
304 population, which was known to be less confounded by population structure. We also included
305 the GWAS from BBJ cohort as a replication data from EAS background. To ensure the SNP

306 density, these GWASs were imputed to cover 3,776,576-12,515,778 variants (see Supplementary
307 Table 1). The LDSC intercepts of UKBB GWAS and BBJ GWAS were estimated as 1.66
308 (s.e.=0.042) and 1.39 (s.e.=0.024), respectively, indicating the presence of strong confounding
309 bias. The LDSC intercepts of EUR Sibship GWAS and Chinese GWAS were estimated as 1.07
310 (s.e.=0.0089) and 1.12 (s.e.=0.012), suggesting that the confounding bias is nearly ignorable.
311 To investigate the ability of XMAP in accounting for confounding bias, we used UKBB and
312 Chinese GWASs as inputs of XMAP and used SuSiE to analyze these GWAS data separately
313 as benchmarks.

314 We summarized the replication rates of fine-mapped SNPs in Figure 5. Among the
315 overlapped SNPs between the EUR Sibship GWAS and discovery cohorts, SuSiE detected
316 306 SNPs with $\text{PIP} > 0.8$ from UKBB GWAS. However, only 14.1% (43/306, Figure 5 A)
317 were found to be genome-wide significant and only 13.4% of them (41/306, Figure 5 B) had
318 $\text{PIP} > 0.1$ in the EUR Sibship replication cohort. The low replication rate suggests that these
319 SNPs could be false positive signals due to unadjusted confounding bias. By accounting for the
320 confounding bias, XMAP successfully reduced the number of false positive signals. For example,
321 using $\text{PIP} > 0.8$ as a threshold, 21.4% (44/206) SNPs detected by XMAP were genome-wide
322 significant and 21.4% (44/206) had $\text{PIP} > 0.1$ in BBJ replication cohort. A similar pattern can
323 be observed in the BBJ replication cohort. With a PIP threshold of 0.8, only 23.9% (54/226,
324 Figure 5 C) SNPs detected from UKBB GWAS by SuSiE were genome-wide significant and
325 8.8% (19/226, Figure 5 D) had $\text{PIP} > 0.1$ in BBJ GWAS. As a comparison, 42.3% (71/168)
326 SNPs detected by XMAP were genome-wide significant and 14.9% (25/168) had $\text{PIP} > 0.1$
327 in BBJ replication cohort. The higher replication rate of XMAP implies its effectiveness of
328 fine-mapping by accounting for confounding bias.

329 Although PAINTOR and MsCAVIAR can also integrate cross-population GWASs, they are
330 too time-consuming to analyze all loci on the genome. Here, we consider a concrete example
331 to compare the performance of cross-population methods in the presence of confounding bias
332 (Figure 5). For XMAP, we considered two settings: (i) the standard XMAP that used the
333 estimated inflation constants (c_1 and c_2) to correct the confounding bias; (ii) a special case of
334 XMAP forced not to correct the confounding bias by setting $c_1 = c_2 = 1$, denoted as ‘XMAP
335 (C=I)’. In this example, the SNP rs2053005 locating at the locus 66.55 Mbp-66.85Mbp in
336 chromosome 15 was significantly associated ($p\text{-value} < 10^{-6}$) in UKBB GWAS (Figure 5 E),

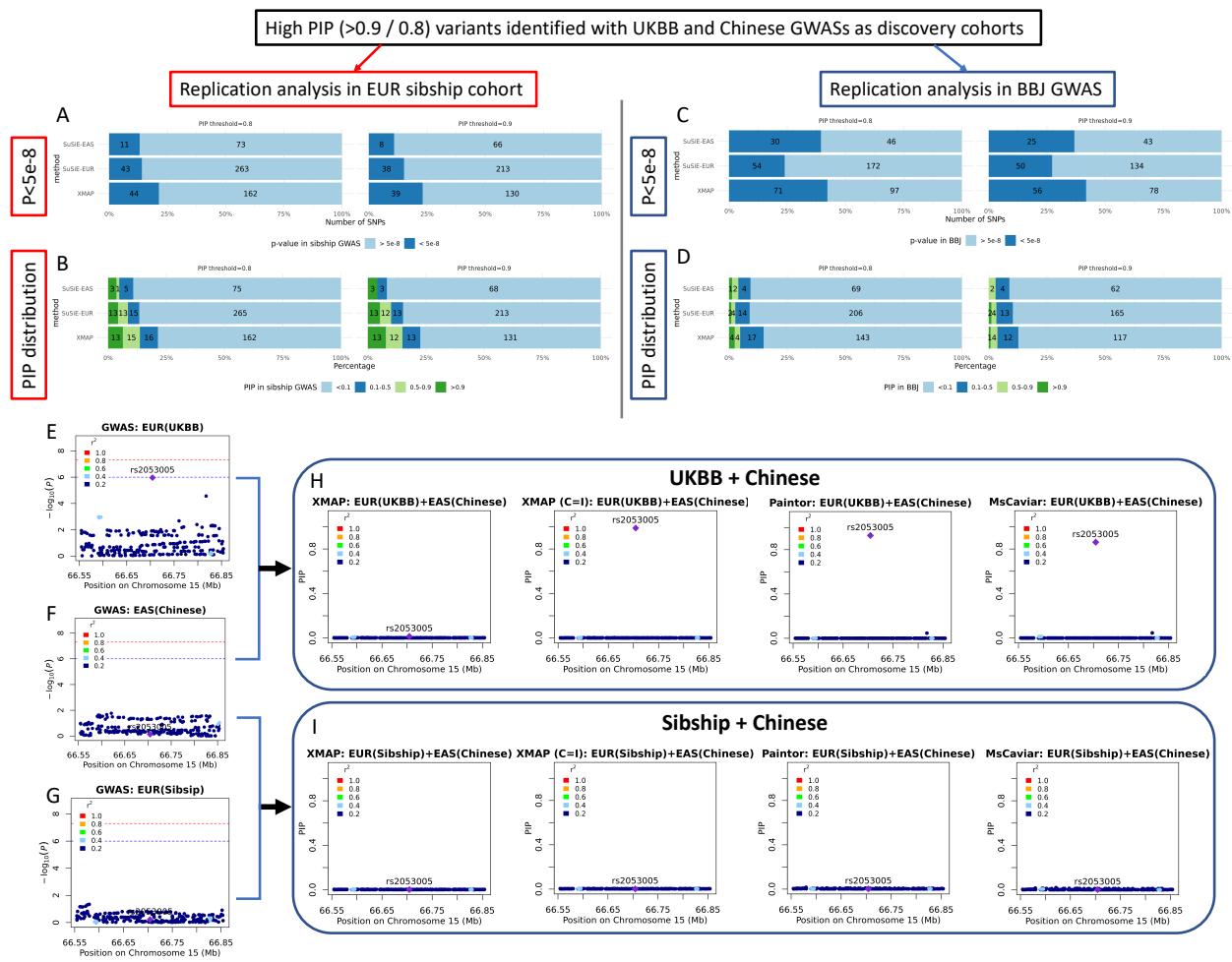


Figure 5: Replication analysis of XMAP and related methods on height GWASs. (A-D) Overview of replication analyses of high-PIP fine-mapped SNPs across populations: bar charts showing the fraction and number of fine-mapped SNPs with p -value $< 5 \times 10^{-8}$ in the replication cohorts of EUR Sibship GWAS (A) and BBJ (C) cohorts and bar charts showing the distribution of PIP for fine-mapped SNPs computed by SuSiE in the replication cohorts of EUR Sibship GWAS (B) and BBJ (D). (E-I) Fine-mapping of locus 66.55 Mbp-66.85Mbp in chromosome 15. The SNP rs2053005 is significant (p -value $< 1 \times 10^{-6}$) in UKBB (E), but not significant in Chinese GWAS and EUR Sibship GWAS (F and G). When UKBB and Chinese cohorts were combined for cross-population fine-mapping (H), the PIP of rs2053005 was computed to be > 0.8 by PAINTOR, MsCAVIAR and XMAP when we set $c_1 = c_2 = 1$ (XMAP C=I). XMAP estimated the inflation constants of UKBB and BBJ as 1.66 and 1.39, suggesting they are influenced by confounding bias. After correcting for confounding bias, this signal was excluded in XMAP with a PIP < 0.05 , which suggests that the high PIP of the SNP could have been induced by uncorrected population stratification. To test our assumption, we combined Chinese and EUR Sibship GWASs, which are both less influenced by confounding factors (both with inflation constant estimated as 1.07). As expected, all methods consistently produced a low PIP for rs2053005 (I), which confirmed our assumption and suggested XMAP can reduce spurious signals.

337 but not significant in both Chinese GWAS and EUR Sibship GWAS (Figure 5 F and G).
338 When UKBB and Chinese cohorts were combined for cross-population fine-mapping, the PIP
339 of rs2053005 was computed to be > 0.8 by PAINTOR, MsCAVIAR and XMAP (C=I) without
340 accounting for confounding bias. After correcting for confounding bias, the PIP of this signal
341 dramatically decreased in XMAP with a $\text{PIP} < 0.05$, which suggests that the high PIP of the
342 SNP could have been caused by population stratification (Figure 5 H). To test our assumption,
343 we applied cross-population methods to combine Chinese and EUR Sibship GWASs, both
344 of which are known to be less influenced by population structure. As expected, all methods
345 consistently yielded a low PIP for rs2053005 (Figure 5 I). This observation confirmed our
346 assumption that rs2053005 could be a false positive and XMAP was able to exclude this signal
347 by correcting the confounding bias.

348 **XMAP enables identification of multiple putative causal signals in fine-mapping**

349 With the confounding bias properly corrected, XMAP's efficient algorithm allows us to
350 produce reliable PIP for identifying multiple putative causal variants in thousands of loci
351 across the whole genome. As summarized in Figure 6 A, with a PIP threshold of 0.5, XMAP
352 identified 55 loci harboring more than one putative causal SNPs of height by combing UKBB
353 and Chinese GWASs, among which 6 loci harbor more than 3 causal SNPs and 2 loci harbor 5
354 causal variants. With a stringent threshold $\text{PIP} = 0.9$, XMAP identified 15 loci with 2 causal
355 SNPs and 9 loci with 3 causal SNPs. To examine the reliability of putative causal SNPs in loci
356 harboring multiple causal signals, we evaluated the replication rates of these SNPs using the
357 Sibship GWAS. Figure 6 B and C compare the replication rates of XMAP and SuSiE using their
358 putative causal SNPs with a PIP threshold of 0.9. For loci with more than one putative causal
359 SNPs, XMAP had the best replication rate (i.e., $24/55=43.6\%$ SNPs had $p\text{-values} < 10^{-6}$ and
360 $14/55=25.5\%$ SNPs had $\text{PIP} > 0.1$). Although SuSiE can also identify multiple causal signals
361 (Supplementary Figure 17), it had lower replication rates than XMAP because it cannot correct
362 for confounding bias. For loci with more than two putative causal SNPs, XMAP had similar
363 replication rate with SuSiE applied to EUR GWAS. Although PAINTOR and MsCAVIAR
364 can also integrate cross-population GWASs, they are too time-consuming to analyze all loci
365 on the genome when the number of causal signals are set to be larger than 2. We could only
366 run PAINTOR by setting the number of causal signals to 1 and 2. However, PAINTOR often
367 produced unrealistic PIP for loci containing thousands of variants (Supplementary Figures

368 17 and 18). Here, we compared the PIP of SNPs computed by XMAP with PAINTOR and
369 MsCAVIAR using the locus 130.2 Mbp-130.5Mbp in chromosome 6 as an example. We first
370 combined the GWASs of UKBB (Figure 6 B) and Chinese (Figure 6 C). Clearly, all compared
371 methods suggest that both rs1415701 and rs6569648 had high probability to be causal (Figure
372 6 E). To test the robustness of compared methods, we replaced the UKBB GWAS with EUR
373 Sibship GWAS (Figure 6 D) which has smaller sample size but is less influenced by confounding
374 bias, and computed the PIP again (Figure 6 F). Because of the reduced sample size, the PIP
375 of rs6569648 computed by MsCAVIAR reduced to 0.78; the PIP computed by PAINTOR
376 substantially differed from its previous output. By contrast, XMAP was the only method that
377 consistently produced high PIP for rs1415701 and rs6569648 (PIP> 0.8).

378 In the main analysis, we set $K = 10$ to allow the detection of multiple causal variants. The
379 setting $K = 10$ was supported by the analysis of height as summarized in Figure 6, where
380 most loci had < 5 causal variants in height. To investigate the sensitivity of fine-mapping
381 performance to the parameter K , we further considered $K = 15$ for XMAP and SuSiE. As
382 shown in Supplementary Figure 15, the number of putative causal SNPs identified by XMAP
383 are highly consistent under different settings of K . Besides, the fine-mapped SNPs could be
384 replicated in a consistent rate under different settings of K (Figure 5 A-C and Supplementary
385 Figure 16). These evidence consolidate our conclusion of the XMAP's robustness to the setting
386 of K .

387 **The XMAP output improves the interpretation of risk variants in their relevant
388 cellular context at single-cell resolution**

389 Integration of fine-mapping results with single-cell datasets is expected to offer a better
390 interpretation of putative causal variants in their relevant cellular context at single-cell resolution
391 [6]. However, fine-mapping of an under-presented population often lacks statistical power due
392 to the limited sample size, making the interpretation of causal risk variants difficult. In
393 this section, we show that cross-population fine-mapping results given by XMAP can greatly
394 improve the interpretation of putative causal variants in their relevant cellular context by
395 integrating single-cell datasets. To illustrate this benefit, we carried out SCAVENGE [6]
396 analysis to quantify the enrichment of putative causal variants for 12 blood traits (summarized
397 in Supplementary Table 1) within regions of accessible chromatin using the single-cell assay
398 for transpose-accessible chromatin by sequencing (scATAC-seq). We employed a scATAC-seq

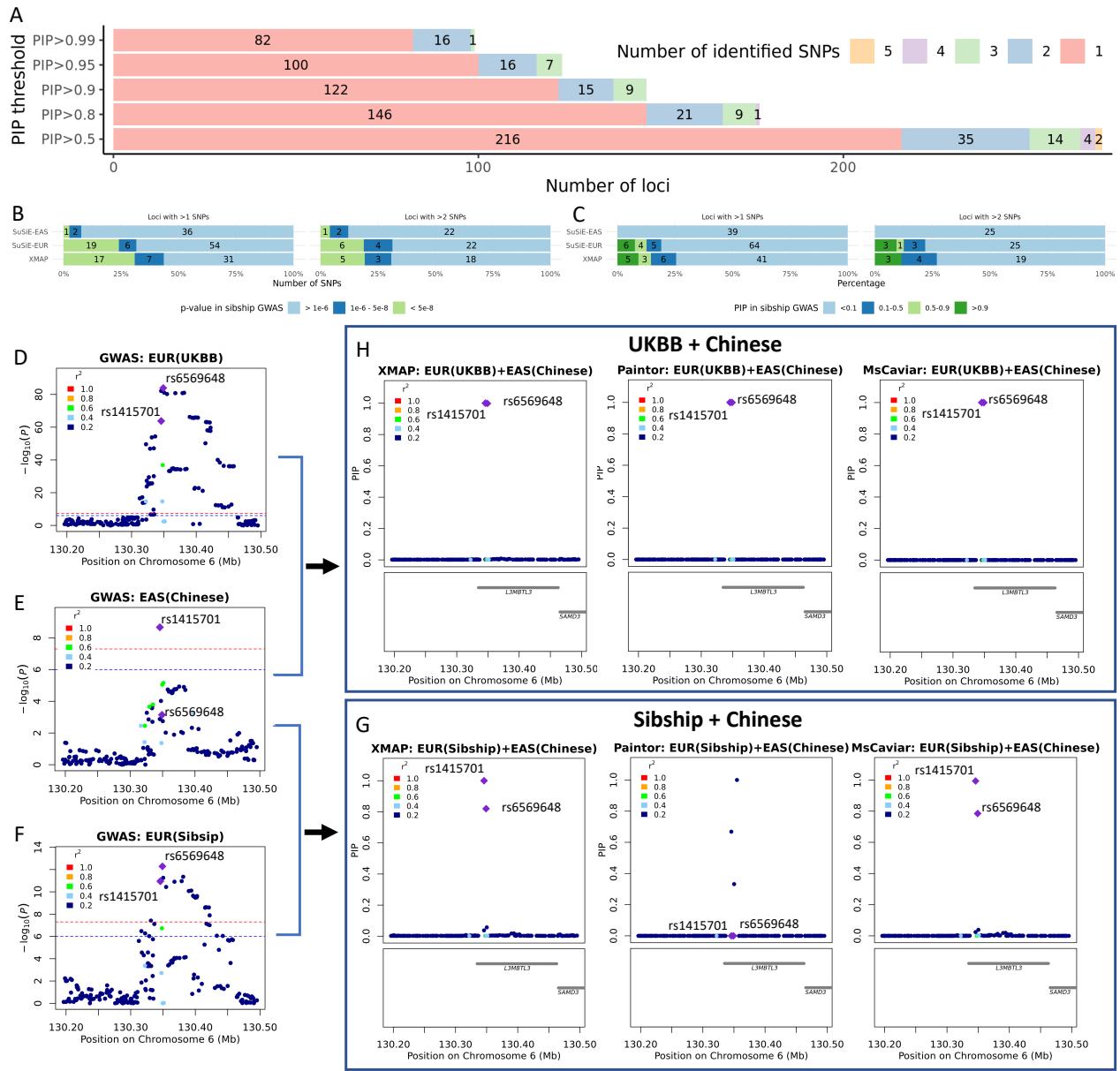


Figure 6: Performance of XMAP in identifying multiple causal variants for height. (A) Distributions of the number of putative causal SNPs identified by XMAP under different PIP thresholds. (B) With a PIP threshold of 0.9, the p -value distributions in the Sibship GWAS replication cohort are shown for putative causal SNPs within loci harboring > 1 and > 2 putative causal SNPs. (C) With a PIP threshold of 0.9, the PIP distributions in the Sibship GWAS replication cohort are shown for putative causal SNPs within loci harboring > 1 and > 2 putative causal SNPs. (D-G) A demonstrative example using the locus 130.2 Mbp-130.5Mbp in chromosome 6. Manhattan plots of the locus are shown for UKBB GWAS in (D), Chinese GWAS in (C), and EUR Sibship GWAS in (F). The PIP of SNPs in target locus are computed by XMAP, PAINTOR and MsCAVIAR with GWASs of UKBB+Chinese (H) and Sibship+Chinese (G).

399 dataset that encompasses multiple hematopoietic lineages [34], which includes 33,819 cells
 400 from 18 hematological populations (Figure 7 A). Specifically, we have a matrix of fragment

401 counts $\mathbf{F} \in \mathbb{R}^{C \times L}$, where C is the number of cells in scATAC-seq data and L is the number of
402 accessible chromatin peaks. To quantify the relevance between the peaks and a phenotype, we
403 first used the XMAP output to compute a vector of weight $\boldsymbol{\eta} \in \mathbb{R}^L$ with the l -th element of $\boldsymbol{\eta}$
404 being the sum of XMAP PIP for SNPs within the genomic region of peak l , which indicates the
405 relative importance of a peak to the phenotype. The raw cell-trait relevance scores could be
406 computed as $\mathbf{t} = \mathbf{F}\boldsymbol{\eta}$. As such, trait-related cells tend to have larger scores because more causal
407 SNPs are located within their accessible chromatin regions. Then a Z -score characterizing
408 the relationship between each pair of cell and trait can be obtained by further correcting for
409 technical confounders, such as GC content bias and PCR amplification, using g-chromVAR [5].
410 To optimize the inference by leveraging relatedness across individual cells, we constructed a
411 cell-cell similarity network and applied SCAVENGE [6] to assign a trait-relevance score (TRS)
412 for each cell via network propagation. Finally, we simulated null distributions of TRS by using
413 random seed cells for propagation and computed a p -value of trait-enrichment for each cell.
414 The cells with p -value < 0.05 were considered as significantly enriched for the trait.

415 We summarized the identified trait-enriched cells and the median TRS of each cell type in
416 Figure 7 B and Supplementary Figure 19, respectively. As we can observe, the enriched cells
417 were highly aligned with our knowledge of cell types related to the blood traits. For example,
418 we identified 8,388 lymphocyte count (Lym)-related cells, among which 5,021 cells were CD4
419 cells and 2,272 were CD8 cells. For traits related to myeloid/compound white cells, including
420 eosinophil count (Eosino), monocyte count (Mono), neutrophil count (Neutro) and white
421 blood cell count (WBC), we observed a substantial number of enriched cells from the CD14⁺
422 monocytes. For traits related to red cells such as red blood cell count (RBC), mean corpuscular
423 hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular
424 volume (MCV), and hemoglobin (HB), a large amount of enriched cells were erythroid cells.
425 These observations indicate that the biological mechanisms of putative causal SNPs identified by
426 XMAP can be interpreted at single-cell resolution. Due to the unbalanced cell type composition
427 in the single cell dataset, cells from rare populations can be under-represented. To rule out the
428 influence of cell type composition on our analysis, we further investigated the proportion of
429 trait-relevant cells within each cell type. We observed that biologically related cell types had
430 largest proportion of enriched cells. For example, MCV was significantly enriched in 99.3% of
431 late stage erythroid cells (Figure 7 E-F), WBC was significantly enriched in more than 60%

432 of CD14⁺ monocytes (Figure 7 I-J), Lym was significantly enriched in a large proportion of
433 CD4 and CD8 cells (Figure 7 C-D), and Plt was significantly enriched in the erythroid cells
434 (Figure 7 G-H). These results suggest that the identification of trait-relevant cells is immune
435 to the cell type composition. As shown in Supplementary Figures 20-31, we compared the
436 trait-relevant cells obtained by using the XMAP PIP as input with those using the SuSiE
437 PIP from single population analysis as input. Due to the relatively smaller sample size in the
438 BBJ cohort, the trait-relevant cells were less enriched when fine-mapping was performed only
439 using the BBJ GWASs, including GWASs of lymphocyte count (Supplementary Figure 20C-D),
440 eosinophil count (Supplementary Figure 25C-D), and basophil count (Supplementary Figure
441 24C-D). Compared with the single-population fine-mapping result by SuSiE, XMAP can take
442 the advantage of well-powered UKBB GWASs and provide a more accurate fine-mapping result
443 (Supplementary Figures 20A-B, 25A-B, 24A-B). By integrating with single-cell datasets, the
444 fine-mapping results given by XMAP can offer a better understanding of the putative causal
445 variants in their cellular context at single-cell resolution.

446 Discussion

447 In this paper, we have introduced a novel method named XMAP for cross-population fine-
448 mapping. XMAP is able to improve the statistical power of fine-mapping by leveraging
449 heterogeneous LD patterns across multiple populations. By correcting the hidden confounding
450 bias in GWAS summary statistics, XMAP can effectively reduce spurious causal signals induced
451 by sample structure. XMAP's fast algorithm allows us to efficiently analyze loci that harbour
452 multiple causal SNPs. Through comprehensive simulations, we showed that XMAP has greater
453 statistical power, better control of false positive rate, and substantially higher computational
454 efficiency for identifying multiple causal signals. We applied XMAP to fine-map causal SNPs of
455 LDL by combining GWASs from EAS, EUR and AFR, achieving substantial gains in statistical
456 power. Furthermore, we showed that XMAP was able to exclude spurious signals and produced
457 reproducible results. By combining the output of XMAP for blood traits with scATAC-seq
458 profiles of hematopoietic cells, we illustrated that the output of XMAP was particularly helpful
459 to characterize the causal mechanism behind phenotypic variation at single-cell resolution. We
460 believe that XMAP can serve as a powerful analytic tool of fine-mapping.

461 Considering the polygenic nature of complex traits, XMAP assumes that the genetic effects

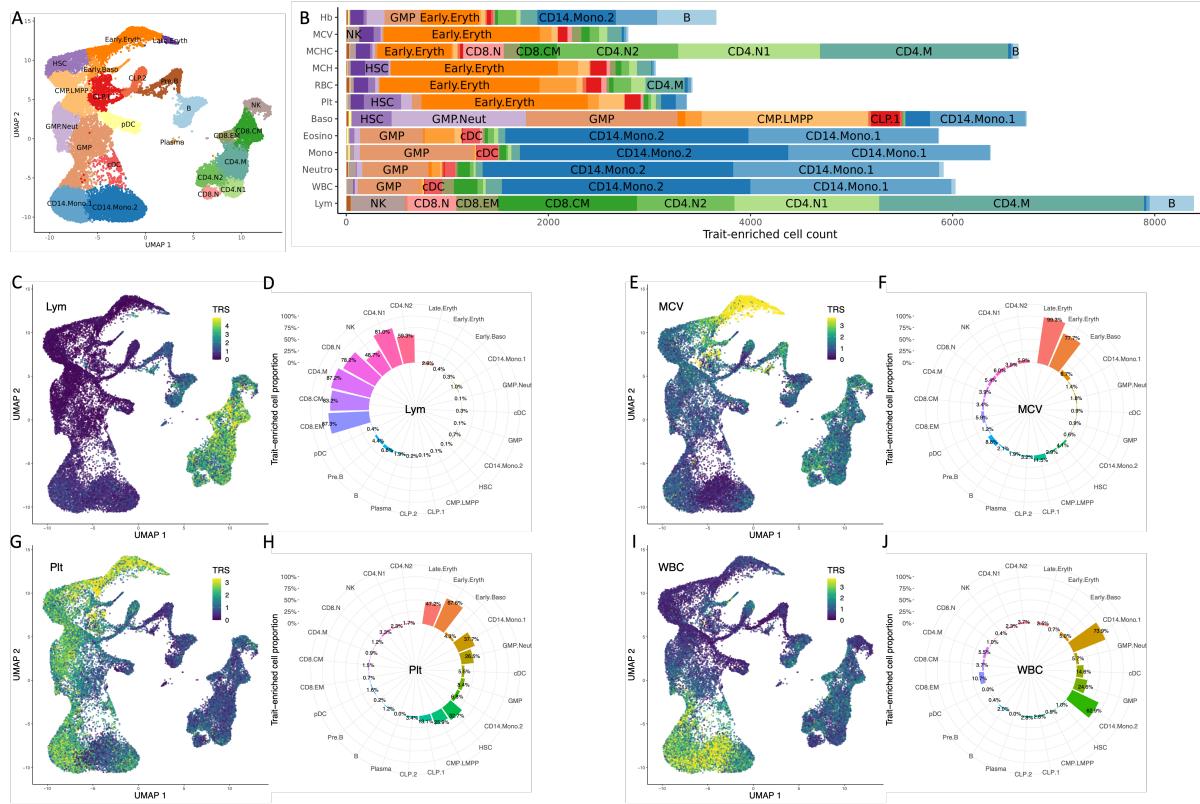


Figure 7: Enrichment of blood cell traits in hematological populations using XMAP fine-mapped SNPs as input. (A) The two dimensional uniform manifold approximation and projection (UMAP) plot of scATAC-seq data for 18 hematological populations. (B) The bar plots showing the number of cells significantly enriched in each of the 12 blood traits. The TRS are shown in the UMAP coordinates for four representative traits: Lym (C), MCV (E), Plt (G), and WBC (I). The proportions of significantly enriched cells within each population are shown for Lym (D), MCV (F), Plt (H), and WBC (J).

462 can be decomposed into two parts: the major causal effects and polygenic effects. For the
 463 causal effects, we assume that the total effects can be decomposed as a sum-of-single-effects
 464 [23, 24], which enables a highly efficient algorithm. While this assumption was also adopted in
 465 previous works [23, 24], they could not leverage genetic diversity to improve statistical power in
 466 the cross-population setting. For the polygenic effects, it benefits fine-mapping in two aspects.
 467 First, it captures the small genetic effects, allowing us to focus on the causal SNPs with major
 468 genetic impact that can be more biologically interesting for downstream analysis. Second,
 469 the statistical inference of causal effects are protected against over-fitting when K is specified
 470 larger than the ground truth. Therefore, we can safely set K to be a larger number, when
 471 the ground truth is unknown (Supplementary Figure 3). The parameters of the polygenic
 472 component are pre-estimated using LDSC, ensuring the model identifiability (see Methods).
 473 Because SNPs from the entire genome are used for estimation, the parameter estimates of the

474 polygenic component are accurate and stable.

475 Identifying the tissue and cellular context of causal variants is a critical step to understand
476 their biological mechanisms. Existing methods are usually limited to investigation at tissue
477 [35, 36, 37, 38, 39, 40, 41, 42] or cell type levels [43, 44, 45, 46, 47], which do not fully utilize
478 the rich resources of single-cell profiles. An important feature of XMAP is that it produces
479 outputs that can be integrated with single-cell profiles to illuminate the cellular context of
480 putative causal SNPs at single-cell resolution, offering a unique opportunity to characterize the
481 biological mechanisms across a whole spectrum of cell functions.

482 Although it is convenient to work with GWAS summary statistics, fine-mapping requires
483 a population-matched reference LD matrix as an input. The inconsistency of LD patterns
484 between reference samples and GWAS samples can lead to false positive findings [24, 48, 49].
485 In our main analysis, we have used the in-sample LD references for EAS and UKBB GWAS
486 to minimize the risk of LD mismatching. In practice, if an in-sample LD reference is not
487 available, some diagnostic tools such as SLALOM [49] and DENTIST [48] should be carried
488 out to validate the fine-mapping results and remove suspicious signals.

489 Our XMAP approach needs more investigation in the following directions. First, similar
490 to PAINTOR and MsCAVAIR, XMAP assumes that the causal variants are shared across
491 populations. Recent studies have reported that some causal signals could be specific to a
492 certain population [50]. Hence, extending XMAP to handle the population-specific causal
493 effects may yield biologically interesting discoveries. Second, causal variants are reported to
494 be distributed disproportionately in the genome, depending on the functional context of the
495 genomic regions [18, 25, 30, 51]. Some recent methods incorporate the information of functional
496 annotation to improve fine-mapping [18, 25, 30]. It is interesting to incorporate functional
497 annotations in the causal inference of XMAP, which may further boost the statistical power
498 of fine-mapping. Third, gene-level effects can be more stably shared across populations, as
499 compared to SNP-level effects. A recent study [52] suggests that the correlation of gene-level
500 effects is 20% stronger than SNP-level effects across populations. Therefore, leveraging the
501 genetic diversity at the gene-level for fine-mapping can be also an interesting direction. We
502 will explore these potential extensions in the near future.

503 Methods

504 The XMAP model

505 We begin with the probabilistic formulation of XMAP with individual-level GWAS data.
506 For easier introduction, we consider the case of two populations for easier introduction but note
507 XMAP that is generally applicable to analyze multiple populations. Let $\{\mathbf{y}_1, \mathbf{X}_1\}$ and $\{\mathbf{y}_2, \mathbf{X}_2\}$
508 be the GWAS datasets collected from two different populations, where $\mathbf{y}_1 \in \mathbb{R}^{n_1}$ and $\mathbf{y}_2 \in \mathbb{R}^{n_2}$
509 are phenotype vectors, $\mathbf{X}_1 \in \mathbb{R}^{n_1 \times p}$ and $\mathbf{X}_2 \in \mathbb{R}^{n_2 \times p}$ are genotype matrices, p is the number of
510 SNPs in the locus of interest, and n_1 and n_2 are the GWAS sample sizes of populations 1 and
511 2, respectively. With different recombination rates, the two populations tend to have different
512 LD patterns, i.e., the correlations among columns of \mathbf{X}_1 are usually distinct from those of \mathbf{X}_2 .
513 Without loss of generality, we assume that the columns of \mathbf{X}_1 and \mathbf{X}_2 have been standardized
514 to have zero mean and unit variance. To relate genotypes and phenotypes, we consider the
515 following linear models:

$$\begin{aligned} \mathbf{y}_1 &= \mathbf{X}_1 \mathbf{b}_1 + \mathbf{X}_1 \boldsymbol{\phi}_1 + \mathbf{e}_1, \\ \mathbf{y}_2 &= \mathbf{X}_2 \mathbf{b}_2 + \mathbf{X}_2 \boldsymbol{\phi}_2 + \mathbf{e}_2, \end{aligned} \tag{1}$$

516 where $\mathbf{b}_1 \in \mathbb{R}^p$ and $\mathbf{b}_2 \in \mathbb{R}^p$ are sparse vectors of causal effects with major impact on phenotypes,
517 $\boldsymbol{\phi}_1 = [\phi_{11}, \phi_{12}, \dots, \phi_{1p}]^T \in \mathbb{R}^p$ and $\boldsymbol{\phi}_2 = [\phi_{21}, \phi_{22}, \dots, \phi_{2p}]^T \in \mathbb{R}^p$ are dense vectors capturing the
518 polygenic effects [53], and $\mathbf{e}_1 \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{e}_1}^2 \mathbf{I}_{n_1})$ and $\mathbf{e}_2 \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{e}_2}^2 \mathbf{I}_{n_2})$ are vectors of independent
519 noises from populations 1 and 2, respectively. Here, we assume that the covariates (e.g., sex, age,
520 and principal components) have been adjusted. The detailed treatment of covariates follows
521 our previous works [28, 54]. Unlike previous methods that only consider the overall genetic
522 effects [17, 18, 19, 20, 22], we separate the genetic effects into causal and polygenic components.
523 This decomposition allows us to focus on the causal SNPs with major genetic impact \mathbf{b}_1 and
524 \mathbf{b}_2 that can be more biologically interesting for downstream analysis. Accumulating evidence
525 of a shared genetic basis across populations [28, 25, 26, 55, 56] implies that \mathbf{b}_1 and \mathbf{b}_2 tend to
526 have the same set of nonzero entries. Therefore, we expect that the different LD patterns in
527 \mathbf{X}_1 and \mathbf{X}_2 can be helpful for fine-mapping shared causal SNPs across populations.

528 To leverage the cross-population GWASs for fine-mapping, we propose to specify model (1)

529 by decomposing the causal genetic effects \mathbf{b}_1 and \mathbf{b}_2 into K ‘single effects’:

$$\begin{aligned} \mathbf{y}_1 &= \mathbf{X}_1 \sum_{k=1}^K \gamma_k \beta_{1k} + \mathbf{X}_1 \boldsymbol{\phi}_1 + \mathbf{e}_1, \\ \mathbf{y}_2 &= \mathbf{X}_2 \sum_{k=1}^K \gamma_k \beta_{2k} + \mathbf{X}_2 \boldsymbol{\phi}_2 + \mathbf{e}_2, \end{aligned} \quad (2)$$

530 where β_{1k} and β_{2k} are effect sizes of the k -th causal signal in populations one and two,
 531 respectively, $\boldsymbol{\gamma}_k = [\gamma_{k1}, \dots, \gamma_{kp}]^T \in \{0, 1\}^p$ in which only one element is 1 and the rest are 0 with
 532 $\gamma_{kj} = 1$ indicating the j -th variant is responsible for the k -th causal signal. This formulation of
 533 XMAP has three salient properties. First, through the shared causal status $\boldsymbol{\gamma}_k$, XMAP can
 534 leverage the distinct LD patterns between \mathbf{X}_1 and \mathbf{X}_2 . Meanwhile, we allow the two populations
 535 to have different effect sizes β_{1k} and β_{2k} . Second, the decomposition of the causal signals into
 536 K single causal effects not only allows us to characterize each individual causal signal with an
 537 associated credible set [23] but also offers a computational advantage over existing methods, as
 538 we shall see later. Third, the inclusion of the polygenic component also protects the statistical
 539 inference against over-fitting when K is specified larger than the ground truth. With this
 540 property, we can safely set K to be a reasonably large number, say $K = 10$ by default, when the
 541 ground truth is unknown. To infer the causal status $\boldsymbol{\gamma}_k$, we specify the probabilistic structures
 542 for the genetic effects in model (2) as follows:

$$\begin{aligned} \boldsymbol{\gamma}_k &\sim \text{Mult}(1, [1/p, \dots, 1/p]^T), \\ \begin{bmatrix} \beta_{1k} \\ \beta_{2k} \end{bmatrix} &\sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_k), \text{ for } k = 1, \dots, K, \\ \begin{bmatrix} \boldsymbol{\phi}_{1j} \\ \boldsymbol{\phi}_{2j} \end{bmatrix} &\sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Omega}), \text{ for } j = 1, \dots, p, \end{aligned} \quad (3)$$

543 where $\text{Mult}(1, [1/p, \dots, 1/p]^T)$ denotes the non-informative categorical distribution of class counts
 544 drawn with class probabilities given by $1/p$ for each SNP, $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_k)$ and $\mathcal{N}(\mathbf{0}, \boldsymbol{\Omega})$ denote the
 545 multivariate normal distributions with mean $\mathbf{0}$ and covariance matrices $\boldsymbol{\Sigma}_k = \begin{bmatrix} \sigma_{k1}^2 & \sigma_{k12}^2 \\ \sigma_{k12}^2 & \sigma_{k2}^2 \end{bmatrix}$
 546 and $\boldsymbol{\Omega} = \begin{bmatrix} \omega_1 & \omega_{12} \\ \omega_{12} & \omega_2 \end{bmatrix}$, respectively. The variance components $\boldsymbol{\Sigma} = \{\boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K\}$ capture the
 547 genetic covariance of the two populations attributed to the K causal effects, and $\boldsymbol{\Omega}$ captures
 548 the genetic covariance attributed to the polygenic effects.

549 So far, we have assumed the covariates have been adjusted. In the presence of covariates,

550 we can extend XMAP model in Equation (2) as

$$\begin{aligned} \mathbf{y}_1 &= \mathbf{W}_1 \mathbf{u}_1 + \mathbf{X}_1 \sum_{k=1}^K \gamma_k \beta_{1k} + \mathbf{X}_1 \boldsymbol{\phi}_1 + \mathbf{e}_1, \\ \mathbf{y}_2 &= \mathbf{W}_2 \mathbf{u}_2 + \mathbf{X}_2 \sum_{k=1}^K \gamma_k \beta_{2k} + \mathbf{X}_2 \boldsymbol{\phi}_2 + \mathbf{e}_2, \end{aligned} \quad (4)$$

551 where $\mathbf{W}_1 \in \mathbb{R}^{n_1 \times q_1}$ and $\mathbf{W}_2 \in \mathbb{R}^{n_2 \times q_2}$ are the covariate matrices of populations 1 and 2,
552 respectively, and $\mathbf{u}_1 \in \mathbb{R}^{q_1}$ and $\mathbf{u}_2 \in \mathbb{R}^{q_2}$ are corresponding vectors of covariate effects. To
553 adjust the covariates, we first construct the projection matrices $\mathbf{P}_1 = \mathbf{I} - \mathbf{W}_1(\mathbf{W}_1^T \mathbf{W}_1)^{-1} \mathbf{W}_1^T$
554 and $\mathbf{P}_2 = \mathbf{I} - \mathbf{W}_2(\mathbf{W}_2^T \mathbf{W}_2)^{-1} \mathbf{W}_2^T$. Then we multiply \mathbf{P}_1 on both sides of the first equation and
555 \mathbf{P}_2 on both sides of the second equation in model (4). Through this projection, we can obtain
556 a model without covariates

$$\begin{aligned} \mathbf{y}_1^P &= \mathbf{X}_1^P \sum_{k=1}^K \gamma_k \beta_{1k} + \mathbf{X}_1^P \boldsymbol{\phi}_1 + \mathbf{e}_1^P, \\ \mathbf{y}_2^P &= \mathbf{X}_2^P \sum_{k=1}^K \gamma_k \beta_{2k} + \mathbf{X}_2^P \boldsymbol{\phi}_2 + \mathbf{e}_2^P, \end{aligned} \quad (5)$$

557 where $\mathbf{y}_1^P = \mathbf{P}_1 \mathbf{y}_1$, $\mathbf{y}_2^P = \mathbf{P}_2 \mathbf{y}_2$, $\mathbf{X}_1^P = \mathbf{P}_1 \mathbf{X}_1$, $\mathbf{X}_2^P = \mathbf{P}_2 \mathbf{X}_2$, $\mathbf{e}_1^P = \mathbf{P}_1 \mathbf{e}_1$, and $\mathbf{e}_2^P = \mathbf{P}_2 \mathbf{e}_2$. As we
558 can observe, model (5) reduces to model (2). With this equivalence, we can work with model
559 (2) without loss of generality.

560 The XMAP model for summary-level data

561 Due to privacy concerns, the individual-level GWAS data may not be easily accessible.
562 Given this situation, we consider the summary-level GWAS data $\{\hat{\mathbf{b}}_1, \hat{\mathbf{s}}_1\} = \{\hat{b}_{1j}, \hat{s}_{1j}\}_{j=1, \dots, p}$
563 and $\{\hat{\mathbf{b}}_2, \hat{\mathbf{s}}_2\} = \{\hat{b}_{2j}, \hat{s}_{2j}\}_{j=1, \dots, p}$ obtained from simple linear regressions:

$$\begin{aligned} \hat{b}_{1j} &= \mathbf{x}_{1j}^T \mathbf{y}_1 / \mathbf{x}_{1j}^T \mathbf{x}_{1j}, & \hat{s}_{1j} &= \sqrt{\|\mathbf{y}_1 - \mathbf{x}_{1j} \hat{b}_{1j}\|_2^2 / (n_1 \mathbf{x}_{1j}^T \mathbf{x}_{1j})}, \\ \hat{b}_{2j} &= \mathbf{x}_{2j}^T \mathbf{y}_2 / \mathbf{x}_{2j}^T \mathbf{x}_{2j}, & \hat{s}_{2j} &= \sqrt{\|\mathbf{y}_2 - \mathbf{x}_{2j} \hat{b}_{2j}\|_2^2 / (n_2 \mathbf{x}_{2j}^T \mathbf{x}_{2j})}, \end{aligned} \quad (6)$$

564 where $\mathbf{x}_{1j} \in \mathbb{R}^p$ and $\mathbf{x}_{2j} \in \mathbb{R}^p$ denote the j -th column of \mathbf{X}_1 and \mathbf{X}_2 , respectively. To derive
565 XMAP with summary-level data, we consider the rows of \mathbf{X}_1 and \mathbf{X}_2 as independently and
566 identically distributed samples drawn from the two populations, respectively. Then, we define
567 the LD matrices $\mathbf{R}_1 = \{r_{1jl}\} \in \mathbb{R}^{p \times p}$ and $\mathbf{R}_2 = \{r_{2jl}\} \in \mathbb{R}^{p \times p}$, where $r_{1jl} = \mathbb{E}[\mathbf{x}_{1j}^T \mathbf{x}_{1l} / n_1]$ and
568 $r_{2jl} = \mathbb{E}[\mathbf{x}_{2j}^T \mathbf{x}_{2l} / n_2]$ denote the correlation between variants j and l in populations 1 and 2,

569 respectively. We can then obtain the expectation of GWAS effect sizes conditional on \mathbf{b} and ϕ :

$$\begin{aligned}\mathbb{E} [\hat{\mathbf{b}}_1 | \mathbf{b}_1, \phi_1] &= \mathbb{E} \left[\mathbf{X}_1^T \mathbf{X}_1 \left(\sum_{k=1}^K \gamma_k \beta_{1k} + \phi_1 \right) + \mathbf{X}_1^T \mathbf{e}_1 \right] / n_1 | \mathbf{b}_1, \phi_1 = \mathbf{R}_1 \sum_{k=1}^K \gamma_k \beta_{1k} + \mathbf{R}_1 \phi_1, \\ \mathbb{E} [\hat{\mathbf{b}}_2 | \mathbf{b}_2, \phi_2] &= \mathbb{E} \left[\mathbf{X}_2^T \mathbf{X}_2 \left(\sum_{k=1}^K \gamma_k \beta_{2k} + \phi_2 \right) + \mathbf{X}_2^T \mathbf{e}_2 \right] / n_2 | \mathbf{b}_2, \phi_2 = \mathbf{R}_2 \sum_{k=1}^K \gamma_k \beta_{2k} + \mathbf{R}_2 \phi_2.\end{aligned}\quad (7)$$

570 With this expression, we can connect \mathbf{b} and ϕ with GWAS summary data with the following
571 model:

$$\begin{aligned}\hat{\mathbf{b}}_1 &= \mathbf{R}_1 \sum_{k=1}^K \gamma_k \beta_{1k} + \mathbf{R}_1 \phi_1 + \epsilon_1, \quad \text{Var}(\epsilon_1) = \hat{\mathbf{S}}_1 \mathbf{R}_1 \hat{\mathbf{S}}_1 \\ \hat{\mathbf{b}}_2 &= \mathbf{R}_2 \sum_{k=1}^K \gamma_k \beta_{2k} + \mathbf{R}_2 \phi_2 + \epsilon_2, \quad \text{Var}(\epsilon_2) = \hat{\mathbf{S}}_2 \mathbf{R}_2 \hat{\mathbf{S}}_2\end{aligned}\quad (8)$$

572 where $\hat{\mathbf{S}}_1 \in \mathbb{R}^{p \times p}$ and $\hat{\mathbf{S}}_2 \in \mathbb{R}^{p \times p}$ are diagonal matrices with diagonal terms given as $\{\hat{\mathbf{S}}_1\}_{jj} = \hat{s}_{1j}$
573 and $\{\hat{\mathbf{S}}_2\}_{jj} = \hat{s}_{2j}$ for $j = 1, \dots, p$, respectively (see Supplementary Note). To obtain a likelihood
574 function of summary level data, we impose normal distributions for $\hat{\mathbf{b}}_1$ and $\hat{\mathbf{b}}_2$, and Eq. (8)
575 becomes the following model:

$$\begin{aligned}\hat{\mathbf{b}}_1 &\sim \mathcal{N} \left(\mathbf{R}_1 \sum_{k=1}^K \gamma_k \beta_{1k} + \mathbf{R}_1 \phi_1, \hat{\mathbf{S}}_1 \mathbf{R}_1 \hat{\mathbf{S}}_1 \right), \\ \hat{\mathbf{b}}_2 &\sim \mathcal{N} \left(\mathbf{R}_2 \sum_{k=1}^K \gamma_k \beta_{2k} + \mathbf{R}_2 \phi_2, \hat{\mathbf{S}}_2 \mathbf{R}_2 \hat{\mathbf{S}}_2 \right).\end{aligned}\quad (9)$$

576 Note that model (8) or model (9) is derived by assuming that all the population structures
577 have been properly adjusted in the GWAS summary statistics. To account for the unadjusted
578 confounding bias hidden in GWAS summary statistics, we extend Equation (1) under the
579 genetic drift model of LDSC [31] (see Supplementary Note). We show that model (9) is modified
580 accordingly as

$$\begin{aligned}\hat{\mathbf{b}}_1 &\sim \mathcal{N} \left(\mathbf{R}_1 \sum_{k=1}^K \gamma_k \beta_{1k} + \mathbf{R}_1 \phi_1, c_1 \hat{\mathbf{S}}_1 \mathbf{R}_1 \hat{\mathbf{S}}_1 \right), \\ \hat{\mathbf{b}}_2 &\sim \mathcal{N} \left(\mathbf{R}_2 \sum_{k=1}^K \gamma_k \beta_{2k} + \mathbf{R}_2 \phi_2, c_2 \hat{\mathbf{S}}_2 \mathbf{R}_2 \hat{\mathbf{S}}_2 \right),\end{aligned}\quad (10)$$

581 where c_1 and c_2 are LDSC intercepts that indicate the magnitude of inflation in GWAS effect
582 sizes due to confounding bias. In the absence of confounding bias, the values of inflation
583 constants c_1 and c_2 are close to one. As observed in biobank-scale GWASs [11, 12, 13, 54], the
584 inflation constant is often larger than one in the presence of confounding bias. These inflation
585 constants in the variance term of model (10) can re-calibrate the GWAS standard error based

586 on the magnitude of confounding effects. The SNP correlation matrices $\mathbf{R} = \{\mathbf{R}_1, \mathbf{R}_2\}$ can be
 587 estimated with genotypes either from subsets of GWAS samples or from population-matched
 588 reference panels. Under model (3) and (10), we denote the collection of unknown parameters
 589 $\boldsymbol{\theta} = \{\boldsymbol{\Sigma}, \boldsymbol{\Omega}, c_1, c_2\}$, and the collections of latent variables $\boldsymbol{\phi} = \{\boldsymbol{\phi}_1, \boldsymbol{\phi}_2\}$, $\boldsymbol{\gamma} = \{\boldsymbol{\gamma}_k\}_{k=1,\dots,K}$ and
 590 $\boldsymbol{\beta} = \{\beta_{1k}, \beta_{2k}\}_{k=1,\dots,K}$. We shall obtain the parameter estimates $\hat{\boldsymbol{\theta}}$ and identify causal SNPs
 591 with the posterior

$$\Pr(\boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi} | \hat{\mathbf{b}}, \hat{\mathbf{s}}, \mathbf{R}; \hat{\boldsymbol{\theta}}) = \frac{\Pr(\hat{\mathbf{b}}, \boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi} | \hat{\mathbf{s}}, \mathbf{R}; \hat{\boldsymbol{\theta}})}{\Pr(\hat{\mathbf{b}} | \hat{\mathbf{s}}, \mathbf{R}; \hat{\boldsymbol{\theta}})}. \quad (11)$$

592 Algorithm and parameter estimation

593 To ensure the model identifiability, we first apply LDSC to estimate the parameters c_1, c_2 ,
 594 and $\boldsymbol{\Omega}$ using summary statistics across the whole genome. For $\boldsymbol{\Omega}$, the diagonal terms ω_1 and
 595 ω_2 are estimated with the per-SNP heritabilities of the corresponding populations using LDSC.
 596 The off-diagonal term ω_{12} is estimated by the per-SNP co-heritability obtained via bi-variate
 597 LDSC. The inflation constants c_1 and c_2 are estimated by the intercepts of LDSC of the two
 598 populations. Then, with the parameters $\{\hat{c}_1, \hat{c}_2, \hat{\boldsymbol{\Omega}}\}$ pre-fixed, we can estimate $\boldsymbol{\Sigma}$ without model
 599 identifiability issue. Traditional maximum likelihood approach estimates $\boldsymbol{\Sigma}$ by maximizing the
 600 marginal likelihood

$$\Pr(\hat{\mathbf{b}} | \hat{\mathbf{s}}, \mathbf{R}; \hat{\boldsymbol{\Omega}}, \hat{c}_1, \hat{c}_2, \boldsymbol{\Sigma}) = \sum_{\boldsymbol{\gamma}} \int \int \Pr(\hat{\mathbf{b}} | \hat{\mathbf{s}}, \mathbf{R}, \boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi}; \hat{c}_1, \hat{c}_2) \Pr(\boldsymbol{\phi} | \hat{\boldsymbol{\Omega}}) \Pr(\boldsymbol{\gamma}) \Pr(\boldsymbol{\beta} | \boldsymbol{\Sigma}) d\boldsymbol{\beta} d\boldsymbol{\phi}. \quad (12)$$

601 However, due to the combinatorial nature of $\boldsymbol{\gamma}$, the computational cost for Equation (12) grows
 602 exponentially with the number of causal signals K . To address this difficulty, we develop an
 603 efficient variational expectation-maximization (VEM) algorithm to estimate $\boldsymbol{\Sigma}$ and approximate
 604 the posterior (11). To achieve this, we first derive a lower bound of the logarithm of the marginal
 605 likelihood (12)

$$\begin{aligned} \log \Pr(\hat{\mathbf{b}} | \hat{\mathbf{s}}, \mathbf{R}; \hat{\boldsymbol{\Omega}}, \hat{c}_1, \hat{c}_2, \boldsymbol{\Sigma}) &\geq \sum_{\boldsymbol{\gamma}} \int \int q(\boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi}) \log \frac{\Pr(\hat{\mathbf{b}}, \boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi} | \hat{\mathbf{s}}, \mathbf{R}; \hat{\boldsymbol{\Omega}}, \hat{c}_1, \hat{c}_2, \boldsymbol{\Sigma})}{q(\boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi})} d\boldsymbol{\beta} d\boldsymbol{\phi} \\ &= \mathbb{E}_q [\log \Pr(\hat{\mathbf{b}}, \boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi} | \hat{\mathbf{s}}, \mathbf{R}; \hat{\boldsymbol{\Omega}}, \hat{c}_1, \hat{c}_2, \boldsymbol{\Sigma}) - \log q(\boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi})] \\ &\equiv \mathcal{L}_q(\boldsymbol{\Sigma}), \end{aligned} \quad (13)$$

606 where the inequality follows Jensen's inequality and $q(\boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi})$ is a variational approximation
 607 of the posterior (11). For convenience, we denote $\mathbf{b}_{1k} = \boldsymbol{\gamma}_k \beta_{1k}$ and $\mathbf{b}_{2k} = \boldsymbol{\gamma}_k \beta_{2k}$. By leveraging
 608 the decomposition in model (2), we propose a factorizable formulation of the variational

609 approximation:

$$q(\boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi}) = \prod_{k=1}^K q(\mathbf{b}_{1k}, \mathbf{b}_{2k}) q(\boldsymbol{\phi}) = \prod_{k=1}^K q(\boldsymbol{\gamma}_k) q(\beta_{1k}, \beta_{2k} | \boldsymbol{\gamma}_k) q(\boldsymbol{\phi}). \quad (14)$$

610 Unlike previous methods [57, 58] that require \mathbf{b}_{1k} and \mathbf{b}_{2k} to be fully factorizable across their p el-
 611 ements, the variational approximation in Equation (14) only requires that $\{\mathbf{b}_{11}, \mathbf{b}_{21}\}, \dots, \{\mathbf{b}_{1K}, \mathbf{b}_{2K}\}$
 612 are independent and they are independent of $\boldsymbol{\phi}$ [23, 24], which allows flexible dependencies
 613 among the elements of \mathbf{b}_{1k} and \mathbf{b}_{2k} . With the above factorizable approximation given by
 614 Equation (14), it turns out that both $q(\boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\phi})$ and $\mathcal{L}_q(\boldsymbol{\Sigma})$ can be analytically evaluated. We
 615 summarize the VEM algorithm in the following:

616 **E-step** At the t -th iteration, the variational distributions are given as

$$\begin{aligned} q(\boldsymbol{\gamma}_k | \boldsymbol{\Sigma}^{(t)}) &= \text{Mult}(1, \tilde{\boldsymbol{\pi}}_k), \\ q\left(\begin{bmatrix} \beta_{1k} \\ \beta_{2k} \end{bmatrix} | \gamma_{kj} = 1, \boldsymbol{\Sigma}^{(t)}\right) &= \mathcal{N}(\tilde{\boldsymbol{\mu}}_{kj}, \tilde{\boldsymbol{\Sigma}}_{kj}), \\ q\left(\begin{bmatrix} \boldsymbol{\phi}_1 \\ \boldsymbol{\phi}_2 \end{bmatrix} | \boldsymbol{\Sigma}^{(t)}\right) &= \mathcal{N}(\tilde{\boldsymbol{\nu}}, \tilde{\boldsymbol{\Lambda}}), \end{aligned} \quad (15)$$

617 where $\tilde{\boldsymbol{\pi}} = [\tilde{\pi}_{k1}, \dots, \tilde{\pi}_{kp}]^T \in [0, 1]^p$, $\tilde{\boldsymbol{\Sigma}}_{kj} \in \mathbb{R}^{2 \times 2}$, $\tilde{\boldsymbol{\mu}}_{kj} \in \mathbb{R}^2$, $\tilde{\boldsymbol{\Lambda}} \in \mathbb{R}^{2p \times 2p}$, and $\tilde{\boldsymbol{\nu}} \in \mathbb{R}^{2p}$ are
 618 variational parameters. The variational parameters are given as

$$\begin{aligned} \tilde{\pi}_{kj} &= \text{softmax}(-\log(p) + \frac{1}{2} \log |\tilde{\boldsymbol{\Sigma}}_{kj}| + \frac{1}{2} \tilde{\boldsymbol{\mu}}_{kj}^T \tilde{\boldsymbol{\Sigma}}_{kj}^{-1} \tilde{\boldsymbol{\mu}}_{kj}), \\ \tilde{\boldsymbol{\Sigma}}_{kj} &= \begin{bmatrix} \tilde{\sigma}_{kj,1}^2 & \tilde{\sigma}_{kj,12}^2 \\ \tilde{\sigma}_{kj,2}^2 & \tilde{\sigma}_{kj,2}^2 \end{bmatrix} = \left(\begin{bmatrix} \frac{r_{1jj}}{\hat{c}_1 \hat{s}_{1j}^2} & \mathbf{0} \\ \mathbf{0} & \frac{r_{2jj}}{\hat{c}_2 \hat{s}_{2j}^2} \end{bmatrix} + (\boldsymbol{\Sigma}_k^{(t)})^{-1} \right)^{-1}, \\ \tilde{\boldsymbol{\mu}}_{kj} &= \begin{bmatrix} \tilde{\mu}_{kj,1} \\ \tilde{\mu}_{kj,2} \end{bmatrix} = \tilde{\boldsymbol{\Sigma}}_{kj} \left(\begin{bmatrix} \hat{\mathbf{b}}_{1j} \\ \hat{c}_1 \hat{s}_{1j}^2 \end{bmatrix} - \begin{bmatrix} \mathbf{R}_{1j}^T \\ \hat{c}_1 \hat{s}_{1j}^2 \end{bmatrix} \left(\sum_{k' \neq 1}^K \tilde{\boldsymbol{\mu}}_{k'j} \otimes \tilde{\boldsymbol{\pi}}_{k'} + \tilde{\boldsymbol{\nu}} \right) \right), \\ \tilde{\boldsymbol{\Lambda}} &= \left(\begin{bmatrix} \hat{\mathbf{S}}_1^{-1} \mathbf{R}_1 \hat{\mathbf{S}}_1^{-1} \\ \hat{c}_1 \end{bmatrix} \mathbf{0} \begin{bmatrix} \hat{\mathbf{S}}_2^{-1} \mathbf{R}_2 \hat{\mathbf{S}}_2^{-1} \\ \hat{c}_2 \end{bmatrix} \right) + \hat{\boldsymbol{\Omega}}^{-1} \otimes \mathbf{I}_p, \\ \tilde{\boldsymbol{\nu}} &= \tilde{\boldsymbol{\Lambda}} \begin{bmatrix} \hat{\mathbf{S}}_1^{-2} \hat{\mathbf{b}}_1 \\ \hat{c}_1 \hat{\mathbf{S}}_2^{-2} \hat{\mathbf{b}}_2 \\ \hat{c}_2 \end{bmatrix} - \begin{bmatrix} \hat{\mathbf{S}}_1^{-1} \mathbf{R}_1 \hat{\mathbf{S}}_1^{-1} \\ \hat{c}_1 \mathbf{0} \hat{\mathbf{S}}_2^{-1} \end{bmatrix} \left(\left(\sum_{k=1}^K \tilde{\boldsymbol{\mu}}_{kj} \otimes \tilde{\boldsymbol{\pi}}_k \right) \right), \end{aligned} \quad (16)$$

619 where softmax denotes the softmax function to make sure $\sum_{j=1}^p \tilde{\pi}_{kj} = 1$ and \otimes is the Kronecker
 620 product. By combining Equations (14, 15, 16), the lower bound (13) can be analytically evaluated

621 as

$$\begin{aligned}
 & \mathcal{L}_q(\Sigma | \Sigma^{(t)}) \\
 &= \left(\sum_k^K \tilde{\mu}_{kj} \otimes \tilde{\pi}_k + \tilde{\nu} \right)^T \begin{bmatrix} \hat{\mathbf{S}}_1^{-2} \hat{\mathbf{b}}_1 \\ \hat{\mathbf{S}}_2^{-\frac{2}{\hat{c}_2}} \hat{\mathbf{b}}_2 \end{bmatrix} - \frac{1}{2} \left(\sum_k^K \tilde{\mu}_{kj} \otimes \tilde{\pi}_k + \tilde{\nu} \right)^T \begin{bmatrix} \frac{\hat{\mathbf{S}}_1^{-1} \mathbf{R}_1 \hat{\mathbf{S}}_1^{-1}}{\hat{c}_1} & \mathbf{0} \\ \mathbf{0} & \frac{\hat{\mathbf{S}}_2^{-1} \mathbf{R}_2 \hat{\mathbf{S}}_2^{-1}}{\hat{c}_2} \end{bmatrix} \left(\sum_k^K \tilde{\mu}_{kj} \otimes \tilde{\pi}_k + \tilde{\nu} \right) \\
 & - \sum_j^p \frac{1}{2\hat{c}_1 \hat{s}_{1j}^2} r_{1jj} \sum_k^K \tilde{\pi}_{kj} (\tilde{\mu}_{kj,1}^2 + \tilde{\sigma}_{kj,1}^2) - \sum_j^p \frac{1}{2\hat{c}_2 \hat{s}_{2j}^2} r_{2jj} \sum_k^K \tilde{\pi}_{kj} (\tilde{\mu}_{kj,2}^2 + \tilde{\sigma}_{kj,2}^2) \\
 & + \frac{1}{2} \sum_k^K \left((\tilde{\mu}_{kj} \otimes \tilde{\pi}_k)^T \begin{bmatrix} \frac{\hat{\mathbf{S}}_1^{-1} \mathbf{R}_1 \hat{\mathbf{S}}_1^{-1}}{\hat{c}_1} & \mathbf{0} \\ \mathbf{0} & \frac{\hat{\mathbf{S}}_2^{-1} \mathbf{R}_2 \hat{\mathbf{S}}_2^{-1}}{\hat{c}_2} \end{bmatrix} (\tilde{\mu}_{kj} \otimes \tilde{\pi}_k) \right) - \frac{1}{2p} \sum_k \sum_j \text{Tr}(\Sigma_k^{-1} (\tilde{\Sigma}_{kj} + \tilde{\mu}_{kj} \tilde{\mu}_{kj}^T)) \\
 & - \frac{p}{2} \log |2\pi \hat{\Omega}| - \frac{1}{2} \tilde{\nu}^T (\hat{\Omega}^{-1} \otimes \mathbf{I}_p) \tilde{\nu} - \frac{1}{2} \text{Tr} \left(\left(\begin{bmatrix} \frac{1}{\hat{c}_1} \hat{\mathbf{S}}_1^{-1} \mathbf{R}_1 \hat{\mathbf{S}}_1^{-1} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\hat{c}_2} \hat{\mathbf{S}}_2^{-1} \mathbf{R}_2 \hat{\mathbf{S}}_2^{-1} \end{bmatrix} + \hat{\Omega}^{-1} \otimes \mathbf{I}_p \right) \tilde{\Lambda} \right) \\
 & + \sum_j^p \sum_k^K \tilde{\pi}_{kj} \log \frac{1}{p} - \sum_j^p \sum_k^K \tilde{\pi}_{kj} \log \tilde{\pi}_{kj} + \frac{1}{2} \sum_j^p \sum_k^K \tilde{\pi}_{kj} (\log |\tilde{\Sigma}_{kj}| - \log |\Sigma_k|) + \frac{1}{2} \log |\tilde{\Lambda}| \\
 & + \text{constant,}
 \end{aligned} \tag{17}$$

622 where $\text{Tr}(\mathbf{B})$ denotes the trace of the square matrix \mathbf{B} , the constant term does not involve Σ .

623 **M-step** We solve $\frac{\partial \mathcal{L}_q}{\partial \Sigma_k} = 0$ to obtain the update equation of Σ_k :

$$\Sigma_k^{(t+1)} = \sum_j^p \tilde{\pi}_{kj} (\tilde{\mu}_{kj} \tilde{\mu}_{kj}^T + \tilde{\Sigma}_{kj}). \tag{18}$$

624 The above VEM algorithm has computational cost linear to the number of causal variants
625 K , allowing for detecting multiple causal effects (e.g., $K = 10$) at a given locus.

626 Identification of causal variant and construction of credible set

627 After the convergence of VEM algorithm, we can obtain the approximated posterior
628 probabilities $q(\gamma_k) = \tilde{\pi}_k$, where $\tilde{\pi}_{kj}$ is the posterior probability that the k -th causal signal is
629 contributed by the j -th SNP. With the variational approximation given by Equation (15), we
630 can compute the posterior inclusion probability of SNP j as

$$\text{PIP}_j = \Pr(\gamma_{kj} \neq 0 \text{ for some } k | \hat{\mathbf{b}}, \hat{\mathbf{s}}) \approx 1 - \prod_{k=1}^K (1 - \tilde{\pi}_{kj}). \tag{19}$$

631 We can compute the local false discovery rate of SNP j as $fdr_j = 1 - \text{PIP}_j$ and prioritize the
632 causal SNPs by controlling the false discovery rate.

633 The decomposition of causal effects (2) offers an opportunity to characterize the set of SNPs
634 that have high credibility to contribute to an individual causal signal. Let $\mathcal{M} \subset \{1, \dots, p\}$ be a
635 subset of SNPs from the target locus. A level- α credible set of a causal signal k , denoted as

636 $CS(k, \alpha)$, is defined as the smallest \mathcal{M} with $\sum_{j \in \mathcal{M}} \tilde{\pi}_{kj} \geq \alpha$. A smaller size of level- α credible
637 set (e.g., $\alpha = 0.9$) indicates a higher confidence of the identified causal variants.

638 Influence and choice of K

639 The number of causal signals is usually unknown in practice. In XMAP, we do not require
640 K to be the number of causal SNPs in the target locus. Instead, because the computational
641 cost of our VEM algorithm only increases linearly with K , we can set K to a reasonably large
642 number (e.g., $K = 10$) with minor computational overhead. When K is larger than the ground
643 truth, the posterior probabilities in the excessive components will be broadly distributed across
644 all SNPs in the locus because there is high uncertainty in the assignment of these causal effects.
645 Importantly, the polygenic component will account for the small genetic effects, forcing the
646 variance of excessive signals toward zero. Therefore, it has very minor influence in prioritization
647 of causal SNPs when including extra causal effects than necessary. To exclude credible sets
648 associated with redundant signal clusters, we follow SuSiE [23] to introduce the purity of
649 credible sets. The purity of a credible set is defined as the smallest absolute correlation between
650 pairs of SNPs within it. In XMAP, we consider the credible sets with purity less than 0.1 in all
651 populations as redundant and discard the associated credible sets.

652 Data and Code Availability

653 The publicly available GWAS summary statistics for meta-analysis were obtained from the links
654 summarized in Supplementary Table 1. The XMAP software and source codes in this study were
655 publicly available in GitHub repository of XMAP (<https://github.com/YangLabHKUST/XMAP>).

656 Declaration of Interests

657 The authors declare no competing interests.

658 Web resources

659 LDSC: <https://github.com/bulik/ldsc>;

660 XMAP: <https://github.com/YangLabHKUST/XMAP>;

661 PLINK: <https://www.cog-genomics.org/plink>;

662 BOLT-LMM: <https://alkesgroup.broadinstitute.org/BOLT-LMM>.

663 UKBB: <https://www.ukbiobank.ac.uk>;
664 SuSiE: <https://github.com/stephenslab/susieR>
665 PAINTOR: https://github.com/gkichaev/PAINTOR_V3.0
666 MsCAVIAR: <https://github.com/nlapier2/MsCAVIAR>
667 FINEMAP: <http://www.christianbenner.com>
668 DAP-G: <https://github.com/xqwen/dap>
669 g-chromVAR: <https://github.com/caleblareau/gchromVAR>
670 SCAVENGE: <https://github.com/sankaranlab/SCAVENGE>

671 References

672 [1] Annalisa Buniello, Jacqueline A L MacArthur, Maria Cerezo, Laura W Harris, James
673 Hayhurst, Cinzia Malangone, Aoife McMahon, Joannella Morales, Edward Mountjoy, Elliot
674 Sollis, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies,
675 targeted arrays and summary statistics 2019. *Nucleic acids research*, 47(D1):D1005–D1012,
676 2019.

677 [2] Matthew T Maurano, Richard Humbert, Eric Rynes, Robert E Thurman, Eric Haugen,
678 Hao Wang, Alex P Reynolds, Richard Sandstrom, Hongzhu Qu, Jennifer Brody, et al.
679 Systematic localization of common disease-associated variation in regulatory dna. *Science*,
680 337(6099):1190–1195, 2012.

681 [3] Jay Shendure, Gregory M Findlay, and Matthew W Snyder. Genomic medicine—progress,
682 pitfalls, and promise. *Cell*, 177(1):45–57, 2019.

683 [4] Eleftheria Zeggini, Anna L Gloyn, Anne C Barton, and Louise V Wain. Translational
684 genomics and precision medicine: Moving from the lab to the clinic. *Science*, 365(6460):1409–
685 1413, 2019.

686 [5] Jacob C Ulirsch, Caleb A Lareau, Erik L Bao, Leif S Ludwig, Michael H Guo, Christian
687 Benner, Ansuman T Satpathy, Vinay K Kartha, Rany M Salem, Joel N Hirschhorn, et al.
688 Interrogation of human hematopoiesis at single-cell and single-variant resolution. *Nature
689 genetics*, 51(4):683–693, 2019.

690 [6] Fulong Yu, Liam D Cato, Chen Weng, L Alexander Liggett, Soyoung Jeon, Keren Xu,
691 Charleston WK Chiang, Joseph L Wiemels, Jonathan S Weissman, Adam J de Smith,
692 et al. Variant to function mapping at single-cell resolution through network propagation.
693 *Nature Biotechnology*, pages 1–10, 2022.

694 [7] David Ochoa, Mohd Karim, Maya Ghoussaini, David G Hulcoop, Ellen M McDonagh,
695 and Ian Dunham. Human genetics evidence supports two-thirds of the 2021 fda-approved
696 drugs. *Nature reviews. Drug discovery*, 2022.

697 [8] Darren J Burgess. Fine-mapping causal variants—why finding ‘the one’can be futile.
698 *Nature Reviews Genetics*, 23(5):261–261, 2022.

699 [9] Nathan S Abell, Marianne K DeGorter, Michael J Gloudemans, Emily Greenwald, Kevin S
700 Smith, Zihuai He, and Stephen B Montgomery. Multiple causal variants underlie genetic
701 associations in humans. *Science*, 375(6586):1247–1254, 2022.

702 [10] Abdel Abdellaoui, David Hugh-Jones, Loic Yengo, Kathryn E Kemper, Michel G Nivard,
703 Laura Veul, Yan Holtz, Brendan P Zietsch, Timothy M Frayling, Naomi R Wray, et al.
704 Genetic correlates of social stratification in great britain. *Nature human behaviour*,
705 3(12):1332–1342, 2019.

706 [11] Simon Haworth, Ruth Mitchell, Laura Corbin, Kaitlin H Wade, Tom Dudding, Ashley
707 Budu-Aggrey, David Carslake, Gibran Hemani, Lavinia Paternoster, George Davey Smith,
708 et al. Apparent latent structure within the uk biobank sample has implications for
709 epidemiological analysis. *Nature communications*, 10(1):1–9, 2019.

710 [12] Abdel Abdellaoui, Conor V Dolan, Karin JH Verweij, and Michel G Nivard. Gene–
711 environment correlations across geographic regions affect genome-wide association studies.
712 *Nature genetics*, 54(9):1345–1354, 2022.

713 [13] Xianghong Hu, Jia Zhao, Zhixiang Lin, Yang Wang, Heng Peng, Hongyu Zhao, Xiang Wan,
714 and Can Yang. Mendelian randomization for causal inference accounting for pleiotropy
715 and sample structure using genome-wide summary statistics. *Proceedings of the National
716 Academy of Sciences*, 119(28):e2106858119, 2022.

717 [14] Xiang Zhou and Matthew Stephens. Genome-wide efficient mixed-model analysis for
718 association studies. *Nature genetics*, 44(7):821–824, 2012.

719 [15] Jian Yang, Noah A Zaitlen, Michael E Goddard, Peter M Visscher, and Alkes L Price.
720 Advantages and pitfalls in the application of mixed-model association methods. *Nature*
721 *genetics*, 46(2):100–106, 2014.

722 [16] Alkes L Price, Nick J Patterson, Robert M Plenge, Michael E Weinblatt, Nancy A Shadick,
723 and David Reich. Principal components analysis corrects for stratification in genome-wide
724 association studies. *Nature genetics*, 38(8):904–909, 2006.

725 [17] Farhad Hormozdiari, Emrah Kostem, Eun Yong Kang, Bogdan Pasaniuc, and Eleazar
726 Eskin. Identifying causal variants at loci with multiple signals of association. *Genetics*,
727 198(2):497–508, 2014.

728 [18] Gleb Kichaev, Wen-Yun Yang, Sara Lindstrom, Farhad Hormozdiari, Eleazar Eskin,
729 Alkes L Price, Peter Kraft, and Bogdan Pasaniuc. Integrating functional data to prioritize
730 causal variants in statistical fine-mapping studies. *PLoS genetics*, 10(10):e1004722, 2014.

731 [19] Wenan Chen, Beth R Larrabee, Inna G Ovsyannikova, Richard B Kennedy, Iana H
732 Haralambieva, Gregory A Poland, and Daniel J Schaid. Fine mapping causal variants with
733 an approximate bayesian method using marginal test statistics. *Genetics*, 200(3):719–736,
734 2015.

735 [20] Christian Benner, Chris CA Spencer, Aki S Havulinna, Veikko Salomaa, Samuli Ripatti,
736 and Matti Pirinen. FINEMAP: efficient variable selection using summary data from
737 genome-wide association studies. *Bioinformatics*, 32(10):1493–1501, 2016.

738 [21] Xiaoquan Wen, Yeji Lee, Francesca Luca, and Roger Pique-Regi. Efficient integrative
739 multi-snp association analysis via deterministic approximation of posteriors. *The American*
740 *Journal of Human Genetics*, 98(6):1114–1129, 2016.

741 [22] Yeji Lee, Francesca Luca, Roger Pique-Regi, and Xiaoquan Wen. Bayesian multi-snp
742 genetic association analysis: Control of FDR and use of summary statistics. *BioRxiv*, page
743 316471, 2018.

744 [23] Gao Wang, Abhishek Sarkar, Peter Carbonetto, Matthew Stephens, et al. A simple new
745 approach to variable selection in regression, with application to genetic fine mapping.
746 *Journal of the Royal Statistical Society Series B*, 82(5):1273–1300, 2020.

747 [24] Yuxin Zou, Peter Carbonetto, Gao Wang, and Matthew Stephens. Fine-mapping from
748 summary data with the “sum of single effects” model. *PLoS genetics*, 18(7):e1010299,
749 2022.

750 [25] Gleb Kichaev and Bogdan Pasaniuc. Leveraging functional-annotation data in trans-ethnic
751 fine-mapping studies. *The American Journal of Human Genetics*, 97(2):260–271, 2015.

752 [26] Nathan LaPierre, Kodi Taraszka, Helen Huang, Rosemary He, Farhad Hormozdiari, and
753 Eleazar Eskin. Identifying causal variants by fine mapping across multiple studies. *PLoS*
754 *genetics*, 17(9):e1009733, 2021.

755 [27] Daniel J Schaid, Wenan Chen, and Nicholas B Larson. From genome-wide associations to
756 candidate causal variants by statistical fine-mapping. *Nature Reviews Genetics*, 19(8):491–
757 504, 2018.

758 [28] Mingxuan Cai, Jiashun Xiao, Shunkang Zhang, Xiang Wan, Hongyu Zhao, Gang Chen,
759 and Can Yang. A unified framework for cross-population trait prediction by leveraging
760 the genetic correlation of polygenic traits. *The American Journal of Human Genetics*,
761 108(4):632–655, 2021.

762 [29] Jiashun Xiao, Mingxuan Cai, Xianghong Hu, Xiang Wan, Gang Chen, and Can Yang.
763 XPXP: improving polygenic prediction by cross-population and cross-phenotype analysis.
764 *Bioinformatics*, 38(7):1947–1955, 2022.

765 [30] Omer Weissbrod, Farhad Hormozdiari, Christian Benner, Ran Cui, Jacob Ulirsch, Steven
766 Gazal, Armin P Schoech, Bryce Van De Geijn, Yakir Reshef, Carla Márquez-Luna, et al.
767 Functionally informed fine-mapping and polygenic localization of complex trait heritability.
768 *Nature genetics*, 52(12):1355–1363, 2020.

769 [31] Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang,
770 Nick Patterson, Mark J Daly, Alkes L Price, and Benjamin M Neale. LD score regression
771 distinguishes confounding from polygenicity in genome-wide association studies. *Nature*
772 *genetics*, 47(3):291–295, 2015.

773 [32] John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor
774 Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, et al. The genotype-
775 tissue expression (GTEx) project. *Nature genetics*, 45(6):580–585, 2013.

776 [33] Masahiro Kanai, Jacob C Ulirsch, Juha Karjalainen, Mitja Kurki, Konrad J Karczewski,
777 Eric Fauman, Qingbo S Wang, Hannah Jacobs, François Aguet, Kristin G Ardlie, et al.
778 Insights from complex trait fine-mapping across diverse populations. *medRxiv*, 2021.

779 [34] Jeffrey M Granja, Sandy Klemm, Lisa M McGinnis, Arwa S Kathiria, Anja Mezger,
780 M Ryan Corces, Benjamin Parks, Eric Gars, Michaela Liedtke, Grace XY Zheng, et al.
781 Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute
782 leukemia. *Nature biotechnology*, 37(12):1458–1465, 2019.

783 [35] Qiongshi Lu, Ryan Lee Powles, Qian Wang, Beixin Julie He, and Hongyu Zhao. Integrative
784 tissue-specific functional annotations in the human genome provide novel insights on many
785 complex traits and improve signal prioritization in genome wide association studies. *PLoS
786 genetics*, 12(4):e1005947, 2016.

787 [36] Qiongshi Lu, Boyang Li, Derek Ou, Margret Erlendsdottir, Ryan L Powles, Tony Jiang,
788 Yiming Hu, David Chang, Chentian Jin, Wei Dai, et al. A powerful approach to estimating
789 annotation-stratified genetic covariance via GWAS summary statistics. *The American
790 Journal of Human Genetics*, 101(6):939–964, 2017.

791 [37] Can Yang, Xiang Wan, Xinyi Lin, Mengjie Chen, Xiang Zhou, and Jin Liu. CoMM:
792 a collaborative mixed model to dissecting genetic contributions to complex traits by
793 leveraging regulatory information. *Bioinformatics*, 35(10):1644–1652, 2019.

794 [38] Xingjie Shi, Xiaoran Chai, Yi Yang, Qing Cheng, Yuling Jiao, Haoyue Chen, Jian
795 Huang, Can Yang, and Jin Liu. A tissue-specific collaborative mixed model for jointly
796 analyzing multiple tissues in transcriptome-wide association studies. *Nucleic acids research*,
797 48(19):e109–e109, 2020.

798 [39] Zhongshang Yuan, Huanhuan Zhu, Ping Zeng, Sheng Yang, Shiquan Sun, Can Yang, Jin
799 Liu, and Xiang Zhou. Testing and controlling for horizontal pleiotropy with probabilistic
800 mendelian randomization in transcriptome-wide association studies. *Nature communications*,
801 11(1):3861, 2020.

802 [40] Mingxuan Cai, Lin S Chen, Jin Liu, and Can Yang. IGREX for quantifying the impact
803 of genetically regulated expression on phenotypes. *NAR genomics and bioinformatics*,
804 2(1):lqaa010, 2020.

805 [41] Kevin J Gleason, Fan Yang, Brandon L Pierce, Xin He, and Lin S Chen. Primo: integration
806 of multiple GWAS and omics qtl summary statistics for elucidation of molecular mechanisms
807 of trait-associated snps and detection of pleiotropy in complex traits. *Genome biology*,
808 21(1):1–24, 2020.

809 [42] Yi Yang, Xingjie Shi, Yuling Jiao, Jian Huang, Min Chen, Xiang Zhou, Lei Sun, Xinyi Lin,
810 Can Yang, and Jin Liu. Comm-s2: a collaborative mixed model using summary statistics
811 in transcriptome-wide association studies. *Bioinformatics*, 36(7):2009–2016, 2020.

812 [43] Jingsi Ming, Mingwei Dai, Mingxuan Cai, Xiang Wan, Jin Liu, and Can Yang. LSMM: a
813 statistical approach to integrating functional annotations with genome-wide association
814 studies. *Bioinformatics*, 34(16):2788–2796, 2018.

815 [44] Jingsi Ming, Tao Wang, and Can Yang. LPM: a latent probit model to characterize the
816 relationship among complex traits using summary statistics from multiple GWASs and
817 functional annotations. *Bioinformatics*, 36(8):2506–2514, 2020.

818 [45] Qiongshi Lu, Ryan L Powles, Sarah Abdallah, Derek Ou, Qian Wang, Yiming Hu, Yisi Lu,
819 Wei Liu, Boyang Li, Shubhabrata Mukherjee, et al. Systematic tissue-specific functional
820 annotation of the human genome highlights immune-related dna elements for late-onset
821 alzheimer’s disease. *PLoS genetics*, 13(7):e1006933, 2017.

822 [46] Yiliang Zhang, Qiongshi Lu, Yixuan Ye, Kunling Huang, Wei Liu, Yuchang Wu, Xiaoyuan
823 Zhong, Boyang Li, Zhaolong Yu, Brittany G Travers, et al. SUPERGNOVA: local genetic
824 correlation analysis reveals heterogeneous etiologic sharing of complex traits. *Genome
825 biology*, 22:1–30, 2021.

826 [47] Xinyi Yu, Jiashun Xiao, Mingxuan Cai, Yuling Jiao, Xiang Wan, Jin Liu, and Can Yang.
827 PALM: a powerful and adaptive latent model for prioritizing risk variants with functional
828 annotations. *Bioinformatics*, 39(2):btad068, 2023.

829 [48] Masahiro Kanai, Roy Elzur, Wei Zhou, Kuan-Han H Wu, Humaira Rasheed, Kristin
830 Tsuo, Jibril B Hirbo, Ying Wang, Arjun Bhattacharya, Huiling Zhao, et al. Meta-analysis
831 fine-mapping is often miscalibrated at single-variant resolution. *Cell Genomics*, page
832 100210, 2022.

833 [49] Wenhan Chen, Yang Wu, Zhili Zheng, Ting Qi, Peter M Visscher, Zhihong Zhu, and Jian
834 Yang. Improved analyses of GWAS summary statistics by reducing data heterogeneity
835 and errors. *Nature Communications*, 12(1):1–10, 2021.

836 [50] Huwenbo Shi, Kathryn S Burch, Ruth Johnson, Malika K Freund, Gleb Kichaev, Nicholas
837 Mancuso, Astrid M Manuel, Natalie Dong, and Bogdan Pasaniuc. Localizing components
838 of shared transethnic genetic architecture of complex traits from GWAS summary data.
839 *The American Journal of Human Genetics*, 106(6):805–817, 2020.

840 [51] Huwenbo Shi, Steven Gazal, Masahiro Kanai, Evan M Koch, Armin P Schoech, Katherine M
841 Siewert, Samuel S Kim, Yang Luo, Tiffany Amariuta, Hailiang Huang, et al. Population-
842 specific causal disease effect sizes in functionally important regions impacted by selection.
843 *Nature communications*, 12(1):1–15, 2021.

844 [52] Zeyun Lu, Shyamalika Gopalan, Dong Yuan, David V Conti, Bogdan Pasaniuc, Alexander
845 Gusev, and Nicholas Mancuso. Multi-ancestry fine-mapping improves precision to identify
846 causal genes in transcriptome-wide association studies. *bioRxiv*, 2022.

847 [53] Peter M Visscher, Loic Yengo, Nancy J Cox, and Naomi R Wray. Discovery and implications
848 of polygenicity of common diseases. *Science*, 373(6562):1468–1473, 2021.

849 [54] Jiashun Xiao, Mingxuan Cai, Xinyi Yu, Xianghong Hu, Gang Chen, Xiang Wan, and Can
850 Yang. Leveraging the local genetic structure for trans-ancestry association mapping. *The
851 American Journal of Human Genetics*, 109(7):1317–1337, 2022.

852 [55] Jiacheng Miao, Hanmin Guo, Gefei Song, Zijie Zhao, Lin Hou, and Qiongshi Lu. Quantifying
853 portable genetic effects and improving cross-ancestry genetic prediction with GWAS
854 summary statistics. *bioRxiv*, 2022.

855 [56] Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen, Max Lam, Zhenglin
856 Guo, Lin He, Akira Sawa, Alicia R Martin, Shengying Qin, et al. Improving polygenic
857 prediction in ancestrally diverse populations. *Nature Genetics*, 54(5):573–580, 2022.

858 [57] Yongtao Guan and Matthew Stephens. Bayesian variable selection regression for genome-
859 wide association studies and other large-scale problems. *The Annals of Applied Statistics*,
860 5(3):1780–1815, 2011.

861 [58] Peter Carbonetto and Matthew Stephens. Scalable variational inference for bayesian
862 variable selection in regression, and its accuracy in genetic association studies. *Bayesian*
863 *analysis*, 7(1):73–108, 2012.